WorldWideScience

Sample records for cyanobacterium nostoc punctiforme

  1. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  2. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-02-10

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.

  3. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.

  4. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.

  5. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-06-21

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.

  6. Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ekman, Martin; Sandh, Gustaf; Nenninger, Anja; Oliveira, Paulo; Stensjö, Karin

    2014-03-01

    Ferritin-like proteins constitute a remarkably heterogeneous protein family, including ferritins, bacterioferritins and Dps proteins. The genome of the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme encodes five ferritin-like proteins. In the present paper, we report a multidimensional characterization of these proteins. Our phylogenetic and bioinformatics analyses suggest both structural and physiological differences among the ferritin-like proteins. The expression of these five genes responded differently to hydrogen peroxide treatment, with a significantly higher rise in transcript level for Npun_F3730 as compared with the other four genes. A specific role for Npun_F3730 in the cells tolerance against hydrogen peroxide was also supported by the inactivation of Npun_F3730, Npun_R5701 and Npun_R6212; among these, only the ΔNpun_F3730 strain showed an increased sensitivity to hydrogen peroxide compared with wild type. Analysis of promoter-GFP reporter fusions of the ferritin-like genes indicated that Npun_F3730 and Npun_R5701 were expressed in all cell types of a diazotrophic culture, while Npun_F6212 was expressed specifically in heterocysts. Our study provides the first comprehensive analysis combining functional differentiation and cellular specificity within this important group of proteins in a multicellular cyanobacterium. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ricci, J N; Morton, R; Kulkarni, G; Summers, M L; Newman, D K

    2017-01-01

    Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid-producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2-methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid-producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2-methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2-methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid-mediated enhancement of nitrogen-rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2-methylhopanes in the rock record during episodes of disrupted nutrient cycling. © 2016 John Wiley & Sons Ltd.

  8. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  9. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Splitt, Samantha D; Risser, Douglas D

    2016-03-01

    Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state.

  10. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5.

    Science.gov (United States)

    Lindberg, Pia; Lindblad, Peter; Cournac, Laurent

    2004-04-01

    Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.

  11. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme.

    Science.gov (United States)

    Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa

    2017-01-15

    l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)(+)-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD(+) Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD(+)/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme.

  13. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  15. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  16. A putative O-linked β-N-acetylglucosamine transferase is essential for hormogonium development and motility in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Khayatan, Behzad; Bains, Divleen K; Cheng, Monica H; Cho, Ye Won; Huynh, Jessica; Kim, Rachelle; Omoruyi, Osagie H; Pantoja, Adriana P; Park, Jun Sang; Peng, Julia K; Splitt, Samantha D; Tian, Mason Y; Risser, Douglas D

    2017-02-27

    Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility associated polysaccharide. In a subset of these organisms, motility is only achieved after the transient differentiation of hormogonia, specialized filaments that enter a non-growth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycle of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming, filamentous cyanobacterium Nostoc punctiforme, a forward genetic screen was employed. The first gene identified using this screen, designated ogtA, encodes a putative O-linked β-N-acetylglucosamine transferase (OGT). Deletion of ogtA abolished motility while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA, but not HmpD, is dependent on ogtA RT-qPCR analysis indicated equivalent levels of pilA transcript in the wild-type and ΔogtA strain, while a reporter construct consisting of the intergenic region 5' to pilA fused to gfp produced lower levels of fluorescence in the ΔogtA strain than the wild-type. Production of hormogonium polysaccharide in the ΔogtA strain is reduced compared to the wild type, but comparable to that of a pilA-deletion strain. Collectively, these results imply that O-GlcNAc protein modification regulates the accumulation of PilA via a post-transcriptional mechanism in developing hormogonia.Importance Filamentous cyanobacteria are among the most developmentally complex prokaryotes. Species such as Nostoc punctiforme develop an array of cell types

  17. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    Science.gov (United States)

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments

  18. The two Dps proteins, NpDps2 and NpDps5, are involved in light-induced oxidative stress tolerance in the N2-fixing cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Moparthi, Vamsi K; Li, Xin; Vavitsas, Konstantinos; Dzhygyr, Ievgen; Sandh, Gustaf; Magnuson, Ann; Stensjö, Karin

    2016-11-01

    Cyanobacteria are photosynthetic prokaryotes that are considered biotechnologically prominent organisms for production of high-value compounds. Cyanobacteria are subject to high-light intensities, which is a challenge that needs to be addressed in design of efficient bio-engineered photosynthetic organisms. Dps proteins are members of the ferritin superfamily and are omnipresent in prokaryotes. They play a major role in oxidative stress protection and iron homeostasis. The filamentous, heterocyst-forming Nostoc punctiforme, has five Dps proteins. In this study we elucidated the role of these Dps proteins in acclimation to high light intensity, the gene loci organization and the transcriptional regulation of all five dps genes in N. punctiforme was revealed, and dps-deletion mutant strains were used in physiological characterization. Two mutants defective in Dps2 and Dps5 activity displayed a reduced fitness under increased illumination, as well as a differential Photosystem (PS) stoichiometry, with an elevated Photosystem II to Photosystem I ratio in the dps5 deletion strain. This work establishes a Dps-mediated link between light tolerance, H2O2 detoxification, and iron homeostasis, and provides further evidence on the non-redundant role of multiple Dps proteins in this multicellular cyanobacterium. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  20. Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme.

    Science.gov (United States)

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2016-03-01

    Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.

  1. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.

    Science.gov (United States)

    Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

    2012-10-01

    Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.

  2. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  3. Molecular genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species.

    Science.gov (United States)

    Arima, Hiromi; Horiguchi, Noriomi; Takaichi, Shinichi; Kofuji, Rumiko; Ishida, Ken-Ichiro; Wada, Keishiro; Sakamoto, Toshio

    2012-01-01

    The phylogeny of the terrestrial cyanobacterium Nostoc commune and its neighboring Nostoc species was studied using molecular genetic and chemotaxonomic approaches. At least eight genotypes of N. commune were characterized by the differences among 16S rRNA gene sequences and the petH gene encoding ferredoxin-NADP⁺ oxidoreductase and by random amplified polymorphic DNA analysis. The genotypes of N. commune were distributed in Japan without regional specificity. The nrtP gene encoding NrtP-type nitrate/nitrite permease was widely distributed in the genus Nostoc, suggesting that the occurrence of the nrtP gene can be one of the characteristic features that separate cyanobacteria into two groups. The wspA gene encoding a 36-kDa water stress protein was only found in N. commune and Nostoc verrucosum, suggesting that these Nostoc species that form massive colonies with extracellular polysaccharides can be exclusively characterized by the occurrence of the wspA gene. Fifteen species of Nostoc and Anabaena were investigated by comparing their carotenoid composition. Three groups with distinct patterns of carotenoids were related to the phylogenic tree constructed on the basis of 16S rRNA sequences. Nostoc commune and Nostoc punctiforme were clustered in one monophyletic group and characterized by the occurrence of nostoxanthin, canthaxanthin, and myxol glycosides.

  4. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    Science.gov (United States)

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  5. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Science.gov (United States)

    2009-01-01

    Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp). To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp) is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence. PMID:19284581

  6. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Lindberg Pia

    2009-03-01

    Full Text Available Abstract Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp. To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence.

  7. Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Pearson, L; Michalczyk, A A; Bräu, L; Neilan, B A; Ackland, M L

    2015-11-01

    To characterize genes involved in maintaining homeostatic levels of zinc in the cyanobacterium Nostoc punctiforme. Metal efflux transporters play a central role in maintaining homeostatic levels of trace elements such as zinc. Sequence analyses of the N. punctiforme genome identified two potential cation diffusion facilitator (CDF) metal efflux transporters, Npun_F0707 (Cdf31) and Npun_F1794 (Cdf33). Deletion of either Cdf31or Cdf33 resulted in increased zinc retention over 3 h. Interestingly, Cdf31(-) and Cdf33(-) mutants showed no change in sensitivity to zinc exposure in comparison with the wild type, suggesting some compensatory capacity for the loss of each other. Using qRT-PCR, a possible interaction was observed between the two cdf's, where the Cdf31(-) mutant had a more profound effect on cdf33 expression than Cdf33(-) did on cdf31. Over-expression of Cdf31 and Cdf33 in ZntA(-) - and ZitB(-) -deficient Escherichia coli revealed function similarities between the ZntA and ZitB of E. coli and the cyanobacterial transporters. The data presented shed light on the function of two important transporters that regulate zinc homeostasis in N. punctiforme. This study shows for the first time the functional characterization of two cyanobacterial zinc efflux proteins belonging to the CDF family. © 2015 The Society for Applied Microbiology.

  8. Photoinduced reduction of the medial FeS center in the hydrogenase small subunit HupS from Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Hammarström, Leif; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2015-07-01

    The small subunit from the NiFe uptake hydrogenase, HupSL, in the cyanobacterium Nostoc punctiforme ATCC 29133, has been isolated in the absence of the large subunit (P. Raleiras, P. Kellers, P. Lindblad, S. Styring, A. Magnuson, J. Biol. Chem. 288 (2013) 18,345-18,352). Here, we have used flash photolysis to reduce the iron-sulfur clusters in the isolated small subunit, HupS. We used ascorbate as electron donor to the photogenerated excited state of Ru(II)-trisbipyridine (Ru(bpy)3), to generate Ru(I)(bpy)3 as reducing agent. Our results show that the isolated small subunit can be reduced by the Ru(I)(bpy)3 generated through flash photolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria).

    Science.gov (United States)

    Hudek, L; Torriero, A A J; Michalczyk, A A; Neilan, B A; Ackland, M L; Bräu, Lambert

    2017-05-01

    This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H2O2, no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H2O2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582(-) cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582(-) cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  10. Genetic analysis reveals the identity of the photoreceptor for phototaxis in hormogonium filaments of Nostoc punctiforme.

    Science.gov (United States)

    Campbell, Elsie L; Hagen, Kari D; Chen, Rui; Risser, Douglas D; Ferreira, Daniela P; Meeks, John C

    2015-02-15

    In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133

    Science.gov (United States)

    2011-01-01

    Background Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the hyp-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (hupSL) and the accessory maturation proteins (hyp genes) in the cyanobacteria Nostoc PCC 7120 and N. punctiforme were analysed using molecular methods. Findings The five ORFs, located in between the uptake hydrogenase structural genes and the hyp-genes, can form a transcript with the hyp-genes. An identical genomic localization of these ORFs are found in other filamentous, N2-fixing cyanobacterial strains. In N. punctiforme and Nostoc PCC 7120 the ORFs upstream of the hyp-genes showed similar transcript level profiles as hupS (hydrogenase structural gene), nifD (nitrogenase structural gene), hypC and hypF (accessory hydrogenase maturation genes) after nitrogen depletion. In silico analyzes showed that these ORFs in N. punctiforme harbor the same conserved regions as their homologues in Nostoc PCC 7120 and that they, like their homologues in Nostoc PCC 7120, can be transcribed together with the hyp-genes forming a larger extended hyp-operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended hyp-operon in N. punctiforme and Nostoc PCC 7120. Conclusions The five ORFs upstream of the hyp-genes in several filamentous N2-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In N. punctiforme and Nostoc PCC 7120 they are transcribed as one operon and may form transcripts together with the hyp-genes. The expression pattern of the five ORFs within the extended hyp-operon in both Nostoc punctiforme and Nostoc PCC 7120 is similar to

  12. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications

    Science.gov (United States)

    Doughty, David M.; Hunter, Ryan C.; Summons, Roger E.; Newman, Dianne K.

    2010-01-01

    2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step towards understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased 3-fold in cells starved of nitrogen but returned to levels consistent with vegetative cells within two weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosyntheis in N. punctiforme. PMID:19811542

  13. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.

    Science.gov (United States)

    Schöpf, Lotte; Mautz, Jürgen; Sandmann, Gerhard

    2013-05-01

    In the genome of Nostoc punctiforme PCC 73102, three functional β-carotene ketolase genes exist, one of the crtO and two of the crtW type. They were all expressed and their corresponding enzymes were functional inserting 4-keto groups into β-carotene as shown by functional pathway complementation in Escherichia coli. They all synthesized canthaxanthin but with different efficiencies. Canthaxanthin is the photoprotective carotenoid of N. punctiforme PCC 73102. Under high-light stress, its synthesis was enhanced. This was caused by up-regulation of the transcripts of two genes in combination. The first crtB-encoding phytoene synthase is the gate way enzyme of carotenogenesis resulting in an increased inflow into the pathway. The second was the ketolase gene crtW148 which in high light takes over β-carotene conversion into canthaxanthin from the other ketolases. The other ketolases were down-regulated under high-light conditions. CrtW148 was also exclusively responsible for the last step in 4-keto-myxoxanthophyll synthesis.

  14. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Bräu, L; Michalczyk, A A; Neilan, B A; Meeks, J C; Ackland, M L

    2015-12-01

    Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

  15. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Daniela eFerreira

    2016-05-01

    Full Text Available The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (∆scyD, ∆scyE and ∆scyF and their phenotypes studied. Expectedly, ∆scyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ∆scyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ∆scyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

  16. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.

    Science.gov (United States)

    Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh

    2013-11-01

    Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Svercel, Miroslav; Saladin, Bianca; van Moorsel, Sofia J; Wolf, Sarah; Bagheri, Homayoun C

    2011-09-13

    Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action.The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc.The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  18. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  20. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification.

    Science.gov (United States)

    Ramirez, Miguel; Valdes, Najla; Guan, Dongli; Chen, Zhilei

    2013-03-01

    We report the engineering of a DnaE intein able to catalyze rapid C-terminal cleavage in the absence of N-terminal cleavage. A single mutation in DnaE intein from Nostoc punctiforme PCC73102 (NpuDnaE), Asp118Gly, was introduced based on sequence alignment with a previously engineered C-terminal cleaving intein mini-MtuRecA. This mutation was able to both suppress N-terminal cleavage and significantly elevate C-terminal cleavage efficiency. Molecular modeling suggests that in NpuDnaE Asp118 forms a hydrogen bond with the penultimate Asn, preventing its spontaneous cyclization prior to N-terminal cleavage. Mutation of Asp118 to Gly essentially abolishes this restriction leading to subsequent C-terminal cleavage in the absence of N-terminal cleavage. The Gly118 NpuDnaE mutant exhibits rapid thio-dependent C-terminal cleavage kinetics with 80% completion within 3 h at room temperature. We used this newly engineered intein to develop both column-free and chromatography-based protein purification methods utilizing the elastin-like-polypeptide and chitin-binding protein as removable purification tags, respectively. We demonstrate rapid target protein purification to electrophoretic purity at yields up to 84 mg per liter of Escherichia coli culture.

  1. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.

    Science.gov (United States)

    Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

    2014-12-15

    Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Science.gov (United States)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  3. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  4. Characterization and in vivo regulon determination of an ECF sigma factor and its cognate anti-sigma factor in Nostoc punctiforme.

    Science.gov (United States)

    Bell, Nicole; Lee, Jamie J; Summers, Michael L

    2017-04-01

    Based on primary sequence comparisons and genomic context, Npun_F4153 (SigG)/Npun_F4154 (SapG) of the cyanobacterium Nostoc punctiforme were hypothesized to encode an ECF sigma factor/anti-sigma factor pair. Transcription of sigG increased in heterocysts and akinetes, and after EDTA treatment. Interaction between SigG and the predicted cytoplasmic domain of SapG was observed in vitro. A SigG-GFP translational fusion protein localized to the periphery of vegetative cells in vivo, but lost this association following heat stress. A sigG mutant was unable to survive envelope damage caused by heat or EDTA, but was able to form functional heterocysts. Akinetes in the mutant strain appeared normal, but these cultures were less resistant to lysozyme and cold treatments than those of the wild-type strain. The SigG in vivo regulon was determined before and during akinete differentiation using DNA microarray analysis, and found to include multiple genes with putative association to the cell envelope. Mapped promoters common to both arrays enabled identification of a SigG promoter-binding motif that was supported in vivo by reporter studies, and in vitro by run-off transcription experiments. These findings support SigG/SapG as a sigma/anti-sigma pair involved in repair of envelope damage resulting from exogenous sources or cellular differentiation. © 2017 John Wiley & Sons Ltd.

  5. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study.

    Science.gov (United States)

    Soule, Tanya; Gao, Qunjie; Stout, Valerie; Garcia-Pichel, Ferran

    2013-01-01

    Cyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures. Of those genes, 473 were up-regulated, while only 100 were down-regulated. Many of the down-regulated genes were involved in photosynthetic pigment biosynthesis, indicating a significant shift in this metabolism. As expected, we detected the up-regulation of genes encoding antioxidant enzymes and the sunscreen, scytonemin. However, a majority of the up-regulated genes, 47%, were unassignable bioinformatically to known functional categories, suggesting that the UVA stress response is not well understood. Interestingly, the most dramatic up-regulation involved several contiguous genes of unassigned metabolism on plasmid A. This is the first global UVA stress response analysis of any phototrophic microorganism and the differential expression of 8% of the genes of the Nostoc genome indicates that adaptation to UVA in Nostoc has been an evolutionary force of significance. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  6. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2009-03-01

    Full Text Available Abstract Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW and LexA (hoxW. In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer

  7. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Science.gov (United States)

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  8. The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate.

    Science.gov (United States)

    Vilhauer, Laura; Jervis, Judith; Ray, W Keith; Helm, Richard F

    2014-05-01

    The ability of nitrogen-fixing filamentous Cyanobacteria to adapt to multiple environments comes in part from assessing and responding to external stimuli, an event that is initiated in the extracellular milieu. While it is known that these organisms produce numerous extracellular substances, little work has been done to characterize both the metabolites and proteins present under standard laboratory growth conditions. We have assessed the extracellular milieu of Nostoc punctiforme when grown in liquid culture in the presence and absence of a nitrogen source (nitrate). The extracellular proteins identified were enriched in integrin β-propellor domains and calcium-binding sites with sequences unique to N. punctiforme, supporting a role for extracellular proteins in modulating species-specific recognition and behavior processes. Extracellular proteases are present and active under both conditions, with the cells grown with nitrate having a higher activity when normalized to chlorophyll levels. The released metabolites are enriched in peptidoglycan-derived tetrasaccharides, with higher levels in nitrate-free media.

  9. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme.

    Science.gov (United States)

    Risser, Douglas D; Meeks, John C

    2013-02-01

    Many filamentous cyanobacteria are capable of gliding motility by an undefined mechanism. Within the heterocyst-forming clades, some strains, such as the Nostoc spp. and Fisherella spp., are motile only as specialized filaments termed hormogonia. Here we report on the phenotype of inactivation of a methyl-accepting chemotaxis-like protein in Nostoc punctiforme, designated HmpD. The gene hmpD was found to be essential for hormogonium development, motility and polysaccharide secretion. Comparative global transcriptional profiling of the ΔhmpD strain demonstrated that HmpD has a profound effect on the transcriptional programme of hormogonium development, influencing approximately half of the genes differentially transcribed during differentiation. Utilizing this transcriptomic data, we identified a gene locus, designated here as hps, that appears to encode for a novel polysaccharide secretion system. Transcripts for the genes in the hps locus are upregulated in two steps, with the second step dependent on HmpD. Deletion of hpsA, hpsBCD or hpsEFG resulted in the complete loss of motility and polysaccharide secretion, similar to deletion of hmpD. Genes in the hps locus are highly conserved in the filamentous cyanobacteria, but generally absent in unicellular strains, implying a common mechanism of motility unique to the filamentous cyanobacteria.

  10. Nostoc PCC7524, a cyanobacterium which contains five sequence-specific deoxyribonucleases

    NARCIS (Netherlands)

    Reaston, J.; Duybesteyn, M.G.C.; Waard, Adrian de

    Five nucleotide sequence-specific deoxyribonucleases present in cell-free extracts of the filamentous cyanobacterium Nostoc PCC7524 have been purified and characterized. One of these enzymes, designated Nsp(7524)I cleaves at a new kind of nucleotide sequence i.e. 5'-PuCATG λ Py-3'. The other four

  11. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    Science.gov (United States)

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation.

  12. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, P.; Lindblad, P. [Uppsala Univ. (Sweden). Dept. of Physiological Botany; Schuetz, K.; Happe, T. [Universitaet Bonn (Germany). Botanisches Inst.

    2002-12-01

    The hupL gene, encoding the uptake hydrogenase large subunit, in Nostoc sp. strain ATCC 29133, a strain lacking a bidirectional hydrogenase, was inactivated by insertional mutagenesis. Recombinant strains were isolated and analysed, and one hupL{sup -} strain, NHM5, was selected for further study. Cultures of NHM5 were grown under nitrogen-fixing conditions and H{sub 2} evolution under air was observed using an H{sub 2} electrode. (Author)

  13. Phycobiliprotein accumulation in cyanobacterium Nostoc linckia and modification of antioxidant activity

    Directory of Open Access Journals (Sweden)

    Ana VALUTA

    2015-01-01

    Full Text Available The article deals with iron(III coordination compounds with Schiff bases as ligands and their impact on phycobiliprotein accumulation by cyanobacterium Nostoc linckia. Stimulatory effect depends on the applied dose and in case of three compounds, the concentration 20 mg/L was determined as one with moderate intensity. Lower concentrations resulted in an increase of the phycobiliprotein synthesis. There was found a significant positive correlation between phycobiliprotein content and ABTS (2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay values displayed by aqueous extracts from Nostoc linckia biomass cultivated in nutrient medium with these coordination compounds. Hence, it is possible to modify the antioxidant activity of Nostoc biomass by applying low concentrations of chemical stimuli.

  14. Crucial Role of Extracellular Polysaccharides in Desiccation and Freezing Tolerance in the Terrestrial Cyanobacterium Nostoc commune

    Science.gov (United States)

    Tamaru, Yoshiyuki; Takani, Yayoi; Yoshida, Takayuki; Sakamoto, Toshio

    2005-01-01

    The cyanobacterium Nostoc commune is adapted to the terrestrial environment and has a cosmopolitan distribution. In this study, the role of extracellular polysaccharides (EPS) in the desiccation tolerance of photosynthesis in N. commune was examined. Although photosynthetic O2 evolution was not detected in desiccated colonies, the ability of the cells to evolve O2 rapidly recovered after rehydration. The air-dried colonies contained approximately 10% (wt/wt) water, and field-isolated, natural colonies with EPS were highly water absorbent and were rapidly hydrated by atmospheric moisture. The cells embedded in EPS in Nostoc colonies were highly desiccation tolerant, and O2 evolution was not damaged by air drying. Although N. commune was determined to be a mesophilic cyanobacterium, the cells with EPS were heat tolerant in a desiccated state. EPS could be removed from cells by homogenizing colonies with a blender and filtering with coarse filter paper. This treatment to remove EPS did not damage Nostoc cells or their ability to evolve O2, but O2 evolution was significantly damaged by desiccation treatment of the EPS-depleted cells. Similar to the EPS-depleted cells, the laboratory culture strain KU002 had only small amount of EPS and was highly sensitive to desiccation. In the EPS-depleted cells, O2 evolution was also sensitive to freeze-thaw treatment. These results strongly suggest that EPS of N. commune is crucial for the stress tolerance of photosynthesis during desiccation and during freezing and thawing. PMID:16269775

  15. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    OpenAIRE

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant micr...

  16. Cylindrocyclophanes with Proteasome Inhibitory Activity from the Cyanobacterium Nostoc sp

    Science.gov (United States)

    Chlipala, George E.; Sturdy, Megan; Krunic, Aleksej; Lantvit, Daniel D.; Shen, Qi; Porter, Kyle; Swanson, Steven M.; Orjala, Jimmy

    2010-01-01

    Material collected from a parkway in the city of Chicago afforded the isolation of a Nostoc species (UIC 10022A). The extract of this strain displayed significant inhibition of the 20S proteasome as well as antiproliferative activity against HT29, MCF7, NCI-H460, and SF268 cancer cell lines. A standardized dereplication protocol allowed for the rapid identification of three known (11-13) and nine new (1-9) chlorinated cylindrocyclophanes from less than 100 mg of organic extract. Scale-up isolation of 1-9 and 11-13 from a larger extract was guided by LC-UV-MS data. In addition, KBr enrichment of the culture media afforded the isolation of a brominated cylindrocyclophane (10). Biological evaluation of 1-5, 9, and 10-13 revealed a large range of activity against the 20S proteasome and allowed the determination of preliminary structure-activity relationships (SAR) of the cylindrocyclophane pharmacophore. PMID:20825206

  17. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun, E-mail: eom@gist.ac.kr [Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}. The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  18. Systems Level Approaches to Understanding and Manipulating Heterocyst Differentiation in Nostoc Punctiforme: Sites of Hydrogenase and Nitrogenase Synthesis and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, John C. [University of California, Davis, CA (United States)

    2015-04-02

    Heterocysts are specialized cells that establish a physiologically low oxygen concentration; they function as the sites of oxygen-sensitive nitrogen fixation and hydrogen metabolism in certain filamentous cyanobacteria. They are present at a frequency of less than 10% of the cells and singly in a nonrandom spacing pattern in the filaments. The extent of differential gene expression during heterocyst differentiation was defined by DNA microarray analysis in wild type and mutant cultures of Nostoc punctiforme. The results in wild-type cultures identified two groups of genes; approximately 440 that are unique to heterocyst formation and function, and 500 that respond positively and negatively to the transient stress of nitrogen starvation. Nitrogen fixation is initiated within 24 h after induction, but the cultures require another 24 h before growth is reinitiated. Microarray analyses were conducted on strains with altered expression of three genes that regulate the presence and spacing of heterocysts in the filaments; loss of function or over expression of these genes increases the heterocyst frequency 2 to 3 fold compared to the wild-type. Mutations in the genes hetR and hetF result in the inability to differentiate heterocysts, whereas over expression of each gene individually yields multiple contiguous heterocysts at sites in the filaments; they are positive regulatory elements. Mutation of the gene patN results in an increase in heterocysts frequency, but, in this case, the heterocysts are singly spaced in the filaments with a decrease in the number of vegetative cells in the interval between heterocysts; this is a negative regulatory element. However, over expression of patN resulted in the wild-type heterocyst frequency and spacing pattern. Microarray results indicated HetR and HetF influence the transcription of a common set of about 395 genes, as well as about 350 genes unique to each protein. HetR is known to be a transcriptional regulator and HetF is

  19. Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120▿

    Science.gov (United States)

    Sjöholm, Johannes; Oliveira, Paulo; Lindblad, Peter

    2007-01-01

    The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and rec

  20. Genetically modified cyanobacterium Nostoc muscorum overproducing proline in response to salinity and osmotic stresses

    Indian Academy of Sciences (India)

    Santosh Bhargava

    2006-06-01

    In the parent Nostoc muscorum an active proline oxidase enzyme is required to assimilate exogenous proline as a fixed nitrogen source. Cyanobacterial mutants, resistant to growth inhibitory action of proline analogue L-azetidine-2-carboxylate (Ac-R), were deficient in proline oxidase activity, and were over-accumulators of proline. Proline over-accumulation, resulting either from mutational acquisition of the Ac-R phenotype, or from salinity-induced uptake of exogenous proline, confirmed enhanced salinity/osmotic tolerance in the mutant strain. The nitrogenase activity and photosynthetic O2 evolution of the parent were sensitive to both salinity as well as osmotic stresses than of Ac-R mutant strain. In addition, the mutation to Ac-resistant phenotype showed no alteration in salinity inducible potassium transport system in the cyanobacterium

  1. Space-environmental tolerances in a cyanobacterium, Nostoc sp. HK-01

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yokobori, Shin-ichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Ajioka, Reiko; Yamagishi, Akihiko; Inoue, Kotomi

    2016-07-01

    We have been investigating the tolerances to space-environments of a cyanobacterium, Nostoc sp. HK-01 (hereafter referred to as HK-01). Dry colonies of HK-01 had high tolerance to dry conditions, but more detailed information about tolerance to high-temperature, UV, gamma-ray and heavy particle beams were not deeply investigated. The obtained dry colonies of HK-01 after exposure to each of the conditions described above were investigated. In all of the tested colonies of HK-01 after exposure, all or some of the cells in the colonies were alive. One of the purposes of space agriculture is growing plants on Mars. In the early stages, of our research, cyanobacteria are introduced on Mars to promote the oxidation of the atmosphere and the formation of soil from Mars's regolith. HK-01 will contribute to each of these factors in the future.

  2. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Science.gov (United States)

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  3. Utilization of a terrestrial cyanobacterium, Nostoc sp. HK-01, for space habitation

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Arai, Mayumi; Yamashita, Masamichi; Katoh, Hiroshi; Ajioka, Reiko; Inoue, Kotomi

    2016-07-01

    A terrestrial cyanobacterium, Nostoc sp. HK-01 (hereafter HK-01), has several useful abilities for space habitation; photosynthesis, nitrogen fixation, and space environmental tolerances to vacuum, UV, gamma-ray, heavy particle beam, low and high temperature. Space environmental tolerances are important for transportation to Mars. HK-01 can grow on Martian regolith simulant (MRS) in vitro. Furthermore, HK-01 is useful as food. HK-01 may be utilized as oxygen supply, soil formation and food material for bio-chemical circulation in closed bio-ecosystems, including space habitation such as Mars. HK-01 was adopted as a biological material for the "TANPOPO" mission (JAXA et al.,), because of their high environmental tolerances. The "TANPOPO" mission is performing the space exposure experiments on the Japan Experimental Module (JEM) of the International Space Station (ISS). The results of these experiments will show the ability of HK-01 to survive in space.

  4. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Birgitta Bergman

    2013-08-01

    Full Text Available Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA, proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay, even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.

  5. Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110).

    Science.gov (United States)

    May, Daniel S; Chen, Wei-Lun; Lantvit, Daniel D; Zhang, Xiaoli; Krunic, Aleksej; Burdette, Joanna E; Eustaquio, Alessandra; Orjala, Jimmy

    2017-04-28

    Merocyclophanes C and D (1 and 2) were isolated from the cell extract of the cultured cyanobacterium UIC 10110. The structures were determined by one-dimensional nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry and confirmed by 2D NMR techniques. The absolute configurations were determined using electronic circular dichroism spectroscopy. Merocyclophanes C and D represent the first known analogues of the merocyclophane core structure, a recently discovered scaffold of [7,7] paracyclophanes characterized by an α-branched methyl at C-1/C-14; 1 and 2 showed antiproliferative activity against the MDA-MB-435 cell line with IC50 values of 1.6 and 0.9 μM, respectively. Partial 16S analysis determined UIC 10110 to be a Nostoc sp., and it was found to clade with UIC 10062 Nostoc sp., the only other strain known to produce merocyclophanes. The genome of UIC 10110 was sequenced, and a biosynthetic gene cluster was identified that is proposed to encode type I and type III polyketide synthases that are potentially responsible for production of the merocyclophanes; however, further experiments will be required to verify the true function of the gene cluster. The gene cluster provides a genetic basis for the observed structural differences of the [7,7] paracyclophane core structures.

  6. Novel thermostable glycosidases in the extracellular matrix of the terrestrial cyanobacterium Nostoc commune.

    Science.gov (United States)

    Morsy, Fatthy Mohamed; Kuzuha, Satomi; Takani, Yayoi; Sakamoto, Toshio

    2008-10-01

    The cyanobacterium Nostoc commune is adapted to the terrestrial environment and forms a visible colony in which the cells are embedded in extracellular polysaccharides (EPSs), which play a crucial role in the extreme desiccation tolerance of this organism. When natural colonies were immersed in water, degradation of the colonies occurred within 2 days and N. commune cells were released into the water. The activities that hydrolyze glycoside bonds in various N. commune fractions were examined using artificial nitrophenyl-linked sugars as substrates. A beta-D-glucosidase purified from the water-soluble fraction was resistant to 20 min of boiling. The beta-D-glucosidase, with a molecular mass of 20 kDa, was identified as a cyanobacterial fasciclin protein based on its N-terminal amino-acid sequence. The 36-kDa major protein in the water-soluble fraction was purified, and the N-terminal amino-acid sequence of the protein was found to be identical to that of the water-stress protein (WspA) of N. commune. This WspA protein also showed heat-resistant beta-D-galactosidase activity. The fasciclin protein and WspA in the extracellular matrix may play a role in the hydrolysis of the EPSs surrounding the cells, possibly as an aid in the dispersal of cells, thus expanding the colonies of this cyanobacterium.

  7. Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum.

    Science.gov (United States)

    Oku, Naoya; Yonejima, Kohsuke; Sugawa, Takao; Igarashi, Yasuhiro

    2014-01-01

    The cyanobacterium Nostoc verrucosum occurs in cool, clear streams and its gelatinous colonies, called "ashitsuki," have been eaten in ancient Japan. Its ethanolic extract was found to inhibit the growth of Gram-positive bacteria and activity-guided fractionation yielded an unusual n-1 fatty acid, (9Z,12Z)-9,12,15-hexadecatrienoic acid (1), as one of the active principles. It inhibited the growth of Staphylococcus aureus at MIC 64 μg/mL.

  8. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  9. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    Science.gov (United States)

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Genetic characterization of the hmp locus, a chemotaxis-like gene cluster that regulates hormogonium development and motility in Nostoc punctiforme.

    Science.gov (United States)

    Risser, Douglas D; Chew, William G; Meeks, John C

    2014-04-01

    Filamentous cyanobacteria are capable of gliding motility, but the mechanism of motility is not well defined. Here we present a detailed characterization of the hmp locus from Nostoc punctiforme, which encodes chemotaxis-like proteins. Deletions of hmpB, C, D and E abolished differentiation of hormogonia under standard growth conditions, but, upon addition of a symbiotic partner exudate, the mutant strains differentiated hormogonium-like filaments that lacked motility and failed to secrete hormogonium specific polysaccharide. The hmp locus is expressed as two transcripts, one originating 5' of hmpA and encompassing the entire hmp locus, and the other 5' of hmpB and encompassing hmpBCDE. The CheA-like HmpE donates phosphate to its own C-terminal receiver domain, and to the CheY-like HmpB, but not to the PatA family CheY-like HmpA. A GFP-tagged variant of each hmp locus protein localized to a ring adjacent to the septum on each end of the rod-shaped cell. Immunofluorescence demonstrated that PilA localizes to a ring at the junction between cells. The phenotype of the deletion strains, and the localization of the Hmp proteins and the putative PilA protein to rings at the cell junctions are consistent with the hypothesis that these proteins are part of the junctional pore complex observed in a number of filamentous cyanobacteria.

  11. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  12. Comparative studies on two ferredoxins from the cyanobacterium Nostoc strain MAC.

    Science.gov (United States)

    Hutson, K G; Rogers, L J; Haslett, B G; Boulter, D; Cammack, R

    1978-06-15

    Two ferredoxins were isolated from the cyanobacterium Nostoc strain MAC grown autotrophically in the light or heterotrophically in the dark. In either case approximately three times as much ferredoxin I as ferredoxin II was obtained. Both ferredoxins had absorption maxima at 276, 282 (shoulder), 330, 423 and 465 nm in the oxidized state, and each possessed a single 2 Fe-2S active centre. Their isoelectric points were approx. 3.2. The midpoint redox potentials of the ferredoxins differed markedly; that of ferredoxin I was --350mV and that of ferredoxin II was --445mV, at pH 8.0. The midpoint potential of ferredoxin II was unusual in being pH dependent. Ferredoxin I was most active in supporting NADP+ photoreduction by chloroplasts, whereas ferredoxin II was somewhat more active in pyruvate decarboxylation by the phosphoroclastic system of Clostridum pasteurianum. Though the molecular weights of the ferredoxins determined by ultracentrifugation were the same within experimetnal error, the amino acid compositions showed marked differences. The N-terminal amino acid sequences of ferredoxins I and II were determined by means of an automatic sequencer. There are 11--12 differences between the sequences of the first 32 residues. It appears that the two ferredoxins have evolved separately to fulfil different roles in the organism.

  13. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  14. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001

    Science.gov (United States)

    Niveshika; Verma, Ekta; Mishra, Arun K.; Singh, Angad K.; Singh, Vinay K.

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16–tetraaza–hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs. PMID:27965634

  15. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.

    Science.gov (United States)

    Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang T L; Heiden, Stefan E; Füssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo H J; Müller, Rolf; Mundt, Sabine

    2015-03-01

    The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0 μM, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties.

  16. Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001

    Directory of Open Access Journals (Sweden)

    Niveshika No Name

    2016-11-01

    Full Text Available Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC and high performance liquid chromatography (HPLC. Further characterization was done using electrospray ionisation mass spectroscopy (ESIMS and nuclear magnetic resonance (NMR and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy -5, 8, 13, 16 – tetraaza – hexacene - 2, 3 dicarboxylic acid (EMTAHDCA. Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T and 1LC4 and OmpF porin protein (4GCP, 4GCQ and 4GCS which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs.

  17. Diazotrophic specific cytochrome c oxidase required to overcome light stress in the cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Bhargava, Santosh; Chouhan, Shweta

    2016-01-01

    Diazotrophic, filamentous and heterocystous cyanobacterium Nostoc muscorum perform photosynthesis in vegetative whereas nitrogen fixation occurs in heterocyst only. However, despite their metabolic plasticity, respiration takes place both in vegetative cells and heterocysts. The role of the respiratory electron transport system and terminal oxidases under light stress is not evident so far. As compared to the diazotrophically grown cultures, the non-diazotrophically grown cultures of the N. muscorum show a slight decrease in their growth, chlorophyll a contents and photosynthetic O2 evolution under light stress. Whereas respiratory O2 uptake under identical stress condition increases several fold. Likewise, nitrogen fixing enzyme i.e. nitrogenase over-expresses itself under light stress condition. The terminal enzyme of respiratory electron transport chain i.e. cytochrome c oxidase shows more activity under light stress, whilst light stress has no impact on Ca(++)-dependent ATPase activity. This leads to the conclusion that under light stress, cytochrome c oxidase plays a vital role in mitigating given light stress.

  18. Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune.

    Science.gov (United States)

    Nazifi, Ehsan; Wada, Naoki; Yamaba, Minami; Asano, Tomoya; Nishiuchi, Takumi; Matsugo, Seiichi; Sakamoto, Toshio

    2013-08-26

    Mycosporine-like amino acids (MAAs) are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune). An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments.

  19. Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    Vullo, Daniela; De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Scozzafava, Andrea; Capasso, Clemente; Supuran, Claudiu T

    2015-04-15

    A carbonic anhydrase (CA, EC 4.2.1.1) belonging to the γ-class has been cloned, purified and characterized from the Antarctic cyanobacterium Nostoc commune. The enzyme showed a good catalytic activity for the physiologic reaction (hydration of carbon dioxide to bicarbonate and a proton) with the following kinetic parameters, kcat of 9.5×10(5)s(-1) and kcat/KM of 8.3×10(7)M(-1)s(-1), being the γ-CA with the highest catalytic activity described so far. A range of aromatic/heterocyclic sulfonamides and one sulfamate were investigated as inhibitors of the new enzyme, denominated here NcoCA. The best NcoCA inhibitors were some sulfonylated sulfanilamide derivatives possessing elongated molecules, aminobenzolamide, acetazolamide, benzolamide, dorzolamide, brinzolamide and topiramate, which showed inhibition constants in the range of 40.3-92.3nM. As 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and γ-CAs are closely associated in carboxysomes of cyanobacteria for enhancing the affinity of RubisCO for CO2 and the efficiency of photosynthesis, investigation of this new enzyme and its affinity for modulators of its activity may bring new insights in these crucial processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune.

    Science.gov (United States)

    Matsui, Kei; Nazifi, Ehsan; Kunita, Shinpei; Wada, Naoki; Matsugo, Seiichi; Sakamoto, Toshio

    2011-10-05

    Mycosporine-like amino acids (MAAs) are UV absorbing pigments, and structurally distinct MAAs have been identified in taxonomically diverse organisms. Two novel MAAs were purified from the cyanobacterium Nostoc commune, and their chemical structures were characterized. An MAA with an absorption maximum at 335 nm was identified as a pentose-bound porphyra-334 derivative with a molecular mass of 478 Da. Another identified MAA had double absorption maxima at 312 and 340 nm and a molecular mass of 1,050 Da. Its unique structure consisted of two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen and two pentose and hexose sugars. These MAAs had radical scavenging activity in vitro; the 1050-Da MAA contributed approximately 27% of the total radical scavenging activities in a water extract of N. commune. These results suggest that these glycosylated MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    RANJANA TRIPATHI

    2012-11-01

    Full Text Available Tripathi R, Dhuldhaj UP, Singh S. 2012. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune. Nusantara Bioscience 4: 134-137. Effect of temperature variation on biomass accumulation, pigment composition and protein content were studied for the cyanobacterium Nostoc commune, isolated from Antarctica. Results confirmed the psychrotrophic behavior (optimum growth temperature 25◦C of the cyanobacterium. Low temperature increased the duration of lag phase and exponential growth phase. Maximum increase in biomass was recorded on 24th day at 25◦C and on 12th day at 50C. The downshift from 25 to 5◦C had almost negligible effect on chl a content. Maximal protein content was recorded for cultures growing at 50C on 12th day. The carotenoids/chl a ratio was maximum (2.48 at 50C on 9th day. It remained almost constant for cultures growing at 5 and 350C. There was an induction in protein synthesis following downshift in temperature from 25 to 5◦C.

  2. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.

    Science.gov (United States)

    Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine

    2014-12-12

    Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.

  3. HupW Protease Specifically Required for Processing of the Catalytic Subunit of the Uptake Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120

    Science.gov (United States)

    Lindberg, Pia; Devine, Ellenor; Stensjö, Karin

    2012-01-01

    The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512

  4. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  5. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2017-09-01

    Full Text Available The terrestrial cyanobacterium Nostoc flagelliforme, which contributes to carbon and nitrogen supplies in arid and semi-arid regions, adopts a filamentous colony form. Owing to its herbal and dietary values, this species has been overexploited. Largely due to the lack of understanding on its morphogenesis, artificial cultivation has not been achieved. Additionally, it may serve as a useful model for recognizing the morphological adaptation of colonial cyanobacteria in terrestrial niches. However, it shows very slow growth in native habitats and is easily disintegrated under laboratory conditions. Thus, a novel experimental system is necessary to explore its morphogenetic mechanism. Liquid-cultured N. flagelliforme has been well developed for exopolysaccharide (EPS production, in which microscopic colonies (micro-colonies are generally formed. In this study, we sought to gain some insight into the morphogenesis of N. flagelliforme by examining the effects of two external factors, the EPS and environmental stress-related growth rate, on the morphological shaping of micro-colonies. Our findings indicate that the EPS matrix could act as a basal barrier, leading to the bending of trichomes during their elongation, while very slow growth is conducive to their straight elongation. These findings will guide future cultivation and application of this cyanobacterium for ecological improvement.

  6. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, V illavagen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  7. Effect of a combination of two rice herbicides on the cyanobacterium, Nostoc spongiaeforme

    Science.gov (United States)

    Cyanobacteria grow in California rice fields where they form large mats that may smoother seedlings or cause them to dislodge, resulting in yield loss. The most troublesome species is Nostoc spongiaeforme. It is very difficult to control using currently accepted methods, i.e., aerial applications of...

