International Nuclear Information System (INIS)
Ferraro, Vittorio; Marinelli, Valerio
2012-01-01
A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.
International Nuclear Information System (INIS)
Ferraro, Vittorio; Imineo, Francesco; Marinelli, Valerio
2013-01-01
An improved model to analyze the performance of solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle is presented. In the new model, the effect of the incident angle modifier is included, to take into account the variation of the optical efficiency with the incidence angle of the irradiance, and the effect of the reheating of the fluid also has been studied. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine, with and without reheating of the fluid in the solar field. When reheating is used, the efficiency of the plant is increased. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it is able to compete well with other more complex plants operating with different heat transfer fluids. - Highlights: ► An improved model to calculate an innovative CPS solar plant is presented. ► The plant works with air in an open Joule–Brayton cycle. ► The reheating of the air increases the thermodynamic efficiency. ► The plant is very simple and competes well with other more complex solar plants
Two new designs of parabolic solar collectors
Directory of Open Access Journals (Sweden)
Karimi Sadaghiyani Omid
2014-01-01
Full Text Available In this work, two new compound parabolic trough and dish solar collectors are presented with their working principles. First, the curves of mirrors are defined and the mathematical formulation as one analytical method is used to trace the sun rays and recognize the focus point. As a result of the ray tracing, the distribution of heat flux around the inner wall can be reached. Next, the heat fluxes are calculated versus several absorption coefficients. These heat flux distributions around absorber tube are functions of angle in polar coordinate system. Considering, the achieved heat flux distribution are used as a thermal boundary condition. After that, Finite Volume Methods (FVM are applied for simulation of absorber tube. The validation of solving method is done by comparing with Dudley's results at Sandia National Research Laboratory. Also, in order to have a good comparison between LS-2 and two new designed collectors, some of their parameters are considered equal with together. These parameters are consist of: the aperture area, the measures of tube geometry, the thermal properties of absorber tube, the working fluid, the solar radiation intensity and the mass flow rate of LS-2 collector are applied for simulation of the new presented collectors. After the validation of the used numerical models, this method is applied to simulation of the new designed models. Finally, the outlet results of new designed collector are compared with LS-2 classic collector. Obviously, the obtained results from the comparison show the improving of the new designed parabolic collectors efficiency. In the best case-study, the improving of efficiency are about 10% and 20% for linear and convoluted models respectively.
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2015-01-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low
Parabolic Trough Solar Collector Initial Trials
Directory of Open Access Journals (Sweden)
Ghalya Pikra
2012-03-01
Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively.
Tube collector with integrated tracking parabolic concentrator
Energy Technology Data Exchange (ETDEWEB)
Grass, C.; Benz, N.; Hacker, Z.; Timinger, A. [ZAE Bayern, Bavarian Centre for Applied Energy Research, Muenchen (Germany)
2000-07-01
Low concentrating CPC collectors usually do not track the sun and are mounted in east-west direction with a latitude dependent slope angle. They are most suitable for maximum working temperatures up to 200 250 deg. C. We present a novel evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5 deg. at a geometrical concentration ratio of 3.2. The losses of evacuated tube collectors are dominated by the radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 400 deg. C. At temperatures of 300 deg. C we expect efficiencies of 65 %. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype was tested at the ZAE Bayern. The optical efficiency was measured to be 75 %. (au)
Test results, Industrial Solar Technology parabolic trough solar collector
Energy Technology Data Exchange (ETDEWEB)
Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)
1995-11-01
Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.
Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Energy Technology Data Exchange (ETDEWEB)
Stynes, J. K.; Ihas, B.
2012-04-01
As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.
Parabolic dish collectors - A solar option
Truscello, V. C.
1981-05-01
A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.
Study of Cylindrical Honeycomb Solar Collector
Directory of Open Access Journals (Sweden)
Atish Mozumder
2014-01-01
Full Text Available We present the results of our investigation on cylindrical honeycomb solar collector. The honeycomb has been fabricated with transparent cellulose triacetate polymer sheets. Insulation characteristics of the honeycomb were studied by varying the separation between the honeycomb and the absorber plate. The optimal value of the separation was found to be 3.3 mm for which the heat transfer coefficient is 3.06 W m−2 K−1. This supports result of previous similar experiments. Further we test the honeycomb through a field experiment conducted in Delhi (28.6°N, 77°E and found that when the incident angle of the solar radiation is within 20° then the performance of the system with the honeycomb is better than the one without the honeycomb.
Tracking local control of a parabolic trough collector
International Nuclear Information System (INIS)
Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.
1992-01-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
Theoretical Study of the Compound Parabolic Trough Solar Collector
Dr. Subhi S. Mahammed; Dr. Hameed J. Khalaf; Tadahmun A. Yassen
2012-01-01
Theoretical design of compound parabolic trough solar collector (CPC) without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67)% at mass flow rate between (0.02-0.03) kg/s at concentration ratio of (3.8) without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Humidification dehumidification desalination system using parabolic trough solar air collector
International Nuclear Information System (INIS)
Al-Sulaiman, Fahad A.; Zubair, M. Ifras; Atif, Maimoon; Gandhidasan, Palanichamy; Al-Dini, Salem A.; Antar, Mohamed A.
2015-01-01
This paper deals with a detailed thermodynamic analysis to assess the performance of an HDH system with an integrated parabolic trough solar collector (PTSC). The HDH system considered is an open air, open water, air heated system that uses a PTSC as an air heater. Two different configurations were considered of the HDH system. In the first configuration, the solar air heater was placed before the humidifier whereas in the second configuration the solar air heater was placed between the humidifier and the dehumidifier. The current study revealed that PTSCs are well suited for air heated HDH systems for high radiation location, such as Dhahran, Saudi Arabia. The comparison between the two HDH configurations demonstrates that the gained output ratio (GOR) of the first configuration is, on average, about 1.5 whereas for the second configuration the GOR increases up to an average value of 4.7. The study demonstrates that the HDH configuration with the air heater placed between the humidifier and the dehumidifier has a better performance and a higher productivity. - Highlights: • Thermodynamic analysis of an HDH system driven by a parabolic trough solar collector was conducted. • The first configuration reveals a GOR of 1.5 while the second configuration reveals a GOR of 4.7. • Effective heating of the HDH system was obtained through parabolic trough solar collector
Solar water disinfecting system using compound parabolic concentrating collector
Energy Technology Data Exchange (ETDEWEB)
El-Ghetany, H.H.; Saitoh, T.S. [Tohoku Univ., Sendai (Japan)
2000-05-31
Solar water disinfection is an alternative technology using solar radiation and thermal treatment to inactivate and destroy pathogenic microorganisms present in water. The Compound Parabolic Concentrating, (CPC) collector can be used as an efficient key component for solar disinfectanting system. Two types of the CPC collectors are studied, namely the transparent-tube and the Copper-tube CPC collector. It is found that after 30 minutes of exposing the water sample to solar radiation or heating it up to 65 degree C for a few minuets all the coliform bacterial present in the contaminated water sample were completely eliminated. In this article, the effect of water temperature on the disinfecting process was presented. Thermal and micro-biological measurements were also made to evaluate the system performance. (author)
Rothe's method for parabolic equations on non-cylindrical domains
Czech Academy of Sciences Publication Activity Database
Dasht, J.; Engström, J.; Kufner, Alois; Persson, L.E.
2006-01-01
Roč. 1, č. 1 (2006), s. 59-80 ISSN 0973-2306 Institutional research plan: CEZ:AV0Z10190503 Keywords : parabolic equations * non-cylindrical domains * Rothe's method * time-discretization Subject RIV: BA - General Mathematics
Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector
Elmetennani, Shahrazed; N'Doye, Ibrahima; Salama, Khaled N.; Laleg-Kirati, Taous-Meriem
2017-01-01
This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing
Theoretical Study of the Compound Parabolic Trough Solar Collector
Directory of Open Access Journals (Sweden)
Dr. Subhi S. Mahammed
2012-06-01
Full Text Available Theoretical design of compound parabolic trough solar collector (CPC without tracking is presented in this work. The thermal efficiency is obtained by using FORTRAN 90 program. The thermal efficiency is between (60-67% at mass flow rate between (0.02-0.03 kg/s at concentration ratio of (3.8 without need to tracking system.The total and diffused radiation is calculated for Tikrit city by using theoretical equations. Good agreement between present work and the previous work.
Evaluation of Surface Slope Irregularity in Linear Parabolic Solar Collectors
Directory of Open Access Journals (Sweden)
F. Francini
2012-01-01
Full Text Available The paper describes a methodology, very simple in its application, for measuring surface irregularities of linear parabolic collectors. This technique was principally developed to be applied in cases where it is difficult to use cumbersome instruments and to facilitate logistic management. The instruments to be employed are a digital camera and a grating. If the reflector surface is defective, the image of the grating, reflected on the solar collector, appears distorted. Analyzing the reflected image, we can obtain the local slope of the defective surface. These profilometric tests are useful to identify and monitor the mirror portions under mechanical stress and to estimate the losses caused by the light rays deflected outside the absorber.
Bilinear reduced order approximate model of parabolic distributed solar collectors
Elmetennani, Shahrazed
2015-07-01
This paper proposes a novel, low dimensional and accurate approximate model for the distributed parabolic solar collector, by means of a modified gaussian interpolation along the spatial domain. The proposed reduced model, taking the form of a low dimensional bilinear state representation, enables the reproduction of the heat transfer dynamics along the collector tube for system analysis. Moreover, presented as a reduced order bilinear state space model, the well established control theory for this class of systems can be applied. The approximation efficiency has been proven by several simulation tests, which have been performed considering parameters of the Acurex field with real external working conditions. Model accuracy has been evaluated by comparison to the analytical solution of the hyperbolic distributed model and its semi discretized approximation highlighting the benefits of using the proposed numerical scheme. Furthermore, model sensitivity to the different parameters of the gaussian interpolation has been studied.
Air-borne shape measurement of parabolic trough collector fields
Prahl, Christoph; Röger, Marc; Hilgert, Christoph
2017-06-01
The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.
Wind load design methods for ground-based heliostats and parabolic dish collectors
Energy Technology Data Exchange (ETDEWEB)
Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.
1992-09-01
The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Energy Technology Data Exchange (ETDEWEB)
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
DEFF Research Database (Denmark)
Tian, Zhiyong; Perers, Bengt; Furbo, Simon
2017-01-01
Flat plate collectors have relatively low efficiency at the typical supply temperatures of district heating networks (70–95 °C). Parabolic trough collectors retain their high efficiency at these temperatures. To maximize the advantages of flat plate collectors and parabolic trough collectors in l...... for this type of hybrid solar district heating plants with flat plate collectors and parabolic trough collectors in the Nordic region, but also introduce a novel design concept of solar district heating plants to other high solar radiation areas....... in large solar heating plants for a district heating network, a hybrid solar collector field with 5960 m2 flat plate collectors and 4039 m2 parabolic trough collectors in series was constructed in Taars, Denmark. The design principle is that the flat plate collectors preheat the return water from...
2010-01-01
M.Ing. A dissertation presented on the basic solar design principles such as sun-earth geometry, energy wavelengths, optics, incidence angles, parabolic collector configurations and design, materials for solar applications, efficiencies, etc to be considered in Solar Concentrating Collector design. These principles were applied in the design and fabrication of a prototype solar collector. The solar collector was tested to verify and correct mathematical models that were generated from exis...
Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003
Energy Technology Data Exchange (ETDEWEB)
Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.
2008-05-01
Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.
Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2016-01-01
This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature
International Nuclear Information System (INIS)
Zheng, Wandong; Yang, Lin; Zhang, Huan; You, Shijun; Zhu, Chunguang
2016-01-01
Highlights: • A serpentine compound parabolic concentrator solar collector is proposed. • A mathematical model for the new collector is developed and verified by experiments. • The thermal efficiency of the collector can be up to 60.5% during the experiments. • The effects of key parameters on the thermal performance are mathematically studied. - Abstract: In order to improve the thermal efficiency, reduce the heat losses and achieve high freezing resistance of the solar device for space heating in cold regions, a new type of serpentine compound parabolic concentrator solar collector is presented in this paper, which is a combination of a compound parabolic concentrator solar collector and a flat plate solar collector. A detailed mathematical model for the new collector based on the analysis of heat transfer is developed and then solved by the software tool Matlab. The numerical results are compared with the experimental data and the maximum deviation is 8.07%, which shows a good agreement with each other. The experimental results show that the thermal efficiency of the collector can be as high as 60.5%. The model is used to predict the thermal performance of the new collector. The effects of structure and operating parameters on the thermal performance are mathematically discussed. The numerical and experimental results show that the new collector is more suitable to provide low temperature hot water for space heating in cold regions and the mathematical model will be much helpful in the designing and optimizing of the solar collectors.
YURCHENKO, VLADIMIR; YURCHENKO, EDUARD; ÇİYDEM, MEHMET; TOTUK, ONAT
2015-01-01
We present our developments in computer simulations and optimization of compound parabolic concentrators (CPCs) for solar heat collectors. Issues of both the optical and thermal optimization of CPC collectors of enclosed design are discussed. Ray tracing results for a CPC with a V-shaped absorber are presented. A range of optimal values for the apex angle of a V-shaped absorber is proposed for a CPC collector of typical design.
International Nuclear Information System (INIS)
Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.
2015-01-01
Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively
DEFF Research Database (Denmark)
Tian, Zhiyong; Perers, Bengt; Furbo, Simon
2018-01-01
performance of the hybrid solar district heating plants is also presented. The measured and simulated results show that the integration of parabolic trough collectors in solar district heating plants can guarantee that the system produces hot water with relatively constant outlet temperature. The daily energy......A quasi-dynamic TRNSYS simulation model for a solar collector field with flat plate collectors and parabolic trough collectors in series was described and validated. A simplified method was implemented in TRNSYS in order to carry out long-term energy production analyses of the whole solar heating...... plant. The advantages of the model include faster computation with fewer resources, flexibility of different collector types in solar heating plant configuration and satisfactory accuracy in both dynamic and long-term analyses. In situ measurements were taken from a pilot solar heating plant with 5960 m...
Performance of cylindrical plastic solar collectors for air heating
International Nuclear Information System (INIS)
Abdullah, A.S.; Bassiouny, M.K.
2014-01-01
Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors
Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana
2017-06-01
A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).
Directory of Open Access Journals (Sweden)
Guoying Xu
2015-12-01
Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.
Xu, Guoying; Chen, Wei; Deng, Shiming; Zhang, Xiaosong; Zhao, Sainan
2015-01-01
Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC) employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC). The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed. PMID:28347112
Thermal and optical study of parabolic trough collectors of Shiraz solar power plant
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A.; Yaghoubi, M.; Vadiee, A.; Hessami, R. [Shiraz Univ, Shiraz (Iran, Islamic Republic of); Kanan, P. [Renewable Energy Organization of Iran, Tehran (Iran, Islamic Republic of)
2007-07-01
The construction of the first 250 KW solar power plant in Shiraz, Iran was discussed. The power plant is comprised of a steam and oil cycle which includes 48 parabolic trough collectors (PTCs). Solar thermal power plants based on PTCs are currently the most successful solar technologies for electricity generation. These power plants are basically composed of a solar collector field and a power block. The solar collector field is designed to collect heat from the sun which it is continuously tracking. The reflecting surface concentrates direct solar radiation in the optical focal line of the collector where the heat collecting element (HCE) is located. The HCE absorbs the reflected energy and transmits it to the heat transfer fluid which is pumped to the conventional power block where electricity is generated. There is potential to significantly increase the performance and reduce the cost of PTC solar thermal electric technologies. However, it is necessary to characterize the optical performance and determine the optical losses of PTCs in order to improve the optical efficiency of these systems and to ensure the desired power quality. In this study, thermocouple sensors were used to record the collector oil inlet and outlet temperature along with the ambient temperature in the PTCs. In addition to measuring the wind speed, the solar beam radiation intensity was measured along with the oil's mass flow rate. All parameters were measured as a function of time. Based on these measurements, the intercept factor value and collector's incidence angle was determined and compared with other large size constructed commercial parabolic collectors. The maximum beam radiation during the experimental period was 735 2mW. The useful heat gain and the collector's instantaneous efficiency as a whole was evaluated on an hourly basis. All these parameters were strongly influenced by the incident beam radiation and found to follow each other. The optical and thermal
Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation
International Nuclear Information System (INIS)
Lobón, David H.; Valenzuela, Loreto
2013-01-01
Using PTC (parabolic-trough solar collectors) for industrial thermal processes in the temperature range up to 300 °C is not new, but in recent years there is a boosted interest in this type of concentrating solar technology. One of the problems that arise when designing PTC solar fields is how to deal with the pressure losses which are critical when producing saturated steam directly in the collectors. Depending on the characteristics of the collector, mainly on the receiver diameter, and on the nominal process conditions defined, a solar field configuration can be feasible or not. This paper presents a sensitivity analysis done using a software tool developed to study the thermo-hydraulic behaviour of PTC systems using water-steam as heat transfer fluid. In the case study presented, a small-sized PTC designed for industrial process heat applications is considered, which has a focal length of 0.2 m, an aperture area of 2 m 2 , and its receiver pipe has an inner diameter of 15 mm. Varied process conditions are inlet water pressure, temperature, and mass flow rate, solar irradiance and incidence angle of solar radiation. Results show that working pressure definition is particularly critical to make feasible or not the direct steam generation in solar collectors. - Highlights: • DSG (Direct steam generation) in small-sized parabolic-trough collectors. • Thermo-hydraulic sensitivity analysis. • Influence of working pressure and receiver geometry in DSG process
Energy Technology Data Exchange (ETDEWEB)
Ajona, J I; Alberdi, J; Gamero, E; Blanco, J
1992-07-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)
Energy Technology Data Exchange (ETDEWEB)
Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.
1991-01-01
In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)
Energy Technology Data Exchange (ETDEWEB)
Ajona Maeztu, J.I.; Alberdi Primicia, J.; Gamero Aranda, E.; Blanco, J.
1991-12-31
In the local control, the sun position related to the trough collector is measured by two photo-resistors. the provided electronic signal is then compared with reference levels in order to get a set of 8 logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of a P.R.O.M. memory which is programmed with the logical ecuations of the control system. the memory output lines give the control commands of the parabolic trough collector motor. (author)
Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region
International Nuclear Information System (INIS)
Marif, Yacine; Benmoussa, Hocine; Bouguettaia, Hamza; Belhadj, Mohamed M.; Zerrouki, Moussa
2014-01-01
Highlights: • The parabolic trough collector performance is examined. • The finite difference method is proposed and validated. • Two fluids are considered water and TherminolVP-1™. - Abstract: In order to determine the optical and thermal performance of a solar parabolic trough collector under the climate conditions of Algerian Sahara, a computer program based on one dimensional implicit finite difference method with energy balance approach has been developed. The absorber pipe, glass envelope and fluid were divided into several segments and the partial derivation in the differential equations was replaced by the backward finite difference terms in each segment. Two fluids were considered, liquid water and TherminolVP-1™ synthetic oil. Furthermore, the intensity of the direct solar radiation was estimated by monthly average values of the atmospheric Linke turbidity factor for different tracking systems. According to the simulation findings, the one axis polar East–West and horizontal East–West tracking systems were most desirable for a parabolic trough collector throughout the whole year. In addition, it is found that the thermal efficiency was about 69.73–72.24%, which decreases with the high synthetic oil fluid temperatures and increases in the lower water temperature by 2%
Performance Analysis of Fractional-Order PID Controller for a Parabolic Distributed Solar Collector
Elmetennani, Shahrazed
2017-09-01
This paper studies the performance of a fractional-order proportional integral derivative (FOPID) controller designed for parabolic distributed solar collectors. The control problem addressed in concentrated solar collectors aims at forcing the produced heat to follow a desired reference despite the unevenly varying solar irradiance. In addition to the unpredictable variations of the energy source, the parabolic solar collectors are subject to inhomogeneous distributed efficiency parameters affecting the heat production. The FOPID controller is well known for its simplicity with better tuning flexibility along with robustness with respect to disturbances. Thus, we propose a control strategy based on FOPID to achieve the control objectives. First, the FOPID controller is designed based on a linear approximate model describing the system dynamics under nominal working conditions. Then, the FOPID gains and differentiation orders are optimally tuned in order to fulfill the robustness design specifications by solving a nonlinear optimization problem. Numerical simulations are carried out to evaluate the performance of the proposed FOPID controller. A comparison to the robust integer order PID is also provided. Robustness tests are performed for the nominal model to show the effectiveness of the FOPID. Furthermore, the proposed FOPID is numerically tested to control the distributed solar collector under real working conditions.
Directory of Open Access Journals (Sweden)
K. SYED JAFAR
2017-03-01
Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.
Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector
International Nuclear Information System (INIS)
Mazloumi, M.; Naghashzadegan, M.; Javaherdeh, K.
2008-01-01
Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m 2 , which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy
Study of a new solar adsorption refrigerator powered by a parabolic trough collector
International Nuclear Information System (INIS)
El Fadar, A.; Mimet, A.; Azzabakh, A.; Perez-Garcia, M.; Castaing, J.
2009-01-01
This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe
Performance Evaluation of Dual-axis Tracking System of Parabolic Trough Solar Collector
Ullah, Fahim; Min, Kang
2018-01-01
A parabolic trough solar collector with the concentration ratio of 24 was developed in the College of Engineering; Nanjing Agricultural University, China with the using of the TracePro software an optical model built. Effects of single-axis and dual-axis tracking modes, azimuth and elevating angle tracking errors on the optical performance were investigated and the thermal performance of the solar collector was experimentally measured. The results showed that the optical efficiency of the dual-axis tracking was 0.813% and its year average value was 14.3% and 40.9% higher than that of the eat-west tracking mode and north-south tracking mode respectively. Further, form the results of the experiment, it was concluded that the optical efficiency was affected significantly by the elevation angle tracking errors which should be kept below 0.6o. High optical efficiency could be attained by using dual-tracking mode even though the tracking precision of one axis was degraded. The real-time instantaneous thermal efficiency of the collector reached to 0.775%. In addition, the linearity of the normalized efficiency was favorable. The curve of the calculated thermal efficiency agreed well with the normalized instantaneous efficiency curve derived from the experimental data and the maximum difference between them was 10.3%. This type of solar collector should be applied in middle-scale thermal collection systems.
Thermodynamic analysis of a new design of temperature controlled parabolic trough collector
International Nuclear Information System (INIS)
Ceylan, İlhan; Ergun, Alper
2013-01-01
Highlights: • This new design parabolic trough collector has been made as temperature control. • The TCPTC system is very appropriate for the industrial systems which require high temperatures. • With TCPTC can provide hot water with low solar radiation. • TCPTC system costs are cheaper than other systems (thermo siphon systems, pomp systems, etc.). - Abstract: Numerous types of solar water heater are used throughout the world. These heaters can be classified into two groups as pumped systems and thermo siphon systems. However, water temperature cannot be controlled by these systems. In this study, a new temperature-controlled parabolic trough collector (TCPTC) was designed and analyzed experimentally. The analysis was made at a temperature range of 40–100 °C, with at intervals of 10 °C. A detailed analysis was performed by calculating energy efficiencies, exergy efficiencies, water temperatures and water amounts. The highest energy efficiency of TCPTC was calculated as 61.2 for 100 °C. As the set temperature increased, the energy efficiency increased as well. The highest exergy efficiency was calculated as 63 for 70 °C. However, as the set temperature increased, the exergy efficiency did not increase. Optimum exergy efficiency was obtained for 70 °C
Shaping of parabolic cylindrical membrane reflectors for the Dart Precision Test Bed
Morgan, R.; Agnes, Gregory S.; Dragovan, M.; Barber, D.; Marcin, M.; White, C.; Dooley, J.; Hatheway, A.
2004-01-01
The DART is a new telescope architecture consisting of a single aperture formed from two cylindrical parabolic reflectors. The system is ideally suited to using tensioned membranes for the reflective surfaces, owing to the zero Gaussian curvature of a cylindrical parabola. In this paper, we present experimental measurements for shaping the membranes by using curved boundary elements to achieve coarse shaping, and a pair of precision rails shaped by moments and forces at the ends, and lightly pushed into the surface, to provide fine shape control.
Ahed Hameed Jaaz; Husam Abdulrasool Hasan; Kamaruzzaman Sopian; Abdul Amir H. Kadhum; Tayser Sumer Gaaz; Ahmed A. Al-Amiery
2017-01-01
This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar ce...
Thermal Modeling of a Hybrid Thermoelectric Solar Collector with a Compound Parabolic Concentrator
Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.
2013-07-01
In this study radiant light from the sun is used by a hybrid thermoelectric (TE) solar collector and a compound parabolic concentrator (CPC) to generate electricity and thermal energy. The hybrid TE solar collector system described in this report is composed of transparent glass, an air gap, an absorber plate, TE modules, a heat sink to cool the water, and a storage tank. Incident solar radiation falls on the CPC, which directs and reflects the radiation to heat up the absorber plate, creating a temperature difference across the TE modules. The water, which absorbs heat from the hot TE modules, flows through the heat sink to release its heat. The results show that the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold sides of the TE modules. A maximum power output of 1.03 W and a conversion efficiency of 0.6% were obtained when the temperature difference was 12°C. The thermal efficiency increased as the water flow rate increased. The maximum thermal efficiency achieved was 43.3%, corresponding to a water flow rate of 0.24 kg/s. These experimental results verify that using a TE solar collector with a CPC to produce both electrical power and thermal energy seems to be feasible. The thermal model and calculation method can be applied for performance prediction.
Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors
Elmetennani, Shahrazed
2016-11-09
This brief addresses the control problem of distributed parabolic solar collectors in order to maintain the field outlet temperature around a desired level. The objective is to design an efficient controller to force the outlet fluid temperature to track a set reference despite the unpredictable varying working conditions. In this brief, a bilinear model-based robust Lyapunov control is proposed to achieve the control objectives with robustness to the environmental changes. The bilinear model is a reduced order approximate representation of the solar collector, which is derived from the hyperbolic distributed equation describing the heat transport dynamics by means of a dynamical Gaussian interpolation. Using the bilinear approximate model, a robust control strategy is designed applying Lyapunov stability theory combined with a phenomenological representation of the system in order to stabilize the tracking error. On the basis of the error analysis, simulation results show good performance of the proposed controller, in terms of tracking accuracy and convergence time, with limited measurement even under unfavorable working conditions. Furthermore, the presented work is of interest for a large category of dynamical systems knowing that the solar collector is representative of physical systems involving transport phenomena constrained by unknown external disturbances.
International Nuclear Information System (INIS)
Liang, Hongbo; You, Shijun; Zhang, Huan
2016-01-01
A PTC (parabolic trough solar collector) focuses direct solar radiation reflected by the reflector onto a receiver located on its focal line. The solar flux distribution on the absorber is non-uniform generally, thus it needs to carry out optical simulation to analyze the concentrated flux density and optical performance. In this paper, three different optical models based on ray tracing for a PTC were proposed and compared in detail. They were proved to be feasible and reliable in comparison with other literature. Model 1 was based on MCM (Monte Carlo Method). Model 2 initialized photon distribution with FVM (Finite Volume Method), and calculated reflection, transmission, and absorption by means of MCM. Model 3 utilized FVM to determine ray positions initially, while it changed the photon energy by multiplying reflectivity, transmissivity and absorptivity. The runtime and computation effort of Model 3 were approximately 40% and 60% of that of Model 1 in the present work. Moreover, the simulation result of Model 3 was not affected by the algorithm for generating random numbers, however, it needed to take account of suitable grid configurations for different sections of the system. Additionally, effects of varying the geometric parameters for a PTC on optical efficiency were estimated. Effect of offsetting the absorber in width direction of aperture was greater than that in its normal direction at the same offset distance, which was more obvious with offset distance increasing. Furthermore, absorber offset at the opposite direction of tracking error was beneficial for improving optical performance. The larger rim angle (≤90°) was, the less sensitive optical efficiency was to tracking error for the same aperture width of a PTC. In contrast, a larger aperture width was more sensitive to tracking error for a certain rim angle. - Highlights: • Three different optical models for parabolic trough solar collectors were derived. • Their running time, computation
The impact of internal longitudinal fins in parabolic trough collectors operating with gases
International Nuclear Information System (INIS)
Bellos, Evangelos; Tzivanidis, Christos; Daniil, Ilias; Antonopoulos, Kimon A.
2017-01-01
Highlights: • In this study, the impact of internal fins in PTC operating with gases is presented. • Air, helium and CO_2 are tested in smooth absorber and with fins of 5–10 mm and 15 mm. • Greater fin length leads to higher thermal efficiency and 10 mm is the optimum length exergetically. • Helium is the best working fluid exergetically, with CO_2 and air to follow. • Up to 290 °C, helium performs better energetically, while CO_2 in higher temperatures. - Abstract: In this study, the use of internal fins in parabolic trough collectors operating with gas working fluids is examined. Air, helium and carbon dioxide are the investigated working fluids, while Eurotrough ET-150 is the examined solar collector. The design and the simulation of this solar collector are performed with the commercial software Solidworks Flow Simulation. The internal fins lead to higher thermal efficiency but also to higher pressure losses; something very important for the solar fields of Concentrated Power Plants. Thus, the collector is examined energetically and exergetically in order to take into account the increase in the useful output with the simultaneous greater need of pumping power. Various fin lengths are examined and finally the fin of 10 mm was proved to be the most appropriate exergetically. In working fluid comparison, helium is the most efficient working fluid exergetically for all the examined cases. In the thermal efficiency comparison, helium performs better up to 290 °C, while carbon dioxide is the best choice in higher temperature levels. Moreover, the optimum mass flow rate for the helium was proved to be 0.03 kg/s and for the other working fluids the value of 0.015 kg/s seems to lead to the most satisfying results.
Rohit Tripathi 1,*, G. N. Tiwari 2
2017-01-01
In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...
Energy Technology Data Exchange (ETDEWEB)
Souza Mendes, Alfredo de
1986-12-31
This study was concerned to concept, to project and to build a parabolic solar collector as a generation source of thermic energy to the conventional drying of wood, jointed to a drying environment and to evaluate its efficiency. In this sense, prototypes of a solar collector and a conventional dry kiln were built. The collector with linear focus, was provided with a solar photoelectric tracking system. The dry kiln had semiautomatic control of temperature and a capacity to dry 0,3 m deg 3 of wood. All the steps of the construction of the system are presented with details. (author). 14 figs., 8 tabs., 73 refs
EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER
Directory of Open Access Journals (Sweden)
Carolina Mercado
2015-12-01
Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.
Output feedback control of heat transport mechanisms in parabolic distributed solar collectors
Elmetennani, Shahrazed
2016-08-05
This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.
Directory of Open Access Journals (Sweden)
Ahed Hameed Jaaz
2018-06-01
Full Text Available The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC along with the thermal photovoltaic module (PVT where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work. Keywords: Photovoltaic thermal collectors, Electrical performance, Thermal performance, Compound parabolic concentrator, Jet impingement
International Nuclear Information System (INIS)
Calise, Francesco; Palombo, Adolfo; Vanoli, Laura
2012-01-01
This paper presents a detailed finite-volume model of a concentrating photovoltaic/thermal (PVT) solar collector. The PVT solar collector consists in a parabolic trough concentrator and a linear triangular receiver. The bottom surfaces of the triangular receiver are equipped with triple-junction cells whereas the top surface is covered by an absorbing surface. The cooling fluid (water) flows inside a channel along the longitudinal direction of the PVT collector. The system was discretized along its axis and, for each slice of the discretized computational domain, mass and energy balances were considered. The model allows one to evaluate both thermodynamic and electrical parameters along the axis of the PVT collector. Then, for each slice of the computational domain, exergy balances were also considered in order to evaluate the corresponding exergy destruction rate and exergetic efficiency. Therefore, the model also calculates the magnitude of the irreversibilities inside the collector and it allows one to detect where these irreversibilities occur. A sensitivity analysis is also performed with the scope to evaluate the effect of the variation of the main design/environmental parameters on the energetic and exergetic performance of the PVT collector. -- Highlights: ► The paper investigates an innovative concentrating photovoltaic thermal solar collector. ► The collector is equipped with triple-junction photovoltaic layers. ► A local exergetic analysis is performed in order to detect sources of irreversibilities. ► Irreversibilities are mainly due to the heat transfer between sun and PVT collector.
DEFF Research Database (Denmark)
Tian, Zhiyong; Perers, Bengt; Furbo, Simon
2018-01-01
heating network in this study. The results also show that parabolic trough collectors are economically feasible for district heating networks in Denmark. The generic and multivariable levelized cost of heat method can guide engineers and designers on the design, construction and control of large...... to optimize the hybrid solar district heating systems based on levelized cost of heat. It is found that the lowest net levelized cost of heat of hybrid solar heating plants could reach about 0.36 DKK/kWh. The system levelized cost of heat can be reduced by 5â€“9% by use of solar collectors in the district...
International Nuclear Information System (INIS)
Al-Sulaiman, Fahad A.
