WorldWideScience

Sample records for cyanobacterium nostoc linckia

  1. Phycobiliprotein accumulation in cyanobacterium Nostoc linckia and modification of antioxidant activity

    Directory of Open Access Journals (Sweden)

    Ana VALUTA

    2015-01-01

    Full Text Available The article deals with iron(III coordination compounds with Schiff bases as ligands and their impact on phycobiliprotein accumulation by cyanobacterium Nostoc linckia. Stimulatory effect depends on the applied dose and in case of three compounds, the concentration 20 mg/L was determined as one with moderate intensity. Lower concentrations resulted in an increase of the phycobiliprotein synthesis. There was found a significant positive correlation between phycobiliprotein content and ABTS (2.2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay values displayed by aqueous extracts from Nostoc linckia biomass cultivated in nutrient medium with these coordination compounds. Hence, it is possible to modify the antioxidant activity of Nostoc biomass by applying low concentrations of chemical stimuli.

  2. Antioxidative activity of ethanol extracts from Spirulina platensis and Nostoc linckia measured by various methods

    Directory of Open Access Journals (Sweden)

    Liliana CEPOI

    2009-11-01

    Full Text Available The goal of this work is to determine the level of antioxidative activity of various ethanol extracts from Spirulina platensis and Nostoc linckia biomass, and also to demonstrate the possibility to select suitable methods for evaluation of these characteristics. The methods for determination of antioxidative activity were selected concerning their possible use for complex preparations: phosphomolybdenum method for evaluation of antioxidant capacity (PMRC, radical-scavenging activity by DPPH method (DPPH, antioxidant activity by the ABTS+ radical cation assay (ABTS, Folin-Ciocalteu reducing capacity (FCRC. We showed the presence of antioxidative substances in ethanol extractions from 2 species of cyanobacteria, and possibility to increase their activity varying ethanol concentration. It facilitates the extraction both water- and lipid-soluble components from biomass. Regarding used methods for antioxidative activity determination, we have used only those based on reaction of electrons return (which widely used nowadays in vitro. Obtained in different ways results demonstrate high reduction capacity of the extracts and possibility to select suitable analytical methods for each case.

  3. Diversity of Cyanobacterium Nostoc and Its Conservancy in Lithuania

    Directory of Open Access Journals (Sweden)

    Ina Špakaitė

    2011-04-01

    Full Text Available The article discusses the diversity, distribution and ecology of Nostoc genus in Lithuania. Nine Nostoc species including N. caeruleum, N. carneum, N. commune, N. ellipsosporum, N. linckia, N. pruniforme, N. punctiforme, N. spongiaeforme and N. verrucosum are recorded the most widespread of which are N. commune and N. caeruleum species. Five species were found in NATURA 2000 territories. The widest diversity of species is recorded in aquatic habitats and only two species (N. commune and N. ellipsosporum are terrestrial. Nostoc species grew in natural and artificial water bodies when water’s pH is 6,0–8,7, temperature - 13,0–27,0 °C and conductivity - 150–390 μS/cm.Article in Lithuanian

  4. Biocidal spectrum of a rice field cyanobacterium Nostoc sp. | Jaiswal ...

    African Journals Online (AJOL)

    The antimicrobial efficacy of hexane, dichloromethane and ethyl acetate extracts of a rice-field cyanobacterium, Nostoc sp., were evaluated against cyanobacteria and phytopathogenic fungi. The maximum production of biocidal compounds was observed in cultures grown for 20 days under optimized conditions (phosphate ...

  5. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    Directory of Open Access Journals (Sweden)

    Wolf Sarah

    2011-09-01

    Full Text Available Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2 and Fibrisoma limi (BUZ 3 with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82 were studied in mixed cultures under nutrient rich (carbon source present in medium and poor (carbon source absent in medium conditions. Findings F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action. The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc. The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Conclusions Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  6. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Svercel, Miroslav; Saladin, Bianca; van Moorsel, Sofia J; Wolf, Sarah; Bagheri, Homayoun C

    2011-09-13

    Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. F. aestuarina BUZ 2 significantly reduced the cyanobacterial population whereas F. limi BUZ 3 did not. Physical contact between heterotrophs and autotroph was observed and the cyanobacterial cells showed some level of damage and lysis. Therefore, either contact lysis or entrapment with production of extracellular compounds in close vicinity of host cells could be considered as potential modes of action.The supernatants from pure heterotrophic cultures did not have an effect on Nostoc cultures. However, supernatant from mixed cultures of BUZ 2 and Nostoc had a negative effect on cyanobacterial growth, indicating that the lytic compounds were only produced in the presence of Nostoc.The growth and survival of tested heterotrophs was enhanced by the presence of Nostoc or its metabolites, suggesting that the heterotrophs could utilize the autotrophs and its products as a nutrient source. However, the autotroph could withstand and out-compete the heterotrophs under nutrient poor conditions. Our results suggest that the nutrients in cultivation media, which boost or reduce the number of heterotrophs, were the important factor influencing the outcome of the interplay between filamentous heterotrophs and autotrophs. For better understanding of these interactions, additional research is needed. In particular, it is necessary to elucidate the mode of action for lysis by heterotrophs, and the possible defense mechanisms of the autotrophs.

  7. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Arabinogalactan proteins occur in the free-living cyanobacterium genus Nostoc and in plant-Nostoc symbioses.

    Science.gov (United States)

    Jackson, Owen; Taylor, Oliver; Adams, David G; Knox, J Paul

    2012-10-01

    Arabinogalactan proteins (AGP) are a diverse family of proteoglycans associated with the cell surfaces of plants. AGP have been implicated in a wide variety of plant cell processes, including signaling in symbioses. This study investigates the existence of putative AGP in free-living cyanobacterial cultures of the nitrogen-fixing, filamentous cyanobacteria Nostoc punctiforme and Nostoc sp. strain LBG1 and at the symbiotic interface in the symbioses between Nostoc spp. and two host plants, the angiosperm Gunnera manicata (in which the cyanobacterium is intracellular) and the liverwort Blasia pusilla (in which the cyanobacterium is extracellular). Enzyme-linked immunosorbent assay, immunoblotting, and immunofluorescence analyses demonstrated that three AGP glycan epitopes (recognized by monoclonal antibodies LM14, MAC207, and LM2) are present in free-living Nostoc cyanobacterial species. The same three AGP glycan epitopes are present at the Gunnera-Nostoc symbiotic interface and the LM2 epitope is detected during the establishment of the Blasia-Nostoc symbiosis. Bioinformatic analysis of the N. punctiforme genome identified five putative AGP core proteins that are representative of AGP classes found in plants. These results suggest a possible involvement of AGP in cyanobacterial-plant symbioses and are also suggestive of a cyanobacterial origin of AGP.

  9. A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, S.; Chen, T.W.; Boeger, P. (Universitaet Konstanz (West Germany))

    1988-12-01

    A new ultraviolet (UV)-A/B absorbing pigment with maxima at 312 and 330 nanometers from the cosmopolitan terrestrial cyanobacterium Nostoc commune is described. The pigment is found in high amounts (up to 10% of dry weight) in colonies grown under solar UV radiation but only in low concentrations in laboratory cultures illuminated by artificial light without UV. Its experimental induction by UV as well as its capacity to efficiently protect Nostoc against UV radiation is reported.

  10. Nostoc PCC7524, a cyanobacterium which contains five sequence-specific deoxyribonucleases

    NARCIS (Netherlands)

    Reaston, J.; Duybesteyn, M.G.C.; Waard, Adrian de

    1982-01-01

    Five nucleotide sequence-specific deoxyribonucleases present in cell-free extracts of the filamentous cyanobacterium Nostoc PCC7524 have been purified and characterized. One of these enzymes, designated Nsp(7524)I cleaves at a new kind of nucleotide sequence i.e. 5'-PuCATG λ Py-3'. The other four

  11. Nostoc PCC7524, a cyanobacterium which contains five sequence-specific deoxyribonucleases

    NARCIS (Netherlands)

    Reaston, J.; Duybesteyn, M.G.C.; Waard, Adrian de

    Five nucleotide sequence-specific deoxyribonucleases present in cell-free extracts of the filamentous cyanobacterium Nostoc PCC7524 have been purified and characterized. One of these enzymes, designated Nsp(7524)I cleaves at a new kind of nucleotide sequence i.e. 5'-PuCATG λ Py-3'. The other four

  12. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    Science.gov (United States)

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant microcystin produced by Nostoc sp. strain IO-102-I was the highly toxic [ADMAdda5]microcystin-LR, which accounted for ca. 80% of the total microcystins. We assigned a structure of [DMAdda5]microcystin-LR and [d-Asp3,ADMAdda5]microcystin-LR and a partial structure of three new [ADMAdda5]-XR type of microcystin variants. Interestingly, Nostoc spp. strains IO-102-I and 152 synthesized only the rare ADMAdda and DMAdda subfamilies of microcystin variants. Phylogenetic analyses demonstrated congruence between genes involved directly in microcystin biosynthesis and the 16S rRNA and rpoC1 genes of Nostoc sp. strain IO-102-I. Nostoc sp. strain 152 and the Nostoc sp. strain IO-102-I are distantly related, revealing a sporadic distribution of toxin production in the genus Nostoc. Nostoc sp. strain IO-102-I is closely related to Nostoc punctiforme PCC 73102 and other symbiotic Nostoc strains and most likely belongs to this species. Together, this suggests that other terrestrial and aquatic strains of the genus Nostoc may have retained the genes necessary for microcystin biosynthesis. PMID:15466511

  13. Antagonistic interactions between filamentous heterotrophs and the cyanobacterium Nostoc muscorum

    OpenAIRE

    Wolf Sarah; van Moorsel Sofia J; Saladin Bianca; Svercel Miroslav; Bagheri Homayoun C

    2011-01-01

    Abstract Background Little is known about interactions between filamentous heterotrophs and filamentous cyanobacteria. Here, interactions between the filamentous heterotrophic bacteria Fibrella aestuarina (strain BUZ 2) and Fibrisoma limi (BUZ 3) with an axenic strain of the autotrophic filamentous cyanobacterium Nostoc muscorum (SAG 25.82) were studied in mixed cultures under nutrient rich (carbon source present in medium) and poor (carbon source absent in medium) conditions. Findings F. aes...

  14. Energy Supply System for the Gliding Movement of Hormogonia of the Cyanobacterium Nostoc cycadae

    OpenAIRE

    Masaki, HIROSE; Department of Biology, Faculty of Education, Okayama University

    1987-01-01

    The effects of selected metabolic inhibitors and light on the gliding movement of the hormogonia of the cyanobacterium Nostoc cycadae were examined. Respiratory poisons (sodium cyanide, sodium azide) stopped the movement in the dark, but not in light. DCMU had little effect on the movement in light. The inhibitory effect of monoiodoacetic acid (MIA) on the gliding movement in light was restored by adding DCMU, suggesting that the gliding movement in light is linked to a cyclic electron flow i...

  15. The extracellular-matrix-retaining cyanobacterium Nostoc verrucosum accumulates trehalose, but is sensitive to desiccation.

    Science.gov (United States)

    Sakamoto, Toshio; Kumihashi, Keisuke; Kunita, Shinpei; Masaura, Takuya; Inoue-Sakamoto, Kaori; Yamaguchi, Masaaki

    2011-08-01

    The aquatic cyanobacterium Nostoc verrucosum forms macroscopic colonies, which consist of both cellular filaments and massive extracellular matrix material. In this study, the physiological features of N. verrucosum were investigated and compared with those of the anhydrobiotic cyanobacterium Nostoc commune. Nostoc verrucosum cells were sensitive to desiccation, but tolerant of freeze-thawing treatment in terms of both cell viability and photosynthetic O(2) evolution. Natural colonies of these cyanobacteria contained similar levels of chlorophyll a, carotenoids, the UV-absorbing pigments scytonemin and mycosporine-like amino acids, and uronic acid [a component of extracellular polysaccharides (EPS)]. EPS from both N. verrucosum and N. commune indicated low acidity and a high affinity for divalent cations, although their sugar compositions differed. The WspA protein, known to be a major component of the extracellular matrix of N. commune, was detected in N. verrucosum. Desiccation caused similarly high levels of trehalose accumulation in both cyanobacteria. Although previously considered relevant to anhydrobiosis in the terrestrial cyanobacterium N. commune, the data presented here suggest that extracellular matrix production and trehalose accumulation are not enough for standing extreme desiccation in N. verrucosum. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Discovery of Rare and Highly Toxic Microcystins from Lichen-Associated Cyanobacterium Nostoc sp. Strain IO-102-I

    OpenAIRE

    Oksanen, Ilona; Jokela, Jouni; Fewer, David P.; Wahlsten, Matti; Rikkinen, Jouko; Sivonen, Kaarina

    2004-01-01

    The production of hepatotoxic cyclic heptapeptides, microcystins, is almost exclusively reported from planktonic cyanobacteria. Here we show that a terrestrial cyanobacterium Nostoc sp. strain IO-102-I isolated from a lichen association produces six different microcystins. Microcystins were identified with liquid chromatography-UV mass spectrometry by their retention times, UV spectra, mass fragmentation, and comparison to microcystins from the aquatic Nostoc sp. strain 152. The dominant micr...