  8. Unprecedented slow growth and mortality of the rare colonial cyanobacterium, Nostoc zetterstedtii, in oligotrophic lakes

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Møller, Claus Lindskov

    2011-01-01

    Centimeter-large colonies of Nostoc zetterstedtii from a Swedish oligotrophic lake had the lowest growth and mortality rates of any studied temperate macrophyte. Annual growth rates at two shallow sites averaged 0.57– 0.73 3 1023 d21, corresponding to doubling times of colony dry weight in 2...

  9. Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Carginale, Vincenzo; Vullo, Daniela; Supuran, Claudiu T; Capasso, Clemente

    2015-11-01

    We report the cloning and catalytic activity of a γ-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the Antarctic cyanobacterium Nostoc commune, NcoCA. The enzyme has a significant catalytic activity for the physiologic reaction, CO2 hydration to bicarbonate and protons, with a k(cat) of 9.5×10(5) s(-1) and a k(cat)/K(m) of 8.3×10(7) M(-1) × s(-1), being the most catalytically efficient γ-CA investigated so far. An anion inhibition study of NcoCA with inorganic/organic anions is also reported here. Fluoride, sulfate, perchlorate and tetrafluoroborate did not inhibit appreciably NcoCA, whereas the other halides, pseudohalides, bicarbonate, nitrate, nitrite and many complex inorganic anions showed inhibition in the millimolar range. The best NcoCA inhibitors detected so far were diethyldithiocarbamate (K(I) of 0.80 mM) as well as sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (K(I)s in the range of 70-90 μM). Since γ-CAs are present in carboxysomes, being involved in photosynthesis, this study may be relevant for a better understanding of such processes in some Antarctic organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Constant Phycobilisome Size in Chromatically Adapted Cells of the Cyanobacterium Tolypothrix tenuis, and Variation in Nostoc sp. 1

    Science.gov (United States)

    Ohki, Kaori; Gantt, Elisabeth; Lipschultz, Claudia A.; Ernst, Marjorie C.

    1985-01-01

    Phycobilisomes of Tolypothrix tenuis, a cyanobacterium capable of complete chromatic adaptation, were studied from cells grown in red and green light, and in darkness. The phycobilisome size remained constant irrespective of the light quality. The hemidiscoidal phycobilisomes had an average diameter of about 52 nanometers and height of about 33 nanometers, by negative staining. The thickness was equivalent to a phycocyanin molecule (about 10 nanometers). The molar ratio of allophycocyanin, relative to other phycobiliproteins always remained at about 1:3. Phycobilisomes from red light grown cells and cells grown heterotrophically in darkness were indistinguishable in their pigment composition, polypeptide pattern, and size. Eight polypeptides were resolved in the phycobilin region (17.5 to 23.5 kilodaltons) by isoelectric focusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Half of these were invariable, while others were variable in green and red light. It is inferred that phycoerythrin synthesis in green light resulted in a one for one substitution of phycocyanin, thus retaining a constant phycobilisome size. Tolypothrix appears to be one of the best examples of phycobiliprotein regulation with wavelength. By contrast, in Nostoc sp., the decrease in phycoerythrin in red light cells was accompanied by a decrease in phycobilisome size but not a regulated substitution. Images Fig. 1 Fig. 2 Fig. 4 PMID:16664550

  11. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes.

    Science.gov (United States)

    Katoh, Hiroshi; Furukawa, Jun; Tomita-Yokotani, Kaori; Nishi, Yasuaki

    2012-08-01

    Nitrogen fixation and drought tolerance confer the ability to grow on dry land, and some terrestrial cyanobacteria exhibit these properties. These cyanobacteria were isolated in an axenic form from Nostoc commune clusters and other sources by modifying the method used to isolate the nitrogen-fixing and drought-tolerant cyanobacterium Nostoc sp. HK-01. Of these cyanobacteria, N. commune, which is difficult to isolate and purify, uses polysaccharides to maintain water, nitrogen fertilizers for nitrogen fixation, and can live in extreme environments because of desiccation tolerance. In this study, we examined the use of N. commune as biosoil for space agriculture and possible absorption of radioisotopes ((134)Cs, (137)Cs). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  12. Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    Hui-Fen Liao

    2015-11-01

    Full Text Available A dry sample of Nostoc commune from an organic farm in Pingtung city (Taiwan was used to prepare polysaccharide-rich (NCPS extract. The conditioned medium (CM from NCPS-treated human peripheral blood (PB-mononuclear cells (MNC effectively inhibited the growth of human leukemic U937 cells and triggered differentiation of U937 monoblast cells into monocytic/macrophagic lines. Cytokine levels in MNC-CMs showed upregulation of granulocyte/macrophage-colony stimulatory factor and IL-1β and downregulation of IL-6 and IL-17 upon treatment with NCPS. Moreover, murine macrophage RAW264.7 cells treated with NCPS exhibited the stimulatory effects of nitric oxide and superoxide secretion, indicating that NCPS might activate the immunity of macrophages. Collectively, the present study demonstrates that NCPS from N. commune could be potentially used for macrophage activation and consequently inhibited the leukemic cell growth and induced monocytic/macrophagic differentiation.

  13. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

    2014-09-01

    Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.

  14. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l(-1), and 10 g oleic acid l(-1). Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l(-1) within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l(-1) h(-1). The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  15. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li; Qiu, Bao-Sheng

    2012-10-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future.

  16. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune.

    Science.gov (United States)

    Nazifi, Ehsan; Wada, Naoki; Asano, Tomoya; Nishiuchi, Takumi; Iwamuro, Yoshiaki; Chinaka, Satoshi; Matsugo, Seiichi; Sakamoto, Toshio

    2015-01-01

    Mycosporine-like amino acids (MAAs) are UV-absorbing pigments, and structurally unique glycosylated MAAs are found in the terrestrial cyanobacterium Nostoc commune. In this study, we examined two genotypes of N.commune colonies with different water extract UV-absorption spectra. We found structurally distinct MAAs in each genotype. The water extract from genotype A showed a UV-absorbing spectrum with an absorption maximum at 335nm. The extract contained the following compounds: 7-O-(β-arabinopyranosyl)-porphyra-334 (478Da), pentose-bound shinorine (464Da), hexose-bound porphyra-334 (508Da) and porphyra-334 (346Da). The water extract from genotype B showed a characteristic UV-absorbing spectrum with double absorption maxima at 312 and 340nm. The extract contained hybrid MAAs (1050Da and 880Da) with two distinct chromophores of 3-aminocyclohexen-1-one and 1,3-diaminocyclohexen linked to 2-O-(β-xylopyranosyl)-β-galactopyranoside. A novel 273-Da MAA with an absorption maximum at 310nm was also identified in genotype B. The MAA consisted of a 3-aminocyclohexen-1-one linked to a γ-aminobutyric acid chain. These MAAs had potent radical scavenging activities in vitro and the results confirmed that the MAAs have multiple roles as a UV protectant and an antioxidant relevant to anhydrobiosis in N. commune. The two genotypes of N. commune exclusively produced their own characteristic glycosylated MAAs, which supports that MAA composition could be a chemotaxonomic marker for the classification of N. commune. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Homology modeling and functional sites prediction of azoreductase enzyme from the cyanobacterium Nostoc sp. PCC7120.

    Science.gov (United States)

    Devi, Philem Priyadarshini; Adhikari, Samrat

    2012-12-01

    Industrial dyes such as azodyes are potential environmental pollutants causing deleterious health hazards complications. These dyes are potentially degraded by azoreductase enzyme which is widely distributed in bacteria and also cyanobacteria. The azoreductase enzymes from cyanobacteria have not been explored in detail. Hence this enzyme from Nostoc sp. PCC 7120 has been addressed in detail in the present study considering to explore the physico-chemical properties, evolutionary relationships, functional sites and structural properties using various bioinformatics tools. Four conserved regions were obtained from the multiple sequence analysis. The multiple sequence alignment showed conserved regions at different stretches from 1-11, 40-57, 82-120 and 161-177 amino acid residues. These regions could be used for designing degenerate primers or probes for PCR-based amplification or hybridization-based detection of azoreductase sequences from different source organisms. Domain analysis and functional site prediction showed the presence of functional sites and domain such as flavodoxin like fold responsible for enzyme activity. 3D model was constructed and the best model was selected and validated. Superimposition of the final structure and the template showed variations in certain regions which might be involved in the accommodation of various dyes. Our results may be helpful for further investigations like docking studies as well as in vivo and in vitro conditions although these predictions still need to be studied.

  18. Raman spectroscopic analysis of the responds of desert cyanobacterium Nostoc sp under UV-B radiation

    Science.gov (United States)

    Wang, Gaohong; Hao, Zongjie; Hu, Chunxiang; Liu, Yongding

    Cyanobacteria are renowned for tolerating extremes of desiccation, UV radiation, freezethaw cycles, hypersalinity and oligotrophy, which make them as candidate par excellence for terraforming in extraterrestrial planet. Recently Raman spectrum was applied to study the biochemical information changes in different field of life science. In this study, we investigated the respond of desert cyanobactreium Nostoc sp under UV-B radiation via FT-Raman spectra. It was found that the spectral biomarkers of protectant molecular of UV radiation such as β-carotene and scytonemin were induced by UV-B radiation, but Chlorophyll a content was decreased, and also the photosynthesis activity was inhibited significantly. After light adaptation without UV-B radiation, the Chlorophyll a content and photosynthesis activity returned to high level, butβ-carotene and scytonemin content remained in the cells. Those results indicated that desert Cyanobacteria have good adaptation ability for UV-B radiation and synthesis of protectant molecular may be an effective strategy for its adaptation in evolution.

  19. Heavy metal removal from multicomponent system by the cyanobacterium Nostoc muscorum: kinetics and interaction study.

    Science.gov (United States)

    Roy, Arindam Sinha; Hazarika, Jayeeta; Manikandan, N Arul; Pakshirajan, Kannan; Syiem, Mayashree B

    2015-04-01

    In this study, Nostoc muscorum, a native cyanobacterial species isolated from a coal mining site, was employed to remove Cu(II), Zn(II), Pb(II) and Cd(II) from aqueous solution containing these metals in the mixture. In this multicomponent study, carried out as per the statistically valid Plackett-Burman design of experiments, the results revealed a maximum removal of both Pb(II) (96.3 %) and Cu(II) (96.42 %) followed by Cd(II) (80.04 %) and Zn(II) (71.3 %) at the end of the 60-h culture period. Further, the removal of these metals was attributed to both passive biosorption and accumulation by the actively growing N. muscorum biomass. Besides, the specific removal rate of these metals by N. muscorum was negatively correlated to its specific growth rate. For a better understanding of the effect of these metals on each other's removal by the cyanobacteria, the results were statistically analyzed in the form of analysis of variance (ANOVA) and Student's t test. ANOVA of the metal bioremoval revealed that the main (individual) effect due to the metals was highly significant (P value removal. Student's t test results revealed that both Zn(II) and Pb(II) strongly inhibited both Cu(II) removal (P value removal (P value metals but also the effect of individual metals on each other's removal in the multicomponent system.

  20. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  1. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Singh, Arvind Kumar; Syiem, Mayashree B; Singh, Rajkumar S; Adhikari, Samrat; Rai, Amar Nath

    2008-05-01

    We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.

  2. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies : structural characterization and effect on the complement system of polysaccharides from Nostoc commune

    NARCIS (Netherlands)

    Brüll, L.P.; Huang, Z.; Thomas-Oates, J.E.; Smestad-Paulsen, B.; Cohen, E.H.; Michaelsen, T.E.

    2000-01-01

    The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from

  3. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp. Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Directory of Open Access Journals (Sweden)

    Caroline Chénard

    2016-06-01

    Full Text Available Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages.

  4. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Science.gov (United States)

    Chénard, Caroline; Wirth, Jennifer F.

    2016-01-01

    ABSTRACT   Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. PMID:27302758

  5. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B.

    Science.gov (United States)

    Chénard, Caroline; Wirth, Jennifer F; Suttle, Curtis A

    2016-06-14

    Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting

  6. Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells.

    Science.gov (United States)

    Sugiura, Kana; Itoh, Shigeru

    2012-08-01

    The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.

  7. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    Science.gov (United States)

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.

  8. Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India.

    Science.gov (United States)

    Goswami, Smita; Diengdoh, Omega L; Syiem, Mayashree B; Pakshirajan, Kannan; Kiran, Mothe Gopi

    2015-03-01

    Nostoc muscorum was isolated from a coal mining pit in Chiehruphi, Meghalaya, India, and its potential to remove Zn(II) and Cu(II) from media and the various biochemical alterations it undergoes during metal stress were studied. Metal uptake measured as a function of the ions removed by N. muscorum from media supplemented independently with 20 μmol/L ZnSO4 and CuSO4 established the ability of this cyanobacterium to remove 66% of Zn(2+) and 71% of Cu(2+) within 24 h of contact time. Metal binding on the cell surface was found to be the primary mode of uptake, followed by internalization. Within 7 days of contact, Zn(2+) and Cu(2+) mediated dissimilar effects on the organism. For instance, although chlorophyll a synthesis was increased by 12% in Zn(2+)-treated cells, it was reduced by 26% in Cu(2+)-treated cells. Total protein content remained unaltered in Zn(2+)-supplemented medium; however, a 15% reduction was noticed upon Cu(2+) exposure. Copper enhanced both photosynthesis and respiration by 15% and 19%, respectively; in contrast, photosynthesis was unchanged and respiration dropped by 11% upon Zn(2+) treatment. Inoculum age also influenced metal removal ability. Experiments in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosynthetic inhibitor), carbonyl cyanide m-chlorophenyl hydrazone (an uncoupler), and exogenous ATP established that metal uptake was energy dependent, and photosynthesis contributed significantly towards the energy pool required to mediate metal removals.

  9. Contribution of two ζ-carotene desaturases to the poly-cis desaturation pathway in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Breitenbach, Jürgen; Bruns, Marius; Sandmann, Gerhard

    2013-07-01

    The presence of two completely unrelated ζ-carotene desaturases CrtQa and CrtQb in some Nostoc strains is unique. CrtQb is the ζ-carotene desaturase, which was acquired by almost all cyanobacteria. The additional CrtQa can be regarded as an evolutionary relict of the CrtI desaturase present in non-photosynthetic bacteria. By reconstruction of the carotene desaturation pathway, we showed that both enzymes from Nostoc PCC 7120 were active. However, they differed in their preferred utilization of ζ-carotene Z isomers. CrtQa converted ζ-carotene isomers that were poorly metabolized by CrtQb. In this respect, CrtQa complemented the reactions of CrtQb, which is an advantage avoiding dead ends in the poly-cis desaturation pathway. In addition to ζ-carotene desaturation, CrtQa still possesses the Z to E isomerase function of the ancestral desaturase CrtI. Biochemical characterization showed that CrtQb is an enzyme with one molecule of tightly bound FAD and acts as a dehydrogenase transferring hydrogen to oxidized plastoquinone.

  10. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    Science.gov (United States)

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  11. Potential Use of Rice Field Cyanobacterium Nostoc muscorum in the Evaluation of Butachlor Induced Toxicity and their Degradation.

    Science.gov (United States)

    Anees, Sumaiya; Suhail, Shazia; Pathak, Neelam; Zeeshan, Mohd

    2014-01-01

    In the present study, butachlor (5, 10, 20, 40 and 80 ppm) induced toxicity in Nostoc muscorum and their degradation was evaluated. The dose of butachlor dependent decreased in the cell survival and growth of N. muscorum was noticed. Scanning electron microscopy revealed the adverse impact on the cell size and shapes. Low concentrations of butachlor (10 and 20 ppm) induced the over expression of a polypeptides of 31.0 K Da and 42.7 K Da, respectively which could be responsible for developing resistance in the organism up to certain level. Further, the degradation product of butachlor as a result of metabolic activities of N. muscorum, identified by GC-MS analysis includes phenols and benzene dicarboxylic acid indicating the utilization of herbicide during active growth.

  12. Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (-269 to 105°C), pH and salt stress.

    Science.gov (United States)

    Sand-Jensen, Kaj; Jespersen, Thomas Sand

    2012-06-01

    Nostoc commune is a widespread colonial cyanobacterium living on bare soils that alternate between frost and thaw, drought and inundation and very low and high temperatures. We collected N. commune from alternating wet and dry limestone pavements in Sweden and tested its photosynthesis and respiration at 20°C after exposure to variations in temperature (-269 to 105°C), pH (2-10) and NaCl (0.02-50 g NaCl kg(-1)). We found that dry field samples and rewetted specimens tolerated exposure beyond that experienced in natural environmental conditions: -269 to 70°C, pH 3-10 and 0-20 g NaCl kg(-1), with only a modest reduction of respiration, photosynthesis and active carbon uptake at 20°C. (14)CO(2) uptake from air declined markedly below zero and above 55°C, but remained positive. Specimens maintained a high metabolism with daily exposure to 6 h of rehydration and 18 h of desiccation at -18 and 20°C, but died at 40°C. The field temperature never exceeded the critical 40°C threshold during the wet periods, but it frequently exceeded this temperature during dry periods when N. commune is already dry and unaffected. We conclude that N. commune has an excellent tolerance to low temperatures, long-term desiccation and recurring cycles of desiccation and rewetting. These traits explain why it is the pioneer species in extremely harsh, nutrient-poor and alternating wet and dry environments.

  13. Metabolic adaptations in a H2 producing heterocyst-forming cyanobacterium: potentials and implications for biological engineering.

    Science.gov (United States)

    Ekman, Martin; Ow, Saw Yen; Holmqvist, Marie; Zhang, Xiaohui; van Wagenen, Jon; Wright, Phillip C; Stensjö, Karin

    2011-04-01

    Nostoc punctiforme ATCC 29133 is a photoautotrophic cyanobacterium with the ability to fix atmospheric nitrogen and photoproduce hydrogen through the enzyme nitrogenase. The H(2) produced is reoxidized by an uptake hydrogenase. Inactivation of the uptake hydrogenase in N. punctiforme leads to increased H(2) release but unchanged rates of N(2) fixation, indicating redirected metabolism. System-wide understanding of the mechanisms of this metabolic redirection was obtained using complementary quantitative proteomic approaches, at both the filament and the heterocyst level. Of the total 1070 identified and quantified proteins, 239 were differentially expressed in the uptake hydrogenase mutant (NHM5) as compared to wild type. Our results indicate that the inactivation of uptake hydrogenase in N. punctiforme changes the overall metabolic equilibrium, affecting both oxygen reduction mechanisms in heterocysts as well as processes providing reducing equivalents for metabolic functions such as N(2) fixation. We identify specific metabolic processes used by NHM5 to maintain a high rate of N(2) fixation, and thereby potential targets for further improvement of nitrogenase based H(2) photogeneration. These targets include, but are not limited to, components of the oxygen scavenging capacity and cell envelope of heterocysts and proteins directly or indirectly involved in reduced carbon transport from vegetative cells to heterocysts.

  14. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc)

    Energy Technology Data Exchange (ETDEWEB)

    Dai Guozheng [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China); Deblois, Charles P. [Department des Sciences Biologiques, TOXEN, Canada Research Chair on Ecotoxicology of Aquatic Microorganisms, Universite du Quebec a Montreal, Succursale Centre-ville, C.P. 8888 Montreal, Quebec H3C 3P8 (Canada); Liu Shuwen [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China); Juneau, Philippe [Department des Sciences Biologiques, TOXEN, Canada Research Chair on Ecotoxicology of Aquatic Microorganisms, Universite du Quebec a Montreal, Succursale Centre-ville, C.P. 8888 Montreal, Quebec H3C 3P8 (Canada); Qiu Baosheng [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China)], E-mail: bsqiu@public.wh.hb.cn

    2008-08-29

    Effects of two fertilizers, NH{sub 4}Cl and KCl, on the growth of the edible cyanobacterium Ge-Xian-Mi (Nostoc) and four other cyanobacterial strains were compared at pH 8.3 {+-} 0.2 and 25 deg. C. Their growth was decreased by at least 65% at 10 mmol L{sup -1} NH{sub 4}Cl but no inhibitory effect was observed at the same level of KCl. Meanwhile, the strains exhibited a great variation of sensitivity to NH{sub 4}{sup +} toxicity in the order: Ge-Xian-Mi > Anabaena azotica FACHB 118 > Microcystis aeruginosa FACHB 905 > M. aeruginosa FACHB 315 > Synechococcus FACHB 805. The 96-h EC{sub 50} value for relative growth rate with regard to NH{sub 4}{sup +} for Ge-Xian-Mi was 1.105 mmol L{sup -1}, which was much less than the NH{sub 4}{sup +} concentration in many agricultural soils (2-20 mmol L{sup -1}). This indicated that the use of ammonium as nitrogen fertilizer was responsible for the reduced resource of Ge-Xian-Mi in the paddy field. After 96 h exposure to 1 mmol L{sup -1} NH{sub 4}Cl, the photosynthetic rate, F{sub v}/F{sub m} value, saturating irradiance for photosynthesis and PSII activity of Ge-Xian-Mi colonies were remarkably decreased. The chlorophyll synthesis of Ge-Xian-Mi was more sensitive to NH{sub 4}{sup +} toxicity than phycobiliproteins. Thus, the functional absorption cross section of Ge-Xian-Mi PSII was increased markedly at NH{sub 4}Cl levels {>=}1 mmol L{sup -1} and the electron transport on the acceptor side of PSII was significantly accelerated by NH{sub 4}Cl addition {>=}3 mmol L{sup -1}. Dark respiration of Ge-Xian-Mi was significantly increased by 246% and 384% at 5 and 10 mmol L{sup -1} NH{sub 4}Cl, respectively. The rapid fluorescence rise kinetics indicated that the oxygen-evolving complex of PSII was the inhibitory site of NH{sub 4}{sup +}.

  15. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; Talla, Emmanuel; Janicki, Annick; Denis, Yann; Zhang, Cheng-Cai; Latifi, Amel

    2014-10-01

    The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.

  16. Influence of a non-copper algicide on the cyanobacterium, Nostoc spongiaeforme, and the green alga, Hydrodictyon reticulatum, in field and laboratory experiments

    Science.gov (United States)

    Cyanobacteria grow in California rice fields where they form large mats that may smoother seedlings or cause them to dislodge, resulting in yield loss. The most troublesome species is Nostoc spongiaeforme. It is very difficult to control using currently accepted methods, i.e., aerial applications of...

  17. CalA, a Cyanobacterial AbrB Protein, Interacts with the Upstream Region of hypC and Acts as a Repressor of Its Transcription in the Cyanobacterium Nostoc sp. Strain PCC 7120▿ †

    Science.gov (United States)

    Agervald, Åsa; Zhang, Xiaohui; Stensjö, Karin; Devine, Ellenor; Lindblad, Peter

    2010-01-01

    The filamentous, heterocystous, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain, depending on growth conditions, up to two hydrogenases directly involved in hydrogen metabolism. HypC is one out of at least seven auxiliary gene products required for synthesis of a functional hydrogenase, specifically involved in the maturation of the large subunit. In this study we present a protein, CalA (Alr0946 in the genome), belonging to the transcription regulator family AbrB, which in protein-DNA assays was found to interact with the upstream region of hypC. Transcriptional investigations showed that calA is cotranscribed with the downstream gene alr0947, which encodes a putative protease from the abortive infection superfamily, Abi. CalA was shown to interact specifically not only with the upstream region of hypC but also with its own upstream region, acting as a repressor on hypC. The bidirectional hydrogenase activity was significantly downregulated when CalA was overexpressed, demonstrating a correlation with the transcription factor, either direct or indirect. In silico studies showed that homologues to both CalA and Alr0947 are highly conserved proteins within cyanobacteria with very similar physical organizations of the corresponding structural genes. Possible functions of the cotranscribed downstream protein Alr0947 are presented. In addition, we present a three-dimensional (3D) model of the DNA binding domain of CalA and putative DNA binding mechanisms are discussed. PMID:20023111

  18. Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis.

    Science.gov (United States)

    Han, Pei-pei; Shen, Shi-gang; Jia, Shi-ru; Wang, Hui-yan; Zhong, Cheng; Tan, Zhi-lei; Lv, He-xin

    2015-07-01

    Filamentous Nostoc flagelliforme form colloidal complex, with beaded cells interacting with other bacteria embedded in the complex multilayer sheath. However, the species of bacteria in the sheath and the interaction between N. flagelliforme and associated bacteria remain unclear. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial communities of N. flagelliforme from three regions of China. DGGE patterns showed variations in all samples, exhibiting 25 discrete bands with various intensities. The diversity index analysis of bands profiles suggested the high similarity of bacterial communities to each other but also the dependence of microbial composition on each location. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Cyanobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, of which Cyanobacteria was dominant, followed the Proteobacteria. Members of the genus Nostoc were the most abundant in all samples. Rhizobiales and Actinobacteria were identified, whereas, Craurococcus, Caulobacter, Pseudomonas, Terriglobus and Mucilaginibacter were also identified at low levels. Through comparing the bacterial composition of N. flagelliforme from different regions, it was revealed that N. flagelliforme could facilitate the growth of other microorganisms including both autotrophic bacteria and heterotrophic ones and positively contributed to their harsh ecosystems. The results indicated N. flagelliforme played an important role in diversifying the microbial community composition and had potential application in soil desertification.

  19. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt.

    Science.gov (United States)

    Olafsdottir, Astridur; Thorlacius, Gudny Ella; Omarsdottir, Sesselja; Olafsdottir, Elin Soffia; Vikingsson, Arnor; Freysdottir, Jona; Hardardottir, Ingibjorg

    2014-09-25

    Cyanobacteria (blue-green algae) have been consumed as food and used in folk medicine since ancient times to alleviate a variety of diseases. Cyanobacteria of the genus Nostoc have been shown to produce complex exopolysaccharides with antioxidant and antiviral activity. Furthermore, Nostoc sp. are common in cyanolichen symbiosis and lichen polysaccharides are known to have immunomodulating effects. Nc-5-s is a heteroglycan isolated from free-living colonies of Nostoc commune and its structure has been characterized in detail. The aim of this study was to determine the effects of Nc-5-s on the inflammatory response of lipopolysaccharide (LPS)-stimulated human THP-1 monocytes and how the effects are mediated. THP-1 monocytes primed with interferon-γ and stimulated with LPS in the presence of Nc-5-s secreted less of the pro-inflammatory cytokine interleukin (IL)-6 and more of the anti-inflammatory cytokine IL-10 than THP-1 monocytes stimulated without Nc-5-s. In contrast, Nc-5-s increased LPS-induced secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and IL-8. Nc-5-s decreased LPS-induced phosphorylation of the extracellular regulated kinase (ERK)1/2 and Akt kinase, but did not affect phosphorylation of the p38 kinase, activation of the nuclear factor kappa B pathway, nor DNA binding of c-fos. These results show that Nc-5-s has anti-inflammatory effects on IL-6 and IL-10 secretion by THP-1 monocytes, but its effects are pro-inflammatory when it comes to TNF-α and IL-8. Furthermore, they show that the effects of Nc-5-s may be mediated through the ERK1/2 pathway and/or the Akt/phosphoinositide 3-kinase pathway and their downstream effectors. The ability of Nc-5-s to decrease IL-6 secretion, increase IL-10 secretion and moderate ERK1/2 activation indicates a potential for its development as an anti-inflammatory agent. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light.

    Science.gov (United States)

    Ishihara, Kenji; Watanabe, Ryuichi; Uchida, Hajime; Suzuki, Toshiyuki; Yamashita, Michiaki; Takenaka, Hiroyuki; Nazifi, Ehsan; Matsugo, Seiichi; Yamaba, Minami; Sakamoto, Toshio

    2017-07-01

    A UV-absorbing compound was purified and identified as a novel glycosylated mycosporine-like amino acid (MAA), 13-O-β-galactosyl-porphyra-334 (β-Gal-P334) from the edible cyanobacterium Nostoc sphaericum, known as "ge xian mi" in China and "cushuro" in Peru. Occurrence of the hexosylated derivative of shinorine (hexosyl-shinorine) was also supported by LC-MS/MS analysis. β-Gal-P334 accounted for about 86.5% of total MAA in N. sphaericum, followed by hexosyl-shinorine (13.2%) and porphyra-334 (0.2%). β-Gal-P334 had an absorption maximum at 334nm and molecular absorption coefficient was 46,700 at 334nm. Protection activity of β-Gal-P334 from UVB and UVA+8-methoxypsoralen induced cell damage on human keratinocytes (HaCaT) was assayed in comparison with other MAA (porphyra-334, shinorine, palythine and mycosporine-glycine). The UVB protection activity was highest in mycosporine-glycine, followed by palythine, β-Gal-P334, porphyra-334 and shinorine in order. β-Gal-P334 had highest protection activity from UVA+8-methoxypsoralen induced cell damage followed by porphyra-334, shinorine, mycosporine-glycine and palythine. We also found an antioxidant (radical-scavenging) activity of β-Gal-P334 by colorimetric and ESR methods. From these findings, β-Gal-P334 was suggested to play important roles in stress tolerant mechanisms such as UV and oxidative stress in N. sphaericum as a major MAA. We also consider that the newly identified MAA, β-Gal-P334 has a potential for use as an ingredient of cosmetics and toiletries. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China?

    Science.gov (United States)

    Roney, Britton R; Renhui, Li; Banack, Sandra Anne; Murch, Susan; Honegger, Rosmarie; Cox, Paul Alan

    2009-01-01

    Grown in arid regions of western China the cyanobacterium Nostoc flagelliforme--called fa cai in Mandarin and fat choy in Cantonese--is wild-harvested and used to make soup consumed during New Year's celebrations. High prices, up to $125 USD/kg, led to overharvesting in Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang. Degradation of arid ecosystems, desertification, and conflicts between Nostoc harvesters and Mongol herdsmen concerned the Chinese environmental authorities, leading to a government ban of Nostoc commerce. This ban stimulated increased marketing of a substitute made from starch. We analysed samples purchased throughout China as well as in Chinese markets in the United States and the United Kingdom. Some were counterfeits consisting of dyed starch noodles. A few samples from California contained Nostoc flagelliforme but were adulterated with starch noodles. Other samples, including those from the United Kingdom, consisted of pure Nostoc flagelliforme. A recent survey of markets in Cheng Du showed no real Nostoc flagelliforme to be marketed. Real and artificial fa cai differ in the presence of beta-N-methylamino-L-alanine (BMAA). Given its status as a high-priced luxury food, the government ban on collection and marketing, and the replacement of real fa cai with starch substitutes consumed only on special occasions, it is anticipated that dietary exposure to BMAA from fa cai will be reduced in the future in China.

  2. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  3. Active accumulation of internal DIC pools reduces transport limitation in large colonies of Nostoc pruniforme

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens; Jensen, Kaj Sand

    2009-01-01

    Nostoc pruniforme is a freshwater cyanobacterium forming large spherical colonies of up to several centimeters in diameter. The size and shape result in low surface area to volume (SA/V) ratios that potentially put severe constraints on resource acquisition. In the present study we have specifica......Nostoc pruniforme is a freshwater cyanobacterium forming large spherical colonies of up to several centimeters in diameter. The size and shape result in low surface area to volume (SA/V) ratios that potentially put severe constraints on resource acquisition. In the present study we have...

  4. Metabolism and resources of spherical colonies of Nostoc zetterstedtii

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Raun, Ane-Marie Løvendahl; Borum, Jens

    2009-01-01

    Constraints imposed by the spherical form and gelatinous matrix of centimeter-thick colonies of the cyanobacterium Nostoc zetterstedtii on its functional properties were tested by examining the scaling of its composition, light absorption, photosynthesis, and respiration to individual size....... Nostoc absorbed 96% of incident light from the surface to the center because of high areal pigment density, but absorbed photons were used with low quantum efficiency (11- 38 mmol O2 mol21 photon) and photosynthesis was low relative to dark respiration (2.0-5.4). Therefore, N. zetterstedtii is threatened...... by reduced light availability and only extended to lake depths receiving about 12% of surface irradiance, whereas mosses, characeans, and angiosperms with thin photosynthetic tissues grew deeper (3.1-7.5% of surface irradiance). Nostoc ameliorated the restrictions of low lake DIC and long diffusion paths...

  5. Production of cyanobacterial toxins from two Nostoc species (Nostocales and evaluation of their cytotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    RUMEN MLADENOV

    2012-01-01

    Full Text Available Cyanobacteria are among the oldest autotrophic organisms with cosmopolitan distribution and known as producers of secondary metabolites with toxic properties named "cyanotoxins". Studies with respect to toxin production of genus Nostoc are yet limited. In the present study we have investigated two Nostoc species (Nostoc linckia and Nostoc punctiforme for production of intracellular and/or extracellular compounds with cytotoxic potential. Extracts and algal growth media were assessed by different in vitro tests using freshly established mouse primary cultures from different tissues and one fish cell line. Our data showed that the mouse cells are more sensitive to toxic compounds than the fish cells. Both Nostoc species produced intracellular and extracellular bioactive compounds with different effects on mouse and fish cells. The presence of cyanotoxins as anatoxin-a and microcystins/nodularin was confirmed by HPLC and ELISA analyses. Therefore, Nostoc species are not only sources of bioactive compounds with therapeutic action, but they can be a potential hazard to aquatic systems as well as to animal and human health.

  6. Molecular and phylogenetic characterization of two species of the genus Nostoc (Cyanobacteria based on the cpcB-IGS-cpcA locus of the phycocyanin operon

    Directory of Open Access Journals (Sweden)

    IVANKA TENEVA

    2012-01-01

    Full Text Available Traditionally, the taxonomy of the genus Nostoc is based on morphological and physiological characters. The extreme morphological variability of the Nostoc species, due to their life cycle and environmental conditions, hampers the correct identification of the individual species. This is also one of the reasons for the disputed taxonomic positions and relationships between the genera Anabaena–Aphanizomenon as well as between Anabaena–Nostoc. Therefore, it is necessary to use additional markers for development of a polyphasic classification system of order Nostocales. In light of this, we here present the first molecular and phy-logenetic characterization of two species of the genus Nostoc (Nostoc linckia and Nostoc punctiforme based on the cpcB-IGS-cpcA locus of the phycocyanin oper-on. The phylogenetic position of these two species within order Nostocales as well as within division Cyanobacteria has been determined. Our results indicate that genus Nostoc is heterogeneous. Analysis of the IGS region between cpcB and cpcA showed that Nostoc and Anabaena are distinct genera. Reported molecular and phylogenetic data will be useful to solve other problematic points in the tax-onomy of genera Aphanizomenon, Anabaena and Nostoc.

  7. Genomic Survey and Biochemical Analysis of Recombinant Candidate Cyanobacteriochromes Reveals Enrichment for Near UV/Violet Sensors in the Halotolerant and Alkaliphilic Cyanobacterium Microcoleus IPPAS B353.

    Science.gov (United States)

    Cho, Sung Mi; Jeoung, Sae Chae; Song, Ji-Young; Kupriyanova, Elena V; Pronina, Natalia A; Lee, Bong-Woo; Jo, Seong-Whan; Park, Beom-Seok; Choi, Sang-Bong; Song, Ji-Joon; Park, Youn-Il

    2015-11-20

    Cyanobacteriochromes (CBCRs), which are exclusive to and widespread among cyanobacteria, are photoproteins that sense the entire range of near-UV and visible light. CBCRs are related to the red/far-red phytochromes that utilize linear tetrapyrrole (bilin) chromophores. Best characterized from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the multicellular heterocyst forming filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Anabaena sp. PCC 7120, CBCRs have been poorly investigated in mat-forming, nonheterocystous cyanobacteria. In this study, we sequenced the genome of one of such species, Microcoleus IPPAS B353 (Microcoleus B353), and identified two phytochromes and seven CBCRs with one or more bilin-binding cGMP-specific phosphodiesterase, adenylyl cyclase and FhlA (GAF) domains. Biochemical and spectroscopic measurements of 23 purified GAF proteins from phycocyanobilin (PCB) producing recombinant Escherichia coli indicated that 13 of these proteins formed near-UV and visible light-absorbing covalent adducts: 10 GAFs contained PCB chromophores, whereas three contained the PCB isomer, phycoviolobilin (PVB). Furthermore, the complement of Microcoleus B353 CBCRs is enriched in near-UV and violet sensors, but lacks red/green and green/red CBCRs that are widely distributed in other cyanobacteria. We hypothesize that enrichment in short wavelength-absorbing CBCRs is critical for acclimation to high-light environments where this organism is found.

  8. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc.

    Science.gov (United States)

    Genuário, Diego Bonaldo; Silva-Stenico, Maria Estela; Welker, Martin; Beraldo Moraes, Luiz Alberto; Fiore, Marli Fátima

    2010-04-01

    A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, São Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 16S rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 16S rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  10. Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.

    Science.gov (United States)

    Hillol, Chakdar; Pabbi, Sunil

    2012-01-01

    Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.

  11. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12.

    Science.gov (United States)

    Hussain, Anwar; Hamayun, Muhammad; Shah, Syed Tariq

    2013-11-01

    Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P Nostoc to colonize plant root and promote its growth.

  12. Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats.

    Science.gov (United States)

    Richa; Sinha, Rajeshwar P

    2015-01-01

    We have screened two Nostoc species inhabiting diverse habitats for the presence of sunscreening mycosporine-like amino acid (MAA) compounds. The identification and characterization of one MAA (RT 3.1-3.8 min, λmax -334 nm) from both Nostoc species were performed using absorption spectroscopy, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Shinorine and porphyra-334 were commonly present in both Nostoc sp. strain HKAR-2 and Nostoc sp. strain HKAR-6. Nostoc sp. strain HKAR-2 also showed the presence of an unknown MAAs with retention time of 6.9 min and a corresponding λmax of 334 nm. Present investigation clearly demonstrated the presence of diverse profile of MAAs in the hot spring cyanobacterium in comparison to the rice field isolate. Thus, Nostoc sp. strain HKAR-2 would be a better source for the production of MAAs that can be used as a potent natural sunscreen against UV-B irradiation.

  13. Cloning of nifHD from Nostoc commune UTEX 584 and of a flanking region homologous to part of the Azotobacter vinelandii nifU gene.

    OpenAIRE

    1988-01-01

    The heterocystous cyanobacterium Nostoc commune UTEX 584 contains two nifH-like sequences (nifH1 and nifH2) in addition to nifHD. A region of DNA 1 kilobase upstream from the 5' end of nifH showed considerable sequence similarity to part of the published nifU sequences of Azotobacter vinelandii and Klebsiella pneumoniae.

  14. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    Science.gov (United States)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  15. 草甘膦对可食用蓝藻葛仙米生长和生理的影响%EFFECTS OF ACUTE GLYPHOSATE EXPOSURE ON THE GROWTH AND PHYSIOLOGY OF NOSTOC SPHAEROIDES, AN EDIBLE CYANOBACTERIUM OF PADDY RICE FIELDS

    Institute of Scientific and Technical Information of China (English)

    阮祚禧; Murray T.Brown

    2008-01-01

    The productivity of Nostoc sphaeroides,an edible cyanobacterium found in paddy rice fields has declined in recent years. It may relate to the increased application of agricultural herbicides. To assess the impact of glyphosate exposure(0.15,0.30,0.45 and 0.6 mmol/L Gly acid) ,the effects on colony size,dry biomass accumulation,chlorophyll a fluorescence (Fv/Fm) and chlorophyll a biosynthesis were investigated over an 8d period. All parameters were significantly inhibited in a concentration used and time dependent way. After 2d exposure to 0. 15 mmol/L Gly colonies were approximately 15% smaller than the controls. After 4d exposure,chlorophyll a content and Fv/Fm were affected by the highest concentration used(0.6 mmol/L Gly). By the 8d, chlorophyll biosynthesis and Fv/Fm were significantly inhibited by concentrations greater than 0.15 and 0.3 mmol/L Gly, respectively. The 8d relative growth rates ( RGRs), calculated for dry biomass, were significantly affected by all glyphosate treatments,there was a 60% reduction at 0.15 mmol/L Gly and negative RGRs at higher concentrations indicate a loss of biomass. Exposure to 0. 6 mmol/L Gly was lethal with loss of colony integrity,bleaching of pigments and no photosynthetic activity by 8d. These results are discussed in terms of the mechanisms of toxicity and the potential implications for the long term sustainability of the N. sphaeroides resource.%葛仙米(N.sphaeroides)的产量和产地面积逐年减少,这可能与当地广泛使用除草剂草甘膦有关.为此,本文测定了不同浓度(0.15、0.30、0.45、0.6mmol/L)的草甘膦处理的葛仙米的颗粒大小、干重、叶绿素荧光、叶绿素浓度.所有测量参数与浓度和时间显著相关:0.15mmol/L处理组的颗粒直径较对照组小15%(2d后);叶绿素a浓度和最大量子产率(Fv/Fm)在最高浓度组(0.6mmol/L)4d后开始受到影响;第8天,相对生长速率(以干重计算,大于0.15mmol/L)、光合作用活性(大于0.3mmol

  16. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    Science.gov (United States)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  17. Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt.

    Science.gov (United States)

    de O Moreira, Isabela; Passos, Thaís S; Chiapinni, Claudete; Silveira, Gabrielle K; Souza, Joana C M; Coca-Vellarde, Luis Guillermo; Deliza, Rosires; de Lima Araújo, Kátia G

    2012-02-01

    Phycobiliproteins are coloured proteins produced by cyanobacteria, which have several applications because of their colour properties. However, there is no available information about the colour stability of phycobiliproteins from Nostoc sp. in food systems. The aim of this work was to study the colour stability of a purple-coloured phycobiliprotein-rich extract from the cyanobacterium Nostoc PCC9205 in acidic solutions and yogurt. Variations of pH for Nostoc PCC9205 extract have shown stability for the L* (lightness) and a* (redness) indexes in the range 1.0-7.0. The b* index (blueness), however, increased at pH values below 4.0, indicating loss of the blue colour. The Nostoc PCC9205 extract was used as colorant in yogurt (pH 4.17) stored for 60 days. Instrumental colour analysis showed no changes for the L* and a* indexes during storage, whereas the b* index changed after 20 days of storage. A multiple comparison test showed colour instability after 20 days of storage. A hedonic scale test performed on the 60th day of storage showed acceptability of the product. The red component of the phycobiliprotein-rich extract from Nostoc PCC9205 presented an improved stability in acidic media and yogurt compared with the blue component of this extract. Copyright © 2011 Society of Chemical Industry.

  18. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail: aks_10@yahoo.com; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)

    2008-09-15

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  19. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune.

    Science.gov (United States)

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight (134)Cs and 607,000 Bq kg(-1) dry weight (137)Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil.