2014-01-01
Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered
International Nuclear Information System (INIS)
Xu, Rong Ji; Zhang, Xiao Hui; Wang, Rui Xiang; Xu, Shu Hui; Wang, Hua Sheng
2017-01-01
Highlights: • Solar collector integrates compound parabolic concentrator and pulsating heat pipe. • Concentrator of a concentration ratio 3.4 matches well heat flux of heat pipe. • Solar collector efficiency increases with decreasing absorber thermal resistance. • Maximum 50% efficiency of the integrated solar collector has been achieved. - Abstract: The paper reports an experimental investigation of a newly proposed solar collector that integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC arrayed by 10 × 2 CPC units with the collection area of 300 × 427.6 mm 2 , a hot water tank and a glass cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating characteristics and thermal efficiency of the solar collector were experimentally studied. The steady and periodic temperature fluctuations of the evaporation and condensation sections of the PHP absorber indicate that the absorber works well with a thermal resistance of about 0.26 °C/W. It is also found that, as the main factor to the the thermal performance of the collector, thermal resistance of the PHP absorber decreases with increasing evaporation temperature. The collector apparently shows start-up, operational and shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal irradiance is 800 W/m 2 , the instantaneous thermal efficiency of the solar collector can reach up to 50%.
Some characteristics of heat production by stationary parabolic, cylindrical solar concentrator
Energy Technology Data Exchange (ETDEWEB)
Bojic, M.; Marjanovic, N.; Miletic, I.; Mitic, A. [Kragujevac Univ., Kragujevac (Serbia). Faculty of Mechanical Engineering; Stefanovic, V. [Nis Univ., Nis (Serbia). Faculty of Mechanical Engineering
2009-07-01
The use of solar energy for heating, cooling and electricity production was discussed with particular reference to the use of a stationary, asymmetric solar concentrator for conversion of solar energy to heat using a reflector and absorber. The infinite length CP-0A type stationary parabolic, cylindrical solar concentrator for heat production consists of the absorber (with water pipes) and parabolic, cylindrical reflector (with a metal surface). It has a geometrical concentration ratio of up to 4. This paper reported on a study that used the CATIA computer software to investigate how direct solar radiation approaches the concentrator aperture and the concentrator reflector. The propagation of light rays inside the concentrator to reach the absorber surface was examined. The study showed that the solar ray either hits the absorber directly or it bounces one or several time from the concentrator reflector. The efficiency of light rays was also calculated as a function of angles of incident of solar rays and type of reflector surface. 5 refs., 8 figs.
Directory of Open Access Journals (Sweden)
Harwinder Singh
2018-06-01
Full Text Available In this paper, attempts have been made on the detailed energy and exergy analysis of solar parabolic trough collectors (SPTCs driven combined power plant. The combination of supercritical CO2 (SCO2 cycle and organic Rankine cycle (ORC integrated with SPTCs has been used to produce power, in which SCO2 cycle and ORC are arranged as a topping and bottoming cycle. Five organic working fluids like R134a, R1234yf, R407c, R1234ze, and R245fa were selected for a low temperature bottoming ORC. Five key exergetic parameters such as exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential were also examined. It was revealed that exergetic and thermal efficiency of all the combined cycles enhances as the direct normal irradiance increases from 0.5 kW/m2 to 0.95 kW/m2. As can be seen, R407c combined cycle has the maximum exergetic as well as thermal efficiency which is around 78.07% at 0.95 kW/m2 and 43.49% at 0.95 kW/m2, respectively. Alternatively, the R134a and R245fa combined cycle yields less promising results with the marginal difference in their performance. As inferred from the study that SCO2 turbine and evaporator has a certain amount of exergy destruction which is around 9.72% and 8.54% of the inlet exergy, and almost 38.10% of the total exergy destruction in case of R407c combined cycle. Moreover, the maximum amount of exergy destructed by the solar collector field which is more than 25% of the solar inlet exergy and around 54% of the total destructed exergy. Finally, this study concludes that R407c combined cycle has a minimum fuel depletion ratio of 0.2583 for a solar collector and possess the highest power output of 3740 kW. Keywords: Supercritical CO2cycle, Organic Rankine cycle, Exergetic performance, SPTCs, Organic fluids
Directory of Open Access Journals (Sweden)
Ghulam Qadar Chaudhary
2018-01-01
Full Text Available The current study presents a numerical and real-time performance analysis of a parabolic trough collector (PTC system designed for solar air-conditioning applications. Initially, a thermodynamic model of PTC is developed using engineering equation solver (EES having a capacity of around 3 kW. Then, an experimental PTC system setup is established with a concentration ratio of 9.93 using evacuated tube receivers. The experimental study is conducted under the climate of Taxila, Pakistan in accordance with ASHRAE 93-1986 standard. Furthermore, PTC system is integrated with a solid desiccant dehumidifier (SDD to study the effect of various operating parameters such as direct solar radiation and inlet fluid temperature and its impact on dehumidification share. The experimental maximum temperature gain is around 5.2°C, with the peak efficiency of 62% on a sunny day. Similarly, maximum thermal energy gain on sunny and cloudy days is 3.07 kW and 2.33 kW, respectively. Afterwards, same comprehensive EES model of PTC with some modifications is used for annual transient analysis in TRNSYS for five different climates of Pakistan. Quetta revealed peak solar insolation of 656 W/m2 and peak thermal energy 1139 MJ with 46% efficiency. The comparison shows good agreement between simulated and experimental results with root mean square error of around 9%.
Low-cost small scale parabolic trough collector design for manufacturing and deployment in Africa
Orosz, Matthew; Mathaha, Paul; Tsiu, Anadola; Taele, B. M.; Mabea, Lengeta; Ntee, Marcel; Khakanyo, Makoanyane; Teker, Tamer; Stephens, Jordan; Mueller, Amy
2016-05-01
Concentrating Solar Power is expanding its deployment on the African subcontinent, highlighting the importance of efforts to indigenize manufacturing of this technology to increase local content and therefore local economic benefits of these projects. In this study a design for manufacturing (DFM) exercise was conducted to create a locally produced parabolic trough collector (the G4 PTC). All parts were sourced or fabricated at a production facility in Lesotho, and several examples of the design were prototyped and tested with collaborators in the Government of Lesotho's Appropriate Technology Services division and the National University of Lesotho. Optical and thermal performance was simulated and experimentally validated, and pedagogical pre-commercial versions of the PTC have been distributed to higher education partners in Lesotho and Europe. The cost to produce the PTC is 180 USD/m2 for a locally manufactured heat collection element (HCE) capable of sustaining 250C operation at ~65% efficiency. A version with an imported evacuated HCE can operate at 300°C with 70% efficiency. Economically relevant applications for this locally produced PTC include industrial process heat and distributed generation scenarios where cogeneration is required.
Directory of Open Access Journals (Sweden)
Miguel Ángel Hernández-Román
2014-08-01
Full Text Available This paper presents a theoretical and practical analysis of the application of the thermoeconomic method. A furnace for heating air is evaluated using the methodology. The furnace works with solar energy, received from a parabolic trough collector and with electricity supplied by an electric power utility. The methodology evaluates the process by the first and second law of thermodynamics as the first step then the cost analysis is applied for getting the thermoeconomic cost. For this study, the climatic conditions of the city of Queretaro (Mexico are considered. Two periods were taken into account: from July 2006 to June 2007 and on 6 January 2011. The prototype, located at CICATA-IPN, Qro, was analyzed in two different scenarios i.e., with 100% of electricity and 100% of solar energy. The results showed that thermoeconomic costs for the heating process with electricity, inside the chamber, are less than those using solar heating. This may be ascribed to the high cost of the materials, fittings, and manufacturing of the solar equipment. Also, the influence of the mass flow, aperture area, length and diameter of the receiver of the solar prototype is a parameter for increasing the efficiency of the prototype in addition to the price of manufacturing. The optimum design parameters are: length is 3 to 5 m, mass flow rate is 0.03 kg/s, diameter of the receiver is around 10 to 30 mm and aperture area is 3 m2.
Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors
Directory of Open Access Journals (Sweden)
Evangelos Bellos
2017-06-01
Full Text Available The objective of this work was to optimize and to evaluate a solar-driven trigeneration system which operates with nanofluid-based parabolic trough collectors. The trigeneration system includes an organic Rankine cycle (ORC and an absorption heat pump operating with LiBr-H2O which is powered by the rejected heat of the ORC. Toluene, n-octane, Octamethyltrisiloxane (MDM and cyclohexane are the examined working fluids in the ORC. The use of CuO and Al2O3 nanoparticles in the Syltherm 800 (base fluid is investigated in the solar field loop. The analysis is performed with Engineering Equation Solver (EES under steady state conditions in order to give the emphasis in the exergetic optimization of the system. Except for the different working fluid investigation, the system is optimized by examining three basic operating parameters in all the cases. The pressure in the turbine inlet, the temperature in the ORC condenser and the nanofluid concentration are the optimization variables. According to the final results, the combination of toluene in the ORC with the CuO nanofluid is the optimum choice. The global maximum exergetic efficiency is 24.66% with pressure ratio is equal to 0.7605, heat rejection temperature 113.7 °C and CuO concentration 4.35%.
International Nuclear Information System (INIS)
Liang, Hongbo; Fan, Man; You, Shijun; Zheng, Wandong; Zhang, Huan; Ye, Tianzhen; Zheng, Xuejing
2017-01-01
Highlights: •Four optical models for parabolic trough solar collectors were compared in detail. •Characteristics of Monte Carlo Method and Finite Volume Method were discussed. •A novel method was presented combining advantages of different models. •The method was suited to optical analysis of collectors with different geometries. •A new kind of cavity receiver was simulated depending on the novel method. -- Abstract: The PTC (parabolic trough solar collector) is widely used for space heating, heat-driven refrigeration, solar power, etc. The concentrated solar radiation is the only energy source for a PTC, thus its optical performance significantly affects the collector efficiency. In this study, four different optical models were constructed, validated and compared in detail. On this basis, a novel coupled method was presented by combining advantages of these models, which was suited to carry out a mass of optical simulations of collectors with different geometrical parameters rapidly and accurately. Based on these simulation results, the optimal configuration of a collector with highest efficiency can be determined. Thus, this method was useful for collector optimization and design. In the four models, MCM (Monte Carlo Method) and FVM (Finite Volume Method) were used to initialize photons distribution, as well as CPEM (Change Photon Energy Method) and MCM were adopted to describe the process of reflecting, transmitting and absorbing. For simulating reflection, transmission and absorption, CPEM was more efficient than MCM, so it was utilized in the coupled method. For photons distribution initialization, FVM saved running time and computation effort, whereas it needed suitable grid configuration. MCM only required a total number of rays for simulation, whereas it needed higher computing cost and its results fluctuated in multiple runs. In the novel coupled method, the grid configuration for FVM was optimized according to the “true values” from MCM of
Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul
2017-03-01
Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.
International Nuclear Information System (INIS)
Tchinda, R.
2005-11-01
Equations describing the heat transfer in symmetric, compound parabolic concentrating solar collectors (CPCs) with and without envelope have been established. The model takes into account the non linear behavior of these two systems. A theoretical numerical model has been developed to outline the effect of the envelope on the thermal and optical performance of CPCs. The effects of the flow rate, the plate length, the selective coating, etc. are studied. The over-all thermal loss coefficient and the enclosure absorption factor for both types are defined. It is found that the efficient configuration has an envelope. Theoretical computed values are in good agreement with the experimental values published in the literature. (author)
Kumar, Birendra; Nayak, Rajen Kumar; Singh, S. N.
2018-05-01
A twisted tape inserted in an absorber tube may be an excellent option to enhance the performance of a cylindrical parabolic concentrating solar collector (CPC). The present work is an experimental study of the flow and heat transfer with and without twisted tape inserts in the absorber tube of a CPC. Results are presented for mass flow rates of water, ṁ=0.0198-0.0525 kg/s, twist ratio, y=5-10 and Reynolds number, Re=2577.46-6785.55. In the present study, we found that the outlet water temperature, collector efficiency and Nusselt number (Nu) are higher in the twisted tapes as compared to those without the twisted tape inserts in the absorber tube of the CPC. For fixed mass flow rate of water ṁ, the To and η increased with the decrease in twist ratio, y, and is higher in lower twist ratio, y=5, of the twisted tapes. The whole experiment was performed at the Indian Institute of Technology (ISM) in Dhanbad, India during the months of March-April 2017. Based on the experimental data, the correlations for the Nu and friction factor were also developed.
International Nuclear Information System (INIS)
Selvakumar, P.; Somasundaram, P.; Thangavel, P.
2014-01-01
Highlights: • Instant hot water at temperatures between 40 °C and 68 °C in the low solar radiation range of 240–540 W/m 2 . • Usage of therminol D-12 and parabolic trough in low temperature application. • Stability of thermal and flow properties of therminol D-12 are studied. - Abstract: Fossil fuels and electrical energy are widely used for instant hot water generation in rural and urban areas. Also, conventional solar water heaters do not support instant hot water generation because of various problems. A new system with evacuated tube collector using synthetic oil as heat transfer fluid coupled with parabolic trough is developed and studied experimentally for instant hot water generation in the presence of low solar irradiance. Among the different grades of therminol, therminol D-12 is chosen for the study because of its thermal stability. Parabolic trough is coupled to evacuated tube to enhance the flow as well as heating characteristics of therminol. Heating efficiency and temperature characteristics are determined for the newly developed system under low solar irradiance conditions. Instant hot water can be produced by the new system at a temperature of 60 °C in the presence of low solar radiation. This newly developed system has the ability to check the fossil fuel consumption and electrical energy consumption for instant hot water generation in household applications. The stability of the heat transfer fluid is also ensured by repeated experiments
Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A
2017-08-01
This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.
Directory of Open Access Journals (Sweden)
Ahed Hameed Jaaz
2017-08-01
Full Text Available This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT collector and compound parabolic concentrators (CPC on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C. It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.
Energy Technology Data Exchange (ETDEWEB)
Usta, Yasemin [Anyl Asansor Ltd (Turkey)], email: syusta@gmail.com; Baker, Derek [Middle East Technical University (Turkey)], email: dbaker@metu.edu.tr; Kaftanoglu, Bilgin [Atilim University (Turkey)], email: bilgink@atilim.edu.tr
2011-07-01
With the energy crisis and the increasing concerns about climate change, the interest in concentrating solar power (CSP) systems is growing in Turkey. The aim of this paper is to develop a model of a CSP system using a field of parabolic trough collectors and to assess the predicted performance of the system. A model was developed for a 30MWe solar generating system in Antalya, Turkey, using TRNSYS software, the solar thermal electric components library and information on an existing system in Kramer Junction, California, United States. Annual simulations were then performed for both systems in Antalya and California using weather data. It was found that the predictions were in good agreement with published data. In addition results showed that Antalya's system would generate 30% less than Kramer Junction's system on an annual basis. This paper provides useful information on modeling and simulation of CSP systems.
Hull, J. R.
Since its introduction, the concept of nonimaging solar concentrators, as exemplified by the compound parabolic concentrator (CPC) design, has greatly enhanced the ability to collect solar energy efficiently in thermal and photovoltaic devices. When used as a primary concentrator, a CPC can provide significant concentration without the complication of a tracking mechanism and its associated maintenance problems. When used as a secondary, a CPC provides higher total concentration, or for a fixed concentration, tolerates greater tracking error in the primary.
Geete, Ankur; Dubey, Akash; Sharma, Ankush; Dubey, Anshul
2018-05-01
In this research work, compound parabolic solar collector (CPC) with evacuated tubes is fabricated. Main benefit of CPC is that there is no requirement of solar tracking system. With fabricated CPC; outlet temperatures of flowing fluid, instantaneous efficiencies, useful heat gain rates and inlet exergies (with and without considering Sun's cone angle) are experimentally found. Observations are taken at different time intervals (1200, 1230, 1300, 1330 and 1400 h), mass flow rates (1.15, 0.78, 0.76, 0.86 and 0.89 g/s), ambient temperatures and with various dimensions of solar collector. This research work is concluded as; maximum instantaneous efficiency is 69.87% which was obtained with 0.76 g/s flow rate of water at 1300 h and 42°C is the maximum temperature difference which was also found at same time. Maximum inlet exergies are 139.733 and 139.532 kW with and without considering Sun's cone angle at 1300 h, respectively. Best thermal performance from the fabricated CPC with evacuated tubes is found at 1300 h. Maximum inlet exergy is 141.365 kW which was found at 1300 h with 0.31 m aperture width and 1.72 m absorber pipe length.
International Nuclear Information System (INIS)
Abu-Hamdeh, Nidal H.; Alnefaie, Khaled A.; Almitani, Khalid H.
2013-01-01
Highlights: • The successes of using olive waste/methanol as an adsorbent/adsorbate pair. • The experimental gross cycle coefficient of performance obtained was COP a = 0.75. • Optimization showed expanding adsorbent mass to a certain range increases the COP. • The statistical optimization led to optimum tank volume between 0.2 and 0.3 m 3 . • Increasing the collector area to a certain range increased the COP. - Abstract: The current work demonstrates a developed model of a solar adsorption refrigeration system with specific requirements and specifications. The recent scheme can be employed as a refrigerator and cooler unit suitable for remote areas. The unit runs through a parabolic trough solar collector (PTC) and uses olive waste as adsorbent with methanol as adsorbate. Cooling production, COP (coefficient of performance, and COP a (cycle gross coefficient of performance) were used to assess the system performance. The system’s design optimum parameters in this study were arrived to through statistical and experimental methods. The lowest temperature attained in the refrigerated space was 4 °C and the equivalent ambient temperature was 27 °C. The temperature started to decrease steadily at 20:30 – when the actual cooling started – until it reached 4 °C at 01:30 in the next day when it rose again. The highest COP a obtained was 0.75
International Nuclear Information System (INIS)
Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur
2017-01-01
In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.
International Nuclear Information System (INIS)
Valenzuela, Loreto; López-Martín, Rafael; Zarza, Eduardo
2014-01-01
This article presents an outdoor test method to evaluate the optical and thermal performance of parabolic-trough collectors of large size (length ≥ 100 m), similar to those currently installed in solar thermal power plants. Optical performance in line-focus collectors is defined by three parameters, peak-optical efficiency and longitudinal and transversal incidence angle modifiers. In parabolic-troughs, the transversal incidence angle modifier is usually assumed equal to 1, and the incidence angle modifier is referred to the longitudinal incidence angle modifier, which is a factor less than or equal to 1 and must be quantified. These measurements are performed by operating the collector at low fluid temperatures for reducing heat losses. Thermal performance is measured during tests at various operating temperatures, which are defined within the working temperature range of the solar field, and for the condition of maximum optical response. Heat losses are measured from both the experiments performed to measure the overall efficiency and the experiments done by operating the collector to ensure that absorber pipes are not exposed to concentrated solar radiation. The set of parameters describing the performance of a parabolic-trough collector of large size has been measured following the test procedures proposed and explained in the article. - Highlights: • Outdoor test procedures of parabolic-trough solar collector (PTC) of large size working at high temperature are described. • Optical performance measured with cold fluid temperature and thermal performance measured in the complete temperature range. • Experimental data obtained in the testing of a PTC prototype are explained
International Nuclear Information System (INIS)
Baccioli, A.; Antonelli, M.; Desideri, U.
2017-01-01
Highlights: • A small scale solar ORC was investigated during a year-long simulation. • The system was operated without a thermal storage. • High flexibility thanks to a sliding-velocity control and volumetric expander. • Influence of ORC and solar field parameters considered. • Strong influence of concentration factor and system inertia. - Abstract: In this paper the dynamic behavior of a small low-concentration solar plant with static Compound Parabolic Collectors (CPC) and an ORC power unit with rotary volumetric expander has been analyzed. The plant has been simulated in transient conditions for a year-long operation and for three different sites respectively located in northern, central and southern Italy, in order to evaluate the influence of the latitude on the production. Hourly discretized data for solar radiation and for ambient temperature have been used. The adoption of a sliding-velocity control strategy, has allowed to operate without any storage system with a solar multiple (S.M.) of 1, reducing the amplitude of the solar field and simplifying the control system. Different collectors tilt angles and concentration factors, as well as thermodynamic parameters of the cycle have been tested, to evaluate the optimal working conditions for each locality. Results highlighted that specific production increased with the concentration ratio, and with the decrease of latitude. The comparison with the steady-state analysis showed that this type of control strategy is suited for those configurations having a smaller number of collectors, since the thermal inertia of the solar field is not recovered at all during the plant shut-down phase.
Allen, J. W.; Schertz, W. W.; Wantroba, A. S.
1987-03-01
This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the Sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42 deg with respect to the horizon (to match the 42 deg N latitude at ANL). All four collector systems started each day with their storage temperatures at 90 C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy.
International Nuclear Information System (INIS)
Kumar, Devander; Kumar, Sudhir
2015-01-01
Highlights: • Year-round performance of SPTC under the various climatic conditions is presented. • A detailed thermo-optical model for PTC system is developed. • A comparison of developed thermal model is done with experimental data of SNL. • Developed model is very helpful and effective tool in analyzing the PTC system. • Enlightens the importance of mini-level SPTC as a promising system to fulfill the energy demands. - Abstract: Solar parabolic trough collector (SPTC) is a well-known solar thermal system applied for solar electric generation. Nowadays, major attention is directed toward improving the performance of solar thermal systems with optimization of solar field production. In this research work, a comprehensive thermo-optical modeling has been proposed to evaluate the performance of a mini-level SPTC considering various heat equilibriums with the environment. Here, receiver wall temperature is considered as the base for modeling. Collector consists of a non-evacuated receiver tube with black paint coating and enveloped with glass cover. Available meteorological data in terms of global and diffuse solar insolations, air temperatures and wind speeds have been used as inputs for performance evaluation of SPTC with horizontal and inclined aperture planes. The validation of the proposed analytical model is justified with existing experimental results and yielded a close agreement. The developed model is successfully applied to a SPTC in order to estimate the through-out year performance characteristics in terms of water temperature rise, heat energy generation, optical and thermal efficiency for the climactic conditions of Bhiwani. The results enlighten that using 0.010 kg/s mass flow rate of water and aperture area of around 1.34 m"2, collector achieved maximum rise in water temperature 11.1 °C and 12.2 °C on horizontal and inclined planes, respectively in the month of April. The uppermost heat energy generation is found to be 2.38 kW h/day in May
Energy Technology Data Exchange (ETDEWEB)
None
1975-06-01
This report presents the results of a quick, six-week technical and economic evaluation of the compound parabolic concentrator (CPC) solar collector. The purpose of this effort was to provide an initial phase of a goals study that is directed toward recommending relative priorities for development of the compound parabolic concentrator concept. The findings of this study are of a very preliminary nature. Conclusions based on study findings at this depth should be considered preliminary and subject to revision and review in later phases.
Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C
2001-01-01
Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.
Muhlen, Luis S. W.; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo
2014-04-01
Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.
International Nuclear Information System (INIS)
Muhlen, Luis S W; Najafi, Behzad; Rinaldi, Fabio; Marchesi, Renzo
2014-01-01
Solar troughs are amongst the most commonly used technologies for collecting solar thermal energy and any attempt to increase the performance of these systems is welcomed. In the present study a parabolic solar trough is simulated using a one dimensional finite element model in which the energy balances for the fluid, the absorber and the envelope in each element are performed. The developed model is then validated using the available experimental data . A sensitivity analysis is performed in the next step in order to study the effect of changing the type of the working fluid and the corresponding Reynolds number on the overall performance of the system. The potential improvement due to the addition of a shield on the upper half of the annulus and enhancing the convection coefficient of the heat transfer fluid is also studied.
Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)
Energy Technology Data Exchange (ETDEWEB)
Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2015-11-01
This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m^{2} +/- $6/m^{2}. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m^{2} if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m^{2}, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.
International Nuclear Information System (INIS)
Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim
2016-01-01
Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.
Energy Technology Data Exchange (ETDEWEB)
Ma, R.Y. [California State Polytechnic Univ., Pomoma, CA (United States). Dept. of Mechanical Engineering
1993-09-01
Tests were performed to determine the convective heat loss characteristics of a cavity receiver for a parabolid dish concentrating solar collector for various tilt angles and wind speeds of 0-24 mph. Natural (no wind) convective heat loss from the receiver is the highest for a horizontal receiver orientation and negligible with the reveler facing straight down. Convection from the receiver is substantially increased by the presence of side-on wind for all receiver tilt angles. For head-on wind, convective heat loss with the receiver facing straight down is approximately the same as that for side-on wind. Overall it was found that for wind speeds of 20--24 mph, convective heat loss from the receiver can be as much as three times that occurring without wind.
International Nuclear Information System (INIS)
Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.
2011-01-01
Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal
Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer
2018-06-01
The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.
Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.
2018-01-01
The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper
International Nuclear Information System (INIS)
Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio
2014-01-01
An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS
International Nuclear Information System (INIS)
Coccia, Gianluca; Di Nicola, Giovanni; Colla, Laura; Fedele, Laura; Scattolini, Mauro
2016-01-01
Highlights: • Nanofluids could be adopted to increase the efficiency of low-enthalpy PTCs. • We present the results of a numerical simulation performed on a nanofluid-based PTC. • Six water-based nanofluids at different weight concentrations were investigated. • The simulation was validated by experimental tests on two prototypes of PTC. • Results are compared with water: only four concentrations gave better efficiency. - Abstract: Energy demand in the world is continuously increasing and fossil fuels resources must be replaced by renewable resources with lower environmental risk factors, in particular CO_2 emissions. Concentrating solar collectors appear to be very promising for that purpose. Thus, this work presents a numerical analysis for the evaluation of the yearly yield of a low-enthalpy parabolic trough solar collector (PTC). To increase the thermal efficiency of such systems, six water-based nanofluids at different weight concentrations are investigated: Fe_2O_3 (5, 10, 20 wt%), SiO_2 (1, 5, 25 wt%), TiO_2 (1, 10, 20, 35 wt%), ZnO (1, 5, 10 wt%), Al_2O_3 (0.1, 1, 2 wt%), and Au (0.01 wt%). The simulation environment was validated by experimental tests using water as heat transfer fluid, in two prototypes of PTC located in the city of Ancona (central Italy), while the convective heat transfer coefficient of nanofluids was measured through a dedicated apparatus. A typical meteorological year was built to perform the simulation, which presents a time-resolution of one hour. A specific arrangement for the PTC was defined, while different inlet fluid temperatures were considered at a mass flow rate of 0.50 kg/s: 40, 50, 60, 70, and 80 °C. For this last temperature, the variation in flow rate was also studied (at 1 kg/s and 1.5 kg/s). Results show that only Au, TiO_2, ZnO, and Al_2O_3 nanofluids at the lower concentrations, present very small improvements compared to the use of water, while increasing the concentration of nanoparticles no advantage
Directory of Open Access Journals (Sweden)
Sadaghiyani Omid Karimi
2013-01-01
Full Text Available The Monte Carlo ray tracing method is applied and coupled with finite volume numerical methods to study effect of rotation on outlet temperature and heat gain of LS-2 parabolic trough concentrator (PTC. Based on effect of sunshape, curve of mirror and use of MCRT, heat flux distribution around of inner wall of evacuated tube is calculated. After calculation of heat flux, the geometry of LS-2 Luz collector is created and finite volume method is applied to simulate. The obtained results are compared with Dudley et al test results for irrotational cases to validate these numerical solving models. Consider that, for rotational models ,the solving method separately with K.S. Ball's results. In this work, according to the structure of mentioned collector, we use plug as a flow restriction. In the rotational case studies, the inner wall rotates with different angular speeds. We compare results of rotational collector with irrotational. Also for these two main states, the location of plug changed then outlet temperature and heat gain of collector are studied. The results show that rotation have positive role on heat transfer processing and the rotational plug in bottom half of tube have better effectual than upper half of tube. Also the contribution of rotation is calculated in the all of case studies. Working fluid of these study is one of the oil derivatives namely Syltherm-800. The power of wind can be used to rotate tube of collector.
Energy Technology Data Exchange (ETDEWEB)
Valenzuela Gutierrez, L.
2008-07-01
The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)
Experimental analysis of colloid capture by a cylindrical collector in laminar overland flow.
Wu, Lei; Gao, Bin; Muñoz-Carpena, Rafael
2011-09-15
Although colloid-facilitated contaminant transport in water flow is a well-known contamination process, little research has been conducted to investigate the transport of colloidal particles through emergent vegetation in overland flow. In this work, a series of laboratory experiments were conducted to measure the single-collector contact efficiency (η(0)) of colloid capture by a simulated plant stem in laminar lateral flow. Fluorescent microspheres of various sizes were used as experimental colloids. The colloid suspensions were applied to a glass cylinder installed in a small size flow chamber at different flow rates. Two cylinder sizes were tested in the experiment and silicone grease was applied to the cylinder surface to make it favorable for colloid deposition. Our results showed that increases in flow rate and collector size reduced the value of η(0) and a minimum value of η(0) might exist for a colloid size. The experimental data were compared to theoretical predictions of different single-collector contact efficiency models. The results indicated that existing single-collector contact efficiency models underestimated the η(0) of colloid capture by the cylinders in laminar overland flow. A regression equation of η(0) as a function of collector Reynolds number (Re(c)) and Peclet number (N(Pe)) was developed and fit the experimental data very well (R(2) > 0.98). This regression equation can be used to help construct and refine mathematical models of colloid transport and filtration in laminar overland flow on vegetated surfaces.
Fontán-Sainz, María; Gómez-Couso, Hipólito; Fernández-Ibáñez, Pilar; Ares-Mazás, Elvira
2012-02-01
Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P 10 times).
Energy Technology Data Exchange (ETDEWEB)
Neto, Jose H.M. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: henrique@daem.des.cefemg.br
2000-07-01
This work presents the results of the experiment involving the design, fabrication, assembly and tests of composite parabolic solar collectors prototypes with acceptance half-angles of 3 deg C, 6.5 deg C, 11 deg C, 14 deg C and 19.5 deg C of the tube type absorber and 14 deg C rectangular absorber. Field test were performed on all the prototypes for determination of thermal efficiency, time constants and optical efficiencies represented by the modified incidence angles. Tests were performed for the determination of the heat transfer global coefficients on each prototype. (author)
Guo, Minghuan; Wang, Zhifeng; Sun, Feihu
2016-05-01
The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed
Performance of an absorbing concentrating solar collectors
International Nuclear Information System (INIS)
Imadojemu, H.
1990-01-01
This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive
International Nuclear Information System (INIS)
Ouagued, Malika; Khellaf, Abdallah; Loukarfi, Larbi
2013-01-01
Highlights: • Estimation of direct solar radiations for different tracking systems at six typical locations in Algeria. • PTC thermal model uses energy balances from the HTF to the atmosphere. • The model depends on the collector type, nature of HTF, optical properties, and ambient conditions. • Estimation of temperature, heat gain and energy cost of thermal oils used in the model. • Comparison between monthly mean heat gain of the various thermal oils for six Algerian locations. - Abstract: Algeria is blessed with a very important renewable, and more particularly solar, energy potential. This potential opens for Algeria reel opportunities to cope with the increasing energy demand and the growing environmental problems link to the use of fossil fuel. In order to develop and to promote concrete actions in the areas of renewable energy and energy efficiency, Algeria has introduced a national daring program for the period 2011–2030. In this program, solar energy, and more particularly solar thermal energy plays an important role. In this paper, the potential of direct solar irradiance in Algeria and the performance of solar parabolic trough collector (PTC) are estimated under the climate conditions of the country. These two factors are treated as they play an important role in the design of solar thermal plant. In order to determine the most promising solar sites in Algeria, monthly mean daily direct solar radiation have been estimated and compared for different locations corresponding to different climatic region. Different tilted and tracking collectors are considered so as to determine the most efficient system for the PTC. In order to evaluate the performance of a tracking solar parabolic trough collector, a heat transfer model is developed. The receiver, heat collector element (HCE), is divided into several segments and heat balance is applied in each segment over a section of the solar receiver. Different oils are considered to determine the thermal
Directory of Open Access Journals (Sweden)
M Jafari
2017-10-01
Full Text Available Introduction Greenhouses provide a suitable environment in which all the parameters required for growing the plants can be controlled throughout the year. Greenhouse heating is one of the most important issues in productivity of a greenhouse. In many countries, heating costs in the greenhouses are very high, having almost 60-80% of the total production costs. In recent years, several studies have attempted to reduce the heating costs of the greenhouses by applying more energy efficient equipment and using the renewable energy sources as alternatives or supplementary to the fossil fuels. In the present study a novel solar greenhouse heating system equipped with a parabolic trough solar concentrator (PTC and a flat-plate solar collector has been developed. Therefore, the aim of this paper is to investigate the performance of the proposed heating system at different working conditions. Materials and Methods The presented solar greenhouse heating system was comprised of a parabolic trough solar concentrator (PTC, a heat storage tank, a pump and a flat plate solar collector. The PTC was constructed from a polished stainless steel sheet (as the reflector and a vacuum tube receiver. The PTC was connected to the tank by using insulated tubes and a water pump was utilized to circulate the working fluid trough the PTC and the heat exchanger installed between walls of the tank. The uncovered solar collector was located inside the greenhouse. During the sunshine time, a fraction of the total solar radiation received inside the greenhouse is absorbed by the solar collector. This rises the temperature of the working fluid inside the collector which led to density reduction and natural flow of the fluid. In other words, the collector works as a natural flow flat plate solar collector during the sunshine time. At night, when the greenhouse temperature is lower than tank temperature, the fluid flows in a reverse direction through the solar collector and the
Mechhoud, Sarra; Laleg-Kirati, Taous-Meriem
2017-01-01
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Miao, L.; Zhang, M.; Tanemura, S.; Tanaka, T.; Kang, Y. P.; Xu, G.