  17. Cylindrocyclophanes with Proteasome Inhibitory Activity from the Cyanobacterium Nostoc sp

    Science.gov (United States)

    Chlipala, George E.; Sturdy, Megan; Krunic, Aleksej; Lantvit, Daniel D.; Shen, Qi; Porter, Kyle; Swanson, Steven M.; Orjala, Jimmy

    2010-01-01

    Material collected from a parkway in the city of Chicago afforded the isolation of a Nostoc species (UIC 10022A). The extract of this strain displayed significant inhibition of the 20S proteasome as well as antiproliferative activity against HT29, MCF7, NCI-H460, and SF268 cancer cell lines. A standardized dereplication protocol allowed for the rapid identification of three known (11-13) and nine new (1-9) chlorinated cylindrocyclophanes from less than 100 mg of organic extract. Scale-up isolation of 1-9 and 11-13 from a larger extract was guided by LC-UV-MS data. In addition, KBr enrichment of the culture media afforded the isolation of a brominated cylindrocyclophane (10). Biological evaluation of 1-5, 9, and 10-13 revealed a large range of activity against the 20S proteasome and allowed the determination of preliminary structure-activity relationships (SAR) of the cylindrocyclophane pharmacophore. PMID:20825206

  18. Transcription and Regulation of the Bidirectional Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120▿

    Science.gov (United States)

    Sjöholm, Johannes; Oliveira, Paulo; Lindblad, Peter

    2007-01-01

    The filamentous, heterocystous cyanobacterium Nostoc sp. strain PCC 7120 (Anabaena sp. strain PCC 7120) possesses an uptake hydrogenase and a bidirectional enzyme, the latter being capable of catalyzing both H2 production and evolution. The completely sequenced genome of Nostoc sp. strain PCC 7120 reveals that the five structural genes encoding the bidirectional hydrogenase (hoxEFUYH) are separated in two clusters at a distance of approximately 8.8 kb. The transcription of the hox genes was examined under nitrogen-fixing conditions, and the results demonstrate that the cluster containing hoxE and hoxF can be transcribed as one polycistronic unit together with the open reading frame alr0750. The second cluster, containing hoxU, hoxY, and hoxH, is transcribed together with alr0763 and alr0765, located between the hox genes. Moreover, alr0760 and alr0761 form an additional larger operon. Nevertheless, Northern blot hybridizations revealed a rather complex transcription pattern in which the different hox genes are expressed differently. Transcriptional start points (TSPs) were identified 66 and 57 bp upstream from the start codon of alr0750 and hoxU, respectively. The transcriptions of the two clusters containing the hox genes are both induced under anaerobic conditions concomitantly with the induction of a higher level of hydrogenase activity. An additional TSP, within the annotated alr0760, 244 bp downstream from the suggested translation start codon, was identified. Electrophoretic mobility shift assays with purified LexA from Nostoc sp. strain PCC 7120 demonstrated specific interactions between the transcriptional regulator and both hox promoter regions. However, when LexA from Synechocystis sp. strain PCC 6803 was used, the purified protein interacted only with the promoter region of the alr0750-hoxE-hoxF operon. A search of the whole Nostoc sp. strain PCC 7120 genome demonstrated the presence of 216 putative LexA binding sites in total, including recA and rec

  19. The hmp chemotaxis cluster regulates gliding in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Cozy, Loralyn M; Callahan, Sean M

    2014-04-01

    Many bacteria are capable of movement over surfaces without flagella or pili; they glide. Nostoc punctiforme is a cyanobacterium that differentiates specialized gliding filaments called hormogonia, but the mechanism underlying their movement is currently unknown. Risser et al. characterize the hormogonia motility and polysaccharide (hmp) locus that encodes proteins homologous to well-studied chemotaxis systems. All but one of the genes in the locus were required for gliding motility and each protein localized as a ring near the cell junction. One protein, the CheA homologue HmpE, was capable of autophosphorylation and phosphotransfer to the CheY homologue HmpB. This study reveals the hmp locus as an important regulator of gliding and highlights N. punctiforme as a model for understanding gliding motility in a complex multicellular bacterium. © 2014 John Wiley & Sons Ltd.

  20. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Birgitta Bergman

    2013-08-01

    Full Text Available Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA, proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay, even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms.

  1. Composition and occurrence of lipid droplets in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Peramuna, Anantha; Summers, Michael L

    2014-12-01

    Inclusions of neutral lipids termed lipid droplets (LDs) located throughout the cell were identified in the cyanobacterium Nostoc punctiforme by staining with lipophylic fluorescent dyes. LDs increased in number upon entry into stationary phase and addition of exogenous fructose indicating a role for carbon storage, whereas high-light stress did not increase LD numbers. LD accumulation increased when nitrate was used as the nitrogen source during exponential growth as compared to added ammonia or nitrogen-fixing conditions. Analysis of isolated LDs revealed enrichment of triacylglycerol (TAG), α-tocopherol, and C17 alkanes. LD TAG from exponential phase growth contained mainly saturated C16 and C18 fatty acids, whereas stationary phase LD TAG had additional unsaturated fatty acids characteristic of whole cells. This is the first characterization of cyanobacterial LD composition and conditions leading to their production. Based upon their abnormally large size and atypical location, these structures represent a novel sub-organelle in cyanobacteria.

  2. BMAA Inhibits Nitrogen Fixation in the Cyanobacterium Nostoc sp. PCC 7120

    Science.gov (United States)

    Berntzon, Lotta; Erasmie, Sven; Celepli, Narin; Eriksson, Johan; Rasmussen, Ulla; Bergman, Birgitta

    2013-01-01

    Cyanobacteria produce a range of secondary metabolites, one being the neurotoxic non-protein amino acid β-N-methylamino-L-alanine (BMAA), proposed to be a causative agent of human neurodegeneration. As for most cyanotoxins, the function of BMAA in cyanobacteria is unknown. Here, we examined the effects of BMAA on the physiology of the filamentous nitrogen-fixing cyanobacterium Nostoc sp. PCC 7120. Our data show that exogenously applied BMAA rapidly inhibits nitrogenase activity (acetylene reduction assay), even at micromolar concentrations, and that the inhibition was considerably more severe than that induced by combined nitrogen sources and most other amino acids. BMAA also caused growth arrest and massive cellular glycogen accumulation, as observed by electron microscopy. With nitrogen fixation being a process highly sensitive to oxygen species we propose that the BMAA effects found here may be related to the production of reactive oxygen species, as reported for other organisms. PMID:23966039

  3. Merocyclophanes C and D from the Cultured Freshwater Cyanobacterium Nostoc sp. (UIC 10110).

    Science.gov (United States)

    May, Daniel S; Chen, Wei-Lun; Lantvit, Daniel D; Zhang, Xiaoli; Krunic, Aleksej; Burdette, Joanna E; Eustaquio, Alessandra; Orjala, Jimmy

    2017-04-28

    Merocyclophanes C and D (1 and 2) were isolated from the cell extract of the cultured cyanobacterium UIC 10110. The structures were determined by one-dimensional nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry and confirmed by 2D NMR techniques. The absolute configurations were determined using electronic circular dichroism spectroscopy. Merocyclophanes C and D represent the first known analogues of the merocyclophane core structure, a recently discovered scaffold of [7,7] paracyclophanes characterized by an α-branched methyl at C-1/C-14; 1 and 2 showed antiproliferative activity against the MDA-MB-435 cell line with IC50 values of 1.6 and 0.9 μM, respectively. Partial 16S analysis determined UIC 10110 to be a Nostoc sp., and it was found to clade with UIC 10062 Nostoc sp., the only other strain known to produce merocyclophanes. The genome of UIC 10110 was sequenced, and a biosynthetic gene cluster was identified that is proposed to encode type I and type III polyketide synthases that are potentially responsible for production of the merocyclophanes; however, further experiments will be required to verify the true function of the gene cluster. The gene cluster provides a genetic basis for the observed structural differences of the [7,7] paracyclophane core structures.

  4. A novel alpha-amylase from the cyanobacterium Nostoc sp. PCC 7119.

    Science.gov (United States)

    Reyes-Sosa, Francisco M; Molina-Heredia, Fernando P; De la Rosa, Miguel A

    2010-03-01

    Little information is yet available on the alpha-amylases of cyanobacteria. Here, the presence of an alpha-amylase in the cyanobacterium Nostoc sp. PCC 7119 is first demonstrated. A gene (amy1) encoding a cytoplasmic alpha-amylase (Amy1) protein has been identified, cloned, and overexpressed in Escherichia coli cells. The recombinant protein is a 56.7-kDa monomer, which has been purified to electrophoretic homogeneity by affinity chromatography. The substrate specificity and end product analyses confirm that it is a calcium-dependent alpha-amylase enzyme, which exhibits its maximum activity at 31 degrees C and at pH between 6.5 and 7.5. The Amy1 protein breaks down mainly starch, is also able to cleave glycogen and dextrin, and exhibits no activity against xylan or pullulan. So the enzyme cannot efficiently attack the maltodextrins with degrees of polymerization below that of maltooctaose. Maltotriose, maltose, and maltotetraose are the major products of the enzymatic reaction with starch as substrate. The enzyme shows a very high turnover number against soluble potato starch (3,420 +/- 270 s(-1)), as compared with other alpha-amylases reported in the literature. The high catalytic efficiency and relatively low optimum temperature of the Nostoc Amy1 protein make this previously unexplored group of cyanobacterial enzymes of great interest for further physiological studies and industrial applications.

  5. Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ekman, Martin; Sandh, Gustaf; Nenninger, Anja; Oliveira, Paulo; Stensjö, Karin

    2014-03-01

    Ferritin-like proteins constitute a remarkably heterogeneous protein family, including ferritins, bacterioferritins and Dps proteins. The genome of the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme encodes five ferritin-like proteins. In the present paper, we report a multidimensional characterization of these proteins. Our phylogenetic and bioinformatics analyses suggest both structural and physiological differences among the ferritin-like proteins. The expression of these five genes responded differently to hydrogen peroxide treatment, with a significantly higher rise in transcript level for Npun_F3730 as compared with the other four genes. A specific role for Npun_F3730 in the cells tolerance against hydrogen peroxide was also supported by the inactivation of Npun_F3730, Npun_R5701 and Npun_R6212; among these, only the ΔNpun_F3730 strain showed an increased sensitivity to hydrogen peroxide compared with wild type. Analysis of promoter-GFP reporter fusions of the ferritin-like genes indicated that Npun_F3730 and Npun_R5701 were expressed in all cell types of a diazotrophic culture, while Npun_F6212 was expressed specifically in heterocysts. Our study provides the first comprehensive analysis combining functional differentiation and cellular specificity within this important group of proteins in a multicellular cyanobacterium. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis.

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L; Meeks, John C; Flores, Enrique

    2013-04-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using (14)C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work.

  7. Identification of the n-1 fatty acid as an antibacterial constituent from the edible freshwater cyanobacterium Nostoc verrucosum.

    Science.gov (United States)

    Oku, Naoya; Yonejima, Kohsuke; Sugawa, Takao; Igarashi, Yasuhiro

    2014-01-01

    The cyanobacterium Nostoc verrucosum occurs in cool, clear streams and its gelatinous colonies, called "ashitsuki," have been eaten in ancient Japan. Its ethanolic extract was found to inhibit the growth of Gram-positive bacteria and activity-guided fractionation yielded an unusual n-1 fatty acid, (9Z,12Z)-9,12,15-hexadecatrienoic acid (1), as one of the active principles. It inhibited the growth of Staphylococcus aureus at MIC 64 μg/mL.

  8. Arsenic Demethylation by a C·As Lyase in Cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yan, Yu; Ye, Jun; Xue, Xi-Mei; Zhu, Yong-Guan

    2015-12-15

    Arsenic, a ubiquitous toxic substance, exists mainly as inorganic forms in the environment. It is perceived that organoarsenicals can be demethylated and degraded into inorganic arsenic by microorganisms. Few studies have focused on the mechanism of arsenic demethylation in bacteria. Here, we investigated arsenic demethylation in a typical freshwater cyanobacterium Nostoc sp. PCC 7120. This bacterium was able to demethylate monomethylarsenite [MAs(III)] rapidly to arsenite [As(III)] and also had the ability to demethylate monomethylarsenate [MAs(V)] to As(III). The NsarsI encoding a C·As lyase responsible for MAs(III) demethylation was cloned from Nostoc sp. PCC 7120 and heterologously expressed in an As-hypersensitive strain Escherichia coli AW3110 (ΔarsRBC). Expression of NsarsI was shown to confer MAs(III) resistance through arsenic demethylation. The purified NsArsI was further identified and functionally characterized in vitro. NsArsI existed mainly as the trimeric state, and the kinetic data were well-fit to the Hill equation with K0.5 = 7.55 ± 0.33 μM for MAs(III), Vmax = 0.79 ± 0.02 μM min(-1), and h = 2.7. Both of the NsArsI truncated derivatives lacking the C-terminal 10 residues (ArsI10) or 23 residues (ArsI23) had a reduced ability of MAs(III) demethylation. These results provide new insights for understanding the important role of cyanobacteria in arsenic biogeochemical cycling in the environment.

  9. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-06-21

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.

  10. Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune.

    Science.gov (United States)

    Kesheri, Minu; Kanchan, Swarna; Richa; Sinha, Rajeshwar P

    2014-12-15

    Cyanobacteria are known to endure various stress conditions due to the inbuilt potential for oxidative stress alleviation owing to the presence of an array of antioxidants. The present study shows that Antarctic cyanobacterium Nostoc commune possesses two antioxidative enzymes viz., superoxide dismutase (SOD) and catalase that jointly cope with environmental stresses prevailing at its natural habitat. Native-PAGE analysis illustrates the presence of a single prominent isoform recognized as Fe-SOD and three distinct isoforms of catalase. The protein sequence of Fe-SOD in N. commune retrieved from NCBI protein sequence database was used for in silico analysis. 3D structure of N. commune was predicted by comparative modeling using MODELLER 9v11. Further, this model was validated for its quality by Ramachandran plot, ERRAT, Verify 3D and ProSA-web which revealed good structure quality of the model. Multiple sequence alignment showed high conservation in N and C-terminal domain regions along with all metal binding positions in Fe-SOD which were also found to be highly conserved in all 28 cyanobacterial species under study, including N. commune. In silico prediction of isoelectric point and molecular weight of Fe-SOD was found to be 5.48 and 22,342.98Da respectively. The phylogenetic tree revealed that among 28 cyanobacterial species, Fe-SOD in N. commune was the closest evolutionary homolog of Fe-SOD in Nostoc punctiforme as evident by strong bootstrap value. Thus, N. commune may serve as a good biological model for studies related to survival of life under extreme conditions prevailing at the Antarctic region. Moreover cyanobacteria may be exploited for biochemical and biotechnological applications of enzymatic antioxidants. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  12. Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Jia, Shi-ru; Sun, Ying; Tan, Zhi-lei; Zhong, Cheng; Dai, Yu-jie; Tan, Ning; Shen, Shi-gang

    2014-09-01

    The application of antibiotic treatment with assistance of metabolomic approach in axenic isolation of cyanobacterium Nostoc flagelliforme was investigated. Seven antibiotics were tested at 1-100 mg L(-1), and order of tolerance of N. flagelliforme cells was obtained as kanamycin > ampicillin, tetracycline > chloromycetin, gentamicin > spectinomycin > streptomycin. Four antibiotics were selected based on differences in antibiotic sensitivity of N. flagelliforme and associated bacteria, and their effects on N. flagelliforme cells including the changes of metabolic activity with antibiotics and the metabolic recovery after removal were assessed by a metabolomic approach based on gas chromatography-mass spectrometry combined with multivariate analysis. The results showed that antibiotic treatment had affected cell metabolism as antibiotics treated cells were metabolically distinct from control cells, but the metabolic activity would be recovered via eliminating antibiotics and the sequence of metabolic recovery time needed was spectinomycin, gentamicin > ampicillin > kanamycin. The procedures of antibiotic treatment have been accordingly optimized as a consecutive treatment starting with spectinomycin, then gentamicin, ampicillin and lastly kanamycin, and proved to be highly effective in eliminating the bacteria as examined by agar plating method and light microscope examination. Our work presented a strategy to obtain axenic culture of N. flagelliforme and provided a method for evaluating and optimizing cyanobacteria purification process through diagnosing target species cellular state.