  20. The CyAbrB transcription factor CalA regulates the iron superoxide dismutase in Nostoc sp. strain PCC 7120.

    Science.gov (United States)

    Agervald, Asa; Baebprasert, Wipawee; Zhang, Xiaohui; Incharoensakdi, Aran; Lindblad, Peter; Stensjö, Karin

    2010-10-01

    In the present investigation the results of induced over-production of the CyAbrB transcription factor CalA (Cyanobacterial AbrB-like, annotated as Alr0946) in the cyanobacterium Nostoc sp. PCC 7120 were analysed. The CalA overexpression strain showed a bleaching phenotype with lower growth rate and truncated filaments 2 days after induction of overexpression. The phenotype was even more pronounced when illumination was increased from 35 to 125 µmol m(-2) s(-1). Using gel-based quantitative proteomics, the induced overexpression of CalA was shown to downregulate the abundance of FeSOD, one of two types of superoxide dismutases in Nostoc sp. PCC 7120. The change in protein abundance was also accompanied by lower transcript as well as activity levels. Purified recombinant CalA from Nostoc sp. PCC 7120 was shown to interact with the promoter region of alr2938, encoding FeSOD, indicating a transcriptional regulation of FeSOD by CalA. The bleaching phenotype is in line with a decreased tolerance against oxidative stress and indicates that CalA is involved in regulation of cellular responses in which FeSOD has an important and specific function in the filamentous cyanobacterium Nostoc sp. PCC 7120. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-10-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. 'Macrozamia riedlei 65.1' and Nostoc sp. 'Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg-1 chlorophyll a in Nostoc sp. 'Macrozamia riedlei 65.1' and 12.5±8.4 ng μg-1 Chl a in Nostoc sp. 'Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har(2)] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml(-1) (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har(2)] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har(2)] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.

  2. Secondary metabolites of cyanobacteria Nostoc sp.

    Science.gov (United States)

    Kobayashi, Akio; Kajiyama, Shin-Ichiro

    1998-03-01

    Cyanobacteria attracted much attention recently because of their secondary metabolites with potent biological activities and unusual structures. This paper reviews some recent studies on the isolation, structural, elucidation and biological activities of the bioactive compounds from cyanobacteria Nostoc species.

  3. Homology modeling, docking studies and functional analysis of various azoreductase accessory interacting proteins of Nostoc sp.PCC7120.

    Science.gov (United States)

    Philem, Priyadarshini Devi; Adhikari, Samrat

    2012-01-01

    Azo dyes have become a threat to public health because of its toxicity and carcinogenicity. Azoreductase enzyme plays a pivotal role in the degradation of azodyes released by industrial effluents and other resources. The degradation pathway has to be studied in detail for increasing the activity of azoreductase and for better degradation of azo dyes. But the data available on cyanobacterial azoreductase enzyme and its degradation pathway are still very less. Therefore the present work explored the azoreductase pathway of the cyanobacterium Nostoc sp. PCC7120 for better understanding of the degradation pathway and the other accessory interacting proteins involved. The accessory interacting proteins of azoreductase from cyanobacterium Nostoc sp. PCC7120 were obtained from STRING database. The proteins do not have a comprehensive three dimensional structure and are hypothetical. The secondary structure and functional analysis indicated that the proteins are all soluble proteins, without disulphide bonds and have alpha helices only. The structural prediction and docking study showed that alr2106, alr1063 and alr2326 have best docking result which tally with the STRING database confidence score and thus these proteins could possibly enhance the azoreductase activity and better dye degradation. These results will pave way for further increase in azoreductase activity and for better understanding of the dye degradation pathway.

  4. Comparison of the Photosynthetic Characteristics of Two Developmental Stages in Nostoc sphaeroides Kützing(Cyanophyta)

    Institute of Scientific and Technical Information of China (English)

    LI Dun-hai; CHEN Lan-zhou; LI Gen-bao; WANG Gao-hong; LIU Yong-ding

    2005-01-01

    The photosynthetic activities between two main developmental stages, colony and hormogonium, of the edible cyanobacterium Nostoc sphaephyll than that of colonies. It showed that the ratios of phycocyain (PC), allophycocyain (APC) and phycoerythrocyanin (PEC) in hormogonia and colonies were different. The room temperature chlorophyll fluorescence, 77 K chlorophyll fluorescence, measurements of PS Ⅰ and PS Ⅱ activities all showed that colony has higher photosynthetic competence than hormogonia. Hormogonia had a higher respiration rate than colony, while their maximum photosynthetic oxygen evolution rates were very close. The responses of hormogonia and colonies to high light illuminations also were different. Both of their oxygen evolution rates decreased quickly with the prolonged high light illumination, but hormogonia can keep relatively higher PS Ⅱ activity (Fv/Fm ) than that of colonies.The results suggested that colony was photosynthetically more competent than hormogonia, while the ability of hormogonia to tolerate high light illumination was higher than that of colony.

  5. Protein (Cyanobacteria): 464742 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available thetical protein Npun_F4642 Nostoc punctiforme PCC 73102 MQILKVLTRVYLSPVDLDEAIAFYENLFTEKCWLWFQYSEAELELASVGSILLIAGSAEALSPFKSTHATFLVDSLNDFKEALIQQGAVILAEPNKVTTGANMRAMHPDGTIIEYLEFG ...

  6. Protein (Cyanobacteria): 101349 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available family transcripitonal regulator Nostoc punctiforme PCC 73102 MPGSNLTYRRGEIRWVNLDPTVGAEAKKIRACLIVQNDIMNQYGLLTIVMPFRPGSKQAPYVVNVKATPNNGLDQDRFIDIGQIRAVDHSRILGLLGVLESEYWELIRTALNIVLGFVL ...

  7. Protein (Cyanobacteria): 314661 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available tical protein Npun_R1247 Nostoc punctiforme PCC 73102 MLGRITPLNPPLERGETRNPVPSPWKGGLGWGKTLVNQLFQTSMYTVALFLGWASSGLKSNQADKSIRPQHELIRS...EHEPICSEHEPIRSEHEPIRSEHEPIRSEHEPIRSEHELICSEHELIRSKHKPIVV ...

  8. Protein (Cyanobacteria): 107937 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Npun_R4090 Nostoc punctiforme PCC 73102 MLNNLYQFLSPRQWGISLAGLGLLLGLGFIGKQTQVVPITDSSLSSAQVQKT...KTSENSLLSQLRKVREQRSQLRASAGERGIFVHQSGKTLPTTTALVPDSQGATKGAEGLPKVNFPVKDGVYLYGQSPKSNQLGQGYIIFQKQQDKITGALYMPQSEFN

  9. Protein (Cyanobacteria): 140596 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Npun_R5805 Nostoc punctiforme PCC 73102 MQPAQAGFVCAAAISNHQVIFEPLSLTVEPFILSVEPLSLRVEPLSLRVEPFSLSIEPLSLTVEPFILNVEP...LSLRVEPFSLSIEPFILNVEPFILNVEPLSLTTLSKVLLLYKKCYNFLVAVTLLIKSCLNRLSKYC ...

  10. Protein (Cyanobacteria): 82989 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available hetical protein Npun_AF170 Nostoc punctiforme PCC 73102 MPEENSIGLAELIEQIKQELLSTEVEGEKPIPLFSVDQVSLELQVTARKEGKAGIKVYVVELGGGGSRDDVQKVTVTLTPLLSKEERIALYKTRYPQKWKLLEETSIEGLLKGSNDEPLGDLLG ...

  11. Effect of cadmium on the bioelement composition of Nostoc UAM208: Interaction with calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pinas, F.; Mateo, P.; Bonilla, I. [Universidad Autonoma de Madrid (Spain)

    1997-04-01

    Heavy metals may cause effects on the cyanobacterial cell including possible damage to the membranes and leakage from cells resulting in the loss or reduction of essential bioelements. There are many reports in the literature concerning morphological, biochemical and physiological changes caused by cadmium in cyanobacteria, but data on the influence of cadmium on the ion balance of the cell dealing with the interactive effect of cadmium and calcium are limited. Calcium has been found to exert a protective role against heavy metal toxicity in a variety of organisms, We previously reported that calcium is able to counteract the toxic effect of cadmium towards growth, photosynthesis, nitrogenase activity and pigment content of the cyanobacterium Nostoc UAM208. In the present study, we analyzed the content of essential ions, as affected by cadmium treatment, to search for possible mechanisms of heavy metal damage and toxicity in Nostoc. We also studied whether calcium enrichment (1.1 mM final concentration) has any influence on the heavy metal effect on those ionic contents. 13 refs., 2 figs.

  12. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent.

    Science.gov (United States)

    Kapuścik, Aleksandra; Hrouzek, Pavel; Kuzma, Marek; Bártová, Simona; Novák, Petr; Jokela, Jouni; Pflüger, Maren; Eger, Andreas; Hundsberger, Harald; Kopecký, Jiří

    2013-11-25

    Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    Science.gov (United States)

    Preisitsch, Michael; Heiden, Stefan E.; Beerbaum, Monika; Niedermeyer, Timo H. J.; Schneefeld, Marie; Herrmann, Jennifer; Kumpfmüller, Jana; Thürmer, Andrea; Neidhardt, Inga; Wiesner, Christoph; Daniel, Rolf; Müller, Rolf; Bange, Franz-Christoph; Schmieder, Peter; Schweder, Thomas; Mundt, Sabine

    2016-01-01

    In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed. PMID:26805858

  14. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  15. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    Directory of Open Access Journals (Sweden)

    Michael Preisitsch

    2016-01-01

    Full Text Available In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed.

  16. Morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania

    OpenAIRE

    Špakaitė, Ina

    2014-01-01

    The aim of the study was to investigate the morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania. The detailed research of freshwater and terrestrial Nostoc and Desmonostoc species provided new data on taxonomy, biology and ecology of these cyanobacteria and the overall diversity of algae in Lithuania. 20 Nostoc species and two intraspecific taxa, and 18 taxa to the Nostoc genus level were identified. Twelve Nostoc species and intraspecifi...

  17. Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria).

    Science.gov (United States)

    Suradkar, Archana; Villanueva, Chelsea; Gaysina, Lira A; Casamatta, Dale A; Saraf, Aniket; Dighe, Gandhali; Mergu, Ratnaprabha; Singh, Prashant

    2017-05-01

    A filamentous, soil-dwelling cyanobacterial strain (9C-PST) was isolated from Mandsaur, Madhya Pradesh, India, and is described as a new species of the genus Nostoc. Extensive morphological and molecular characterization along with a thorough assessment of ecology was performed. The style of filament orientation, type and nature of the sheath (e.g. distribution and visibility across the trichome), and vegetative and heterocyte cell dimensions and shape were assessed for over one year using both the laboratory grown culture and the naturally occurring samples. Sequencing of the 16S rRNA gene showed 94 % similarity with Nostocpiscinale CENA21 while analyses of the secondary structures of the 16S-23S ITS region showed unique folding patterns that differentiated this strain from other species of Nostoc. The level of rbcl and rpoC1 gene sequence similarity was 91 and 94 % to Nostocsp. PCC 7524 and Nostocpiscinale CENA21, respectively, while the nifD gene sequence similarity was found to be 99 % with Nostocpiscinale CENA21. The phenotypic, ecological, genetic and phylogenetic observations indicate that the strain 9C-PST represents a novel species of the genus Nostoc with the name proposed being Nostoc thermotolerans sp. nov. according to the International Code of Nomenclature for Algae, Fungi, and Plants.

  18. A Proposal on the Restoration of Nostoc flagelliforme for Sustainable Improvement in the Ecology of Arid Steppes in China

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-06-01

    Full Text Available Nostoc flagelliforme, a filamentous nitrogen-fixing cyanobacterium, is widely distributed in arid steppes of the west and northwestern parts of China. However, as a food delicacy this species has been overexploited from 1970 to 2000. Moreover, overgrazing, land reclamation and the removal of medicinal herbs have caused severely reduced vegetation coverage there. In this communication, a badly damaged but slowly rehabilitating N. flagelliforme-inhibiting steppe is described, and the rehabilitation of desertified steppes by the renewed growth of N. flagelliforme is proposed. The restoration of this dominant nitrogen supplier would be an ecologically sustainable solution for supplementing current measures already taken in the desertified regions. In addition, a goal of 50%–60% vegetation coverage is proposed by the N. flagelliforme restoration.

  19. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    Science.gov (United States)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  20. Dry heat tolerance of the dry colony in Nostoc sp. HK-01 for useful usage in space agriculture

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Yamashita, Masamichi; Sato, Seigo; Katoh, Hiroshi

     Space agriculture producing foods is important as one of approach for space habitation. Nostoc sp. HK-01 is one of terrestrial cyanobacterium having a high dry tolerance and it has several ability, photosynthesis, nitrogen fixation and usefulness as a food, it is thought that it can be used for space agriculture. Besides, a study on each tolerance predicted at the time of introduction to space agriculture is necessary. Therefore, as one of the tolerance that are intended to space environment, dry heat ( 100(°) C, 10 h ) tolerance of dry colony in Nostoc sp. HK-01 has been investigated, but the detail function of them has not yet been elucidated. We focused on the extracellular polysaccharides ( EPS ) having the various tolerance, desiccation, low temperature, NaCl, and heavy particle beam. We will consider the function and useful usage of this cyanobacterum in space agriculture after the consideration of the results of contribution of the possibility that EPS improves dry heat tolerance under a dry condition.

  1. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2008-04-01

    Full Text Available Abstract Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the

  2. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    Science.gov (United States)

    Agervald, Åsa; Stensjö, Karin; Holmqvist, Marie; Lindblad, Peter

    2008-01-01

    Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs) were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the assembly of the small subunit of

  3. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  4. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Science.gov (United States)

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  5. Energetics of cyanophage N-1 multiplication in the diazotrophic cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Singh, S; Bhatnagar, A; Kashyap, A K

    1994-01-01

    Cyanophage N-1 multiplication was investigated during the latent period of the virus, when 14CO2 fixation was inhibited whereas respiratory O2 uptake increased approximately 67% at 4 h after infection. A simultaneous decrease (70%) in the glycogen content of infected cells indicated its catabolic involvement. A chloramphenicol-sensitive rise in glucose-6-phosphate dehydrogenase activity as a result of N-1 infection partly explained the increase in aerobic respiration. The total ATP pool declined to 53% of the control while Ca(2+)-dependent ATPase activity also declined (25%). In contrast, Mg(2+)-dependent ATPase activity increased (80%) in comparison with uninfected cells. Results suggest that oxidative phosphorylation was more crucial in the control of cyanophage N-1 development than photophosphorylation under photoautotrophic growth conditions.

  6. Photoregulated or Energy Dependent Process of Hormogonia Differentiation in Nostoc sphaeroides Kützing (Cyanobacterium)

    Institute of Scientific and Technical Information of China (English)

    Dun-Hai LI; Lan-Zhou CHEN; Gen-Bao LI; Gao-Hong WANG; Li-Rong SONG; Yong-Ding LIU

    2005-01-01

    Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration.Following the testing of different sugars, the effects of different lights were examined. It was found that 5-10 μmol.m-2.s-1 photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80%differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in induc ing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.

  7. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yuan, Che; Li, Hui-Zhen; Tang, Kun; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2016-04-01

    The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.

  8. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    Science.gov (United States)

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  9. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Cadmium-mediated resistance to metals and antibiotics in a cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pandey, A.K.

    1982-01-01

    Cadmium-resistant strains of the cyanobacterium Nostoc calcicola were isolated through the step-wise transfer of the organism to higher levels of the metal. One of the Cd-resistant strains (CDsup(r)-10) showed cross-resistance to antibiotics like neomycin (1 ..mu..g/ml), chloramphenicol (3 ..mu..g/ml) but not to streptomycin. The Cd-resistant strain also tolerated elevated levels of metals such as zinc 20 ppm) and mercury (1 ppm). The stability of the metal-resistance required the presence of Cd/sup 2 +/ ions in the growth medium. It is suggested that metal resistance may also be determined by gene(s) on the antibiotic resistance plasmids in cyanobacteria.

  11. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Jan Bornikoel

    2017-09-01

    Full Text Available Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  12. Evolution of space food in Nostoc sp. HK-01

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Kimura, Yasuko; Katoh, Hiroshi; Arai, Mayumi

    2012-07-01

    Habitation in outer space is one of our challenges. We have been studying future space agriculture to provide food and oxygen for the habitation area in the space environment, on Mars. A cyanobacteria, Nostoc sp. HK-01, has high several outer space environmental tolerance. We have already confirmed that Nostoc sp.HK-01 had an ability to grow for over several years on the Martian regolith simulant in a laboratory experiment. Nostoc sp HK-01 would have high contribution to change the atmosphere in Mars as a photosynthetic creature. In outer environment, all of materials have to circulate for all of creature living in artificial eco-systems on Mars. This material has several functions as the utilization in space agriculture. Here, we are proposing using them as a food after its growing on Mars. We are trying to determine the best conditions and evolution for space food using Nostoc sp.HK-01 and studying the proposal of utilization of cyanobacteria, Nostoc sp HK-01, for the variation of meal as space agriculture.

  13. Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp.

    Science.gov (United States)

    Deviram, G V N S; Pant, Gaurav; Prasuna, R Gyana

    2013-01-01

    The present study indicates the effect of fungicides (approved by WHO) and their behavior on nitrogen fixer of rice eco system Nostoc sp. Application of plant protecting chemicals at recommended levels braced up the growth of blue green algae thereby enhancing heterocyst formation and nitrogenase activity. Nostoc sp demoed varying degrees of sensitivity to fungicides. Biomass yield, protein, carbohydrate content reduced after 3pg/mL concentration. Heterocyst damage was observed from 4μg/mL, Proline content increased with increase in fungicide concentration, utmost yellowing of the culture started from 4μg/mL. The decreasing order of the toxicity to Nostoc sp with fungicides was Mancozeb> Ediphenphos> Carbendazim> Hexaconazole.

  14. Protein (Cyanobacteria): 186683700 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available 737:2344 ... hypothetical protein Npun_R3552 Nostoc punctiforme PCC 73102 MSLAVIKFSSEECGICHKMSFYDKKVAEELGLEFIDVKMQDTTAYRKYRKILLTQYPDKSEMGWPTYIICNSPEGEFQIVGEVKGGHPKGEFRSRLQEVLDSTGNQN

  15. Unusual reversible elastomeric gels from Nostoc commune.

    Science.gov (United States)

    Rodriguez, Sol; Gonzales, Karen N; Romero, Eduardo G; Troncoso, Omar P; Torres, Fernando G

    2017-04-01

    Nostoc commune cyanobacteria grow in extreme conditions of desiccation and nutrient-poor soils. Their colonies form spherical gelatinous bodies are composed of a variety of polysaccharides that allow them to store water and nutrients. In this paper, we study this type of biological gel that shows characteristics of both chemical and physical gels. The structure of this gel was assessed by means of scanning electron microscopy, plate-plate rheometry, Fourier transform infrared spectroscopy and absorption/desorption tests. The storage modulus of this gel was found to be frequency independent, as is usual for chemical gels. The stress sweeps showed a reversible stress softening behaviour that was explained in terms of the physical nature of the interactions of this network. The high density of physical crosslinks probably allows this physical network to behave as a highly elastomeric chemical network, limiting the relaxation of individual chains. On the other hand, reversibility is associated with the physical nature of its bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc.

    Science.gov (United States)

    Zelík, Petr; Lukesová, Alena; Voloshko, Ludmila N; Stys, Dalibor; Kopecký, Jirí

    2009-04-01

    Fifty-four cyanobacterial strains of the genus Nostoc from different habitats were screened for acetylcholinesterase inhibitory activity. Water-methanolic extracts from freeze-dried biomasses were tested for inhibitory activity using Ellman's spectrophotometric method. Acetylcholinesterase inhibitory activity higher than 90% was found in the crude extracts of Nostoc sp. str. Lukesova 27/97 and Nostoc ellipsosporum Rabenh. str. Lukesova 51/91. Extracts from Nostoc ellipsosporum str. Lukesova 52/91 and Nostoc linckia f. muscorum (Ag.) Elenk. str. Gromov, 1988, CALU-980 inhibited AChE activity by 84.9% and 65.3% respectively. Moderate AChE inhibitory activity (29.1-37.5%) was found in extracts of Nostoc linckia Roth. str. Gromov, 1962/10, CALU-129, Nostoc muscorum Ag. str. Lukesova 127/97, Nostoc sp. str. Lhotsky, CALU-327 and Nostoc sp. str. Gromov, CALU-998. Extracts from another seven strains showed weak anti-AChE activities. The active component responsible for acetylcholinesterase inhibition was identified in a crude extract of Nostoc sp. str. Lukesova 27/97 using HPLC and found to occur in one single peak.

  17. Growth response to temperature and irradiance in Nostoc spongiaeforme

    Science.gov (United States)

    California water-seeded rice fields are typically shallow and have high nutrient levels, which are ideal growing conditions for algae and cyanobacteria. Nostoc spongiaeforme is problematic in California rice fields because floating mats may dislodge seedlings or smother them when the mats accumulat...

  18. Understanding nutrient exchange between Azolla and its symbiont, Nostoc

    OpenAIRE

    Eily, Ariana

    2017-01-01

    This is an in-depth look at the research I am doing for my doctoral degree at Duke University, investigating the exchange of nutrients between the aquatic fern genus, Azolla, and its cyanobacterial symbiont, Nostoc azollae. All of the illustrations and microscopy images within this presentation are my own.

  19. Preparation of desiccation-resistant aquatic-living Nostoc flagelliforme (Cyanophyceae) for potential ecological application.

    Science.gov (United States)

    Gao, Xiang; Yang, Yi-Wen; Cui, Li-Juan; Zhou, De-Bao; Qiu, Bao-Sheng

    2015-11-01

    Nostoc flagelliforme is a terrestrial edible cyanobacterium that grows in arid and semi-arid steppes. The continued over-exploitation in the last century has led to a sharp decline of this resource and a severe deterioration of the steppe ecology. Liquid-cultured N. flagelliforme serves as promising algal 'seeds' for resource restoration. In this study, macroscopic (or visible) aquatic-living colonies (MaACs) of N. flagelliforme were developed under weak light and high nitrogen conditions. In a 24 day shake-flask culture, MaACs were propagated by about 4.5-fold in biomass without loss of their macro-morphology; at the same time, the addition of weak UV-B treatment resulted in slightly bigger MaACs. Polyvinylpyrrolidone (PVP) k30, a water-soluble polymer, was used to generate the coating around MaACs, and after full desiccation, the coated MaACs could recover their photosynthetic physiological activity when rehydrated, with 4% PVP k30 for coating being most effective. In contrast, PVP k30-coated microscopic aquatic-living colonies of N. flagelliforme and non-coated MaACs showed no resistance to full desiccation. The macroscopic morphology or structure of MaACs should be crucial for the formation of protection by PVP k30 coating. PVP k30-coated MaACs were more approaching to actual application for resource restoration. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Genetic Diversity of Nostoc Symbionts Endophytically Associated with Two Bryophyte Species

    OpenAIRE

    Costa, José-Luis; Paulsrud, Per; Rikkinen, Jouko; Lindblad, Peter

    2001-01-01

    The diversity of the endophytic Nostoc symbionts of two thalloid bryophytes, the hornwort Anthoceros fusiformis and the liverwort Blasia pusilla, was examined using the tRNALeu (UAA) intron sequence as a marker. The results confirmed that many different Nostoc strains are involved in both associations under natural conditions in the field. The level of Nostoc diversity within individual bryophyte thalli varied, but single DNA fragments were consistently amplified from individual symbiotic col...

  1. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.

    Science.gov (United States)

    Sandmann, Gerhard; Mautz, Jürgen; Breitenbach, Jürgen

    2016-09-01

    In Nostoc PCC 7120, two different ketolases, CrtW and CrtO are involved in the formation of keto carotenoids from β-carotene. In contrast to other cyanobacteria, CrtW catalyzes the formation of monoketo echinenone whereas CrtO is the only enzyme for the synthesis of diketo canthaxanthin. This is the major photo protective carotenoid in this cyanobacterium. Under high-light conditions, basic canthaxanthin formation was transcriptionally up-regulated. Upon transfer to high light, the transcript levels of all investigated carotenogenic genes including those coding for phytoene synthase, phytoene desaturase and both ketolases were increased. These transcription changes proceeded via binding of the transcription factor NtcA to the promoter regions of the carotenogenic genes. The binding was absolutely dependent on the presence of reductants and oxo-glutarate. Light-stimulated transcript formation was inhibited by DCMU. Therefore, photosynthetic electron transport is proposed as the sensor for high-light and a changing redox state as a signal for NtcA binding.

  2. Diverse roles of the GlcP glucose permease in free-living and symbiotic cyanobacteria.

    Science.gov (United States)

    Picossi, Silvia; Flores, Enrique; Ekman, Martin

    2013-01-01

    Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactivated or overexpressing sugar transporters suggest that GlcP could be induced by a symbiosis specific substance. We also discuss that the transporter may have a role other than nutritional once the symbiosis is established, i.e., during infection, and more specifically in the chemotaxis of the symbiont. Phylogenetic analysis shows that the distribution of GlcP among cyanobacteria is likely influenced by horizontal gene transfer, but also that it is not correlated with symbiotic competence. Instead, regulatory patterns of the transporter in Nostoc punctiforme likely constitute symbiosis specific adaptations.

  3. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2015-11-01

    The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.

  4. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp. by High Performance Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    José Cheel

    2014-06-01

    Full Text Available High performance countercurrent chromatography (HPCCC was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (4:5:4:5, v/v/v/v was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2 with those of an authentic standard and data available in the literature.

  5. Comparison of plasmids from the cyanobacterium Nostoc PCC 7524 with two mutant strains unable to form heterocysts

    NARCIS (Netherlands)

    Reaston, J.; Hondel, C.A.M.J.J. van den; Ende, A. van der; Arkel, G.A. van; Stewart, W.D.P.; Herdman, M.

    1980-01-01

    Cyanobacteria (bluegreen bacteria) are O₂-evolving photosynthetic prokaryotes some species of which fix N₂ in air because the nitrogenase is protected from O₂ inactivation by being localized in differentiated cells called heterocysts. Recently much attention has been paid to the possible role

  6. Comparison of plasmids from the cyanobacterium Nostoc PCC 7524 with two mutant strains unable to form heterocysts

    NARCIS (Netherlands)

    Reaston, J.; Hondel, C.A.M.J.J. van den; Ende, A. van der; Arkel, G.A. van; Stewart, W.D.P.; Herdman, M.

    1980-01-01

    Cyanobacteria (bluegreen bacteria) are O₂-evolving photosynthetic prokaryotes some species of which fix N₂ in air because the nitrogenase is protected from O₂ inactivation by being localized in differentiated cells called heterocysts. Recently much attention has been paid to the possible role of pla

  7. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; González, Andrés; Risoul, Véronique; Denis, Yann; Richaud, Pierre; Lamrabet, Otmane; Fillat, Maria F; Zhang, Cheng-Cai; Latifi, Amel

    2015-07-29

    The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation.

  8. New Anabaena and Nostoc cyanophages from sewage settling ponds

    Energy Technology Data Exchange (ETDEWEB)

    Hu, N.; Thiel, T.; Giddings, T.H., Jr.; Wolk, C.P.

    1981-10-15

    We have isolated, from sewage settling ponds, 16 cyanophages for heterocyst forming, filamentous cyanobacteria of the genera Anabaena and Nostoc. These phages fall into three groups based on morphology, host range, one-step growth curves, and restriction digests. On the basis of these criteria they can be distinguished from cyanophages A-1(L), A-4(L), N-1, and AN-10 which we received from other laboratories. Certain of the newly described phages are similar in morphology to the short-tailed LPP cyanophages, and others to the long-tailed AS cyanophages.

  9. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants

    Science.gov (United States)

    Wang, Gaohong; Hu, Chunxiang; Li, Dunhai; Zhang, Delu; Li, Xiaoyan; Chen, Kun; Liu, Yongding

    UV radiation is one of many harmful factors found in space that are detrimental to organisms on earth in space exploration. In the present work, we examined the role of antioxidant system in Nostoc sphaeroides Kütz (Cyanobacterium) and the effects of exogenously applied antioxidant molecules on its photosynthetic rate under UV-B radiation. It was found that UV-B radiation promoted the activity of antioxidant system to protect photosystem II (PSII) and exogenously applied antioxidant: sodium nitroprusside (SNP) and N-acetylcysteine (NAC) had an obvious protection on PSII activity under UV-B radiation. The activity of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7) and content of MDA (malondialdehyde) and ASC (ascorbate) were improved by 0.5 mM and 1 mM SNP, but 0.1 mM SNP decreased the activity of antioxidant system. Addition of exogenous NAC decreased the activity of SOD, POD, CAT and the content MDA and ASC. In contrast, exogenously applied NAC increased GSH content. The results suggest that exogenous SNP and NAC may protect algae by different mechanisms: SNP may play double roles as both sources of reactive free radicals as well as ROS scavengers in mediating the protective role of PSII on algae under UV-B radiation. On the other hand, NAC functions as an antioxidant or precursor of glutathione, which could protect PSII directly from UV-B radiation.

  10. Photoacclimation of cultured strains of the cyanobacterium

    NARCIS (Netherlands)

    Bañares-España, E.; Kromkamp, J.C.; López-Rodas, V.; Costas, E.; Flores-Moya, A.

    2013-01-01

    The cyanobacterium Microcystis aeruginosa forms blooms that can consist of colonies. We have investigated how M.aeruginosa acclimatizes to changing light conditions such as can occur during blooms. Three different strains were exposed to two irradiance levels: lower (LL) and higher (HL) than the

  11. INFLUENCE OF NOSTOC VAUCHER EX BORNET ET FLAHAULT STRAINS ON GROWTH AND DEVELOPMENT OF PISUM SATIVUM L.

    Directory of Open Access Journals (Sweden)

    Ye. I. Maltsev

    2015-12-01

    Full Text Available We investigated the positive impact of cultures cyanobacteria genus Nostoc Vaucher ex Bornet et Flahault on growth and development of higher plants as an example Pisum sativum L. All the Nostoc species have a positive effect on the viability, germination energy, and biometric characteristics of Pisum sativum. The greatest positive influence was registered for N. entophytum Born. et. Flah. and N. linckia (Roth Bornetet Flahault f. linckia. Keywords: Nostoc, seed pelleting, viability, germination energy, biomass.

  12. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Vullo, Daniela; Carginale, Vincenzo; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-10-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the CO2 hydration/dehydration reversible reaction: CO2 + H2O ⇄ [Formula: see text] + H(+). Living organisms encode for at least six distinct genetic families of such catalyst, the α-, β-, γ-, δ-, ζ- and η-CAs. The main function of the CAs is to quickly process the CO2 derived by metabolic processes in order to regulate acid-base homeostasis, connected to the production of protons (H(+)) and bicarbonate. Few data are available in the literature on Antarctic CAs and most of the scientific information regards CAs isolated from mammals or prokaryotes (as well as other mesophilic sources). It is of great interest to study the biochemical behavior of such catalysts identified in organism living in the Antarctic sea where temperatures average -1.9 °C all year round. The enzymes isolated from Antarctic organisms represent a useful tool to study the relations among structure, stability and function of proteins in organisms adapted to living at constantly low temperatures. In the present paper, we report in detail the cloning, purification, and physico-chemical properties of NcoCA, a γ-CA isolated from the Antarctic cyanobacterium Nostoc commune. This enzyme showed a higher catalytic efficiency at lower temperatures compared to mesophilic counterparts belonging to α-, β-, γ-classes, as well as a limited stability at moderate temperatures.

  13. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    Science.gov (United States)

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  14. Dark hydrogen production in nitrogen atmosphere - An approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, D.; Arun Kumar, D.; Uma, L.; Subramanian, G. [National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2010-10-15

    Biological hydrogen production is an ideal system for three main reasons i) forms a renewable energy source, ii) gives clean fuel and iii) serves as a good supplement to oil reserves. The major challenges faced in biological hydrogen production are the presence of uptake hydrogenase and lack of sustainability in the cyanobacterial hydrogen production system. Three different marine cyanobacterial species viz. Leptolyngbya valderiana BDU 20041, Dichothrix baueriana BDU 40481 and Nostoc calcicola BDU 40302 were studied for their potential use in hydrogen production. Among these, L. valderiana BDU 20041, was found to produce hydrogen even in 100% nitrogen atmosphere which was 85% of the hydrogen produced in argon atmosphere. This is the first report of such a high rate of production of hydrogen in a nitrogen atmosphere by a cyanobacterium, which makes it possible to develop sustained hydrogen production systems. L. valderiana BDU 20041, a dark hydrogen producer uses the reductant essentially supplied by the respiratory pathway for hydrogen production. Using inhibitors, this organism was found to produce hydrogen due to the activities of both nitrogenase and bidirectional hydrogenase, while it had no 'uptake' hydrogenase activity. The other two organisms though had low levels of bidirectional hydrogenase, possessed considerable 'uptake' hydrogenase activity and hence could not release much hydrogen either in argon or nitrogen atmosphere. (author)

  15. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch.

    Science.gov (United States)

    Guo, Min; Ding, Guo-Bin; Guo, Songjia; Li, Zhuoyu; Zhao, Liangqi; Li, Ke; Guo, Xiangrong

    2015-09-01

    Nostoc commune Vauch. has been traditionally used as a healthy food and medicine for centuries especially in China. It has been demonstrated that the polysaccharides isolated from Nostoc commune Vauch. exhibit strong antimicrobial and antioxidant activities. However, little is known about their anticancer activities and the underlying mechanisms of action. Herein, we report the isolation of a polysaccharide from Nostoc commune Vauch. (NVPS), and its physicochemical properties were analyzed. In an attempt to demonstrate the potential application of NVPS in tumor chemotherapy, the in vitro antitumor activity was determined. NVPS significantly suppressed the growth and proliferation of MCF-7 and DLD1 cells. The molecular mechanism underlying this in vitro antitumor efficacy was elucidated, and the results indicated that NVPS simultaneously triggered intrinsic, extrinsic and endoplasmic reticulum stress (ERS)-mediated apoptotic signaling pathways. Collectively, these findings demonstrate that NVPS could be used as a novel promising source of natural antitumor agents.

  16. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized.

  17. COMPONENŢA AMINOACIZILOR DIN BIOMASA ALGEI CIANOFITE NOSTOC GELATINOSUM (SCHOUSB ELENK.

    Directory of Open Access Journals (Sweden)

    Sergiu DOBROJAN

    2016-02-01

    Full Text Available În articol este analizată componenţa aminoacizilor din biomasa algei cianofite Nostoc gelatinosum (Schousb Elenk. colectate de pe mediul nutritiv Drew. Din grupa aminoacizilor esenţiali în biomasa algei Nostoc gelatinosum (Schousb Elenk. se conţine în cantităţi majore leucina (2,142±0,06 mg/100 mg, treonina (1,188±0,02 mg/100 mg şi valina (1,085±0,03 mg/100 mg. Din aminoacizii neesenţiali predomină acidul aspartic (4,523±0,11 mg/100 mg şi acidul glutamic (2,774±0,07 mg/100 mg. Alga Nostoc gelatinosum (Schousb Elenk. are un conţinut bogat de aminoacizi şi poate servi ca sursă pentru vaste domenii de aplicare.THE AMINO ACIDS COMPOSITION OF THE BLUE-GREEN ALGANOSTOC GELATINOSUM (SCHOUSB ELENKThis article presents the amino acid content of the blue-green alga Nostoc gelatinosum (Schousb Elenk. collected from the Drew nutritive medium. From the essential amino group in Nostoc gelatinosum (Schousb Elenk. biomass, major amounts are contained leucine (2,142 ± 0,06 mg/100 mg, threonine (1,188 ± 0,02 mg/100 mg and valine (1,085 ± 0,03 mg/100 mg. From nonessential amino acids predominates aspartic acid (4,523 ± 0,11 mg/100 mg and glutamic acid (2,774 ± 0.07 mg/100 mg. The alga Nostoc gelatinosum (Schousb Elenk. has a high content of amino acids and can serve as a source for vast areas of application. 

  18. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    Science.gov (United States)

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  19. Metabolism and resources of spherical colonies of Nostoc zetterstedtii

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Raun, Ane-Marie Løvendahl; Borum, Jens

    2009-01-01

    by active transport that could extract most external DIC, accumulate DIC in the colony 150-fold above external concentrations, and retain respiratory CO2. The energy cost of solute transport and gel formation in Nostoc colonies and extensive self shading restrict their potential growth, whereas colony...... formation should prevent grazing and increase longevity and nutrient recirculation. Nostoc zetterstedtii has become one of rarest freshwater macroalgae because of widespread lake eutrophication reducing water transparency and increasing competition from taller and faster-growing stands of filamentous algae...

  20. Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella

    Energy Technology Data Exchange (ETDEWEB)

    Canaani, O.; Gantt, E.

    1982-09-01

    Formation of phycobilisomes has been accomplished in vitro from isolated phycobiliprotein fraction obtained from the same blue-green alga (intrageneric) and from different blue-green algae (intergeneric). Phycobilisomes, which are supramolecular complexes of phycobiliproteins, serve as major light-harvesting antennae for photosynthesis in blue-green and red algae. Intrageneric association into energetically functional phycobilisomes, previously reported to occur with Nostoc sp. allophycocyanin and phycoerythrin-phycocyanin complexes has been obtained with Fremyella diplosiphon. By their spectral propeties (absorption, fluorescence excitation, and emission) and electron microscopic images, the native and in vitro-associated phycobilisomes were virtually indistinguishable. Intergeneic phycobilisomes have been produced from allophycocyanin of Nostoc sp. strain Mac, and phycoerythrin-phycocyanin of F. diplosiphon, as well as from the reverse mixtures. Phycobilisomes of Nostoc and Fremyella, analyzed by NaDodSO/sub 4//polyacrylamide gel electrophoresis, possessed a number of polypeptides having similar molecular weights: the usual ..cap alpha..- and ..beta..-phycobilin-containing polypeptides of M/sub r/ 15,000-22,000, a faint band at M/sub r/ ca. 95,000, and a prominent band at M/sub r/ ca. 31,000. The M/sub r/ 31,000 polypeptide is assumed to provide the recognition site for attachment of the phycoerythrin-phycocyanin complexes with the allophycocyanin core. In vitro association was not obtained between allophycocyanin from Nostoc and phycoerythrin-phycocyanin complexes from Phormidium persicinum or Porphyridium sordidum.

  1. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments

    National Research Council Canada - National Science Library

    Sand-Jensen, Kaj

    2014-01-01

    The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing...

  2. INFLUENCE OF NOSTOC VAUCHER EX BORNET ET FLAHAULT STRAINS ON GROWTH AND DEVELOPMENT OF PISUM SATIVUM L.

    Directory of Open Access Journals (Sweden)

    Maltsev Ye. I.

    2015-12-01

    Full Text Available We investigated the positive impact of cultures cyanobacteria genus Nostoc Vaucher ex Bornet et Flahault on growth and development of higher plants as an example Pisum sativum L. All the Nostoc species have a positive effect on the viability, germination energy, and biometric characteristics of Pisum sativum. The greatest positive influence was registered for N. entophytum Born. et. Flah. and N. linckia (Roth Bornetet Flahault f. linckia.

  3. Cloning and expression analysis ofNfPrx gene from Nostoc lfagelliforme%发状念珠藻过氧化物还原酶NfPrx基因的克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    岳思君; 周娟; 郑蕊; 范红丽; 苏建宇

    2016-01-01

    domain. Protein sequence identity search showed that NfPrx was similar to Prx gene ofNostoc punctiforme,Calothrixsp. PCC7507,Microchaetesp. PCC7126,Nostoc piscinale CENA21 with similarities of above 94%. Phylogenetic tree reconstructed by neighbor joining method clearly showed that NfPrx protein was classiifed into a subgroup withN. punctiforme. The recombinant plasmid pET32a-NfPrx was expressed in a prokaryotic expression sys-tem after its transformation intoE. coli BL21. The result of SDS-PAGE demonstrated that the expressed protein was consistent with the size of expected protein in the prokaryotic expression system. qRT-PCR result showed that the expression ofNfPrx gene rose and then dropped with the increased of PEG-6000 concentration, and reached peak at 8% PEG-6000 concentration. It is hypothesized that peroxiredoxin may involve in the process of response to stress resistance inN. lfagelliforme.

  4. Production of the Neurotoxin BMAA by a Marine Cyanobacterium

    Directory of Open Access Journals (Sweden)

    Paul Alan Cox

    2007-12-01

    Full Text Available Diverse species of cyanobacteria have recently been discovered to produce theneurotoxic non-protein amino acid β-methylamino-L-alanine (BMAA. In Guam, BMAAhas been studied as a possible environmental toxin in the diets of indigenous Chamorropeople known to have high levels of Amyotrophic Lateral Sclerosis/ ParkinsonismDementia Complex (ALS/PDC. BMAA has been found to accumulate in brain tissues ofpatients with progressive neurodegenerative illness in North America. In Guam, BMAAwas found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which livein specialized cycad roots. We here report detection of BMAA in laboratory cultures of afree-living marine species of Nostoc. We successfully detected BMAA in this marinespecies of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino AcidAnalyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five differentanalytical methods unequivocally demonstrates the presence of BMAA in this marinecyanobacterium. Since protein-associated BMAA can accumulate in increasing levelswithin food chains, it is possible that biomagnification of BMAA could occur in marineecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Productionof BMAA by marine cyanobacteria may represent another route of human exposure toBMAA. Since BMAA at low concentrations causes the death of motor neurons, low levelsof BMAA exposure may trigger motor neuron disease in genetically vulnerableindividuals.

  5. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    Science.gov (United States)

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  6. Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803.

    Science.gov (United States)

    Shunmugam, Sumathy; Jokela, Jouni; Wahlsten, Matti; Battchikova, Natalia; Ateeq ur Rehman; Vass, Imre; Karonen, Maarit; Sinkkonen, Jari; Permi, Perttu; Sivonen, Kaarina; Aro, Eva-Mari; Allahverdiyeva, Yagut

    2014-06-01

    Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC6803 cells.After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non-peptide structure. We propose that M22 possesses a dualaction mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.

  7. Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella.

    Science.gov (United States)

    Canaani, O; Gantt, E

    1982-09-01

    Formation of phycobilisomes has been accomplished in vitro from isolated phycobiliprotein fractions obtained from the same blue-green alga (intrageneric) and from different blue-green algae (intergeneric). Phycobilisomes, which are supra-molecular complexes of phycobiliproteins, serve as major light-harvesting antennae for photosynthesis in blue-green and red algae. Intrageneric association into energetically functional phycobilisomes, previously reported to occur with Nostoc sp. allophycocyanin and phycoerythrin-phycocyanin complexes [Canaani, O., Lipschultz, C. A. & Gantt, E. (1980) FEBS Lett. 115, 225-229], has been obtained with Fremyella diplosiphon. By their spectral properties (absorption, fluorescence excitation, and emission) and electron microscopic images, the native and in vitro-associated phycobilisomes were virtually indistinguishable. Intergeneric phycobilisomes have been produced from allophycocyanin of Nostoc sp. strain Mac. and phycoerythrin-phycocyanin of F. diplosiphon, as well as from the reverse mixtures. The yield of intergeneric phycobilisomes, favored by higher phycobiliprotein content in 0.75 M phosphate, pH 7.0/2.0 M sucrose, was 40-60%. Energy transfer to the terminal long-wavelength-emitting allophycocyanin in the phycobilisomes was evident from the 670-675 nm fluorescence emission peaks. Furthermore, excitation spectra showed the contribution of the respective phycoerythrins (Fremyella, lambda(max) 570; Nostoc, lambda(max) 573 and 553 nm), as well as that of phycocyanin and short-wavelength-absorbing allophycocyanin. Phycobilisomes of Nostoc and Fremyella, analyzed by NaDodSO(4)/polyacrylamide gel electrophoresis, possessed a number of polypeptides having similar molecular weights: the usual alpha- and beta-phycobilin-containing polypeptides of M(r) 15,000-22,000, a faint band at M(r)ca. 95,000, and a prominent band at M(r)ca. 31,000. The M(r) 31,000 polypeptide is assumed to provide the recognition site for attachment of the

  8. Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected].