2012-06-01
We have designed a new solar thermoelectric cogeneration system consisting of an evacuated tubular solar collector (ETSC) with a parabolic trough concentrator (PTC) and thermoelectric modules (TEMs) to supply both thermal energy and electricity. The main design concepts are (1) the hot side of the TEM is bonded to the solar selective absorber installed in an evacuated glass tube, (2) the cold side of the TEM is also bonded to the heat sink, and (3) the outer circulated water is heated by residual solar energy after TEM generation. We present an example solar thermal simulation based on energy balance and heat transfer as used in solar engineering to predict the electrical conversion efficiency and solar thermal conversion efficiency for different values of parameters such as the solar insolation, concentration ratio, and TEM ZT values.
Mechhoud, Sarra
2017-12-14
In this paper, the adaptive bilinear control of a first-order 1-D hyperbolic partial differential equation (PDE) with an unknown time-varying source term is investigated where only boundary measurements are available. By means of boundary injection, the bilinear adaptive law is developed in the Lyapunov approach. It consists of a state observer and an input adaptation law combined with a bilinear control method derived using an energy-like principle. Both global asymptotic practical convergence of the tracking error and input-to-state stability of the system are guaranteed. A potential application of this control strategy is the one-loop solar collector parabolic trough where the solar irradiance is the unknown input (source term) and the flow rate is the control variable. The objective is to drive the boundary temperature at the outlet to track a desired profile. Simulation results are provided to illustrate the performance of the proposed method.
Directory of Open Access Journals (Sweden)
Senthil Ramalingam
2017-01-01
Full Text Available In this work, the use of phase change material in the circular tank solar receiver is proposed for a 16 m2 Scheffler parabolic dish solar concentrator to improve the heat transfer in the receiver. Magnesium chloride hexahydrate with melting temperature of 117°C is selected as the phase change material in the annular space of the receiver with rectangular fins inside the phase change material. Experimental work is carried out to analyze heat transfer from the receiver to heat transfer fluid with and without phase change material in the inner periphery. Energy and exergy efficiency are determined from the measurements of solar radiation intensity, receiver temperature, surroundings temperature, heat transfer fluid inlet and outlet temperatures, storage tank temperature, and wind speed. The experiments were conducted in SRM University, Chennai, India (latitude: 13° 5′ N, longitude: 80°16′ E in April 2014. Use of phase change material in receiver periphery increased energy efficiency by 5.62%, exergy efficiency by 12.8% and decreased time to reach the boiling point of water by 20% when compared with the receiver without phase change material.
Jamil, Umer; Ali, Wajahat
2016-05-01
This paper presents the results of performance tests conducted on Solar Invictus 53S `system'; an economically effective solar steam generation solution designed and developed by ZED Solar Ltd. The system consists of a dual axis tracking parabolic solar dish and bespoke cavity type receiver, which works as a Once Through Solar Steam Generator `OTSSG' mounted at the focal point of the dish. The overall performance and efficiency of the system depends primarily on the optical efficiency of the solar dish and thermal efficiency of the OTSSG. Optical testing performed include `on sun' tests using CCD camera images and `burn plate' testing to evaluate the sunspot for size and quality. The intercept factor was calculated using a colour look-back method to determine the percentage of solar rays focused into the receiver. Solar dish tracking stability tests were carried out at different times of day to account for varying dish elevation angles and positions, movement of the sunspot centroid was recorded and logged using a CCD camera. Finally the overall performance and net solar to steam efficiency of the system was calculated by experimentally measuring the output steam parameters at varying Direct Normal Insolation (DNI) levels at ZED Solar's test facility in Lahore, Pakistan. Thermal losses from OTSSG were calculated using the known optical efficiency and measured changes in output steam enthalpy.
Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto
2015-06-01
Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.
DEFF Research Database (Denmark)
Zhu, Dong; Jensen, Leif Bjørnø
2000-01-01
. The major drawback of using the cylindrical coordinate system, when the backscattering solution is valid within a limited area, is analyzed using a geometrical-optical interpretation. The model may be useful for studying three-dimensional backscattering phenomena comprising azimuthal diffraction effects...
Energy Technology Data Exchange (ETDEWEB)
Beyer, P.O.; Krenzinger, A. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Mecanica
1990-12-31
This work presents a simulation of solar compound parabolic concentrators using the ray tracing technique. The program can be used as a computer aided design and quality control applications for parabolic mirrors. (author). 4 refs., 8 figs.
Mechatronic Prototype of Parabolic Solar Tracker
Directory of Open Access Journals (Sweden)
Carlos Morón
2016-06-01
Full Text Available In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Mechatronic Prototype of Parabolic Solar Tracker.
Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz
2016-06-15
In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.
Davididou, K; Chatzisymeon, E; Perez-Estrada, L; Oller, I; Malato, S
2018-03-14
The aim of this work was to investigate the treatment of the artificial sweetener saccharin (SAC) in a solar compound parabolic collector pilot plant by means of the photo-Fenton process at pH 2.8. Olive mill wastewater (OMW) was used as iron chelating agent to avoid acidification of water at pH 2.8. For comparative purposes, Ethylenediamine-N, N-disuccinic acid (EDDS), a well-studied iron chelator, was also employed at circumneutral pH. Degradation products formed along treatment were identified by LC-QTOF-MS analysis. Their degradation was associated with toxicity removal, evaluated by monitoring changes in the bioluminescence of Vibrio fischeri bacteria. Results showed that conventional photo-Fenton at pH 2.8 could easily degrade SAC and its intermediates yielding k, apparent reaction rate constant, in the range of 0.64-0.82 L kJ -1 , as well as, eliminate effluent's chronic toxicity. Both OMW and EDDS formed iron-complexes able to catalyse H 2 O 2 decomposition and generate HO. OMW yielded lower SAC oxidation rates (k = 0.05-0.1 L kJ -1 ) than EDDS (k = 2.21-7.88 L kJ -1 ) possibly due to its higher TOC contribution. However, the degradation rates were improved (k = 0.13 L kJ -1 ) by increasing OMW dilution in the reactant mixture. All in all, encouraging results were obtained by using OMW as iron chelating agent, thus rendering this approach promising towards the increase of process sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.
Improvement Design of Parabolic Trough
Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.
2017-03-01
The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.
Directory of Open Access Journals (Sweden)
Amit K. Bhakta
2018-01-01
Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.
Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric
2011-08-01
The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.
The rise of non-imaging optics for rooftop solar collectors
Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom
2016-09-01
In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.
Cisneros, Jesus
2010-01-01
The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...
Tracking system for solar collectors
Butler, B.
1980-10-01
A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.
Colina-Márquez, José; Machuca-Martínez, Fiderman; Li Puma, Gianluca
2015-07-22
Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).
Directory of Open Access Journals (Sweden)
José Colina-Márquez
2015-07-01
Full Text Available Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC. In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25 and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir–Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM.
Ndounla, J; Pulgarin, C
2015-11-01
The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested.
Photovoltaic applications of Compound Parabolic Concentrator (CPC)
Winston, R.
1975-01-01
The use of a compound parabolic concentrator as field collector, in conjunction with a primary focusing concentrator for photovoltaic applications is studied. The primary focusing concentrator can be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens or some other lens. Silicon solar cell grid structures are proposed that increase efficiency with concentration up to 10 suns. A ray tracing program has been developed to determine energy distribution at the exit of a compound parabolic concentrator. Projected total cost of a CPC/solar cell system will be between 4 and 5 times lower than for flat plate silicon cell arrays.
Design of optimal and ideal 2-D concentrators with the collector immersed in a dielectric tube
Minano, J. C.; Ruiz, J. M.; Luque, A.
1983-12-01
A method is presented for designing ideal and optimal 2-D concentrators when the collector is placed inside a dielectric tube, for the particular case of a bifacial solar collector. The prototype 2-D (cylindrical geometry) concentrator is the compound parabolic concentrator or CPC, and from the beginning of development, it was found by Winston (1978) that filling up the concentrator with a transparent dielectric medium results in a big improvement of the optical properties. The method reported here is based on the extreme ray principle of design and avoids the use of differential equations by means of a proper appliction of Fermat's principle. One advantage of these concentrators is that they allow the size to be small compared with classical CPCs.
Arumugam, S.; Ramakrishna, P.; Sangavi, S.
2018-02-01
Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.
Elmetennani, Shahrazed
2016-08-09
In this paper, the problem of estimating the distributed profile of the temperature along the tube of a concentrated distributed solar collector from boundary measurements is addressed. A nonlinear observer is proposed based on a nonlinear integral transformation. The objective is to force the estimation error to follow some stable transport dynamics. Convergence conditions are derived in order to determine the observer gain ensuring the stabilization of the estimation error in a finite time. Numerical simulations are given to show the effectiveness of the proposed algorithm under different working conditions. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Sahourin, H.
1988-03-22
This invention relates to a dust collector or filter which may be used for large volume cleaning air for gases or for separating out industrial byproducts such as wood chips, sawdust, and shavings. It relies on filtration or separation using only a uniquely configured medium. A primary, but not exclusive, purpose of the invention is to enable very large throughput, capable of separating or filtering of gases containing up to three or more tons of byproduct with a minimum pressure-drop across the device. No preliminary cycloning, to remove major particulates is necessary. The collector generally comprises a continuous and integral filter medium which is suspended from a plurality of downwardly extending frames forming a series of separate elements having a triangular cross-section, each element being relatively wide at the top and narrow at the bottom to define, between adjacent elements, a divergent collecting space which is wide at the bottom. 11 figs.
Modeling, Simulation and Performance Evaluation of Parabolic Trough
African Journals Online (AJOL)
Mekuannint
Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...
Means of increasing efficiency of CPC solar energy collector
Chao, B.T.; Rabl, A.
1975-06-27
A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.
Umair, Muhammad; Akisawa, Atsushi; Ueda, Yuki
2014-01-01
Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC) is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evalua...
International Nuclear Information System (INIS)
Frew, J.D.
1980-01-01
A collector for use in a magnetic separator is formed by isostatically pressing a metal which is resistant to attack by acid about ferromagnetic bodies whereby to encase the bodies in the metal. In one arrangement, as shown, the bodies are encapsulated between inner and outer cylinders. In other arrangements the encapsulating metal is in the form of a tube or planar sheets. The bodies are of Fe or an oxide thereof and the acid-resistant metal parts may be of stainless steel, Au, Pt, Pa or an alloy. The magnetic separator is intended for use in removing particles from liquids during the reprocessing of nuclear fuel materials. (author)
Parabolic approximation method for fast magnetosonic wave propagation in tokamaks
International Nuclear Information System (INIS)
Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.
1985-07-01
Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters
DEFF Research Database (Denmark)
Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao
2017-01-01
We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...
Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power
Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.
2017-02-01
Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.
Rohit Tripathi; Sumit Tiwari; G. N. Tiwari
2016-01-01
In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...
Studies with Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC
Solfaroli Camillocci, Matteo; Timko, Helga; Wenninger, Jorg; CERN. Geneva. ATS Department
2018-01-01
Measurements performed with a Parabolic Parabolic Linear Parabolic (PPLP) momentum function in the LHC. Three attempts have been performed with a pilot bunch and one with nominal bunch (1.1x1011 p/bunch).
Eames, P. C.; Norton, B.
A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.
A solar collector for air-conditioning
Energy Technology Data Exchange (ETDEWEB)
Kose, E. [Microtherm Energietechnik GmbH, 25 - Lods (France)
1999-03-01
A high performance Compound Parabolic Concentrator (CPC) collector is presented. It comprises dewar type tubular vacuum tubes with an absorber coating of very low emittance, a moderately concentrating reflector and a simple thermosyphon heat removal system. The reflectors car be designed with respect to the specific needs; reflector material, concentration, truncation and symmetry car be chosen freely. The collector allows the construction of cooling systems with higher COP's without using tracking systems. Land use and costs are greatly reduced. For a certain application (optimum yearly gain in Munich with a constant collector temperature of 180 deg C) the reflector was optimized, it is a fairly asymmetrical design. A symmetrical design with a similar performance has been tested, the results are shown. (author)
Converting PETAL, the 25m solar collector, into an astronimcal research facility
Ribak, Erez N.; Laor, Ari; Faiman, David; Biyukov, Sergy; Brosch, Noah
2003-02-01
We propose to modify the solar collector PETAL (Photon Energy Transformation &Astrophysics Laboratory) for astronomy. The mirror is a segmented parabolic dish collector, which has a relatively poor imaging quality. The conversion can be done by either of two principal methods: (1) phasing the surface of the collector itself or significant sections thereof; (2) transforming the structure into an optical interferometer by mounting small telescopes around its rim, and using fiber optics to combine the light at a common focus.
Directory of Open Access Journals (Sweden)
Pedro José Soto Piedehierro
2016-06-01
Full Text Available Este articulo trata sobre el estudio de viabilidad económica de una central termosolar cilíndrico-parabólica de 50 MW en el término municipal de Badajoz. Para ver las diferentes alternativas en el diseño y estudio económico de la instalación se han tenido en cuenta dos casos, un primer caso de la central sin almacenamiento térmico y un segundo caso de la central con almacenamiento térmico. La finalidad con la que se presenta este estudio es analizar los diferentes casos y presentar conclusiones al respecto. The aim of this study is to do an economic feasibility study in a cylindrical-parabolic solar thermal plant of 50 MW in Badajoz. Two different cases have been studied, first case the solar thermal plant without thermal storage and the other case, the solar thermal plant with thermal storage (salt tanks. The advantages and disadvantages of the use of each element have also been analyzed.
Manufacturing parabolic mirrors
CERN PhotoLab
1975-01-01
The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)
Thermal behaviour of solar air heater with compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, Rene
2008-01-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAXÂ®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
Energy Technology Data Exchange (ETDEWEB)
Seifert, P
1983-07-04
Solar energy is converted in a gas turbine plant, with solar radiation collected in a parabolic collector and reflected into a hollow receiver. The receiver, which is rigidly connected to the collector, consists of a conical bottom part and a cylindrical upper part. The highly focussed radiation enters through the aperture of the conus. The cool, compressed working fluid of the gas turbine flows through pipes arranged in front of the cylindrical inner wall. The distribution of the radiation was studied as well as the resulting receiver wall temperature, radiation losses and useful heat absorbed by the working fluid. Temperature distributions and three-dimensional fields of thermal stresses were calculated. The influence of geometric and thermodynamic parameters on the stresses inside the pipes was studied in consideration of thermal stresses and stresses due to working fluid pressure. The findings will help to optimize the heating surface load, material utilisation, and efficiency of the receiver. The interdependences between receiver characteristics and gas turbine operation are explained.
Viña, Rommel R.; Alagao, Feliciano B.
2018-03-01
A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.
Ive, Anders; Blomdell, Anders; Ekman, Torbjörn; Henriksson, Roger; Nilsson, Anders; Nilsson, Klas; Robertz, Sven
2002-01-01
The purpose of the presented garbage collector interface is to provide a universal interface for many different implementations of garbage collectors. This is to simplify the integration and exchange of garbage collectors, but also to support incremental, non-conservative, and thread safe implementations. Due to the complexity of the interface, it is aimed at code generators and preprocessors. Experiences from ongoing implementations indicate that the garbage collector interface successfully ...
Connectable solar air collectors
Energy Technology Data Exchange (ETDEWEB)
Oestergaard Jensen, S.; Bosanac, M.
2002-02-01
The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method
Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.
Ries, H; Spirkl, W
1996-05-01
For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.
Truncation of CPC solar collectors and its effect on energy collection
Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.
1985-01-01
Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.
DEFF Research Database (Denmark)
Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken
1997-01-01
this kind of collectors. The modified simulation program has been used for the determination of the surplus in performance which solar heating systems with this type of solar collectors for combined preheating of ventilation air and domestic hot water will have. The simulation program and the efficiency......This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...
Integrated function nonimaging concentrating collector tubes for solar thermal energy
Winston, R.; Ogallagher, J. J.
1982-09-01
A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.
A stationary evacuated collector with integrated concentrator
Energy Technology Data Exchange (ETDEWEB)
Snail, K.A.; O' Gallagher, J.J.; Winston, R.
1984-01-01
A comprehensive set of experimental tests and detailed optical and thermal models are presented for a newly developed solar thermal collector. The new collector has an optical efficiency of 65 per cent and achieves thermal efficiencies of better than 50 per cent at fluid temperatures of 200/sup 0/C without tracking the sun. The simultaneous features of high temperature operation and a fully stationary mount are made possible by combining vacuum insulation, spectrally selective coatings, and nonimaging concentration in a novel way. These 3 design elements are ''integrated'' together in a self containe unit by shaping the outer glass envelope of a conventional evacuated tube into the profile of a nonimaging CPC-type concentrator. This permits the use of a first surface mirror and eliminates the need for second cover glazing. The new collector has been given the name ''Integrated Stationary Evacuated Concentrator'', or ISEC collector. Not only is the peak thermal efficiency of the ISEC comparable to that of commercial tracking parabolic troughs, but projections of the average yearly energy delivery also show competitive performance with a net gain for temperatures below 200/sup 0/C. In addition, the ISEC is less subject to exposure induced degradation and could be mass produced with assembly methods similar to those used with fluorescent lamps. Since no tracking or tilt adjustments are ever required and because its sensitive optical surfaces are protected from the environment, the ISEC collector provides a simple, easily maintained solar thermal collector for the range 100-300/sup 0/C which is suitable for most climates and atmospheric conditions. Potential applications include space heating, air conditioning, and industrial process heat.
Energy Technology Data Exchange (ETDEWEB)
Chao, Bei Tse; Rabl, A
1977-02-10
The invention deals with a concentrating solar collector. Collectors of this kind often have considerable natural convection losses which are due, among other facts, to the location of the energy absorber at the outlet with the heated surface of the absorber facing the inlet opening of the collector. According to the invention, the collector is designed in such manner that the absorber is located inside a space in such a way that the radiation emitted by the absorber is reflected back to the absorber with the aid of mirror surfaces. Various designs are described.
International Nuclear Information System (INIS)
Guo, Su; Liu, Deyou; Chen, Xingying; Chu, Yinghao; Xu, Chang; Liu, Qunming; Zhou, Ling
2017-01-01
Highlights: •A nonlinear dynamic model of recirculation DSG parabolic trough is developed. •Collector row, water separator and spray attemperator are modeled, respectively. •The dynamic behaviors of the collector field are simulated and analyzed. •Transfer functions of water level and outlet fluid temperature are derived. •Multi-model switching generalized predictive control strategy is developed. -- Abstract: This work describes and evaluates a new nonlinear dynamic model, and a new generalized predictive control scheme for a collector field of direct steam generation parabolic troughs in recirculation mode. Modeling the dynamic behaviors of collector fields is essential to design, testing and validation of automatic control systems for direct steam generation parabolic troughs. However, the behaviors of two-phase heat transfer fluids impose challenges to simulating and developing process control schemes. In this work, a new nonlinear dynamic model is proposed, based on the nonlinear distributed parameter and the nonlinear lumped parameter methods. The proposed model is used to simulate and analyze the dynamic behaviors of the entire collector field for recirculation mode direct steam generation parabolic troughs under different weather conditions, without excessive computational costs. Based on the proposed model, transfer functions for both the water level of the separator and outlet steam temperatures are derived, and a new multi-model switching generalized predictive control scheme is developed for simulated control of the plant behaviors for a wide region of operational conditions. The proposed control scheme achieves excellent control performance and robustness for systems with long delay, large inertia and time-varying parameters, and efficiently solves the model mismatching problem in direct steam generation parabolic troughs. The performances of the model and control scheme are validated with design data from the project of Integration of Direct
Solar collector overheating protection
Slaman, M.J.; Griessen, R.P.
Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a
Federal technology alert. Parabolic-trough solar water heating
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-04-01
Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
Gordon, Jeffrey M.; Kashin, Peter
1994-01-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.
City sewer collectors biocorrosion
Ksiażek, Mariusz
2014-12-01
This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.
Full parabolic trough qualification from prototype to demonstration loop
Janotte, Nicole; Lüpfert, Eckhard; Pottler, Klaus; Schmitz, Mark
2017-06-01
On the example of the HelioTrough® collector development the full accompanying and supporting qualification program for large-scale parabolic trough collectors for solar thermal power plants is described from prototype to demonstration loop scale. In the evaluation process the actual state and the optimization potential are assessed. This includes the optical and geometrical performance determined by concentrator shape, deformation, assembly quality and local intercept factor values. Furthermore, its mechanical performance in terms of tracking accuracy and torsional stiffness and its thermal system performance on the basis of the overall thermal output and heat loss are evaluated. Demonstration loop tests deliver results of collector modules statistical slope deviation of 1.9 to 2.6 mrad, intercept factor above 98%, peak optical performance of 81.6% and heat loss coefficients from field tests. The benefit of such a closely monitored development lies in prompt feedback on strengths, weaknesses and potential improvements on the new product at any development stage from first module tests until demonstration loop evaluation. The product developer takes advantage of the achieved technical maturity, already before the implementation in a commercial power plant. The well-understood performance characteristics allow the reduction of safety margins making the new HelioTrough collector competitive from the start.
International Nuclear Information System (INIS)
Gonzalez, Manuel I.; Rodriguez, Luis R.
2007-01-01
Solar adsorption cooling systems are usually based on the flat plate collector, whereas little attention has been paid to concentrating collectors. Compound parabolic concentrators (CPC) are a versatile class of solar collectors that can be adapted to a large variety of applications and geometries. This work presents a CPC collector whose tubular receiver contains the sorption bed and where only a portion of the receiver is exposed to sunlight. Geometric characteristics of the proposed CPC, such as the profile, the length and the height of the reflective sheet are given. A prototype of a solar adsorption chiller using this type of collector and the activated carbon-methanol working pair is described, and typical experimental results are reported. In particular, the measured solar COP ranges from 0.078 to 0.096
Improved Large Aperture Collector Manufacturing
Energy Technology Data Exchange (ETDEWEB)
O' Rourke, Deven [Abengoa Solar LLC, Lakewood, CO (United States); Farr, Adrian [Abengoa Solar LLC, Lakewood, CO (United States)
2015-12-01
The parabolic trough is the most established CSP technology and carries a long history of design experimentation dating back to the 1970’s. This has led to relatively standardized collector architectures, a maturing global supply chain, and a fairly uniform cost reduction strategy. Abengoa has deployed more than 1,500MWe of CSP troughs across several countries and has built and tested full-scale prototypes of many R&D concepts. The latest trough R&D efforts involved efforts to internalize non-CSP industry experience including a preliminary DFMA principles review done with Boothroyd Dewhurst, a construction literature review by the Arizona State University School of Construction Management, and two more focused manufacturing engineering subcontracts done by Ricardo Inc. and the nonprofit Edison Welding Institute. The first two studies highlighted strong opportunities in lowering part count, standardizing components and fasteners, developing modular designs to support prefabrication and automation, and devising simple, error-proof manual assembly methods. These principles have delivered major new cost savings in otherwise “mature” products in analogous industries like automotive, truck trailer manufacture, metal building fabrication, and shipbuilding. For this reason, they were core in the design development of the SpaceTube® collector, and arguably key to its early successes. The latter two studies were applied specifically to the first-generation SpaceTube® design and were important in setting the direction of the present SolarMat project. These studies developed a methodology to analyze the costs of manufacture and assembly, and identify new tooling concepts for more efficient manufacture. Among the main opportunities identified in these studies were the automated mirror arm manufacturing concept and the need for a less infrastructure-intensive assembly line, both of which now form central pillars of the SolarMat project strategy. These new designs will be
Two non-tracking solar collectors: Design criteria and performance analysis
International Nuclear Information System (INIS)
Ratismith, Wattana; Inthongkhum, Anusorn; Briggs, John
2014-01-01
Highlights: • A collector module designed to capture solar radiation efficiently is proposed. • Two different compound parabolic trough designs are examined and tested. • A novel design with a flat base trough and vertical absorber operates efficiently in direct and diffuse sunlight. - Abstract: We propose fixed (non-tracking) configurations of solar light collector modules which are designed to operate efficiently throughout the day, i.e. for varying incident angles of direct sunlight, and in conditions of diffuse solar irradiation. We present two trough designs of compound parabolic collector (CPC) type. One, a more conventional double-parabolic trough, has the absorber plate perpendicular to the vertical axis of the trough cross-section. The other, of a new flat-base shape, has the absorber plate parallel. The collectors have two novel features appropriate to non-tracking. The first is a smoothing of the power output over the day by the simple expedient of arranging three troughs tilted at different angles. The second is the original design of the flat-base trough allowing optimal interception of the caustic surfaces of this non-focussing device. By ray-tracing analysis of the different trough shapes and absorber plate orientation, we emphasise the design criteria for achievement of a high intercept factor throughout the day without tracking and demonstrate the superiority of the flat-base collector over the double-parabolic design. In test experiments we show that the high temperatures (≈180 °C) necessary for some industrial process heat applications can be achieved. Also test results of the efficiency of the proposed systems are presented which indicate that the flat-base trough with vertical absorber plate is superior to the double-parabolic trough with horizontal absorber plate
Tecpoyotl-Torres, M.; Campos-Alvarez, J.; Tellez-Alanis, F.; Sánchez-Mondragón, J.
2006-08-01
In this work we present the basis of the solar concentrator design, which has is located at Temixco, Morelos, Mexico. For this purpose, this place is ideal due to its geographic and climatic conditions, and in addition, because it accounts with the greatest constant illumination in Mexico. For the construction of the concentrator we use a recycled parabolic plate of a telecommunications satellite dish (NEC). This plate was totally covered with Aluminum. The opening diameter is of 332 cm, the focal length is of 83 cm and the opening angle is of 90°. The geometry of the plate guaranties that the incident beams, will be collected at the focus. The mechanical treatment of the plate produces an average reflectance of 75% in the visible region of the solar spectrum, and of 92% for wavelengths up to 3μm in the infrared region. We obtain up to 2000°C of temperature concentration with this setup. The reflectance can be greatly improved, but did not consider it as typical practical use. The energy obtained can be applied to conditions that require of those high calorific energies. In order to optimize the operation of the concentrator we use a control circuit designed to track the apparent sun position.
Murphy, Gloria A [French Camp, CA
2010-09-07
A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.
Energy Technology Data Exchange (ETDEWEB)
Vasil' yev, L.L.; Avakyan, Yu.V.; Bogdanov, V.M.; Gagiyan, L.A.; Grakovich, L.P.; Karapetyan, G.S.; Morgun, V.A.
1984-01-01
A collector whose primary component is a heating pipe is proposed. The evaporation zone located in the lower half of the heating pipe has an external absorption coating. Chambers that open upward and contain the evaporating fluid are mounted within this region along the top. In order to improve operational reliability of the collector, these chambers are mounted on one coated wall; the area of projection of each of the chambers onto the horizontal plane is greater than the area of the projection of each of the chambers placed above it. The coating may be in the form of photocells; a filter is mounted on the chamber side inside the evaporation zone. The evaporation zone may take the form of a cylinder with a segmented base; the photocells are mounted on a flat section of the lateral surface. The collector may be used to cool the photocells.
Thermal behaviour of a solar air heater with a compound parabolic concentrator
International Nuclear Information System (INIS)
Tchinda, R.
2005-11-01
A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)
Parabolized stability equations
Herbert, Thorwald
1994-01-01
The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.
Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver
Energy Technology Data Exchange (ETDEWEB)
Burkholder, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kutscher, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2009-05-01
Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative to previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.
Solar collector manufacturing activity, 1990
International Nuclear Information System (INIS)
1992-01-01
The Solar Collector Manufacturing Activity 1990 report prepared by the Energy Information Administration (EIA) presents summary and detailed data provided by domestic manufacturers on shipments of solar thermal collectors and photovoltaic cells and modules. Summary data on solar thermal collector shipments are presented for the period 1974 through 1990. Summary data on photovoltaic cell and module shipments are presented for the period 1982 through 1990. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1990
Brin, Raymond L.; Pace, Thomas L.
1978-01-01
The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.
Flat plate collector. Solarflachkollektor
Energy Technology Data Exchange (ETDEWEB)
Raab, N
1979-03-29
The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.
Oil/gas collector/separator for underwater oil leaks
International Nuclear Information System (INIS)
Henning, C.D.
1993-01-01
An oil/gas collector/separator for underwater oil leaks is described comprising: a cylindrical tank; a hollow float member for supporting said tank in a substantially upright position; a skirt assembly secured to said hollow float member and extending in a direction away from said float member opposite said tank; means for removing oil from said tank; and means for removing gas from said tank
Development of compound parabolic concentrators for solar energy
Energy Technology Data Exchange (ETDEWEB)
O' Gallagher, J.; Winston, R.
1983-10-01
The compound parabolic concentrator (CPC) is not a specific collector, but a family of collectors based on a general design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle = thetac. This maximum limit exceeds by a factor of 2 to 4 that attainable by systems using focussing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to about 10x), collection of circumsolar and some diffuse radiation and relaxed tolerances. Because of these advantages, CPC type concentrators have applications in solar energy wherever concentration is desired, e.g., for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for both non-evacuated and evacuated thermal collector applications are discussed with particular emphasis on the most recent advances. The use of CPC type elements as secondary concentrators is illustrated in the context of higher concentration photovoltaic applications.
Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle
International Nuclear Information System (INIS)
He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang
2012-01-01
Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.
International Nuclear Information System (INIS)
Zhu, Yanqing; Shi, Jifu; Li, Yujian; Wang, Leilei; Huang, Qizhang; Xu, Gang
2016-01-01
Highlights: • A parabolic primary mirror field is designed to reduce the gap between adjacent mirrors. • The movable receiver can reduce the end losses. • The thermal efficiency of 66% is achieved at Guangzhou in winter. - Abstract: This paper proposes a stretched parabolic linear Fresnel reflector (SPLFR) collecting system. The primary optical mirror field of the SPLFR collecting system and the second-stage concentrator of compound parabolic collector are designed. The mirrors located at the parabolic line are close to each other, which effectively reduce the gap between the adjacent mirrors. The end losses of the receiver are very important, especially in a small-scale collecting system. A movable receiver is introduced for the reduction of the end losses. Moreover, a stretched structure of SPLFR is designed for wind resistance. Finally, the thermal performance of the SPLFR collecting system with fixed and movable receiver located in Guangzhou is tested. The maximum thermal efficiency obtained by this collecting system with movable receiver is 66% which avoid the end losses effectively, and the solar collector thermal loss coefficient is 1.32 W/m"2 °C. The results show that the SPLFR collecting system has excellent thermal performance and a promising application future. Meanwhile, this system will provide a valuable reference for concentrating solar power technology.
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
Hall, John Champlin; Martins, Guy Lawrence
2015-09-06
A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.
Convergence of shock waves between conical and parabolic boundaries
Energy Technology Data Exchange (ETDEWEB)
Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)
2016-07-15
Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.
Electron Raman scattering in a cylindrical quantum dot
International Nuclear Information System (INIS)
Zhong Qinghu; Yi Xuehua
2012-01-01
Electron Raman scattering (ERS) is investigated in a CdS cylindrical quantum dot (QD). The differential cross section is calculated as a function of the scattering frequency and the size of the QD. Single parabolic conduction and valence bands are assumed, and singularities in the spectrum are found and interpreted. The selection rules for the processes are also studied. The ERS studied here can be used to provide direct information about the electron band structure of these systems. (semiconductor physics)
Sasakian and Parabolic Higgs Bundles
Biswas, Indranil; Mj, Mahan
2018-03-01
Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/ S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G-Higgs bundles over M and the class of parabolic (or equivalently, ramified) G-Higgs bundles over the base N.
Strongly nonlinear parabolic variational inequalities.
Browder, F E; Brézis, H
1980-02-01
An existence and uniqueness result is established for a general class of variational inequalities for parabolic partial differential equations of the form partial differentialu/ partial differentialt + A(u) + g(u) = f with g nondecreasing but satisfying no growth condition. The proof is based upon a type of compactness result for solutions of variational inequalities that should find a variety of other applications.
Thermodynamic model to study a solar collector for its application to Stirling engines
International Nuclear Information System (INIS)
Abdollahpour, Amir; Ahmadi, Mohammad H.; Mohammadi, Amir H.
2014-01-01
Highlights: • A thermodynamic model is presented to study a solar collector for its application to Stirling engines. • The parabolic collector is analyzed based on optical and thermal. • Effects of changing some conditions and parameters are studied. - Abstract: Energy production through clean and green sources has been paid attention over the last decades owing to high energy consumption and environmental emission. Solar energy is one of the most useful energy sources. Due to high investment cost of centralized generation of electricity and considerable loss in the network, it is necessary to look forward to decentralized electricity generation technologies. Stirling engines have high efficiency and are able to be coupled with solar energy which cannot be applied in internal combustion engines. Solar Stirling engines can be commercialized and used to generate decentralized electricity in small to medium levels. One of the most important steps to set up an efficient solar Stirling engine is choosing and designing the collector. In this study, a solar parabolic collector with 3500 W of power for its application to Stirling engines was designed and analyzed (It is the thermal inlet power for a Stirling engine). We studied the parabolic collector based on optical and thermal analysis. In this case, solar energy is focused by a concentrating mirror and transferred to a pipe containing fluid. MATLAB software was used for obtaining the parameters of the collector, with respect to the geographic, temporal, and environmental conditions, fluid inlet temperature and some other considerations. After obtaining the results of the design, we studied the effects of changing some conditions and parameters such as annular space pressure, type of the gas, wind velocity, environment temperature and absorber pipe coating
International Nuclear Information System (INIS)
Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen
2013-01-01
Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance
Fixed point of the parabolic renormalization operator
Lanford III, Oscar E
2014-01-01
This monograph grew out of the authors' efforts to provide a natural geometric description for the class of maps invariant under parabolic renormalization and for the Inou-Shishikura fixed point itself as well as to carry out a computer-assisted study of the parabolic renormalization operator. It introduces a renormalization-invariant class of analytic maps with a maximal domain of analyticity and rigid covering properties and presents a numerical scheme for computing parabolic renormalization of a germ, which is used to compute the Inou-Shishikura renormalization fixed point. Inside, readers will find a detailed introduction into the theory of parabolic bifurcation, Fatou coordinates, Écalle-Voronin conjugacy invariants of parabolic germs, and the definition and basic properties of parabolic renormalization. The systematic view of parabolic renormalization developed in the book and the numerical approach to its study will be interesting to both experts in the field as well as graduate students wishi...