  13. Carbon dioxide regulation of autotrophy and diazotrophy in the nitrogen-fixing cyanobacterium Nostoc muscorum.

    Science.gov (United States)

    Bhargava, Santosh; Chouhan, Shweta; Kaithwas, Vipin; Maithil, Rakesh

    2013-12-01

    To understand how carbon and nitrogen metabolism are regulated in diazotrophically and non-diazotrophically grown cultures of the cyanobacterium Nostoc muscorum, we investigated the role of bicarbonate (HCO₃⁻) in regulating diazotrophy and autotrophy. Results showed that HCO₃⁻ concentration up to 12 mol m⁻³ enhanced growth, specific growth rate, photosynthetic pigments, photosynthetic O₂ evolution and nitrogenase activity under diazotrophic growth conditions. The co-existence of different nitrogen sources in the growth medium further accelerate the examined parameters in the order of NO₃⁻

  14. Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2.

    Science.gov (United States)

    Preisitsch, Michael; Harmrolfs, Kirsten; Pham, Hang T L; Heiden, Stefan E; Füssel, Anna; Wiesner, Christoph; Pretsch, Alexander; Swiatecka-Hagenbruch, Monika; Niedermeyer, Timo H J; Müller, Rolf; Mundt, Sabine

    2015-03-01

    The methanol extract of the Vietnamese freshwater cyanobacterium Nostoc sp. CAVN2 exhibited cytotoxic effects against MCF-7 and 5637 cancer cell lines as well as against nontumorigenic FL and HaCaT cells and was active against methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae. High-resolution mass spectrometric analysis indicated the presence of over 60 putative cyclophane-like compounds in an antimicrobially active methanol extract fraction. A paracyclophanes-focusing extraction and separation methodology led to the isolation of 5 new carbamidocyclophanes (1-5) and 11 known paracyclophanes (6-16). The structures and their stereochemical configurations were elucidated by a combination of spectrometric and spectroscopic methods including HRMS, 1D and 2D NMR analyses and detailed comparative CD analysis. The newly described monocarbamoylated [7.7]paracyclophanes (1, 2, 4 and 5) differ by a varying degree of chlorination in the side chains. Carbamidocyclophane J (3) is the very first reported carbamidocyclophane bearing a single halogenation in both butyl residues. Based on previous studies a detailed phylogenetic examination of cyclophane-producing cyanobacteria was carried out. The biological evaluation of 1-16 against various clinical pathogens highlighted a remarkable antimicrobial activity against MRSA with MICs of 0.1-1.0 μM, and indicated that the level of antibacterial activity is related to the presence of carbamoyl moieties.

  15. Structural Elucidation and Molecular Docking of a Novel Antibiotic Compound from Cyanobacterium Nostoc sp. MGL001

    Science.gov (United States)

    Niveshika; Verma, Ekta; Mishra, Arun K.; Singh, Angad K.; Singh, Vinay K.

    2016-01-01

    Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Further characterization was done using electrospray ionization mass spectroscopy (ESIMS) and nuclear magnetic resonance (NMR) and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy) -5, 8, 13, 16–tetraaza–hexacene - 2, 3 dicarboxylic acid (EMTAHDCA). Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T, and 1LC4) and OmpF porin protein (4GCP, 4GCQ, and 4GCS) which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs. PMID:27965634

  16. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Liaimer, Anton; Helfrich, Eric J N; Hinrichs, Katrin; Guljamow, Arthur; Ishida, Keishi; Hertweck, Christian; Dittmann, Elke

    2015-02-10

    Nostoc punctiforme is a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants and N. punctiforme were shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation of N. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in the pks2(-) mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis with Gunnera manicata and Blasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites within N. punctiforme.

  17. Structural elucidation and molecular docking of a novel antibiotic compound from cyanobacterium Nostoc sp. MGL001

    Directory of Open Access Journals (Sweden)

    Niveshika No Name

    2016-11-01

    Full Text Available Cyanobacteria are rich source of array of bioactive compounds. The present study reports a novel antibacterial bioactive compound purified from cyanobacterium Nostoc sp. MGL001 using various chromatographic techniques viz. thin layer chromatography (TLC and high performance liquid chromatography (HPLC. Further characterization was done using electrospray ionisation mass spectroscopy (ESIMS and nuclear magnetic resonance (NMR and predicted structure of bioactive compound was 9-Ethyliminomethyl-12-(morpholin - 4 - ylmethoxy -5, 8, 13, 16 – tetraaza – hexacene - 2, 3 dicarboxylic acid (EMTAHDCA. Structure of EMTAHDCA clearly indicated that it is a novel compound that was not reported in literature or natural product database. The compound exhibited growth inhibiting effects mainly against the gram negative bacterial strains and produced maximum zone of inhibition at 150 μg/mL concentration. The compound was evaluated through in silico studies for its ability to bind 30S ribosomal fragment (PDB ID: 1YRJ, 1MWL, 1J7T and 1LC4 and OmpF porin protein (4GCP, 4GCQ and 4GCS which are the common targets of various antibiotic drugs. Comparative molecular docking study revealed that EMTAHDCA has strong binding affinity for these selected targets in comparison to a number of most commonly used antibiotics. The ability of EMTAHDCA to bind the active sites on the proteins and 30S ribosomal fragments where the antibiotic drugs generally bind indicated that it is functionally similar to the commercially available drugs.

  18. Glycosylated Porphyra-334 and Palythine-Threonine from the Terrestrial Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    Toshio Sakamoto

    2013-08-01

    Full Text Available Mycosporine-like amino acids (MAAs are water-soluble UV-absorbing pigments, and structurally different MAAs have been identified in eukaryotic algae and cyanobacteria. In this study novel glycosylated MAAs were found in the terrestrial cyanobacterium Nostoc commune (N. commune. An MAA with an absorption maximum at 334 nm was identified as a hexose-bound porphyra-334 derivative with a molecular mass of 508 Da. Another MAA with an absorption maximum at 322 nm was identified as a two hexose-bound palythine-threonine derivative with a molecular mass of 612 Da. These purified MAAs have radical scavenging activities in vitro, which suggests multifunctional roles as sunscreens and antioxidants. The 612-Da MAA accounted for approximately 60% of the total MAAs and contributed approximately 20% of the total radical scavenging activities in a water extract, indicating that it is the major water-soluble UV-protectant and radical scavenger component. The hexose-bound porphyra-334 derivative and the glycosylated palythine-threonine derivatives were found in a specific genotype of N. commune, suggesting that glycosylated MAA patterns could be a chemotaxonomic marker for the characterization of the morphologically indistinguishable N. commune. The glycosylation of porphyra-334 and palythine-threonine in N. commune suggests a unique adaptation for terrestrial environments that are drastically fluctuating in comparison to stable aquatic environments.

  19. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    RANJANA TRIPATHI

    2012-11-01

    Full Text Available Tripathi R, Dhuldhaj UP, Singh S. 2012. Short Communication: Effects of temperature on growth, pigment composition and protein content of an Antarctic Cyanobacterium Nostoc commune. Nusantara Bioscience 4: 134-137. Effect of temperature variation on biomass accumulation, pigment composition and protein content were studied for the cyanobacterium Nostoc commune, isolated from Antarctica. Results confirmed the psychrotrophic behavior (optimum growth temperature 25◦C of the cyanobacterium. Low temperature increased the duration of lag phase and exponential growth phase. Maximum increase in biomass was recorded on 24th day at 25◦C and on 12th day at 50C. The downshift from 25 to 5◦C had almost negligible effect on chl a content. Maximal protein content was recorded for cultures growing at 50C on 12th day. The carotenoids/chl a ratio was maximum (2.48 at 50C on 9th day. It remained almost constant for cultures growing at 5 and 350C. There was an induction in protein synthesis following downshift in temperature from 25 to 5◦C.

  20. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ricci, J N; Morton, R; Kulkarni, G; Summers, M L; Newman, D K

    2017-01-01

    Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid-producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2-methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid-producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2-methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2-methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid-mediated enhancement of nitrogen-rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2-methylhopanes in the rock record during episodes of disrupted nutrient cycling. © 2016 John Wiley & Sons Ltd.

  1. HupW Protease Specifically Required for Processing of the Catalytic Subunit of the Uptake Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120

    Science.gov (United States)

    Lindberg, Pia; Devine, Ellenor; Stensjö, Karin

    2012-01-01

    The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512

  2. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Lijuan Cui

    2017-09-01

    Full Text Available The terrestrial cyanobacterium Nostoc flagelliforme, which contributes to carbon and nitrogen supplies in arid and semi-arid regions, adopts a filamentous colony form. Owing to its herbal and dietary values, this species has been overexploited. Largely due to the lack of understanding on its morphogenesis, artificial cultivation has not been achieved. Additionally, it may serve as a useful model for recognizing the morphological adaptation of colonial cyanobacteria in terrestrial niches. However, it shows very slow growth in native habitats and is easily disintegrated under laboratory conditions. Thus, a novel experimental system is necessary to explore its morphogenetic mechanism. Liquid-cultured N. flagelliforme has been well developed for exopolysaccharide (EPS production, in which microscopic colonies (micro-colonies are generally formed. In this study, we sought to gain some insight into the morphogenesis of N. flagelliforme by examining the effects of two external factors, the EPS and environmental stress-related growth rate, on the morphological shaping of micro-colonies. Our findings indicate that the EPS matrix could act as a basal barrier, leading to the bending of trichomes during their elongation, while very slow growth is conducive to their straight elongation. These findings will guide future cultivation and application of this cyanobacterium for ecological improvement.

  3. A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W

    Science.gov (United States)

    Ekman, Martin; Picossi, Silvia; Campbell, Elsie L.; Meeks, John C.; Flores, Enrique

    2013-01-01

    In cyanobacteria-plant symbioses, the symbiotic nitrogen-fixing cyanobacterium has low photosynthetic activity and is supplemented by sugars provided by the plant partner. Which sugars and cyanobacterial sugar uptake mechanism(s) are involved in the symbiosis, however, is unknown. Mutants of the symbiotically competent, facultatively heterotrophic cyanobacterium Nostoc punctiforme were constructed bearing a neomycin resistance gene cassette replacing genes in a putative sugar transport gene cluster. Results of transport activity assays using 14C-labeled fructose and glucose and tests of heterotrophic growth with these sugars enabled the identification of an ATP-binding cassette-type transporter for fructose (Frt), a major facilitator permease for glucose (GlcP), and a porin needed for the optimal uptake of both fructose and glucose. Analysis of green fluorescent protein fluorescence in strains of N. punctiforme bearing frt::gfp fusions showed high expression in vegetative cells and akinetes, variable expression in hormogonia, and no expression in heterocysts. The symbiotic efficiency of N. punctiforme sugar transport mutants was investigated by testing their ability to infect a nonvascular plant partner, the hornwort Anthoceros punctatus. Strains that were specifically unable to transport glucose did not infect the plant. These results imply a role for GlcP in establishing symbiosis under the conditions used in this work. PMID:23463784

  4. Effect of a combination of two rice herbicides on the cyanobacterium, Nostoc spongiaeforme

    Science.gov (United States)

    Cyanobacteria grow in California rice fields where they form large mats that may smoother seedlings or cause them to dislodge, resulting in yield loss. The most troublesome species is Nostoc spongiaeforme. It is very difficult to control using currently accepted methods, i.e., aerial applications of...

  5. Gene expression of a two-component regulatory system associated with sunscreen biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Janssen, Jacob; Soule, Tanya

    2016-01-01

    Long-wavelength ultraviolet radiation (UVA) can damage cells through photooxidative stress, leading to harmful photosensitized proteins and pigments in cyanobacteria. To mitigate damage, some cyanobacteria secrete the UVA-absorbing pigment scytonemin into their extracellular sheath. Comparative genomic analyses suggest that scytonemin biosynthesis is regulated by the two-component regulatory system (TCRS) proteins encoded by Npun_F1277 and Npun_F1278 in the cyanobacterium Nostoc punctiforme ATCC 29133. To understand the dynamics of these genes, their expression was measured following exposure to UVA, UVB, high visible (VIS) irradiance and oxidative stress for 20, 40 and 60 min. Overall, both genes had statistically similar patterns of expression for all four conditions and were generally upregulated, except for those exposed to UVB by 60 min and for the cells under oxidative stress. The greatest UVA response was an upregulation by 20 min, while the response to UVB was the most dramatic and persisted through 40 min. High VIS irradiance resulted in a modest upregulation, while oxidative stress caused a slight downregulation. Both genes were also found to occur on the same transcript. These results demonstrate that these genes are positively responding to several light-associated conditions, which suggests that this TCRS may regulate more than just scytonemin biosynthesis under UVA stress. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The non-metabolizable sucrose analog sucralose is a potent inhibitor of hormogonium differentiation in the filamentous cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Splitt, Samantha D; Risser, Douglas D

    2016-03-01

    Nostoc punctiforme is a filamentous cyanobacterium which forms nitrogen-fixing symbioses with several different plants and fungi. Establishment of these symbioses requires the formation of motile hormogonium filaments. Once infected, the plant partner is thought to supply a hormogonium-repressing factor (HRF) to maintain the cyanobacteria in a vegetative, nitrogen-fixing state. Evidence implies that sucrose may serve as a HRF. Here, we tested the effects of sucralose, a non-metabolizable sucrose analog, on hormogonium differentiation. Sucralose inhibited hormogonium differentiation at a concentration approximately one-tenth that of sucrose. This result implies that: (1) sucrose, not a sucrose catabolite, is perceived by the cell and (2) inhibition is not due to a more general osmolarity-dependent effect. Additionally, both sucrose and sucralose induced the accrual of a polysaccharide sheath which bound specifically to the lectin ConA, indicating the presence of α-D-mannose and/or α-D-glucose. A ConA-specific polysaccharide was also found to be expressed in N. punctiforme colonies from tissue sections of the symbiotically grown hornwort Anthoceros punctatus. These findings imply that plant-derived sucrose or sucrose analogs may have multiple effects on N. punctiforme, including both repression of hormogonia and the induction of a polysaccharide sheath that may be essential to establish and maintain the symbiotic state.