    Science.gov (United States)

    Fernández-Martínez, M A; de Los Ríos, A; Sancho, L G; Pérez-Ortega, S

    2013-08-01

    Global warming is causing ice retreat in glaciers worldwide, most visibly over the last few decades in some areas of the planet. One of the most affected areas is the region of Tierra del Fuego (southern South America). Vascular plant recolonisation of recently deglaciated areas in this region is initiated by Gunnera magellanica, which forms symbiotic associations with the cyanobacterial genus Nostoc, a trait that likely confers advantages in this colonisation process. This symbiotic association in the genus Gunnera is notable as it represents the only known symbiotic relationship between angiosperms and cyanobacteria. The aim of this work was to study the genetic diversity of the Nostoc symbionts in Gunnera at three different, nested scale levels: specimen, population and region. Three different genomic regions were examined in the study: a fragment of the small subunit ribosomal RNA gene (16S), the RuBisCO large subunit gene coupled with its promoter sequence and a chaperon-like protein (rbcLX) and the ribosomal internal transcribed spacer (ITS) region. The identity of Nostoc as the symbiont was confirmed in all the infected rhizome tissue analysed. Strains isolated in the present study were closely related to strains known to form symbioses with other organisms, such as lichen-forming fungi or bryophytes. We found 12 unique haplotypes in the 16S rRNA (small subunit) region analysis, 19 unique haplotypes in the ITS region analysis and 57 in the RuBisCO proteins region (rbcLX). No genetic variability was found among Nostoc symbionts within a single host plant while Nostoc populations among different host plants within a given sampling site revealed major differences. Noteworthy, interpopulation variation was also shown between recently deglaciated soils and more ancient ones, between eastern and western sites and between northern and southern slopes of Cordillera Darwin. The cell structure of the symbiotic relationship was observed with low-temperature scanning

  9. POTENŢIALUL NUTRIŢIONAL AL BIOMASEI ALGALE DE NOSTOC FLAGELLIFORME (BERK ET CURT ELENK.

    Directory of Open Access Journals (Sweden)

    Irina STRATULAT

    2016-05-01

    Full Text Available În prezentul studiu este prezentată componenţa biochimică a biomasei algei cianofite Nostoc flagelli­forme (Berk et Curt Elenk. cultivată în condiţii de laborator pe mediul mineral Z-8. Biomasa algei conţine: Mn – 683,9 mg/kg, Zn – 131,5 mg/kg, Pb – <10 mg/kg, Fe – 1,09 g/kg, Na+ – 2,10 g/kg, K+ – 8,01 g/kg, Mg 2+ – 5,40 g/kg, Ca2+ – 7,94 g/kg. În componenţa aminoacizilor predomină: acidul glutamic – 3,8012 mg/100 mg, acidul aspartic – 2,7838 mg/100 mg, leucina – 2,4651 mg/100 mg, alanina – 2,3513 mg/100 mg. Conform acestor rezultate, biomasa algei cianofite Nostoc flagelliforme poate fi utilizată ca sursă importantă de supli­mente alimentare. THE NUTRITIONAL POTENTIAL OF ALGAL BIOMASS OF NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. In this study is presented the biochemical components of algal biomass Nostoc flagelliforme (Berk et Curt Elenk. cultivated in laboratory conditions in Z-8 medium. The algal biomass has the following chemical content: Mn – 683,9 mg/kg, Zn – 131,5 mg/kg, Pb – <10 mg/kg, Fe – 1,09 g/kg, Na+ - 2,10 g/kg, K+ – 8,01 g/kg, Mg2+ – 5,40 g/kg, Ca2+ – 7,94 g/kg. The highest amount of amino acids are specific for: glutamic acid – 3,8012 mg/100 mg, aspartic acid – 2,7838 mg/100 mg, leucine – 2,4651 mg/100 mg, alanine – 2,3513 mg/100 mg. According to these results the blue-green alga Nostoc flagelliforme can be considered an important potential source of nutritional supplements. 

  10. Formation of hybrid phycobilisomes by association of phycobiliproteins from Nostoc and Fremyella

    Science.gov (United States)

    Canaani, Ora; Gantt, Elisabeth

    1982-01-01

    Formation of phycobilisomes has been accomplished in vitro from isolated phycobiliprotein fractions obtained from the same blue-green alga (intrageneric) and from different blue-green algae (intergeneric). Phycobilisomes, which are supra-molecular complexes of phycobiliproteins, serve as major light-harvesting antennae for photosynthesis in blue-green and red algae. Intrageneric association into energetically functional phycobilisomes, previously reported to occur with Nostoc sp. allophycocyanin and phycoerythrin-phycocyanin complexes [Canaani, O., Lipschultz, C. A. & Gantt, E. (1980) FEBS Lett. 115, 225-229], has been obtained with Fremyella diplosiphon. By their spectral properties (absorption, fluorescence excitation, and emission) and electron microscopic images, the native and in vitro-associated phycobilisomes were virtually indistinguishable. Intergeneric phycobilisomes have been produced from allophycocyanin of Nostoc sp. strain Mac. and phycoerythrin-phycocyanin of F. diplosiphon, as well as from the reverse mixtures. The yield of intergeneric phycobilisomes, favored by higher phycobiliprotein content in 0.75 M phosphate, pH 7.0/2.0 M sucrose, was 40-60%. Energy transfer to the terminal long-wavelength-emitting allophycocyanin in the phycobilisomes was evident from the 670-675 nm fluorescence emission peaks. Furthermore, excitation spectra showed the contribution of the respective phycoerythrins (Fremyella, λmax 570; Nostoc, λmax 573 and 553 nm), as well as that of phycocyanin and short-wavelength-absorbing allophycocyanin. Phycobilisomes of Nostoc and Fremyella, analyzed by NaDodSO4/polyacrylamide gel electrophoresis, possessed a number of polypeptides having similar molecular weights: the usual α- and β-phycobilin-containing polypeptides of Mr 15,000-22,000, a faint band at Mrca. 95,000, and a prominent band at Mrca. 31,000. The Mr 31,000 polypeptide is assumed to provide the recognition site for attachment of the phycoerythrin-phycocyanin complexes

  11. SPECTRUL AMINOACIZILOR ÎN BIOMASA ALGEI CIANOFITE NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. CULTIVATE PE MEDIUL DREW

    Directory of Open Access Journals (Sweden)

    Irina STRATULAT

    2016-02-01

    Full Text Available A fost studiat spectrul cantitativ şi calitativ al aminoacizilor în biomasa tulpinii Nostoc flagelliforme cultivate pe mediul nutritiv Drew. S-a constatat că biomasa algei Nostoc flagelliforme posedă cantităţi semnificative de aminoacizi, printre care aminoacizii neesenţiali constituie 10,1565 mg/100 mg, iar cei esenţiali se găsesc în cantităţi mai reduse – 7,31 mg/100 mg. De asemenea, au fost evidenţiaţi aminoacizii proteinogeni (17,4476 mg/100 mg şi imunoactivi (9,5518 mg/100 mg. SPECTRUM OF AMINO ACIDS IN BLUE-GREEN ALGA NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. CULTIVATED IN DREW MEDIUMThere has been studied the quantitative and qualitative spectrum of amino acids in Nostoc flagelliforme biomass grown in nutritive medium Drew. It was found that Nostoc flagelliforme biomass has significant amounts of amino acids, including non-essential amino acids is 10,1565 mg/100 mg, and those essential are in smaller amounts – 7,31 mg/100 mg. Also, proteinogenic amino acids have been highlighted (17,4476 mg/100 mg and immunoactive (9,5518 mg/100 mg. 

  12. Photosystem I from the unusual cyanobacterium Gloeobacter violaceus

    NARCIS (Netherlands)

    Mangels, D.; Kruip, J.; Berry, S.; Rögner, M.; Boekema, E.J.; Koenig, F.

    2002-01-01

    Photosystem I (PS I) from the primitive cyanobacterium Gloeobacter violaceus has been purified and characterised. Despite the fact that the isolated complexes have the same subunit composition as complexes from other cyanobacteria, the amplitude of flash-induced absorption difference spectra

  13. Photosystem I from the unusual cyanobacterium Gloeobacter violaceus

    NARCIS (Netherlands)

    Mangels, D.; Kruip, J.; Berry, S.; Rögner, M.; Boekema, E.J.; Koenig, F.

    2002-01-01

    Photosystem I (PS I) from the primitive cyanobacterium Gloeobacter violaceus has been purified and characterised. Despite the fact that the isolated complexes have the same subunit composition as complexes from other cyanobacteria, the amplitude of flash-induced absorption difference spectra indicat

  14. Complete Genome Sequence of the Cyanobacterium Anabaena sp. 33047

    Science.gov (United States)

    2016-01-01

    This study presents the complete nucleotide sequence of Anabaena sp. ATCC 33047 (Anabaena CA), a filamentous, nitrogen-fixing marine cyanobacterium, which under salt stress conditions accumulates sucrose internally. The elucidation of the genome will contribute to the understanding of cyanobacterial diversity. PMID:27516507

  15. Structure of plastocyanin from the cyanobacterium Anabaena variabilis

    DEFF Research Database (Denmark)

    Schmidt, Lars; Christensen, Hans Erik Mølager; Harris, Pernille

    2006-01-01

    Plastocyanin from the cyanobacterium Anabaena variabilis was heterologously produced in E. coli and purified. Plate-like crystals were obtained by crystallisation in 1.15 M trisodium citrate and 7.67 mM sodium borate buffer pH 8.5. The crystals belong to the orthorhombic space group P212121...

  16. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  17. N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga. [Porphyridium cruentum; Nostoc

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.; Cunningham, F.X. Jr.; Lipschultz, C.A.; Mimuro, M. (Smithsonian Institution, Washington, DC (USA))

    1988-04-01

    High molecular weight polypeptides from phycobilisomes, believed to be involved in facilitating the energy flow from phycobilisomes to thylakoids, are conserved in the prokaryote Nostoc sp. and the eukaryote Porphyridium cruentum. Partial N-terminal sequence analysis of the phycobilisome-polypeptides of Nostoc (94 kilodalton) and Porphyridium (92 kilodalton) revealed 55% identity in the first 20 residues, but no significant homology with sequences of other phycobiliproteins or phycobilisome-linkers. Polypeptides (94 and 92 kilodalton) from Nostoc thylakoids free of phycobilisomes, previously presumed to be involved in the phycobilisome-thylakoid linkage exhibit the same immunocrossreactivity but are different from the 94 kilodalton-phycobilisome polypeptide by having blocked N-termini and a different amino acid composition.

  18. The epistemological and historical concept of nostoc from an indiciary lecture of George Canguilhem's "The cell theory"

    Directory of Open Access Journals (Sweden)

    Maurício de Carvalho Ramos

    2016-05-01

    Full Text Available Through an indiciary lecture of Canguilhem's article  "The cell theory", I propose, methodically guided by a epistemological-historical style research, the construction of the concept of nostoc as a metamorphic concept that integrated the concepts of primordial blastema and biblical slime of the French botanist Charles Naudin, set up a scientific culture of broad reach committed to solving the riddle of the morphological unity of organic and vital beings. The concept of Nostoc refers alchemically a gelatinous substance from the stars and endowed with balsamic medical virtues and botanically, a cianoficea algae of Nostoc genus. Examined the ideas of Canguilhem, Naudin, Jung and Paracelsus, this concept is proposed as a nucleoplasmatic oscillation, understood as a specific form of expression of the mythical-scientific theme of tension between continuity and discontinuity, as shown by Canguilhem in his history of cell concept.

  19. 葛仙米表层结构的扫描电子显微镜观察%Obsevation for Epidermal Ultrastructure of Nostoc sphaeroides Kutzing under Scanning Electron Microscope

    Institute of Scientific and Technical Information of China (English)

    李莉

    2009-01-01

    [Objective]The experiment aimed to explore a new way for observing surface structure of Nostoc sphaeroides Kutzing. [Method] The scanning electron microscope was used to observe the epidermal ultrastructure of wild and cultured Nostoc sphaeroides Kutzing. [Result] The epidermis of wild and cultured Nostoc sphaeroides Kutzing showed mixture structure of fibril colloid which was reticular arranged. The difference between wild and cultured Nostoc sphaeroides Kutzing was that the outer epidermis of cultured Nostoc sphaeroides Kutzing had trichome distribution but the wild Nostoc sphaeroides Kutzing did not has such distribution. The obsevation results of under smaller than 10 μm by scanning electron microscope was touched thick and showed many folds and distortions.[Conclusion] The scanning electron microscope was an effective way to study development of Nostoc sphaeroides Kutzing colony and it was worth popularizing.

  20. [Promotion effects of vitamin B12 on the degradation of 2, 4, 4'-trichlorobiphenyl by Nostoc PD-2].

    Science.gov (United States)

    Liu, Jia-Yu; Xiao, Wen-Feng; Lu, Li-Ping; Zhang, Hang-Jun

    2014-08-01

    Polychlorinated biphenyls are typical persistent chlorinated organic compounds in the environment. Bioremediation of PCB-contaminated environment has become one of the hot issues. In this study, vitamin B12 (VB12) and chlorine-free culture medium were applied to study the effects of VB12 on the degradation of 2,4,4'-trichlorobiphenyl (PCB28) by Nostoc PD-2 and the gene expression during the PCB-degradation process. Results showed that addition of different concentrations of vitamin B12 could improve the PCB-biodegradation rates by Nostoc PD-2. Compared with the control group, the 7-day degradation rate in 10 microg x L(-1), 100 microg x L(-1), and 1 000 microg x L(-1) VB12-treated groups increased by 11.0%, 19.7%, and 21.9% , respectively. The degradation half-time decreased from 5.53 days (treated with 10 microg x L(-1) VB12) to 3.08 days (treated with 100 microg x L(-1) VB12). The expression of cytochrome b6f complex iron-sulfur protein gene and dioxygenase gene showed significant correlation with PCB28-degradation by Nostoc PD-2. While the expression of iron-sulfur protein gene showed more significant correlation with PCB28-degradation. Results in this study indicated that adding VB12 could promote PCB28-degradation by Nostoc PD-2. Moreover, VB12 addition improved the PCB-degradation activity of Nostoc PD-2 at the gene level. The above conclusions could provide a new choice for developing efficient bioremediation technology for PCB-contaminated environment and a new insight into the PCB-biodegradation mechanism by Nostoc PD-2.

  1. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov.

    Science.gov (United States)

    Bagchi, Suvendra Nath; Dubey, Neelam; Singh, Prashant

    2017-09-01

    Nostoc is a complex and tough genus to differentiate, and its morphological plasticity makes it taxonomically complicated. Its cryptic diversity and almost no distinguishable morphological characteristics make this genus incredibly heterogeneous to evaluate on taxonomic scales. The strain NOS, isolated from a eutrophic water body, is being described as a new genus Aliinostoc with the strain showing motile hormogonia with gas vesicles as an atypical feature, which is currently considered as the diacritical feature of the genus but should be subjected to critical evaluation in the near future. The phylogenetic placement of Aliinostoc along with some other related sequences of Nostoc clearly separated this clade from Nostoc sensu stricto with high bootstrap support and robust topology in all the methods tested, thus providing strong proof of the taxa being representative of a new genus which morphologically appears to be Nostoc-like. Subsequent phylogenetic assessment using the rbcL, psbA, rpoC1 and tufA genes was done with the aim of facilitating future multi-locus studies on the proposed genus for better taxonomic clarity and resolution. Folding of the 16S-23S internal transcribed spacer region and subsequent comparisons with members of the genera Nostoc, Anabaena, Aulosira, Cylindrospermum, Sphaerospermopsis, Raphidiopsis, Desmonostoc and Mojavia gave entirely new secondary structures for the D1-D1' and box-B helix. Clear and separate clustering from Nostoc sensu stricto supports the establishment of Aliinostoc gen. nov. with the type species being Aliinostoc morphoplasticum sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants.

  2. Relationship between color and pigment production in two stone biofilm-forming cyanobacteria (Nostoc sp. PCC 9104 and Nostoc sp. PCC 9025).

    Science.gov (United States)

    Sanmartín, P; Aira, N; Devesa-Rey, R; Silva, B; Prieto, B

    2010-07-01

    Previous studies have provided evidence that color measurements enable on site quantification of superficial biofilms, thereby avoiding the need for sampling. In the present study, the efficiency of color measurements to evaluate to what extent pigment production is affected by environmental parameters such as light intensity, combined nitrogen and nutrient availability, was tested with two cyanobacteria, Nostoc sp. strains PCC 9104 and PCC 9025, which form biofilms on stone. Both strains were acclimated, in aerated batch cultures for 2 weeks, to three different culture media: BG-11, BG-11(0), and BG-11(0)/10 at either high or low light intensity. The content of chlorophyll a, carotenoids, and phycocyanins was measured throughout the experiment, together with variations in the color of the cyanobacteria, which were represented in the CIELAB color space. The results confirmed that the CIELAB color parameters are correlated with pigment content in such a way that variations in the latter are reflected as variations in color.

  3. Engineered Cyanophycin Synthetase (CphA) from Nostoc ellipsosporum Confers Enhanced CphA Activity and Cyanophycin Accumulation to Escherichia coli▿

    Science.gov (United States)

    Hai, Tran; Frey, Kay M.; Steinbüchel, Alexander

    2006-01-01

    The cyanophycin (CGP) synthetase gene (cphANE1) of the transposon-induced argL mutant NE1 of the cyanobacterium Nostoc ellipsosporum, which exhibits a CGP-leaky phenotype during diazotrophical growth, was cloned and expressed in Escherichia coli strain TOP10. Its amino acid sequence exhibited high similarities to CphAs of other cyanobacteria. Recombinant cells of E. coli, which harbored a fragment comprising the complete cphANE1 gene plus 400 bp of its downstream region in colinear orientation to the lacZ promoter, accumulated CGP up to 17 and 8.5% (wt/wt) of cellular dry matter (CDM) if cultivated in complex medium in the presence or absence of isopropyl-β-d-thiogalactopyranoside, respectively. Two truncated CphAs, lacking 31 (CphANE1del96) or 59 (CphANE1del180) amino acids of the C-terminal region, were derived from cphANE1 by deleting 96 or 180 bp from its 3′ region through the introduction of stop codons. In comparison to the wild-type gene, cphANE1del96 conferred about 2.1- to 2.2-fold-higher enzyme activity (up to 5.75 U/mg protein) on E. coli. Furthermore, these cells accumulated about twofold more CGP (up to 34.5% [wt/wt] of CDM) than cells expressing the wild-type gene. An engineered CphA possessing significantly enhanced activity and conferring the highest CGP content on E. coli is demonstrated. In contrast, CphANE1del180 was inactive and did not confer CGP accumulation on E. coli. Interestingly, a short conserved stretch of 4 to 5 hydrophobic amino acids is located in the protein region present in CphANE1del96 but absent in CphANE1del180. In addition, CphANE1 and CphANE1del96 are, besides CphA from Acinetobacter baylyi, the only CphAs exhibiting rigid substrate specificities that do not enable the incorporation of lysine instead of arginine into CGP. PMID:17012590

  4. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  5. Un aporte al conocimiento de cianobacterias en Punta Fort William, Isla Greenwich, Shetland del sur. Nostoc sp. Ficobionte de Stereocaulon alpinum Laur.

    OpenAIRE

    Treiber de Espinoza, B.

    1993-01-01

    En estudios realizados en líquenes de la especie Stereocaulon alpinum Laur., muestreados en Punta Fort William, Isla Greenwich, Shetland del Sur, se han encontrado clorofíceas del género Trebouxia y cianobacterias del género Nostoc como ficobiontes. Nostoc sp. se localiza en los cefalodios del líquen. El aislamiento del especímen y su cultivo se realizó bajo condiciones fotoautógrafas y en ausencia de nitrógeno combinado. Las características morfológicas y el ciclo de vida de Nostoc sp. en cu...

  6. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    2017-10-01

    Full Text Available Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

  7. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers.

    Science.gov (United States)

    Mateo, Pilar; Perona, Elvira; Berrendero, Esther; Leganés, Francisco; Martín, Marta; Golubić, Stjepko

    2011-05-01

    The diversity within the genus Nostoc is still controversial and more studies are needed to clarify its heterogeneity. Macroscopic species have been extensively studied and discussed; however, the microscopic forms of the genus, especially those from running waters, are poorly known and likely represented by many more species than currently described. Nostoc isolates from biofilms of two Spanish calcareous rivers were characterized comparing the morphology and life cycle in two culture media with different levels of nutrients and also comparing the 16S rRNA gene sequences. The results showed that trichome shape and cellular dimensions varied considerably depending on the culture media used, whereas the characteristics expressed in the course of the life cycle remained stable for each strain independent of the culture conditions. Molecular phylogenetic analysis confirmed the distinction between the studied strains established on morphological grounds. A balanced approach to the evaluation of diversity of Nostoc in the service of autecological studies requires both genotypic information and the evaluation of stable traits. The results of this study show that 16S rRNA gene sequence similarity serves as an important criterion for characterizing Nostoc strains and is consistent with stable attributes, such as the life cycle. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  8. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium

    Directory of Open Access Journals (Sweden)

    Laurie L. Richardson

    2014-12-01

    Full Text Available Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis.

  9. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6.

    OpenAIRE

    Angsuthanasombat, C; Panyim, S

    1989-01-01

    The 130-kilodalton mosquito larvicidal gene, cloned from Bacillus thuringiensis var. israelensis, was introduced into the cyanobacterium Agmenellum quadruplicatum PR-6 by plasmid transformation. Transformed cells synthesized 130-kilodalton delta-endotoxin protein and showed mosquito larvicidal activity. Results demonstrate a potential use of a cyanobacterium for biological control of mosquitoes.

  10. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6.

    Science.gov (United States)

    Angsuthanasombat, C; Panyim, S

    1989-09-01

    The 130-kilodalton mosquito larvicidal gene, cloned from Bacillus thuringiensis var. israelensis, was introduced into the cyanobacterium Agmenellum quadruplicatum PR-6 by plasmid transformation. Transformed cells synthesized 130-kilodalton delta-endotoxin protein and showed mosquito larvicidal activity. Results demonstrate a potential use of a cyanobacterium for biological control of mosquitoes.

  11. Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon.

    Science.gov (United States)

    Mulligan, M E; Haselkorn, R

    1989-11-15

    A second nitrogen fixation (nif) operon in the cyanobacterium (blue-green alga) Anabaena (Nostoc) sp. strain PCC 7120 has been identified and sequenced. It is located just upstream of the nifHDK operon and consists of four genes in the order nifB, fdxN, nifS, and nifU. The three nif genes were identified on the basis of their similarity with the corresponding genes from other diazotrophs. The fourth gene, fdxN, codes for a bacterial type ferredoxin (Mulligan, M. E., Buikema, W. J., and Haselkorn, R. (1988) J. Bacteriol. 167, 4406-4410). The four genes are probably transcribed as a single operon, but are expressed at a lower level than the nifHDK operon, and only after a developmentally induced DNA rearrangement occurs that excises a 55-kilobase pair element from within the fdxN gene (Golden, J. W., Mulligan, M. E., and Haselkorn, R. (1987) Nature 327, 526-529; Golden, J. W., Carrasco, C. D., Mulligan, M. E., Schneider, G. J., and Haselkorn, R. (1988) J. Bacteriol. 170, 5034-5041). The promoter for the nifB operon was located by primer extension. Comparison of the nifB 5'-flanking sequence with the nifH 5'-flanking sequence did not reveal any consensus base pairs that would define a nif promoter for Anabaena. The operon contains two instances of 7-base pair directly repeated sequences: seven copies of the repeated sequence are found between the nifB and fdxN genes and six copies are found between the nifS and nifU genes. The function of these repeats is unknown.

  12. COMPARATIVE GROWTH AND BIOCHEMICAL COMPOSITION OF FOUR STRAINS OF Nostoc AND Anabaena (CYANOBACTERIA, NOSTOCALES IN RELATION TO SODIUM NITRATE

    Directory of Open Access Journals (Sweden)

    Néstor Rosales Loaiza

    2016-04-01

    Full Text Available ABSTRACTNitrogen concentration is an essential parameter in cyanobacterial cultures to produce enriched biomass with biotechnological purposes. Growth and biochemical composition of Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 and Anabaena sp.2 were compared at 0, 4.25, 8.5 and 17 mM NaNO3. Cultures under laboratory conditions were maintained for 30 days at a volume of 500 mL. Anabaena sp.1 yielded the highest value of dry mass of 0.26 ± 2.49 mg mL-1 at 8.5 mM NaNO3. For chlorophyll, phycocyanin and phycoerythrin, maximum values were achieved at 17 mM NaNO3 with 18.09 ± 1.74, 102.90 ± 6.73 and 53.47 ± 2.40 μg mL-1, respectively. Nostoc LAUN0015 produced its maximum value of protein 644.86 ± 19.77 μg mL-1, and 890 mg mL-1 of carbohydrates in the absence of nitrogen. This comparative study shows that the most efficient strain for the production of protein, carbohydrates and lipids in diazotrophic conditions corresponded to Nostoc LAUN0015. However, Anabaena sp.1 and Anabaena sp.2 required high nitrogen concentrations to achieve higher values of metabolites, comparing with Nostoc strains. Nitrogen dependence for the production of pigments and high protein production in strains of Anabaena and in diazotrophic conditions for Nostoc was demonstrated. Nostoc can be cultured under nitrogen deficiency and Anabaena in sufficiency, for biomass production enriched with proteins and carbohydrates.Comparación del crecimiento y Composición Bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales en relación con el nitrato de sodioRESUMENLa concentración de nitrógeno constituye un parámetro esencial en cultivos de cianobacterias para la producción de biomasa enriquecida con fines biotecnológicos. Se comparó el crecimiento y composición bioquímica de las cepas Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 y Anabaena sp.2 a 0, 4,25; 8,5 y 17 mM NaNO3. Los cultivos en condiciones de laboratorio fueron mantenidos durante 30 d

  13. COMPARATIVE GROWTH AND BIOCHEMICAL COMPOSITION OF FOUR STRAINS OF Nostoc AND Anabaena (CYANOBACTERIA, NOSTOCALES IN RELATION TO SODIUM NITRATE

    Directory of Open Access Journals (Sweden)

    Néstor ROSALES LOAIZA

    2016-01-01

    Full Text Available La concentración de nitrógeno constituye un parámetro esencial en cultivos de cianobacterias para la producción de biomasa enriquecida con fines biotecnológicos. Se comparó el crecimiento y composición bioquímica de las cepas Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 y Anabaena sp.2 a 0, 4,25; 8,5 y 17 mM NaNO 3 . Los cultivos en condiciones de laboratorio fueron mantenidos durante 30 días a un volumen de 500 mL. En masa seca, Anabaena sp.1 obtuvo el mayor valor, con 2,49 ± 0,26 mg mL -1 a 8,5 mM NaNO 3 . Para clorofila, ficocianina y ficoeritrina, los máximos se alcanzaron a 17 mM NaNO 3 en Anabaena sp.1, con 18,09 ± 1,74; 102,90 ± 6,73 y 53,47 ± 2,40 μg mL -1 , respectivamente. Nostoc LAUN0015 produjo su máximo valor de proteínas de 644,86 ± 19,77μg mL -1 , y alrededor de 890 μg mL -1 de carbohidratos en ausencia de nitrógeno. El estudio comparativo indica que la cepa más eficiente para la producción de proteínas, carbohidratos y lípidos, en condiciones diazotróficas, correspondió a Nostoc LAUN0015. En cambio, las cepas de Anabaena sp.1 y sp.2 requieren de elevadas concentraciones de nitrógeno para alcanzar los mayores valores de metabolitos, respecto a las cepas de Nostoc . Se demuestra la dependencia de nitrógeno para la producción de los pigmentos y la alta producción proteica en las cepas de Anabaena y en condiciones diazotróficas para Nostoc . Esta última puede ser cultivada bajo una deficiencia de nitrógeno y Anabaena con suficiencia para la producción masiva de biomasa enriquecida con proteínas y carbohidratos.

  14. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Study on activity measurement of Nostoc flagelliforme cells based on color identification

    Science.gov (United States)

    Wang, Yizhong; Su, Jianyu; Liu, Tiegen; Kong, Fanzhi; Jia, Shiru

    2008-12-01

    In order to measure the activities of Nostoc flagelliforme cells, a new method based on color identification was proposed in this paper. N. flagelliforme cells were colored with fluoreseein diaeetate. Then, an image of colored N. flagelliforme cells was taken, and changed from RGB model to HIS model. Its histogram of hue H was calculated, which was used as the input of a designed BP network. The output of the BP network was the description of measured activity of N. flagelliforme cells. After training, the activity of N. flagelliforme cells was identified by the BP network according to the histogram of H of their colored image. Experiments were conducted with satisfied results to show the feasibility and usefulness of activity measurement of N. flagelliforme cells based on color identification.

  16. System analysis of salt and osmotic stress induced proteins in Nostoc muscorum and Bradyrhizobium japonicum

    Directory of Open Access Journals (Sweden)

    Vipin Kaithwas

    2017-06-01

    Full Text Available In this study the proteome response of the two diazotrophic organism’s viz. Nostoc muscorum and Bradyrhizobium japonicum exposed to salt (NaCl and osmotic (sucrose stresses was compared. Out of the total over expressed proteins; we have selected only three over expressed proteins viz. GroEL chaperonin, nitrogenase Mo-Fe protein and argininosuccinate synthase for further analysis, and then we analyzed the amino acid frequencies of all the three over expressed proteins. That led to the conclusion that amino acids e.g. alanine, glycine and valine that were energetically cheaper to produce were showing higher frequencies. This study would help in tracing the phylogenetic relationship between protein families.

  17. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp.

    Science.gov (United States)

    Johnson, Eldin M; Kumar, Kanhaiya; Das, Debabrata

    2014-08-01

    The present study investigated the effects of several physicochemical parameters on the improvement of phycobiliproteins (especially phycocyanin) synthesis in a newly isolated species of Nostoc sp. Standard BG11₀ medium was modified to enhance the biomass productivity in different photobioreactors. The initial pH of 8, light intensity of 40 μmol m(-2)s(-1), temperature of 35 °C, diurnal cycle of 16:8 h (light:dark regime), 75.48 μM Na₂CO₃ and 17.65 mM NaNO₃ were found most suitable for the phycobiliproteins synthesis. Cyanobacteria exhibited chromatic adaptation, causing overexpression of phycocyanin in red and phycoerythrin in green light. The maximum phycobiliproteins yield of 0.13 gg(-1) dry cell weight was obtained in green light. Phycocyanin was further purified using thin layer chromatography (TLC), anion exchange chromatography and SDS-PAGE (denaturing gel) electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Migration Suppression of Small Cell Lung Cancer by Polysaccharides from Nostoc commune Vaucher.

    Science.gov (United States)

    Guo, Min; Ding, Guo-Bin; Yang, Peng; Zhang, Lichao; Wu, Haili; Li, Hanqing; Li, Zhuoyu

    2016-08-17

    Nostoc commune Vauch., classified into cyanobacteria, has been always well appreciated as a healthy food and medicine worldwide owing to its rich nutrition and potent bioactivities. Nevertheless, the inhibitory effect of polysaccharides from N. commune Vauch. (NVPS) against cancer cell progression and metastasis is still being unraveled. The results in this study showed that NVPS remarkably suppressed cell migration through blocking the epithelial-mesenchymal transition program in NCI-H446 and NCI-H1688 human small cell lung cancer cells. The inhibitory effects were attributed to the suppression of integrin β1/FAK signaling through regulating cell-matrix adhesion. Furthermore, NVPS treatment could increase E-cadherin expression, but down-regulate N-cadherin, Vimentin, and MMP-9 expression, which resulted in the blockage of STAT3 nuclear translocation and JAK1 signaling. These findings suggest that NVPS may be a good candidate for development as a possible antitumor agent against small cell lung cancer.

  19. Preparation of polysaccharides from cyanobacteria Nostoc commune and their antioxidant activities.

    Science.gov (United States)

    Wang, Hong-Bin; Wu, Sheng-Jun; Liu, Dou

    2014-01-01

    In this study, water soluble polysaccharides were prepared from cyanobacteria Nostoc commune by water extraction. Factors affecting the polysaccharide yields were investigated, and the optimum extraction conditions were determined as follows: time, 4h; temperature, 90 °C; the ratio of liquid to solid, 60:1 (v/w); and extraction times, 4. The extract was filtered, concentrated to ∼10% (w/v), precipitated with 3 volumes of ethanol, freeze-dried, and ground to yield a water soluble power. The polysaccharide content of the product was 96.7%, and the yield was 9.18% (w/w). Fourier transform infrared spectra demonstrated that the product samples were mainly composed of polysaccharides. The polysaccharides showed high hydroxyl radical scavenging activity (92.71%) and reducing capacity (0.445) at the concentration of 10 mg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Science.gov (United States)

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  1. Study on the Salt tolerance and Mechanism of Nitrogen-Fixing Cyanobacteria Nostoc Commune and Anabaena Azotica Ley%固氮蓝藻Nostoc commune和Anabaena azotica Ley耐盐性及机理研究

    Institute of Scientific and Technical Information of China (English)

    张巍; 冯玉杰

    2008-01-01

    文章考察了两种固氮蓝藻Nostoc commune(地木耳)和Anabaena azotica Ley(固氮鱼腥藻)在不同浓度Na2CO3(0.2×10-4~1.8×10-4 g/ml)的BG11o培养基中的耐盐性.分别测定了两种固氮蓝藻在不同培养阶段的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性的变化.研究结果表明两种固氮蓝藻都能在Na2CO3盐胁迫条件下生长,且随着Na2CO3盐胁迫性增加,两种蓝藻的叶绿素a含量、胞外多糖含量、氨基酸含量和固氮酶活性都呈现先增加后减少的趋势;而随着培养天数的增加,两种藻类叶绿素a的变化曲线与微生物的生长曲线很相似,胞外多糖和氨基酸的增长和叶绿素a的增长是同步的,其中,Anabaena azotica Ley的固氮酶活性在培养到21天时达到最大值,Nostoc commune的固氮酶活性在培养到28天时达到最大值;比较而言Anabaena azotica Ley的耐盐性好于Nostoc commune的耐盐性,固氮能力也高于Nostoc commune.

  2. Shuttle cloning vectors for the cyanobacterium Anacystis nidulans.

    OpenAIRE

    Gendel, S; Straus, N; Pulleyblank, D; Williams, J

    1983-01-01

    Hybrid plasmids capable of acting as shuttle cloning vectors in Escherichia coli and the cyanobacterium Anacystis nidulans R2 were constructed by in vitro ligation. DNA from the small endogenous plasmid of A. nidulans was combined with two E. coli vectors, pBR325 and pDPL13, to create vectors containing either two selectable antibiotic resistance markers or a single marker linked to a flexible multisite polylinker. Nonessential DNA was deleted from the polylinker containing plasmid pPLAN B2 t...

  3. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    Science.gov (United States)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b6f complex from other sources. PMID:19189962

  4. N-terminus conservation in the anchor polypeptide of a prokaryotic and eukaryotic alga. [Nostoc; Porphydium cruentum

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, E.; Lipschultz, C.A.; Cunningham, F.X. Jr.; Mimuro, M.

    1987-04-01

    Energy flow between the extrinsic phycobilisomes and the photosystems within thylakoids, is probably mediated by a blue anchor polypeptide. Polypeptides in the 94 kD range, purified by LiDS-PAGE from phycobilisomes of Nostoc and Porphyrdium cruentum, crossreacted with anti-Nostoc-94 (although weakly with the latter). Though rich in ASP and GLU, the polypeptides were very hydrophobic, and low in MET, CYS, and HIS. Partial sequence of the N-terminus shows considerable homology 1 - 5 - 10 - 15 - 20 N: (S)-V-K-A-S-G-G-S-S-V-A-(R)-P-Q-L-Y-Q-(G)-L-(A)-V- P: V-()-K-A-S-G-G-S-P-V-V-K-P-Q-L-Y-(K)-()-A-(S)- between the species. There is a lack of homology when compared with ..cap alpha.. and ..beta.. polypeptides of allophycocyanin with rod linkers of phycobilisomes and other phycobiliproteins. Polypeptides of 94 and 92 kD from thylakoids of Nostoc, also immunoreactive with anti-94, were blocked at the N-terminus.

  5. Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria).

    Science.gov (United States)

    Olsson, Sanna; Kaasalainen, Ulla; Rikkinen, Jouko

    2012-02-01

    In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem-loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.

  6. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium.

    Science.gov (United States)

    Behrendt, Lars; Brejnrod, Asker; Schliep, Martin; Sørensen, Søren J; Larkum, Anthony W D; Kühl, Michael

    2015-09-01

    Chlorophyll (Chl) f is the most recently discovered chlorophyll and has only been found in cyanobacteria from wet environments. Although its structure and biophysical properties are resolved, the importance of Chl f as an accessory pigment in photosynthesis remains unresolved. We found Chl f in a cyanobacterium enriched from a cavernous environment and report the first example of Chl f-supported oxygenic photosynthesis in cyanobacteria from such habitats. Pigment extraction, hyperspectral microscopy and transmission electron microscopy demonstrated the presence of Chl a and f in unicellular cyanobacteria found in enrichment cultures. Amplicon sequencing indicated that all oxygenic phototrophs were related to KC1, a Chl f-containing cyanobacterium previously isolated from an aquatic environment. Microsensor measurements on aggregates demonstrated oxygenic photosynthesis at 742 nm and less efficient photosynthesis under 768- and 777-nm light probably because of diminished overlap with the absorption spectrum of Chl f and other far-red absorbing pigments. Our findings suggest the importance of Chl f-containing cyanobacteria in terrestrial habitats.

  7. Note: A flexible light emitting diode-based broadband transient-absorption spectrometer

    Science.gov (United States)

    Gottlieb, Sean M.; Corley, Scott C.; Madsen, Dorte; Larsen, Delmar S.

    2012-05-01

    This Note presents a simple and flexible ns-to-ms transient absorption spectrometer based on pulsed light emitting diode (LED) technology that can be incorporated into existing ultrafast transient absorption spectrometers or operate as a stand-alone instrument with fixed-wavelength laser sources. The LED probe pulses from this instrument exhibit excellent stability (˜0.5%) and are capable of producing high signal-to-noise long-time (>100 ns) transient absorption signals either in a broadband multiplexed (spanning 250 nm) or in tunable narrowband (20 ns) operation. The utility of the instrument is demonstrated by measuring the photoinduced ns-to-ms photodynamics of the red/green absorbing fourth GMP phosphodiesterase/adenylyl cyclase/FhlA domain of the NpR6012 locus of the nitrogen-fixing cyanobacterium Nostoc punctiforme.

  8. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    National Research Council Canada - National Science Library

    Lurling, M; Van Oosterhout, F

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43...

  9. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  10. Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    Science.gov (United States)

    Ambe, Shizuko

    1990-07-01

    Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  11. Draft Genome Sequence of Microcystis aeruginosa CACIAM 03, a Cyanobacterium Isolated from an Amazonian Freshwater Environment

    Science.gov (United States)

    Castro, Wendel Oliveira; Lima, Alex Ranieri Jerônimo; Moraes, Pablo Henrique Gonçalves; Siqueira, Andrei Santos; Aguiar, Délia Cristina Figueira; Baraúna, Anna Rafaella Ferreira; Martins, Luisa Carício; Fuzii, Hellen Thais; de Lima, Clayton Pereira Silva; Vianez-Júnior, João Lídio Silva Gonçalves; Nunes, Márcio Roberto Teixeira; Dall'Agnol, Leonardo Teixeira

    2016-01-01

    Given its toxigenic potential, Microcystis aeruginosa is an important bloom-forming cyanobacterium. Here, we present a draft genome and annotation of the strain CACIAM 03, which was isolated from an Amazonian freshwater environment. PMID:27856592

  12. Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa.

    Science.gov (United States)

    Acharya, Celin; Apte, Shree Kumar

    2013-12-01

    A filamentous, heterocystous, nitrogen-fixing marine cyanobacterium, Anabaena torulosa, has been shown to harbour surface associated, acid soluble polyphosphate bodies. Uranium immobilization by such polyphosphate bodies, reported in cyanobacteria for the first time, demonstrates a novel uranium sequestration phenomenon.

  13. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    Science.gov (United States)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  14. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Directory of Open Access Journals (Sweden)

    Charlotte Rehm

    Full Text Available In prokaryotes simple sequence repeats (SSRs with unit sizes of 1-5 nucleotides (nt are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4 structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc, Xanthomonas axonopodis pv. citri str. 306 (Xac, and Nostoc sp. strain PCC7120 (Ana. In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  15. Protein (Cyanobacteria): 87855 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001867818.1 1117:1691 1161:4068 1162:4614 1177:1140 272131:2831 63737:2831 photosystem II complex extrins...ic protein U Nostoc punctiforme PCC 73102 MKGLARLLTVFSLLLGCWGWLGTTQIAQAASFNSFAFPQVP

  16. Genetic manipulation of a cyanobacterium for heavy metal detoxivication

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, P.; Cannon, G.; Heinhorst, S.

    1995-12-31

    Increasing heavy metal contamination of soil and water has produced a need for economical and effective methods to reduce toxic buildup of these materials. Biological systems use metallothionein proteins to sequester such metals as Cu, Cd, and Zn. Studies are underway to genetically engineer a cyanobacteria strain with increased ability for metallothionein production and increased sequestration capacity. Cyanobacteria require only sunlight and CO{sub 2}. Vector constructs are being developed in a naturally competent, unicellular cyanobacterium Anacystis nidulans R2. Closed copies of a yeast copper metallothionein gene have been inserted into a cyanobacterial shuttle vector as well as a vector designed for genomic integration. Transformation studies have produced recombinant cyanobacteria from both of these systems, and work is currently underway to assess the organism`s ability to withstand increasing Cu, Cd, and Zn concentrations.

  17. Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods

    Directory of Open Access Journals (Sweden)

    Liliana CEPOI

    2009-11-01

    Full Text Available The goal of this work is to determine the level of antioxidative activity of various ethanol extracts from Spirulina platensis and Nostoc linckia biomass, and also to demonstrate the possibility to select suitable methods for evaluation of these characteristics. The methods for determination of antioxidative activity were selected concerning their possible use for complex preparations: phosphomolybdenum method for evaluation of antioxidant capacity (PMRC, radical-scavenging activity by DPPH method (DPPH, antioxidant activity by the ABTS+ radical cation assay (ABTS, Folin-Ciocalteu reducing capacity (FCRC. We showed the presence of antioxidative substances in ethanol extractions from 2 species of cyanobacteria, and possibility to increase their activity varying ethanol concentration. It facilitates the extraction both water- and lipid-soluble components from biomass. Regarding used methods for antioxidative activity determination, we have used only those based on reaction of electrons return (which widely used nowadays in vitro. Obtained in different ways results demonstrate high reduction capacity of the extracts and possibility to select suitable analytical methods for each case.