Turning collectors for solar radiation
Barak, Amitzur Z.
1976-01-01
A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
The Antiproton Collector is a new ring of much larger acceptance than the present accumulator. It is designed to receive 10 8 antiprotons per PS cycle. In order to be compatible with the Antiproton Accumulator, the momentum spread and the emittances are reduced from 6% to 0.2% and from 200 π mm mrad to 25 π mm mrad respectively. In addition to the ring itself, the new target area and the modifications to the stochastic systems of the Antiproton Accumulator are described. (orig.)
An air-based corrugated cavity-receiver for solar parabolic trough concentrators
International Nuclear Information System (INIS)
Bader, Roman; Pedretti, Andrea; Barbato, Maurizio; Steinfeld, Aldo
2015-01-01
Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m −2 , solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW
Rice, M. P.
1982-07-01
The design and manufacturing of a solar thermal collector is discussed. The collector has three primary subsystems: concentrator, receiver/fluid loop, and controls. Identical curved reflective columns are utilized in a faceted Fresnel design to support 864 one foot square flat inexpensive second-surface, silvered glass mirrors. The columns are ganged together and rotated through their centers of gravity to provide elevation tracking. The concentrator is supported by a lightweight spaceframe structure which distributes all wind and gravity loads to the base supports. The base of the structure is a track which rotates on wheels mounted on concrete piers. A parallel tube steel heat exchanger is mounted at the concentrator focal area in a well insulated, galvanized steel housing. Two rows of vertical close-packed, staggered tubes connect a mud header and a steam header. Automatic two axis tracking and operational control is provided with a microprocessor based package. Concentrator-mounted shadowbands are the basis for active tracking. A software program provides azimuthal tracking during cloudy periods.
Optical and Structural Characterization of Nickel Coatings for Solar Collector Receivers
Pratesi, S.; Sani, E.; De Lucia, M.
2014-01-01
The development of spectrally selective materials is gaining an increasing role in solar thermal technology. The ideal spectrally selective solar absorber requires high absorbance at the solar spectrum wavelengths and low emittance at the wavelengths of thermal spectrum. Selective coating represents a promising route to improve the receiver efficiency for parabolic trough collectors (PTCs). In this work, we describe an intermediate step in the fabrication of black-chrome based solar absorbers...
Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María
2015-01-01
Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...
International Nuclear Information System (INIS)
Karimov, Ruslan Kh; Kozhevnikova, Larisa M
2010-01-01
The first mixed problem with homogeneous Dirichlet boundary condition and initial function with compact support is considered for quasilinear second order parabolic equations in a cylindrical domain D=(0,∞)xΩ. Upper bounds are obtained, which give the rate of decay of the solutions as t→∞ as a function of the geometry of the unbounded domain Ω subset of R n , n≥2. Bibliography: 18 titles.
Modelling of Microclimate in collectors
DEFF Research Database (Denmark)
Holck, Ole
1996-01-01
Abstract It is important to avoid condensation in solar collectors, most of all because wetness of the absorber can damage the selective surface and cause corrosion on the absorber plate. During night time the cover of collectors will cool below ambient temperature due to thermal radiation...
Directory of Open Access Journals (Sweden)
Muhammad Umair
2014-03-01
Full Text Available Simulation study of a solar adsorption refrigeration system using a wing type compound parabolic concentrator (CPC is presented. The system consists of the wing type collector set at optimum angles, adsorption bed, a condenser and a refrigerator. The wing type collector captures the solar energy efficiently in the morning and afternoon and provides the effective temperature for a longer period of time compared to that achieved by a linear collector. The objectives of the study were to evaluate the system behavior, the effect of wing length, and to compare the performance of the systems with wing type and linear CPCs. A detailed dynamic simulation model was developed based on mass and energy balance equations. The simulation results show that the system performance with wing type CPC increases by up to 6% in the summer and up to 2% in the winter, compared to the performance with a linear CPC having same collector length. The ice production also increases up to 13% in the summer with the wing type CPC. This shows that the wing type CPC is helpful to increase the performance of the system compared to the linear CPC with the same collector length and without the need for tracking.
International Nuclear Information System (INIS)
Fernández, Paloma Fuente; Clemencic, Marco; Cousin, Nicolas
2011-01-01
The LHCb physics software consists of hundreds of packages, each of which is developed by one or more physicists. When the developers have some code changes that they would like released, they commit them to the version control system, and enter the revision number into a database. These changes have to be integrated into a new release of each of the physics analysis applications. Tests are then performed by a nightly build system, which rebuilds various configurations of the whole software stack and executes a suite of run-time functionality tests. A Tag Collector system has been developed using solid standard technologies to cover both the use cases of developers and integration managers. A simple Web interface, based on an AJAX-like technology, is available. Integration with SVN and Nightly Build System, is possible via a Python API. Data are stored in a relational database with the help of an ORM (Object-Relational Mapping) library.
Advanced evacuated tube collectors
Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.
1985-04-01
The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.
Optimized concentrating/passive tracking solar collector. Final report
Energy Technology Data Exchange (ETDEWEB)
Sterne, K E; Johnson, A L; Grotheer, R H
1979-01-01
A concentrating solar collector having about half the material cost of other collectors with similar performance is described. The selected design is a Compound Parabolic Concentrator (CPC) which concentrates solar energy throughout the year without requiring realignment. Output is a fluid heated to 100/sup 0/C with good efficiency. The optical design of the reflector surface was optimized, yielding a 2.0:1 concentration ratio with a 60/sup 0/C acceptance angle and a low profile. Double glazing was chosen consisting of a polyester film outer glazing and an inner glazing of glass tubes around the absorbers. The selectively coated steel absorber tubes are connected in series with flexible plastic tubing. Much development effort went into the materials for the reflector subassembly. A laminate of metalized plastic film over plaster was chosen for the reflective surface. The reflector is rigidized by attaching filled epoxy header plates at each end. Aluminum side rails and an insulating back complete the structure. The finished design resulted in a material cost of $21.40 per square meter in production quantities. Performance testing of a prototype produced a 50% initial efficiency rating. This is somewhat lower than expected, and is due to materials and processes used in the prototype for the outer glazing, reflective surface and absorber coating. However, the efficiency curve drops only slightly with increasing temperature differential, showing the inherent advantage of the concentrator over flat plate collectors.
Hybrid solar collector using nonimaging optics and photovoltaic components
Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr
2015-08-01
The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.
Analysis of solar water heater with parabolic dish concentrator and conical absorber
Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.
2017-06-01
This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.
International Nuclear Information System (INIS)
Wang, Fu; Zhao, Jun; Li, Hailong; Deng, Shuai; Yan, Jinyue
2017-01-01
Highlights: • A solar assisted chemical absorption pilot system with two types of collectors (parabolic trough and linear Fresnel reflector) has been constructed. • Performance of two types of solar collectors has been investigated and compared at steady and transient states. • The operations of the pilot system with and without solar assisted have been tested. • The pilot system responds to the temperature of the heat transfer fluid regularly. - Abstract: The amine-based chemical absorption for CO_2 capture normally needs to extract steam from the steam turbine cycle for solvent regeneration. Integrating solar thermal energy enables the reduction of steam extraction and therefore, can reduce the energy penalty caused by CO_2 capture. In this paper, a pilot system of the solar thermal energy assisted chemical absorption was built to investigate the system performance. Two types of solar thermal energy collectors, parabolic trough and linear Fresnel reflector, were tested. It was found that the values of operation parameters can meet the requirements of designed setting parameters, and the solar collectors can provide the thermal energy required by the reboiler, while its contribution was mainly determined by solar irradiation. The solvent regeneration was investigated by varying the heat input. The results show that the response time of the reboiler heat duty is longer than those of the reboiler temperature and desorber pressure. This work provides a better understanding about the overall operation and control of the system.
Optical performance effects of the misalignment of nonimaging optics solar collectors
Ferry, Jonathan; Ricketts, Melissa; Winston, Roland
2017-09-01
The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.
Allton, J. H.; Gonzalez, C. P.; Allums, K. K.
2016-01-01
The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.
Double-pass photovoltaic / thermal (PV/T) solar collector with advanced heat transfer features
International Nuclear Information System (INIS)
Mohd Nazari Abu Bakar; Baharudin Yatim; Mohd Yusof Othman; Kamaruzzaman Sopian
2006-01-01
The use of PV/T in combination with concentrating reflectors has a potential to significantly increase power production from a given solar cell area. A prototype double-pass photovoltaic-thermal solar air collector with CPR and fins has been designed and fabricated and its performance over a range of operating conditions was studied. The absorber of the hybrid photovoltaic / thermal (PV/T) collector under investigation consists of an array of solar cells for generating electricity, compound parabolic concentrator (CPR) to increase the radiation intensity falling on the solar cells and fins attached to the back side of the absorber plate to improve heat transfer to the flowing air. The thermal, electrical and combined electrical and thermal efficiencies of the collector are presented and discussed
Leung, Ka-Ngo [Hercules, CA
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Current collectors for improved safety
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.; Li, Jianlin; Simunovic, Srdjan; Wang, Hsin
2017-12-19
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, and methods for operating a battery.
AEROSOL PARTICLE COLLECTOR DESIGN STUDY
Energy Technology Data Exchange (ETDEWEB)
Lee, S; Richard Dimenna, R
2007-09-27
A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.
International Nuclear Information System (INIS)
Wiegand, W.J. Jr.; Bullis, R.H.; Mongeon, R.J.
1980-01-01
A flowmeter based on ion drift techniques was developed for measuring the rate of flow of a fluid through a given cross-section. Ion collectors are positioned on each side of an immediately adjacent to ion source. When air flows axially through the region in which ions are produced and appropriate electric fields are maintained between the collectors, an electric current flows to each collector due to the net motion of the ions. The electric currents and voltages and other parameters which define the flow are combined in an electric circuit so that the flux of the fluid can be determined. (DN)
A Concentrator Photovoltaic System Based on a Combination of Prism-Compound Parabolic Concentrators
Directory of Open Access Journals (Sweden)
Ngoc Hai Vu
2016-08-01
Full Text Available We present a cost-effective concentrating photovoltaic system composed of a prism and a compound parabolic concentrator (P-CPC. In this approach, the primary collector consists of a prism, a solid compound parabolic concentrator (CPC, and a slab waveguide. The prism, which is placed on the input aperture of CPC, directs the incoming sunlight beam to be parallel with the main axes of parabolic rims of CPC. Then, the sunlight is reflected at the parabolic rims and concentrated at the focal point of these parabolas. A slab waveguide is coupled at the output aperture of the CPC to collect focused sunlight beams and to guide them to the solar cell. The optical system was modeled and simulated with commercial ray tracing software (LightTools™. Simulation results show that the optical efficiency of a P-CPC can achieve up to 89%. when the concentration ratio of the P-CPC is fixed at 50. We also determine an optimal geometric structure of P-CPC based on simulation. Because of the simplicity of the P-CPC structure, a lower-cost mass production process is possible. A simulation based on optimal structure of P-CPC was performed and the results also shown that P-CPC has high angular tolerance for input sunlight. The high tolerance of the input angle of sunlight allows P-CPC solar concentrator utilize a single sun tracking system instead of a highly precise dual suntracking system as cost effective solution.
New collectors from all over the world
Energy Technology Data Exchange (ETDEWEB)
Augsten, Eva
2008-07-01
Flat-plate collectors are fashionable, even among customers in Shanghai, although China is considered the land of evacuated tubes. Elsewhere, fashion is also a consideration, which partly explains the switch from fin collectors to full-surface collectors. Sun and Wind Energy has put together a list of new collectors from various countries. (orig.)
Solar parabolic dish technology evaluation report
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Design package for concentrating solar collector panels
Energy Technology Data Exchange (ETDEWEB)
1978-08-01
Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The Northrup concentrating solar collector is a water/glycol/working fluid type, dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, fiber glass insulation and weighs 98 pounds. The gross collector area is about 29.4/sup 2/ per collector. A collector assembly includes four collector units within a tracking mount array.
International Nuclear Information System (INIS)
Menbari, Amir; Alemrajabi, Ali Akbar; Rezaei, Amin
2016-01-01
Highlights: • The effect of CuO/Water on a direct absorption parabolic collector is investigated. • The power-law is used for simulating the turbulent flow into the receiver pipe. • In this collector the solar irradiance is absorbed directly and converted to heat. • Nanofluid as the working fluid improves the thermal efficiency of the collector. - Abstract: Direct absorption solar collectors (DASCs) form a new class of collectors that directly harvest sun beams via a working fluid. They offer several advantages over their conventional surface absorption counterparts such as reduced surface heat loss and increased solar irradiance absorption. The optical and thermo-physical properties of the working fluid may be improved and system efficiency may be enhanced in direct absorption solar collectors (DASCs) by introducing nanoparticles into the base fluid. The present study investigates, both analytically and experimentally, the effects of CuO/Water nanofluid on the efficiency of a direct absorption parabolic trough collector (DAPTC). The theoretical analysis of DAPTC is based on the power-law with the objective of simulating a turbulent flow into the receiver pipe. Comparison of the results obtained from the model and the experimental measurements reveals a good agreement between the two sets of data, indicating that they can be exploited to validate the numerical solution. Moreover, modeling results indicate that the average radial temperature and energy generation terms due to the solar irradiance absorbed and scattered by the nanoparticles decrease with increasing distance from the receiver pipe wall. It is also found that the solar irradiance is absorbed and converted into a significant amount of sensible heat along the length of the receiver pipe. Finally, the results of both the numerical and the experimental investigations of the DAPTC collector show that the thermal efficiency of the system improves as a result of increased nanoparticle volume fraction
Controllability and stabilization of parabolic equations
Barbu, Viorel
2018-01-01
This monograph presents controllability and stabilization methods in control theory that solve parabolic boundary value problems. Starting from foundational questions on Carleman inequalities for linear parabolic equations, the author addresses the controllability of parabolic equations on a variety of domains and the spectral decomposition technique for representing them. This method is, in fact, designed for use in a wider class of parabolic systems that include the heat and diffusion equations. Later chapters develop another process that employs stabilizing feedback controllers with a finite number of unstable modes, with special attention given to its use in the boundary stabilization of Navier–Stokes equations for the motion of viscous fluid. In turn, these applied methods are used to explore related topics like the exact controllability of stochastic parabolic equations with linear multiplicative noise. Intended for graduate students and researchers working on control problems involving nonlinear diff...
International Nuclear Information System (INIS)
Xie, W.T.; Dai, Y.J.; Wang, R.Z.
2011-01-01
Research highlights: → We studied a point focus Fresnel solar collector using different cavity receivers. → The collector heat removal factors are derived to find the optimal cavity shape. → Numerical and experimental analysis shows that the conical cavity is optimum. -- Abstract: A high concentration imaging Fresnel solar collector provided with different cavity receivers was developed and its behavior was investigated. Round copper pipes winded into different spring shapes were used as receiver by placing in the cylindrical cavity to absorb concentrated solar energy and transfer it to a heat transfer fluid (HTF). The collector efficiency factor and collector heat removal factor were derived for the cavity receivers to find out heat transfer mechanism and to propose an effective way for evaluating the performance of Fresnel solar collector and determining the optimal cavity structure. The problem of Fresnel solar collector with synthetic heat transfer oil flow was simulated and analyzed to investigate heat loss from different cavity receivers. Solar irradiation as well as convection and heat transfer in the circulating fluid and between the internal surfaces of the cavity and the environment are considered in the model. The temperature distribution over its area as well as the collector thermal efficiency at nominal flow rate was used in order to validate the simulation results. It was found that the simulated temperature distribution during operation and the average collector efficiency are in good agreement with the experimental data. Finally, the optimal shape of solar cavity receiver, as well as its thermal performance, are deeply analyzed and discussed.
Solar radiation on a catenary collector
Crutchik, M.; Appelbaum, J.
1992-01-01
A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector produces a shadow on the other side of the collector. This self-shading effect is analyzed. The direct beam, the diffuse, and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on Viking Lander 1 (VL1).
Design package for concentrating solar collector panels
1978-01-01
Information used to evaluate the design of the Northrup concentrating collector is presented. Included are the system performance specifications, the applications manual, and the detailed design drawings of the collector. The collector is a water/glycol/working fluid type, with a dipped galvanized steel housing, transparent acrylic Fresnel lens cover, copper absorber tube, and fiber glass insulation. It weights 98 pounds. A collector assembly includes four collector units within a tracking mount array.
A distributed garbage collector for active objects
Puaut , Isabelle
1993-01-01
This paper introduces an algorithm that performs garbage collection in distributed systems of active objects (i.e., objects having their own threads of control). The proposed garbage collector is made of a set of local garbage collectors, one per node, loosely coupled to a global garbage collector. The novelties of the proposed garbage collector come from the fact that local garbage collectors need not be synchronized with each other for detecting garbage objects and that faulty communication...
Energy Technology Data Exchange (ETDEWEB)
Winston, R.; O' Gallagher, J.J.; Muschaweck, J.; Mahoney, A.R.; Dudley, V.
1999-07-01
A variety of configurations of evacuated Integrated Compound Parabolic Concentrator (ICPC) tubes have been under development for many years. A particularly favorable optical design corresponds to the unit concentration limit for a fin CPC solution which is then coupled to a practical, thin, wedge-shaped absorber. Prototype collector modules using tubes with two different fin orientations (horizontal and vertical) have been fabricated and tested. Comprehensive measurements of the optical characteristics of the reflector and absorber have been used together with a detailed ray trace analysis to predict the optical performance characteristics of these designs. The observed performance agrees well with the predicted performance.
Thermal analysis of a compound parabolic concentrator for refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Ortega, Naghelli; Best, Roberto [Centro de Investigacion en Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
The refrigeration system designed at the Centro de Investigacion en Energia (CIE), Mexico is able to produce, in optimal conditions, one hundred kilograms per day of ice by means of solar energy. A continuous absorption ammonia-water refrigeration cycle is employed. In its actual state, heat supply to the system is provided through a bank of evacuated tube solar collectors. Their principal difficulties encountered in this system are the indirect heat losses due to the coupling of the falling film generator to the solar heating subsystem that requires a heat transfer gradient and higher collector operating temperatures. Also the high initial cost of the evacuated tube collectors is a barrier for an economical feasible system. Currently, new types of solar collectors are being considered, more efficient and reliable, with a potentially lower cost. This type of collectors known as Compound Parabolic Collectors (CPC) succeed in working at the required temperatures for absorption refrigeration systems. Therefore, a new system is suggested and it is proposed to use a CPC array, where heat losses by the indirect heating system are avoided. In this work a simple method was developed in order to establish the energy balances in a CPC, with a steel tubular receiver without an evacuated glass shell. The receptor's model considers a bidimensional system in stationary state and it supposes a continuous medium. Four nonlinear, simultaneous equations were obtained to predict heat exchange among various components in the system. These equations were utilized in a computer program to analyze the collector performance under various operating conditions. Consequently, the prediction of temperature distribution with respect to position permits to calculate length and arrangement of the CPC for a determined refrigeration application. [Spanish] El sistema de refrigeracion en el Centro de Investigacion en Energia (CIE) Mexico es capaz de producir en condiciones optimas 100
Numerical Solution of Parabolic Equations
DEFF Research Database (Denmark)
Østerby, Ole
These lecture notes are designed for a one-semester course on finite-difference methods for parabolic equations. These equations which traditionally are used for describing diffusion and heat-conduction problems in Geology, Physics, and Chemistry have recently found applications in Finance Theory...... ? and how do boundary value approximations affect the overall order of the method. Knowledge of a reliable order and error estimate enables us to determine (near-)optimal step sizes to meet a prescribed error tolerance, and possibly to extrapolate to get (higher order and) better accuracy at a minimal...... expense. Problems in two space dimensions are effectively handled using the Alternating Direction Implicit (ADI) technique. We present a systematic way of incorporating inhomogeneous terms and derivative boundary conditions in ADI methods as well as mixed derivative terms....
Design experiences of the first solar parabolic thermal power plant for various regions in Iran
International Nuclear Information System (INIS)
Azizian, K.; Yaghoubi, M.; Kenary, A.
2002-01-01
The basic design is made for a 250 kw solar power plant. The main element of the plant is the collectors. Base on system simulation, a parabolic collector constructed and tested for one year. The model is first validated with experimental measurement and a detail numerical model is also developed to study effects of various optical properties of mirrors and receiver on the thermal performance of the collectors. It is observed that due to poor optical properties of the present collector, it would not be able to produce hot oil with desired temperature. Improving the material of the mirrors and the receiver tube, thermal performances exceed substantially from the design conditions. By considering available optical properties simulation is made to estimate yearly steady and unsteady behavior and the performance of the power plant for three locations: Shiraz, Yazd and Lar in Iran. Comparison of the yearly performance of the cycle shows that unsteady behavior reveals different results and simulations approach a reliable technique to study such cycle
Energy Technology Data Exchange (ETDEWEB)
Brunold, S. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland); Frey, R. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland); Frei, U. [Solarenergie Pruef- und Forschungsstelle SPF-ITR, Rapperswil (Switzerland)
1995-12-31
A comparison of the measured and simulated values of three collector types shows that evacuated tube collectors are superior to transparent-insulation flat collectors in the case of high-temperature uses. At temperatures of 150 C and above good results were obtained using evacuated tube collectors with compound parabolic concentrators manufactured by Microtherm. CORTEC collectors are suited for temperatures in the range of 100 C to 150 C provided that the surface ratio is irrelevant. Costs play a decisive role when selecting systems. The results obtained show that improved transparent-insulation flat collectors can compete with evacuated tube collectors in the 100 C to 150 C temperature range. (orig.) [Deutsch] Ein Vergleich der gemessenen und simulierten Werte der drei Kollektoren zeigt, dass die Vakuumroehrenkollektoren fuer den Einsatz in Hochtemperaturanwendungen dem mit transparenter Waermedaemmung isolierten Flachkollektor ueberlegen sind. Der Vakuumroehrenkollektor mit CPC von Microtherm erzielt gute Resultate ab 150 C und mehr. Wogegen der CORTEC-Kollektor fuer den Einsatz im Temperaturbereich zwischen 100 C und 150 C geeignet ist, solange das Flaechenverhaeltnis keine Rolle spielt. Wie fuer die meisten Anwendungen spielen die Kosten eine entscheidende Rolle fuer die Wahl des eingesetzten Systems. Die Resultate zeigen, dass ein verbesserter mit TWD ausgeruesteter Flachkollektor im Temperaturbereich von 100 C bis 150 C konkurrenzfaehig zu Vakuumroehrenkollektoren sein kann. (orig.)
Reducing heat loss from the energy absorber of a solar collector
Chao, Bei Tse; Rabl, Ari
1976-01-01
A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.
International Workshop on Elliptic and Parabolic Equations
Schrohe, Elmar; Seiler, Jörg; Walker, Christoph
2015-01-01
This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.
Analysis of heat transfer in different CPC solar collectors: A CFD approach
International Nuclear Information System (INIS)
Antonelli, M.; Francesconi, M.; Di Marco, P.; Desideri, U.
2016-01-01
Highlights: • We made a CFD simulation with a validated model. • We analyzed the influence of the geometrical parameters of the collector. • We established a correspondence between the Nusselt number and the characteristic dimensions and parameters of the collector. - Abstract: In this paper a methodology is proposed to estimate thermal heat losses inside compound parabolic collectors (CPC) to be used in designing and validating new collectors' concepts and materials. CFD simulations were carried out on different CPCs, taking into account the effective working conditions and the presence of radiative heat transfer as well as the absence of adiabatic walls. The CFD model was validated considering a previous work reported in literature. The results were employed to develop some correlations by interpolation of numerical data, to express the Nusselt number on the receiver. We used these correlations to calculate heat losses of the receiver and to show the influence of different parameters such as the shape of receiver itself, tilt angle and concentration ratio. The variation of terms of the correlation as a function of characteristic length and concentration was studied. These results might be employed for a preliminary estimation procedure of a CPC collector efficiency and to propose sizing criteria of general validity for this class of devices.
Quasilinear parabolic variational inequalities with multi-valued lower-order terms
Carl, Siegfried; Le, Vy K.
2014-10-01
In this paper, we provide an analytical frame work for the following multi-valued parabolic variational inequality in a cylindrical domain : Find and an such that where is some closed and convex subset, A is a time-dependent quasilinear elliptic operator, and the multi-valued function is assumed to be upper semicontinuous only, so that Clarke's generalized gradient is included as a special case. Thus, parabolic variational-hemivariational inequalities are special cases of the problem considered here. The extension of parabolic variational-hemivariational inequalities to the general class of multi-valued problems considered in this paper is not only of disciplinary interest, but is motivated by the need in applications. The main goals are as follows. First, we provide an existence theory for the above-stated problem under coercivity assumptions. Second, in the noncoercive case, we establish an appropriate sub-supersolution method that allows us to get existence, comparison, and enclosure results. Third, the order structure of the solution set enclosed by sub-supersolutions is revealed. In particular, it is shown that the solution set within the sector of sub-supersolutions is a directed set. As an application, a multi-valued parabolic obstacle problem is treated.
Performance of evaporator-collector and air collector in solar assisted heat pump dryer
International Nuclear Information System (INIS)
Hawlader, M.N.A.; Rahman, S.M.A.; Jahangeer, K.A.
2008-01-01
A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8-0.86 and 0.7-0.75, respectively, when operated under the meteorological conditions of Singapore
Stability analysis of impulsive parabolic complex networks
Energy Technology Data Exchange (ETDEWEB)
Wang Jinliang, E-mail: wangjinliang1984@yahoo.com.cn [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China); Wu Huaining [Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University, XueYuan Road, No. 37, HaiDian District, Beijing 100191 (China)
2011-11-15
Highlights: > Two impulsive parabolic complex network models are proposed. > The global exponential stability of impulsive parabolic complex networks are considered. > The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
Stability analysis of impulsive parabolic complex networks
International Nuclear Information System (INIS)
Wang Jinliang; Wu Huaining
2011-01-01
Highlights: → Two impulsive parabolic complex network models are proposed. → The global exponential stability of impulsive parabolic complex networks are considered. → The robust global exponential stability of impulsive parabolic complex networks are considered. - Abstract: In the present paper, two kinds of impulsive parabolic complex networks (IPCNs) are considered. In the first one, all nodes have the same time-varying delay. In the second one, different nodes have different time-varying delays. Using the Lyapunov functional method combined with the inequality techniques, some global exponential stability criteria are derived for the IPCNs. Furthermore, several robust global exponential stability conditions are proposed to take uncertainties in the parameters of the IPCNs into account. Finally, numerical simulations are presented to illustrate the effectiveness of the results obtained here.
A parabolic model for dimple potentials
International Nuclear Information System (INIS)
Aydin, Melike Cibik; Uncu, Haydar; Deniz, Coskun
2013-01-01
We study the truncated parabolic function and demonstrate that it is a representation of the Dirac δ function. We also show that the truncated parabolic function, used as a potential in the Schrödinger equation, has the same bound state spectrum, tunneling and reflection amplitudes as the Dirac δ potential, as the width of the parabola approximates to zero. Dirac δ potential is used to model dimple potentials which are utilized to increase the phase-space density of a Bose–Einstein condensate in a harmonic trap. We show that a harmonic trap with a δ function at the origin is a limiting case of the harmonic trap with a symmetric truncated parabolic potential around the origin. Hence, the truncated parabolic is a better candidate for modeling the dimple potentials. (paper)
Solutions to variational inequalities of parabolic type
Zhu, Yuanguo
2006-09-01
The existence of strong solutions to a kind of variational inequality of parabolic type is investigated by the theory of semigroups of linear operators. As an application, an abstract semi permeable media problem is studied.
Coercive properties of elliptic-parabolic operator
International Nuclear Information System (INIS)
Duong Min Duc.
1987-06-01
Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs
ADVANCED HYBRID PARTICULATE COLLECTOR
Energy Technology Data Exchange (ETDEWEB)
Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert
2001-12-01
A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be
Partial differential equations of parabolic type
Friedman, Avner
2008-01-01
This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta
Participation in multilateral effort to develop high performance integrated CPC evacuated collectors
Winston, R.; Ogallagher, J. J.
1992-05-01
The University of Chicago Solar Energy Group has had a continuing program and commitment to develop an advanced evacuated solar collector integrating nonimaging concentration into its design. During the period from 1985-1987, some of our efforts were directed toward designing and prototyping a manufacturable version of an Integrated Compound Parabolic Concentrator (ICPC) evacuated collector tube as part of an international cooperative effort involving six organizations in four different countries. This 'multilateral' project made considerable progress towards a commercially practical collector. One of two basic designs considered employed a heat pipe and an internal metal reflector CPC. We fabricated and tested two large diameter (125 mm) borosilicate glass collector tubes to explore this concept. The other design also used a large diameter (125 mm) glass tube but with a specially configured internal shaped mirror CPC coupled to a U-tube absorber. Performance projections in a variety of systems applications using the computer design tools developed by the International Energy Agency (IEA) task on evacuated collectors were used to optimize the optical and thermal design. The long-term goal of this work continues to be the development of a high efficiency, low cost solar collector to supply solar thermal energy at temperatures up to 250 C. Some experience and perspectives based on our work are presented and reviewed. Despite substantial progress, the stability of research support and the market for commercial solar thermal collectors were such that the project could not be continued. A cooperative path involving university, government, and industrial collaboration remains the most attractive near term option for developing a commercial ICPC.
Pagola, Iñigo; Funcia, Ibai; Sánchez, Marcelino; Gil, Javier; González-Vallejo, Victoria; Bedoya, Maxi; Orellana, Guillermo
2017-06-01
The work presented in this paper offers a robust, effective and economically competitive method for online detection and monitoring of the presence of molecular hydrogen in the heat transfer fluids of parabolic trough collector plants. The novel method is based on a specific fluorescent sensor according to the ES2425002 patent ("Method for the detection and quantification of hydrogen in a heat transfer fluid").
Output feedback control of heat transport mechanisms in parabolic distributed solar collectors
Elmetennani, Shahrazed; Kirati, Taous Meriem Laleg
2016-01-01
. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a
Influence of Nano-Fluid and Receiver Modification in Solar Parabolic Trough Collector Performance
Dharani Kumar, M.; Yuvaraj, G.; Balaji, D.; Pravinraj, R.; shanmugasundaram, Prabhu
2018-02-01
Utilization of natural renewal sources in India is very high over the past decades. Solar power is a prime source of energy available plenty in the world. In this work solar energy is modified into thermal energy by using copper absorber tube with fins. Due to low heat transfer coefficient results leading to higher thermal losses and lower thermal efficiency. In order to increase the heat transfer coefficient copper receiver tube with fins is used and as well as solid has higher thermal conductivity compare to fluid (Tio2) nano fluid is used to improve the heat transfer rate. The analyses have been carried out and take the account of parameters such as solar radiation with time variation, mass flow rate of water, temperatures.
Directory of Open Access Journals (Sweden)
JOSÉ A. COLINA MÁRQUEZ
2010-01-01
Full Text Available El colector parabólico compuesto (CPC es una tecnología ampliamente usada en aplicaciones fotoquímicas, como las reacciones fotocatalíticas. Para propósitos cinéticos en esta clase de reacciones, se debe conocer la distribución de la radiación ya que la velocidad de reacción depende la absorción de fotones. En el presente trabajo desarrolló un modelo matemático que permitió simular el fenómeno de reflexión de la radiación solar directa en un CPC. Las ecuaciones se evaluaron usando geometría analítica y cálculo vectorial, primero para calcular las coordenadas cartesianas de la superficie reflectiva. Luego estos puntos se usaron para calcular las trayectorias de los rayos incidentes y reflejados en cualquier instante. La radiación incidente en el receptor se graficó independientemente, mostrando la distribución de la energía directa que llega directamente al absorbedor. La longitud de la involuta también se calculó a partir de estos datos, los cuales pueden resultar muy útiles para su construcción. Los resultados obtenidos a partir de las simulaciones muestran que la distribución de la energía incidente en la superficie del absorbedor depende de la reflectividad de la superficie del CPC. La energía incidente es mayor en la parte superior que en la inferior del absorbedor, y son más convenientes valores altos de reflectividad para distribuciones de energía más uniformes. Este modelo matemático puede ser una primera aproximación para modelos más complejos de absorción de fotones que incluyan radiación solar directa en aplicaciones fotoquímicas o fototérmicas.