  7. Immunomodulatory Potential of the Polysaccharide-Rich Extract from Edible Cyanobacterium Nostoc commune

    Directory of Open Access Journals (Sweden)

    Hui-Fen Liao

    2015-11-01

    Full Text Available A dry sample of Nostoc commune from an organic farm in Pingtung city (Taiwan was used to prepare polysaccharide-rich (NCPS extract. The conditioned medium (CM from NCPS-treated human peripheral blood (PB-mononuclear cells (MNC effectively inhibited the growth of human leukemic U937 cells and triggered differentiation of U937 monoblast cells into monocytic/macrophagic lines. Cytokine levels in MNC-CMs showed upregulation of granulocyte/macrophage-colony stimulatory factor and IL-1β and downregulation of IL-6 and IL-17 upon treatment with NCPS. Moreover, murine macrophage RAW264.7 cells treated with NCPS exhibited the stimulatory effects of nitric oxide and superoxide secretion, indicating that NCPS might activate the immunity of macrophages. Collectively, the present study demonstrates that NCPS from N. commune could be potentially used for macrophage activation and consequently inhibited the leukemic cell growth and induced monocytic/macrophagic differentiation.

  8. Identification and characterization of a carboxysomal γ-carbonic anhydrase from the cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    de Araujo, Charlotte; Arefeen, Dewan; Tadesse, Yohannes; Long, Benedict M; Price, G Dean; Rowlett, Roger S; Kimber, Matthew S; Espie, George S

    2014-09-01

    Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the β-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.

  9. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme.

    Science.gov (United States)

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li; Qiu, Bao-Sheng

    2012-10-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future.

  10. Homology modeling and functional sites prediction of azoreductase enzyme from the cyanobacterium Nostoc sp. PCC7120.

    Science.gov (United States)

    Devi, Philem Priyadarshini; Adhikari, Samrat

    2012-12-01

    Industrial dyes such as azodyes are potential environmental pollutants causing deleterious health hazards complications. These dyes are potentially degraded by azoreductase enzyme which is widely distributed in bacteria and also cyanobacteria. The azoreductase enzymes from cyanobacteria have not been explored in detail. Hence this enzyme from Nostoc sp. PCC 7120 has been addressed in detail in the present study considering to explore the physico-chemical properties, evolutionary relationships, functional sites and structural properties using various bioinformatics tools. Four conserved regions were obtained from the multiple sequence analysis. The multiple sequence alignment showed conserved regions at different stretches from 1-11, 40-57, 82-120 and 161-177 amino acid residues. These regions could be used for designing degenerate primers or probes for PCR-based amplification or hybridization-based detection of azoreductase sequences from different source organisms. Domain analysis and functional site prediction showed the presence of functional sites and domain such as flavodoxin like fold responsible for enzyme activity. 3D model was constructed and the best model was selected and validated. Superimposition of the final structure and the template showed variations in certain regions which might be involved in the accommodation of various dyes. Our results may be helpful for further investigations like docking studies as well as in vivo and in vitro conditions although these predictions still need to be studied.

  11. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  13. INFLUENCE OF NOSTOC VAUCHER EX BORNET ET FLAHAULT STRAINS ON GROWTH AND DEVELOPMENT OF PISUM SATIVUM L.

    Directory of Open Access Journals (Sweden)

    Maltsev Ye. I.

    2015-12-01

    Full Text Available We investigated the positive impact of cultures cyanobacteria genus Nostoc Vaucher ex Bornet et Flahault on growth and development of higher plants as an example Pisum sativum L. All the Nostoc species have a positive effect on the viability, germination energy, and biometric characteristics of Pisum sativum. The greatest positive influence was registered for N. entophytum Born. et. Flah. and N. linckia (Roth Bornetet Flahault f. linckia.

  14. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  15. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp. Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Directory of Open Access Journals (Sweden)

    Caroline Chénard

    2016-06-01

    Full Text Available Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages.

  16. Studies of polysaccharides from three edible species of Nostoc (cyanobacteria) with different colony morphologies : structural characterization and effect on the complement system of polysaccharides from Nostoc commune

    NARCIS (Netherlands)

    Brüll, L.P.; Huang, Z.; Thomas-Oates, J.E.; Smestad-Paulsen, B.; Cohen, E.H.; Michaelsen, T.E.

    2000-01-01

    The cyanobacterium Nostoc commune Vaucher produces quite complex extracellular polysaccharides. The cyanobacterium is nitrogen fixing, and on growing the cyanobacterium in media with and without nitrogen, different types of extracellular polysaccharides were obtained. These were also different from

  17. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B.

    Science.gov (United States)

    Chénard, Caroline; Wirth, Jennifer F; Suttle, Curtis A

    2016-06-14

    Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. Filamentous cyanobacteria belonging to the genus Nostoc are widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting

  18. Complete genome sequence of cyanobacterium Nostoc sp. NIES-3756, a potentially useful strain for phytochrome-based bioengineering.

    Science.gov (United States)

    Hirose, Yuu; Fujisawa, Takatomo; Ohtsubo, Yoshiyuki; Katayama, Mitsunori; Misawa, Naomi; Wakazuki, Sachiko; Shimura, Yohei; Nakamura, Yasukazu; Kawachi, Masanobu; Yoshikawa, Hirofumi; Eki, Toshihiko; Kanesaki, Yu

    2016-01-20

    To explore the diverse photoreceptors of cyanobacteria, we isolated Nostoc sp. strain NIES-3756 from soil at Mimomi-Park, Chiba, Japan, and determined its complete genome sequence. The Genome consists of one chromosome and two plasmids (total 6,987,571 bp containing no gaps). The NIES-3756 strain carries 7 phytochrome and 12 cyanobacteriochrome genes, which will facilitate the studies of phytochrome-based bioengineering. Copyright © 2015. Published by Elsevier B.V.

  19. Unprecedented slow growth and mortality of the rare colonial cyanobacterium, Nostoc zetterstedtii, in oligotrophic lakes

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Møller, Claus Lindskov

    2011-01-01

    Centimeter-large colonies of Nostoc zetterstedtii from a Swedish oligotrophic lake had the lowest growth and mortality rates of any studied temperate macrophyte. Annual growth rates at two shallow sites averaged 0.57– 0.73 3 1023 d21, corresponding to doubling times of colony dry weight in 2...... is adapted to pristine Lobelia lakes with clear water and chronically low nutrient levels, but it is threatened by strong attenuation of light by brownification or eutrophication....

  20. Single-cell confocal spectrometry of a filamentous cyanobacterium Nostoc at room and cryogenic temperature. Diversity and differentiation of pigment systems in 311 cells.

    Science.gov (United States)

    Sugiura, Kana; Itoh, Shigeru

    2012-08-01

    The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.

  1. Molecular Cloning and Biochemical Characterization of the Iron Superoxide Dismutase from the Cyanobacterium Nostoc punctiforme ATCC 29133 and Its Response to Methyl Viologen-Induced Oxidative Stress.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Ibrahim, Kalibulla Syed; Vanlalsangi, Rebecca; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2015-12-01

    Superoxide dismutase (SOD) detoxifies cell-toxic superoxide radicals and constitutes an important component of antioxidant machinery in aerobic organisms, including cyanobacteria. The iron-containing SOD (SodB) is one of the most abundant soluble proteins in the cytosol of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133, and therefore, we investigated its biochemical properties and response to oxidative stress. The putative SodB-encoding open reading frame Npun_R6491 was cloned and overexpressed in Escherichia coli as a C-terminally hexahistidine-tagged protein. The purified recombinant protein had a SodB specific activity of 2560 ± 48 U/mg protein at pH 7.8 and was highly thermostable. The presence of a characteristic iron absorption peak at 350 nm, and its sensitivity to H2O2 and azide, confirmed that the SodB is an iron-containing SOD. Transcript level of SodB in nitrogen-fixing cultures of N. punctiforme decreased considerably (threefold) after exposure to an oxidative stress-generating herbicide methyl viologen for 4 h. Furthermore, in-gel SOD activity analysis of such cultures grown at increasing concentrations of methyl viologen also showed a loss of SodB activity. These results suggest that SodB is not the primary scavenger of superoxide radicals induced by methyl viologen in N. punctiforme.

  2. Zn(II) and Cu(II) removal by Nostoc muscorum: a cyanobacterium isolated from a coal mining pit in Chiehruphi, Meghalaya, India.

    Science.gov (United States)

    Goswami, Smita; Diengdoh, Omega L; Syiem, Mayashree B; Pakshirajan, Kannan; Kiran, Mothe Gopi

    2015-03-01

    Nostoc muscorum was isolated from a coal mining pit in Chiehruphi, Meghalaya, India, and its potential to remove Zn(II) and Cu(II) from media and the various biochemical alterations it undergoes during metal stress were studied. Metal uptake measured as a function of the ions removed by N. muscorum from media supplemented independently with 20 μmol/L ZnSO4 and CuSO4 established the ability of this cyanobacterium to remove 66% of Zn(2+) and 71% of Cu(2+) within 24 h of contact time. Metal binding on the cell surface was found to be the primary mode of uptake, followed by internalization. Within 7 days of contact, Zn(2+) and Cu(2+) mediated dissimilar effects on the organism. For instance, although chlorophyll a synthesis was increased by 12% in Zn(2+)-treated cells, it was reduced by 26% in Cu(2+)-treated cells. Total protein content remained unaltered in Zn(2+)-supplemented medium; however, a 15% reduction was noticed upon Cu(2+) exposure. Copper enhanced both photosynthesis and respiration by 15% and 19%, respectively; in contrast, photosynthesis was unchanged and respiration dropped by 11% upon Zn(2+) treatment. Inoculum age also influenced metal removal ability. Experiments in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosynthetic inhibitor), carbonyl cyanide m-chlorophenyl hydrazone (an uncoupler), and exogenous ATP established that metal uptake was energy dependent, and photosynthesis contributed significantly towards the energy pool required to mediate metal removals.

  3. Contribution of two ζ-carotene desaturases to the poly-cis desaturation pathway in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Breitenbach, Jürgen; Bruns, Marius; Sandmann, Gerhard

    2013-07-01

    The presence of two completely unrelated ζ-carotene desaturases CrtQa and CrtQb in some Nostoc strains is unique. CrtQb is the ζ-carotene desaturase, which was acquired by almost all cyanobacteria. The additional CrtQa can be regarded as an evolutionary relict of the CrtI desaturase present in non-photosynthetic bacteria. By reconstruction of the carotene desaturation pathway, we showed that both enzymes from Nostoc PCC 7120 were active. However, they differed in their preferred utilization of ζ-carotene Z isomers. CrtQa converted ζ-carotene isomers that were poorly metabolized by CrtQb. In this respect, CrtQa complemented the reactions of CrtQb, which is an advantage avoiding dead ends in the poly-cis desaturation pathway. In addition to ζ-carotene desaturation, CrtQa still possesses the Z to E isomerase function of the ancestral desaturase CrtI. Biochemical characterization showed that CrtQb is an enzyme with one molecule of tightly bound FAD and acts as a dehydrogenase transferring hydrogen to oxidized plastoquinone.

  4. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing.

    Science.gov (United States)

    Ma, Rui; Lu, Fan; Bi, Yonghong; Hu, Zhengyu

    2015-08-01

    To assess the effects of light intensity and quality on the growth and phycobiliproteins (PBP) accumulation in Nostoc sphaeroides Kützing (N. sphaeroides). Dry weights, dry matter, protein, chlorophyll and PBP contents were higher under 90 μmol m(-2) s(-1) than under other intensities (both higher and lower). Phycocyanin and allophycocyanin increased with light intensity while phycoerythrin decreased. Fresh weights, protein and PBP contents increased at the highest rates under blue light. Red light resulted in higher values of dry matter, phycocyanin and chlorophyll a. White light at 90 μmol m(-2) s(-1) or blue light 30 μmol m(-2) s(-1) were optimal for the growth and phycobiliprotein accumulation in N. sphaeroides.

  5. A Putative O-Linked β-N-Acetylglucosamine Transferase Is Essential for Hormogonium Development and Motility in the Filamentous Cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Khayatan, Behzad; Bains, Divleen K; Cheng, Monica H; Cho, Ye Won; Huynh, Jessica; Kim, Rachelle; Omoruyi, Osagie H; Pantoja, Adriana P; Park, Jun Sang; Peng, Julia K; Splitt, Samantha D; Tian, Mason Y; Risser, Douglas D

    2017-05-01

    Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme, a forward genetic screen was employed. The first gene identified using this screen, designated ogtA, encodes a putative O-linked β-N-acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and ΔogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5' direction of pilA fused to gfp produced lower levels of fluorescence in the ΔogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the ΔogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O-GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia.IMPORTANCE Filamentous cyanobacteria are among the most

  6. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc.

    Science.gov (United States)

    Zelík, Petr; Lukesová, Alena; Voloshko, Ludmila N; Stys, Dalibor; Kopecký, Jirí

    2009-04-01

    Fifty-four cyanobacterial strains of the genus Nostoc from different habitats were screened for acetylcholinesterase inhibitory activity. Water-methanolic extracts from freeze-dried biomasses were tested for inhibitory activity using Ellman's spectrophotometric method. Acetylcholinesterase inhibitory activity higher than 90% was found in the crude extracts of Nostoc sp. str. Lukesova 27/97 and Nostoc ellipsosporum Rabenh. str. Lukesova 51/91. Extracts from Nostoc ellipsosporum str. Lukesova 52/91 and Nostoc linckia f. muscorum (Ag.) Elenk. str. Gromov, 1988, CALU-980 inhibited AChE activity by 84.9% and 65.3% respectively. Moderate AChE inhibitory activity (29.1-37.5%) was found in extracts of Nostoc linckia Roth. str. Gromov, 1962/10, CALU-129, Nostoc muscorum Ag. str. Lukesova 127/97, Nostoc sp. str. Lhotsky, CALU-327 and Nostoc sp. str. Gromov, CALU-998. Extracts from another seven strains showed weak anti-AChE activities. The active component responsible for acetylcholinesterase inhibition was identified in a crude extract of Nostoc sp. str. Lukesova 27/97 using HPLC and found to occur in one single peak.