  18. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Science.gov (United States)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  19. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    Science.gov (United States)

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  20. Evaluation of morphological variation and biomass growth of Nostoc commune under laboratory conditions.

    Science.gov (United States)

    Diao, Yi; Yang, Zujun

    2014-05-01

    Nostoc commune is a blue green alga used for health food and herbal medicine due to its nutritional values and antioxidant properties. However, wild type N. commune has been decreasing in quantity as a result of ever-growing market demand and environmental pollution. Therefore, artificial culture of N. commune is important as it can bring great social and economic benefits. In this article, N. commune was cultured in BG11 medium, under which condition morphological variation and biomass growth of N. commune were investigated. Results indicated that concentration, fresh weight and dry weight of the colony increased fastest at 40 rpm from the 1st day to 14th day and the fresh and dry weight increased as the culturing time was prolonged, and reached 27.22 g l⁻¹ and 0.88 g l⁻¹ respectively on 56th day. Aggregated cell mass formed on 4th day and it expanded to asteriated colonies on 10th day. Single microcolonies formed on the 21st day had diameters 200-250 μm. Macrocolonies obtained after 28 days had diameters of 5 mm on 42nd day. Discoid colonies were formed as macrocolonies ruptured on 49th day and the diameter reached 15 mm on 56th day. Results of the present study can promote large-scale industrial production of N. commune.

  1. Evolutive and structural characterization of Nostoc commune iron-superoxide dismutase that is fit for modification.

    Science.gov (United States)

    Ma, Y; Lu, M; Li, J-Y; Qin, Y; Gong, X-G

    2012-10-04

    Superoxide dismutase (SOD) has extensive clinical applications for protecting organisms from toxic oxidation. In this study, the integrated iron-superoxide dismutase gene (fe-sod) coding sequence of Nostoc commune stain CHEN was cloned from genomic DNA and compared to sods from other reported algae. These analyses of immunology and phylogenetics indicated that this Fe-SOD is considerably homologous with SODs from lower prokaryotes (Fe-SOD or Mn-SOD) but not those from higher animals (Cu/Zn-SOD). In addition, the N. commune Fe-SOD shows 67 to 93% protein sequence identity to 10 other algal Fe-SODs (or Mn-SODs) and 69 to 93% gene sequence identity. Rare nonsynonymous substitutions imply that algal SODs are being subjected to strong natural selection. Interestingly, the N. commune Fe-SOD enzyme molecule has a compact active center that is highly conserved (38.1% of residues are absolutely conserved), and 2 loose ends localized outside the molecule and inclined to mutate (only 11.5% of residues are absolutely conserved). Based on associative analyses of evolution, structure, and function, this special phenomenon is attributed to function-dependent evolution through negative natural selection. Under strong natural selection, although the mutation is random on the gene level, the exterior region is inclined to mutate on the protein level owing to more nonsynonymous substitutions in the exterior region, which demonstrates the theoretical feasibility of modifying Fe-SOD on its ends to overcome its disadvantages in clinical applications.

  2. Colony development and physiological characterization of the edible blue-green alga, Nostoc sphaeroides (Nostocaceae, Cyanophyta)

    Institute of Scientific and Technical Information of China (English)

    Zhongyang Deng; Qiang Hu; Fan Lu; Guoxiang Liu; Zhengyu Hu

    2008-01-01

    The edible blue-green alga,Nostoc sphaeroides Kützing,is able to form microcolorties and spherical macrocolonies.It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits.However,lim-ited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure.This report described the morphogenesis of N.Sphaeroides from single trichomes to macrocolonies.During the process,most structural features of macrocolonies of various sizes were dense maculas,rings,the compact core and the formation of liquid core;and the filaments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies.Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies.As microcolonies further increased in size to form 30 mm mac-rocolonies,the colonies differentiated into distinct outer,middle and inner layers.The filaments of the outer layer showed higher max-imum photosynthetic rates,higher light saturation point,and higher photosynthetic efficiency than those of the inner layer;whereas the filaments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer.The results obtained in this study were important for the mass cultivation of N.Sphaeroides as a nutraceutical product.

  3. A sustainable route to produce the scytonemin precursor using Escherichia coli

    DEFF Research Database (Denmark)

    Malla, Sailesh; Sommer, Morten O. A.

    2014-01-01

    moiety of scytonemin from tryptophan and tyrosine in Escherichia coli. We heterologously expressed the biosynthetic pathway from Nostoc punctiforme and discovered that only three enzymes from N. punctiforme are required for the in vivo production of the monomer moiety of scytonemin in E. coli. We also...

  4. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments.

    Science.gov (United States)

    Sand-Jensen, Kaj

    2014-07-01

    The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10-14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2-3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3(-) uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by

  5. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments

    Science.gov (United States)

    Sand-Jensen, Kaj

    2014-01-01

    Background The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. Scope The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Conclusions Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10–14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2–3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3– uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths

  6. Water stress proteins from Nostoc commune Vauch. exhibit anti-colon cancer activities in vitro and in vivo.

    Science.gov (United States)

    Guo, Songjia; Shan, Shuhua; Jin, Xiaoting; Li, Zongwei; Li, Zhuoyu; Zhao, Liangqi; An, Quan; Zhang, Wei

    2015-01-14

    Nostoc commune has been traditionally used in China as a health food and medicine. The water stress proteins (WSP) of Nostoc commune are the major component of the extracellular matrix. This study purified and identified the water stress proteins (WSP1) from Nostoc commune Vauch., which could inhibit the proliferation of human colon cancer cell lines. The IC50 values of WSP1 against DLD1, HCT116, HT29, and SW480 cells were 0.19 ± 0.02, 0.21 ± 0.03, 0.39 ± 0.05, and 0.41 ± 0.01 μg/μL, respectively. Notably, it displayed very little effect on the normal human intestinal epithelial FHC cell line. The IC50 value of WSP1 against FHC cells was 0.67 ± 0.05 μg/μL. Moreover, the growth of DLD1 xenografted tumors in nude mice were significantly suppressed in the WSP1 treated group. Mechanistically, the cell-cycle analysis revealed that WSP1 induced growth inhibition by G1/S arrest. Meanwhile, Western blotting and immunohistochemistry assays showed WSP1 could activate caspase-8, -9, and -3, along with subsequent PARP cleavage. Furthermore, the pan-caspase inhibitor, z-VAD-FMK, partly reversed the effect caused by WSP1, confirming that WSP1 induced cell apoptosis through caspase-dependent pathway. Collectively, WSP1 has targeted inhibition for colon cancer proliferation both in vitro and in vivo and it is valuable for future exploitation and utilization as an antitumor agent.

  7. Efect of Nostoc muscorum Ag. on germination in vitro of Bremia lactucae sporangia in Lactuca sativa L. Regel

    OpenAIRE

    Tassara, Carlos Alberto; Stella, Ana María; Sokn, M. Clara; López, Silvia E.; Carmarán, Cecilia C.

    2012-01-01

    p.1-8 Se analizó el efecto de extractos etéreo, metanólico y acuoso de 5 cepas de Nostoc muscorum en la germinación in vitro de esporangios de Bremia lactucae Regel durante una epifitia sobre Lactuca sativa var capitata cv gallega, en un predio hortícola intensivo de la localidad La Capilla-partido de Florencio Varela provincia Buenos Aires -Argentina (34º50'Lat sur 58º06' Long oeste). La cepa 60a promovió la germinación de esporangios, mientras que la 40g la inhibió. El estudio aleatorio ...

  8. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    Science.gov (United States)

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  9. Hypocholesterolemic effect of Nostoc commune var. sphaeroides Kützing, an edible blue-green alga.

    Science.gov (United States)

    Rasmussen, Heather E; Blobaum, Kara R; Jesch, Elliot D; Ku, Chai Siah; Park, Young-Ki; Lu, Fan; Carr, Timothy P; Lee, Ji-Young

    2009-10-01

    Intake of an edible blue-green alga Nostoc commune var. sphaeroides Kützing (N. Commune) has been shown to lower plasma total cholesterol concentration, but the mechanisms behind the hypocholesterolemic effect have not been elucidated. To elucidate the mechanisms underlying the cholesterol-lowering effect of N. commune in mice. Male C57BL/6J mice were fed the AIN-93 M diet supplemented with 0 or 5% (wt/wt) dried N. Commune for 4 weeks. Lipid levels in the plasma and liver, intestinal cholesterol absorption and fecal sterol excretion were measured. Expression of hepatic and intestinal genes involved in cholesterol metabolism was evaluated by quantitative realtime PCR. N. commune supplementation significantly reduced total plasma cholesterol and triglyceride concentrations by approximately 20% compared to controls. Intestinal cholesterol absorption was significantly decreased, while fecal neutral sterol output was significantly increased in N. commune-fed mice. mRNA levels of the cholesterol transporters such as Niemann Pick C1 Like 1, scavenger receptor class B type 1, ATP-binding cassette transporters G5 and A1 in small intestine were not significantly different between two groups. Hepatic lipid contents including total cholesterol, triglyceride and free cholesterol in N. commune-fed mice were not significantly altered. However, the expression of cholesterol modulating genes including sterol regulatory element binding protein-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase were significantly increased in mice fed N. commune. N. commune supplementation exerted a hypocholesterolemic effect in mice, largely in part, by reducing intestinal cholesterol absorption and promoting fecal neutral sterol excretion.

  10. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan|info:eu-repo/dai/nl/165599081; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette|info:eu-repo/dai/nl/304827819

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  11. Phylogeny of Indonesian Nostoc (Cyanobac teria Isolated from Paddy Fields as Inferred from Partial Se quence of 16S rRNA Gene

    Directory of Open Access Journals (Sweden)

    Dian Hendrayanti

    2012-12-01

    Full Text Available In order to collect Indonesian Nostoc, isolation of soil microflora from several paddy fields in West Java, Bali, andSouth Celebes was carried out. Fast-growing isolates of Nostoc were selected to describe and perform molecular identification using partial sequences of 16S rRNA. The results showed that partial sequences of 16S rRNA could not resolve the phylogeny of the isolates. However, it supported the morphological studies that recognize isolates as different species of Nostoc. Potential use of Nostoc as a nitrogen source for paddy growth was carried out using six strains as single inoculums. A total biomass of 2 g (fresh weight for each strain was inoculated, respectively, into the pot planted with three paddy plants. This experiment was conducted in the green house for 115 days. Statistical analyses (ANOVA; α = 0.05 showed that of six strains tested in this study, only strain GIA13a had influence on the augmentation of root length and the total number of filled grains.

  12. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions.

    Science.gov (United States)

    Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J

    2015-08-01

    Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

  13. 阳光紫外辐射对室内水培发状念珠藻生理特性的影响%EFFECTS OF SOLAR ULTRAVIOLET RADIATION ON PHYSIOLOGICAL CHARACTERISTICS OF THE AQUATIC-LIVING COLONIES OF NOSTOC FLAGELLIFORME CULTURED INDOOR

    Institute of Scientific and Technical Information of China (English)

    赖永忠; 高坤山

    2009-01-01

    Nostoc flagelliforme Bornet & Flahault, named popularly as 'Facai' in Chinese, is a terrestrial cyanobacterium of great economic value. Although aquatic-living colonies were developed under indoor conditions, little is known whether they could and how they would adapt to solar radiation. Therefore, we exposed the colonies to different solar radiation treat-ments, photosynthetically active radiation (P:PAR,395-700 nm), PAR + ultraviolet radiation-A ( PA ,320-700 nm) or PAR + total ultraviolet radiation (PAB,280-700 nm). Changes of their growth, effective quantum efficiency (△F/F'm) and pigments were estimated during the experimental period. It was found that high levels of both PAR and ultraviolet radiation (UVR,280-395 nm) reduced the △F/F'm of the colonies. △F/F'm was reduced about 54% by PAR and further declined 13% by UVR. The △F/F'm recovered in the late afternoon. After two days' acclimation to solar radiation, the biomass of the colonies increased during the following days. UV-absorbing compounds, scytonemin and mycosporine-like amino acids (MAAs), increased by 124 and 9 times, respec-tively, in 9 days. Such increased UV-absorbing substances played an important role in protecting the aquatic-living colo-nies of Nostoc flagelliforme from solar UVR. The results may be useful for the mass production of the aquatic-living colo-nies of Nostoc flagelliforme under outdoor conditions.%发状念珠藻(Noswc flagelliforme Bomet & Flahault)是一种重要的陆生经济蓝藻,室内培育出的原植体如何适应阳光辐射的问题尚需探讨.为此,作者将室内水培发菜置于阳光下培养,测定了其生长、有效光化学效率(△F/F'm)和色素的变化.结果表明,较高的可见光(PAR,395-700nm)和紫外辐射(UVR,280-395nm)均导致水培发菜的△F/F'm下降.第1天中午,PAR和UVR分别使△F/F'm下降了54%和13%;傍晚,△F/F'm有部分恢复.UVR对发菜适应阳光2d后的生长无负面作用.发菜在适应全阳光辐射期

  14. Growth assessment of cyanobacteria Anabaena Sp. FS 76 and Nostoc Sp. FS 77 affected by thermal shock condition

    Directory of Open Access Journals (Sweden)

    R. Taheri

    2017-03-01

    Full Text Available Soil cyanobacteria Nostoc sp. FS 77 and Anabaena sp. FS 76 from the point of view to extreme constraints associated with light, carbon dioxide and cold shock, were evaluated. Samples were Prepared from algal museum of shahid Beheshti University and placed in vitro treatment limitations extreme light (2 micromoles quantum per square meter per second, carbon dioxide (non-inoculated carbon dioxide , non- aerated temperature of 25°C and cold shock (00C at different times (0.5, 2 , 4 , 6 , 8minutes. The results showed that the cyanobacteria are able to maintain their survival in cold shock treatments. In cyanobacteria Anabaena shocks cause a lag phase. In cyanobacteria Nostoc, behaviors were different related to thermal shocks and by contrast Anabaena within 6 minutes had negative growth the fifth day. The photoperiod shock eight minutes was not observed a significant difference in the carotenoid content. To achieve stability in the filament part of Phycobilisomes shocks have played a similar role in half and eight minutes. However, the system of will be affected in the short times. It appears that chlorophyll formation in relation to the time and thermal shock in these cyanobacteria varies depending on the species.

  15. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton.

    Science.gov (United States)

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Vicente, Carlos; Legaz, Maria-Estrella

    2011-10-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility towards the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and, probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.

  16. Sucrose secreted by the engineered cyanobacterium and its fermentability

    Science.gov (United States)

    Duan, Yangkai; Luo, Quan; Liang, Feiyan; Lu, Xuefeng

    2016-10-01

    The unicellular cyanobacterium, Synechococcus elongatus PCC 7942 (Syn7942), synthesizes sucrose as the only compatible solute under salt stress. A series of engineered Syn7942 strains for sucrose production were constructed. The overexpression of the native sps (encoding a natively fused protein of sucrose phosphate synthase SPS and sucrose phosphate phosphatase SPP) in Syn7942 wild type caused a 93% improvement of sucrose productivity. The strain FL130 co-overexpressing sps and cscB (encoding a sucrose transporter) exhibited a 74% higher extracellular sucrose production than that overexpressing cscB only. Both results showed the significant improvement of sucrose productivity by the double functional protein SPS-SPP. Afterwards, FL130 was cultivated under a modified condition, and the cell-free culture medium containing 1.5 g L-1 sucrose was pre-treated with an acid hydrolysis technique. Cultivated with the neutralized hydrolysates as the starting media, two widely used microorganisms, Escherichia coli and Saccharomyces cerevisiae, showed a comparable growth with that in the control media supplemented with glucose. These results clearly demonstrated that the cell-free culture of sucrose-secreting cyanobacteria can be applied as starting media in microbial cultivation.

  17. Ribulose diphosphate carboxylase of the cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Terekhova, I.V.; Chernyad' ev, I.I.; Doman, N.G.

    1986-11-20

    The ribulose diphosphate (RDP) carboxylase activity of the cyanobacterium Spirulina platensis is represented by two peaks when a cell homogenate is centrifuged in a sucrose density gradient. In the case of differential centrifugation (40,000 g, 1 h), the activity of the enzyme was distributed between the supernatant liquid (soluble form) and the precipitate (carboxysomal form). From the soluble fraction, in which 80-95% of the total activity of the enzyme is concentrated, electrophoretically homogeneous RDP carboxylase was isolated by precipitation with ammonium sulfate and centrifugation in a sucrose density gradient. The purified enzyme possessed greater electrophoretic mobility in comparison with the RDP carboxylase of beans Vicia faba. The molecular weight of the enzyme, determined by gel filtration, was 450,000. The enzyme consists of monotypic subunits with a molecular weight of 53,000. The small subunits were not detected in electrophoresis in polyacrylamide gel in the presence of SDS after fixation and staining of the gels by various methods.

  18. ADAPTIVE RESPONSES OF CYANOBACTERIUM PLECTONEMA BORYANUM TO HERBICIDE BUTACHLOR

    Directory of Open Access Journals (Sweden)

    Rishav Kumar

    2012-08-01

    Full Text Available The Present paper deals with the herbicide Butachlor (5,10 ,20,40 and 80ppm-induced changes in physiological and biochemical parameters related to photosynthesis and defense systems in paddy field cyanobacterium Plectonema boryanum grown under laboratory conditions. Growth and photosynthetic pigments, i.e., chlorophyll a and carotenoids were adversely affected by Butachlor treatment and the inhibition was found to be dose dependent. The toxic effect of Butachlor was more pronounced protein; however, a considerable reduction in chlorophyll a, and carotenoids was also noticed. Furthermore, Butachlor with increasing doses accelerated the formation of active oxygen species, i.e., O2- and H2O2, in cells progressively. As a consequence of active oxygen species (AOS generation in Butachlor -treated cells, the activity of superoxide dismutase (SOD and peroxidase (POD was enhanced considerably. Besides the accelerated action of enzymatic defense systems, Protein damage also showed an increasing trend with the rising concentration of Butachlor (5, 10, 20, 40 and 80 ppm.

  19. Fractionation and identification of metalloproteins from a marine cyanobacterium.

    Science.gov (United States)

    Barnett, James P; Scanlan, David J; Blindauer, Claudia A

    2012-04-01

    Trace metals are essential for the growth of marine cyanobacteria, being required for key cellular processes such as photosynthesis and respiration. Despite this, the metalloproteomes of marine cyanobacteria are at present only poorly defined. In this study, we have probed the major cobalt, iron, manganese, and nickel-binding proteins in the marine cyanobacterium Synechococcus sp. WH8102 by using two different fractionation approaches combined with peptide mass fingerprinting. For the identification of intact metalloproteins, multidimensional native chromatography was used to fractionate the proteome, followed by inorganic mass spectrometry to identify metal-enriched fractions. This approach led to the detection of nickel superoxide dismutase together with its predicted cofactor. We also explored the utility of immobilized metal affinity chromatography (IMAC) to isolate subpopulations of proteins that display affinity for a particular metal ion. We conclude that low-resolution 2D liquid chromatography is a viable fractionation technique to correlate relatively low-abundance metal ions with their few cellular destinations (e.g. Ni), but challenges remain for more abundant metals with multiple destinations such as iron. IMAC has been shown as a useful pre-fractionation technique to screen for proteins with metal-binding capacity, and may become a particularly valuable tool for the identification of metal-trafficking proteins.

  20. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  1. Construction of a cyanobacterium synthesizing cyclopropane fatty acids.

    Science.gov (United States)

    Machida, Shuntaro; Shiraiwa, Yoshihiro; Suzuki, Iwane

    2016-09-01

    Microalgae have received much attention as a next-generation source of biomass energy. However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of producing FAs that are fluid and stable in response to oxidization. We successfully synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of the transformants was altered, particularly at low temperatures, but photosynthesis and respiration were not significantly affected. C16:1(∆9) synthesis in the desA(-)/desD(-) strain by expression of the desC2 gene for sn-2 specific ∆9 desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain.

  2. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  3. Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803.

    Science.gov (United States)

    Bottin, H; Lagoutte, B

    1992-07-06

    The unicellular cyanobacterium Synechocystis sp PCC 6803 is capable of synthesizing two different Photosystem-I electron acceptors, ferredoxin and flavodoxin. Under normal growth conditions a [2Fe-2S] ferredoxin was recovered and purified to homogeneity. The complete amino-acid sequence of this protein was established. The isoelectric point (pI = 3.48), midpoint redox potential (Em = -0.412 V) and stability under denaturing conditions were also determined. This ferredoxin exhibits an unusual electrophoretic behavior, resulting in a very low apparent molecular mass between 2 and 3.5 kDa, even in the presence of high concentrations of urea. However, a molecular mass of 10,232 Da (apo-ferredoxin) is calculated from the sequence. Free thiol assays indicate the presence of a disulfide bridge in this protein. A small amount of ferredoxin was also found in another fraction during the purification procedure. The amino-acid sequence and properties of this minor ferredoxin were similar to those of the major ferredoxin. However, its solubility in ammonium sulfate and its reactivity with antibodies directed against spinach ferredoxin were different. Traces of flavodoxin were also recovered from the same fraction. The amount of flavodoxin was dramatically increased under iron-deficient growth conditions. An acidic isoelectric point was measured (pI = 3.76), close to that of ferredoxin. The midpoint redox potentials of flavodoxin are Em1 = -0.433 V and Em2 = -0.238 V at pH 7.8. Sequence comparison based on the 42 N-terminal amino acids indicates that Synechocystis 6803 flavodoxin most likely belongs to the long-chain class, despite an apparent molecular mass of 15 kDa determined by SDS-PAGE.

  4. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Oosterhout, J.F.X.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesize

  5. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Moerdijk-Poortvliet, T.C.W.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  6. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  7. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes

    NARCIS (Netherlands)

    Bolhuis, H.; Severin, I.; Confurius-Guns, V.; Wollenzien, U.I.A.; Stal, L.J.

    2010-01-01

    The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been ass

  8. Draft Genome Assembly of a Filamentous Euendolithic (True Boring) Cyanobacterium, Mastigocoleus testarum Strain BC008.

    Science.gov (United States)

    Guida, Brandon S; Garcia-Pichel, Ferran

    2016-01-28

    Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average G+C% of 37.3.

  9. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    NARCIS (Netherlands)

    Frangeul, L.; Quillardet, P.; Castets, A.M.; Humbert, J.F.; Matthijs, H.C.P.; Cortez, D.; Tolonen, A.; Zhang, C.C.; Gribaldo, S.; Kehr, J.C.; Zilliges, Y.; Ziemert, N.; Becker, S.; Talla, E.; Latifi, A.; Billault, A.; Lepelletier, A.; Dittmann, E.; Bouchier, C.; Tandeau de Marsac, N.

    2008-01-01

    Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There ha

  10. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes

    NARCIS (Netherlands)

    Bolhuis, H.; Severin, I.; Confurius-Guns, V.; Wollenzien, U.I.A.; Stal, L.J.

    2010-01-01

    The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been

  11. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium

    NARCIS (Netherlands)

    Voss, B.; Bolhuis, H.; Fewer, D.P.; Kopf, M.; Möke, F.; Haas, F.; El-Shehawy, R.; Hayes, P.; Bergman, B.; Sivonen, K.; Dittmann, E.; Scanlan, D.J.; Hagemann, M.; Stal, L.J.; Hess, W.R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft geno

  12. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    NARCIS (Netherlands)

    Frangeul, L.; Quillardet, P.; Castets, A.M.; Humbert, J.F.; Matthijs, H.C.P.; Cortez, D.; Tolonen, A.; Zhang, C.C.; Gribaldo, S.; Kehr, J.C.; Zilliges, Y.; Ziemert, N.; Becker, S.; Talla, E.; Latifi, A.; Billault, A.; Lepelletier, A.; Dittmann, E.; Bouchier, C.; Tandeau de Marsac, N.

    2008-01-01

    Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There ha

  13. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes

    NARCIS (Netherlands)

    Bolhuis, H.; Severin, I.; Confurius-Guns, V.; Wollenzien, U.I.A.; Stal, L.J.

    2010-01-01

    The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been ass

  14. Food quality of detritus derived from the filamentous cyanobacterium Oscillatoria limnetica for Daphnia galeata

    NARCIS (Netherlands)

    Repka, S.; Van der Vlies, M.; Vijverberg, J.

    1998-01-01

    Detritus derived from the filamentous cyanobacterium Oscillatoria limnetica was fed to Daphnia galeata. Detritus supported growth and reproduction comparable to that on the green alga Scenedesmus obliquus. The live filaments of O.limnetica were, however, of lower food quality. Biochemical parameters

  15. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    NARCIS (Netherlands)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, Lucas J; Huisman, Jef

    2015-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece

  16. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  17. Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp.

    NARCIS (Netherlands)

    Boekema, E.J.; Dekker, J.P.; Heel, M.G. van; Rögner, M.; Saenger, W.; Witt, I.; Witt, H.T.

    1987-01-01

    A photosystem I (PS I) reaction center complex was isolated and purified from the cyanobacterium Synechococcus sp. The complex has a molecular mass of about 600 kDa and contains 120 Chl a molecules per photoactive Chl a1 (P-700). Electron micrographs show that the PS I complex has the shape of a dis

  18. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  19. The potential of cyanobacterium Schizothrix vaginata ISC108 in biodegradation of crude oil

    Directory of Open Access Journals (Sweden)

    M Safari

    2014-05-01

    Conclusions: It was found that cyanobacterium Schizothrix vaginata ISC108 has great potential in biodegradation of crude oil. Therefore, since oil is a product toxic to biological systems and is one of the main pollutants of bioecosystem, it has a great potential to be used as an indicator to eliminate pollution in contaminated areas.

  20. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.; Van Oosterhout, F.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  1. Evolution of Anabaenopeptin Peptide Structural Variability in the Cyanobacterium Planktothrix

    Science.gov (United States)

    Entfellner, Elisabeth; Frei, Mark; Christiansen, Guntram; Deng, Li; Blom, Jochen; Kurmayer, Rainer

    2017-01-01

    Cyanobacteria are frequently involved in the formation of harmful algal blooms wherein, apart from the toxic microcystins, other groups of bioactive peptides are abundant as well, such as anabaenopeptins (APs). The APs are synthesized nonribosomally as cyclic hexapeptides with various amino acids at the exocyclic position. We investigated the presence and recombination of the AP synthesis gene cluster (apnA-E) through comparing 125 strains of the bloom-forming cyanobacterium Planktothrix spp., which were isolated from numerous shallow and deep water habitats in the temperate and tropical climatic zone. Ten ecologically divergent strains were purified and genome sequenced to compare their entire apnA-E gene cluster. In order to quantify apn gene distribution patterns, all the strains were investigated by PCR amplification of 2 kbp portions of the entire apn gene cluster without interruption. Within the 11 strains assigned to P. pseudagardhii, P. mougeotii, or P. tepida (Lineage 3), neither apnA-E genes nor remnants were observed. Within the P. agardhii/P. rubescens strains from shallow waters (Lineage 1, 52 strains), strains both carrying and lacking apn genes occurred, while among the strains lacking the apnA-E genes, the presence of the 5′end flanking region indicated a gene cluster deletion. Among the strains of the more derived deep water ecotype (Lineage 2, 62 strains), apnA-E genes were always present. A high similarity of apn genes of the genus Planktothrix when compared with strains of the genus Microcystis suggested its horizontal gene transfer during the speciation of P. agardhii/P. rubescens. Genetic analysis of the first (A1-) domain of the apnA gene, encoding synthesis of the exocyclic position of the AP molecule, revealed four genotype groups that corresponded with substrate activation. Groups of genotypes were either related to Arginine only, the coproduction of Arginine and Tyrosine or Arginine and Lysine, or even the coproduction of Arginine

  2. Domain organization of photosystem II in membranes of the cyanobacterium Synechocystis PCC6803 investigated by electron microscopy

    NARCIS (Netherlands)

    Folea, I. Mihaela; Zhang, Pengpeng; Aro, Eva-Mari; Boekema, Egbert J.

    2008-01-01

    The supramolecular organization of photosystem II (PSII) complexes in the photosynthetic membrane of the cyanobacterium Synechocystis 6803 was studied by electron microscopy. After mild detergent solubilization, crystalline PSII arrays were extracted in which dimeric PSII particles associate in mult

  3. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b[subscript 6]f Complex from Nostoc sp. PCC 7120

    Energy Technology Data Exchange (ETDEWEB)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.; (Semel); (Purdue); (Osaka)

    2009-06-08

    The crystal structure of the cyanobacterial cytochrome b{sub 6}f complex has previously been solved to 3.0-{angstrom} resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b{sub 6}f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b{sub 6}f complex. Purified b{sub 6}f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b{sub 6}f complex, determined to a resolution of 3.0{angstrom} (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme b{sub p} that is rotated 180 deg. about the {alpha}- and {gamma}-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b{sub 6}f complex from other sources.

  4. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.--a comparative study.

    Science.gov (United States)

    Gupta, Vinod K; Rastogi, Arshi

    2008-07-15

    Industrial wastewaters containing heavy metals pose a major environmental problem that needs to be remedied. The present study reports the ability of two non-living (dried) fresh water algae, Oedogonium sp. and Nostoc sp. to remove lead(II) from aqueous solutions in batch system under varying range of pH (2.99-7.04), contact time (5-300 min), biosorbent dose (0.1-0.8 g/L), and initial metal ion concentrations (100 and 200mg/L). The optimum conditions for lead biosorption are almost same for the two algal biomass Oedogonium sp. and Nostoc sp. (pH 5.0, contact time 90 and 70 min, biosorbent dose 0.5 g/L and initial Pb(II) concentration 200mg/L) however, the biomass of Oedogonium sp. was found to be more suitable than Nostoc sp. for the development of an efficient biosorbent for the removal of lead(II) from aqueous solutions, as it showed higher values of q(e) adsorption capacity (145.0mg/g for Oedogonium sp. and 93.5mg/g for Nostoc sp.). The equilibrium data fitted well in the Langmuir isotherms than the Freundlich isotherm, thus proving monolayer adsorption of lead on both the algal biomass. Analysis of data shows that the process involves second-order kinetics and thermodynamic treatment of equilibrium data shows endothermic nature of the adsorption process. The spectrum of FTIR confirms that the amino and carboxyl groups on the surface of algal biomass were the main adsorption sites for lead removal. Both the biosorbents could be regenerated using 0.1 mol/L HCl solution, with upto 90% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that both the algal biomass could be used as an efficient biosorbents for the treatment of lead(II) bearing wastewater streams.

  6. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L.

    Directory of Open Access Journals (Sweden)

    Anton Liaimer

    2016-11-01

    Full Text Available Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analysed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.

  7. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L.

    Science.gov (United States)

    Liaimer, Anton; Jensen, John B.; Dittmann, Elke

    2016-01-01

    Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin. PMID:27847500

  8. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002

    OpenAIRE

    Zhao, Chi; Li,Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A.; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc–ccp–cesAB–cesC–cesD–bgl, from Gluconacetobacter xylinus in Synechococcus s...

  9. Environmental Factors Influencing Blooms of a Neurotoxic Stigonematalan Cyanobacterium Responsible for Avian Vacuolar Myelinopathy

    Science.gov (United States)

    2013-01-01

    killing waterbirds and raptors , to an epiphytic cyanobacterium which grows primarily on nonindigenous submerged aquatic vegetation (SAV). Water- birds...intramyelinic edema, in the organisms’ CNS tissue, most commonly the brain (Thomas et al. 1998). AVM-afflicted birds display erratic behavior ; clinical symptoms... feeding trials. Gavage trials with a methanol extract of the hydrilla-UCB demonstrated that extract would cause clinical symptoms and AVM lesions in

  10. Draft Genome Sequence of the Toxic Bloom-Forming Cyanobacterium Aphanizomenon flos-aquae NIES-81

    OpenAIRE

    Cao, Huansheng; Shimura, Yohei; Masanobu, Kawachi; Yin, Yanbin

    2014-01-01

    Aphanizomenon flos-aquae is a toxic filamentous cyanobacterium that causes water blooms in freshwaters across the globe. We present the draft genome sequence of the A. flos-aquae strain NIES-81, which was determined by 454 pyrosequencing technology. The draft genome is ~5.7 Mb, containing 5,802 predicted protein-coding genes and 58 RNA genes, with a G+C content of 38.5%.

  11. Draft Genome Sequence of the Toxic Bloom-Forming Cyanobacterium Aphanizomenon flos-aquae NIES-81.

    Science.gov (United States)

    Cao, Huansheng; Shimura, Yohei; Masanobu, Kawachi; Yin, Yanbin

    2014-02-13

    Aphanizomenon flos-aquae is a toxic filamentous cyanobacterium that causes water blooms in freshwaters across the globe. We present the draft genome sequence of the A. flos-aquae strain NIES-81, which was determined by 454 pyrosequencing technology. The draft genome is ~5.7 Mb, containing 5,802 predicted protein-coding genes and 58 RNA genes, with a G+C content of 38.5%.

  12. Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803

    OpenAIRE

    Song, Ji-Young; Cho, Hye Sun; Cho, Jung-Il; Jeon, Jong-Seong; Lagarias, J. Clark; Park, Youn-Il

    2011-01-01

    Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependen...

  13. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    OpenAIRE

    Klatt, Judith M.; Al-Najjar, Mohammad A. A.; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39,...

  14. Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005

    OpenAIRE

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionat...

  15. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    OpenAIRE

    Teresa Thiel; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among...

  16. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand; Frigaard, Niels-Ulrik

    2014-01-01

    d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically...... concentration of 1.1gmannitolL(-1) and a production rate of 0.15gmannitolL(-1)day(-1). This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria....

  17. Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp.

    Science.gov (United States)

    Raveh, Avi; Carmeli, Shmuel

    2010-08-01

    A novel thiazole-containing cyclic peptide, aeruginazole A (1), was isolated from the cyanobacterium Microcystis sp. strain (IL-323), which was collected from a water reservoir near Kfar-Yehoshua, Valley of Armageddon, Israel. The planar structure of aeruginazole A was established using homonuclear and inverse-heteronuclear 2D NMR techniques, as well as high-resolution mass spectrometry. The absolute configuration of the asymmetric centers was determined using Marfey's method. Aeruginazole A potently inhibited Bacillus subtilis.

  18. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.

    Science.gov (United States)

    de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Ramos, V; Vasconcelos, V M; Vasconcelos, M Teresa S D

    2014-04-01

    Pentachlorophenol (PCP) effects on a strain of the cyanobacterium Microcystis aeruginosa were investigated at laboratory scale. This is the first systematic ecotoxicity study of the effects of PCP on an aquatic cyanobacterium. The microalga Chlorella vulgaris was studied in the same conditions as the cyanobacterium, in order to compare the PCP toxicity and its removal by the species. The cells were exposed to environmental levels of PCP during 10 days, in Fraquil culture medium, at nominal concentrations from 0.01 to 1000 μg L(-1), to the cyanobacterium, and 0.01 to 5000 μg L(-1), to the microalga. Growth was assessed by area under growth curve (AUC, optical density vs time) and chlorophyll a content (chla). The toxicity profiles of the two species were very different. The calculated effective concentrations EC20 and EC50 were much lower to M. aeruginosa, and its growth inhibition expressed by chla was concentration-dependent while by AUC was not concentration-dependent. The cells might continue to divide even with lower levels of chla. The number of C. vulgaris cells decreased with the PCP concentration without major impact on the chla. The effect of PCP on M. aeruginosa is hormetic: every concentration studied was toxic except 1 μg L(-1), which promoted its growth. The legal limit of PCP set by the European Union for surface waters (1 μg L(-1)) should be reconsidered since a toxic cyanobacteria bloom might occur. The study of the removal of PCP from the culture medium by the two species is an additional novelty of this work. M. aeruginosa could remove part of the PCP from the medium, at concentrations where toxic effects were observed, while C. vulgaris stabilized it.

  19. Adaptation strategies of the sheathed cyanobacterium Lyngbya majuscula to ultraviolet-B.

    Science.gov (United States)

    Mandal, Sikha; Rath, Jnanendra; Adhikary, Siba Prasad

    2011-02-01

    Lyngbya majuscula is a dominant organism in the east coast of India forming characteristic mat in dried saline soils simultaneously exposed to solar radiation of the tropics. Studies on the growth response, changes in the spectral properties of the methanolic extract and protein profile of this estuarine sheathed cyanobacterium to UV-B revealed existence of effective adaptation mechanism to withstand prolonged UV-B radiation. Carotenoids along with MAAs of the organism was increased with increase in UV irradiation. Increase in thickness of the mucilaginous sheath layer as well as cellular carbohydrate content was observed upon exposure to prolonged UV-B dose. Induction of 21 and 33 kDa low molecular weight proteins, and a 99 kDa protein together with formation of distinct multilayered sheath embedding trichomes with granulated cells were the adaptive features of the organism to cope with UV-B stress. The organism was considerably revived after incubating the irradiated cells in mineral medium under florescent light and in the dark suggesting existence of photoreactivation and dark repair in this cyanobacterium. However more experiments are needed to establish the existence of photoreactivation and dark repair mechanism in the studied cyanobacterium.

  20. Ecological genomics of the newly discovered diazotrophic filamentous cyanobacterium ESFC-1

    Science.gov (United States)

    Everroad, C.; Bebout, B.; Bebout, L. E.; Detweiler, A. M.; Lee, J.; Mayali, X.; Singer, S. W.; Stuart, R.; Weber, P. K.; Woebken, D.; Pett-Ridge, J.

    2014-12-01

    Cyanobacteria-dominated microbial mats played a key role in the evolution of the early Earth and provide a model for exploring the relationships between ecology, evolution and biogeochemistry. A recently described nonheterocystous filamentous cyanobacterium, strain ESFC-1, has been shown to be a major diazotroph year round in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16s RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence within the cyanobacteria. Consequently, the draft genome sequence of this strain has been determined. Here we report features of this genome, particularly as they relate to the ecological functions and capabilities of strain ESFC-1. One striking feature of this cyanobacterium is the apparent lack of a functional bi-directional hydrogenase typically expected to be found within a diazotroph; consortia- and culture-based experiments exploring the metabolic processes of ESFC-1 also indicate that this hydrogenase is absent. Co-culture studies with ESFC-1 and some of the dominant heterotrophic members within the microbial mat system, including the ubiquitous Flavobacterium Muricauda sp., which often is found associated with cyanobacteria in nature and in culture collections worldwide, have also been performed. We report on these species-species interactions, including materials exchange between the cyanobacterium and heterotrophic bacterium. The combination of genomics with culture- and consortia-based experimental research is a powerful tool for understanding microbial processes and interactions in complex ecosystems.

  1. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    Science.gov (United States)

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes.

  2. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    Science.gov (United States)

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.

  3. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    Science.gov (United States)

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evolution of the tRNALeu (UAA Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    Directory of Open Access Journals (Sweden)

    Ulla Kaasalainen

    Full Text Available The group I intron interrupting the tRNALeu UAA gene (trnL is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.

  5. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  6. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    Science.gov (United States)

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  7. New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids.

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk; Lee, Pyung Cheon

    2013-06-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8'-carotenal at 3 positions, C-13 C-14, C-15 C-15', and C-13' C-14', revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4'-diaponeurosporene, 4,4'-diaponeurosporen-4'-al, 4,4'-diaponeurosporen-4'-oic acid, 4,4'-diapotorulene, and 4,4'-diapotorulen-4'-al to generate novel cleavage products (apo-14'-diaponeurosporenal, apo-13'-diaponeurosporenal, apo-10'-diaponeurosporenal, apo-14'-diapotorulenal, and apo-10'-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro.

  8. Reduced scytonemin isolated from Nostoc commune induces autophagic cell death in human T-lymphoid cell line Jurkat cells.

    Science.gov (United States)

    Itoh, Tomohiro; Tsuzuki, Ryosuke; Tanaka, Toshiomi; Ninomiya, Masayuki; Yamaguchi, Yuji; Takenaka, Hiroyuki; Ando, Masashi; Tsukamasa, Yasuyuki; Koketsu, Mamoru

    2013-10-01

    Nostoc commune is a terrestrial benthic blue-green alga that often forms an extended mucilaginous layer on the soil, accumulates on stones and mud in aquatic environments. Reduced-scytonemin (R-scy), isolated from N. commune Vaucher, has been shown to suppress the human T-lymphoid Jurkat cell growth. To reveal the mechanisms underlying the R-scy-mediated inhibition of Jurkat cell growth, we examined cell morphology, DNA fragmentation, and microtubule-associated protein light chain 3 (LC3) modification in these cells. We observed multiple vacuoles as well as the conversion of LC3-I to LC3-II in R-scy-treated cells. These results suggest that the R-scy induced Jurkat cell growth inhibition is attributable to the induction of type II programmed cell death (PCD II; autophagic cell death or autophagy). We further examined the mechanisms underlying R-scy-induced PCDII. The cells treated with R-scy produced large amounts of reactive oxygen species (ROS), leading to the induction of mitochondrial dysfunction. However, the elimination of R-scy-induced ROS by treatment with N-acetyl-L-cysteine (NAC) markedly opposed R-scy-induced PCDII. Based on these results, we conclude that ROS formation plays a critical role in R-scy-induced PCDII. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Antimicrobial and anti-inflammatory properties of nostocionone isolated from Nostoc commune Vauch and its derivatives against Propionibacterium acnes.

    Science.gov (United States)

    Itoh, Tomohiro; Tsuchida, Akihiro; Muramatsu, Yuji; Ninomiya, Masayuki; Ando, Masashi; Tsukamasa, Yasuyuki; Koketsu, Mamoru

    2014-06-01

    Propionibacterium acnes is the primary pathogenic agent responsible for acne vulgaris on the skin and hair follicles. Overgrowth of this bacterium inhibits growth and promotes follicular inflammation, with an associated increase in pro-inflammatory cytokine production. P. acnes has therefore been considered the main target for the prevention and medical treatment of acne vulgaris. The aim of this study was to evaluate the in vitro anti-P. acnes and anti-inflammatory properties of 6 compounds isolated from Nostoc commune. One of these compounds, nostocionone (Nost), and one of its derivatives, NostD3 [(1E,4E)-1-(3,4-dihydroxyphenyl)-5-(2,6,6-trimethylcyclohex-1-enyl)penta-1,4-dien-3-one], significantly inhibited P. acnes growth. Furthermore, we investigated the effects of Nost and NostD3 on heat-killed (hk) P. acnes-induced inflammation in macrophages. Both Nost and NostD3 suppressed hk P. acnes-induced nitric oxide (NO) production through the suppression of inducible NO synthase expression, following inactivation of nuclear factor kappa B. Taken together, our findings suggested that both Nost and NostD3 were promising agents for the treatment of acne vulgaris, and that NostD3 showed higher efficacy than Nost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Physiological and proteomic analysis of salinity tolerance of the halotolerant cyanobacterium Anabaena sp.