Techno-economical assessment of solar detoxification systems with compound parabolic collectors
Energy Technology Data Exchange (ETDEWEB)
Blanco, J.; Malato, S.; Milow, B.; Maldonado, M.I. [CIEMAT- Centro de Investigacion Energica Medioambiental y Technologia, Madrid (Spain); Fallmann, H.; Krutzler, T.; Bauer, R. [Institute of Physical Chemistry, TU Vienna (Italy)
1999-03-01
This paper is focussed on a techno-economical analysis comparing TiO{sub 2}-Persulfate and Photo-Fenton methods for Solar Detoxification of pesticides from an industrial point of view and considering the photocatalytic system coupled with a pesticide bottles recycling plant. The analysis is based on the experiments performed at PSA Solar Detox facility with 250 L of a mixture of 10 commercial pesticides, which have been treated with both photocatalytic methods in the same CPC-type reactor system. The initial TOC of the pollutants was 100 mg/L (considering not only the active ingredient but also the rest of the commercial formulation components) and the final TOC 10 mg/L (plant design parameters). Different experiments have been performed to optimize both treatments. In the experiments with Photo-Fenton 80% of the initial TOC were removed in 75 to 90 minutes and 90% in approximately 2 hours. In the experiment with TiO{sub 2}-Persulfate, 80% of the TOC was removed in 3 hours and 90% of the TOC after 4 hours. (authors)
Control scheme for direct steam generation in parabolic troughs under recirculation operation mode
Energy Technology Data Exchange (ETDEWEB)
Valenzuela, L.; Zarza, E. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, P.O. Box 22, E-04200 Tabernas, Almeria (Spain); Berenguel, M. [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, E-04120 Almeria (Spain); Camacho, E.F. [Universidad de Sevilla, Dpto. de Ingenieria de Sistemas y Automatica, Camino de los Descubrimientos s/n, E-41092 Sevilla (Spain)
2006-01-15
Electricity production using solar thermal energy is one of the main research areas at present in the field of renewable energies, these systems being characterised by the need of reliable control systems aimed at maintaining desired operating conditions in the face of changes in solar radiation, which is the main source of energy. A new prototype of solar system with parabolic trough collectors was implemented at the Plataforma Solar de Almeria (PSA, South-East Spain) to investigate the direct steam generation process under real solar conditions in the parabolic solar collector field of a thermal power plant prototype. This paper presents details and some results of the application of a control scheme designed and tested for the recirculation operation mode, for which the main objective is to obtain steam at constant temperature and pressure at the outlet of the solar field, so that changes produced in the inlet water conditions and/or solar radiation will only affect the amount of steam produced by the solar field. The steam quality and consequently the nominal efficiency of the plant are thus maintained. (author)
Installation package for concentrating solar collector panels
1978-01-01
The concentrating solar collector panels comprise a complete package array consisting of collector panels using modified Fresnel prismatic lenses for a 10 to 1 concentrating ratio, supporting framework, fluid manifolding and tracking drive system, and unassembled components for field erection.
Energy Technology Data Exchange (ETDEWEB)
1980-01-01
The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)
Structured cylindrical targets
International Nuclear Information System (INIS)
Arnold, R.
1986-01-01
A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogeneous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous 1-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)
Structured cylindrical targets
International Nuclear Information System (INIS)
Arnold, R.; Lackner-Russo, D.; Meyer-ter-Vehn, J.; Hoffmann, I.
1986-01-01
A variety of experimental concepts using high-energy heavy-ion beams in cylindrical targets have been studied through numerical simulation. With an accelerator planned for GSl, plasma temperatures of 100 eV can be reached by cylindrical compression, using inhomogenous hollow-shell targets. Magnetic insulation, using external fields, has been explored as an aid in reaching high core temperatures. Experiments on collision-pumped x-ray laser physics are also discussed. (ii) Two-dimensional PlC code simulations of homogeneous solid targets show hydrodynamic effects not found in previous l-D calculations. (iii) Preliminary ideas for an experiment on non-equilibrium heavy-ion charge-states using an existing accelerator and a pre-formed plasma target are outlined. (author)
Investigations on efficiencies of HT solar collectors for different flow rates and collector tilts
DEFF Research Database (Denmark)
Chen, Ziqian; Perers, Bengt; Furbo, Simon
2013-01-01
Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between the abso......Two HT solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one solar collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates and tilt. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rates are obtained. The calculated efficiencies are in good...
Control concepts for direct steam generation in parabolic troughs
Energy Technology Data Exchange (ETDEWEB)
Valenzuela, Loreto; Zarza, Eduardo [CIEMAT, Plataforma Solar de Almeria, Tabernas (Almeria) (Spain); Berenguel, Manuel [Universidad de Almeria, Dept. de Lenguajes y Computacion, Almeria (Spain); Camacho, Eduardo F. [Universidad de Sevilla, Dept. de Ingenieria de Sistemas y Automatica, Sevilla (Spain)
2005-02-01
A new prototype parabolic-trough collector system was erected at the Plataforma Solar de Almeria (PSA) (1996-1998) to investigate direct steam generation (DSG) in a solar thermal power plant under real solar conditions. The system has been under evaluation for efficiency, cost, control and other parameters since 1999. The main objective of the control system is to obtain steam at constant temperature and pressure at the solar field outlet, so that changes in inlet water conditions and/or in solar radiation affect the amount of steam, but not its quality or the nominal plant efficiency. This paper presents control schemes designed and tested for two operating modes, 'Recirculation', for which a proportional-integral-derivative (PI/PID) control functions scheme has been implemented, and 'Once-through', requiring more complex control strategies, for which the scheme is based on proportional-integral (PI), feedforward and cascade control. Experimental results of both operation modes are discussed. (Author)
Energy Technology Data Exchange (ETDEWEB)
Grass, C.; Schoelkopf, W.; Staudacher, L.; Hacker, Z. [Bavarian Centre for Applied Energy Research, ZAE Bayern Division 4, Garching (Germany)
2004-03-01
Evacuated CPC (compound parabolic concentrator) collectors with non-tracking reflectors are compared with two novel tracking collectors: a parabolic trough and an evacuated tube collector with integrated tracking reflector. Non-tracking low concentrating CPC collectors are mostly mounted in east-west direction with a latitude dependent slope angle. They are suitable at most for working temperatures up to 200-250 {sup o}C. We present a tracking evacuated tube-collector with a trough-like concentrating mirror. Single-axis tracking of the mirror is realized with a magnetic mechanism. The mirror is mounted inside the evacuated tube and hence protected from environmental influences. One axis tracking in combination with a small acceptance angle allows for higher concentration as compared to non-tracking concentrating collectors. Ray-tracing analysis shows a half acceptance angle of about 5.7{sup o} at geometrical concentration ratio of 3.2. Losses of well constructed evacuated tube collectors (heat conductivity through the manifolds inside the thermally insulated terminating housing are low) are dominated by radiation losses of the absorber. Hence, reducing the absorber size can lead to higher efficiencies at high operating temperature levels. With the presented collector we aim for operating temperatures up to 350 {sup o}C. At temperatures of 300 {sup o}C we expect with anti-reflective coating of the glass tube and a selective absorber coating efficiencies of 0.65. This allows for application in industrial process heat generation, high efficient solar cooling and power generation. A first prototype, equipped with a standard glass tube and a black paint absorber coating, was tested at ZAE Bayern. The optical efficiency was measured to be 0.71. This tube-collector is compared by ray-tracing with non-tracking market available tube-collectors with geometrical concentration ratios up to 1.1 and with a low cost parabolic trough collector of Industrial Solar Technology (IST
International Nuclear Information System (INIS)
Mohamed, A.M.I.; El-Minshawy, N.A.
2011-01-01
Highlights: → We evaluated the performance of sea water HDD system powered by solar PTC. → The proposed design to the expected desalination plant performance was introduced. → The collector thermal efficiency was a function of solar radiation value. → The highest fresh water productivity is found to be in the summer season. → The production time reaches 42% of the day time in the summer season. - Abstract: This paper deals with the status of solar energy as a clean and renewable energy applications in desalination. The object of this research is to theoretically investigate the principal operating parameters of a proposed desalination system based on air humidification-dehumidification principles. A parabolic trough solar collector is adapted to drive and optimize the considered desalination system. A test set-up of the desalination system was designed and a theoretical simulation model was constructed to evaluate the performance and productivity of the proposed solar humidification-dehumidification desalination system. The theoretical simulation model was developed in which the thermodynamic models of each component of the considered were set up respectively. The study showed that, parabolic trough solar collector is the suitable to drive the proposed desalination system. A comparison study had been presented to show the effect of the different parameters on the performance and the productivity of the system. The productivity of the proposed system showed also an increase with the increase of the day time till an optimum value and then decreased. The highest fresh water productivity is found to be in the summer season, when high direct solar radiation and long solar time are always expected. The production time reaches a maximum value in the summer season, which is 42% of the day.
New fuzzy approximate model for indirect adaptive control of distributed solar collectors
Elmetennani, Shahrazed
2014-06-01
This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.
New fuzzy approximate model for indirect adaptive control of distributed solar collectors
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem
2014-01-01
This paper studies the problem of controlling a parabolic solar collectors, which consists of forcing the outlet oil temperature to track a set reference despite possible environmental disturbances. An approximate model is proposed to simplify the controller design. The presented controller is an indirect adaptive law designed on the fuzzy model with soft-sensing of the solar irradiance intensity. The proposed approximate model allows the achievement of a simple low dimensional set of nonlinear ordinary differential equations that reproduces the dynamical behavior of the system taking into account its infinite dimension. Stability of the closed loop system is ensured by resorting to Lyapunov Control functions for an indirect adaptive controller.
THERMAL PERFORMANCE OF FLAT PLATE SOLAR COLLECTOR
Directory of Open Access Journals (Sweden)
TABET I.
2017-06-01
Full Text Available In this paper, a theoretical and experimental studyof flat platesolar water collector with reflectors.A mathematical model based on energy balance equations saw the thermal behavior of the collector is investigated. The experimental test was made at the unit research applies in renewable energy (URAER located in southern Algeria.An increase of 23% for solar radiation incident on the collector surface with the addition of the planers reflectors in the day of May, this increase causes an improvement of the performance of the collector,the fluid temperature increases with an average of 5%. Thetests conducted on the flat plate solar water collector in open circuit enabled the determination of thermal performance of the collector by estimating the daily output The thermal efficiency of the collector ranges from 1% -63% during the day, a mean value of 36%obtained.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuanyuan; Zhang, Changyong; Hu, Dehong; Kuhlenschmidt, Mark S.; Kuhlenschmidt, Theresa B.; Mylon, Steven E.; Kong, Rong; Bhargava, Rohit; Nguyen, Thanh H.
2013-02-04
The role of collector surface charge heterogeneity on transport of Cryptosporidium parvum oocyst and carboxylate microsphere in 2-dimensional micromodels was studied. The cylindrical silica collectors within the micromodels were coated with 0, 10, 20, 50 and 100% Fe2O3 patches. The experimental values of average single collector removal efficiencies (η) of the Fe2O3 patches and on the entire collectors were determined. In the presence of significant (>3500 kT) Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier between the microspheres and the silica collectors at pH 5.8 and 8.1, the values of η determined for Fe2O3 patches were significantly less (p < 0.05, t-test) than that obtained for collectors coated entirely with Fe2O3. However, η on Fe2O3 patches for microspheres at pH 4.4 and for oocysts at pH 5.8 and 8.1, where the DLVO energy barrier was relatively small (ca. 200-360 kT), were significantly greater (p < 0.05, t-test) than that on the collectors coated entirely with Fe2O3. The dependence of η determined for Fe2O3 patches on the DLVO energy barrier indicated the importance of periodic favorable and unfavorable electrostatic interactions between colloids and collectors with alternating Fe2O3 and silica patches. Differences between experimentally determined η and that predicted by a patchwise geochemical heterogeneous model was observed, but can be explained by the model’s lack of consideration for the spatial distribution of charge heterogeneity on the collector surface and colloid migration on patchwise heterogeneous collectors.
Collector ring project at FAIR
International Nuclear Information System (INIS)
Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P
2015-01-01
The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)
Directory of Open Access Journals (Sweden)
Varghese Jaji
2007-01-01
Full Text Available The performance of a new design of batch solar water heater has been studied. In this system, the collector and storage were installed in one unit. Unlike the conventional design consisting of small diameter water tubes, it has a single large diameter drum which serves the dual purpose of absorber tube and storage tank. In principle it is a compound parabolic collector. The drum is sized to have a storage capacity of 100 liter to serve a family of four persons. The tests were carried out with a single glass cover and two glass covers. The tests were repeated for several days. Performance analysis of the collector has revealed that it has maximum mean daily efficiency with two glass covers as high as 37.2%. The maximum water temperature in the storage tank of 60°C has been achieved for a clear day operation at an average solar beam radiation level of 680 W/m2 and ambient temperature of 32°C. To judge the operating characteristics and to synchronize utility pattern of the collector, the different parameters such as efficiency, mean plate temperature and mass flow rate has been investigated.
International Nuclear Information System (INIS)
Zaitsev, M.; Lyssakov, V.
1993-01-01
This paper describes a steam generator collector (WWER-type) designed as part of a Russian reactor power station. The collector is a thick cylindrical shell with a constant inner diameter of 850 mm and a height of 4,970 mm. The wall thickness varies from 78 to 163 mm. In the thicker section, a series of holes allows connection of steam generator heat exchanging tubes. Because of design considerations, the tubes are not symmetrically located about the circumference of the collector. This paper presents a model of the stress concentrations resulting from this design feature for a device operating at a nominal pressure of 16 MPa. 4 refs., 8 figs
Solving Variable Coefficient Fourth-Order Parabolic Equation by ...
African Journals Online (AJOL)
Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.
International Nuclear Information System (INIS)
Silva, R.; Berenguel, M.; Pérez, M.; Fernández-Garcia, A.
2014-01-01
Highlights: • A thermo-economic optimization of a parabolic-trough solar plant for industrial process heat applications is developed. • An analysis of the influence of economic cost functions on optimal design point location is presented. • A multi-objective optimization approach to the design routine is proposed. • A sensitivity analysis of the optimal point location to economic, operational, and ambient conditions is developed. • Design optimization of a parabolic trough plant for a reference industrial application is developed. - Abstract: A thermo-economic design optimization of a parabolic trough solar plant for industrial processes with memetic algorithms is developed. The design domain variables considered in the optimization routine are the number of collectors in series, number of collector rows, row spacing, and storage volume. Life cycle savings, levelized cost of energy, and payback time objective functions are compared to study the influence on optimal design point location. Furthermore a multi-objective optimization approach is proposed to analyze the design problem from a multi-economic criteria point of view. An extensive set of optimization cases are performed to estimate the influence of fuel price trend, plant location, demand profile, operation conditions, solar field orientation, and radiation uncertainty on optimal design. The results allow quantifying as thermo-economic design optimization based on short term criteria as the payback time leads to smaller plants with higher solar field efficiencies and smaller solar fractions, while the consideration of optimization criteria based on long term performance of the plants, as life cycle savings based optimization, leads to the reverse conclusion. The role of plant location and future evolution of gas prices in the thermo-economic performance of the solar plant has been also analyzed. Thermo-economic optimization of a parabolic trough solar plant design for the reference industrial
Deployable Ka/W Dual Band Cylindrical Parabolic Antenna including feed support structure, Phase I
National Aeronautics and Space Administration — The need for large radio frequency (RF) apertures in space has long driven technology developments that enable aperture sizes that exceed the allowable volume within...
Chernoff's distribution and parabolic partial differential equations
P. Groeneboom; S.P. Lalley; N.M. Temme (Nico)
2013-01-01
textabstractWe give an alternative route to the derivation of the distribution of the maximum and the location of the maximum of one-sided and two-sided Brownian motion with a negative parabolic drift, using the Feynman-Kac formula with stopping times. The derivation also uses an interesting
Temperature Performance Evaluation of Parabolic Dishes Covered ...
African Journals Online (AJOL)
Aweda
The parabolic dish with glass material gave the highest temperature of .... 3: Second day variation temperature and time using different materials. 8. 10 .... the sun rays at that particular time. ... especially between 11:00 am and 3:00 pm when.
Gradient remediability in linear distributed parabolic systems ...
African Journals Online (AJOL)
The aim of this paper is the introduction of a new concept that concerned the analysis of a large class of distributed parabolic systems. It is the general concept of gradient remediability. More precisely, we study with respect to the gradient observation, the existence of an input operator (gradient efficient actuators) ensuring ...
Temperature Performance Evaluation of Parabolic Dishes Covered ...
African Journals Online (AJOL)
Solar radiation reaching the earth is considered to be affected by some parameters like diffusion. This radiation is reflected or scattered by air molecules, cloud and aerosols (dust). Parabolic dishes made of different materials (glass, foil and painted surface) were used to concentrate energy on a copper calorimeter filled with ...
Nonlinear anisotropic parabolic equations in Lm
Directory of Open Access Journals (Sweden)
Fares Mokhtari
2014-01-01
Full Text Available In this paper, we give a result of regularity of weak solutions for a class of nonlinear anisotropic parabolic equations with lower-order term when the right-hand side is an Lm function, with m being ”small”. This work generalizes some results given in [2] and [3].
Degenerate parabolic stochastic partial differential equations
Czech Academy of Sciences Publication Activity Database
span class="emphasis">Hofmanová, Martinaspan>
2013-01-01
Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf
Exergy analysis of photovoltaic solar collector
International Nuclear Information System (INIS)
Sopian, K.; Othman, M.Y.Hj.
1998-01-01
The exergy analysis (availability or second law analysis) is applied to the photovoltaic thermal solar collector. Photovoltaic thermal collector is a special type of solar collector where electricity and heat are produced simultaneously. The electricity produced from the photovoltaic thermal collector is all converted into useful work. The available quantity of the heat collected can readily be determined by taking into account both the quantity (heat quantity) and quality ( a function of temperature) of the thermal energy. Therefore, using the concept of exergy allows heat produced from the thermal collector and the electricity generated from the photovoltaic cells to be compared or to be evaluated on the basis of a common measure such as the effectiveness on solar energy collection or the total amount of available energy. In this paper, the effectiveness of solar energy collection is called combined photovoltaic thermal exergy efficiency. An experimental setup of a double pas photovoltaic thermal solar collector has been deigned, fabricated and tested. (author)
PV-hybrid and thermoelectric collectors
Energy Technology Data Exchange (ETDEWEB)
Rockendorf, G.; Sillmann, R. [Institut fuer Solarenergieforschung GmbH, Emmerthal (Germany); Podlowski, L.; Litzenburger, B. [SolarWerk GmbH, Teltow (Germany)
1999-07-01
Two different principles of thermoelectric cogeneration solar collectors have been realized and investigated. Concerning the first principle, the thermoelectric collector (TEC) delivers electricity indirectly by first producing heat and subsequently generating electricity by means of a thermoelectric generator. Concerning the second principle, the photovoltaic-hybrid collector (PVHC) uses photovoltaic cells, which are cooled by a liquid heat-transfer medium. The characteristics of both collector types are described. Simulation modules have been developed and implemented in TRNSYS 14.1 (1994), in order to simulate their behaviour in typical domestic hot-water systems. The discussion of the results shows that the electric output of the PV-hybrid collector is significantly higher than that of the thermoelectric collector. (author)
1976-01-01
Prototypes of moderately concentrating grooved collectors were tested with a solar simulator for varying inlet temperature, flux level, and incident angle. Collector performance is correlated in terms of inlet temperature and flux level.
Depressed collectors for millimeter wave gyrotrons
International Nuclear Information System (INIS)
Singh, A.; Granatstein, V.L.
1992-01-01
The main issues relating to design of depressed collectors for millimeter wave gyrotrons are discussed. A flow diagram is presented and the interlinking steps are outlined. Design studies are given for two kinds of gyrotrons on which severe constraints on the maximum radii of the collectors had been imposed; namely, for a cavity type and a quasi-optical gyrotron. A collector efficiency of the order of 70 percent is shown to be feasible for either case using careful tailoring of magnetic field profiles. A code has been developed to assist in doing this. A general approach toward initial placement of collectors has been indicated
Rising hopes for vacuum tube collectors
Energy Technology Data Exchange (ETDEWEB)
Godolphin, D.
1982-06-01
The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)
Design, simulation and optimization of a solar dish collector with spiral-coil thermal absorber
Directory of Open Access Journals (Sweden)
Pavlović Saša R.
2016-01-01
Full Text Available The efficient conversion of solar radiation into heat at high temperature levels requires the use of concentrating solar collectors. The goal of this paper is to present the optical and the thermal analysis of a parabolic dish concentrator with a spiral coil receiver. The parabolic dish reflector consists of 11 curvilinear trapezoidal reflective petals constructed by PMMA with silvered mirror layer and has a diameter of 3.8 m, while its focal distance is 2.26m. This collector is designed with commercial software SolidWorks and simulated, optically and thermally in its Flow Simulation Studio. The optical analysis proved that the ideal position of the absorber is at 2.1m from the reflector in order to maximize the optical efficiency and to create a relative uniform heat flux over the absorber. In thermal part of the analysis, the energetic efficiency was calculated approximately 65%, while the exergetic efficiency is varied from 4% to 15% according to the water inlet temperature. Moreover, other important parameters as the heat flux and temperature distribution over the absorber are presented. The pressure drop of the absorber coil is calculated at 0.07bar, an acceptable value.
Energy Technology Data Exchange (ETDEWEB)
Fischer, Stephan
2011-07-01
Solar thermal systems are gaining more and more market shares. At the beginning of the last decade only systems for swimming pool heating and domestic hot water heating were available on the market. Today the system variety includes additionally solar thermal systems for space heating, solar thermal cooling, process heat and solar thermal power plants. Independent of the purpose of the solar thermal system, it is always the collector that converts the solar irradiance into heat and is thus the most important component within a solar thermal system. The high number of applications results also in a large variety of different collector concepts. The differences between flat plate collectors, evacuated tubular collectors (with or without heat pipes). CPC collectors, parabolic trough collectors. Fresnel collectors and others is not limited to geometry and working principles but include as well the thermal performance, especially when the thermal behaviour under different angles of incidence and fractions of diffuse irradiance is taking into account. For the test of solar thermal collectors and for the optimisation of solar thermal systems a mathematical model is necessary to describe the thermal performance of the solar collector. Thus this thesis is dealing with the mathematic modelling and the experimental testing of solar thermal collectors. Based on already existing procedures a numerical model and a new procedure for the test of thermal collectors is introduced. The numerical model enables the description of the thermal behaviour for most collectors available on the market. The numerical model and the test procedure were developed paying special attention to the incidence angle modifier and the reduction of testing time. As basis for the general numerical model and the test procedure part one of the thesis describes and discusses the parameters needed to characterise the thermal performance of solar thermal collectors. It is shown that some of the influencing
Self-accelerating parabolic cylinder waves in 1-D
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2016-11-25
Highlights: • We find a new class of self-accelerating waves. • We show that parabolic cylinder waves self-accelerates in a parabolic potential. • We discuss that truncated parabolic cylinder waves propagates large distance without almost being non-diffracted in free space. - Abstract: We introduce a new self-accelerating wave packet solution of the Schrodinger equation in one dimension. We obtain an exact analytical parabolic cylinder wave for the inverted harmonic potential. We show that truncated parabolic cylinder waves exhibits their accelerating feature.
Optimising position control of a solar parabolic trough
Directory of Open Access Journals (Sweden)
Puramanathan Naidoo
2011-03-01
Full Text Available In today’s climate of growing energy needs and increasing environmental concerns, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is solar energy. This study is based on the implementation of a mathematical computation – the PSA (Plataforma Solar de Almeria computation developed at PSA (the European Test Centre for solar energy applications – embedded in a control algorithm to locate the position of the sun. Tests were conducted on a solar parabolic trough (SPT constructed at the Solar Thermal Applications Research Laboratory of the Mangosuthu University of Technology (Durban, South Africa for optimal position control using the PSA value. The designed control algorithm embedded in an industrial Siemens S7-314 C-2PtP programmable logic controller compared the PSA computation to a measured position of the SPT to optimally rotate the SPT to a desired position with the constant movement of the sun. The two main angles of the sun relative to the position of the SPT on earth, the zenith angle and the azimuth angle, both calculated in the PSA from the vertical and horizontal planes, respectively, were applied to the control algorithm to generate an appropriate final tracking angle within a 0.007 radian (0° 24′ 3.6″ tolerance, in accordance to the construction specifications and solar collector testing standards of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE, 1991. These values, together with the longitude and latitude applicable to the geographical location of the SPT, were processed in the control software to rotate the SPT to an optimal position with respect to the position of the sun in its daily path, for solar-to-thermal conversion.
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Shearfree cylindrical gravitational collapse
International Nuclear Information System (INIS)
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.
2009-01-01
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.
Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant
DEFF Research Database (Denmark)
Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.
2015-01-01
-water mixture evaporates and condenses with a temperature glide, thus providing a better match with the heat source/sink temperature profile. This better match results in reduced thermal irreversibility, but at the cost of relatively larger heat exchanger areas. The parabolic trough collector is the most mature...... heat transfer correlations, and appropriate cost functions were used to estimate the costs for the various plant components. The optimal capital investment costs were determined for several values of the turbine inlet ammonia mass fraction and among the compared cases, the Kalina cycle has the minimum......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...
Foldable Frame Supporting Electromagnetic Radiation Collectors
DEFF Research Database (Denmark)
2011-01-01
The present invention relates to flexible frames supporting electromagnetic radiation collectors, such as antennas, antenna reflectors, deflectors or solar collectors, for celestial or terrestrial applications, which can be folded to be stored and/or transported. The method for stowing deforms...
EFFECT OF BLENDING VARIOUS COLLECTORS AT BULK ...
African Journals Online (AJOL)
Nkana Concentrator under the ownership of the then Zambia Consolidated Copper Mines Ltd (ZCCM) had been using Sodium Ethyl Xanthate (SEX) mainly as a collector, but with the coming of new Mopani Copper Mines Plc (M.C.M), it was felt that there was a need to test alternative collectors in an attempt to improve the ...
Flat-plate solar collector - installation package
1978-01-01
Package includes installation, operation and maintenance manual for collector, analysis of safety hazards, special handling instructions, materials list, installation drawings, and warranty and certification statement. Manual includes instructions for roof preparation and for preparing collector for installation. Several pages are devoted to major and minor repairs.
Cheap effective thermal solar-energy collectors
Energy Technology Data Exchange (ETDEWEB)
Highgate, D.J.; Probert, S.D. [Cranfield University, Bedford (United Kingdom). Dept. of Applied Energy
1996-04-01
A light-weight flexible solar-collector, with a wavelength-selective absorption surface and an insolation-transparent thermal-insulation protecter for its aperture, was built and tested. Its cheapness and high performance, relative to a conventional flat-plate solar-collector, provide a prima-facie case for the more widespread adoption of its design. (author)
Combined solar collector and energy storage system
Jensen, R. N. (Inventor)
1980-01-01
A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.
OUT Success Stories: Transpired Solar Collectors
International Nuclear Information System (INIS)
Clyne, R.
2000-01-01
Transpired solar collectors are a reliable, low-cost technology for preheating building ventilation air. With simple payback periods ranging from 3 to 12 years and an estimated 30-year life span, transpired collector systems offer building owners substantial cost savings
Moving interfaces and quasilinear parabolic evolution equations
Prüss, Jan
2016-01-01
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...
Nanofocusing Parabolic Refractive X-Ray Lenses
International Nuclear Information System (INIS)
Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A. S.; Snigirev, A.; Snigireva, I.
2004-01-01
Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100nm range even at short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 330nm by 110nm at 25keV in a distance of 41.8m from the synchrotron radiation source. First microdiffraction and fluorescence microtomography experiments were carried out with these lenses. Using diamond as lens material, microbeams with lateral size down to 20nm and below are conceivable in the energy range from 10 to 100keV
Nanofocusing parabolic refractive x-ray lenses
International Nuclear Information System (INIS)
Schroer, C.G.; Kuhlmann, M.; Hunger, U.T.; Guenzler, T.F.; Kurapova, O.; Feste, S.; Frehse, F.; Lengeler, B.; Drakopoulos, M.; Somogyi, A.; Simionovici, A.S.; Snigirev, A.; Snigireva, I.; Schug, C.; Schroeder, W.H.
2003-01-01
Parabolic refractive x-ray lenses with short focal distance can generate intensive hard x-ray microbeams with lateral extensions in the 100 nm range even at a short distance from a synchrotron radiation source. We have fabricated planar parabolic lenses made of silicon that have a focal distance in the range of a few millimeters at hard x-ray energies. In a crossed geometry, two lenses were used to generate a microbeam with a lateral size of 380 nm by 210 nm at 25 keV in a distance of 42 m from the synchrotron radiation source. Using diamond as the lens material, microbeams with a lateral size down to 20 nm and below are conceivable in the energy range from 10 to 100 keV
Directory of Open Access Journals (Sweden)
Praveen R. P.
2018-03-01
Full Text Available The Middle East is one among the areas of the world that receive high amounts of direct solar radiation. As such, the region holds a promising potential to leverage clean energy. Owing to rapid urbanization, energy demands in the region are on the rise. Along with the global push to curb undesirable outcomes such as air pollution, emissions of greenhouse gases, and climate change, an urgent need has arisen to explore and exploit the abundant renewable energy sources. This paper presents the design, performance analysis and optimization of a 100 MWe parabolic trough collector Solar Power Plant with thermal energy storage intended for use in the Middle Eastern regions. Two representative sites in the Middle East which offer an annual average direct normal irradiance (DNI of more than 5.5 kWh/m2/day has been chosen for the analysis. The thermodynamic aspect and annual performance of the proposed plant design is also analyzed using the System Advisor Model (SAM version 2017.9.5. Based on the analysis carried out on the initial design, annual power generated from the proposed concentrating solar power (CSP plant design in Abu Dhabi amounts to 333.15 GWh whereas that in Aswan recorded a value of 369.26 GWh, with capacity factors of 38.1% and 42.19% respectively. The mean efficiency of the plants in Abu Dhabi and Aswan are found to be 14.35% and 14.98% respectively. The optimization of the initial plant design is also carried out by varying two main design parameters, namely the solar multiple and full load hours of thermal energy storage (TES. Based on the findings of the study, the proposed 100 MW parabolic trough collector solar power plant with thermal energy storage can contribute to the sustainable energy future of the Middle East with reduced dependency on fossil fuels.
The Thermal Collector With Varied Glass Covers
International Nuclear Information System (INIS)
Luminosu, I.; Pop, N.
2010-01-01
The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.
A short proof of increased parabolic regularity
Directory of Open Access Journals (Sweden)
Stephen Pankavich
2015-08-01
Full Text Available We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable.
Structured inverse modeling in parabolic diffusion processess
Schulz, Volker; Siebenborn, Martin; Welker, Kathrin
2014-01-01
Often, the unknown diffusivity in diffusive processes is structured by piecewise constant patches. This paper is devoted to efficient methods for the determination of such structured diffusion parameters by exploiting shape calculus. A novel shape gradient is derived in parabolic processes. Furthermore quasi-Newton techniques are used in order to accelerate shape gradient based iterations in shape space. Numerical investigations support the theoretical results.
Cyclotron heating rate in a parabolic mirror
International Nuclear Information System (INIS)
Smith, P.K.
1984-01-01
Cyclotron resonance heating rates are found for a parabolic magnetic mirror. The equation of motion for perpendicular velocity is solved, including the radial magnetic field terms neglected in earlier papers. The expression for heating rate involves an infinite series of Anger's and Weber's functions, compared with a single term of the unrevised expression. The new results show an increase of heating rate compared with previous results. A simple expression is given for the ratio of the heating rates. (author)
Elliptic and parabolic equations for measures
Energy Technology Data Exchange (ETDEWEB)
Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)
2009-12-31
This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.
An inverse problem in a parabolic equation
Directory of Open Access Journals (Sweden)
Zhilin Li
1998-11-01
Full Text Available In this paper, an inverse problem in a parabolic equation is studied. An unknown function in the equation is related to two integral equations in terms of heat kernel. One of the integral equations is well-posed while another is ill-posed. A regularization approach for constructing an approximate solution to the ill-posed integral equation is proposed. Theoretical analysis and numerical experiment are provided to support the method.
Building a parabolic solar concentrator prototype
International Nuclear Information System (INIS)
Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M
2011-01-01
In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.
Optimization of Cylindrical Hall Thrusters
International Nuclear Information System (INIS)
Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.
2007-01-01
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.
Optimization of Cylindrical Hall Thrusters
International Nuclear Information System (INIS)
Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.
2007-01-01
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation
A Novel Parabolic Trough Concentrating Solar Heating for Cut Tobacco Drying System
Directory of Open Access Journals (Sweden)
Jiang Tao Liu
2014-01-01
Full Text Available A novel parabolic trough concentrating solar heating for cut tobacco drying system was established. The opening width effect of V type metal cavity absorber was investigated. A cut tobacco drying mathematical model calculated by fourth-order Runge-Kutta numerical solution method was used to simulate the cut tobacco drying process. And finally the orthogonal test method was used to optimize the parameters of cut tobacco drying process. The result shows that the heating rate, acquisition factor, and collector system efficiency increase with increasing the opening width of the absorber. The simulation results are in good agreement with experimental data for cut tobacco drying process. The relative errors between simulated and experimental values are less than 8%, indicating that this mathematical model is accurate for the cut tobacco airflow drying process. The optimum preparation conditions are an inlet airflow velocity of 15 m/s, an initial cut tobacco moisture content of 26%, and an inlet airflow temperature of 200°C. The thermal efficiency of the dryer and the final cut tobacco moisture content are 66.32% and 14.15%, respectively. The result shows that this parabolic trough concentrating solar heating will be one of the heat recourse candidates for cut tobacco drying system.
Performance of double -pass solar collector with CPC and fins for heat transfer enhancement
Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman
2013-06-01
The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.