  7. The Combined Use of in Silico, in Vitro, and in Vivo Analyses to Assess Anti-cancerous Potential of a Bioactive Compound from Cyanobacterium Nostoc sp. MGL001

    Directory of Open Access Journals (Sweden)

    Niveshika

    2017-11-01

    Full Text Available Escalating incidences of cancer, especially in developed and developing countries, demand evaluation of potential unexplored natural drug resources. Here, anticancer potential of 9-Ethyliminomethyl-12-(morpholin-4-ylmethoxy-5,8,13,16-tetraaza -hexacene-2,3-dicarboxylic acid (EMTAHDCA isolated from fresh water cyanobacterium Nostoc sp. MGL001 was screened through in silico, in vitro, and in vivo studies. For in silico analysis, EMTAHDCA was selected as ligand and 11 cancer related proteins (Protein Data Bank ID: 1BIX, 1NOW, 1TE6, 2RCW, 2UVL, 2VCJ, 3CRY, 3HQU, 3NMQ, 5P21, and 4B7P which are common targets of various anticancer drugs were selected as receptors. The results obtained from in silico analysis showed that EMTAHDCA has strong binding affinity for all the 11 target protein receptors. The ability of EMTAHDCA to bind active sites of cancer protein targets indicated that it is functionally similar to commercially available anticancer drugs. For assessing cellular metabolic activities, in vitro studies were performed by using calorimetric assay viz. 3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide (MTT. Results showed that EMTAHDCA induced significant cytotoxic response against Dalton's lymphoma ascites (DLA cells in a dose and time dependent manner with an inhibitory concentration (IC50 value of 372.4 ng/mL after 24 h of incubation. However, in case of normal bone marrow cells, the EMTAHDCA did not induce cytotoxicity as the IC50 value was not obtained even with higher dose of 1,000 ng/mL EMTAHDCA. Further, in vivo studies revealed that the median life span/survival days of tumor bearing mice treated with EMTAHDCA increased significantly with a fold change of ~1.9 and 1.81 corresponding to doses of 5 and 10 mg/kg body weight (B.W. of EMTAHDCA respectively, as compared to the DL group. Our results suggest that 5 mg/kg B.W. is effective since the dose of 10 mg/kg B.W. did not show any significant difference as compared to 5 mg/kg B

  8. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments.

    Science.gov (United States)

    Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin

    2014-12-04

    In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments

  9. Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc)

    Energy Technology Data Exchange (ETDEWEB)

    Dai Guozheng [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China); Deblois, Charles P. [Department des Sciences Biologiques, TOXEN, Canada Research Chair on Ecotoxicology of Aquatic Microorganisms, Universite du Quebec a Montreal, Succursale Centre-ville, C.P. 8888 Montreal, Quebec H3C 3P8 (Canada); Liu Shuwen [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China); Juneau, Philippe [Department des Sciences Biologiques, TOXEN, Canada Research Chair on Ecotoxicology of Aquatic Microorganisms, Universite du Quebec a Montreal, Succursale Centre-ville, C.P. 8888 Montreal, Quebec H3C 3P8 (Canada); Qiu Baosheng [College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei (China); Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei (China)], E-mail: bsqiu@public.wh.hb.cn

    2008-08-29

    Effects of two fertilizers, NH{sub 4}Cl and KCl, on the growth of the edible cyanobacterium Ge-Xian-Mi (Nostoc) and four other cyanobacterial strains were compared at pH 8.3 {+-} 0.2 and 25 deg. C. Their growth was decreased by at least 65% at 10 mmol L{sup -1} NH{sub 4}Cl but no inhibitory effect was observed at the same level of KCl. Meanwhile, the strains exhibited a great variation of sensitivity to NH{sub 4}{sup +} toxicity in the order: Ge-Xian-Mi > Anabaena azotica FACHB 118 > Microcystis aeruginosa FACHB 905 > M. aeruginosa FACHB 315 > Synechococcus FACHB 805. The 96-h EC{sub 50} value for relative growth rate with regard to NH{sub 4}{sup +} for Ge-Xian-Mi was 1.105 mmol L{sup -1}, which was much less than the NH{sub 4}{sup +} concentration in many agricultural soils (2-20 mmol L{sup -1}). This indicated that the use of ammonium as nitrogen fertilizer was responsible for the reduced resource of Ge-Xian-Mi in the paddy field. After 96 h exposure to 1 mmol L{sup -1} NH{sub 4}Cl, the photosynthetic rate, F{sub v}/F{sub m} value, saturating irradiance for photosynthesis and PSII activity of Ge-Xian-Mi colonies were remarkably decreased. The chlorophyll synthesis of Ge-Xian-Mi was more sensitive to NH{sub 4}{sup +} toxicity than phycobiliproteins. Thus, the functional absorption cross section of Ge-Xian-Mi PSII was increased markedly at NH{sub 4}Cl levels {>=}1 mmol L{sup -1} and the electron transport on the acceptor side of PSII was significantly accelerated by NH{sub 4}Cl addition {>=}3 mmol L{sup -1}. Dark respiration of Ge-Xian-Mi was significantly increased by 246% and 384% at 5 and 10 mmol L{sup -1} NH{sub 4}Cl, respectively. The rapid fluorescence rise kinetics indicated that the oxygen-evolving complex of PSII was the inhibitory site of NH{sub 4}{sup +}.

  10. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; Talla, Emmanuel; Janicki, Annick; Denis, Yann; Zhang, Cheng-Cai; Latifi, Amel

    2014-10-01

    The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.

  11. Genetically modified cyanobacterium Nostoc muscorum ...

    Indian Academy of Sciences (India)

    Madhu

    Osmoadaptable organisms, like bacteria and plants, respond to varying levels of inorganic/organic osmotica by .... ted and maintained on nutrient slant containing the proline analog. 2.4 Growth, chlorophyll a and protein .... (Brown and Hellebust 1980), fungi (Jennings and Burke. 1990) and higher plants (Bartels and Nelson ...

  12. Influence of a non-copper algicide on the cyanobacterium, Nostoc spongiaeforme, and the green alga, Hydrodictyon reticulatum, in field and laboratory experiments

    Science.gov (United States)

    Cyanobacteria grow in California rice fields where they form large mats that may smoother seedlings or cause them to dislodge, resulting in yield loss. The most troublesome species is Nostoc spongiaeforme. It is very difficult to control using currently accepted methods, i.e., aerial applications of...

  13. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Wase, Nishikant; Pham, Trong Khoa; Ow, Saw Yen; Wright, Phillip C

    2014-09-23

    A quantitative proteomics and metabolomics analysis was performed using iTRAQ, HPLC and GC-MS in the filamentous cyanobacterium Nostoc punctiforme ATCC 29133 to understand the effect of short and long term UV-A exposure. Changes in the proteome were measured for short-term stress (4-24h) using iTRAQ. Changes in the photosynthetic pigments and intracellular metabolites were observed at exposures of up to 7days (pigments) and up to 11days (intracellular metabolites). To assess iTRAQ measurement quality, pseudo selected reaction monitoring (pSRM) was used, with this confirming underestimation of protein abundance levels by iTRAQ. Our results suggest that short term UV-A radiation lowers the abundance of PS-I and PS-II proteins. We also observed an increase in abundance of intracellular redox homeostasis proteins and plastocyanin. Additionally, we observed statistically significant changes in scytonemin, Chlorophyll A, astaxanthin, zeaxanthin, and β-carotene. Assessment of intracellular metabolites showed significant changes in several, suggesting their potential role in the Nostoc's stress mitigation strategy. Cyanobacteria under UV-A radiation have reduced growth due to intensive damage to essential functions, but the organism shows a defense response by remodeling bioenergetics pathway, induction of the UV protection compound scytonemin and increased levels of proline and tyrosine as a mitigation response. The effect of UV-A radiation on the proteome and intracellular metabolites of N. punctiforme ATCC 29133 including photosynthetic pigments has been described. We also verify the expression of 13 iTRAQ quantified protein using LC-pSRM. Overall we observed that UV-A radiation has a drastic effect on the photosynthetic machinery, photosynthetic pigments and intracellular amino acids. As a mitigation strategy against UV-A radiation, proline, glycine, and tyrosine were accumulated. Copyright © 2014. Published by Elsevier B.V.

  14. Linckia rosenbergi Von Martens, a Synonym of L. laevigata (L.)

    NARCIS (Netherlands)

    Engel, H.

    1942-01-01

    When Clark (1921) cleared the genus Linckia from superfluous synonyms, he could give no opinion on Linckia rosenbergi Von Martens 1866, p. 63 from Amboina. The unique holotype was in the Berlin Museum and hence not easily accessible to him, the species had not been described again. In his key Clark

  15. The two Dps proteins, NpDps2 and NpDps5, are involved in light-induced oxidative stress tolerance in the N2-fixing cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Moparthi, Vamsi K; Li, Xin; Vavitsas, Konstantinos; Dzhygyr, Ievgen; Sandh, Gustaf; Magnuson, Ann; Stensjö, Karin

    2016-11-01

    Cyanobacteria are photosynthetic prokaryotes that are considered biotechnologically prominent organisms for production of high-value compounds. Cyanobacteria are subject to high-light intensities, which is a challenge that needs to be addressed in design of efficient bio-engineered photosynthetic organisms. Dps proteins are members of the ferritin superfamily and are omnipresent in prokaryotes. They play a major role in oxidative stress protection and iron homeostasis. The filamentous, heterocyst-forming Nostoc punctiforme, has five Dps proteins. In this study we elucidated the role of these Dps proteins in acclimation to high light intensity, the gene loci organization and the transcriptional regulation of all five dps genes in N. punctiforme was revealed, and dps-deletion mutant strains were used in physiological characterization. Two mutants defective in Dps2 and Dps5 activity displayed a reduced fitness under increased illumination, as well as a differential Photosystem (PS) stoichiometry, with an elevated Photosystem II to Photosystem I ratio in the dps5 deletion strain. This work establishes a Dps-mediated link between light tolerance, H2O2 detoxification, and iron homeostasis, and provides further evidence on the non-redundant role of multiple Dps proteins in this multicellular cyanobacterium. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CalA, a Cyanobacterial AbrB Protein, Interacts with the Upstream Region of hypC and Acts as a Repressor of Its Transcription in the Cyanobacterium Nostoc sp. Strain PCC 7120▿ †

    Science.gov (United States)

    Agervald, Åsa; Zhang, Xiaohui; Stensjö, Karin; Devine, Ellenor; Lindblad, Peter

    2010-01-01

    The filamentous, heterocystous, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain, depending on growth conditions, up to two hydrogenases directly involved in hydrogen metabolism. HypC is one out of at least seven auxiliary gene products required for synthesis of a functional hydrogenase, specifically involved in the maturation of the large subunit. In this study we present a protein, CalA (Alr0946 in the genome), belonging to the transcription regulator family AbrB, which in protein-DNA assays was found to interact with the upstream region of hypC. Transcriptional investigations showed that calA is cotranscribed with the downstream gene alr0947, which encodes a putative protease from the abortive infection superfamily, Abi. CalA was shown to interact specifically not only with the upstream region of hypC but also with its own upstream region, acting as a repressor on hypC. The bidirectional hydrogenase activity was significantly downregulated when CalA was overexpressed, demonstrating a correlation with the transcription factor, either direct or indirect. In silico studies showed that homologues to both CalA and Alr0947 are highly conserved proteins within cyanobacteria with very similar physical organizations of the corresponding structural genes. Possible functions of the cotranscribed downstream protein Alr0947 are presented. In addition, we present a three-dimensional (3D) model of the DNA binding domain of CalA and putative DNA binding mechanisms are discussed. PMID:20023111

  17. Comparison of bacterial community structures of terrestrial cyanobacterium Nostoc flagelliforme in three different regions of China using PCR-DGGE analysis.

    Science.gov (United States)

    Han, Pei-pei; Shen, Shi-gang; Jia, Shi-ru; Wang, Hui-yan; Zhong, Cheng; Tan, Zhi-lei; Lv, He-xin

    2015-07-01

    Filamentous Nostoc flagelliforme form colloidal complex, with beaded cells interacting with other bacteria embedded in the complex multilayer sheath. However, the species of bacteria in the sheath and the interaction between N. flagelliforme and associated bacteria remain unclear. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was used to investigate the bacterial communities of N. flagelliforme from three regions of China. DGGE patterns showed variations in all samples, exhibiting 25 discrete bands with various intensities. The diversity index analysis of bands profiles suggested the high similarity of bacterial communities to each other but also the dependence of microbial composition on each location. Phylogenetic affiliation indicated that the majority of the sequences obtained were affiliated with Actinobacteria, Cyanobacteria, Proteobacteria, Acidobacteria, Bacteroidetes, of which Cyanobacteria was dominant, followed the Proteobacteria. Members of the genus Nostoc were the most abundant in all samples. Rhizobiales and Actinobacteria were identified, whereas, Craurococcus, Caulobacter, Pseudomonas, Terriglobus and Mucilaginibacter were also identified at low levels. Through comparing the bacterial composition of N. flagelliforme from different regions, it was revealed that N. flagelliforme could facilitate the growth of other microorganisms including both autotrophic bacteria and heterotrophic ones and positively contributed to their harsh ecosystems. The results indicated N. flagelliforme played an important role in diversifying the microbial community composition and had potential application in soil desertification.

  18. [Cyanobacterium Nostoc paludosum Kütz as a basis of creation of agriculturally useful microbial associations by the example of bacteria of the genus Rhizobium].

    Science.gov (United States)

    Pankratova, E M; Trefilova, L V; Ziablykh, R Iu; Ustiuzhanin, I A

    2008-01-01

    Different species of Rhizobium were successfully introduced into the extracellular slime of Nostoc paludosum (Kütz) Elenk, strain 18; cyanobacteria did not eliminate them and exhibited no specificity to the introduced species. Both partners were shown to exist in a self-sufficient manner in an artificial consortium, the stability of which is determined by the technology of growing the cultures in collections. Cyanobacteria act as carriers of introduced satellites, providing contact with the inoculated material through the slime, and increase the nitrogen-fixing ability of legume plants due to the increase of the number and activity of nodules. The fact of penetration of cyanobacterial hormogonia into the nodules has been noted. The treatment of seeds by the consortium resulted in an increase of the harvest as compared with the standard methods of nitragin treatment of legumes.

  19. Novel glycosylated mycosporine-like amino acid, 13-O-(β-galactosyl)-porphyra-334, from the edible cyanobacterium Nostoc sphaericum-protective activity on human keratinocytes from UV light.