    Science.gov (United States)

    Yadav, Ravindra Kumar; Thagela, Preeti; Tripathi, Keshawanand; Abraham, G

    2016-09-01

    The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity. The intracellular Na(+) content of the cells increased both at 170 and 515 mM NaCl. In contrast, the K(+) content of the cyanobacterium Anabaena sp remained stable in response to growth at identical concentration of NaCl. While cells grown at 170 mM NaCl showed highest intracellular K(+)/Na(+) ratio, salinity level of 515 mM NaCl resulted in reduced ratio of K(+)/Na(+). Proteomic analysis revealed 50 salt-responsive proteins in the cyanobacterium Anabaena sp under salt treatment compared with control. Ten protein spots were subjected to MALDI-TOF-MS/MS analysis and the identified proteins are involved in photosynthesis, protein folding, cell organization and energy metabolism. Differential expression of proteins related to photosynthesis, energy metabolism was observed in Anabaena sp grown at 170 mM NaCl. At 170 mM NaCl increased expression of photosynthesis related proteins and effective osmotic adjustment through increased antioxidant enzymes and modulation of intracellular ions contributed to better salinity tolerance and optimal growth. On the contrary, increased intracellular Na(+) content coupled with down regulation of photosynthetic and energy related proteins resulted in reduced growth at 515 mM NaCl. Therefore reduced growth at 515 mM NaCl could be due to accumulation of Na(+) ions and requirement to maintain higher organic osmolytes and antioxidants which is energy intensive. The results thus show that the basis of salt tolerance is different when the

  11. Isolation and characterization of a cyanobacterium-binding protein and its cell wall receptor in the lichen Peltigera canina.

    Science.gov (United States)

    Díaz, Eva-María; Sacristán, Mara; Legaz, María-Estrella; Vicente, Carlos

    2009-07-01

    Peltigera canina, a cyanolichen containing Nostoc as cyanobiont, produces and secretes arginase to a medium containing arginine. Secreted arginase acts as a lectin by binding to the surface of Nostoc cells through a specific receptor which develops urease activity. The enzyme urease has been located in the cell wall of recently isolated cyanobionts. Cytochemical detection of urease is achieved by producing a black, electron-dense precipitate of cobalt sulfide proceeding from CO(2) evolved from urea hydrolysis in the presence of cobalt chloride. This urease has been pre-purified by affinity chromatography on a bead of active agarose to which arginase was attached. Urease was eluted from the beads by 50 mM alpha-D-galactose. The experimentally probed fact that a fungal lectin developing subsidiary arginase activity acts as a recognition factor of compatible algal cells in chlorolichens can now been expanded to cyanolichens.

  12. Energy Transfer from Phycobilisomes to Photosystems of Nostoc flagelliforme Born. et Flah. During the Rewetting Course and Its Physiological Significance

    Institute of Scientific and Technical Information of China (English)

    Hui HUANG; Ke-Zhi BAI; Ze-Pu ZHONG; Liang-Bi LI; Ting-Yun KUANG

    2005-01-01

    During the non-frost season, the condensation of dew makes Nostocflagelliforme Born. et Flah., a highly drought-tolerant terrestrial cyanobacterium, frequently undergo rehydration-dehydration.Rehydration begins in the dark at night. After rewetting in the dark, photochemical activity and the structure of photosystem (PS) Ⅱ were not recovered at all; the structure of PSⅠ, energy transfer in phycobilisomes, and energy transfer from phycobilisomes to PSⅠ were recovered within 5 min, as in the light. The recovery of energy transfer from phycobilisomes to PSⅡ was light dependent and energy transfer from phycobilisomes to PSⅡ was only partially recovered in the dark. These results suggest that the two-trigger control (water and light) of photosynthetic recovery may make N. flagelliforme avoid unnecessary energy consumption and, at the same time, the partial recovery of energy transfer from phycobilisomes to PSⅡ in the dark could help N. flagelliforme accumulate more photosynthetic products during the transient period of rehydrationdehydration.

  13. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity.

    Science.gov (United States)

    Brash, Alan R; Niraula, Narayan P; Boeglin, William E; Mashhadi, Zahra

    2014-05-09

    In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.

  14. Response of Nostoc Commune to Environmental Factors%地木耳对环境因子的响应研究

    Institute of Scientific and Technical Information of China (English)

    孙晓娇; 白琼; 鄢波

    2013-01-01

      The environmental factors are the vital limiting factors for life activities ,and have obvious influences on the growth of biological organism and physiological metabolic of living organisms . This article studies the growth environment of Nostoc commune and the soil pH value , the organic matter , the entire nitrogen , the entire phosphorous ,the available phosphorus and the available potassium of Nostoc commune's distribution area . The results show that Nostoc commune is suitable to survive in the micro environment with high temperature and humidity and poor ventilation ,and its growth needs sufficient moisture content but cannot be waterlogged . The Nostoc commune adapts to growing in the neutrality to the acidity and the high organic soil content and has no special requirements on the soil texture and the entire nitrogen ,entire phosphorus ,available phosphorus and potassium content of the soil .%  指出了环境因子是生命活动的重要限制因子,对生物有机体的生长发育和生理代谢具有明显的影响。对地木耳生长的环境和其分布区土壤pH值、有机质、全氮、全磷、速效磷和速效钾含量进行了研究,结果表明:地木耳适宜生存于温度和湿度较高、通气性较差的微环境中,其生长需要充足的水分,但不宜水渍;地木耳对土壤质地无特殊要求,适宜在中性至酸性和有机质含量较高的土壤中生长,而对土壤全氮、全磷、速效磷和速效钾的含量则无特殊要求。

  15. Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (High-Atlas mountains of Marrakech, Morocco).

    Science.gov (United States)

    Oudra, B; Dadi-El Andaloussi, M; Vasconcelos, V M

    2009-02-01

    Health risks generated by cyanobacterial toxins in drinking and recreational waters are clearly recognised. During the monitoring programme on the distribution of toxic freshwater cyanobacteria in various water bodies including reservoirs, ponds and rivers of Morocco, many toxigenic cyanobacteria bloom-forming species have been identified. Particular attention was given to the investigation of the toxicology of a benthic Nostoc species-Nostoc muscorum Ag. (cyanobacteria, Nostocales, Nostocaceae)-that was found dominant in Oukaïmeden river located at 2,600 m of altitude in High-Atlas mountains of Marrakech. The massive growth of the mat-forming N. muscorum occurred yearly during the period of March-October, when the water temperature was above 10 degrees C. During 1997-1999, samples were collected from either floating or benthic mats. Hepatotoxicity associated to gastrointestinal (diarrhoea) intoxication symptoms was confirmed by intraperitoneal (i.p.) injection in mice of N. muscorum thallus extract. The survival time was estimated to be from 2-5 h, and the calculated i.p. LD(50) in mice ranged from 15 to 125 mg kg(-1) body weight. The application of the high performance liquid chromatography with photodiode array detection confirmed the occurrence of microcystin-LR (MC-LR) and three others microcystin variants from the methanolic Nostoc extract. The MC-LR represented a proportion of 39% of the total microcystin content however, the total concentration equivalents-eq-of MC-LR was estimated to be 139 microg MC-LR eq per gram dry weight. The existence of a benthic microcystin-producing N. muscorum strain under the particular environmental conditions of Oukaïmeden region may be a potential human health hazard and the ecological harmful effects of these cyanobacterial toxins need to be assessed. This paper constitutes the first report of the occurrence of a toxic benthic Nostoc in Morocco. So, the benthic species should be considered during monitoring of toxic

  16. Study on the Toxic Effects of 2 Commonly Used Herbicides on a Strain of Nitrogen Fixation Nostoc in Paddy Field%2种常用除草剂对1株稻田固氮念珠藻的毒性效应研究

    Institute of Scientific and Technical Information of China (English)

    贺鸿志; 余景; 李拥军; 陈桂葵; 黎华寿

    2011-01-01

    [目的]评价除草荆对固氮蓝藻的毒性.[方法]以稻田固氮蓝藻念珠藻FACHB85为供试藻种,研究除草剂莠去津和丁草胺的毒性效应.[结果]莠去津对FACHB85的毒性存在明显的剂量-效应关系,0.8 mg/L莠去津可明显抑制藻体生长(藻体比生长速率仅为对照的25%,且藻体断裂严重);在试验期(15 d)内莠去津对FACHB85的EC值为0.035~0.080 mg/L,12 d后其EC值达到稳定且高于前5 d的EC值;随莠去津浓度增加,FACHB85的异形胞频率逐渐减小.在试验浓度(0~640 mg/L)范围内,丁草胺对FACHB85的生长基本无影响,且不同浓度丁草胺处理FACHB85的异形胞频率无显著差异.[结论]莠去津对FACHB85具有很强的毒性,而丁草胺对FACHB85的毒性较小.%[ Objective ] The purpose was to evaluate the toxicity of herbicides on nitrogen fixation cyanobacterium. [ Method ] With nitrogen fixation cyanobacterium Nostoc FACHB85 in paddy field as tested alga strain,the toxic effects of herbicides atrazine and butachlor was studied. [Result] The toxicity of atrazine on FACHB85 showed obvious dose-effect relationship. Atrazine of 0.8 mg/L could inhibit the growth of frond obviously,its specific growth rate was just 25% of that of CK and it had serious fragmentations. In the experimental period of 15 d, the EC50 of atrazine on FACHB85 was 0.035 - 0.080 mg/L,its EC50 became stable and higher than that of the former 5 d after 12 d; as the concentration of atrazine was increased, the heterocyst frequency of FACHB85 was reduced gradually. In the tested concentration scope of 0 ~ 640 mg/L,butachlor showed no influence on the growth of FACHB85 basically and the heterocyst frequencies of FACHB85 treated with butachlor of different concentration showed no obvious difference. [ Conclusion ] The toxicity of atrasine on FACHB85 was very intense and that of butachlor was less.

  17. Halotolerant Cyanobacterium Aphanothece halophytica Contains a Betaine Transporter Active at Alkaline pH and High Salinity

    OpenAIRE

    2006-01-01

    Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium which can grow in media of up to 3.0 M NaCl and pH 11. This cyanobacterium can synthesize betaine from glycine by three-step methylation using S-adenosylmethionine as a methyl donor. To unveil the mechanism of betaine uptake and efflux in this alkaliphile, we isolated and characterized a betaine transporter. A gene encoding a protein (BetTA. halophytica) that belongs to the betaine-choline-carnitine transporter (BCCT) famil...

  18. Backbone dynamics of reduced plastocyanin from the cyanobacterium Anabaena variabilis: Regions involved in electron transfer have enhanced mobility

    DEFF Research Database (Denmark)

    Ma, L.X.; Hass, M.A.S.; Vierick, N.;

    2003-01-01

    The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model-free appr......The dynamics of the backbone of the electron-transfer protein plastocyanin from the cyanobacterium Anabaena variabilis were determined from the N-15 and C-13(alpha) R-1 and R-2) relaxation rates and steady-state [H-1]-N-15 and [H-1]-C-13 nuclear Overhauser effects (NOEs) using the model...

  19. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

    Directory of Open Access Journals (Sweden)

    Liang Ran

    Full Text Available BACKGROUND: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2% and a high frequency of transposable elements (approximately 600 scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. CONCLUSIONS/SIGNIFICANCE: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla

  20. New anabaenopeptins, potent carboxypeptidase-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae.

    Science.gov (United States)

    Murakami, M; Suzuki, S; Itou, Y; Kodani, S; Ishida, K

    2000-09-01

    Anabaenopeptins I (1) and J (2), two new ureido bond-containing cyclic peptides, were isolated from the cultured cyanobacterium Aphanizomenon flos-aquae (NIES-81) as potent carboxypeptidase-A (CPA) inhibitors. The gross structures of 1 and 2 were established by spectroscopic analysis, including the 2D NMR techniques. The absolute configurations of 1 and 2 were determined by spectral and chemical methods. Anabaenopeptins I and J inhibited CPA with IC(50) values of 5.2 and 7.6 ng/mL, respectively.

  1. Deciphering the mechanisms against oxidative stress in developing and mature akinetes of the cyanobacterium Aphanizomenon ovalisporum.

    Science.gov (United States)

    Kaplan-Levy, Ruth N; Hadas, Ora; Sukenik, Assaf

    2015-07-01

    Cells of filamentous cyanobacteria of the orders Nostocales and Stigonematales can differentiate into dormant forms called akinetes. Akinetes play a key role in the survival, abundance and distribution of the species, contributing an inoculum for their perennial blooms. In the cyanobacterium Aphanizomenon ovalisporum, potassium deficiency triggers the formation of akinetes. Here we present experimental evidence for the production of reactive oxygen species (ROS) during akinete development in response to potassium deficiency. The function of ROS as a primer signal for akinete differentiation was negated. Nevertheless, akinetes acquired protective mechanisms against oxidative damage during their differentiation and maintained them as they matured, giving akinetes advantages enabling survival in harsh conditions.

  2. Microcystin congeners contribute to toxicity in the halophilic cyanobacterium Aphanothece halophytica

    Directory of Open Access Journals (Sweden)

    Vishwakarma Rashi

    2014-01-01

    Full Text Available Aphanothece halophytica is an extremely saline cyanobacterium. This study investigates the toxic nature of the organism and presents the first report of hepatotoxic cyclic heptapeptide microcystin analogs. The activity of the crude extract was investigated in mice. Results showed acute toxicity with mice death at about 4 h. Histopathological examination indicated massive alveolar hemorrhage and extensive congestion in liver cells. Increases in the levels of serum enzymes, i.e., AST (aspartate aminotransferase, ALT (alanine aminotransferase and LDH (lactate dehydrogenase, provide further evidence of cell injury. An ELISA-based immunological detection kit confirmed the presence of microcystin analogs.

  3. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock.

    Science.gov (United States)

    Lee, Na Kyeong; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2017-03-01

    Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent?

    Science.gov (United States)

    Hrouzek, Pavel; Tomek, Petr; Lukešová, Alena; Urban, Jan; Voloshko, Ludmila; Pushparaj, Benjamin; Ventura, Stefano; Lukavský, Jaromír; Stys, Dalibor; Kopecký, Jiří

    2011-08-01

    Extensive selection of cyanobacterial strains (82 isolates) belonging to the genus Nostoc, isolated from different climatic regions and habitats, were screened for both their secondary metabolite content and their cytotoxic effects to mammalian cell lines. The overall occurrence of cytotoxicity was found to be 33%, which corresponds with previously published data. However, the frequency differs significantly among strains, which originate from different climatic regions and microsites (particular localities). A large fraction of intensely cytotoxic strains were found among symbiotic strains (60%) and temperate and continental climatic isolates (45%); compared with the less significant incidences in strains originating from cold regions (36%), deserts (14%), and tropical habitats (9%). The cytotoxic strains were not randomly distributed; microsites that clearly had a higher occurrence of cytotoxicity were observed. Apparently, certain natural conditions lead to the selection of cytotoxic strains, resulting in a high cytotoxicity occurrence, and vice versa. Moreover, in strains isolated from a particular microsite, the cytotoxic effects were caused by different compounds. This result supports our hypothesis for the environmental dependence of cytotoxicity. It also contradicts the hypothesis that clonality and lateral gene transfer could be the reason for this phenomenon. Enormous variability in the secondary metabolites was detected within the studied Nostoc extracts. According to their molecular masses, only 26% of these corresponded to any known structures; thus, pointing to the high potential for the use of many terrestrial cyanobacteria in both pharmacology and biotechnology. Copyright © 2010 Wiley Periodicals, Inc.

  5. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria

    Directory of Open Access Journals (Sweden)

    Potrafka Ruth M

    2009-07-01

    Full Text Available Abstract Background The extracellular sunscreen scytonemin is the most common and widespread indole-alkaloid among cyanobacteria. Previous research using the cyanobacterium Nostoc punctiforme ATCC 29133 revealed a unique 18-gene cluster (NpR1276 to NpR1259 in the N. punctiforme genome involved in the biosynthesis of scytonemin. We provide further genomic characterization of these genes in N. punctiforme and extend it to homologous regions in other cyanobacteria. Results Six putative genes in the scytonemin gene cluster (NpR1276 to NpR1271 in the N. punctiforme genome, with no previously known protein function and annotated in this study as scyA to scyF, are likely involved in the assembly of scytonemin from central metabolites, based on genetic, biochemical, and sequence similarity evidence. Also in this cluster are redundant copies of genes encoding for aromatic amino acid biosynthetic enzymes. These can theoretically lead to tryptophan and the tyrosine precursor, p-hydroxyphenylpyruvate, (expected biosynthetic precursors of scytonemin from end products of the shikimic acid pathway. Redundant copies of the genes coding for the key regulatory and rate-limiting enzymes of the shikimic acid pathway are found there as well. We identified four other cyanobacterial strains containing orthologues of all of these genes, three of them by database searches (Lyngbya PCC 8106, Anabaena PCC 7120, and Nodularia CCY 9414 and one by targeted sequencing (Chlorogloeopsis sp. strain Cgs-089; CCMEE 5094. Genomic comparisons revealed that most scytonemin-related genes were highly conserved among strains and that two additional conserved clusters, NpF5232 to NpF5236 and a putative two-component regulatory system (NpF1278 and NpF1277, are likely involved in scytonemin biosynthesis and regulation, respectively, on the basis of conservation and location. Since many of the protein product sequences for the newly described genes, including ScyD, ScyE, and ScyF, have

  6. Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle L.; Austin, Jotham R.; Berg, R. H.; Pakrasi, Himadri B.

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  7. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Austin II, Jotham R; Berg, R. Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  8. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography.

    Science.gov (United States)

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  9. Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership

    Science.gov (United States)

    McClure, Ryan S.; Thiel, Vera; Sadler, Natalie C.; Kim, Young-Mo; Chrisler, William B.; Hill, Eric A.; Romine, Margaret F.; Jansson, Janet K.; Fredrickson, Jim K.; Beliaev, Alexander S.

    2017-01-01

    ABSTRACT The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships. PMID:28289730

  10. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Energy Technology Data Exchange (ETDEWEB)

    Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  11. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Science.gov (United States)

    Elvitigala, Thanura R.; Liberton, Michelle; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-01-01

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms. PMID:21364985

  12. Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  13. Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.

    Science.gov (United States)

    Stöckel, Jana; Jacobs, Jon M; Elvitigala, Thanura R; Liberton, Michelle; Welsh, Eric A; Polpitiya, Ashoka D; Gritsenko, Marina A; Nicora, Carrie D; Koppenaal, David W; Smith, Richard D; Pakrasi, Himadri B

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  14. Bouillonamide: A Mixed Polyketide–Peptide Cytotoxin from the Marine Cyanobacterium Moorea bouillonii

    Directory of Open Access Journals (Sweden)

    Lik Tong Tan

    2013-08-01

    Full Text Available The tropical marine cyanobacterium, Moorea bouillonii, has gained recent attention as a rich source of bioactive natural products. Continued chemical investigation of this cyanobacterium, collected from New Britain, Papua New Guinea, yielded a novel cytotoxic cyclic depsipeptide, bouillonamide (1, along with previously reported molecules, ulongamide A and apratoxin A. Planar structure of bouillonamide was established by extensive 1D and 2D NMR experiments, including multi-edited HSQC, TOCSY, HBMC, and ROESY experiments. In addition to the presence of α-amino acid residues, compound 1 contained two unique polyketide-derived moieties, namely a 2-methyl-6-methylamino-hex-5-enoic acid (Mmaha residue and a unit of 3-methyl-5-hydroxy-heptanoic acid (Mhha. Absolute stereochemistry of the α-amino acid units in bouillonamide was determined mainly by Marfey’s analysis. Compound 1 exhibited mild toxicity with IC50’s of 6.0 µM against the neuron 2a mouse neuroblastoma cells.

  15. Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon ovalisporum in a Mediterranean Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Ali Fadel

    2014-10-01

    Full Text Available Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel, Lisimachia and Trichonis (Greece and Arcos Reservoir (Spain, Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05. Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions.

  16. A stable, reusable, and highly active photosynthetic bioreactor by bio-interfacing an individual cyanobacterium with a mesoporous bilayer nanoshell.

    Science.gov (United States)

    Jiang, Nan; Yang, Xiao-Yu; Deng, Zhao; Wang, Li; Hu, Zhi-Yi; Tian, Ge; Ying, Guo-Liang; Shen, Ling; Zhang, Ming-Xi; Su, Bao-Lian

    2015-05-06

    An individual cyanobacterium cell is interfaced with a nanoporous biohybrid layer within a mesoporous silica layer. The bio-interface acts as an egg membrane for cell protection and growth of outer shell. The resulting bilayer shell provides efficient functions to create a single cell photosynthetic bioreactor with high stability, reusability, and activity.

  17. Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum

    NARCIS (Netherlands)

    El-Shehawy, R.; Lugomela, C.; Ernst, A.; Bergman, B.

    2003-01-01

    The marine non-heterocystous cyanobacterium Trichodesmium fixes atmospheric N2 aerobically in light. In situ immunolocalization/light microscopy of NifH revealed that lighter, non-granulated cell regions observed correspond to the nitrogenase-containing diazocyte clusters in Trichodesmium IMS101. Th

  18. A comparison of fermentation in the cyanobacterium Microcystis PCC7806 grown under a light/dark cycle and continuous light

    NARCIS (Netherlands)

    Moezelaar, R.; Stal, L.J.

    1997-01-01

    The cyanobacterium Microcystis PCC7806, grown under continuous light, fermented endogenously stored glycogen to equimolar amounts of acetate and ethanol when incubated anaerobically in the dark. In addition, H-2, CO2 and some L-lactate were produced. This fermentation pattern differed from that disp

  19. Pulsed nitrogen supply induces dynamic changes in the amino acid compositionand microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    Van de Waal, D.B.; Ferreruela, G.; Tonk, L.; Van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine (R)

  20. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii

    NARCIS (Netherlands)

    van de Waal, D.B.; Ferreruela, G.; Tonk, L.; van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P.

    2010-01-01

    Planktothrix agardhii is a widespread harmful cyanobacterium of eutrophic waters, and can produce the hepatotoxins [Asp3]microcystin-LR and [Asp3]microcystin-RR. These two microcystin variants differ in their first variable amino acid position, which is occupied by either leucine (L) or arginine (R)

  1. Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna

    NARCIS (Netherlands)

    Soares, M.C.S.; Lürling, M.F.L.L.W.; Panosso, R.; Huszar, V.M.

    2009-01-01

    Laboratory experiments were used to test the hypothesis that feeding and growth of the zooplankton grazer Daphnia magna will decrease with increasing proportions of the cyanobacterium Cylindrospermopsis raciborskii in the diet (mixed feeds with the green alga Scenedesmus obliquus). A strain of C.

  2. Cloning of a third nitrate reductase gene from the cyanobacterium Anacystis nidulans R2 using a shuttle cosmid library

    NARCIS (Netherlands)

    Kuhlemeier, C.J.; Teeuwsen, V.J.P.; Janssen, M.J.T.; Arkel, G.A. van

    1984-01-01

    A strategy for gene cloning in the cyanobacterium Anacystis nidulans R2 was developed which made use of a gene library constructed in a shuttle cosmid vector. The method involved phenotypic complementation of mutants with pooled cosmid DNA. The development of the procedure and its application to the

  3. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase

    Science.gov (United States)

    Scherzinger, Daniel; Ruch, Sandra; Kloer, Daniel P.; Wilde, Annegret; Al-Babili, Salim

    2006-01-01

    The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts β-apo-carotenals instead of β-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography–MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting β-apo-carotenals, (3R)-3-hydroxy-β-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of β-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form. PMID:16759173

  4. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    Science.gov (United States)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  5. Bifunctional enzyme FBPase/SBPase is essential for photoautotrophic growth in cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    Chunlan Yan; Xudong Xu

    2008-01-01

    From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be sir2094 (fbpl), which encodes the fructose-l,6-biphosphatase (FBPase)/sedoheptu-lose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an sir2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that sir2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem 11 by interrupting psbB in sir2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evi-dence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.

  6. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum

    Directory of Open Access Journals (Sweden)

    Naoya Oku

    2014-08-01

    Full Text Available Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1, as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption.

  7. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum.

    Science.gov (United States)

    Oku, Naoya; Matsumoto, Miyako; Yonejima, Kohsuke; Tansei, Keijiroh; Igarashi, Yasuhiro

    2014-01-01

    Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1), as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption.

  8. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation.

    Science.gov (United States)

    Lama, Sanjaya; Muylaert, Koenraad; Karki, Tika Bahadur; Foubert, Imogen; Henderson, Rita K; Vandamme, Dries

    2016-11-01

    Flocculation holds great potential as a low-cost harvesting method for microalgae biomass production. Three flocculation methods (ferric chloride, chitosan, and alkaline flocculation) were compared in this study for the harvesting of 9 different freshwater and marine microalgae and one cyanobacterium species. Ferric chloride resulted in a separation efficiency greater than 90% with a concentration factor (CF) higher than 10 for all species. Chitosan flocculation worked generally very well for freshwater microalgae, but not for marine species. Alkaline flocculation was most efficient for harvesting of Nannochloropsis, Chlamydomonas and Chlorella sp. The concentration factor was highly variable between microalgae species. Generally, minimum flocculant dosages were highly variable across species, which shows that flocculation may be a good harvesting method for some species but not for others. This study shows that microalgae and cyanobacteria species should not be selected solely based on their productivity but also on their potential for low-cost separation.

  9. Genetic transformation of marine cyanobacterium Synechococcus sp.CC9311 (Cyanophyceae) by electroporation

    Institute of Scientific and Technical Information of China (English)

    CHEN Huaxin; LIN Hanzhi; JIANG Peng; LI Fuchao; QIN Song

    2013-01-01

    Synechococcus sp.CC9311 is a marine cyanobacterium characterized by type V chromatic acclimation (CA).A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA.The results show that Synechococcus sp.CC9311 cells were sensitive to four commonly used antibiotics:ampicillin,kanamycin,spectinomycin,and chloramphenicol.An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV,using a kanamycin resistance gene as selectable marker,was constructed by recombinant polymerase chain reaction.The plasmid was then transformed into Synechococcus sp.CC9311 via electroporation.High transformation efficiency was achieved at a field strength of 2 kV/cm.DNA analysis showed that rpe V was fully disrupted following challenge of the transformants with a high concentration of kanamycin.In addition,the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  10. Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature

    Science.gov (United States)

    Kumar, Manoj; Kulshreshtha, Jyoti; Singh, Gajendra Pal

    2011-01-01

    In order to find out optimum culture condition for algal growth, the effect of light irradiance and temperature on growth rate, biomass composition and pigment production of Spirulina platensis were studied in axenic batch cultures. Growth kinetics of cultures showed a wide range of temperature tolerance from 20 °C to 40 °C. Maximum growth rate, cell production with maximum accumulation of chlorophyll and phycobilliproteins were found at temperature 35 °C and 2,000 lux light intensity. But with further increase in temperature and light intensity, reduction in growth rate was observed. Carotenoid content was found maximum at 3,500 lux. Improvement in the carotenoid content with increase in light intensity is an adaptive mechanism of cyanobacterium S.platensis for photoprotection, could be a good basis for the exploitation of microalgae as a source of biopigments. PMID:24031731

  11. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena ucrainica

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    2014-12-01

    Full Text Available Geosmin is a common, musty-smelling sesquiterpene, principally produced by cyanobacteria. Anabaena ucrainica (Schhorb. Watanabe, a water bloom-forming cyanobacterium, is the geosmin producer responsible for odor problems in Dianchi and Erhai lakes in China. In this study, the geosmin synthase gene (geo of A. ucrainica and its flanking regions were identified and cloned by polymerase chain reaction (PCR and genome walking. The geo gene was found to be located in a transcription unit with two cyclic nucleotide-binding protein genes (cnb. The two cnb genes were highly similar and were predicted members of the cyclic adenosine monophosphate (cAMP receptor protein/fumarate nitrate reductase regulator (Crp–Fnr family. Phylogenetic and evolutionary analyses implied that the evolution of the geosmin genes involved a horizontal gene transfer process in cyanobacteria. These genes showed a close relationship to 2-methylisoborneol genes in origin and evolution.

  12. Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    LIU Xingguo; HUANG Wei; WU Qingyu

    2006-01-01

    Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.

  13. Lysis of a Single Cyanobacterium for Whole Genome Amplification

    Directory of Open Access Journals (Sweden)

    Richard N. Zare

    2013-08-01

    Full Text Available Bacterial species from natural environments, exhibiting a great degree of genetic diversity that has yet to be characterized, pose a specific challenge to whole genome amplification (WGA from single cells. A major challenge is establishing an effective, compatible, and controlled lysis protocol. We present a novel lysis protocol that can be used to extract genomic information from a single cyanobacterium of Synechocystis sp. PCC 6803 known to have multilayer cell wall structures that resist conventional lysis methods. Simple but effective strategies for releasing genomic DNA from captured cells while retaining cellular identities for single-cell analysis are presented. Successful sequencing of genetic elements from single-cell amplicons prepared by multiple displacement amplification (MDA is demonstrated for selected genes (15 loci nearly equally spaced throughout the main chromosome.

  14. The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Lu, Jing-Jing; Shi, Lei; Chen, Wen-Li; Wang, Li

    2014-10-01

    In response to deprivation of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops heterocyst, which is specifically involved in the nitrogen fixation. In this study, we focused on the regulation of HanA, a histone-like protein, in heterocyst development. Electrophoretic mobility shift assay results showed that NtcA, a global nitrogen regulator necessary for heterocyst differentiation, could bind to two NtcA-binding motifs in the hanA promoter region. qPCR results also showed that NtcA may regulate the expression of hanA. By using the hanA promoter-controlled gfp as a reporter gene and performing western blot we found that the amount of HanA in mature heterocysts was decreased gradually.

  15. Genotype × genotype interactions between the toxic cyanobacterium Microcystis and its grazer, the waterflea Daphnia

    Science.gov (United States)

    Lemaire, Veerle; Brusciotti, Silvia; van Gremberghe, Ineke; Vyverman, Wim; Vanoverbeke, Joost; De Meester, Luc

    2012-01-01

    Toxic algal blooms are an important problem worldwide. The literature on toxic cyanobacteria blooms in inland waters reports widely divergent results on whether zooplankton can control cyanobacteria blooms or cyanobacteria suppress zooplankton by their toxins. Here we test whether this may be due to genotype × genotype interactions, in which interactions between the large-bodied and efficient grazer Daphnia and the widespread cyanobacterium Microcystis are not only dependent on Microcystis strain or Daphnia genotype but are specific to genotype × genotype combinations. We show that genotype × genotype interactions are important in explaining mortality in short-time exposures of Daphnia to Microcystis. These genotype × genotype interactions may result in local coadaptation and a geographic mosaic of coevolution. Genotype × genotype interactions can explain why the literature on zooplankton–cyanobacteria interactions is seemingly inconsistent, and provide hope that zooplankton can contribute to the suppression of cyanobacteria blooms in restoration projects. PMID:25568039

  16. Metabolomic analysis of NAD kinase-deficient mutants of the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Ishikawa, Yuuma; Miyagi, Atsuko; Haishima, Yuto; Ishikawa, Toshiki; Nagano, Minoru; Yamaguchi, Masatoshi; Hihara, Yukako; Kawai-Yamada, Maki

    2016-10-20

    NAD kinase (NADK) phosphorylates NAD(H) to NADP(H). The enzyme has a crucial role in the regulation of the NADP(H)/NAD(H) ratio in various organisms. The unicellular cyanobacterium Synechocystis sp. PCC 6803 possesses two NADK-encoding genes, sll1415 and slr0400. To elucidate the metabolic change in NADK-deficient mutants growing under photoautotrophic conditions, we conducted metabolomic analysis using capillary electrophoresis mass spectrometry (CE-MS). The growth curves of the wild-type parent (WT) and NADK-deficient mutants (Δ1415 and Δ0400) did not show any differences under photoautotrophic conditions. The NAD(P)(H) balance showed abnormality in both mutants. However, only the metabolite pattern of Δ0400 showed differences compared to WT. These results indicated that the two NADK isoforms have distinct functions in cyanobacterial metabolism. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Sll1783, a monooxygenase associated with polysaccharide processing in the unicellular cyanobacterium Synechocystis PCC 6803.

    Science.gov (United States)

    Miranda, Hélder; Immerzeel, Peter; Gerber, Lorenz; Hörnaeus, Katarina; Lind, Sara Bergström; Pattanaik, Bagmi; Lindberg, Pia; Mamedov, Fikret; Lindblad, Peter

    2017-10-01

    Cyanobacteria play a pivotal role as the primary producer in many aquatic ecosystems. The knowledge on the interacting processes of cyanobacteria with its environment - abiotic and biotic factors - is still very limited. Many potential exocytoplasmic proteins in the model unicellular cyanobacterium Synechocystis PCC 6803 have unknown functions and their study is essential to improve our understanding of this photosynthetic organism and its potential for biotechnology use. Here we characterize a deletion mutant of Synechocystis PCC 6803, Δsll1783, a strain that showed a remarkably high light resistance which is related with its lower thylakoid membrane formation. Our results suggests Sll1783 to be involved in a mechanism of polysaccharide degradation and uptake and we hypothesize it might function as a sensor for cell density in cyanobacterial cultures. © 2017 Scandinavian Plant Physiology Society.

  18. ADP-ribosylation of glutamine synthetase in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Silman, N J; Carr, N G; Mann, N H

    1995-06-01

    Glutamine synthetase (GS) inactivation was observed in crude cell extracts and in the high-speed supernatant fraction from the cyanobacterium Synechocystis sp. strain PCC 6803 following the addition of ammonium ions, glutamine, or glutamate. Dialysis of the high-speed supernatant resulted in loss of inactivation activity, but this could be restored by the addition of NADH, NADPH, or NADP+ and, to a lesser extent, NAD+, suggesting that inactivation of GS involved ADP-ribosylation. This form of modification was confirmed both by labelling experiments using [32P]NAD+ and by chemical analysis of the hydrolyzed enzyme. Three different forms of GS, exhibiting no activity, biosynthetic activity only, or transferase activity only, could be resolved by chromatography, and the differences in activity were correlated with the extent of the modification. Both biosynthetic and transferase activities were restored to the completely inactive form of GS by treatment with phosphodiesterase.

  19. Sesquiterpenes of the geosmin-producing cyanobacterium Calothrix PCC 7507 and their toxicity to invertebrates.

    Science.gov (United States)

    Höckelmann, Claudia; Becher, Paul G; von Reuss, Stephan H; Jüttner, Friedrich

    2009-01-01

    The occurrence of sesquiterpenes was investigated with the geosmin-producing cyanobacterium Calothrix PCC 7507. The essential oil obtained by vacuum destillation was studied in more detail by GC-MS methods and superposition with authentic compounds. Geosmin was the dominating compound while the other sesquiterpenes were minor components. Sesquiterpenes that have not been described before in cyanobacteria were isodihydroagarofuran, eremophilone and 6,11-epoxyisodaucane. Closed-loop stripping analysis revealed that most of the sesquiterpenes were found in the biomass of Calothrix, while eremophilone was mainly observed in the medium of the axenic culture. Eremophilone showed acute toxicity (LC50) against Chironomus riparius (insecta) at 29 microM and against Thamnocephalus platyurus (crustacea) at 22 microM. The compound was not toxic for Plectus cirratus (nematoda). 6,11-Epoxyisodaucane and isodihydroagarofuran exhibited no toxicity to invertebrates when applied in concentrations up to 100 microM.

  20. UV-B-induced Oxidative Damage and Protective Role of Exopolysaccharides in Desert Cyanobacterium Microcoleus vaginatus

    Institute of Scientific and Technical Information of China (English)

    Lan-Zhou Chen; Gao-Hong Wang; Song Hong; An Liu; Cheng Li; Yong-Ding Liu

    2009-01-01

    UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly. The results suggested that EPS exhibited a significant protective effect on DNA strand breaks and lipid peroxidation by effectively eliminating ROS induced by UV-B radiation in M. vaginatus.

  1. Diacylglycerolipids isolated from a thermophile cyanobacterium from the Euganean hot springs.

    Science.gov (United States)

    Marcolongo, Gabriele; de Appolonia, Francesca; Venzo, Alfonso; Berrie, Christopher P; Carofiglio, Tommaso; Ceschi Berrini, Cristina

    2006-07-10

    The Phormidium sp. ETS-05 thermophile blue-green alga is one of the most typical and widespread species of cyanobacteria of the thermal muds of the Euganean hot springs, the therapeutic properties of which have been known since ancient times. The polar diacylglycerolipids of this cyanobacterium consists of monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. We have isolated and purified these four diacylglycerolipids from ETS-05, and then analysed them for their quantitative and structural features and fatty acid contents. The monogalactosyldiacylglycerol and digalactosyldiacylglycerol show a marked presence of polyunsaturated fatty acids, of which C18 : 4 is the most common. We propose that these glycoglycerolipids can be used as markers for monitoring the thermal mud colonisation process.

  2. Introduction of a synthetic CO₂-fixing photorespiratory bypass into a cyanobacterium.

    Science.gov (United States)

    Shih, Patrick M; Zarzycki, Jan; Niyogi, Krishna K; Kerfeld, Cheryl A

    2014-04-01

    Global photosynthetic productivity is limited by the enzymatic assimilation of CO2 into organic carbon compounds. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the carboxylating enzyme of the Calvin-Benson cycle, poorly discriminates between CO2 and O2, leading to photorespiration and the loss of fixed carbon and nitrogen. With the advent of synthetic biology, it is now feasible to design, synthesize, and introduce biochemical pathways in vivo. We engineered a synthetic photorespiratory bypass based on the 3-hydroxypropionate bi-cycle into the model cyanobacterium, Synechococcus elongatus sp. PCC 7942. The heterologously expressed cycle is designed to function as both a photorespiratory bypass and an additional CO2-fixing pathway, supplementing the Calvin-Benson cycle. We demonstrate the function of all six introduced enzymes and identify bottlenecks to be targeted in subsequent bioengineering. These results have implications for efforts to improve photosynthesis and for the "green" production of high value products of biotechnological interest.

  3. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Directory of Open Access Journals (Sweden)

    Franz eSeiffert

    2016-04-01

    Full Text Available Sub-aerial biofilms (SAB are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872 and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1 to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  4. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    Science.gov (United States)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  5. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Science.gov (United States)

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  6. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Directory of Open Access Journals (Sweden)

    Hanène Badri

    Full Text Available The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA and Calvin-Benson-Bassham (CBB cycles, combined with an activation of the pentose phosphate pathway (PPP. For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation

  7. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113

    Science.gov (United States)

    Medvedeva, Nadezda; Zaytseva, Tatyana; Kuzikova, Irina

    2017-07-01

    Nonylphenol (NP) is extensively used in agricultural, industrial and household applications. Moreover, NP is the major breakdown product of the nonionic surfactants, nonylphenol ethoxylates (NPEOs), the most widely used group of surfactants. Nonylphenol is persistent in the environment, highly toxic to aquatic organisms and is a potential endocrine disruptor. NP and NPEOs have been identified as priority hazardous substances under the Environmental Quality Standards Directive 2013/39/EU and are referred to in the list of substances of particular risk to the Baltic Sea. The toxicity of NP to the bloom-forming cyanobacterium Planktothrix agardhii 1113 isolated from the eastern Gulf of Finland, Baltic Sea and the bioremoval of NP by P. agardhii were studied. NP in concentrations > 0.4 mg L- 1 suppressed cyanobacterial growth. The median effective concentration of NP for P. agardhii after 4 days of treatment (EC50) was 1.5 mg L- 1. The removal of NP from the culture medium was primarily due to abiotic processes and biodegradation by the cyanobacterium rather than sorption by the cells. NP significantly increased the photosynthetic pigments, extracellular proteins and soluble exopolysaccharides content. The cyanobacterial growth inhibition was accompanied by the increased synthesis of microcystin dm-RR and of the odorous metabolites, geosmin and 2-methylisoborneol (MIB), by P. agardhii 1113. NP also notably increased the microcystin released into the environment. Increased levels of extracellular proteins, soluble exopolysaccharides, microcystins and odorous metabolites may affect the microbial loop in aquatic ecosystems. An increased level of malondialdehyde (MDA) was indicative of the formation of free radicals in P. agardhii under NP stress, whereas increased levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and proline indicated the occurrence of a scavenging mechanism.

  8. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications.

  9. Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation.

    Science.gov (United States)

    Rastogi, Rajesh P; Incharoensakdi, Aran; Madamwar, Datta

    2014-10-15

    The effects of PAR and UV radiation and subsequent responses of certain antioxidant enzymatic and non-enzymatic defense systems were studied in a rice field cyanobacterium Anabaena siamensis TISTR 8012. UV radiation resulted in a decline in growth accompanied by a decrease in chlorophyll a and photosynthetic efficiency. Exposure of cells to UV radiation significantly affected the differentiation of vegetative cells into heterocysts or akinetes. UV-B radiation caused the fragmentation of the cyanobacterial filaments conceivably due to the observed oxidative stress. A significant increase of reactive oxygen species in vivo and DNA strand breaks were observed in UV-B exposed cells followed by those under UV-A and PAR radiation, respectively. The UV-induced oxidative damage was alleviated due to an induction of antioxidant enzymatic/non-enzymatic defense systems. In response to UV irradiation, the studied cyanobacterium exhibited a significant increase in antioxidative enzyme activities of superoxide dismutase, catalase and peroxidase. Moreover, the cyanobacterium also synthesized some UV-absorbing/screening substances. HPLC coupled with a PDA detector revealed the presence of three compounds with UV-absorption maxima at 326, 331 and 345 nm. The induction of the biosynthesis of these UV-absorbing compounds was found under both PAR and UV radiation, thus suggesting their possible function as an active photoprotectant.

  10. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    Science.gov (United States)

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-10-30

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.

  11. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga—Competition or Allelopathy?

    Science.gov (United States)

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-01-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  12. Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS.

    Directory of Open Access Journals (Sweden)

    David M Doughty

    Full Text Available The organization of lipids within biological membranes is poorly understood. Some studies have suggested lipids group into microdomains within cells, but the evidence remains controversial due to non-native imaging techniques. A recently developed NanoSIMS technique indicated that sphingolipids group into microdomains within membranes of human fibroblast cells. We extended this NanoSIMS approach to study the localization of hopanoid lipids in bacterial cells by developing a stable isotope labeling method to directly detect subcellular localization of specific lipids in bacteria with ca. 60 nm resolution. Because of the relatively small size of bacterial cells and the relative abundance of hopanoid lipids in membranes, we employed a primary (2H-label to maximize our limit of detection. This approach permitted the analysis of multiple stable isotope labels within the same sample, enabling visualization of subcellular lipid microdomains within different cell types using a secondary label to mark the growing end of the cell. Using this technique, we demonstrate subcellular localization of hopanoid lipids within alpha-proteobacterial and cyanobacterial cells. Further, we provide evidence of hopanoid lipid domains in between cells of the filamentous cyanobacterium Nostoc punctiforme. More broadly, our method provides a means to image lipid microdomains in a wide range of cell types and test hypotheses for their functions in membranes.