Performance of double –pass solar collector with CPC and fins for heat transfer enhancement
International Nuclear Information System (INIS)
Alfegi, Ebrahim M A; Abosbaia, Alhadi A S; Mezughi, Khaled M A; Sopian, Kamaruzzaman
2013-01-01
The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m 2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.
Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study
Energy Technology Data Exchange (ETDEWEB)
Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.
2011-01-01
As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.
Energy Technology Data Exchange (ETDEWEB)
Grogan, Dylan C. P.
2013-08-15
Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50
Optimized reflectors for non-tracking solar collectors with tubular absorbers
Energy Technology Data Exchange (ETDEWEB)
Muschaweck, Julius [Optics and Energy Consulting, Munich (Germany); Spirkl, Wolfgang [Ludwig-Maximilians Univ., Sektion Physik, Munich (Germany); Timinger, Andreas [Optics and Energy Consulting, Munich (Germany); ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Benz, Nikolaus; Doerfler, Michael; Gut, Martin [ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Kose, Erwin [microtherm Energietecjnik GmbH, Lods, 25 (France)
2000-07-01
We present an approach to find optimal reflector shapes for non-tracking solar collectors under practical constraints. We focus on cylindrical absorbers and reflectors with translational symmetry. Under idealised circumstances, edge ray reflectors are well known to be optimal. However, it is not clear how optimal reflectors should be shaped in order to obtain maximum utilisable energy for given operating temperatures under practical constraints like reflectivity less than unity, real radiation data, size limits, and gaps between the reflector and the absorber. For a prototype collector with a symmetric edge ray reflector and a tubular absorber, we derive from calorimetric measurements under outdoor conditions the optical efficiency as a function of the incidence angle. Using numerical optimisation and raytracing, we compare truncated symmetric edge ray reflectors, truncated asymmetric edge ray reflectors and free forms parametrized by Bezier splines. We find that asymmetric edge ray reflectors are optimal. For reasonable operating conditions, truncated asymmetric edge ray reflectors allow much better land use and easily adapt to a large range of roof tilt angles with marginal changes in collector construction. Except near the equator, they should increase the yearly utilisable energy per absorber tube by several percent as compared to the prototype collector with symmetric reflectors. (Author)
COMPARATIVE FIELD EXPERIMENTAL INVESTIGATIONS OF DIFFERENT FLAT PLATE SOLAR COLLECTORS
Directory of Open Access Journals (Sweden)
Guangming Chen
2015-12-01
Full Text Available Full-scale traditional metal solar collectors and solar collector specimens fabricated from polymeric materials were investigated in the present study. A polymeric collector is 67.8% lighter than a traditional metal solar collector, and a metal solar collector with transparent plastic covering is 40.3% lighter than a traditional metal solar collector. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. A test rig for the natural circulation of the working fluid in a solar collector was built for a comparative experimental investigation of various solar collectors operating at ambient conditions. It was shown experimentally that the efficiency of a polymeric collector is 8–15% lower than the efficiency of a traditional collector.
Numerical design of an EBIS collector to optimize electron collection and ion extraction
International Nuclear Information System (INIS)
Dietrich, J.
1990-01-01
For the Frankfurt EBIS, a new collector was designed using the relativistic electron optics program EGUN and the magnetic field program INTMAG. To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the ectron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons. (orig.)
Numerical design of an EBIS collector to optimize electron collection and ion extraction
Dietrich, Jürgen
1990-12-01
For the Frankfurt EBIS (R. Becker et al., Nucl. Instr. and Meth. B24/25 (1987) 838, ref. [1]), a new collector was designed using the relativistic electron optics program EGUN (W.B. Herrmannsfeldt, SLAC-331 (1988), ref. [2]) and the magnetic field program INTMAG (R. Becker, Nucl. Instr. and Meth. B42 (1989) 303, ref. [3]). To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the electron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons.
Numerical design of an EBIS collector to optimize electron collection and ion extraction
Energy Technology Data Exchange (ETDEWEB)
Dietrich, J. (Frankfurt Univ. (Germany, F.R.). Inst. fuer Angewandte Physik)
1990-12-01
For the Frankfurt EBIS, a new collector was designed using the relativistic electron optics program EGUN and the magnetic field program INTMAG. To model the fringing field of the main solenoid, a bucking coil and a cylindrical shim is provided. The current of the bucking coil and the position and shape of the shim are optimized with INTMAG for minimum fringing field to allow expansion of the electron beam by its space charge. The magnetic field data output from INTMAG is directly used as input for EGUN to calculate the ectron and ion trajectories. The initial conditions for the trajectories were computed from the paraxial ray equation. Different operation modes of the collector are investigated including the behaviour of secondary electrons. (orig.).
Single-stage depressed collectors for gyrotrons
International Nuclear Information System (INIS)
Piosczyk, B.; Iatrou, C.T.; Dammertz, G.; Thumm, M.; Univ. Karlsruhe
1996-01-01
Two 140 GHz gyrotrons with a single-step depressed collector have been operated. The different position of the isolating collector gap in the stray magnetic field causes the electron motion in the retarding region to be in one case adiabatic and in the other case nonadiabatic. The kind of motion within the retarding field influences strongly the behavior of the gyrotron with a depressed collector. In the case of nonadiabatic motion a significant amount of transverse momentum is given to the electrons reflected at the collector potential. This causes the reflected electrons to be trapped between the magnetic mirror and the collector. The electrons escape from the trap by diffusion across the magnetic field to the body of the tube thus contributing to the body current. Despite the high body current there is no observable influence of the collector voltage on the RF output power. In the case of adiabatic motion the reflected electrons do not gain a sufficient amount of transverse momentum to be trapped by the magnetic mirror. They pass the cavity toward the gun and they are trapped between the negative gun potential and the collector. The interaction with the RF field by electrons traveling through the cavity enhances the diffusion in the velocity space thus enabling the trapped electrons to overcome the potential barrier and escape toward the collector. Therefore the body current stays at low values since in this case the reflected electrons do not contribute to it. However, at higher collector voltages a reduction of RF power occurred and some noise in the electron beam was observed. The main motivation for the development of gyrotrons in the frequency range above 100 GHz with power levels in excess of several hundreds kW per tube, is the application in magnetic fusion devices for plasma heating and for electron current drive
Exergy Analysis of a Pilot Parabolic Solar Dish-Stirling System
Directory of Open Access Journals (Sweden)
Ehsan Gholamalizadeh
2017-09-01
Full Text Available Energy and exergy analyses were carried out for a pilot parabolic solar dish-Stirling System. The system was set up at a site at Kerman City, located in a sunny desert area of Iran. Variations in energy and exergy efficiency were considered during the daytime hours of the average day of each month in a year. A maximum collector energy efficiency and total energy efficiency of 54% and 12.2%, respectively, were predicted in July, while during the period between November and February the efficiency values were extremely low. The maximum collector exergy efficiency was 41.5% in July, while the maximum total exergy efficiency reached 13.2%. The values of energy losses as a percentage of the total losses of the main parts of the system were also reported. Results showed that the major energy and exergy losses occurred in the receiver. The second biggest portion of energy losses occurred in the Stirling engine, while the portion of exergy loss in the concentrator was higher compared to the Stirling engine. Finally, the performance of the Kerman pilot was compared to that of the EuroDish project.
International Nuclear Information System (INIS)
Angelescu, Tatiana; Radu, A. A.
2000-01-01
Certain optical designs in the field of high energy gamma ray astronomy components of the Cherenkov light, collected by the mirror of telescope, be concentrated on the photo-cathodes of the photomultiplier tubes, with the help of the light collectors having large entrance and small exit apertures. Mathematical restrictions imposed by the design of the compound parabolic concentrator (CPC) implied that for a given cut-off angle and an entrance aperture, the exit aperture of the CPC should not exceed a limit value. If this value is larger than the active diameter of the photocathode, an additional concentrator must be added to the system in order to transfer the light collected, from the exit aperture of the compound parabolic concentrator to the photocathode of the photomultiplier tube. Different designs of a two-stage system composed by a a hollow compound parabolic concentrator and a solid, dielectric filled concentrator are evaluated in this paper, from the point of view of optical efficiency and manufacturability. (authors)
Engineering design of 500KW CW collector
International Nuclear Information System (INIS)
Kumar, Ramesh; Mishra, Deepak; Prasad, M.; Hannuarakar, P.R.
2006-01-01
An electron beam collector for 500kW beam power has been designed to test the electron gun. The gun is designed for 250kW, 350MHz CW Klystron with 50% efficiency. This will also help in preliminary studies related to final collector design for Klystron. This paper presents the design parameters, thermal analysis and mechanical features of the design. Electron trajectory on inside wall of the collector is determined with EGUN and computational flow dynamics simulation was done on ANSYS for cooling requirements. (author)
Next Generation Solar Collectors for CSP
Energy Technology Data Exchange (ETDEWEB)
Molnar, Attila [3M Company, St. Paul, MN (United States); Charles, Ruth [3M Company, St. Paul, MN (United States)
2014-07-31
The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.
Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW
International Nuclear Information System (INIS)
El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine
2013-01-01
Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field
Magnetic field effect on the ground-state binding energy in InGaN/GaN parabolic QWW
Energy Technology Data Exchange (ETDEWEB)
El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Specials Mathematics, CPGE Kénitra, Chakib Arsalane Street, Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)
2013-07-15
Within the framework of the effective mass scheme, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) subjected to magnetic field is investigated. The finite-difference method within the quasi-one-dimensional effective potential model is used. A cylindrical QWW effective radius is introduced to describe the lateral confinement strength. The results show that: (i) the binding energy is the largest for the impurity located at a point corresponding to the largest electron probability density and (ii) it increases with increasing external magnetic field.
Gradient-type methods in inverse parabolic problems
International Nuclear Information System (INIS)
Kabanikhin, Sergey; Penenko, Aleksey
2008-01-01
This article is devoted to gradient-based methods for inverse parabolic problems. In the first part, we present a priori convergence theorems based on the conditional stability estimates for linear inverse problems. These theorems are applied to backwards parabolic problem and sideways parabolic problem. The convergence conditions obtained coincide with sourcewise representability in the self-adjoint backwards parabolic case but they differ in the sideways case. In the second part, a variational approach is formulated for a coefficient identification problem. Using adjoint equations, a formal gradient of an objective functional is constructed. A numerical test illustrates the performance of conjugate gradient algorithm with the formal gradient.
The parabolic equation method for outdoor sound propagation
DEFF Research Database (Denmark)
Arranz, Marta Galindo
The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations of the g......The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...
Numerical Schemes for Rough Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Deya, Aurelien, E-mail: deya@iecn.u-nancy.fr [Universite de Nancy 1, Institut Elie Cartan Nancy (France)
2012-04-15
This paper is devoted to the study of numerical approximation schemes for a class of parabolic equations on (0,1) perturbed by a non-linear rough signal. It is the continuation of Deya (Electron. J. Probab. 16:1489-1518, 2011) and Deya et al. (Probab. Theory Relat. Fields, to appear), where the existence and uniqueness of a solution has been established. The approach combines rough paths methods with standard considerations on discretizing stochastic PDEs. The results apply to a geometric 2-rough path, which covers the case of the multidimensional fractional Brownian motion with Hurst index H>1/3.
Vector domain decomposition schemes for parabolic equations
Vabishchevich, P. N.
2017-09-01
A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.
Alignment method for parabolic trough solar concentrators
Diver, Richard B [Albuquerque, NM
2010-02-23
A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.
Optimal Wentzell Boundary Control of Parabolic Equations
International Nuclear Information System (INIS)
Luo, Yousong
2017-01-01
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Optimal Wentzell Boundary Control of Parabolic Equations
Energy Technology Data Exchange (ETDEWEB)
Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)
2017-04-15
This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.
Equipment for increasing the efficiency of a CPC-solar energy collector
Energy Technology Data Exchange (ETDEWEB)
Chao, Bei Tse; Rabl, Ari
1977-01-13
The invention concerns a cylindrical reflector with concentrators, which concentrate the solar radiation on a small surface, in whose area the actual absorber is fitted. To improve the efficiency of the collector there is provision for using the solar energy absorbed by the reflecting walls. For this purpose conducting channels are fitted on the back of the reflectors, through which a heat transport medium flows and takes away the absorbed energy. This energy can be used directly or the channels can be connected in series with the main absorber.
Movable air solar collector and its efficiency
International Nuclear Information System (INIS)
Lauva, A.; Aboltinš, A.; Palabinskis, J.; Karpova Sadigova, N.
2008-01-01
Implementing the guidelines of the Latvian National Programme for Energy in the field of alternative energy, intensive research shall be carried on regarding the use of solar energy, as it can be successfully used not only for the purposes of water heating and production of electrical energy, but also for air warming. The amount of heat necessary for the drying of rough forage and grain drying by active aeration in June, July and August can be obtained using solar radiation. The Latvian Guidelines for the Energy Development 2006-2016 state that the solar radiance in Latvia is of quite low intensity. The total amount of solar energy is 1109 kWh m -2 per year. The period of usage of the solar thermal energy is beginning from the last decade of April, when the intensity of radiation is 120 kWh m -2 , until the first decade of September. Within this period (approximately 1800 hours), it is possible to use the solar thermal energy by placing solar collectors. The usage of solar collectors for in drying of agricultural production is topical from the viewpoint of decreasing the consumption of energy used for the drying, as electrical energy and fossil energy resources become more expensive and tend to run out. In the processes that concern drying of agricultural production, efficiently enough solar radiation energy can be used. Due to this reason researching continues and expands in the field of usage of solar energy for the processes of drying and heating. The efficiency factor of the existing solar collectors is not high, but they are of simple design and cheep for production and exploitation. By improving the design of the solar collectors and choosing modern materials that absorb the solar radiation energy, it is possible the decrease the efficiency factor of solar collectors and decrease the production costs. In the scientific laboratory of grain drying and storage of Latvia University of Agriculture, a pilot device movable folding solar collector pilot device
Characteristic Determination Of Self Shielding Factor And Cadmium Ratio Of Cylindrical Probe
International Nuclear Information System (INIS)
Hamzah, Amir; Budi R, Ita; Pinem, Suriam
1996-01-01
Determination of thermal, epithermal and total self shielding factor and cadmium ratio of cylindrical probe has been done by measurement and calculation. Self shielding factor can be determined by dividing probe activity to Al-alloy probe activity. Due to the lack of cylindrical probe made of Al-alloy, self shielding factor can be determined by parabolic extrapolation of measured activities to 0 cm radius to divide those activities. Theoretically, self shielding factor can be determined by making numerical solution of two dimensional integral equations using Romberg method. To simplify, the calculation is based on single collision theory with the assumption of monoenergetic neutron and isotropic distribution. For gold cylindrical probe, the calculation results are quite close to the measurement one with the relative discrepancy for activities, cadmium ratio and self shielding factor of bare probe are less then 11.5%, 3,5% and 1.5% respectively. The program can be used for the calculation of other kinds of cylindrical probes. Due to dependency to radius, cylindrical probe made of copper has the best characteristic of self shielding factor and cadmium ratio
Cylindrical acoustic levitator/concentrator
Kaduchak, Gregory; Sinha, Dipen N.
2002-01-01
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
Optimal nonimaging integrated evacuated solar collector
Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland
1993-11-01
A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.
A comparative study of the parabolized Navier-Stokes code using various grid-generation techniques
Kaul, U. K.; Chaussee, D. S.
1985-01-01
The parabolized Navier-Stokes (PNS) equations are used to calculate the flow-field characteristics about the hypersonic research aircraft X-24C. A comparison of the results obtained using elliptic, hyperbolic and algebraic grid generators is presented. The outer bow shock is treated as a sharp discontinuity, and the discontinuities within the shock layer are captured. Surface pressures and heat-transfer results at angles of attack of 6 deg and 20 deg, obtained using the three grid generators, are compared. The PNS equations are marched downstream over the body in both Cartesian and cylindrical base coordinate systems, and the results are compared. A robust marching procedure is demonstrated by successfully using large marching-step sizes with the implicit shock fitting procedure. A correlation is found between the marching-step size, Reynolds number and the angle of attack at fixed values of smoothing and stability coefficients for the marching scheme.
Conversion of solar radiation using parabolic mirrors
Directory of Open Access Journals (Sweden)
Jolanta Fieducik
2017-08-01
Full Text Available The use of solar energy is a promising source of renewable energy to cover the energy needs of our society. The aim of the study will be to analyze the possibility of converting solar energy using parabolic reflectors to the heat energy needed to meet the needs of hot water for a family of 4 people. This study presents simulations of the use of solar radiation using radiant concentration systems. The parabolic mirror directs the concentrated beam of sunlight onto a tube located in the focal plane, which is filled with water that under the influence of solar radiation heats up. This article assumes constant mirror geometry and tube cross section, while simulation is performed for different coefficients. For calculations it was assumed that the reflection coefficient of sunlight from the mirror r is variable and an analysis of its effect on the amount of heated liquid is made. The radiation absorption coefficient across the tube surface was determined by a, the thermal surface emissivity coefficient was determined as e and the simulations were performed at variable values for the amount of heated liquid. The calculations and their analysis show that, with appropriately chosen coefficients, it is possible to meet the needs of a 4-person family in warm water using the proposed installation in Poland.
A parabolic mirror x-ray collimator
Franks, A.; Jackson, K.; Yacoot, A.
2000-05-01
A robust and stable x-ray collimator has been developed to produce a parallel beam of x-rays by total external reflection from a parabolic mirror. The width of the gold-coated silica mirror varies along its length, which allows it to be bent from a plane surface into a parabolic form by application of unequal bending forces at its ends. A family of parabolas of near constant focal length can be formed by changing the screw-applied bending force, thus allowing the collimator to cater for a range of wavelengths by the turning of a screw. Even with radiation with a wavelength as short as that as Mo Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 (icons/Journals/Common/lambda" ALT="lambda" ALIGN="TOP"/> = 0.07 nm), a gain in flux by a factor of 5.5 was achieved. The potential gain increases with wavelength, e.g. for Cu Kicons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> 1 radiation this amounts to over a factor of ten.
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
DEFF Research Database (Denmark)
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundle...
Moduli space of Parabolic vector bundles over hyperelliptic curves
Indian Academy of Sciences (India)
27
This has been generalized for higher dimensional varieties by Maruyama ... Key words and phrases. Parabolic structure .... Let E be a vector bundle of rank r on X. Recall that a parabolic ..... Let us understand this picture geometrically. Let ω1 ...
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
Directory of Open Access Journals (Sweden)
M. Tshipa
2017-12-01
Full Text Available A theoretical investigation of the effects of spatial variation of confining electric potential on photoionization cross section (PCS in a spherical quantum dot is presented. The potential profiles considered here are the shifted parabolic potential and the inverse lateral shifted parabolic potential compared with the well-studied parabolic potential. The primary findings are that parabolic potential and the inverse lateral shifted parabolic potential blue shift the peaks of the PCS while the shifted parabolic potential causes a red shift.
Filling of charged cylindrical capillaries
Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.
2014-01-01
We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because
Optics Demonstrations Using Cylindrical Lenses
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Dismantling OPAL's cylindrical magnet core
Laurent Guiraud
2001-01-01
Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.
Cylindrical thin-shell wormholes
International Nuclear Information System (INIS)
Eiroa, Ernesto F.; Simeone, Claudio
2004-01-01
A general formalism for the dynamics of nonrotating cylindrical thin-shell wormholes is developed. The time evolution of the throat is explicitly obtained for thin-shell wormholes whose metric has the form associated with local cosmic strings. It is found that the throat collapses to zero radius, remains static, or expands forever, depending only on the sign of its initial velocity
Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors
International Nuclear Information System (INIS)
Chen, Meijie; He, Yurong; Zhu, Jiaqi; Wen, Dongsheng
2016-01-01
Highlights: • An analysis coupled with Radiation transfer, Maxwell and Energy equation is developed. • Plasmonic Au and Ag nanofluids show better photo-thermal conversion properties. • Collector height and particle concentration exist optimum solutions for efficiency. - Abstract: A one-dimensional transient heat transfer analysis was carried out to analyze the effects of the Nanoparticle (NP) volume fraction, collector height, irradiation time, solar flux, and NP material on the collector efficiency. The numerical results were compared with the experimental results obtained by silver nanofluids to validate the model, and good agreement was obtained. The numerical results show that the collector efficiency increases as the collector height and NP volume fraction increase and then reaches a maximum value. An optimum collector height (∼10 mm) and particle concentration (∼0.03%) achieving a collector efficiency of 90% of the maximum efficiency can be obtained under the conditions used in the simulation. However, the collector efficiency decreases as the irradiation time increases owing to the increased heat loss. A high solar flux is desirable to maintain a high efficiency over a wide temperature range, which is beneficial for subsequent energy utilization. The modeling results also show silver and gold nanofluids obtain higher photothermal conversion efficiencies than the titanium dioxide nanofluid because their absorption spectra are similar to the solar radiation spectrum.
Bioinspired plate-based fog collectors.
Heng, Xin; Luo, Cheng
2014-09-24
In a recent work, we explored the feeding mechanism of a shorebird to transport liquid drops by repeatedly opening and closing its beak. In this work, we apply the corresponding results to develop a new artificial fog collector. The collector includes two nonparallel plates. It has three advantages in comparison with existing artificial collectors: (i) easy fabrication, (ii) simple design to scale up, and (iii) active transport of condensed water drops. Two collectors have been built. A small one with dimensions of 4.2 × 2.1 × 0.05 cm(3) (length × width × thickness) was first built and tested to examine (i) the time evolution of condensed drop sizes and (ii) the collection processes and efficiencies on the glass, SiO2, and SU-8 plates. Under similar experimental conditions, the amount of water collected per unit area on the small collector is about 9.0, 4.7, and 3.7 times, respectively, as much as the ones reported for beetles, grasses, and metal wires, and the total amount of water collected is around 33, 18, and 15 times. On the basis of the understanding gained from the tests on the small collector, a large collector with dimensions of 26 × 10 × 0.2 cm(3) was further built and tested, which was capable of collecting 15.8 mL of water during a period of 36 min. The amount of water collected, when it is scaled from 36 to 120 min, is about 878, 479, or 405 times more than what was collected by individual beetles, grasses, or metal wires.
Compact high-flux two-stage solar collectors based on tailored edge-ray concentrators
Friedman, Robert P.; Gordon, Jeffrey M.; Ries, Harald
1995-08-01
Using the recently-invented tailored edge-ray concentrator (TERC) approach for the design of compact two-stage high-flux solar collectors--a focusing primary reflector and a nonimaging TERC secondary reflector--we present: 1) a new primary reflector shape based on the TERC approach and a secondary TERC tailored to its particular flux map, such that more compact concentrators emerge at flux concentration levels in excess of 90% of the thermodynamic limit; and 2) calculations and raytrace simulations result which demonstrate the V-cone approximations to a wide variety of TERCs attain the concentration of the TERC to within a few percent, and hence represent practical secondary concentrators that may be superior to corresponding compound parabolic concentrator or trumpet secondaries.
Feliciano-Cruz, Luisa I.
The increasing fossil fuel costs as well as the need to move in a somewhat sustainable future has led the world in a quest for exploiting the free and naturally available energy from the Sun to produce electric power, and Puerto Rico is no exception. This thesis proposes the design of a simulation model for the analysis and performance evaluation of a Solar Thermal Power Plant in Puerto Rico and suggests the use of the Compound Parabolic Concentrator as the solar collector of choice. Optical and thermal analysis of such collectors will be made using local solar radiation data for determining the viability of this proposed project in terms of the electric power produced and its cost.
Heat Pumps With Direct Expansion Solar Collectors
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Efficiency of the Fermilab Electron Cooler's Collector
Prost, L R
2005-01-01
The newly installed high-energy Recycler Electron Cooling system (REC) at Fermilab will work at an electron energy of 4.34 MeV and a DC beam current of 0.5 A in an energy recovery scheme. For reliable operation of the system, the relative beam current loss must be maintained to levels < 3.e-5. Experiments have shown that the loss is determined by the performance of the electron beam collector, which must retain secondary electrons generated by the primary beam hitting its walls. As a part of the Electron cooling project, the efficiency of the collector for the REC was optimized, both with dedicated test bench experiments and on two versions of the cooler prototype. We find that to achieve the required relative current loss, an axially-symmetric collector must be immersed in a transverse magnetic field with certain strength and gradient prescriptions. Collector efficiencies in various magnetic field configurations, including without a transverse field on the collector, are presented and discussed
Radio wave propagation and parabolic equation modeling
Apaydin, Gokhan
2018-01-01
A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various v rtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenari...
Telescopic projective methods for parabolic differential equations
Gear, C W
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.
Telescopic projective methods for parabolic differential equations
International Nuclear Information System (INIS)
Gear, C.W.; Kevrekidis, Ioannis G.
2003-01-01
Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
Design and experiment of a new solar air heating collector
International Nuclear Information System (INIS)
Shams, S.M.N.; Mc Keever, M.; Mc Cormack, S.; Norton, B.
2016-01-01
This paper presents the design and experiment of a CTAH (Concentrating Transpired Air Heating) system. A newly designed solar air heating collector comprised of an inverted perforated absorber and an asymmetric compound parabolic concentrator was applied to increase the intensity of solar radiation incident on the perforated absorber. An extensive literature review was carried out to find the vital factors to improve optical and thermal efficiency of solar air heating systems. A stationary optical concentrator has been designed and experimented. Experimental thermal efficiency remained high at higher air flow rates. The average thermal efficiency was found to be approximately 55%–65% with average radiation above 400 W/m"2 for flow rates in the range of 0.03 kg/s/m"2 to 0.09 kg/s/m"2. Experimental results at air flow rates of 0.03 kg/s/m"2 and 0.09 kg/s/m"2 showed temperature rise of 38 °C and 19.6 °C respectively at a solar radiation intensity of 1000 W/m"2. A comparative performance study shows the thermal performance of CTAH. As the absorber of the CTAH facing downward, it avoids radiation loss and the perforated absorber with tertiary concentrator reduces thermal losses from the system. - Highlights: • Literature review was carried out to improve SAH system performance. • Optimisation factors were optical efficiency; heat loss, weight and cost. • Concentrator was designed to concentrate radiation for 6–7 h. • The highest efficiency of CTAH can be 73%. • It can work as efficient as 60% for a temperature rise of 70 °C.
The design of an optimal fog water collector: A theoretical analysis
Regalado, Carlos M.; Ritter, Axel
2016-09-01
We investigate the collection efficiency of different fog water catchers assemblies (mainly flat and cylindrical structures equipped with several screens of staggered filaments) by means of parametric equations which take into consideration both impaction and aerodynamic effects. We introduce different models that vary in complexity and range of applicability, and may be used to analyze the effect that geometry, number of screens, spacing and inclination of the filament strands have on the fog water yield of the collector. Increasing the number of impacting screens, nR, is shown to improve the collection efficiency up to an optimum for nR = 3-5; beyond nR > 5 impermeability to the airflow makes the fog catcher less efficient. Geometry of the collector is shown to be relatively important: unless wind direction varies widely, the rectangular flat design is preferred over the cylindrical one, because of its larger drag, i.e. increased aerodynamic efficiency, ηa. In fact ηa is shown to be limiting, such that values over ηa > 50% are difficult to attain. By contrast the impaction efficiency, ηimp, of fog water droplets onto multiple nR parallel screens of filaments may reach theoretical values of ηimp > 80%. Inclination of the impacting screens over the vertical may slightly reduce ηimp, but this may be compensated by a reduction in flow resistance, i.e. increased aerodynamic efficiency.
International Nuclear Information System (INIS)
Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.
2017-01-01
Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.
Efficiencies of flat plate solar collectors at different flow rates
DEFF Research Database (Denmark)
Chen, Ziqian; Furbo, Simon; Perers, Bengt
2012-01-01
Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...
Optimum solar collector fluid flow rates
DEFF Research Database (Denmark)
Furbo, Simon; Shah, Louise Jivan
1996-01-01
Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...
Recent progress in terrestrial photovoltaic collector technology
Ferber, R. R.
1982-01-01
The U.S. Photovoltaic Research and Development Program has the objective to develop the technology necessary to foster widespread grid-competitive electric power generation by the late 1980s. The flat-plate and the concentrator collector activities form the nucleus of the program. The project is concerned with the refining of silicon, silicon sheet production, solar cell processing and fabrication, encapsulation materials development, and collector design and production. The Large-Area Silicon Sheet Task has the objective to develop and demonstrate the feasibility of several methods for producing large area silicon sheet material suitable for fabricating low-cost, high-efficiency solar cells. It is expected that a variety of economic flat-plate and concentrator collectors will become commercially available for grid-connected applications.
Directory of Open Access Journals (Sweden)
Muhammad Umair
2013-12-01
Full Text Available We designed a compound parabolic concentrator (CPC with wings angled toward the east and west. Normally, solar collectors are straight, facing south, and the effective temperature is only achieved for a short period of time at midday. In the proposed design, the collector is divided into three parts, with the ends angled and tilted at different orientations. The objective was to increase the duration of the effective temperature period by capturing the maximum solar energy in the morning and afternoon without tracking by the collector. A simulation model was developed to evaluate the performance of the proposed CPC. The tilt and bending angles of the CPC wings were optimized for year-round operation in Tokyo, Japan. A 35° tilt for the south-facing central part of the CPC and a 45° tilt for the wings with 50° angles toward the east and west were found to be optimal. Analyses were conducted at these optimum settings with temperatures of 70, 80, and 90 °C as minimum requirements. The effective duration increased by up to 2 h in the winter and up to 2.53 h in the summer using the proposed CPC. The proposed CPC will improve the efficiency of solar-driven systems by providing useful heat for longer periods of time with the same collector length and without the need for tracking.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
Parabolic features and the erosion rate on Venus
Strom, Robert G.
1993-01-01
The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.
Qualification test and analysis report: solar collectors
Energy Technology Data Exchange (ETDEWEB)
1978-12-01
Test results show that the Owens-Illinois Sunpak/sup TM/ Model SEC 601 air-cooled collector meets the national standards and codes as defined in the Subsystem Performance Specification and Verification Plan of NASA/MSFC Contract NAS8-32259, dated October 28, 1976. The architectural and engineering firm of Smith, Hinchman and Grylls, Detroit, Michigan, acted in the capacity of the independent certification agency. The program calls for the development, fabrication, qualification and delivery of an air-liquid solar collector for solar heating, combined heating and cooling, and/or hot water systems.
Short-Term Solar Collector Power Forecasting
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Perers, Bengt
2011-01-01
This paper describes a new approach to online forecasting of power output from solar thermal collectors. The method is suited for online forecasting in many applications and in this paper it is applied to predict hourly values of power from a standard single glazed large area flat plate collector...... enabling tracking of changes in the system and in the surrounding conditions, such as decreasing performance due to wear and dirt, and seasonal changes such as leaves on trees. This furthermore facilitates remote monitoring and check of the system....
Cylindrical collapse and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)
2005-06-21
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
Cracking of anisotropic cylindrical polytropes
Energy Technology Data Exchange (ETDEWEB)
Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2017-06-15
We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)
Cylindrical Piezoelectric Fiber Composite Actuators
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
Plastic buckling of cylindrical shells
International Nuclear Information System (INIS)
Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.
1994-01-01
Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even though such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-thickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. in order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space Company. The analysis was performed for various radius-to-thickness ratios and imperfection amplitudes. The purpose of the analytical program was to compute the buckling strength of underground cylindrical tanks, that are used for storage of nuclear wastes, for realistic geometric imperfections and internal pressure loads. This paper presents the results of the elastic-plastic analyses and compares them with other available information for various pressure loads
Non-local quasi-linear parabolic equations
International Nuclear Information System (INIS)
Amann, H
2005-01-01
This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing
Study on radiation flux of the receiver with a parabolic solar concentrator system
International Nuclear Information System (INIS)
Mao, Qianjun; Shuai, Yong; Yuan, Yuan
2014-01-01
Highlights: • The idea of integral dish and multi-dishes in a parabolic solar collector has been proposed. • The impacts of three factors of the receiver have been investigated. • The radiation flux distribution can benefit from a large system error. - Abstract: The solar receiver plays a key role in the performance of a solar dish electric generator. Its radiation flux distribution can directly affect the efficiency of the parabolic solar concentrator system. In this paper, radiation flux distribution of the receiver is simulated successfully using MCRT method. The impacts of incident solar irradiation, aspect ratio (the ratio of the receiver height to the receiver diameter), and system error on the radiation flux of the receiver are investigated. The parameters are studied in the following ranges: incident solar irradiation from 100 to 1100 W/m 2 , receiver aspect ratio from 0.5 to 1.5, and the system error from 0 to 10 mrad. A non-dimensional parameter Θ is defined to represent the ratio of radiation flux to incident solar irradiation. The results show that the maximum of Θ is about 200 in simulation conditions. The aspect ratio and system error have a significant impact on the radiation flux. The optimal receiver aspect ratio is 1.5 at a constant incident solar irradiation, and the maximum of radiation flux increases with decreasing system error, however, the radiation flux distribution can benefit from a large system error. Meanwhile, effects of integral dish and multi-dishes on the radiation flux distribution have been investigated. The results show that the accuracy of two cases can be ignored within the same parameters
High-performance, low-cost solar collectors for disinfection of contaminated water.
Vidal, A; Diaz, A I
2000-01-01
Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.
Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors
Energy Technology Data Exchange (ETDEWEB)
Mazumder, Malay K. [Boston Univ., MA (United States); Horenstein, Mark N. [Boston Univ., MA (United States); Joglekar, Nitin R. [Boston Univ., MA (United States)
2015-03-31
The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m^{2}, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.