    Science.gov (United States)

    Ishihara, Kenji; Watanabe, Ryuichi; Uchida, Hajime; Suzuki, Toshiyuki; Yamashita, Michiaki; Takenaka, Hiroyuki; Nazifi, Ehsan; Matsugo, Seiichi; Yamaba, Minami; Sakamoto, Toshio

    2017-07-01

    A UV-absorbing compound was purified and identified as a novel glycosylated mycosporine-like amino acid (MAA), 13-O-β-galactosyl-porphyra-334 (β-Gal-P334) from the edible cyanobacterium Nostoc sphaericum, known as "ge xian mi" in China and "cushuro" in Peru. Occurrence of the hexosylated derivative of shinorine (hexosyl-shinorine) was also supported by LC-MS/MS analysis. β-Gal-P334 accounted for about 86.5% of total MAA in N. sphaericum, followed by hexosyl-shinorine (13.2%) and porphyra-334 (0.2%). β-Gal-P334 had an absorption maximum at 334nm and molecular absorption coefficient was 46,700 at 334nm. Protection activity of β-Gal-P334 from UVB and UVA+8-methoxypsoralen induced cell damage on human keratinocytes (HaCaT) was assayed in comparison with other MAA (porphyra-334, shinorine, palythine and mycosporine-glycine). The UVB protection activity was highest in mycosporine-glycine, followed by palythine, β-Gal-P334, porphyra-334 and shinorine in order. β-Gal-P334 had highest protection activity from UVA+8-methoxypsoralen induced cell damage followed by porphyra-334, shinorine, mycosporine-glycine and palythine. We also found an antioxidant (radical-scavenging) activity of β-Gal-P334 by colorimetric and ESR methods. From these findings, β-Gal-P334 was suggested to play important roles in stress tolerant mechanisms such as UV and oxidative stress in N. sphaericum as a major MAA. We also consider that the newly identified MAA, β-Gal-P334 has a potential for use as an ingredient of cosmetics and toiletries. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Consumption of fa cai Nostoc soup: a potential for BMAA exposure from Nostoc cyanobacteria in China?

    Science.gov (United States)

    Roney, Britton R; Renhui, Li; Banack, Sandra Anne; Murch, Susan; Honegger, Rosmarie; Cox, Paul Alan

    2009-01-01

    Grown in arid regions of western China the cyanobacterium Nostoc flagelliforme--called fa cai in Mandarin and fat choy in Cantonese--is wild-harvested and used to make soup consumed during New Year's celebrations. High prices, up to $125 USD/kg, led to overharvesting in Inner Mongolia, Ningxia, Gansu, Qinghai, and Xinjiang. Degradation of arid ecosystems, desertification, and conflicts between Nostoc harvesters and Mongol herdsmen concerned the Chinese environmental authorities, leading to a government ban of Nostoc commerce. This ban stimulated increased marketing of a substitute made from starch. We analysed samples purchased throughout China as well as in Chinese markets in the United States and the United Kingdom. Some were counterfeits consisting of dyed starch noodles. A few samples from California contained Nostoc flagelliforme but were adulterated with starch noodles. Other samples, including those from the United Kingdom, consisted of pure Nostoc flagelliforme. A recent survey of markets in Cheng Du showed no real Nostoc flagelliforme to be marketed. Real and artificial fa cai differ in the presence of beta-N-methylamino-L-alanine (BMAA). Given its status as a high-priced luxury food, the government ban on collection and marketing, and the replacement of real fa cai with starch substitutes consumed only on special occasions, it is anticipated that dietary exposure to BMAA from fa cai will be reduced in the future in China.

  1. The Nostoc punctiforme Genome

    Energy Technology Data Exchange (ETDEWEB)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.

  2. Production of cyanobacterial toxins from two Nostoc species (Nostocales and evaluation of their cytotoxicity in vitro

    Directory of Open Access Journals (Sweden)

    RUMEN MLADENOV

    2012-01-01

    Full Text Available Cyanobacteria are among the oldest autotrophic organisms with cosmopolitan distribution and known as producers of secondary metabolites with toxic properties named "cyanotoxins". Studies with respect to toxin production of genus Nostoc are yet limited. In the present study we have investigated two Nostoc species (Nostoc linckia and Nostoc punctiforme for production of intracellular and/or extracellular compounds with cytotoxic potential. Extracts and algal growth media were assessed by different in vitro tests using freshly established mouse primary cultures from different tissues and one fish cell line. Our data showed that the mouse cells are more sensitive to toxic compounds than the fish cells. Both Nostoc species produced intracellular and extracellular bioactive compounds with different effects on mouse and fish cells. The presence of cyanotoxins as anatoxin-a and microcystins/nodularin was confirmed by HPLC and ELISA analyses. Therefore, Nostoc species are not only sources of bioactive compounds with therapeutic action, but they can be a potential hazard to aquatic systems as well as to animal and human health.

  3. Molecular and phylogenetic characterization of two species of the genus Nostoc (Cyanobacteria based on the cpcB-IGS-cpcA locus of the phycocyanin operon

    Directory of Open Access Journals (Sweden)

    IVANKA TENEVA

    2012-01-01

    Full Text Available Traditionally, the taxonomy of the genus Nostoc is based on morphological and physiological characters. The extreme morphological variability of the Nostoc species, due to their life cycle and environmental conditions, hampers the correct identification of the individual species. This is also one of the reasons for the disputed taxonomic positions and relationships between the genera Anabaena–Aphanizomenon as well as between Anabaena–Nostoc. Therefore, it is necessary to use additional markers for development of a polyphasic classification system of order Nostocales. In light of this, we here present the first molecular and phy-logenetic characterization of two species of the genus Nostoc (Nostoc linckia and Nostoc punctiforme based on the cpcB-IGS-cpcA locus of the phycocyanin oper-on. The phylogenetic position of these two species within order Nostocales as well as within division Cyanobacteria has been determined. Our results indicate that genus Nostoc is heterogeneous. Analysis of the IGS region between cpcB and cpcA showed that Nostoc and Anabaena are distinct genera. Reported molecular and phylogenetic data will be useful to solve other problematic points in the tax-onomy of genera Aphanizomenon, Anabaena and Nostoc.

  4. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc.

    Science.gov (United States)

    Genuário, Diego Bonaldo; Silva-Stenico, Maria Estela; Welker, Martin; Beraldo Moraes, Luiz Alberto; Fiore, Marli Fátima

    2010-04-01

    A nostocalean nitrogen-fixing cyanobacterium isolated from an eutrophic freshwater reservoir located in Piracicaba, São Paulo, Brazil, was evaluated for the production of hepatotoxic cyclic heptapeptides, microcystins. Morphologically this new cyanobacterium strain appears closest to Nostoc, however, in the phylogenetic analysis of 16S rRNA gene it falls into a highly stable cluster distantly only related to the typical Nostoc cluster. Extracts of Nostoc sp. CENA88 cultured cells, investigated using ELISA assay, gave positive results and the microcystin profile revealed by ESI-Q-TOF/MS/MS analysis confirmed the production of [Dha(7)]MCYST-YR. Further, Nostoc sp. CENA88 genomic DNA was analyzed by PCR for sequences of mcyD, mcyE and mcyG genes of microcystin synthetase (mcy) cluster. The result revealed the presence of mcyD, mcyE and mcyG genes with similarities to those from mcy of Nostoc sp. strains 152 and IO-102-I and other cyanobacterial genera. The phylogenetic tree based on concatenated McyG, McyD and McyE amino acids clustered the sequences according to cyanobacterial genera, with exception of the Nostoc sp. CENA88 sequence, which was placed in a clade distantly related from other Nostoc strains, as previously observed also in the 16S rRNA phylogenetic analysis. The present study describes for the first time a Brazilian Nostoc microcystin producer and also the occurrence of demethyl MCYST-YR variant in this genus. The sequenced Nostoc genes involved in the microcystin synthesis can contribute to a better understanding of the toxigenicity and evolution of this cyanotoxin. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Distribution and hosts of Stellicola (Copepoda, Cyclopoida) associated with Linckia (Asteroidea) in the Indo-West Pacific

    NARCIS (Netherlands)

    Humes, Arthur G.

    1976-01-01

    Five lichomolgid copepods belonging to the genus Stellicola are reported from three species of the sea star genus Linckia in the Moluccas: Stellicola flexilis n. sp. from Linckia guildingi. L. laevigata, and L. multiflora, S. caeruleus (Stebbing, 1900) from L. laevigata, L. guildingi, and L.

  6. Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12.

    Science.gov (United States)

    Hussain, Anwar; Hamayun, Muhammad; Shah, Syed Tariq

    2013-11-01

    Nostoc, a nitrogen-fixing cyanobacterium, has great potential to make symbiotic associations with a wide range of plants and benefit its hosts with nitrogen in the form of nitrates. It may also use phytohormones as a tool to promote plant growth. Phytohormones [cytokinin (Ck) and IAA] were determined in the culture of an endophytic Nostoc isolated from rice roots. The strain was able to accumulate as well as release phytohormones to the culture media. Optimum growth conditions for the production of zeatin and IAA were a temperature of 25 °C and a pH of 8.0. Time-dependent increase in the accumulation and release of phytohormones was recorded. To evaluate the impact of cytokinins, an ipt knockout mutant in the background of Nostoc was generated by homologous recombination method. A sharp decline (up to 80 %) in the zeatin content was observed in the culture of mutant strain Nostoc AHM-12. Association of the mutant and wild type strain with rice and wheat roots was studied under axenic conditions. The efficacy of Nostoc to colonize plant root was significantly reduced (P Nostoc to colonize plant root and promote its growth.

  7. Biochemical characterization of sunscreening mycosporine-like amino acids from two Nostoc species inhabiting diverse habitats.

    Science.gov (United States)

    Richa; Sinha, Rajeshwar P

    2015-01-01

    We have screened two Nostoc species inhabiting diverse habitats for the presence of sunscreening mycosporine-like amino acid (MAA) compounds. The identification and characterization of one MAA (RT 3.1-3.8 min, λmax -334 nm) from both Nostoc species were performed using absorption spectroscopy, high-performance liquid chromatography (HPLC), electrospray ionization-mass spectrometry (ESI-MS), Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Shinorine and porphyra-334 were commonly present in both Nostoc sp. strain HKAR-2 and Nostoc sp. strain HKAR-6. Nostoc sp. strain HKAR-2 also showed the presence of an unknown MAAs with retention time of 6.9 min and a corresponding λmax of 334 nm. Present investigation clearly demonstrated the presence of diverse profile of MAAs in the hot spring cyanobacterium in comparison to the rice field isolate. Thus, Nostoc sp. strain HKAR-2 would be a better source for the production of MAAs that can be used as a potent natural sunscreen against UV-B irradiation.

  8. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    OpenAIRE

    Michael Preisitsch; Heiden, Stefan E.; Monika Beerbaum; Niedermeyer, Timo H J; Marie Schneefeld; Jennifer Herrmann; Jana Kumpfmüller; Andrea Thürmer; Inga Neidhardt; Christoph Wiesner; Rolf Daniel; Rolf Müller; Franz-Christoph Bange; Peter Schmieder; Thomas Schweder

    2016-01-01

    In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes,...

  9. Draft genome sequence of calothrix strain 336/3, a novel h2-producing cyanobacterium isolated from a finnish lake.

    Science.gov (United States)

    Isojärvi, Janne; Shunmugam, Sumathy; Sivonen, Kaarina; Allahverdiyeva, Yagut; Aro, Eva-Mari; Battchikova, Natalia

    2015-01-22

    We announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications. Copyright © 2015 Isojärvi et al.

  10. Feeding behavior of Harlequin Shrimp Hymenocera picta Dana, 1852 (Hymenoceridae on Sea Star Linckia laevigata (Ophidiasteridae

    Directory of Open Access Journals (Sweden)

    S. Prakash

    2013-09-01

    Full Text Available Caridean shrimps did not display any selective feeding regimes. However, the shrimp belongs the genus Hymenocera (Caridea: Hymenoceridae exclusively feeds on starfish, causes potential crisis to the hobbyists those wish to accommodate them in reef aquaria. The present observation deals with the documentation about the feeding behavior of Harlequin Shrimp Hymenocera picta Dana feeds on its favorite prey Blue Star Linckia laevigata (Ophidiasteridae in captivity. The upliftment continues for 30-60 minutes and feeding was initiated by removing the ambulacral feet and gonadal tissues of the Starfish.

  11. Heterologous expression of an algal hydrogenase in a heterocystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, Villavogen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the heterocystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyanobacteria cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  12. Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt.

    Science.gov (United States)

    de O Moreira, Isabela; Passos, Thaís S; Chiapinni, Claudete; Silveira, Gabrielle K; Souza, Joana C M; Coca-Vellarde, Luis Guillermo; Deliza, Rosires; de Lima Araújo, Kátia G

    2012-02-01

    Phycobiliproteins are coloured proteins produced by cyanobacteria, which have several applications because of their colour properties. However, there is no available information about the colour stability of phycobiliproteins from Nostoc sp. in food systems. The aim of this work was to study the colour stability of a purple-coloured phycobiliprotein-rich extract from the cyanobacterium Nostoc PCC9205 in acidic solutions and yogurt. Variations of pH for Nostoc PCC9205 extract have shown stability for the L* (lightness) and a* (redness) indexes in the range 1.0-7.0. The b* index (blueness), however, increased at pH values below 4.0, indicating loss of the blue colour. The Nostoc PCC9205 extract was used as colorant in yogurt (pH 4.17) stored for 60 days. Instrumental colour analysis showed no changes for the L* and a* indexes during storage, whereas the b* index changed after 20 days of storage. A multiple comparison test showed colour instability after 20 days of storage. A hedonic scale test performed on the 60th day of storage showed acceptability of the product. The red component of the phycobiliprotein-rich extract from Nostoc PCC9205 presented an improved stability in acidic media and yogurt compared with the blue component of this extract. Copyright © 2011 Society of Chemical Industry.

  13. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune.

    Science.gov (United States)

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight (134)Cs and 607,000 Bq kg(-1) dry weight (137)Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil.