  13. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  14. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    Science.gov (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  15. Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production = Crescimento mixotrófico de Nostoc sp. Glucose, sacarose e melaço de cana-de-açúcar foram testados como substratos para produção de biomassa e ficobiliproteinas

    Directory of Open Access Journals (Sweden)

    Maria Helena Pimenta Pinotti

    2007-01-01

    Full Text Available Glucose, sacarose, and sugarcane molasses were tested as substrates for production of biomass and phycobiliproteins by Nostoc sp., varying their concentrations in relation to a mineral medium, BG11. All substrates increased the biomass and phycobiliproteins when compared with the control. Sugarcane molasses showed to be thebest substrate for production of both biomass and phycobiliproteins. Greater biomass production occurred in sugarcane molasses 1.0 g L-1 and it was 5.7 times greater than the control. With glucose, it was in 2.5 g L-1 and sucrose, in 1.5 g L-1, reaching 2.5 and 4.8 timesgreater than the control, respectively. For phycobiliproteins, the major production was in sugarcane molasses 1.0 g L-1, 12.5 times greater than the control. With glucose, it was in 1.0 g L-1 and sucrose, in 0,5 g L-1, reaching 3.0 and 4.5 times greater than the control, respectively. The Nostoc sp. assayed can grow mixotrophically, using glucose, sucrose, and sugarcane molasses as organic substrates, and a greater production of biomass andphycobiliproteins can be reached when compared with the autotrophic growth.Todos os substratos aumentaram a biomassa e ficobiliproteinas emrelação ao controle, meio mineral BG11. Melaço de cana-de-açúcar foi o melhor substrato tanto para a produção de biomassa como de ficobiliproteinas. A maior produção de biomassa ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 5,7 vezes maior que o controle. Com glucose foi em 2,5 g L-1 e sacarose 1,5 g L-1, sendo 2,5 e 4,8 vezes maior que o controle, respectivamente. A maior produção de ficobiliproteinas ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 12,5 vezes maior que o controle. Com glucose foi em 1,0g L-1 e sacarose 0,5 g L-1, 3,0 e 4,5 vezes maior que o controle, respectivamente. Nostoc sp. testado pode crescer mixotroficamente, usando glucose, sacarose e melaço de cana-deaçúcar como substratos orgânicos, uma maior produção de biomassa e

  16. Crescimento mixotrófico de Nostoc sp. Glucose, sacarose e melaço de cana-de-açúcar foram testados como substratos para produção de biomassa e ficobiliproteinas - DOI: 10.4025/actascibiolsci.v29i1.121 Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production

    Directory of Open Access Journals (Sweden)

    Maria Helena Pimenta Pinotti

    2007-11-01

    Full Text Available Todos os substratos aumentaram a biomassa e ficobiliproteinas em relação ao controle, meio mineral BG11. Melaço de cana-de-açúcar foi o melhor substrato tanto para a produção de biomassa como de ficobiliproteinas. A maior produção de biomassa ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 5,7 vezes maior que o controle. Com glucose foi em 2,5 g L-1 e sacarose 1,5 g L-1, sendo 2,5 e 4,8 vezes maior que o controle, respectivamente. A maior produção de ficobiliproteinas ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 12,5 vezes maior que o controle. Com glucose foi em 1,0 g L-1 e sacarose 0,5 g L-1, 3,0 e 4,5 vezes maior que o controle, respectivamente. Nostoc sp. testado pode crescer mixotroficamente, usando glucose, sacarose e melaço de cana-deaçúcar como substratos orgânicos, uma maior produção de biomassa e ficobiliproteinas podendo ser alcançada nessas condições quando comparadas com o crescimento autotrófico.Glucose, sacarose, and sugarcane molasses were tested as substrates for production of biomass and phycobiliproteins by Nostoc sp., varying their concentrations in relation to a mineral medium, BG11. All substrates increased the biomass and phycobiliproteins when compared with the control. Sugarcane molasses showed to be the best substrate for production of both biomass and phycobiliproteins. Greater biomass production occurred in sugarcane molasses 1.0 g L-1 and it was 5.7 times greater than the control. With glucose, it was in 2.5 g L-1 and sucrose, in 1.5 g L-1, reaching 2.5 and 4.8 times greater than the control, respectively. For phycobiliproteins, the major production was in sugarcane molasses 1.0 g L-1, 12.5 times greater than the control. With glucose, it was in 1.0 g L-1 and sucrose, in 0,5 g L-1, reaching 3.0 and 4.5 times greater than the control, respectively. The Nostoc sp. assayed can grow mixotrophically, using glucose, sucrose, and sugarcane molasses as organic substrates, and a

  17. Sustained H(2) production driven by photosynthetic water splitting in a unicellular cyanobacterium.

    Science.gov (United States)

    Melnicki, Matthew R; Pinchuk, Grigoriy E; Hill, Eric A; Kucek, Leo A; Fredrickson, Jim K; Konopka, Allan; Beliaev, Alexander S

    2012-01-01

    The relationship between dinitrogenase-driven H(2) production and oxygenic photosynthesis was investigated in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142, using a novel custom-built photobioreactor equipped with advanced process control. Continuously illuminated nitrogen-deprived cells evolved H(2) at rates up to 400 µmol ⋅ mg Chl(-1) ⋅ h(-1) in parallel with uninterrupted photosynthetic O(2) production. Notably, sustained coproduction of H(2) and O(2) occurred over 100 h in the presence of CO(2), with both gases displaying inverse oscillations which eventually dampened toward stable rates of 125 and 90 µmol ⋅ mg Chl(-1) ⋅ h(-1), respectively. Oscillations were not observed when CO(2) was omitted, and instead H(2) and O(2) evolution rates were positively correlated. The sustainability of the process was further supported by stable chlorophyll content, maintenance of baseline protein and carbohydrate levels, and an enhanced capacity for linear electron transport as measured by chlorophyll fluorescence throughout the experiment. In situ light saturation analyses of H(2) production displayed a strong dose dependence and lack of O(2) inhibition. Inactivation of photosystem II had substantial long-term effects but did not affect short-term H(2) production, indicating that the process is also supported by photosystem I activity and oxidation of endogenous glycogen. However, mass balance calculations suggest that carbohydrate consumption in the light may, at best, account for no more than 50% of the reductant required for the corresponding H(2) production over that period. Collectively, our results demonstrate that uninterrupted H(2) production in unicellular cyanobacteria can be fueled by water photolysis without the detrimental effects of O(2) and have important implications for sustainable production of biofuels. The study provides an important insight into the photophysiology of light-driven H(2) production by the nitrogen-fixing cyanobacterium

  18. 硫酸酯化修饰葛仙米多糖工艺研究%Sulfation Modification of Polysaccharide Extracted from Nostoc sphaeroides Ktzing

    Institute of Scientific and Technical Information of China (English)

    朱玉婷; 谭姚; 莫开菊

    2011-01-01

    The orthogonal array design method was used to optimize three reaction conditions,including esterification reagent,temperature and reaction time,for the sulfation of crude polysaccharides extracted from Nostoc sphaeroides Ku..tzing by water extraction and subsequent alcohol precipitation.Besides,FTIR spectroscopic analysis was carried out to identify the structural difference of Nostoc sphaeroides Ku..tzing polysaccharides as a result of the sulfation reaction,and a correlation analysis was done between FTIR A1261/A1418 and degree of substitution(DS) of sulfated polysaccharides,as determined by the barium chloride-gelation method.The optimal sulfation reaction conditions were found to be: 1:4 chlorosulfonic acid-pyridine as esterification reagent for 6 h reaction at 70 ℃.Under the optimal sulfation conditions,the DS of the final products was 1.042.Meanwhile,the sulfated polysaccharide obtained revealed typical sulfated functional groups.The correlation coefficient between FTIR A1261/A1418 and DS of sulfated Nostoc sphaeroides Ku..tzing polysaccharides was 0.974.Therefore,infrared spectroscopy can be used to characterize the structural difference of sulfated polysaccharides and quantify the DS of sulfate groups.%采用氯磺酸-吡啶法合成硫酸酯化葛仙米多糖,利用正交设计对酯化试剂比例、反应温度及反应时间进行优化。通过傅里叶红外光谱分析酯化前后的结构差异,氯化钡-明胶比浊法测定取代度,并分析红外光谱法与取代度之间的相关性。结果表明:葛仙米多糖硫酸酯化修饰的最佳条件为V(氯磺酸)与V(吡啶)比例1:4、反应温度70℃、反应时间6h,此条件下取代度达到1.042;红外光谱分析表明,硫酸酯化后的葛仙米多糖具有硫酸酯键的特征吸收峰,其吸光度比值A1261/A1418与化学方法所测得的硫酸酯化取代度的相关系数达到0.974。红外光谱不仅可以表征硫酸酯化多

  19. Protein (Cyanobacteria): 132359 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available YP_001865079.1 1117:2589 1161:2767 1162:3127 1177:2248 272131:1413 63737:1413 aromatic amino acid beta-elimi...nating lyase/threonine aldolase Nostoc punctiforme PCC 73102 MSSNLEQFASDNSSGICPEALE

  20. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    Science.gov (United States)

    Sonani, Ravi Raghav; Gupta, Gagan Deep; Madamwar, Datta; Kumar, Vinay

    2015-01-01

    Isolated phycobilisome (PBS) sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC) is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB) chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers) assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM). The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree) of 0.158 (0.229) with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein.

  1. Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    2014-01-01

    Full Text Available Microbial biopolymers can replace environmentally damaging plastics derived from petrochemicals. We investigated biopolymer synthesis by the cyanobacterium Spirulina strain LEB 18. Autotrophic culture used unmodified Zarrouk medium or modified Zarrouk medium in which the NaNO3 content was reduced to 0.25 g L−1 and the NaHCO3 content reduced to 8.4 g L−1 or increased to 25.2 g L−1. Heterotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 with the NaHCO3 replaced by 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose (C6H12O6 or sodium acetate (CH3COONa. Mixotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 plus 16.8 g L−1 NaHCO3 with the addition of 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose or sodium acetate. The highest biopolymer yield was 44% when LEB 18 was growing autotrophically in media containing 0.25 g L−1 NaNO3 and 8.4 g L−1 NaHCO3.

  2. The antimicrobial profile of extracts of a Phormidium-like cyanobacterium changes with phosphate levels.

    Science.gov (United States)

    El Semary, Nermin Adel

    2012-02-01

    The antimicrobial activity of lipophilic extracts of mat-forming Phormidium-like cyanobacterium isolated from Egypt was investigated under different phosphate concentrations. The antimicrobial profile changed with different phosphate levels indicating metabolic changes under stressful conditions. The fractions that resulted in highest antimicrobial activity from the three different phosphate concentrations were chosen for further analyses. The bioactive compounds were identified using chromatographic and spectroscopic techniques including UV, FTIR, GC-MS and proton-NMR. The chemical analyses indicated that the compound at standard phosphate concentration was eugenol whereas the bioactive compound at half phosphate concentration was 4-tert-butylcyclohexanol. The third bioactive compound at quarter phosphate concentration was octadecanoic acid. The eugenol is known for its antimicrobial as well as pain relief properties and can be used in many pharmaceutical preparations whereas the octadecanoic acid and cyclohexanol derivative are used in some antimicrobial pharmaceuticals. The study highlights the change in antimicrobial profile of bioactive compounds derived from cyanobacteria through manipulating the concentration of a key nutrient in growth medium. This strategy can be employed for mass production of these compounds and others for future biotechnological applications.

  3. Type II Toxin–Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Stefan Kopfmann

    2016-07-01

    Full Text Available Bacterial toxin–antitoxin (TA systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.

  4. Type II Toxin–Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803

    Science.gov (United States)

    Kopfmann, Stefan; Roesch, Stefanie K.; Hess, Wolfgang R.

    2016-01-01

    Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements. PMID:27455323

  5. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  6. Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor

    Directory of Open Access Journals (Sweden)

    C. C. Reichert

    2006-03-01

    Full Text Available The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate (µx, day-1 and productivity (Px, in mg/L/day of Spirulina platensis biomass, dry weight basis of two S. platensis strains (LEB-52 and Paracas growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h at 30°C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L and high renewal rates (50% v/v resulted in a high specific growth rate (µx = 0.111 day-1 and high productivity (Px = 42.3 mg/L/day. These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable.

  7. Fractionation and characterization of polysaccharides from cyanobacterium Spirulina (Arthrospira) maxima in nitrogen-limited batch culture

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By a sequentially selective extraction procedure, polysaccharides (PS) from cyanobacterium Spirulina (Arthrospira) maxima that can be bio-functionally healthy components were fractionated in four parts including the culture medium (PSCM), the external layers of the cell (PSEL), the cell wall (PSCW) and storage granules (PSSG). The four fractionated parts of polysaccharides were characterized by gas-liquid chromatography (GLC) equipped with FID and fused-silica capillary column (15 m×0.53 mm i. d.). The contents of PSCM, PSEL, PSCW and PSSG were about 2.0%, 2.6%, 10.0% and 52.0% to cell dry matter, respectively. Glucose was almost the only monosaccharide in PSSG and PSCW and most predominant in PSEL, while in PSCM, xylose, rhamnose and glucose were the main ones. Two uronic acids represented by glucuronic acid and galacturoic acid, six neutral monosaccharides including fucose, rhamnose, xylose, mannose, galactose and glucose, and two possible unidentified sugars were found in PSEL and PSCM. These data are valuable for the selective productions of high-added value sugars from Spirulina.

  8. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  9. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  10. Semicontinuous cultivation of the Cyanobacterium Spirulina platensis in a closed photobioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, C.C.; Costa, J.A.V. [Fundacao Universidade Federal do Rio Grande (FURG), Rio Grande, RS (Brazil). Dept. de Quimica], Email: dqmjorge@furg.br; Reinehr, C.O. [Universidade de Passo Fundo, RS (Brazil). Centro de Pesquisa em Alimentacao], Email: reinehr@upf.br

    2006-01-15

    The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate ({mu}{sub x}, day{sup -1}) and productivity (P{sub x}, in mg/L/day of Spirulina platensis biomass, dry weight basis) of two S. platensis strains (LEB-52 and Paracas) growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h) at 30 deg C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L) and high renewal rates (50% v/v) resulted in a high specific growth rate ({mu}{sub x} = 0.111 day{sup -1}) and high productivity (P{sub x} = 42.3 mg/L/day). These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable. (author)

  11. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  12. Photoregulation of morphological structure and its physiological relevance in the cyanobacterium Arthrospira (Spirulina) platensis.

    Science.gov (United States)

    Ma, Zengling; Gao, Kunshan

    2009-07-01

    The spiral structure of the cyanobacterium Arthrospira (Spirulina) platensis (Nordst.) Gomont was previously found to be altered by solar ultraviolet radiation (UVR, 280-400 nm). However, how photosynthetic active radiation (PAR, 400-700 nm) and UVR interact in regulating this morphological change remains unknown. Here, we show that the spiral structure of A. platensis (D-0083) was compressed under PAR alone at 30 degrees C, but that at 20 degrees C, the spirals compressed only when exposed to PAR with added UVR, and that UVR alone (the PAR was filtered out) did not tighten the spiral structure, although its presence accelerated morphological regulation by PAR. Their helix pitch decreased linearly as the cells received increased PAR doses, and was reversible when they were transferred back to low PAR levels. SDS-PAGE analysis showed that a 52.0 kDa periplasmic protein was more abundant in tighter filaments, which may have been responsible for the spiral compression. This spiral change together with the increased abundance of the protein made the cells more resistant to high PAR as well as UVR, resulting in a higher photochemical yield.

  13. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39.

    Science.gov (United States)

    Fujisawa, Takatomo; Narikawa, Rei; Okamoto, Shinobu; Ehira, Shigeki; Yoshimura, Hidehisa; Suzuki, Iwane; Masuda, Tatsuru; Mochimaru, Mari; Takaichi, Shinichi; Awai, Koichiro; Sekine, Mitsuo; Horikawa, Hiroshi; Yashiro, Isao; Omata, Seiha; Takarada, Hiromi; Katano, Yoko; Kosugi, Hiroki; Tanikawa, Satoshi; Ohmori, Kazuko; Sato, Naoki; Ikeuchi, Masahiko; Fujita, Nobuyuki; Ohmori, Masayuki

    2010-04-01

    A filamentous non-N(2)-fixing cyanobacterium, Arthrospira (Spirulina) platensis, is an important organism for industrial applications and as a food supply. Almost the complete genome of A. platensis NIES-39 was determined in this study. The genome structure of A. platensis is estimated to be a single, circular chromosome of 6.8 Mb, based on optical mapping. Annotation of this 6.7 Mb sequence yielded 6630 protein-coding genes as well as two sets of rRNA genes and 40 tRNA genes. Of the protein-coding genes, 78% are similar to those of other organisms; the remaining 22% are currently unknown. A total 612 kb of the genome comprise group II introns, insertion sequences and some repetitive elements. Group I introns are located in a protein-coding region. Abundant restriction-modification systems were determined. Unique features in the gene composition were noted, particularly in a large number of genes for adenylate cyclase and haemolysin-like Ca(2+)-binding proteins and in chemotaxis proteins. Filament-specific genes were highlighted by comparative genomic analysis.

  14. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Science.gov (United States)

    Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy

    2014-01-01

    The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  15. Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64.

    Directory of Open Access Journals (Sweden)

    D P Singh

    Full Text Available This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L(-1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L(-1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L(-1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L(-1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L(-1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L(-1 indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate.

  16. Dinitrogen fixation is restricted to the terminal heterocysts in the invasive cyanobacterium Cylindrospermopsis raciborskii CS-505.

    Directory of Open Access Journals (Sweden)

    Álvaro M Plominsky

    Full Text Available The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy. Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy. These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells. Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen.

  17. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Cliff [Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949 (United States)]. E-mail: Ross@sms.si.edu; Santiago-Vazquez, Lory [Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Paul, Valerie [Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949 (United States)

    2006-06-10

    An unprecedented bloom of the cyanobacterium Microcystis aeruginosa Kuetz. occurred in the St. Lucie Estuary, FL in the summer of 2005. Samples were analyzed for toxicity by ELISA and by use of the polymerase chain reaction (PCR) with specific oligonucleotide primers for the mcyB gene that has previously been correlated with the biosynthesis of toxic microcystins. Despite the fact that secreted toxin levels were relatively low in dense natural assemblages (3.5 {mu}g l{sup -1}), detectable toxin levels increased by 90% when M. aeruginosa was stressed by an increase in salinity, physical injury, application of the chemical herbicide paraquat, or UV irradiation. The application of the same stressors caused a three-fold increase in the production of H{sub 2}O{sub 2} when compared to non-stressed cells. The application of micromolar concentrations of H{sub 2}O{sub 2} induced programmed cell death (PCD) as measured by a caspase protease assay. Catalase was capable of inhibiting PCD, implicating H{sub 2}O{sub 2} as the inducing oxidative species. Our results indicate that physical stressors induce oxidative stress, which results in PCD and a concomitant release of toxin into the surrounding media. Remediation strategies that induce cellular stress should be approached with caution since these protocols are capable of releasing elevated levels of microcystins into the environment.

  18. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.

    Science.gov (United States)

    Bualuang, Aporn; Incharoensakdi, Aran

    2015-02-01

    Alkaliphilic halotolerant cyanobacterium Aphanothece halophytica showed optimal growth in the medium containing 0.5 M NaCl. The increase of exogenously added glycine to the medium up to 10 mM significantly promoted cell growth under both normal (0.5 M NaCl) and salt stress (2.0 M NaCl) conditions. Salt stress imposed by either 2.0 or 3.0 M NaCl retarded cell growth; however, exogenously added glycine at 10 mM concentration to salt-stress medium resulted in the reduction of growth inhibition particularly under 3.0 M NaCl condition. The uptake of glycine by intact A. halophytica was shown to exhibit saturation kinetics with an apparent K s of 160 μM and V max of 3.9 nmol/min/mg protein. The optimal pH for glycine uptake was at pH 8.0. The uptake activity was decreased in the presence of high concentration of NaCl. Both metabolic inhibitors and ionophores decreased glycine uptake in A. halophytica suggesting an energy-dependent glycine uptake. Several neutral amino acids showed considerable inhibition of glycine uptake with higher than 50 % inhibition observed with serine, cysteine and alanine whereas acidic, basic and aromatic amino acids showed only slight inhibition of glycine uptake.

  19. Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshitomo; Hall, D.O. [Univ. of London (United Kingdom); Nouee, J. De La [Univ. Laval, Quebec City, Quebec (Canada). Dept. of Food Science and Technology

    1995-07-20

    The photosynthetic performance of a helical tubular photobioreactor (``Biocoil``), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape with a 0.25-m{sup 2} basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter. The inner surface of the cylinder was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation into the photobioreactor was 2,920 kJ per day. An air-lift system incorporating 4% CO{sub 2} was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO{sub 2} was efficiently removed from the gaseous stream; monitoring the CO{sub 2} in the outlet and inlet gas streams showed a 70% removal of CO{sub 2} from the inlet gas over an 8-h period with almost maximum growth rate.

  20. Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Patrik Storm

    Full Text Available Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1, which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His(6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, k(cat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.

  1. Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Storm, Patrik; Tibiletti, Tania; Hall, Michael; Funk, Christiane

    2013-01-01

    Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His(6)-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, k(cat), compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.

  2. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    Science.gov (United States)

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Modeling culture profiles of the heterocystous N2-fixing cyanobacterium Anabaena flos-aquae.

    Science.gov (United States)

    Pinzon, Neissa M; Ju, Lu-Kwang

    2006-01-01

    Heterocyst differentiation is a unique feature of nitrogen-fixing cyanobacteria, potentially important for photobiological hydrogen production. Despite the significant advances in genetic investigation on heterocyst differentiation, there were no quantitative culture-level models that describe the effects of cellular activities and cultivation conditions on the heterocyst differentiation. Such a model was developed in this study, incorporating photosynthetic growth of vegetative cells, heterocyst differentiation, self-shading effect on light penetration, and nitrogen fixation. The model parameters were determined by fitting experimental results from the growth of the heterocystous cyanobacterium Anabaena flos-aquae CCAP 1403/13f in media without and with different nitrate concentrations and under continuous illumination of white light at different light intensities (2, 5, 10, 17, 20 and 50 microE m-2 s-1). The model describes the experimental profiles well and gives reasonable predictions even for the transition of growth from that on external N source to that via nitrogen fixation, responding to the change in external N concentrations. The significance and implications of the best-fit values of the model parameters are discussed.

  4. Accelerating of Pink Pigment Excretion from Cyanobacterium Oscillatoria by Co-Cultivation with Anabaena

    Directory of Open Access Journals (Sweden)

    DWI SUSILANINGSIH

    2007-03-01

    Full Text Available The freshwater cyanobacterium Oscillatoria BTCC/A 0004 excretes pink pigment containing lipoproteins with molecular weights of about 10 kDa. This pigment has surfactant properties with strong emulsification activity toward several hydrocarbons. This extracellular metabolite was suspected as toxin or allelochemical in their habitat. In this study, I investigated the effect of co-cultivation of Oscillatoria with Anabaena variabilis on the pigment excretion to explore the physiological roles of this pigment in its natural environment. The dead or viable cells and medium of A. variabilis were added into Oscillatoria cultures. Results showed that co-cultivation of free viable cells of A. variabilis enhanced the excretion of pigment without effect on the cell growth. Co-cultivation with viable cells in separated method and dead cells did not influenced the pigment production. The addition of A. variabilis medium was slightly increased the excretion of the pigment. Those results indicated that direct contact with A. variabilis caused Oscillatoria released a certain signaling compound.

  5. Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Chung [Institute of Clinical Nutrition, Hungkuang University, 34, Chung-Chie Road, Sha Lu, Taichung 433 (China); Fan, Shin-Huei; Chiang, Char-Lin; Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402 (China)

    2008-03-15

    Cyanobacteria could use sugars as carbon source and reductant to produce hydrogen by nitrogenase. However, oxygen is also produced during photosynthesis and it is an inhibitor of the enzyme nitrogenase. Filamentous cyanobacterium Anabaena sp. CH{sub 3} could use sugars as substrate to produce molecular hydrogen anaerobically. The production activity was dependent on growth phases. It was found that the cells at sub-stage of late-log phase had better ability to produce hydrogen than at log phase. In such case, oxygen content was too low to be detected to inhibit hydrogen production. Among different kinds of sugar, fructose and glucose had the best performance for producing hydrogen. Hydrogen could be accumulated to 0.6 mmol (in 40 ml head space) in 100 h from 1000 ppm fructose. Increasing light intensities from 65 to 130{mu}molm{sup -2}s{sup -1} would enhance hydrogen production to 0.8 mmol. Under illumination of 130{mu}molm{sup -2}s{sup -1} and 2000 ppm fructose, 1.7 mmol of hydrogen could be accumulated. When fructose content was higher than 2000 ppm, cells could not produce more hydrogen at all. (author)

  6. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, C. Peter Wolk [Michigan State University, East Lansing; Fan, Qing [Northwestern University, Evanston; Zhou, Ruanbao [Anhui Normal University, People' s Republic of China; Huang, Guocun [University of Texas Southwestern Medical; Lechno-Yossef, Sigal [Michigan State University, East Lansing; Kuritz, Tanya [ORNL; Wojciuch, Elizabeth [Michigan State University, East Lansing

    2007-01-01

    The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetF{sub A}) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.

  7. Fluorapatite as Inorganic Phosphate Source for the Cyanobacterium Anabaena PCC 7120

    Science.gov (United States)

    Schaperdoth, I.; Brantley, S.

    2003-12-01

    We investigated the hypothesis that the cyanobacterium Anabaena PCC 7120 is able to use fluorapatite (FAP) as sole phosphate source for growth. In the experimental setup the dissolution of FAP was tested in a phosphate free growth medium in the presence and absence of the Anabaena, as well as the cell free supernatant of an Anabaena culture. The results were compared with that of an Anabaena culture grown without fluorapatite. Parameters measured were pH, dissolved P and Ca, as well as cell density. The FAP grains were analyzed using SEM and XPS. Additionally, the differential expression of secreted proteins in cultures with and without dissolved phosphate was examined. P-limited Anabaena cultures tend to aggregate and in the presence of FAP the cells attached themselves to the mineral grains. The cultures benefit from the presence of FAP. The cells have a very effective P-uptake system that is able to take up dissolved phosphate very efficiently and draw the concentrations down to very low levels. Furthermore, the SEM analysis of FAP showed an etching of the mineral grains in the samples from the Anabaena cultures. The mechanism of apatite dissolution with and without Anabaena will be discussed in terms of these experimental observations.

  8. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120.

    Science.gov (United States)

    Rudolf, Mareike; Kranzler, Chana; Lis, Hagar; Margulis, Ketty; Stevanovic, Mara; Keren, Nir; Schleiff, Enrico

    2015-08-01

    Iron is a member of a small group of nutrients that limits aquatic primary production. Mechanisms for utilizing iron have to be efficient and adapted according to the ecological niche. In respect to iron acquisition cyanobacteria, prokaryotic oxygen evolving photosynthetic organisms can be divided into siderophore- and non-siderophore-producing strains. The results presented in this paper suggest that the situation is far more complex. To understand the bioavailability of different iron substrates and the advantages of various uptake strategies, we examined iron uptake mechanisms in the siderophore-producing cyanobacterium Anabaena sp. PCC 7120. Comparison of the uptake of iron complexed with exogenous (desferrioxamine B, DFB) or to self-secreted (schizokinen) siderophores by Anabaena sp. revealed that uptake of the endogenous produced siderophore complexed to iron is more efficient. In addition, Anabaena sp. is able to take up dissolved, ferric iron hydroxide species (Fe') via a reductive mechanism. Thus, Anabaena sp. exhibits both, siderophore- and non-siderophore-mediated iron uptake. While assimilation of Fe' and FeDFB are not induced by iron starvation, FeSchizokinen uptake rates increase with increasing iron starvation. Consequently, we suggest that Fe' reduction and uptake is advantageous for low-density cultures, while at higher densities siderophore uptake is preferred.

  9. Functional Diversity of Transcriptional Regulators in the Cyanobacterium Synechocystis sp. PCC 6803

    Science.gov (United States)

    Shi, Mengliang; Zhang, Xiaoqing; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2017-01-01

    Functions of transcriptional regulators (TRs) are still poorly understood in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, we constructed knockout mutants for 32 putative TR-encoding genes of Synechocystis, and comparatively analyzed their phenotypes under autotrophic growth condition and metabolic profiles using liquid chromatography-mass spectrometry-based metabolomics. The results showed that only four mutants of TR genes, sll1872 (lytR), slr0741 (phoU), slr0395 (ntcB), and slr1871 (pirR), showed differential growth patterns in BG11 medium when compared with the wild type; however, in spite of no growth difference observed for the remaining TR mutants, metabolomic profiling showed that they were different at the metabolite level, suggesting significant functional diversity of TRs in Synechocystis. In addition, an integrative metabolomic and gene families’ analysis of all TR mutants led to the identification of five pairs of TR genes that each shared close relationship in both gene families and metabolomic clustering trees, suggesting possible conserved functions of these TRs during evolution. Moreover, more than a dozen pairs of TR genes with different origin and evolution were found with similar metabolomic profiles, suggesting a possible functional convergence of the TRs during genome evolution. Finally, a protein–protein network analysis was performed to predict regulatory targets of TRs, allowing inference of possible regulatory gene targets for 4 out of five pairs of TRs. This study provided new insights into the regulatory functions and evolution of TR genes in Synechocystis. PMID:28270809

  10. Fur-type transcriptional repressors and metal homeostasis in the cyanobacterium Synechococcus sp. PCC 7002

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2015-10-01

    Full Text Available Metal homeostasis is a crucial cellular function for nearly all organisms. Some heavy metals (e.g. Fe, Zn, Co, Mo are essential because they serve as cofactors for enzymes or metalloproteins, and chlorophototrophs such as cyanobacteria have an especially high demand for iron. At excessive levels, however, metals become toxic to cyanobacteria. Therefore, a tight control mechanism is essential for metal homeostasis. Metal homeostasis in microorganisms comprises two elements: metal acquisition from the environment and detoxification or excretion of excess metal ions. Different families of metal-sensing regulators exist in cyanobacteria and each addresses a more or less specific set of target genes. In this study the regulons of three Fur-type and two ArsR-SmtB-type regulators were investigated in a comparative approach in the cyanobacterium Synechococcus sp. PCC 7002. One Fur-type regulator controls genes for iron acquisition (Fur; one controls genes for zinc acquisition (Zur; and the third controls two genes involved in oxidative stress (Per. Compared to other well-investigated cyanobacterial strains, however, the set of target genes for each regulator is relatively small. Target genes for the two ArsR-SmtB transcriptional repressors (SmtB (SYNPCC7002_A2564 and SYNPCC7002_A0590; ArsR are involved in zinc homeostasis in addition to Zur. Their target genes, however, are less specific for zinc and point to roles in a broader heavy metal detoxification response.

  11. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community.

    Science.gov (United States)

    Brauer, Verena S; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J; Stal, LucasJ; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria.

  12. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803.

    Science.gov (United States)

    Liang, Feiyan; Lindblad, Peter

    2016-11-01

    Synechocystis PCC 6803 is a model unicellular cyanobacterium used in e.g. photosynthesis and CO2 assimilation research. In the present study we examined the effects of overexpressing Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), sedoheptulose 1,7-biphosphatase (SBPase), fructose-bisphosphate aldolase (FBA) and transketolase (TK), confirmed carbon flux control enzymes of the Calvin-Bassham-Benson (CBB) cycle in higher plants, in Synechocystis PCC 6803. Overexpressing RuBisCO, SBPase and FBA resulted in increased in vivo oxygen evolution (maximal 115%), growth rate and biomass accumulation (maximal 52%) under 100μmolphotonsm(-2)s(-1) light condition. Cells overexpressing TK showed a chlorotic phenotype but increased biomass by approximately 42% under 100μmolphotonsm(-2)s(-1) light condition. Under 15μmolphotonsm(-2)s(-1) light condition, cells overexpressing TK showed enhanced in vivo oxygen evolution. This study demonstrates increased growth and biomass accumulation when overexpressing selected enzymes of the CBB cycle. RuBisCO, SBPase, FBA and TK are identified as four potential targets to improve growth and subsequently also yield of valuable products from Synechocystis PCC 6803. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803

    Science.gov (United States)

    Focsan, Monica; Ardelean, Ioan I.; Craciun, Constantin; Astilean, Simion

    2011-12-01

    Many microorganisms have long been known to be able to synthesize nanoparticles either in extracellular media or inside cells but the biochemical mechanisms involved in biomineralization are still poorly understood. In this paper we report the intracellular synthesis of gold nanoparticles (GNPs) by the cyanobacterium Synechocystis sp. PCC 6803 exposed to an aqueous solution of chloroauric acid. We assess the interplay between the biomineralization process and the metabolic activities (i.e. photosynthesis and respiration) of cyanobacteria cells by correlating the GNP synthesis yield with the amount of respiratory and photosynthetic oxygen exchange. The biogenic GNPs are compared in terms of their internalization and biological effects to GNPs synthesized by a standard citrate reduction procedure (cGNPs). The TEM analysis, in conjunction with spectroscopic measurements (i.e. surface plasmon resonance, fluorescence quenching and surface-enhanced Raman scattering, SERS), reveals the localization of biogenic GNPs at the level of intracytoplasmic membranes whereas the pre-formed cGNPs are located at the level of external cellular membrane. Our findings have implications for better understanding the process of biomineralization and assessing the potential risks associated with the accumulation of nanomaterials by various biological systems.

  14. Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New?

    Science.gov (United States)

    Cheregi, Otilia; Funk, Christiane

    2015-08-12

    In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5' GGCGATCGCC 3', was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.

  15. Refolding and Enzyme Kinetic Studies on the Ferrochelatase of the Cyanobacterium Synechocystis sp. PCC 6803

    Science.gov (United States)

    Storm, Patrik; Tibiletti, Tania; Hall, Michael; Funk, Christiane

    2013-01-01

    Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident. PMID:23390541

  16. Type II Toxin-Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Kopfmann, Stefan; Roesch, Stefanie K; Hess, Wolfgang R

    2016-07-21

    Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013-Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056-Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements.

  17. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Science.gov (United States)

    Spät, Philipp; Maček, Boris; Forchhammer, Karl

    2015-01-01

    Cyanobacteria have shaped the earth's biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signaling, adaptation, and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry toward the detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labeling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phospho)proteome of Synechocystis to date, identifying 2382 proteins and 183 phosphorylation events and quantifying 2111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 h. Among the proteins with increased phosphorylation, the PII signaling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  18. GABA accumulation in response to different nitrogenous compounds in unicellular cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Kanwal, Simab; Khetkorn, Wanthanee; Incharoensakdi, Aran

    2015-01-01

    GABA accumulation and glutamate decarboxylase (GAD) activity, the principal enzyme involved in GABA formation, was investigated in cyanobacterium Synechocystis sp. PCC 6803 wild-type (WT) and gad knockout mutant strains grown in medium containing different nitrogenous compounds. Nitrate was the best nitrogen source for GAD activity and GABA accumulation followed by nitrite, ammonium, and urea. An increase in the accumulation of GABA was observed in WT and mutant cells grown for 24 h in medium supplemented with 0.5 mM putrescine or spermidine with a parallel increase in GAD activity. The mutant could not accumulate GABA at all the conditions tested except when supplemented with putrescine or spermidine, where high GABA levels were observed in both WT and mutant strains. Glutamate supplementation up to 10 mM for 24 h resulted in a significant increase in both GAD activity and GABA content. Overall results suggested that optimization of nitrogen source and nitrogenous compounds supplementation was effective for the enhancement of GABA accumulation in Synechocystis.

  19. Isolation and characterization of a new reported cyanobacterium Leptolyngbya bijugata coproducing odorous geosmin and 2-methylisoborneol.

    Science.gov (United States)

    Wang, Zhongjie; Xiao, Peng; Song, Gaofei; Li, Yeguang; Li, Renhui

    2015-08-01

    The earthy-musty compounds geosmin and 2-methylisoborneol (MIB) produced by cyanobacteria are considered as the main biological causes of off-flavor events, especially in aquatic ecosystems. More than 50 filamentous cyanobacteria species have been documented as geosmin or MIB producers; however, little is known about the species coproducing these two metabolites. In this study, an epiphytic sample was collected from a river in Hubei, China. Three isolated strains (A2, B2, and B4) producing earthy odors were successfully isolated and identified as the cyanobacterium Leptolyngbya bijugata Anagnostidis et Komárek 1988 based on morphology and 16S rDNA sequences. Gas chromatography analysis confirmed that the isolated L. bijugata strains were geosmin and MIB coproducers, with accumulation ranging from 13.6 to 22.4 and 12.3 to 57.5 μg L(-1), respectively. The partial fragments of geosmin and MIB synthesis genes in the L. bijugata strains were cloned and sequenced. Further sequences and phylogenetic analysis indicated the high conservation and a common origin of these genes in cyanobacteria. This study is the first to report and characterize the coproduction of geosmin and MIB by L. bijugata, representing a new source for potential risk of off-flavor events.

  20. Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Frías, J E; Flores, E; Herrero, A

    1997-01-01

    A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.

  1. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris.

    Science.gov (United States)

    Li, Yaqiong; Lin, Yuankui; Garvey, Christopher J; Birch, Debra; Corkery, Robert W; Loughlin, Patrick C; Scheer, Hugo; Willows, Robert D; Chen, Min

    2016-01-01

    Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/β allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.

  2. Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming cyanobacterium

    Directory of Open Access Journals (Sweden)

    Reese Thomas S

    2001-04-01

    Full Text Available Abstract Background Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation. Results Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force [17]. Conclusion The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes.

  3. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Hank Juo, Suh-Hang; Maness, Pin-Ching; Yu, Jianping

    2015-06-12

    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introducing xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Moreover, isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.

  4. The Psb32 Protein Aids in Repairing Photodamaged Photosystem Ⅱ in the Cyanobacterium Synechocystis 6803

    Institute of Scientific and Technical Information of China (English)

    Kimberly M. Wegener; Stefan Bennewitz; Ralf Oelmüller; Himadri B. Pakrasi

    2011-01-01

    Photosystem Ⅱ (PSⅡ),a membrane protein complex,catalyzes the photochemical oxidation of water to molecular oxygen.This enzyme complex consists of approximately 20 stoichiometric protein components.However,due to the highly energetic reactions it catalyzes as part of its normal activity,PSⅡ is continuously damaged and repaired.With advances in protein detection technologies,an increasing number of sub-stoichiometric PSⅡ proteins have been identified,many of which aid in the biogenesis and assembly of this protein complex.Psb32 (SⅡ1390) has previously been identified as a protein associated with highly active purified PSⅡ preparations from the cyanobacterium Synechocystis sp.PCC 6803.To investigate its function,the subcellular localization of Psb32 and the impact of deletion of the psb32 gene on PSⅡ were analyzed.Here,we show that Psb32 is an integral membrane protein,primarily located in the thylakoid membranes.Although not required for cell viability,Psb32 protects cells from oxidative stress and additionally confers a selective fitness advantage in mixed culture experiments.Specifically,Psb32 protects PSⅡ from photodamage and accelerates its repair.Thus,the data suggest that Psb32 plays an important role in minimizing the effect of photoinhibition on PSⅡ.

  5. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  6. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    Science.gov (United States)

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria.

  7. Screening and Selection of New Antagonists of the RING-Mediated Hdm2/Hdmx Interaction

    Science.gov (United States)

    2013-05-01

    residues at both intein-extein junctions for efficient protein splicing [13]. To overcome this problem we used the Nostoc puntiforme PCC73102 (Npu...Jin, J.;Tam, P.H. Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett, 2006, 580, 1853-1858...overcome this problem we used the Nostoc puntiforme PCC73102 (Npu) DnaE split-intein. This DnaE intein has the highest reported rate of protein trans

  8. Spectral and Temporal Properties of the Alpha and Beta Subunits and (alpha Beta) Monomer Isolated from Nostoc SP. Using Picosecond Laser Spectroscopy.

    Science.gov (United States)

    Dagen, Aaron J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.

  9. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis

    Science.gov (United States)

    Yang, Yue; Park, Youngki; Cassada, David A.; Snow, Daniel D.; Rogers, Douglas G.; Lee, Jiyoung

    2011-01-01

    Blue-green algae (BGA) have been consumed as food and herbal medicine for centuries. However, safety for their consumption has not been well investigated. This study was undertaken to evaluate in vitro and in vivo toxicity of cultivated Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP). Neither NO nor SP contained detectable levels of microcystin (MC)-LA, MC-RR, MC-LW and MC-LR by LC/MS/MS. Cell viability remained ~70-80% when HepG2 cells were incubated with 0-500 μg/ml of hexane, chloroform, methanol and water-extractable fractions of NO and SP. Four-week-old male and female C57BL/6J mice were fed an AIN-93G/M diet supplemented with 0, 2.5% or 5% of NO and SP (wt/wt) for 6 months. For both genders, BGA-rich diets did not induce noticeable abnormality in weight gain and plasma alanine aminotransferase (ALT) and aspartate aminotransferase concentrations except a significant increase in plasma ALT levels by 2.5% NO supplementation in male mice at 6 month. Histopathological analysis of livers, however, indicated that BGA did not cause significant liver damage compared with controls. In conclusion, our results suggest that NO and SP are free of MC and the long-term dietary supplementation of up to 5% of the BGA may be consumed without evident toxic side-effects. PMID:21473896

  10. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Donat-Peter Häder

    2010-01-01

    Full Text Available Mycosporine-like amino acids (MAAs and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW-1, concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm. The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm and UV-B (280–320 nm range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments.

  11. Lipid extract of Nostoc commune var. sphaeroides Kutzing, a blue-green alga, inhibits the activation of sterol regulatory element binding proteins in HepG2 cells.

    Science.gov (United States)

    Rasmussen, Heather E; Blobaum, Kara R; Park, Young-Ki; Ehlers, Sarah J; Lu, Fan; Lee, Ji-Young

    2008-03-01

    Nostoc commune var. sphaeroides Kützing (N. commune), a blue-green alga, has been used as both a food ingredient and in medicine for centuries. To determine the effect of N. commune on cholesterol metabolism, N. commune lipid extract was incubated at increasing concentrations (25-100 mg/L) with HepG2 cells, a human hepatoma cell line. The addition of N. commune lipid extract markedly reduced mRNA abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and LDL receptor (LDLR) (P commune lipid extract confirmed the inhibitory role of N. commune in cholesterol synthesis (P commune lipid extract, expression of sterol regulatory element binding protein 2 (SREBP-2) was assessed. Whereas mRNA for SREBP-2 remained unchanged, SREBP-2 mature protein was reduced by N. commune (P commune lipid extract also decreased SREBP-1 mature protein by approximately 30% (P commune lipid extract inhibits the maturation process of both SREBP-1 and -2, resulting in a decrease in expression of genes involved in cholesterol and fatty acid metabolism.

  12. Determination of the toxicity level of the fluoropolymers production wastes by reaction of soil microflora and cyanobacteria Nostoc paludosum Kütz

    Directory of Open Access Journals (Sweden)

    Elkina Tatyana

    2014-03-01

    Full Text Available The environment is constantly receiving the substances that are artificially synthesized by human, hence, not inherent in nature, that are circulating in it. One of the most common wastes of fluoroelastomer SKF-26 production is the mother solution entering the environment together with the wastewater of chemical enterprises. Until now limits of allowable concentrations of these compounds have not been established, as they are considered practically safe. By determining the toxicity level of the waste of fluoropolymers production conducted by reaction of soil algae , cyanobacteria and micromycetes it was showed that the waste of fluorine rubber SKF-26 production are not safe or neutral for these groups of microorganisms. The toxicity of high concentrations of the mother solution SKF-26 was particularly evident in the damaging effects to the of the test organism Nostoc paludosum in aqueous medium. Field experiments confirmed that not only mother solutions, but also the possible products of their transformations are toxic. This fact clearly illustrates the change in the structure of mikocenoses where a progressive increase in populations with melanized mycelium takes place.