Comparison of three different collectors for process heat applications
Brunold, Stefan; Frey, R.; Frei, Ulrich
1994-09-01
In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).
Behavior of a solar collector loop during stagnation
DEFF Research Database (Denmark)
Chen, Ziqian; Dragsted, Janne; Furbo, Simon
2015-01-01
A mathematical model simulating the emptying behavior of a pressurized solar collector loop with solar collectors with a good emptying behavior is developed and validated with measured data. The calculated results are in good agreement with the measured results. The developed simulation model...... is therefore suitable to determine the behavior of a solar collector loop during stagnation. A volume ratio R, which is the ratio of the volume of the vapour in the upper pipes of the solar collector loop during stagnation and the fluid content of solar collectors, is introduced to determine the mass...... of the collector fluid pushed into the expansion vessel during stagnation, Min. A correlation function for the mass Min and the volume ratio R for solar collector loops is obtained. The function can be used to determine a suitable size of expansion vessels for solar collector loops....
Two-axis movable concentrating solar energy collector
Perkins, G. S.
1977-01-01
Proposed solar-tracker collector assembly with boiler in fixed position, allows use of hard line connections, capable of withstanding optimum high temperature fluid flow. System thereby eliminates need for flexible or slip connection previously used with solar collector systems.
A tool for standardized collector performance calculations including PVT
DEFF Research Database (Denmark)
Perers, Bengt; Kovacs, Peter; Olsson, Marcus
2012-01-01
A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....
PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR
M. Norhafana; Ahmad Faris Ismail; Z. A. A. Majid
2015-01-01
Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of...
Local Reasoning about a Copying Garbage Collector
DEFF Research Database (Denmark)
Torp-Smith, Noah; Birkedal, Lars; Reynolds, John C.
2008-01-01
We present a programming language, model, and logic appropriate for implementing and reasoning about a memory management system. We state semantically what is meant by correctness of a copying garbage collector, and employ a variant of the novel separation logics to formally specify partial corre...
31 CFR 203.17 - Collector depositaries.
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Collector depositaries. 203.17 Section 203.17 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE PAYMENT OF FEDERAL TAXES AND THE TREASURY...
Copyright, Property and the Film Collector
Nevins, Francis M., Jr.
1975-01-01
Legal issues surrounding the collecting of movies are analyzed with the conclusion that neither law nor public policy supports a cause for action against the ultimate consumer of film prints and that it is not in a studio's economic interest to bring such actions against collectors. (JT)
Classification of conformal representations induced from the maximal cuspidal parabolic
Energy Technology Data Exchange (ETDEWEB)
Dobrev, V. K., E-mail: dobrev@inrne.bas.bg [Scuola Internazionale Superiore di Studi Avanzati (Italy)
2017-03-15
In the present paper we continue the project of systematic construction of invariant differential operators on the example of representations of the conformal algebra induced from the maximal cuspidal parabolic.
A Priori Regularity of Parabolic Partial Differential Equations
Berkemeier, Francisco
2018-01-01
In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular
Packing of equal discs on a parabolic spiral lattice
International Nuclear Information System (INIS)
Xudong, F.; Bursill, L.A.; Julin, P.
1989-01-01
A contact disc model is investigated to determine the most closely-packed parabolic spiral lattice. The most space-efficient packings have divergence angles in agreement with the priority ranking of natural spiral structures
Energy Technology Data Exchange (ETDEWEB)
Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States)
2016-02-29
Norwich Technologies (NT) is developing a disruptively superior solar field for trough concentrating solar power (CSP). Troughs are the leading CSP technology (85% of installed capacity), being highly deployable and similar to photovoltaic (PV) systems for siting. NT has developed the SunTrap receiver, a disruptive alternative to vacuum-tube concentrating solar power (CSP) receivers, a market currently dominated by the Schott PTR-70. The SunTrap receiver will (1) operate at higher temperature (T) by using an insulated, recessed radiation-collection system to overcome the energy losses that plague vacuum-tube receivers at high T, (2) decrease acquisition costs via simpler structure, and (3) dramatically increase reliability by eliminating vacuum. It offers comparable optical efficiency with thermal loss reduction from ≥ 26% (at presently standard T) to ≥ 55% (at high T), lower acquisition costs, and near-zero O&M costs.
Colored solar collectors - Annual report 2006
Energy Technology Data Exchange (ETDEWEB)
Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J.-L.
2007-12-15
The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause an excessive degradation of the collector efficiency. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation, and are manufactured by sol-gel dip-coating or magnetron sputtering. The novel colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. Due to the tunability of the refractive index, nanostructured materials such as SiO{sub 2}:TiO{sub 2} composites and porous SiO{sub 2} are very useful for application in multilayer interference stacks. Novel quaternary Mg-F-Si-O films exhibit a surprisingly low refractive index and are therefore promising candidates for highly transparent coatings on solar collector glazing. The nanostructure of these thin films is studied by transmission electron microscopy, while the optical constants are measured precisely by ellipsometry. For a convincing demonstration, sufficiently large samples of high quality are imperatively needed. The fabrication of nanocomposite SiO{sub 2}:TiO{sub 2} films has been demonstrated by sol-gel dip-coating of A4-sized glass panes. The produced coatings exhibit a colored reflection in combination with a high solar transmittance, a homogenous appearance, and are free of visible defects. Film hardening by UV exposure will result in speeding up the sol-gel process and saving energy, thereby reducing costs significantly. The infrastructure for UV-curing has been established. A UV C radiation source can now be attached to the
Flux form Semi-Lagrangian methods for parabolic problems
Directory of Open Access Journals (Sweden)
Bonaventura Luca
2016-09-01
Full Text Available A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and stability analysis is proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection diffusion and nonlinear parabolic problems.
An introduction to geometric theory of fully nonlinear parabolic equations
International Nuclear Information System (INIS)
Lunardi, A.
1991-01-01
We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs
Linear and quasi-linear equations of parabolic type
Ladyženskaja, O A; Ural′ceva, N N; Uralceva, N N
1968-01-01
Equations of parabolic type are encountered in many areas of mathematics and mathematical physics, and those encountered most frequently are linear and quasi-linear parabolic equations of the second order. In this volume, boundary value problems for such equations are studied from two points of view: solvability, unique or otherwise, and the effect of smoothness properties of the functions entering the initial and boundary conditions on the smoothness of the solutions.
A point focusing double parabolic trough concentrator
Energy Technology Data Exchange (ETDEWEB)
Murphree, Quincy C. [Kentucky Mountain Bible College, Vancleve, KY (United States)
2001-07-01
This article shows that a point focusing solar concentrator can be made from two reflective parabolic troughs, a primary and a secondary, by orienting their longitudinal axes in perpendicular directions and separating them by the difference of their focal lengths along the optical axis. This offers a new alternative to the conventional 3-D paraboloidal concentrator permitting more flexibility in designs for applications requiring high concentrations. Both advantages and disadvantages are discussed. The intensity concentration ratio distribution is calculated in the focal plane and has elliptically shaped contours due to the inherent compensation of errant rays by the concave secondary. The ratio of the major to minor axes was 2.61 for the case considered, resulting in a concentration {approx}2.61 times that of a comparable concentrator without the compensation afforded by a concave secondary. Still, geometrical constraints limit the concentration to about 2000 suns for mirror quality errors of 5 mr. Optimisation of the compensation effect holds potential for improved performance for other concentrator designs. Finally, the functional dependence of the peak concentration and shading factor upon design parameters are presented. (Author)
Beryllium parabolic refractive x-ray lenses
International Nuclear Information System (INIS)
Lengeler, B.; Schroer, C.G.; Kuhlmann, M.; Benner, B.; Guenzler, T.F.; Kurapova, O.; Somogyi, A.; Snigirev, A.; Snigireva, I.
2004-01-01
Parabolic refractive x-ray lenses are novel optical components for the hard x-ray range from about 5 keV to about 120 keV. They focus in both directions. They are compact, robust, and easy to align and to operate. They can be used like glass lenses are used for visible light, the main difference being that the numerical aperture N.A. is much smaller than 1 (of order 10-4 to 10-3). Their main applications are in micro- and nanofocusing, in imaging by absorption and phase contrast and in fluorescence mode. In combination with tomography they allow for 3-dimensional imaging of opaque media with submicrometer resolution. Finally, they can be used in speckle spectroscopy by means of coherent x-ray scattering. Beryllium as lens material strongly enhances the transmission and the field of view as compared to aluminium. With increased N.A. the lateral resolution is also considerably improved with Be lenses. References to a number of applications are given
Directory of Open Access Journals (Sweden)
Damasen Ikwaba Paul
2015-01-01
Full Text Available This paper presents theoretical and experimental optical evaluation and comparison of symmetric Compound Parabolic Concentrator (CPC and V-trough collector. For direct optical properties comparison, both concentrators were deliberately designed to have the same geometrical concentration ratio (1.96, aperture area, absorber area, and maximum concentrator length. The theoretical optical evaluation of the CPC and V-trough collector was carried out using a ray-trace technique while the experimental optical efficiency and solar energy flux distributions were analysed using an isolated cell PV module method. Results by simulation analysis showed that for the CPC, the highest optical efficiency was 95% achieved in the interval range of 0° to ±20° whereas the highest outdoor experimental optical efficiency was 94% in the interval range of 0° to ±20°. For the V-tough collector, the highest optical efficiency for simulation and outdoor experiments was about 96% and 93%, respectively, both in the interval range of 0° to ±5°. Simulation results also showed that the CPC and V-trough exhibit higher variation in non-illumination intensity distributions over the PV module surface for larger incidence angles than lower incidence angles. On the other hand, the maximum power output for the cells with concentrators varied depending on the location of the cell in the PV module.
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Leif [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Maetcentralen; Perers, B. [Vattenfall Utveckling AB, Stockholm (Sweden)
1999-09-01
A solar heating plant designed for preheating of domestic hot water was built during the spring of 1998 at Markbacken, Oerebro. The collector panels were built with a very low profile, less than 1 m high, but they were quite wide in the east-west direction (6.6 m). The roof-placed collectors, 210 m{sup 2} in all, were thus very discreet and can not be seen from the main facades of the three-storey building on which they are placed. Also, the slim design meant that the entire collector box could be manufactured in a one-step process, bottom and sides being pressed from a single sheet of aluminium. Each collector and its reflector, also of aluminium, shared the same frame. The frame was attached to heavy bars of concrete which was placed on the flat roof. No further anchoring was needed. The tubing from the collectors was drawn to the cellar of the building through an obsolete refuse chute. The circulation pumps, heat exchangers and accumulator were placed in a cellar room. The accumulator consists of three cylindrical tanks with a maximum allowed pressure of 3 bar and a volume of 11 m{sup 3}. Heat from the accumulator is heat-exchanged to the cold water supplied to the system for producing domestic hot water. If the resulting temperature is less required extra heat is added from the district heating net. The solar heating plant has operated very well and has even produced more energy than was calculated in the pre-study. At a system temperature of 40 deg C the specific energy production is about 600 kWh/m{sup 2},year. The typical production is 126 MWh per annum, corresponding to 35% of the hot water consumption. The final cost of the system was some 20% higher than calculated. Some unforeseen additional costs resulted from the need for cellar floor reinforcement and also some roof improvement measures. Too high flow through the solar collectors and through the loading circuit for the accumulator has a destructive action on the temperature stratification in the heat
Energy Technology Data Exchange (ETDEWEB)
Moreira, Michel Fabio de Souza
2009-03-15
The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain
Absorption factor for cylindrical samples
International Nuclear Information System (INIS)
Sears, V.F.
1984-01-01
The absorption factor for the scattering of X-rays or neutrons in cylindrical samples is calculated by numerical integration for the case in which the absorption coefficients of the incident and scattered beams are not equal. An extensive table of values having an absolute accuracy of 10 -4 is given in a companion report [Sears (1983). Atomic Energy of Canada Limited, Report No. AECL-8176]. In the present paper an asymptotic expression is derived for the absorption factor which can be used with an error of less than 10 -3 for most cases of interest in both neutron inelastic scattering and neutron diffraction in crystals. (Auth.)
Johnson, S. M.
1976-01-01
Basic test results are reported for a flat plate solar collector whose performance was determined in a solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
1976-01-01
Basic test results are presented of a flat-plate solar collector whose performance was determined in solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and coolant flow rates. Collector efficiency was correlated in terms of inlet temperature and flux level.
Johnson, S. M.
1976-01-01
Basic test results are given for a flat plate solar collector whose performance was determined in the NASA-Lewis solar simulator. The collector was tested over ranges of inlet temperatures, fluxes and one coolant flow rate. Collector efficiency is correlated in terms of inlet temperature and flux level.
International Nuclear Information System (INIS)
Mwesigye, Aggrey; Huan, Zhongjie; Meyer, Josua P.
2015-01-01
Highlights: • Thermodynamic analysis of a parabolic trough receiver with nanofluids is presented. • Syltherm800–Al 2 O 3 nanofluid is used as the heat transfer fluid in the receiver. • Influence of nanoparticle volume fraction on receiver performance is investigated. • There is an optimal Reynolds number at each temperature and volume fraction. • Receiver thermal and thermodynamic performance improves below some Reynolds number. - Abstract: In this paper, results of a thermodynamic analysis using the entropy generation minimisation method for a parabolic trough receiver tube making use of a synthetic oil–Al 2 O 3 nanofluid as a heat transfer fluid are presented. A parabolic trough collector system with a rim angle of 80° and a concentration ratio of 86 was used. The temperature of the nanofluid considered was in the range of 350–600 K. The nanofluid thermal physical properties are temperature dependent. The Reynolds number varies from 3,560 to 1,151,000, depending on the temperature considered and volume fraction of nanoparticles in the base fluid. Nanoparticle volume fractions in the range 0 ⩽ ϕ ⩽ 8% were used. The local entropy generation rates due to fluid flow and heat transfer were determined numerically and used for the thermodynamic analysis. The study shows that using nanofluids improves the thermal efficiency of the receiver by up to 7.6%. There is an optimal Reynolds number at each inlet temperature and volume fraction for which the entropy generated is a minimum. The optimal Reynolds number decreases as the volume fraction increases. There is also a Reynolds number at every inlet temperature and volume fraction beyond which use of nanofluids is thermodynamically undesirable
Arrangement, manufacturing process and use of solar heat collectors
Energy Technology Data Exchange (ETDEWEB)
Scheel, H W
1978-03-30
Solar collectors generally have a timber or metal frame where the transparent front cover, usually of glass, is replaceable. In order to prevent great deformation, such a frame must be relatively stable and of heavy construction, which may lead to difficulties in mounting the collector on the roofs or front walls of houses. The present invention proposes a light but nevertheless rigid collector frame, which consists of plastic material and is constructed so that the installation and replacement of collectors can be realized. Further, collectors are proposed which guarantee a minimum of reflection and are so designed that an optimum architectural effect is produced.
Solar collector design with respect to moisture problems
DEFF Research Database (Denmark)
Holck, Ole; Svendsen, Svend; Brunold, Stefan
2003-01-01
more ventilation openings should be made and what influence the insulation material has. Guidelines for collector designers are proposed. The design guidelines provide some suggestions to be considered during the design of solar collectors.The work was carried out within the framework of the working...... group Materials in Solar Thermal Collectors of the International Energy Agency-Solar Heating and Cooling Programme....... the design of the collector, the location and size of ventilation holes, properties of the insulation materials and dimension of the solar collector box are parameters that have to be taken into account for the optimisation in order to achieve the most favourable microclimate to prevent corrosion...
Integrated Design of Undepressed Collector for Low Power Gyrotron
Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.
2011-06-01
A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.
Solar Heating Systems with Evacuated Tubular Solar Collector
DEFF Research Database (Denmark)
Qin, Lin; Furbo, Simon
1998-01-01
Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...
Thermal convection in dielectric liquids in a cylindrical annulus
Mutabazi, Innocent; Kang, Changwoo; Meyer, Antoine; Meier, Martin; Egbers, Christoph
2017-11-01
Thermal convection is investigated in a dielectric liquid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ and electric permittivity ɛ in a cylindrical annulus of inner radius a and outer radius bwith a radial temperature gradient and a high-frequency electric tension. The coupling between the electric field and the gradient of the permittivity yields the dielectrophoretic force. The control parameters are η = a/b, Pr = ν / κ, the classic Rayleigh number Ra = αΔ T gd3 / νκ , and the electric Rayleigh number L = αΔ T ged3 / νκ The electric gravity ge is the gradient of the electric energy in the condenser. Linear stability analysis shows that for infinite annulus, depending on values of η, Ra and L, critical modes are either hydrodynamic or thermal modes, helical electric modes or columnar vortices. Experiments in an annulus of aspect ratio Γ = 19.6 during parabolic flight campaigns indicate the existence of columns. Columnar vortices result from the competition between Archimedean buoyancy and dielectrophoretic force. Direct numerical simulations in the annulus of Γ = 20 show that the columnar vortices occupy the central part of the annulus, while near the end-zones the flow is laminar and dominated by an azimuthal vorticity. This work was supported by CNRS (LIA ISTROF), CNES and DLR.
Norwich Technologies' Advanced Low-Cost Receivers for Parabolic Troughs
Energy Technology Data Exchange (ETDEWEB)
Stettenheim, Joel [Norwich Technologies, White River Junction, VT (United States); McBride, Troy O. [Norwich Technologies, White River Junction, VT (United States); Brambles, Oliver J. [Norwich Technologies, White River Junction, VT (United States); Cashin, Emil A. [Norwich Technologies, White River Junction, VT (United States)
2013-12-31
This report summarizes the successful results of our SunShot project, Advanced Low-Cost Receivers for Parabolic Troughs. With a limited budget of $252K and in only 12 months, we have (1) developed validated optical and thermal models and completed rigorous optimization analysis to identify key performance characteristics as part of developing first-generation laboratory prototype designs, (2) built optical and thermal laboratory prototypes and test systems with associated innovative testing protocols, and (3) performed extensive statistically relevant testing. We have produced fully functioning optical and thermal prototypes and accurate, validated models shown to capture important underlying physical mechanisms. The test results from the first-generation prototype establish performance exceeding the FOA requirement of thermal efficiency >90% for a CSP receiver while delivering an exit fluid temperature of > 650 °C and a cost < $150/kWth. Our vacuum-free SunTrap receiver design provides improvements over conventional vacuum-tube collectors, allowing dramatic reductions in thermal losses at high operating temperature.
The electrostatic cylindrical sheath in a plasma
International Nuclear Information System (INIS)
Wang Chunhua; Sun Xiaoxia; Bai Dongxue
2004-01-01
The electrostatic sheath with a cylindrical geometry in an ion-electron plasma is investigated. Assuming a Boltzmann response to electrons and cold ions with bulk flow, it is shown that the radius of the cylindrical geometry do not affect the sheath potential significantly. The authors also found that the sheath potential profile is steeper in the cylindrical sheath compared to the slab sheath. The distinct feature of the cylindrical sheath is that the ion density distribution is not monotonous. The sheath region can be divided into three regions, two ascendant regions and one descendant region. (author)
International Nuclear Information System (INIS)
Kozhevnikova, L M; Mukminov, F Kh
2000-01-01
A quasilinear system of parabolic equations with energy inequality is considered in a cylindrical domain {t>0}xΩ. In a broad class of unbounded domains Ω two geometric characteristics of a domain are identified which determine the rate of convergence to zero as t→∞ of the L 2 -norm of a solution. Under additional assumptions on the coefficients of the quasilinear system estimates of the derivatives and uniform estimates of the solution are obtained; they are proved to be best possible in the order of convergence to zero in the case of one semilinear equation
Preheating of tap water with solar collectors
Energy Technology Data Exchange (ETDEWEB)
Granum, H; Raaen, H
1992-05-05
In 1991 SINTEF Architecture and Building Technology won the second prize in 'The Nordic Competition for Low Energy Buildings' with a project proposal named 'LOWe'. The paper gives a description of the energy-saving features of this project, particularly the use of a solar collector for preheating of tap water. Compared with the economic profitability of other saving efforts in the project, such as good thermal insulation and efficient heat recovering system, the system for solar preheating of tap water does not seem very attractive for the time being. Loose estimates indicate a cost of close of NOK 1.00 per kWh for the produced energy in the solar collector, while the present price for electricity in Norway is about NOK 0.50 per kWh. Compared with a heat pump solution however the energy cost is not unreasonable.
Assessment of musculoskeletal load in refuse collectors
Directory of Open Access Journals (Sweden)
Zbigniew W. Jóźwiak
2013-08-01
Full Text Available Background: The aim of this work was to assess the load on the musculoskeletal system and its effects in the collectors of solid refuse. The rationale behind this study was to formulate proposals how to reduce excessive musculoskeletal load in this group of workers. Material and Methods: The study group comprised 15 refuse collectors aged 25 to 50 years. Data about the workplace characteristics and subjective complaints of workers were collected by the free interview and questionnaire. During the survey the photorecording of the workpostures, the distance and velocity by GPS recorders, measurements of forces necessary to move containers, energy expenditure (lung ventilation method, workload estimation using the Firstbeat system and REBA method and stadiometry were done. Results: The distance walked daily by the collectors operating in terms of 2 to 3 in urban areas was about 15 km, and in rural areas about 18 km. The most frequent musculoskeletal complaints concerned the feet (60% subjects, knees, wrists and shoulders (over 40% subjects. After work-shift all examined workers had vertebral column shorter by 10 to 14 mm (11.4 mm mean. Conclusions: The results of our study show that the refuse collectors are subjected to a very high physical load because of the work organization and the way it is performed. To avoid adverse health effects and overload it is necessary to undertake ergonomic interventions, involving training of workers to improve the way of their job performance, active and passive leisure, technical control of the equipment and refuse containers, as well as the renegotiation of contracts with clients, especially those concerning non-standard containers. Med Pr 2013;64(4:507–519
Theoretical study of fluidized solar collector performance
Energy Technology Data Exchange (ETDEWEB)
Adulla, S. H; Kassem, M A; El-Refaie, M. F. [Cairo University, Giza (Egypt)
2000-07-01
This work presents a proposed novel design aiming to increasing the absorber-to-fluid heat transfer coefficient. This is accomplished by introducing small solid particles inside the collector tubes. When the collector liquid flows, it causes the particles to be fluidized and spread in the tubes. The particles material, size and total number should be turned together with the fluid mass flow rate to keep the bed, or particle dispersion, length within the physical length of collector tubes. Thus, the particles would be confined in the collector only; and not carried over to other parts of the circulation loop. While moving, the particles erode the thermal boundary layer formed on the tube inner surface, hence increasing the heat transfer coefficient. [Spanish] Este articulo presenta un diseno novedoso destinado a aumentar el coeficiente de trasferencia de calor de absorbedor a fluido. Esto se lleva a cabo mediante la introduccion de particulas solidas dentro de los tubos del colector. Cuando fluye el liquido del colector origina que las particulas se fluidicen y se diseminen en los tubos. El material de las particulas, tamano y numero total debera de ser puesto en movimiento junto con el regimen de flujo de masa de fluido para mantener el lecho o la dispersion de particulas por largo tiempo dentro de la longitud fisica de los tubos de colector. De esta manera las particulas seran confinadas solamente en el colector y no seran arrastradas a otras partes del anillo de circulacion. Al moverse, las particulas erosionan la capa de frontera termica formada en la superficie interior del tubo, aumentando por tanto el coeficiente de transmision de calor.
DEFF Research Database (Denmark)
Bava, Federico; Furbo, Simon; Perers, Bengt
2015-01-01
The installed area of solar collectors in solar heating fields is rapidly increasing in Denmark. In this scenario even relatively small performance improvements may lead to a large increase in the overall energy production. Both collectors with and without polymer foil, functioning as convection...... barrier, can be found on the Danish market. Depending on the temperature level at which the two types of collectors operate, one can perform better than the other. This project aimed to study the behavior of a 14 solar collector row made of these two different kinds of collectors, in order to optimize...... the composition of the row. Actual solar collectors available on the Danish market (models HT-SA and HT-A 35-10 manufactured by ARCON Solar A/S) were used for this analysis. To perform the study, a simulation model in TRNSYS was developed based on the Danish solar collector field in Braedstrup. A parametric...
Improved Collectors for High Power Gyrotrons
International Nuclear Information System (INIS)
Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Philipp; Neilson, Jeff
2009-01-01
High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.
Energy Technology Data Exchange (ETDEWEB)
Brandao, Braulio Bezerra
2004-10-01
Although literature on parabolic solar concentrators is numerically considerable, there are no publications regarding CPC with fully illuminate, inverted V absorber, nothing is mentioned about optical and geometric properties or, collected thermal energy. This type of solar concentrator exists in the international market, but with little known divulgence of its properties, perhaps explained because of industrial protection. In the first part of this work, the equations that define the concentrator cavity curve and its optical and geometric properties were deduced and studied in detail, by a numeric simulation program, elaborated in Meatball language. Additionally, optimization studies about the viability of the construction of this collector were carried out, relative truncation effects (the elimination of the upper part of the cavity) on the optics and geometric properties and the annual energy generated by the equipment. For the CPC concentrator collectors with fully illuminated inverted V absorbers and ideal (without truncation) it was concluded that in the configuration in which the angle of angular acceptance of the CPC is equal to the apex angle of the absorber, there occurs a minimum perimeter of the reflector cavity, when the nominal concentration and the size of the absorber are constant. Regarding the CPC concentrator collectors fully illuminated with inverted V absorber and with optimized truncation, it is shown, for a concentrator of 1.2 concentration, a good related reflector surface length and opening, and a mean number of reflections and generated thermal energy that this occurs for concentrators arising from concentrators with acceptance angles among 33.75 up to 45.58 degrees. (author)
Diffusion from cylindrical waste forms
International Nuclear Information System (INIS)
Thomas, G.F.
1985-05-01
The diffusion of a single component material from a finite cylindrical waste form, initially containing a uniform concentration of the material, is investigated. Under the condition that the cylinder is maintained in a well-stirred bath, expressions for the fractional inventory leached and the leach rate are derived with allowance for the possible permanent immobilization of the diffusant through its decay to a stable product and/or its irreversible reaction with the waste form matrix. The usefulness of the reported results in nuclear waste disposal applications is emphasized. The results reported herein are related to those previously derived at Oak Ridge National Laboratory by Bell and Nestor. A numerical scheme involving the partial decoupling of nested infinite summations and the use of rapidly converging rational approximants is recommended for the efficient implementation of the expressions derived to obtain reliable estimates of the bulk diffusion constant and the rate constant describing the diffusant-waste form interaction from laboratory data
Mixed hyperbolic-second-order-parabolic formulations of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios
2008-01-01
Two new formulations of general relativity are introduced. The first one is a parabolization of the Arnowitt-Deser-Misner formulation and is derived by the addition of combinations of the constraints and their derivatives to the right-hand side of the Arnowitt-Deser-Misner evolution equations. The desirable property of this modification is that it turns the surface of constraints into a local attractor because the constraint propagation equations become second-order parabolic independently of the gauge conditions employed. This system may be classified as mixed hyperbolic--second-order parabolic. The second formulation is a parabolization of the Kidder-Scheel-Teukolsky formulation and is a manifestly mixed strongly hyperbolic--second-order-parabolic set of equations, bearing thus resemblance to the compressible Navier-Stokes equations. As a first test, a stability analysis of flat space is carried out and it is shown that the first modification exponentially damps and smoothes all constraint-violating modes. These systems provide a new basis for constructing schemes for long-term and stable numerical integration of the Einstein field equations.
Real-time dynamic analysis for complete loop of direct steam generation solar trough collector
International Nuclear Information System (INIS)
Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei
2016-01-01
Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and
Evaluation of Test Method for Solar Collector Efficiency
DEFF Research Database (Denmark)
Fan, Jianhua; Shah, Louise Jivan; Furbo, Simon
The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximat...... and the sky temperature. Based on the investigations, recommendations for change of the test methods and test conditions are considered. The investigations are carried out within the NEGST (New Generation of Solar Thermal Systems) project financed by EU.......The test method of the standard EN12975-2 (European Committee for Standardization, 2004) is used by European test laboratories to determine the efficiency of solar collectors. In the test methods the mean solar collector fluid temperature in the solar collector, Tm is determined by the approximated...... equation where Tin is the inlet temperature to the collector and Tout is the outlet temperature from the collector. The specific heat of the solar collector fluid is in the test method as an approximation determined as a constant equal to the specific heat of the solar collector fluid at the temperature Tm...
Thermal performance of a transpired solar collector updraft tower
International Nuclear Information System (INIS)
Eryener, Dogan; Hollick, John; Kuscu, Hilmi
2017-01-01
Highlights: • Transpired solar collector updraft tower has been studied experimentally. • Transpired solar collector updraft tower efficiency ranges from 60 to 80%. • A comparison has been made with other SUT prototypes. • Three times higher efficiency compared to the glazed collectors of conventional solar towers. - Abstract: A novel solar updraft tower prototype, which consists of transpired solar collector, is studied, its function principle is described and its experimental thermal performance is presented for the first time. A test unit of transpired solar collector updraft tower was installed at the campus of Trakya University Engineering Faculty in Edirne-Turkey in 2014. Solar radiation, ambient temperature, collector cavity temperatures, and chimney velocities were monitored during summer and winter period. The results showed that transpired solar collector efficiency ranges from 60% to 80%. The maximum temperature rise in the collector area is found to be 16–18 °C on the typical sunny day. Compared to conventional solar tower glazed collectors, three times higher efficiency is obtained. With increased thermal efficiency, large solar collector areas for solar towers can be reduced in half or less.
Spiral modes in cold cylindrical systems
International Nuclear Information System (INIS)
Robe, H.
1975-01-01
The linearized hydrodynamical equations governing the non-axisymmetric free modes of oscillation of cold cylindrical stellar systems are separated in cylindrical coordinates and solved numerically for two models. Short-wavelength unstable modes corresponding to tight spirals do not exist; but there exists an unstable growing mode which has the form of trailing spirals which are quite open. (orig.) [de
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
Determination of source terms in a degenerate parabolic equation
International Nuclear Information System (INIS)
Cannarsa, P; Tort, J; Yamamoto, M
2010-01-01
In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation
Numerical performance of the parabolized ADM formulation of general relativity
International Nuclear Information System (INIS)
Paschalidis, Vasileios; Hansen, Jakob; Khokhlov, Alexei
2008-01-01
In a recent paper [Vasileios Paschalidis, Phys. Rev. D 78, 024002 (2008).], the first coauthor presented a new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner (ADM) formulation of the equations of general relativity. By parabolizing first-order ADM in a certain way, the PADM formulation turns it into a well-posed system which resembles the structure of mixed hyperbolic-second-order parabolic partial differential equations. The surface of constraints of PADM becomes a local attractor for all solutions and all possible well-posed gauge conditions. This paper describes a numerical implementation of PADM and studies its accuracy and stability in a series of standard numerical tests. Numerical properties of PADM are compared with those of standard ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension. The PADM scheme is numerically stable, convergent, and second-order accurate. The new formulation has better control of the constraint-violating modes than ADM and KST.
Interaction Potential between Parabolic Rotator and an Outside Particle
Directory of Open Access Journals (Sweden)
Dan Wang
2014-01-01
Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.
First Middle East Aircraft Parabolic Flights for ISU Participant Experiments
Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene
2017-06-01
Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.
Lowest excited-state impurity binding energy in InGaN/GaN parabolic QWW: magnetic field effect
International Nuclear Information System (INIS)
Haddou El Ghazi; Anouar Jorio; Izeddine Zorkani
2013-01-01
In this paper, we have investigated the magnetic field effect on the lowest excited-state binding energy of hydrogenic shallow-donor impurity in wurtzite (In,Ga)N/GaN parabolic transversal-section quantum-well wire (PQWW) using the finite-difference method within the quasi-one-dimensional effective potential model. The calculations are performed within the framework of the effective mass approximation. A cylindrical QWW effective radius is taken into account to describe the lateral confinement strength. The numerical results show that: (i) the probability density is the largest on a circularity whose radius is the effective radius and (ii) the lowest excited-state binding energy is the largest when an impurity is located on this circularity while it starts to decrease as the impurity is away from the circularity. (author)
Critical spaces for quasilinear parabolic evolution equations and applications
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
Global Carleman estimates for degenerate parabolic operators with applications
Cannarsa, P; Vancostenoble, J
2016-01-01
Degenerate parabolic operators have received increasing attention in recent years because they are associated with both important theoretical analysis, such as stochastic diffusion processes, and interesting applications to engineering, physics, biology, and economics. This manuscript has been conceived to introduce the reader to global Carleman estimates for a class of parabolic operators which may degenerate at the boundary of the space domain, in the normal direction to the boundary. Such a kind of degeneracy is relevant to study the invariance of a domain with respect to a given stochastic diffusion flow, and appears naturally in climatology models.
Maximum principles for boundary-degenerate linear parabolic differential operators
Feehan, Paul M. N.
2013-01-01
We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...
Hermitian-Einstein metrics on parabolic stable bundles
International Nuclear Information System (INIS)
Li Jiayu; Narasimhan, M.S.