  14. The CyAbrB transcription factor CalA regulates the iron superoxide dismutase in Nostoc sp. strain PCC 7120.

    Science.gov (United States)

    Agervald, Asa; Baebprasert, Wipawee; Zhang, Xiaohui; Incharoensakdi, Aran; Lindblad, Peter; Stensjö, Karin

    2010-10-01

    In the present investigation the results of induced over-production of the CyAbrB transcription factor CalA (Cyanobacterial AbrB-like, annotated as Alr0946) in the cyanobacterium Nostoc sp. PCC 7120 were analysed. The CalA overexpression strain showed a bleaching phenotype with lower growth rate and truncated filaments 2 days after induction of overexpression. The phenotype was even more pronounced when illumination was increased from 35 to 125 µmol m(-2) s(-1). Using gel-based quantitative proteomics, the induced overexpression of CalA was shown to downregulate the abundance of FeSOD, one of two types of superoxide dismutases in Nostoc sp. PCC 7120. The change in protein abundance was also accompanied by lower transcript as well as activity levels. Purified recombinant CalA from Nostoc sp. PCC 7120 was shown to interact with the promoter region of alr2938, encoding FeSOD, indicating a transcriptional regulation of FeSOD by CalA. The bleaching phenotype is in line with a decreased tolerance against oxidative stress and indicates that CalA is involved in regulation of cellular responses in which FeSOD has an important and specific function in the filamentous cyanobacterium Nostoc sp. PCC 7120. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-10-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. 'Macrozamia riedlei 65.1' and Nostoc sp. 'Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg-1 chlorophyll a in Nostoc sp. 'Macrozamia riedlei 65.1' and 12.5±8.4 ng μg-1 Chl a in Nostoc sp. 'Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har(2)] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml(-1) (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har(2)] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har(2)] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.

  16. Interspecific transmission and recovery of TCBS-induced disease between Acanthaster planci and Linckia guildingi.

    Science.gov (United States)

    Caballes, C F; Schupp, P J; Pratchett, M S; Rivera-Posada, J A

    2012-09-12

    The susceptibility of the coral-feeding crown-of-thorns starfish Acanthaster planci to disease may provide an avenue with which to effectively control population outbreaks that have caused severe and widespread coral loss in the Indo-Pacific. Injecting thiosulfate-citrate-bile-sucrose (TCBS) agar into A. planci tissues induced a disease characterized by dermal lesions, loss of skin turgor, collapsed spines, and accumulation of mucus on spine tips. Moreover, the symptoms (and presumably the agent) of this disease would spread rapidly intraspecifically, but interspecific transmission (to other species of echinoderms) is yet to be examined. Vibrio rotiferianus, which was previously reported as a pathogen isolated from lesions of experimentally infected A. planci, was also recovered from Linckia guildingi lesions after several days of direct contact with diseased A. planci, demonstrating disease transmission. However, all L. guildingi fully recovered after 31 ± 16 d. Further studies are in progress to understand the ecology of Vibrio infection in A. planci and the potential transmission risk to corals, fishes, and other echinoderms to evaluate whether injections of TCBS could be a viable tool for controlling A. planci outbreaks.

  17. Heterologous expression of an algal hydrogenase in a hetero-cystous cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Thorsten Heidorn; Peter Lindblad [Dept. of Physiological Botany, Uppsala University, V illavagen 6, SE-752 36 Uppsala, (Sweden)

    2006-07-01

    For the expression of an active algal [FeFe] hydrogenase in the hetero-cystous cyanobacterium Nostoc punctiforme A TCC 29133 the Chlamydomonas reinhardtii hydrogenase gene hydA1 and the accessory genes hydEF and hydG are to be introduced into the cyano-bacterial cells. The genes were amplified by PCR from EST clones, cloned into the cloning vector pBluescript SK+ and sequenced. An expression vector for multi-cistronic cloning, based on pSCR202, was constructed and for a functional test GFP was inserted as a reporter gene. The GFP construct was transformed into Nostoc punctiforme A TCC 29133 by electroporation and expression of GFP was visualized by fluorescence microscopy. (authors)

  18. Homology modeling, docking studies and functional analysis of various azoreductase accessory interacting proteins of Nostoc sp.PCC7120.

    Science.gov (United States)

    Philem, Priyadarshini Devi; Adhikari, Samrat

    2012-01-01

    Azo dyes have become a threat to public health because of its toxicity and carcinogenicity. Azoreductase enzyme plays a pivotal role in the degradation of azodyes released by industrial effluents and other resources. The degradation pathway has to be studied in detail for increasing the activity of azoreductase and for better degradation of azo dyes. But the data available on cyanobacterial azoreductase enzyme and its degradation pathway are still very less. Therefore the present work explored the azoreductase pathway of the cyanobacterium Nostoc sp. PCC7120 for better understanding of the degradation pathway and the other accessory interacting proteins involved. The accessory interacting proteins of azoreductase from cyanobacterium Nostoc sp. PCC7120 were obtained from STRING database. The proteins do not have a comprehensive three dimensional structure and are hypothetical. The secondary structure and functional analysis indicated that the proteins are all soluble proteins, without disulphide bonds and have alpha helices only. The structural prediction and docking study showed that alr2106, alr1063 and alr2326 have best docking result which tally with the STRING database confidence score and thus these proteins could possibly enhance the azoreductase activity and better dye degradation. These results will pave way for further increase in azoreductase activity and for better understanding of the dye degradation pathway.

  19. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    Science.gov (United States)

    Preisitsch, Michael; Heiden, Stefan E.; Beerbaum, Monika; Niedermeyer, Timo H. J.; Schneefeld, Marie; Herrmann, Jennifer; Kumpfmüller, Jana; Thürmer, Andrea; Neidhardt, Inga; Wiesner, Christoph; Daniel, Rolf; Müller, Rolf; Bange, Franz-Christoph; Schmieder, Peter; Schweder, Thomas; Mundt, Sabine

    2016-01-01

    In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed. PMID:26805858

  20. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    Directory of Open Access Journals (Sweden)

    Michael Preisitsch

    2016-01-01

    Full Text Available In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed.

  1. Effect of cadmium on the bioelement composition of Nostoc UAM208: Interaction with calcium

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Pinas, F.; Mateo, P.; Bonilla, I. [Universidad Autonoma de Madrid (Spain)

    1997-04-01

    Heavy metals may cause effects on the cyanobacterial cell including possible damage to the membranes and leakage from cells resulting in the loss or reduction of essential bioelements. There are many reports in the literature concerning morphological, biochemical and physiological changes caused by cadmium in cyanobacteria, but data on the influence of cadmium on the ion balance of the cell dealing with the interactive effect of cadmium and calcium are limited. Calcium has been found to exert a protective role against heavy metal toxicity in a variety of organisms, We previously reported that calcium is able to counteract the toxic effect of cadmium towards growth, photosynthesis, nitrogenase activity and pigment content of the cyanobacterium Nostoc UAM208. In the present study, we analyzed the content of essential ions, as affected by cadmium treatment, to search for possible mechanisms of heavy metal damage and toxicity in Nostoc. We also studied whether calcium enrichment (1.1 mM final concentration) has any influence on the heavy metal effect on those ionic contents. 13 refs., 2 figs.

  2. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F.; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants. PMID:26376297

  3. Novel Aeruginosin-865 from Nostoc sp. as a potent anti-inflammatory agent.

    Science.gov (United States)

    Kapuścik, Aleksandra; Hrouzek, Pavel; Kuzma, Marek; Bártová, Simona; Novák, Petr; Jokela, Jouni; Pflüger, Maren; Eger, Andreas; Hundsberger, Harald; Kopecký, Jiří

    2013-11-25

    Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi. We used an AlphaLISA assay to measure the levels of proinflammatory mediators IL-8 and ICAM-1 in hTNF-α-stimulated HLMVECs. Aer-865 showed significant reduction of both: with EC50 values of (3.5±1.5) μg mL(-1) ((4.0±1.7) μM) and (50.0±13.4) μg mL(-1) ((57.8±15.5) μM), respectively. Confocal laser scanning microscopy revealed that the anti-inflammatory effect of Aer-865 was directly associated with inhibition of NF-κB translocation to the nucleus. Moreover, Aer-865 did not show any cytotoxic effect. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  5. Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria).

    Science.gov (United States)

    Suradkar, Archana; Villanueva, Chelsea; Gaysina, Lira A; Casamatta, Dale A; Saraf, Aniket; Dighe, Gandhali; Mergu, Ratnaprabha; Singh, Prashant

    2017-05-01

    A filamentous, soil-dwelling cyanobacterial strain (9C-PST) was isolated from Mandsaur, Madhya Pradesh, India, and is described as a new species of the genus Nostoc. Extensive morphological and molecular characterization along with a thorough assessment of ecology was performed. The style of filament orientation, type and nature of the sheath (e.g. distribution and visibility across the trichome), and vegetative and heterocyte cell dimensions and shape were assessed for over one year using both the laboratory grown culture and the naturally occurring samples. Sequencing of the 16S rRNA gene showed 94 % similarity with Nostocpiscinale CENA21 while analyses of the secondary structures of the 16S-23S ITS region showed unique folding patterns that differentiated this strain from other species of Nostoc. The level of rbcl and rpoC1 gene sequence similarity was 91 and 94 % to Nostocsp. PCC 7524 and Nostocpiscinale CENA21, respectively, while the nifD gene sequence similarity was found to be 99 % with Nostocpiscinale CENA21. The phenotypic, ecological, genetic and phylogenetic observations indicate that the strain 9C-PST represents a novel species of the genus Nostoc with the name proposed being Nostoc thermotolerans sp. nov. according to the International Code of Nomenclature for Algae, Fungi, and Plants.

  6. Morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania

    OpenAIRE

    Špakaitė, Ina

    2014-01-01

    The aim of the study was to investigate the morphology, ecology and phylogeny of cyanobacteria belonging to genera Nostoc and Desmonostoc in Lithuania. The detailed research of freshwater and terrestrial Nostoc and Desmonostoc species provided new data on taxonomy, biology and ecology of these cyanobacteria and the overall diversity of algae in Lithuania. 20 Nostoc species and two intraspecific taxa, and 18 taxa to the Nostoc genus level were identified. Twelve Nostoc species and intraspecifi...

  7. Photoinduced reduction of the medial FeS center in the hydrogenase small subunit HupS from Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Hammarström, Leif; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2015-07-01

    The small subunit from the NiFe uptake hydrogenase, HupSL, in the cyanobacterium Nostoc punctiforme ATCC 29133, has been isolated in the absence of the large subunit (P. Raleiras, P. Kellers, P. Lindblad, S. Styring, A. Magnuson, J. Biol. Chem. 288 (2013) 18,345-18,352). Here, we have used flash photolysis to reduce the iron-sulfur clusters in the isolated small subunit, HupS. We used ascorbate as electron donor to the photogenerated excited state of Ru(II)-trisbipyridine (Ru(bpy)3), to generate Ru(I)(bpy)3 as reducing agent. Our results show that the isolated small subunit can be reduced by the Ru(I)(bpy)3 generated through flash photolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. A Proposal on the Restoration of Nostoc flagelliforme for Sustainable Improvement in the Ecology of Arid Steppes in China

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    2016-06-01

    Full Text Available Nostoc flagelliforme, a filamentous nitrogen-fixing cyanobacterium, is widely distributed in arid steppes of the west and northwestern parts of China. However, as a food delicacy this species has been overexploited from 1970 to 2000. Moreover, overgrazing, land reclamation and the removal of medicinal herbs have caused severely reduced vegetation coverage there. In this communication, a badly damaged but slowly rehabilitating N. flagelliforme-inhibiting steppe is described, and the rehabilitation of desertified steppes by the renewed growth of N. flagelliforme is proposed. The restoration of this dominant nitrogen supplier would be an ecologically sustainable solution for supplementing current measures already taken in the desertified regions. In addition, a goal of 50%–60% vegetation coverage is proposed by the N. flagelliforme restoration.

  9. Establishment of an isolation method of Nostoc commune cells free from extracellular polysaccharides (EPS using Percoll centrifugation

    Directory of Open Access Journals (Sweden)

    Makiko Kosugi

    2012-11-01

    Full Text Available The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and Antarctica. N. commune has a large amount of extracellular polysaccharides (EPS that hold moisture and protect the cells and at the same time accumulate light-blocking substances which is believed to play an important part in adaptation to a severe environment. To evaluate the photoadaptation processes in N. commune and clarify the role(s of EPS under ambient environmental condition at Antarctica, separation of cells from EPS is necessary. High yield is a prerequisite for the use of only small amount of natural N. commune from Antarctica. For this purpose, we developed a separation method by improving the Percoll density gradient centrifugation method using an EPS-coated field-grown Nostoc population. We established the most suitable condition to separate naked cells from EPS at high yield retaining high photosynthetic activity. The method is composed of centrifugation of cell homogenated N. commune in 10% (v/v Percoll to separate cells efficiently from EPS followed by fractionating centrifugation to remove impurities using the gradient of Percoll (80% and 50%, v/v.

  10. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    Science.gov (United States)

    Agervald, Åsa; Stensjö, Karin; Holmqvist, Marie; Lindblad, Peter

    2008-01-01

    Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs) were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the assembly of the small subunit of

  11. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2008-04-01

    Full Text Available Abstract Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the

  12. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120.

    Science.gov (United States)

    Agger, Sean A; Lopez-Gallego, Fernando; Hoye, Thomas R; Schmidt-Dannert, Claudia

    2008-09-01

    Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene synthases NP1 and NP2). The second terpene synthase in N. punctiforme (NP2) is homologous to fusion-type sesquiterpene synthases from Streptomyces spp. shown to produce geosmin via an intermediate germacradienol. The enzymes were functionally expressed in Escherichia coli, and their terpene products were structurally identified as germacrene A (from NS1), the eudesmadiene 8a-epi-alpha-selinene (from NP1), and germacradienol (from NP2). The product of NP1, 8a-epi-alpha-selinene, so far has been isolated only from termites, in which it functions as a defense compound. Terpene synthases NP1 and NS1 are part of an apparent minicluster that includes a P450 and a putative hybrid two-component protein located downstream of the terpene synthases. Coexpression of P450 genes with their adjacent located terpene synthase genes in E. coli demonstrates that the P450 from Nostoc sp. can be functionally expressed in E. coli when coexpressed with a ferredoxin gene and a ferredoxin reductase gene from Nostoc and that the enzyme oxygenates the NS1 terpene product germacrene A. This represents to the best of our knowledge the first example of functional expression of a cyanobacterial P450 in E. coli.

  13. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    E. V. Karaushu

    2015-01-01

    Full Text Available Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1. Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  14. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L.

    Science.gov (United States)

    Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A

    2015-01-01

    Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.

  15. Identification of Sesquiterpene Synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. Strain PCC 7120▿ †

    OpenAIRE

    Agger, Sean A.; Lopez-Gallego, Fernando; Hoye, Thomas R.; Schmidt-Dannert, Claudia

    2008-01-01

    Cyanobacteria are a rich source of natural products and are known to produce terpenoids. These bacteria are the major source of the musty-smelling terpenes geosmin and 2-methylisoborneol, which are found in many natural water supplies; however, no terpene synthases have been characterized from these organisms to date. Here, we describe the characterization of three sesquiterpene synthases identified in Nostoc sp. strain PCC 7120 (terpene synthase NS1) and Nostoc punctiforme PCC 73102 (terpene...