  13. Complementary UV-absorption of mycosporine-like amino acids and scytonemin is responsible for the UV-insensitivity of photosynthesis in Nostoc flagelliforme.

    Science.gov (United States)

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-20

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW(-1)), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315-400 nm) and UV-B (280-320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments.

  14. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Directory of Open Access Journals (Sweden)

    Sylvia Bonilla

    2016-06-01

    Full Text Available Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5. Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C. Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in

  15. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  16. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide.

    Science.gov (United States)

    Zhou, Jie; Zhang, Haifeng; Zhang, Yanping; Li, Yin; Ma, Yanhe

    2012-07-01

    Ketones are a class of important organic compounds. As the simplest ketone, acetone is widely used as solvents or precursors for industrial chemicals. Presently, million tonnes of acetone is produced worldwide annually, from petrochemical processes. Here we report a biotechnological process that can produce acetone from CO(2), by designing and creating a modularized synthetic pathway in engineered cyanobacterium Synechocystis sp. PCC 6803. The engineered Synechocystis cells are able to produce acetone (36.0 mgl(-1) culture medium) using CO(2) as the sole carbon source, thus opens the gateway for biosynthesis of ketones from CO(2).

  17. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Moriyama, Takashi; Tajima, Naoyuki; Sekine, Kohsuke; Sato, Naoki

    2015-01-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) is a key enzyme in the central carbohydrate metabolism in heterofermentative bacteria, in which enzymatic property of Xfps is well characterized. This is not the case in other microbes. The cyanobacterium Anabaena sp. PCC 7120 possesses three putative genes encoding Xfp, all1483, all2567, and alr1850. We purified three putative Xfps as recombinant proteins. The results of gel filtration indicated that these proteins form homomultimer complex. All1483 and All2567 showed phosphoketolase activity, whereas Alr1850 did not show the activity. Kinetic analyses demonstrated that substrates, fructose 6-phosphate and inorganic phosphate, are cooperatively bound to enzymes positively and negatively, respectively.

  18. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses.

    Science.gov (United States)

    Saha, Rajib; Liu, Deng; Hoynes-O'Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Moon, Tae Seok; Maranas, Costas D; Pakrasi, Himadri B

    2016-05-03

    Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP(+) showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. Cyanobacteria are photosynthetic microbes that use energy from sunlight and CO2 as feedstock. Certain cyanobacterial strains are amenable to facile genetic manipulation, thus enabling

  19. Quantitative analysis of plant secondary metabolites in wild Nostoc commune Vauch%野生地木耳中次生代谢产物含量测定与分析

    Institute of Scientific and Technical Information of China (English)

    张士振; 季添英; 冯小妹; 朱晨曦; 尹华宝; 黄训端; 尤硕愚

    2014-01-01

    测定了野生地木耳(Nostoc commune Vauch.)中次生代谢产物含量,并与4种常见食用菌藻黑木耳(Auricu-laria auricular-judae)、银耳( Tremella fuciformis)、紫菜( Porphyra)、海带( Laminaria japonica)进行比较分析,总酚、总黄酮和缩合单宁含量测定采用分光光度法,总生物碱含量测定采用高效液相色谱法( HPLC )。结果显示,野生地木耳中总酚含量为24.255 mg/g ±1.631 mg/g,总黄酮含量为5.741 mg/g ±0.239 mg/g,总生物碱含量为0.768 mg/g ±0.073 mg/g,缩合单宁含量为0.069 mg/g ±0.009 mg/g。4种食用菌藻中次生代谢产物含量范围为:总酚(5.520~62.326 mg/g)、总黄酮(0.847~7.010 mg/g)、总生物碱(0.408~4.132 mg/g)、缩合单宁(0.063~0.233 mg/g);比较分析结果显示,野生地木耳次生代谢产物中的总酚和总黄酮物质含量较高,且总酚是主要次生代谢产物,缩合单宁与总生物碱含量较低;总酚含量约为黑木耳和银耳的2倍、紫菜的6倍;总黄酮含量约为黑木耳的7倍,银耳的3倍。%This experiment determined the contents of plant secondary metabolites (PSMs)in wild Nostoc commune Vauch., and ana-lyzed the differences of the PSMs contents among wild Nostoc commune Vauch., Auricularia auricular-judae, Tremella fuciformis, Por-phyra and Laminaria japonica.The contents of condensed tannins , total polyphenol and flavonoids in wild Nostoc commune Vauch. were tested by UV-VIS spectrophotometer , and the contents of total alkaloids were quantified by high performance liquid chromatogra -phy ( HPLC) .The results showed that the content of total polyphenol was 24.255 mg/g ±1.631 mg/g, the total flavonoids was 5.741 mg/g ±0.239 mg/g, the total alkaloids was 0.768 mg/g ±0.073 mg/g and the condensed tannins was 0.069 mg/g ±0.009 mg/g in air-dry of wild Nostoc commune Vauch.The content range of several kinds of PSMs in daily edible fungoids and

  20. The biosynthetic pathway for myxol-2' fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Graham, Joel E; Bryant, Donald A

    2009-05-01

    Synechococcus sp. strain PCC 7002 produces a variety of carotenoids, which comprise predominantly dicylic beta-carotene and two dicyclic xanthophylls, zeaxanthin and synechoxanthin. However, this cyanobacterium also produces a monocyclic myxoxanthophyll, which was identified as myxol-2' fucoside. Compared to the carotenoid glycosides produced by diverse microorganisms, cyanobacterial myxoxanthophyll and closely related compounds are unusual because they are glycosylated on the 2'-OH rather than on the 1'-OH position of the psi end of the molecule. In this study, the genes encoding two enzymes that modify the psi end of myxoxanthophyll in Synechococcus sp. strain PCC 7002 were identified. Mutational and biochemical studies showed that open reading frame SynPCC7002_A2032, renamed cruF, encodes a 1',2'-hydroxylase [corrected] and that open reading frame SynPCC7002_A2031, renamed cruG, encodes a 2'-O-glycosyltransferase. The enzymatic activity of CruF was verified by chemical characterization of the carotenoid products synthesized when cruF was expressed in a lycopene-producing strain of Escherichia coli. Database searches showed that homologs of cruF and cruG occur in the genomes of all sequenced cyanobacterial strains that are known to produce myxol or the acylic xanthophyll oscillaxanthin. The genomes of many other bacteria that produce hydroxylated carotenoids but do not contain crtC homologs also contain cruF orthologs. Based upon observable intermediates, a complete biosynthetic pathway for myxoxanthophyll is proposed. This study expands the suite of enzymes available for metabolic engineering of carotenoid biosynthetic pathways for biotechnological applications.

  1. Radiation characteristics and effective optical properties of dumbbell-shaped cyanobacterium Synechocystis sp.

    Science.gov (United States)

    Heng, Ri-Liang; Pilon, Laurent

    2016-05-01

    This study presents experimental measurements of the radiation characteristics of unicellular freshwater cyanobacterium Synechocystis sp. during their exponential growth in F medium. Their scattering phase function at 633 nm average spectral absorption and scattering cross-sections between 400 and 750 nm were measured. In addition, an inverse method was used for retrieving the spectral effective complex index of refraction of overlapping or touching bispheres and quadspheres from their absorption and scattering cross-sections. The inverse method combines a genetic algorithm and a forward model based on Lorenz-Mie theory, treating bispheres and quadspheres as projected area and volume-equivalent coated spheres. The inverse method was successfully validated with numerically predicted average absorption and scattering cross-sections of suspensions consisting of bispheres and quadspheres, with realistic size distributions, using the T-matrix method. It was able to retrieve the monomers' complex index of refraction with size parameter up to 11, relative refraction index less than 1.3, and absorption index less than 0.1. Then, the inverse method was applied to retrieve the effective spectral complex index of refraction of Synechocystis sp. approximated as randomly oriented aggregates consisting of two overlapping homogeneous spheres. Both the measured absorption cross-section and the retrieved absorption index featured peaks at 435 and 676 nm corresponding to chlorophyll a, a peak at 625 nm corresponding to phycocyanin, and a shoulder around 485 nm corresponding to carotenoids. These results can be used to optimize and control light transfer in photobioreactors. The inverse method and the equivalent coated sphere model could be applied to other optically soft particles of similar morphologies.

  2. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  3. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    Science.gov (United States)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  4. Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability

    Science.gov (United States)

    Coloma, Sebastián; Sivonen, Kaarina

    2016-01-01

    Interactions between nitrogen-fixing (i.e. diazotrophic) cyanobacteria and their viruses, cyanophages, can have large-scale ecosystem effects. These effects are mediated by temporal alterations in nutrient availability in aquatic systems owing to the release of nitrogen and carbon sources from cells lysed by phages, as well as by ecologically important changes in the diversity and fitness of cyanobacterial populations that evolve in the presence of phages. However, ecological and evolutionary feedbacks between phages and nitrogen-fixing cyanobacteria are still relative poorly understood. Here, we used an experimental evolution approach to test the effect of interactions between a common filamentous, nitrogen-fixing cyanobacterium (Nodularia sp.) and its phage on cellular nitrogen release and host properties. Ecological, community-level effects of phage-mediated nitrogen release were tested with a phytoplankton bioassay. We found that cyanobacterial nitrogen release increased significantly as a result of viral lysis, which was associated with enhanced growth of phytoplankton species in cell-free filtrates compared with phage-resistant host controls in which lysis and subsequent nutrient release did not occur after phage exposure. We also observed an ecologically important change among phage-evolved cyanobacteria with phage-resistant phenotypes, a short-filamentous morphotype with reduced buoyancy compared with the ancestral long-filamentous morphotype. Reduced buoyancy might decrease the ability of these morphotypes to compete for light compared with longer, more buoyant filaments. Together, these findings demonstrate the potential of cyanobacteria–phage interactions to affect ecosystem biogeochemical cycles and planktonic community dynamics. PMID:28083116

  5. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Yoshida, Takashi; Takashima, Yukari; Tomaru, Yuji; Shirai, Yoko; Takao, Yoshitake; Hiroishi, Shingo; Nagasaki, Keizo

    2006-02-01

    We isolated a cyanophage (Ma-LMM01) that specifically infects a toxic strain of the bloom-forming cyanobacterium Microcystis aeruginosa. Transmission electron microscopy showed that the virion is composed of anisometric head and a tail complex consisting of a central tube and a contractile sheath with helical symmetry. The morphological features and the host specificity suggest that Ma-LMM01 is a member of the cyanomyovirus group. Using semi-one-step growth experiments, the latent period and burst size were estimated to be 6 to 12 h and 50 to 120 infectious units per cell, respectively. The size of the phage genome was estimated to be ca. 160 kbp using pulse-field gel electrophoresis; the nucleic acid was sensitive to DNase I, Bal31, and all 14 restriction enzymes tested, suggesting that it is a linear double-stranded DNA having a low level of methylation. Phylogenetic analyses based on the deduced amino acid sequences of two open reading frames coding for ribonucleotide reductase alpha- and beta-subunits showed that Ma-LMM01 forms a sister group with marine and freshwater cyanobacteria and is apparently distinct from T4-like phages. Phylogenetic analysis of the deduced amino acid sequence of the putative sheath protein showed that Ma-LMM01 does not form a monophyletic group with either the T4-like phages or prophages, suggesting that Ma-LMM01 is distinct from other T4-like phages that have been described despite morphological similarity. The host-phage system which we studied is expected to contribute to our understanding of the ecology of Microcystis blooms and the genetics of cyanophages, and our results suggest the phages could be used to control toxic cyanobacterial blooms.

  6. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer.

    Directory of Open Access Journals (Sweden)

    Ankita eKothari

    2013-12-01

    Full Text Available The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long, encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells at the breakage point. Short, sheath-less, motile filaments (hormogonia are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1 %. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp. It contained 6515 putative protein-encoding genes, of which, 43 % encode proteins of known functional role, 26 % corresponded to proteins with domain or family assignments, 19.6 % encode conserved hypothetical proteins, and 11.3 % encode apparently unique hypothetical proteins. The strain’s genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose and glycine

  7. Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Hong, Yu; Hu, Hong-Ying; Li, Feng-Min

    2008-10-01

    The physiological and biochemical effects of an allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis) on bloom-forming cyanobacterium, Microcystis aeruginosa, were investigated. EMA significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The metabolic indices (represented by esterase and total dehydrogenase activities), the cellular redox status (represented by the level of reactive oxygen species (ROS)), and the oxidative damage index (represented by the content of malondialdehyde (MDA), the product of membrane lipid peroxidation) were used to evaluate the physiological and biochemical changes in M. aeruginosa after EMA exposure. Esterase activity in M. aeruginosa did not change (P>0.05) after 2 h of exposure to EMA, but increased greatly after 24 and 48 h (PEMA exposure (>0.5 mg L(-1)) resulted in a remarkable loss of total dehydrogenase activity in M. aeruginosa after 4 h (PEMA caused a great increase in ROS level of the algal cells. At high EMA concentration (4 mg L(-1)), the ROS level was remarkably elevated to 1.91 times as much as that in the controls after 2 h. Increases in the ROS level also occurred after 24 and 48 h. The increase in lipid peroxidation of M. aeruginosa was dependent upon EMA concentration and the exposure time. After 40 h of exposure, the MDA content at 4 mg L(-1) of EMA reached approximately 3.5 times (PEMA; the increased metabolic activity perhaps reflects the fact that the resistance of cellular response system to the stress from EMA is initiated during EMA exposure, and the oxidative damage induced by EMA via the oxidation of ROS may be an important factor responsible for the inhibition of EMA on the growth of M. aeruginosa.

  8. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Joaquin Giner-Lamia

    Full Text Available Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM and toxic concentrations (3 µM in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.

  9. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    Directory of Open Access Journals (Sweden)

    Latifi Amel

    2008-06-01

    Full Text Available Abstract Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843. Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

  10. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Higo, Akiyoshi; Isu, Atsuko; Fukaya, Yuki; Hisabori, Toru

    2016-02-01

    In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena.

  11. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  12. Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Hakkila, Kaisa; Antal, Taras; Rehman, Ateeq Ur; Kurkela, Juha; Wada, Hajime; Vass, Imre; Tyystjärvi, Esa; Tyystjärvi, Taina

    2014-02-01

    Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ∆sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ∆sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ∆sigCDE than in the control strain. These results indicate that ∆sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ∆sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ∆sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ∆sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ∆sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Muro-Pastor, M I; Florencio, F J

    1992-01-15

    NADP-dependent isocitrate dehydrogenase activity has been screened in several cyanobacteria grown on different nitrogen sources; in all the strains tested isocitrate dehydrogenase activity levels were similar in cells grown either on ammonium or nitrate. The enzyme from the unicellular cyanobacterium Synechocystis sp. PCC 6803 has been purified to electrophoretic homogeneity by a procedure that includes Reactive-Red-120-agarose affinity chromatography and phenyl-Sepharose chromatography as main steps. The enzyme was purified about 600-fold, with a yield of 38% and a specific activity of 15.7 U/mg protein. The native enzyme (108 kDa) is composed of two identical subunits with an apparent molecular mass of 57 kDa. Synechocystis isocitrate dehydrogenase was absolutely specific for NADP as electron acceptor. Apparent Km values were 125, 59 and 12 microM for Mg2+, D,L-isocitrate and NADP, respectively, using Mg2+ as divalent cation and 4, 5.7 and 6 microM for Mn2+, D,L-isocitrate and NADP, respectively, using Mn2+ as a cofactor. The enzyme was inhibited non-competitively by ADP (Ki, 6.4 mM) and 2-oxoglutarate, (Ki, 6 mM) with respect to isocitrate and in a competitive manner by NADPH (Ki, 0.6 mM). The circular-dichroism spectrum showed a protein with a secondary structure consisting of about 30% alpha-helix and 36% beta-pleated sheet. The enzyme is an acidic protein with an isoelectric point of 4.4 and analysis of the NH2-terminal sequence revealed 45% identity with the same region of Escherichia coli isocitrate dehydrogenase. The aforementioned data indicate that NADP isocitrate dehydrogenase from Synechocystis resembles isocitrate dehydrogenase from prokaryotes and shows similar molecular and structural properties to the well-known E. coli enzyme.

  14. Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803.

    Science.gov (United States)

    Kobayashi, Masaki; Takatani, Nobuyuki; Tanigawa, Mari; Omata, Tatsuo

    2005-01-01

    Posttranslational regulation of nitrate assimilation was studied in the cyanobacterium Synechocystis sp. strain PCC 6803. The ABC-type nitrate and nitrite bispecific transporter encoded by the nrtABCD genes was completely inhibited by ammonium as in Synechococcus elongatus strain PCC 7942. Nitrate reductase was insensitive to ammonium, while it is inhibited in the Synechococcus strain. Nitrite reductase was also insensitive to ammonium. The inhibition of nitrate and nitrite transport required the PII protein (glnB gene product) and the C-terminal domain of NrtC, one of the two ATP-binding subunits of the transporter, as in the Synechococcus strain. Mutants expressing the PII derivatives in which Ala or Glu is substituted for the conserved Ser49, which has been shown to be the phosphorylation site in the Synechococcus strain, showed ammonium-promoted inhibition of nitrate uptake like that of the wild-type strain. The S49A and S49E substitutions in GlnB did not affect the regulation of the nitrate and nitrite transporter in Synechococcus either. These results indicated that the presence or absence of negative electric charge at the 49th position does not affect the activity of the PII protein to regulate the cyanobacterial ABC-type nitrate and nitrite transporter according to the cellular nitrogen status. This finding suggested that the permanent inhibition of nitrate assimilation by an S49A derivative of PII, as was previously reported for Synechococcus elongatus strain PCC 7942, is likely to have resulted from inhibition of nitrate reductase rather than the nitrate and nitrite transporter.

  15. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39.

    Science.gov (United States)

    Toyoshima, Masakazu; Aikawa, Shimpei; Yamagishi, Takahiro; Kondo, Akihiko; Kawai, Hiroshi

    Microalgae are considered to be efficient bio-resources for biofuels and bio-based chemicals because they generally have high productivity. The filamentous cyanobacterium Arthrospira (Spirulina) platensis has been widely used for food, feed, and nutrient supplements and is usually cultivated in open ponds. In order to extend the surface area for growing this alga, we designed a pilot-scale floating closed culture system for cultivating A. platensis on open water and compared the growth and quality of the alga harvested at both subtropical and temperate regions. The biomass productivity of A. platensis NIES-39 was ca. 9 g dry biomass m(-2) day(-1) in summer at Awaji Island (warm temperature region) and ca. 10 and 6 g dry biomass m(-2) day(-1) in autumn and winter, respectively, at Ishigaki Island, (subtropical region) in Japan. If seawater can be used for culture media, culture cost can be reduced; therefore, we examined the influence of seawater salt concentrations on the growth of A. platensis NIES-39. Growth rates of A. platensis NIES-39 in diluted seawater with enrichment of 2.5 g L(-1) NaNO3, 0.01 g L(-1) FeSO4·7H2O, and 0.08 g L(-1) Na2EDTA were considerably lower than SOT medium, but the biomass productivity (dry weight) was comparable to SOT medium. This is explained by the heavier cell weight of the alga grown in modified seawater media compared to the alga grown in SOT medium. Furthermore, A. platensis grown in modified seawater-based medium exhibited self-flocculation and had more loosely coiled trichomes.

  16. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp.

    Science.gov (United States)

    Harke, Matthew J; Steffen, Morgan M; Gobler, Christopher J; Otten, Timothy G; Wilhelm, Steven W; Wood, Susanna A; Paerl, Hans W

    2016-04-01

    This review summarizes the present state of knowledge regarding the toxic, bloom-forming cyanobacterium, Microcystis, with a specific focus on its geographic distribution, toxins, genomics, phylogeny, and ecology. A global analysis found documentation suggesting geographic expansion of Microcystis, with recorded blooms in at least 108 countries, 79 of which have also reported the hepatatoxin microcystin. The production of microcystins (originally "Fast-Death Factor") by Microcystis and factors that control synthesis of this toxin are reviewed, as well as the putative ecophysiological roles of this metabolite. Molecular biological analyses have provided significant insight into the ecology and physiology of Microcystis, as well as revealed the highly dynamic, and potentially unstable, nature of its genome. A genetic sequence analysis of 27 Microcystis species, including 15 complete/draft genomes are presented. Using the strictest biological definition of what constitutes a bacterial species, these analyses indicate that all Microcystis species warrant placement into the same species complex since the average nucleotide identity values were above 95%, 16S rRNA nucleotide identity scores exceeded 99%, and DNA-DNA hybridization was consistently greater than 70%. The review further provides evidence from around the globe for the key role that both nitrogen and phosphorus play in controlling Microcystis bloom dynamics, and the effect of elevated temperature on bloom intensification. Finally, highlighted is the ability of Microcystis assemblages to minimize their mortality losses by resisting grazing by zooplankton and bivalves, as well as viral lysis, and discuss factors facilitating assemblage resilience. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Competition and facilitation between the marine nitrogen-fixing cyanobacterium Cyanothece and its associated bacterial community

    Science.gov (United States)

    Brauer, Verena S.; Stomp, Maayke; Bouvier, Thierry; Fouilland, Eric; Leboulanger, Christophe; Confurius-Guns, Veronique; Weissing, Franz J.; Stal, LucasJ.; Huisman, Jef

    2014-01-01

    N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria. PMID:25642224

  18. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  19. Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway.

    Science.gov (United States)

    Yoshino, Tomoko; Liang, Yue; Arai, Daichi; Maeda, Yoshiaki; Honda, Toru; Muto, Masaki; Kakunaka, Natsumi; Tanaka, Tsuyoshi

    2015-02-01

    The production of alkanes in a marine cyanobacterium possessing the α-olefin biosynthesis pathway was achieved by introducing an exogenous alkane biosynthesis pathway. Cyanobacterial hydrocarbons are synthesized via two separate pathways: the acyl-acyl carrier protein (ACP) reductase/aldehyde-deformylating oxygenase (AAR/ADO) pathway for the alkane biosynthesis and the α-olefin synthase (OLS) pathway for the α-olefin biosynthesis. Coexistence of these pathways has not yet been reported. In this study, the marine cyanobacterium Synechococcus sp. NKBG15041c was shown to produce α-olefins similar to those of Synechococcus sp. PCC7002 via the α-olefin biosynthesis pathway. The production of heptadecane in Synechococcus sp. NKBG15041c was achieved by expressing the AAR/ADO pathway genes from Synechococcus elongatus PCC 7942. The production yields of heptadecane in Synechococcus sp. NKBG15041c varied with the expression level of the aar and ado genes. The maximal yield of heptadecane was 4.2 ± 1.2 μg/g of dried cell weight in the transformant carrying a homologous promoter. Our results also suggested that the effective activation of ADO may be more important for the enhancement of alkane production by cyanobacteria.

  20. Localization of Membrane Proteins in the Cyanobacterium Synechococcus sp. PCC7942 (Radial Asymmetry in the Photosynthetic Complexes).

    Science.gov (United States)

    Sherman, D. M.; Troyan, T. A.; Sherman, L. A.

    1994-09-01

    Localization of membrane proteins in the cyanobacterium Synechococcus sp. PCC7942 was determined by transmission electron microscopy utilizing immunocytochemistry with cells prepared by freeze-substitution. This preparation procedure maintained cellular morphology and permitted detection of cellular antigens with high sensitivity and low background. Synechococcus sp. PCC7942 is a unicellular cyanobacterium with thylakoids organized in concentric layers toward the periphery of the cell. Cytochrome oxidase was localized almost entirely in the cytoplasmic membrane, whereas a carotenoprotein (P35) was shown to be a cell wall component. The major photosystem II (PSII) proteins (D1, D2 CP43, and CP47) were localized throughout the thylakoids. Proteins of the Cyt b6/f complex were found to have a similar distribution. Thylakoid luminal proteins, such as the Mn-stabilizing protein, were located primarily in the thylakoid, but a small, reproducible fraction was found in the outer compartment. The photosystem I (PSI) reaction center proteins and the ATP synthase proteins were found associated mostly with the outermost thylakoid and with the cytoplasmic membrane. These results indicated that the photosynthetic apparatus is not evenly distributed throughout the thylakoids. Rather, there is a radial asymmetry such that much of the PSI and the ATPase synthase is located in the outermost thylakoid. The relationship of this structure to the photosynthetic mechanism is discussed. It is suggested that the photosystems are separated because of kinetic differences between PSII and PSI, as hypothesized by H.-W. Trissl and C. Wilhelm (Trends Biochem Sci [1993] 18:415-419).

  1. Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Ou, Tong; Li, Sanhua; Liao, Xiangyong; Zhang, Qiya

    2013-10-01

    The MaMV-DC cyanophage, which infects the bloom-forming cyanobacterium Microcystis aeruginosa, was isolated from Lake Dianchi, Kunming, China. Twenty-one cyanobacterial strains were used to detect the host range of MaMV-DC. Microcystic aeruginosa FACHB-524 and plaque purification were used to isolate individual cyanophages, and culturing MaMV-DC with cyanobacteria allowed us to prepare purified cyanophages for further analysis. Electron microscopy demonstrated that the negatively stained viral particles are tadpole-shaped with an icosahedral head approximately 70 nm in diameter and a contractile tail approximately 160 nm in length. Using one-step growth experiments, the latent period and burst size of MaMV-DC were estimated to be 24-48 hours and approximately 80 infectious units per cell, respectively. Restriction endonuclease digestion and agarose gel electrophoresis were performed using purified MaMV-DC genomic DNA, and the genome size was estimated to be approximately 160 kb. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed four major structural proteins. These results support the growing interest in using freshwater cyanophages to control bloom-forming cyanobacterium.

  2. Characterization of the coccoid cyanobacterium Myxosarcina sp. KIOST-1 isolated from mangrove forest in Chuuk State, Federated States of Micronesia

    Science.gov (United States)

    Kim, Ji Hyung; Lee, JunMo; Affan, Md-Abu; Lee, Dae-Won; Kang, Do-Hyung

    2017-05-01

    Mangrove forests are known to be inhabited by diverse symbiotic cyanobacterial communities that are capable of N2 fixation. To investigate its biodiversity, root sediments were collected from a mangrove forest in Chuuk State, Federated States of Micronesia (FSM), and an entangled yellow-brown coccoid cyanobacterium was isolated. The isolated cyanobacterium was reproduced by multiple fission and eventually produced baeocytes. Phylogenetic analysis revealed that the isolate was most similar to the genera Myxosarcina and Chroococcidiopsis in the order Pleurocapsales. Compositions of protein, lipid and carbohydrate in the cyanobacterial cells were estimated to be 19.4 ± 0.1%, 18.8 ± 0.4% and 31.5 ± 0.1%, respectively. Interestingly, total fatty acids in the isolate were mainly composed of saturated fatty acids and monounsaturated fatty acids, whereas polyunsaturated fatty acids were not detected. Based on the molecular and biochemical characteristics, the isolate was finally classified in the genus Myxosarcina, and designated as Myxosarcina sp. KIOST-1. These results will contribute to better understanding of cyanobacterial biodiversity in the mangrove forest in FSM as well as the genus Myxosarcina, and also will allow further exploitation of its biotechnological potential on the basis of its cellular characteristics.

  3. High Iron Requirement for Growth, Photosynthesis, and Low-light Acclimation in the Marine Cyanobacterium Synechococcus bacillaris

    Science.gov (United States)

    Sunda, W. G.; Huntsman, S. A.

    2016-02-01

    Iron is a critical nutrient in photosynthesis and limits phytoplankton growth in large regions of the ocean. Most of the iron in phytoplankton occurs in iron-containing proteins in the photosynthetic apparatus, and thus interactions among cellular iron, light, and growth rate are predicted. In agreement with this prediction, decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate by 2- to 3-fold in both a coastal diatom Thalassiosira pseudonana, and a coastal cyanobacterium Synechococcus bacillaris due to an increase in iron-containing photosynthetic units. However, although the light responses were similar, the cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher in the cyanobacterium than in the diatom, a pattern seen in other Syechococcus isolates and eukaryotic phytoplankton. Due to the high iron requirement for growth and low light acclimation, we might expect Synechococcus to be at a competitive disadvantage in many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean's deep chlorophyll maximum (DCM), where iron and light levels are low and lower-iron requiring eukaryotic algae typically dominate the phytoplankton biomass in the mid to lower DCM.

  4. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.

  5. Artificially acquired chlorophyll b is highly acceptable to the thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421.

    Science.gov (United States)

    Araki, Mie; Akimoto, Seiji; Mimuro, Mamoru; Tsuchiya, Tohru

    2014-08-01

    Unicellular cyanobacterium Gloeobacter violaceus is an only known oxygenic photosynthetic organism that lacks thylakoid membrane. Molecular phylogenetic analyses indicate that G. violaceus is an early-branching cyanobacterium within cyanobacterial clade. Therefore, the photosynthetic system of G. violaceus is considered to be partly similar to that of the ancestral cyanobacteria that would lack thylakoid membrane. G. violaceus possesses chlorophyll (Chl) a as the only chlorophyll species like most cyanobacteria. It was proposed that the ancestral oxygenic photosynthetic organism had not only Chl a and phycobilins but also Chl b. However, no organism which contains both Chl a and Chl b and lacks thylakoid membrane has been found in nature. Therefore, we introduced the chlorophyllide a oxygenase gene responsible for Chl b biosynthesis into G. violaceus. In the resultant transformant, Chl b accumulated at approximately 11% of total Chl independent of growth phase. Photosystem I complexes isolated from the transformant contained Chl b at 9.9% of total Chl. The presence of Chl b in the photosystem I complexes did not inhibit trimer formation. Furthermore, time-resolved fluorescence spectrum demonstrated that Chl b transferred energy to Chl a in the photosystem I complexes and did not disturb the energy transfer among the Chl a molecules. These results show that G. violaceus is tolerant to artificially produced Chl b and suggest the flexibility of photosystem for Chl composition in the ancestral oxygenic photosynthetic organism.

  6. Novel Insights into the Regulation of LexA in the Cyanobacterium Synechocystis sp. Strain PCC 6803 ▿ †

    Science.gov (United States)

    Oliveira, Paulo; Lindblad, Peter

    2011-01-01

    The transcription factor LexA in the cyanobacterium Synechocystis sp. strain PCC 6803 has been shown to regulate genes that are not directly involved in DNA repair but instead in several different metabolic pathways. However, the signal transduction pathways remain largely uncharacterized. The present work gives novel insights into the regulation of LexA in this unicellular cyanobacterium. A combination of Northern and Western blotting, using specific antibodies against the cyanobacterial LexA, was employed to show that this transcription regulator is under posttranscriptional control, in addition to the classical and already-described transcriptional regulation. Moreover, detailed two-dimensional (2D) electrophoresis analyses of the protein revealed that LexA undergoes posttranslational modifications. Finally, a fully segregated LexA::GFP (green fluorescent protein) fusion-modified strain was produced to image LexA's spatial distribution in live cells. The fusion protein retains DNA binding capabilities, and the GFP fluorescence indicates that LexA is localized in the innermost region of the cytoplasm, decorating the DNA in an evenly distributed pattern. The implications of these findings for the overall role of LexA in Synechocystis sp. strain PCC 6803 are further discussed. PMID:21642463

  7. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  8. Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea)

    National Research Council Canada - National Science Library

    Šulčius, Sigitas; Alzbutas, Gediminas; Kvederavičiūtė, Kotryna; Koreivienė, Judita; Zakrys, Linas; Lubys, Arvydas; Paškauskas, Ričardas

    2015-01-01

    We report here the de novo genome assembly of a cyanobacterium, Aphanizomenon flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7 Mb with a G+C content of 38.2...

  9. Draft Genome Sequence of the Cyanobacterium Aphanizomenon flos-aquae Strain 2012/KM1/D3, Isolated from the Curonian Lagoon (Baltic Sea)

    OpenAIRE

    ?ul?ius, Sigitas; Alzbutas, Gediminas; Kvederavi?i?t?, Kotryna; Koreivien?, Judita; Zakrys, Linas; Lubys, Arvydas; Pa?kauskas, Ri?ardas

    2015-01-01

    We report here the de?novo genome assembly of a cyanobacterium, Aphanizomenon?flos-aquae strain 2012/KM1/D3, a harmful bloom-forming species in temperate aquatic ecosystems. The genome is 5.7?Mb with a G+C content of 38.2%, and it is enriched mostly with genes involved in amino acid and carbohydrate metabolism.

  10. Growth of Daphnia magna males and females fed with the cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus obliquus in different proportions

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Beekman, W.

    2006-01-01

    Laboratory experiments were used to study the sensitivity of both male and female Daphnia magna to a toxic cyanobacterium, Microcystis aeruginosa. Male and female D. magna were fed with M. aeruginosa and a green alga (Scenedesmus obliquus) in different mixtures that included 0%, 25%, 50%, 75% and 10

  11. Quest for minor but key chlorophyll molecules in photosynthetic reaction centers - unusual pigment composition in the reaction centers of the chlorophyll d-dominated cyanobacterium Acaryochloris marina.

    Science.gov (United States)

    Akiyama, Machiko; Miyashita, Hideaki; Kise, Hideo; Watanabe, Tadashi; Mimuro, Mamoru; Miyachi, Shigetoh; Kobayashi, Masami

    2002-01-01

    A short overview, based on our own findings, is given of the minor pigments that function as key components in photosynthesis. Recently, we found the presence of chlorophyll a, chlorophyll d' and pheophytin a as minor pigments in the chlorophyll d-dominated cyanobacterium Acaryochloris marina.

  12. Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium Nodularia spumigena sp. CCY9414 based on a genome-transcriptome analysis

    NARCIS (Netherlands)

    Voß, B.; Bolhuis, H.; Fewer, D.; Kopf, M.; Möke, F.; Haas, F.; El-Shehawy, R.; Hayes, P.; Bergman, B.; Sivonen, K.; Dittmann, E.; Scanlan, D.J.; Hagemann, M.; Stal, L.J.; Hess, W.R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft geno

  13. Effects of Microcystin-free and Microcystin-containing strains of the Cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.

    2003-01-01

    Harmful effects of the common bloom-forming cyanobacterium Microcystis aeruginosa on the grazer Daphnia have been explained from morphological features, nutritional insufficiency, and the production of toxins called microcystins. The effects of four M. aeruginosa strains, including one free of

  14. Effects of microcystin-free and Microcystin containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna

    NARCIS (Netherlands)

    Lürling, M.

    2003-01-01

    Harmful effects of the common bloom-forming cyanobacterium Microcystis aeruginosa on the grazer Daphnia have been explained from morphological features, nutritional insufficiency, and the production of toxins called microcystins. The effects of four M. aeruginosa strains, including one free of

  15. Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium microcystis aeruginosa with and without microcystins

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Grinten, van der E.

    2003-01-01

    In the current study, the role of microcystin(MC)-LR in inhibiting Daphnia growth was examined. Somatic growth, time to first reproduction, number of newborns, mortality, and population growth were measured in Daphnia fed mixtures of the cyanobacterium Microcystis aeruginosa (with and without microc

  16. 氮元素对地木耳脂肪酸的影响%Effect of nitrogen on fatty acids composition of Nostoc commune

    Institute of Scientific and Technical Information of China (English)

    马飞; 许璞; 朱建一; 万能; 汤俊

    2013-01-01

    Nostoc commune cultivated in two different conditions(with or without nitrogen in medium)were analyzed for their fatty acids composition using a modified Bligh-Dyer method and GC-MS.The results indicated that C16 and C18 were dominant compositions of total fatty acids (TFAs), among which the contents of unsaturated fatty acids(UFAs) were all above 50% in all tested samples.TFAs concentration of N.commune cultivated in medium without nitrogen (BG11O) was 13.29mg/g, while that of saturated fatty acids (SFAs) and UFAs were present at 36.91% ,63.09% respectively.C18: 1 was present at 15.99% in particular; TFAs concentration of N.commune cultivated in medium with nitrogen( BGll)was 7.72mg/g,while concentrations of SFAs and UFAs were present at 47.91% ,52.09% respectively.C18:1 was 1.74%.The present study showed that the contents of TFAs especially UFAs was significantly(p <0.05) higher in BG110 group than in BG11 group.This demonstrated that the absence of nitrogen was propitious to the accumulation of fatty acids especially UFAs.%采用改进的Bligh-Dyer(mBD)法,气相色谱-质谱联用法(GC-MS)对含氮(BG11)和无氮(BG110)条件下培养的地木耳(Nostoc commune)脂肪酸进行提取、分离和测定.结果显示:两种培养条件下的地木耳脂肪酸都以C16和C18脂肪酸为主,而且不饱和脂肪酸含量均高于50%.无氮培养条件下地木耳总脂肪酸含量为13.29mg/g,饱和脂肪酸占36.91%,不饱和脂肪酸占63.09%,其中C18∶1的含量为15.99%;含氮条件下培养的地木耳总脂肪酸含量为7.72mg/g,饱和脂肪酸占47.91%,不饱和脂肪酸占52.09%,其中C18∶1的含量为1.74%.结论:无氮培养地木耳的脂肪酸含量显著高于含氮培养组(P<0.05),表明氮源缺失有利于地木耳脂肪酸特别是不饱和脂肪酸的积累.

  17. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    Science.gov (United States)

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  18. NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation.

    Science.gov (United States)

    Kumar, Jitendra; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2015-10-01

    The present study is aimed at investigating physiological and biochemical behavior of two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different levels (sub-optimum; 25 ± 0.5, optimum; 75 ± 2.5 and supra-optimum; 225 ± 3.5 μmol photons m(-2) s(-1)) of photosynthetic active radiation (PAR), and subsequently treated with two doses (30 and 90 mM) of NaCl. PAR influences growth in tested cyanobacteria being maximum in supra-optimum PAR acclimatized cells. NaCl-induced maximum percent decline in growth was observed in sub-optimum PAR acclimatized cells, which was in consonance with a decrease in chlorophyll content. Sub-optimum PAR acclimatization stimulated phycocyanin content in control cells, whereas maximum carotenoids content was observed in supra-optimum PAR acclimatized cells. Photosystem II photochemistry viz. Fv/F0, Fv/Fm, Ψ0, ϕE0, PIABS, ABS/RC, TR0/RC, ET0/RC and DI0/RC was also influenced by PAR and NaCl. Maximum percent rise in superoxide radical (SOR), hydrogen peroxide (H2O2) and lipid peroxidation was observed in sub-optimum PAR acclimatized cells exposed to NaCl, which could be correlated with lower values of enzymatic (superoxide dismutase, catalase, peroxidase and glutathione-S-transferase) and non-enzymatic (NP-SH and cysteine) antioxidants. In supra-optimum PAR acclimatized cells level of oxidative stress markers was in parallel with enhanced antioxidants. The results suggest that PAR significantly changes physiological and biochemical responses of studied cyanobacteria under NaCl stress. Besides this, this study also shows that P. foveolarum is more tolerant than N. muscorum under test conditions.

  19. Active Fe-Containing Superoxide Dismutase and Abundant sodF mRNA in Nostoc commune (Cyanobacteria) after Years of Desiccation

    Science.gov (United States)

    Shirkey, Breanne; Kovarcik, Don Paul; Wright, Deborah J.; Wilmoth, Gabriel; Prickett, Todd F.; Helm, Richard F.; Gregory, Eugene M.; Potts, Malcolm

    2000-01-01

    Active Fe-superoxide dismutase (SodF) was the third most abundant soluble protein in cells of Nostoc commune CHEN/1986 after prolonged (13 years) storage in the desiccated state. Upon rehydration, Fe-containing superoxide disumutase (Fe-SOD) was released and the activity was distributed between rehydrating cells and the extracellular fluid. The 21-kDa Fe-SOD polypeptide was purified, the N terminus was sequenced, and the data were used to isolate sodF from the clonal isolate N. commune DRH1. sodF encodes an open reading frame of 200 codons and is expressed as a monocistronic transcript (of approximately 750 bases) from a region of the genome which includes genes involved in nucleic acid synthesis and repair, including dipyrimidine photolyase (phr) and cytidylate monophosphate kinase (panC). sodF mRNA was abundant and stable in cells after long-term desiccation. Upon rehydration of desiccated cells, there was a turnover of sodF mRNA within 15 min and then a rise in the mRNA pool to control levels (quantity of sodF mRNA in cells in late logarithmic phase of growth) over approximately 24 h. The extensive extracellular polysaccharide (glycan) of N. commune DRH1 generated superoxide radicals upon exposure to UV-A or -B irradiation, and these were scavenged by SOD. Despite demonstrated roles for the glycan in the desiccation tolerance of N. commune, it may in fact be a significant source of damaging free radicals in vivo. It is proposed that the high levels of SodF in N. commune, and release of the enzyme from dried cells upon rehydration, counter the effects of oxidative stress imposed by multiple cycles of desiccation and rehydration during UV-A or -B irradiation in situ. PMID:10613879

  20. Hypolipidemic Effect of a Blue-Green Alga (Nostoc commune) Is Attributed to Its Nonlipid Fraction by Decreasing Intestinal Cholesterol Absorption in C57BL/6J Mice.

    Science.gov (United States)

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X; Yang, Yue; Weller, Curtis L; Carr, Timothy P; Park, Young-Ki; Lee, Ji-Young

    2015-11-01

    We previously demonstrated that Nostoc commune var. sphaeroids Kützing (NO), a blue-green alga (BGA), exerts a hypolipidemic effect in vivo and its lipid extract regulates the expression of genes involved in cholesterol and lipid metabolism in vitro. The objective of this study was to investigate whether the hypolipidemic effect of NO is attributed to an algal lipid or a delipidated fraction in vivo compared with Spirulina platensis (SP). Male C57BL/6J mice were fed an AIN-93M diet containing 2.5% or 5% of BGA (w/w) or a lipid extract equivalent to 5% of BGA for 4 weeks to measure plasma and liver lipids, hepatic gene expression, intestinal cholesterol absorption, and fecal sterol excretion. Plasma total cholesterol (TC) was significantly lower in 2.5% and 5% NO-fed groups, while plasma triglyceride (TG) levels were decreased in the 5% NO group compared with controls. However, neither NO organic extract (NOE) nor SP-fed groups altered plasma lipids. Hepatic mRNA levels of sterol regulatory element-binding protein 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), carnitine palmitoyltransferase-1α, and acyl-CoA oxidase 1 were induced in 5% NO-fed mice, while there were no significant changes in hepatic lipogenic gene expression between groups. NO, but not NOE and SP groups, significantly decreased intestinal cholesterol absorption. When HepG2 cells and primary mouse hepatocytes were incubated with NOE and SP organic extract (SPE), there were marked decreases in protein levels of HMGR, low-density lipoprotein receptor, and fatty acid synthase. In conclusion, the nonlipid fraction of NO exerts TC and TG-lowering effects primarily by inhibiting intestinal cholesterol absorption and by increasing hepatic fatty acid oxidation, respectively.