1995-12-01
Let M-bar be a compact complex manifold of complex dimension two with a smooth Kaehler metric and D a smooth divisor on M-bar. If E is a rank 2 holomorphic vector bundle on M-bar with a stable parabolic structure along D, we prove the existence of a metric on E' = E module MbarD (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of Kaehler metric of M-barD. A converse is also proved. (author). 24 refs
Simulation of HPIB propagation in biased charge collector
International Nuclear Information System (INIS)
Li Hongyu; Qiu Aici
2004-01-01
A 2.5D PIC simulation using KARAT code for inner charge propagation within biased charge collector for measuring HPIB is presented. The simulation results indicate that the charges were neutralized but the current non-neutralized in the biased charge collector. The influence of ions collected vs biased voltage of the collector was also simulated. -800 V biased voltage can meet the measurement of 500 keV HPIB, and this is consistent with the experimental results
Collett, Jeffrey L.; Daube, Bruce C.; Munger, J. William; Hoffmann, Michael R.
A side-by-side comparison of the Rotating Arm Collector (RAC) and the Caltech Active Strand Cloudwater Collector (CASCC) was conducted at an elevated coastal site near the eastern end of the Santa Barbara Channel in southern California. The CASCC was observed to collect cloudwater at rates of up to 8.5 ml min -1. The ratio of cloudwater collection rates was found to be close to the theoretical prediction of 4.2:1 (CASCC:RAC) over a wide range of liquid water contents (LWC). At low LWC, however, this ratio climbed rapidly, possibly reflecting a predominance of small droplets under these conditions, coupled with a greater collection efficiency of small droplets by the CASCC. Cloudwater samples collected by the RAC had significantly higher concentrations of Na +, Ca 2+, Mg 2+ and Cl - than those collected by the CASCC. These higher concentrations may be due to differences in the chemical composition of large vs small droplets. No significant differences were observed in concentrations of NO 3-, SO 42- or NH 4+ in samples collected by the two instruments.
High Performance Flat Plate Solar Thermal Collector Evaluation
Energy Technology Data Exchange (ETDEWEB)
Rockenbaugh, Caleb [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lovullo, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lisell, Lars [National Renewable Energy Lab. (NREL), Golden, CO (United States); Barker, Greg [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hanckock, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States); Norton, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-09-01
This report was prepared for the General Services Administration by the National Renewable Energy Laboratory. The Honeycomb Solar Thermal Collector (HSTC) is a flat plate solar thermal collector that shows promising high efficiencies over a wide range of climate zones. The technical objectives of this study are to: 1) verify collector performance, 2) compare that performance to other market-available collectors, 3) verify overheat protection, and 4) analyze the economic performance of the HSTC both at the demonstration sites and across a matrix of climate zones and utility markets.
Adaptive control of solar energy collector systems
Lemos, João M; Igreja, José M
2014-01-01
This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts
Combined solar collector and storage systems
International Nuclear Information System (INIS)
Norton, B.; Smyth, M.; Eames, P.; Lo, S.N.G.
2000-01-01
The article discusses reasons why fossil-fuelled water heating systems are included in new houses but solar systems are not. The technology and market potential for evacuated tube systems and integral collector storage systems (ICSS) are explained. The challenge for the designers of ICSSWH has been how to reduce heat loss without compromising solar energy collection. A new concept for enhanced energy storage is described in detail and input/output data are given for two versions of ICSSWH units. A table compares the costs of ICSSWH in houses compared with other (i.e. fossil fuel) water heating systems
Intrinsic cylindrical and spherical waves
International Nuclear Information System (INIS)
Ludlow, I K
2008-01-01
Intrinsic waveforms associated with cylindrical and spherical Bessel functions are obtained by eliminating the factors responsible for the inverse radius and inverse square radius laws of wave power per unit area of wavefront. The resulting expressions are Riccati-Bessel functions for both cases and these can be written in terms of amplitude and phase functions of order v and wave variable z. When z is real, it is shown that a spatial phase angle of the intrinsic wave can be defined and this, together with its amplitude function, is systematically investigated for a range of fixed orders and varying z. The derivatives of Riccati-Bessel functions are also examined. All the component functions exhibit different behaviour in the near field depending on the order being less than, equal to or greater than 1/2. Plots of the phase angle can be used to display the locations of the zeros of the general Riccati-Bessel functions and lead to new relations concerning the ordering of the real zeros of Bessel functions and the occurrence of multiple zeros when the argument of the Bessel function is fixed
Diffusion in a cylindrical plasma
International Nuclear Information System (INIS)
Reid, J.
1977-04-01
Modern plasma containment devices, such as the Tokamak, employ magnetic fields which are toroidal in shape. They are able to contain a plasma for times approaching a second. Magnetohydrodynamics (M.H.D.) is one of the most attractive theoretical methods for understanding their behaviour, but the equations involved are complex non-linear partial differential equations, and analytic methods are not available for their solution. Numerical methods must be used. A model system of equations representing a cylindrical plasma with no axial variation is considered. It is convenient to introduce a flux function psi for the component of the magnetic field directed around the axis of the cylinder, called the poloidal field, and the M.H.D. equations are rewritten in terms of psi. This produces a set of highly coupled equations describing the evolution of the flux function, the axial field and the plasma pressure. Various steps are taken to gain a better understanding of the properties of these equations. (author)
A parabolic-hyperbolic system modelling a moving cell
Directory of Open Access Journals (Sweden)
Fabiana Cardetti
2009-08-01
Full Text Available In this article, we study the existence and uniqueness of local solutions for a moving boundary problem governed by a coupled parabolic-hyperbolic system. The results can be applied to cell movement, extending a result obtained by Choi, Groulx, and Lui in 2005.
Parabolic cyclinder functions : examples of error bounds for asymptotic expansions
R. Vidunas; N.M. Temme (Nico)
2002-01-01
textabstractSeveral asymptotic expansions of parabolic cylinder functions are discussedand error bounds for remainders in the expansions are presented. Inparticular Poincaré-type expansions for large values of the argument$z$ and uniform expansions for large values of the parameter areconsidered.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
On the Schauder estimates of solutions to parabolic equations
International Nuclear Information System (INIS)
Han Qing
1998-01-01
This paper gives a priori estimates on asymptotic polynomials of solutions to parabolic differential equations at any points. This leads to a pointwise version of Schauder estimates. The result improves the classical Schauder estimates in a way that the estimates of solutions and their derivatives at one point depend on the coefficient and nonhomogeneous terms at this particular point
Modeling, Simulation and Performance Evaluation of Parabolic Trough
African Journals Online (AJOL)
Mekuannint
Heat Transfer Fluid (HTF); TRNSYS power plant model; STEC library; Solar Advisor Model (SAM);. TRNSYS solar field model; Solar Electric. Generation System (SEGS). INTRODUCTION. Parabolic troughs are currently most used means of power generation option of solar sources. Solar electric generation systems (SEGs) ...
Viscosity solutions of fully nonlinear functional parabolic PDE
Directory of Open Access Journals (Sweden)
Liu Wei-an
2005-01-01
Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.
Parabolic Trough Solar Power for Competitive U.S. Markets
International Nuclear Information System (INIS)
Price, Henry W.
1998-01-01
Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market
Attractors for a class of doubly nonlinear parabolic systems
Directory of Open Access Journals (Sweden)
Hamid El Ouardi
2006-03-01
Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.
A parabolic singular perturbation problem with an internal layer
Grasman, J.; Shih, S.D.
2004-01-01
A method is presented to approximate with singular perturbation methods a parabolic differential equation for the quarter plane with a discontinuity at the corner. This discontinuity gives rise to an internal layer. It is necessary to match the local solution in this layer with the one in a corner
On some perturbation techniques for quasi-linear parabolic equations
Directory of Open Access Journals (Sweden)
Igor Malyshev
1990-01-01
Full Text Available We study a nonhomogeneous quasi-linear parabolic equation and introduce a method that allows us to find the solution of a nonlinear boundary value problem in explicit form. This task is accomplished by perturbing the original equation with a source function, which is then found as a solution of some nonlinear operator equation.
Stability test for a parabolic partial differential equation
Vajta, Miklos
2001-01-01
The paper describes a stability test applied to coupled parabolic partial differential equations. The PDE's describe the temperature distribution of composite structures with linear inner heat sources. The distributed transfer functions are developed based on the transmission matrix of each layer.
Almost periodic solutions to systems of parabolic equations
Directory of Open Access Journals (Sweden)
Janpou Nee
1994-01-01
Full Text Available In this paper we show that the second-order differential solution is 2-almost periodic, provided it is 2-bounded, and the growth of the components of a non-linear function of a system of parabolic equation is bounded by any pair of con-secutive eigenvalues of the associated Dirichlet boundary value problems.
The fundamental solutions for fractional evolution equations of parabolic type
Directory of Open Access Journals (Sweden)
Mahmoud M. El-Borai
2004-01-01
Full Text Available The fundamental solutions for linear fractional evolution equations are obtained. The coefficients of these equations are a family of linear closed operators in the Banach space. Also, the continuous dependence of solutions on the initial conditions is studied. A mixed problem of general parabolic partial differential equations with fractional order is given as an application.
The dynamics of parabolic flight: Flight characteristics and passenger percepts
Karmali, Faisal; Shelhamer, Mark
2008-09-01
Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.
DT results of TFTR's alpha collector
International Nuclear Information System (INIS)
Herrmann, H.W.; Zweben, S.J.; Darrow, D.S.; Timberlake, J.R.; Macaulay-Newcombe, R.G.
1996-01-01
An escaping alpha collector probe has been developed for TFTR's DT phase to complement the results of the lost alpha scintillator detectors which have been operating on TFTR since 1988. Measurements of the energy distribution of escaping alphas have been made by measuring the range of alphas implanted into nickel foils located within the alpha collector. Exposed samples have been analyzed for 4 DT plasma discharges at plasma currents of 1.0 and 1.8 MA. The results at 1.0 MA are in good agreement with predictions for first orbit alpha loss at 3.5 MeV. The 1.8 MA results, however, indicate a large anomalous loss of partially thermalized alphas at an energy ∼30% below the birth energy and at a total fluence nearly an order of magnitude above expected first orbit loss. This anomalous loss is not observed with the lost alpha scintillator detectors in DT plasmas but does resemble the anomalous delayed loss seen in DD plasmas. Several potential explanations for this loss process are examined. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations
Protecting solar collector systems from corrosion
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
The main cause of the reduced life of a solar heating system is corrosion of the exterior parts and the internal components. This report outlines ways of reducing the cost of solar heating by reducing the corrosion in solar heating systems, and hence increasing the system's service life. Mechanisms for corrosion are discussed: these include galvanic corrosion and crevice corrosion. Means of minimizing corrosion at the design stage are then described. Such methods, when designing the solar collector, involve ensuring proper drainage of exterior water; eliminating situations where moisture, dirt and pollutants may collect; preventing condensation inside the collector; using proper gaskets and sealants at appropriate places; and selecting optimum materials and coatings. Interior corrosion can be minimized at the design stage by choosing a good heat transfer fluid and corrosion inhibitor, in the case of systems where liquids are used; ensuring a low enough flow rate to avoid erosion; designing the system to avoid crevices; and avoiding situations where galvanic corrosion could occur. Other procedures are given for minimizing corrosion in the construction and operation of solar heating systems. 7 figs., 7 tabs.
Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry
International Nuclear Information System (INIS)
Betancourt-Riera, Re.; Betancourt-Riera, Ri.; Nieto Jalil, J. M.; Riera, R.
2015-01-01
We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al 0.35 Ga 0.65 As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted. (paper)
Cylindrical fabric-confined soil structures
Harrison, Richard A.
A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa; Fahad, Hossain M.; Smith, Casey E.; Rojas, Jhonathan Prieto
2015-01-01
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Micromagnetic simulations of cylindrical magnetic nanowires
Ivanov, Yurii P.; Chubykalo-Fesenko, O.
2015-01-01
This chapter reviews micromagnetic simulations of cylindrical magnetic nanowires and their ordered arrays. It starts with a description of the theoretical background of micromagnetism. The chapter discusses main magnetization reversal modes, domain
Plasma waves in an inhomogeneous cylindrical plasma
International Nuclear Information System (INIS)
Pesic, S.S.
1976-01-01
The complete dispersion equation governing small amplitude plasma waves propagating in an inhomogeneous cylindrical plasma confined by a helical magnetic field is solved numerically. The efficiency of the wave energy thermalization in the lower hybrid frequency range is studied
Gravitational Instability of Cylindrical Viscoelastic Medium ...
Indian Academy of Sciences (India)
similar to that of viscoelastic fluid where both properties work together. They also ... cylindrical gravitational waves provides a strong motivation in this regard. .... which represents the solenoidal character of the magnetic field and the total stress.
International Nuclear Information System (INIS)
Abdelhamid, Mahmoud; Widyolar, Bennett K.; Jiang, Lun; Winston, Roland; Yablonovitch, Eli; Scranton, Gregg; Cygan, David; Abbasi, Hamid; Kozlov, Aleksandr
2016-01-01
Highlights: • A novel hybrid concentrating photovoltaic thermal (PV/T) collector is developed. • Thermal component achieves 60× concentration using nonimaging optics. • GaAs solar cells used as spectrally selective mirrors for low energy photons. • Thermal efficiencies of 37% at 365 °C and electrical efficiencies of 8% achieved. • Combined electric efficiency reaches 25% of DNI for system cost of $283.10/m"2". - Abstract: A novel double stage high-concentration hybrid solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record thin film single-junction gallium arsenide (GaAs) solar cells has been developed. We present a detailed design and simulation of the system, experimental setup, prototype, system performance, and economic analysis. The system uses a parabolic trough (primary concentrator) to focus sunlight towards a secondary nonimaging compound parabolic concentrator (CPC) to simultaneously generate electricity from single junction GaAs solar cells, as well as high temperature dispatchable heat. This study is novel in that (a) the solar cells inside the vacuum tube act as spectrally selective mirrors for lower energy photons to maximize the system exergy, and (b) secondary concentrator allows the thermal component to reach a concentration ratio ∼60×, which is significantly higher than conventional PV/T concentration ratios. The maximum outlet temperature reached was 365 °C, and on average the thermal efficiency of the experiment was around 37%. The maximum electrical efficiency was around 8%. The total system electricity generation is around 25% of incoming DNI, by assuming the high temperature stream is used to power a steam turbine. The installed system cost per unit of parabolic trough aperture area is $283.10 per m"2.
Radon progeny distribution in cylindrical diffusion chambers
International Nuclear Information System (INIS)
Pressyanov, Dobromir S.
2008-01-01
An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.
Cylindrical geometry for proportional and drift chambers
International Nuclear Information System (INIS)
Sadoulet, B.
1975-06-01
For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)
Cylindrical dust acoustic waves with transverse perturbation
International Nuclear Information System (INIS)
Xue Jukui
2003-01-01
The nonlinear dust acoustic waves in dusty plasmas with the combined effects of bounded cylindrical geometry and the transverse perturbation are studied. Using the perturbation method, a cylindrical Kadomtsev-Petviashvili (CKP) equation that describes the dust acoustic waves is deduced for the first time. A particular solution of this CKP equation is also obtained. It is shown that the dust acoustic solitary waves can exist in the CKP equation
Physically absorbable reagents-collectors in elementary flotation
Energy Technology Data Exchange (ETDEWEB)
S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining
2007-09-15
Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.
Preliminary design package for solar collector and solar pump
1978-01-01
A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.
ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR
Directory of Open Access Journals (Sweden)
Zakaria Mohd. Amin
2015-11-01
Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector. At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.
Efficiency improvement of flat plate solar collector using reflector
Directory of Open Access Journals (Sweden)
Himangshu Bhowmik
2017-11-01
Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.
Direct-heating solar-collector dump valve
Howikman, T. C.
1977-01-01
Five-port ganged valve isolates collector from primary load system pressure and drains collectors, allowing use of direct heating with all its advantages. Valve is opened and closed by same switch that controls pump or by temperature sensor set at O C, while providing direct dump option.
Diagnostics of defeats of venous collectors of brain
International Nuclear Information System (INIS)
Timofeeva, T.V.; Polunina, I.S.; Shcherbakova, E.Ya.; Kuldakova, S.V.
1997-01-01
Comparative data of transcranial ultrasonic dopplerography (170 patients) and radionuclidous antroscintigraphy (124), received during diagnostics of defects of venous collectors of brain are analyzed. Five variants of defeats of venous collectors (cross, sigmoid, internal of jugular of jugular vein), but also unpaired sine (direct, confluent) are described. Received results permit to reveal interrelation of infringements of venous outflow and increase of intracranial pressure
Advances in design of air-heating collectors
CSIR Research Space (South Africa)
Johannsen, A
1982-11-01
Full Text Available Principles of the operation of air-heating collectors are discussed. The fundamental differences between the design principles of air-heating as opposed to water-heating collectors are highlighted. The main requirement is the transfer of heat from...
Thermal performances of vertical hybrid PV/T air collector
Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.
2016-11-01
In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.
A study of the flat plate solar collector in Guinea
International Nuclear Information System (INIS)
Boye Barry, M.
1990-12-01
In this paper, we study a collector, made by cheap local materials (wood, aluminium, etc.), and prepared in the carpenteries, and in the mechanic work rooms with a simple technology. The efficiency of our collector is compared with several variants made in other countries. (author). 9 refs, 6 figs, 2 tabs
The Pulsed Cylindrical Magnetron for Deposition
Korenev, Sergey
2012-10-01
The magnetron sputtering deposition of films and coatings broadly uses in microelectronics, material science, environmental applications and etc. The rate of target evaporation and time for deposition of films and coatings depends on magnetic field. These parameters link with efficiency of gas molecules ionization by electrons. The cylindrical magnetrons use for deposition of films and coatings on inside of pipes for different protective films and coatings in oil, chemical, environmental applications. The classical forming of magnetic field by permanent magnets or coils for big and long cylindrical magnetrons is complicated. The new concept of pulsed cylindrical magnetron for high rate deposition of films and coating for big and long pipes is presented in this paper. The proposed cylindrical magnetron has azimuthally pulsed high magnetic field, which allows forming the high ionized plasma and receiving high rate of evaporation material of target (central electrode). The structure of proposed pulsed cylindrical magnetron sputtering system is given. The main requirements to deposition system are presented. The preliminary data for forming of plasma and deposition of Ta films and coatings on the metal pipers are discussed. The comparison of classical and proposed cylindrical magnetrons is given. The analysis of potential applications is considered.
Selective flotation of phosphate minerals with hydroxamate collectors
Miller, Jan D.; Wang, Xuming; Li, Minhua
2002-01-01
A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.
Performance of solar collectors under low temperature conditions
DEFF Research Database (Denmark)
Bunea, Mircea; Eicher, Sara; Hildbrand, Catherine
The performance of four solar thermal collectors (flat plate, evacuated tube, unglazed with rear insulation and unglazed without rear insulation) was experimentally measured and simulated for temperatures below ambient. The influence of several parameters (e.g. collector inlet temperature, air...... evaluated and results compared to experimental measurements. A mathematical model is also under development to include, in addition to the condensation phenomena, the frost, the rain and the long-wave radiation gains/losses on the rear of the solar collector. While the potential gain from rain was estimated...... to be around 2%, frost heat gains were measured to be up to 40% per day, under specific conditions. Overall, results have shown that unglazed collectors are more efficient than flat plate or evacuated tube collectors at low operation temperatures or for night conditions, making them more suitable for heat pump...
A solar air collector with integrated latent heat thermal storage
Directory of Open Access Journals (Sweden)
Klimes Lubomir
2012-04-01
Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.
Analysis of a solar collector field water flow network
Rohde, J. E.; Knoll, R. H.
1976-01-01
A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.
Thermal analysis of gyrotron traveling-wave tube collector
International Nuclear Information System (INIS)
Zheng Zhiqing; Luo Yong; Jiang Wei; Tang Yong
2013-01-01
In order to solve cooling problem of the gyrotron traveling-wave tube(TWT) collector and guarantee the gyrotron TWT's reliability and stability, the electron trajectories in the gyrotron TWT are simulated using CST electron simulation software. Thermal analysis of the collector with finite element software ANSYS is performed. The ways of applying boundary that affects the distribution of collector temperature are compared. The influence of the water temperature and flow rate on collector temperature distribution under actual heat fluxes (boundary condition) is researched. The size and number of collector fins are optimized, and a relatively perfect structure is obtained finally. The result estimated by simulation is consistent with the experiment and proves that the model and method employed in this work are suitable. (authors)
Mathematical modelling of unglazed solar collectors under extreme operating conditions
DEFF Research Database (Denmark)
Bunea, M.; Perers, Bengt; Eicher, S.
2015-01-01
average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...
Project 'Colored solar collectors' - Annual report 2005
Energy Technology Data Exchange (ETDEWEB)
Schueler, A.; Chambrier, E. De; Roecker, Ch.; Scartezzini, J. -L.
2005-12-15
The architectural integration of thermal solar collectors into buildings is often limited by their black color, and the visibility of tubes and corrugations of the absorber sheets. A certain freedom in color choice would be desirable, but the colored appearance should not cause excessive performance degradation. Multilayered thin film interference filters on the collector glazing can produce a colored reflection, hiding the corrugated metal sheet, while transmitting the non-reflected radiation entirely to the absorber. These interference filters are designed and optimized by numerical simulation and shall be manufactured by the sol-gel dip-coating process. The proposed colored glazed solar collectors will be ideally suited for architectural integration into buildings, e.g. as solar active glass facades. The availability of thin film materials with a refractive index lower than that of silicon favors a higher solar transmission at a given value of visible reflectance. The feasibility of the sol-gel deposition of such low refractive index materials has been demonstrated. For the development of nanostructured materials, analytical methods such as electron microscopy are extremely helpful. Important techniques of substrate pretreatment, sample cleaving, polishing, mounting, and microscope handling have been acquired. First measurements yield images of nanostructures produced by the sol-gel dip-coating process. Nanocomposite Ti{sub x}Si{sub 1-x}O{sub 2} thin films provide a large range of refractive indices. Aiming a high efficiency of the colored reflection, Ti{sub x}Si{sub 1-x}O{sub 2} based multilayered coatings have been designed and subsequently prepared by sol-gel dip-coating. The energy efficiency M = R{sub VIS}/(100%-T{sub sol}) of the obtained colored reflection amounts up to 2.4. For a convincing demonstration sufficiently large samples of high quality are imperatively needed. An infrastructure for the handling of A4 sized samples has been established
Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks
Energy Technology Data Exchange (ETDEWEB)
Glatzmaier, Greg C.; Cooney, Daniel A.
2017-06-27
The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.
Analysis of WWER 1000 collector cracking mechanisms
Energy Technology Data Exchange (ETDEWEB)
Matocha, K.; Wozniak, J. [Vitkovice J.S.C., Ostrava (Switzerland)
1997-12-31
The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.
Analysis of WWER 1000 collector cracking mechanisms
Energy Technology Data Exchange (ETDEWEB)
Matocha, K; Wozniak, J [Vitkovice J.S.C., Ostrava (Switzerland)
1998-12-31
The presentation reviews the large experimental program, started in 1993 in Vitkovice, where the main aim was: (1) a detailed study of strain and thermal ageing, dissolved oxygen content and temperature on subcritical crack growth in 10NiMo8.5 (10GN2MFA) steel, (2) a detailed study of the effect of high temperature water and tube expansion technology on fracture behaviour of ligaments between holes for heat exchange tubes, and (3) a detailed study of the effect of drilling, tube expansion technology and heat treatment on residual stresses on the surface of holes for heat exchange tubes. The aim of all these investigations was to find a dominant damage mechanism responsible for collector cracking to be able to judge the efficiency of implemented modifications and suggested countermeasures and to answer a very important question whether proper operation conditions (mainly water chemistry) make the operation of steam generators made in Vitcovice safe throughout the planned lifetime. 10 refs.
Energy Technology Data Exchange (ETDEWEB)
Martinez Cirre, C. R.
2008-07-01
This work presents several different approaches to hierarchical control algorithms designed for a parabolic-trough solar collector field to demonstrate the possibility of maximizing hypothetical profit possible from this type of plant by improving and increasing plant automation. This study was developed in the current world power supply scenario, posing the possibility of using renewable energies (among which is solar thermal power), which the author is interested in contributing to advancing through research on improved plant operation control. The design was made for the ACUREX distributed solar collector field at the Plataforma Solar de Almeria. The control structures implemented to improve production in the solar collector field are based on a simple two-layered hierarchical control. One regulation layer (Layer 1) in which two proposals have been implemented: a control scheme developed using the feedback linearization technique and another proposal consisting on parallel deed forward control with an I-PD (Integral-Proportional Derivative) control. three proposals were implemented in the top layer (Layer 2) for generating the setpoint, the first one based on a physical model, the second one based on a fuzzy model, and the last uses the physical model and an optimization function for finding the optimum setpoint. (Author)
Characterization of a focusing parabolic guide using neutron radiography method
International Nuclear Information System (INIS)
Kardjilov, Nikolay; Boeni, Peter; Hilger, Andre; Strobl, Markus; Treimer, Wolfgang
2005-01-01
The aim of the investigation was to test the focusing properties of a new type of focusing neutron guide (trumpet) with parabolically shaped walls. The guide has a length of 431mm with an entrance area of 16x16mm 2 and an output area of 4x4mm 2 . The interior surfaces were coated with a supermirror-surface m=3 and due to their parabolic shape it was expected that an incident parallel beam can be focused in the focal point of the parabolas. To prove this statement the neutron intensity distribution at different distances behind the guide was recorded by means of a standard, high-resolution radiography detector. The experiments were performed at the V12b instrument at HMI with different levels of beam monochromatization demonstrating maximum intensity gains of about 25. The consideration for using the focusing guide for the purposes of cold neutron radiography will be presented
Shock wave convergence in water with parabolic wall boundaries
International Nuclear Information System (INIS)
Yanuka, D.; Shafer, D.; Krasik, Ya.
2015-01-01
The convergence of shock waves in water, where the cross section of the boundaries between which the shock wave propagates is either straight or parabolic, was studied. The shock wave was generated by underwater electrical explosions of planar Cu wire arrays using a high-current generator with a peak output current of ∼45 kA and rise time of ∼80 ns. The boundaries of the walls between which the shock wave propagates were symmetric along the z axis, which is defined by the direction of the exploding wires. It was shown that with walls having a parabolic cross section, the shock waves converge faster and the pressure in the vicinity of the line of convergence, calculated by two-dimensional hydrodynamic simulations coupled with the equations of state of water and copper, is also larger
Laser propagation and compton scattering in parabolic plasma channel
Dongguo, L; Yokoya, K; Hirose, T
2003-01-01
A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)
Polarization properties of linearly polarized parabolic scaling Bessel beams
Energy Technology Data Exchange (ETDEWEB)
Guo, Mengwen; Zhao, Daomu, E-mail: zhaodaomu@yahoo.com
2016-10-07
The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge. - Highlights: • We investigated the polarization properties of modified parabolic scaling Bessel beams with linear polarization. • We studied the evolution of transverse intensity profiles for the three components of these beams. • The intensity patterns of the cross polarization and longitudinal components can reflect the sign of the topological charge.
Compressible stability of growing boundary layers using parabolized stability equations
Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Y.
1991-01-01
The parabolized stability equation (PSE) approach is employed to study linear and nonlinear compressible stability with an eye to providing a capability for boundary-layer transition prediction in both 'quiet' and 'disturbed' environments. The governing compressible stability equations are solved by a rational parabolizing approximation in the streamwise direction. Nonparallel flow effects are studied for both the first- and second-mode disturbances. For oblique waves of the first-mode type, the departure from the parallel results is more pronounced as compared to that for the two-dimensional waves. Results for the Mach 4.5 case show that flow nonparallelism has more influence on the first mode than on the second. The disturbance growth rate is shown to be a strong function of the wall-normal distance due to either flow nonparallelism or nonlinear interactions. The subharmonic and fundamental types of breakdown are found to be similar to the ones in incompressible boundary layers.
A Review of Psycho-Physiological Responses to Parabolic Flight
Brummer, Vera; Schneider, Stefan; Guardiera, Simon; Struder, Heiko K.
2008-06-01
This review combines and correlates data of several studies conducted in the recent years where we were able to show an increase in stress hormone concentrations, EEG activity and a decrease in mood during parabolic flights. The aim of these studies was to consider whether previous results showing a decrease in mental and perceptual motor performance during weightlessness were solely due to the changes in gravity itself or were also, at least partly, explainable by an increase of stress and/or arousal during parabolic flights. A correlation between stress hormones and mood but not between EEG activity and mood nor between stress hormones and EEG activity could be found. We propose two different stressors: First an activation of the adrenomedullary system, secondly a general increase of cortical arousal. Whereas the first one is perceived by subjects, this is not the case for the second one.
Integrated parabolic nanolenses on MicroLED color pixels
Demory, Brandon; Chung, Kunook; Katcher, Adam; Sui, Jingyang; Deng, Hui; Ku, Pei-Cheng
2018-04-01
A parabolic nanolens array coupled to the emission of a nanopillar micro-light emitting diode (LED) color pixel is shown to reduce the far field divergence. For a blue wavelength LED, the total emission is 95% collimated within a 0.5 numerical aperture zone, a 3.5x improvement over the same LED without a lens structure. This corresponds to a half-width at half-maximum (HWHM) line width reduction of 2.85 times. Using a resist reflow and etchback procedure, the nanolens array dimensions and parabolic shape are formed. Experimental measurement of the far field emission shows a HWHM linewidth reduction by a factor of 2x, reducing the divergence over the original LED.
Physiologic Pressure and Flow Changes During Parabolic Flight (Pilot Study)
Pantalos, George; Sharp, M. Keith; Mathias, John R.; Hargens, Alan R.; Watenpaugh, Donald E.; Buckey, Jay C.
1999-01-01
The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.
Real-time optical laboratory solution of parabolic differential equations
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
Stability and instability of stationary solutions for sublinear parabolic equations
Kajikiya, Ryuji
2018-01-01
In the present paper, we study the initial boundary value problem of the sublinear parabolic equation. We prove the existence of solutions and investigate the stability and instability of stationary solutions. We show that a unique positive and a unique negative stationary solutions are exponentially stable and give the exact exponent. We prove that small stationary solutions are unstable. For one space dimensional autonomous equations, we elucidate the structure of stationary solutions and study the stability of all stationary solutions.
Analytic convergence of harmonic metrics for parabolic Higgs bundles
Kim, Semin; Wilkin, Graeme
2018-04-01
In this paper we investigate the moduli space of parabolic Higgs bundles over a punctured Riemann surface with varying weights at the punctures. We show that the harmonic metric depends analytically on the weights and the stable Higgs bundle. This gives a Higgs bundle generalisation of a theorem of McOwen on the existence of hyperbolic cone metrics on a punctured surface within a given conformal class, and a generalisation of a theorem of Judge on the analytic parametrisation of these metrics.
Monte Carlo method for solving a parabolic problem
Directory of Open Access Journals (Sweden)
Tian Yi
2016-01-01
Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.
Design and Realisation of a Parabolic Solar Cooker
International Nuclear Information System (INIS)
Ouannene, M; Chaouachi, B; Gabsi, S
2009-01-01
The sun s energy is really powerful. Solar energy is renewable and it s free. We can use it to make electricity, to heat buildings and to cook. The field of cooking consumes many fossil fuels such as gas and wood. Million people cannot find enough gas and/or wood to cook, so using solar cookers is a good idea. During this work, we designed, built and studied a parabolic solar cooker. The characteristic equations and the experimental results are given
Real parabolic vector bundles over a real curve
Indian Academy of Sciences (India)
Abstract. We define real parabolic structures on real vector bundles over a real curve. Let (X,σX ) be a real curve, and let S ⊂ X be a non-empty finite subset of X such that σX (S) = S. Let N ≥ 2 be an integer. We construct an N-fold cyclic cover p : Y → X in the category of real curves, ramified precisely over each point of S, ...
Interior Gradient Estimates for Nonuniformly Parabolic Equations II
Directory of Open Access Journals (Sweden)
Lieberman Gary M
2007-01-01
Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.
Air solar collectors in building use - A review
Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu
2018-02-01
In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.
Pathways toward a low cost evacuated collector system
Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.
The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.
Evaluation of heat transfer enhancement in air-heating collectors
Energy Technology Data Exchange (ETDEWEB)
Mattox, D. L.
1979-06-01
The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.
PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR
Directory of Open Access Journals (Sweden)
M. Norhafana
2015-11-01
Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation
Air solar collectors in building use - A review
Directory of Open Access Journals (Sweden)
Bejan Andrei-Stelian
2018-01-01
Full Text Available In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.
Artificial neural networks approach on solar parabolic dish cooker
International Nuclear Information System (INIS)
Lokeswaran, S.; Eswaramoorthy, M.
2011-01-01
This paper presents heat transfer analysis of solar parabolic dish cooker using Artificial Neural Network (ANN). The objective of this study to envisage thermal performance parameters such as receiver plate and pot water temperatures of the solar parabolic dish cooker by using the ANN for experimental data. An experiment is conducted under two cases (1) cooker with plain receiver and (2) cooker with porous receiver. The Back Propagation (BP) algorithm is used to train and test networks and ANN predictions are compared with experimental results. Different network configurations are studied by the aid of searching a relatively better network for prediction. The results showed a good regression analysis with the correlation coefficients in the range of 0.9968-0.9992 and mean relative errors (MREs) in the range of 1.2586-4.0346% for the test data set. Thus ANN model can successfully be used for the prediction of the thermal performance parameters of parabolic dish cooker with reasonable degree of accuracy. (authors)
Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint
Energy Technology Data Exchange (ETDEWEB)
Turchi, C. S.; Ma, Z.; Erbes, M.
2011-03-01
A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.
Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology
International Nuclear Information System (INIS)
Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.
2015-01-01
We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)