  16. Bacterial Species and Biochemical Characteristic Investigations of Nostoc flagelliforme Concentrates during its Storage.

    Science.gov (United States)

    Yue, Lifang; Lv, Hexin; Zhen, Jing; Jiang, Shengping; Jia, Shiru; Shen, Shigang; Gao, Lu; Dai, Yujie

    2016-04-28

    Preservation of fresh algae plays an important role in algae seed subculture and aquaculture. The determination and examination of the changes of cell viability, composition, and bacterial species during storage would help to take suitable preservation methods to prolong the preservation time of fresh algae. Nostoc flagelliforme is a kind of edible cyanobacterium with important herbal and dietary values. This article investigated the changes of bacterial species and biochemical characteristics of fresh N. flagelliforme concentrate during natural storage. It was found that the viability of cells decreased along with the storage time. Fourteen bacteria strains in the algae concentrate were identified by PCR-DGGE and were grouped into four phyla, including Cyanobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Among them, Enterococcus viikkiensis may be a concern in the preservation. Eleven volatile organic compounds were identified from N. flagelliforme cells, in which geosmin could be treated as an indicator of the freshness of N. flagelliforme. The occurrence of indole compound may be an indicator of the degradation of cells.

  17. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120.

    Science.gov (United States)

    Yuan, Che; Li, Hui-Zhen; Tang, Kun; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2016-04-01

    The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.

  18. Biosorption of Cd(II) and Zn(II) by nostoc commune: isotherm and kinetics studies

    Energy Technology Data Exchange (ETDEWEB)

    Morsy, Fatthy M. [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Hassan, Sedky H.A. [Department of Biological Environment, Kangwon National University, Kangwon-do (Korea, Republic of); Koutb, Mostafa [Faculty of Science, Botany Department, Assiut University, Assiut (Egypt); Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca (Saudi Arabia)

    2011-07-15

    In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0-7.0, initial metal concentration 0.0-300 mg/L and contact time 0-120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r{sup 2} < 0.99). The biosorption kinetic data were fitted well with the pseudo-second-order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Cadmium-mediated resistance to metals and antibiotics in a cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Pandey, A.K.

    1982-01-01

    Cadmium-resistant strains of the cyanobacterium Nostoc calcicola were isolated through the step-wise transfer of the organism to higher levels of the metal. One of the Cd-resistant strains (CDsup(r)-10) showed cross-resistance to antibiotics like neomycin (1 ..mu..g/ml), chloramphenicol (3 ..mu..g/ml) but not to streptomycin. The Cd-resistant strain also tolerated elevated levels of metals such as zinc 20 ppm) and mercury (1 ppm). The stability of the metal-resistance required the presence of Cd/sup 2 +/ ions in the growth medium. It is suggested that metal resistance may also be determined by gene(s) on the antibiotic resistance plasmids in cyanobacteria.

  20. Evolution of space food in Nostoc sp. HK-01

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Kimura, Yasuko; Katoh, Hiroshi; Arai, Mayumi

    2012-07-01

    Habitation in outer space is one of our challenges. We have been studying future space agriculture to provide food and oxygen for the habitation area in the space environment, on Mars. A cyanobacteria, Nostoc sp. HK-01, has high several outer space environmental tolerance. We have already confirmed that Nostoc sp.HK-01 had an ability to grow for over several years on the Martian regolith simulant in a laboratory experiment. Nostoc sp HK-01 would have high contribution to change the atmosphere in Mars as a photosynthetic creature. In outer environment, all of materials have to circulate for all of creature living in artificial eco-systems on Mars. This material has several functions as the utilization in space agriculture. Here, we are proposing using them as a food after its growing on Mars. We are trying to determine the best conditions and evolution for space food using Nostoc sp.HK-01 and studying the proposal of utilization of cyanobacteria, Nostoc sp HK-01, for the variation of meal as space agriculture.

  1. Biochemical changes induced by fungicides in nitrogen fixing Nostoc sp.

    Science.gov (United States)

    Deviram, G V N S; Pant, Gaurav; Prasuna, R Gyana

    2013-01-01

    The present study indicates the effect of fungicides (approved by WHO) and their behavior on nitrogen fixer of rice eco system Nostoc sp. Application of plant protecting chemicals at recommended levels braced up the growth of blue green algae thereby enhancing heterocyst formation and nitrogenase activity. Nostoc sp demoed varying degrees of sensitivity to fungicides. Biomass yield, protein, carbohydrate content reduced after 3pg/mL concentration. Heterocyst damage was observed from 4μg/mL, Proline content increased with increase in fungicide concentration, utmost yellowing of the culture started from 4μg/mL. The decreasing order of the toxicity to Nostoc sp with fungicides was Mancozeb> Ediphenphos> Carbendazim> Hexaconazole.

  2. A gene expression study on strains of Nostoc (Cyanobacteria ...

    African Journals Online (AJOL)

    Among the photosynthetic microorganisms, cyanobacteria belonging to the genus Nostoc are regarded as good candidates for producing biologically active secondary metabolites. Aiming at the maximization in the production of natural product, we compared autotrophic, and mixotrophic growth at high light intensity of two ...

  3. Understanding nutrient exchange between Azolla and its symbiont, Nostoc

    OpenAIRE

    Eily, Ariana

    2017-01-01

    This is an in-depth look at the research I am doing for my doctoral degree at Duke University, investigating the exchange of nutrients between the aquatic fern genus, Azolla, and its cyanobacterial symbiont, Nostoc azollae. All of the illustrations and microscopy images within this presentation are my own.

  4. Growth response to temperature and irradiance in Nostoc spongiaeforme

    Science.gov (United States)

    California water-seeded rice fields are typically shallow and have high nutrient levels, which are ideal growing conditions for algae and cyanobacteria. Nostoc spongiaeforme is problematic in California rice fields because floating mats may dislodge seedlings or smother them when the mats accumulat...

  5. Light influences cytokinin biosynthesis and sensing in Nostoc (cyanobacteria)

    Czech Academy of Sciences Publication Activity Database

    Frébortová, J.; Plíhal, O.; Florová, P.; Kokáš, F.; Kubiasová, K.; Greplová, M.; Šimura, J.; Novák, Ondřej; Frébort, I.

    2017-01-01

    Roč. 53, č. 3 (2017), s. 703-714 ISSN 0022-3646 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : cytokinin * expression profiling * miaA * Nostoc * RNA-seq * sensor kinase * tRNA IPT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.608, year: 2016

  6. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Science.gov (United States)

    2009-01-01

    Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp). To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp) is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence. PMID:19284581

  7. Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Lindberg Pia

    2009-03-01

    Full Text Available Abstract Background In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp. To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively. Results Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity. Conclusion Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence.

  8. Peroxide reduction by a metal-dependent catalase in Nostoc punctiforme (cyanobacteria).

    Science.gov (United States)

    Hudek, L; Torriero, A A J; Michalczyk, A A; Neilan, B A; Ackland, M L; Bräu, Lambert

    2017-05-01

    This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H2O2, no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H2O2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582- cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582- cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  9. Preparation of desiccation-resistant aquatic-living Nostoc flagelliforme (Cyanophyceae) for potential ecological application.

    Science.gov (United States)

    Gao, Xiang; Yang, Yi-Wen; Cui, Li-Juan; Zhou, De-Bao; Qiu, Bao-Sheng

    2015-11-01

    Nostoc flagelliforme is a terrestrial edible cyanobacterium that grows in arid and semi-arid steppes. The continued over-exploitation in the last century has led to a sharp decline of this resource and a severe deterioration of the steppe ecology. Liquid-cultured N. flagelliforme serves as promising algal 'seeds' for resource restoration. In this study, macroscopic (or visible) aquatic-living colonies (MaACs) of N. flagelliforme were developed under weak light and high nitrogen conditions. In a 24 day shake-flask culture, MaACs were propagated by about 4.5-fold in biomass without loss of their macro-morphology; at the same time, the addition of weak UV-B treatment resulted in slightly bigger MaACs. Polyvinylpyrrolidone (PVP) k30, a water-soluble polymer, was used to generate the coating around MaACs, and after full desiccation, the coated MaACs could recover their photosynthetic physiological activity when rehydrated, with 4% PVP k30 for coating being most effective. In contrast, PVP k30-coated microscopic aquatic-living colonies of N. flagelliforme and non-coated MaACs showed no resistance to full desiccation. The macroscopic morphology or structure of MaACs should be crucial for the formation of protection by PVP k30 coating. PVP k30-coated MaACs were more approaching to actual application for resource restoration. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Genetic Diversity of Nostoc Symbionts Endophytically Associated with Two Bryophyte Species

    OpenAIRE

    Costa, José-Luis; Paulsrud, Per; Rikkinen, Jouko; Lindblad, Peter

    2001-01-01

    The diversity of the endophytic Nostoc symbionts of two thalloid bryophytes, the hornwort Anthoceros fusiformis and the liverwort Blasia pusilla, was examined using the tRNALeu (UAA) intron sequence as a marker. The results confirmed that many different Nostoc strains are involved in both associations under natural conditions in the field. The level of Nostoc diversity within individual bryophyte thalli varied, but single DNA fragments were consistently amplified from individual symbiotic col...

  11. Control of light-dependent keto carotenoid biosynthesis in Nostoc 7120 by the transcription factor NtcA.

    Science.gov (United States)

    Sandmann, Gerhard; Mautz, Jürgen; Breitenbach, Jürgen

    2016-09-01

    In Nostoc PCC 7120, two different ketolases, CrtW and CrtO are involved in the formation of keto carotenoids from β-carotene. In contrast to other cyanobacteria, CrtW catalyzes the formation of monoketo echinenone whereas CrtO is the only enzyme for the synthesis of diketo canthaxanthin. This is the major photo protective carotenoid in this cyanobacterium. Under high-light conditions, basic canthaxanthin formation was transcriptionally up-regulated. Upon transfer to high light, the transcript levels of all investigated carotenogenic genes including those coding for phytoene synthase, phytoene desaturase and both ketolases were increased. These transcription changes proceeded via binding of the transcription factor NtcA to the promoter regions of the carotenogenic genes. The binding was absolutely dependent on the presence of reductants and oxo-glutarate. Light-stimulated transcript formation was inhibited by DCMU. Therefore, photosynthetic electron transport is proposed as the sensor for high-light and a changing redox state as a signal for NtcA binding.

  12. Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Pearson, L; Michalczyk, A A; Bräu, L; Neilan, B A; Ackland, M L

    2015-11-01

    To characterize genes involved in maintaining homeostatic levels of zinc in the cyanobacterium Nostoc punctiforme. Metal efflux transporters play a central role in maintaining homeostatic levels of trace elements such as zinc. Sequence analyses of the N. punctiforme genome identified two potential cation diffusion facilitator (CDF) metal efflux transporters, Npun_F0707 (Cdf31) and Npun_F1794 (Cdf33). Deletion of either Cdf31or Cdf33 resulted in increased zinc retention over 3 h. Interestingly, Cdf31(-) and Cdf33(-) mutants showed no change in sensitivity to zinc exposure in comparison with the wild type, suggesting some compensatory capacity for the loss of each other. Using qRT-PCR, a possible interaction was observed between the two cdf's, where the Cdf31(-) mutant had a more profound effect on cdf33 expression than Cdf33(-) did on cdf31. Over-expression of Cdf31 and Cdf33 in ZntA(-) - and ZitB(-) -deficient Escherichia coli revealed function similarities between the ZntA and ZitB of E. coli and the cyanobacterial transporters. The data presented shed light on the function of two important transporters that regulate zinc homeostasis in N. punctiforme. This study shows for the first time the functional characterization of two cyanobacterial zinc efflux proteins belonging to the CDF family. © 2015 The Society for Applied Microbiology.

  13. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  14. Phosphorus Physiology of the Marine Cyanobacterium Trichodesmium

    Science.gov (United States)

    2010-02-01

    Carribean ; Romans e al. 1994), the presence of high percentages of polyP in Trichodesmium from the Sargasso Sea is unlikely to be due to luxury uptake...2010-06 DOCTORAL DISSERTATION by Elizabeth Duncan Orchard February 2010 Phosphorus Physiology of the Marine Cyanobacterium Trichodesmium MIT/WHOI...2010-06 Phosphorus Physiology of the Marine Cyanobacterium Trichodesmium by Elizabeth Duncan Orchard Massachusetts Institute of Technology Cambridge

  15. Impacts of varying light regimes on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 isolated from diverse habitats.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2015-11-01

    The adaptability of cyanobacteria in diverse habitats is an important factor to withstand harsh conditions. In the present investigation, the impacts of photosynthetically active radiation (PAR; 400-700 nm), ultraviolet-B (UV-B; 280-315 nm), and PAR + UV-B radiations on two cyanobacteria viz., Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 inhabiting diverse habitats such as hot springs and rice fields, respectively, were studied. Cell viability was about 14 % in Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11 after 48 h of UV-B exposure. PAR had negligible negative impact on the survival of both cyanobacteria. The continuous exposure of UV-B and PAR + UV-B showed rapid uncoupling, bleaching, fragmentation, and degradation in both phycocyanin (C-PC) and phycoerythrin (C-PE) subunits of phycobiliproteins (PBPs). Remarkable bleaching effect of C-PE and C-PC was not only observed with UV-B or PAR + UV-B radiation, but longer period (24-48 h) of exposure with PAR alone also showed noticeable negative impact. The C-PE and C-PC subunits of the rice field isolate Nostoc sp. HKAR-11 were severely damaged in comparison to the hot spring isolate Nostoc sp. HKAR-2 with rapid wavelength shifting toward shorter wavelengths denoting the bleaching of both the accessory light harvesting pigments. The results indicate that PBPs of the hot spring isolate Nostoc sp. HKAR-2 were more stable under various light regimes in comparison to the rice field isolate Nostoc sp. HKAR-11 that could serve as a good source of valuable pigments to be used in various biomedical and biotechnological applications.

  16. Development and Application of Genetic Markers for Population Structure Analysis of the Blue Coral Reef Starfish, Linckia laevigata (Linn. (Echinodermata: Asteroidea

    Directory of Open Access Journals (Sweden)

    Richard Magsino

    2000-12-01

    Full Text Available The tropical blue coral reef starfish, Linckia laevigata, is a good model species for examining genetic affinities among reef populations. Allozyme and mtDNA PCR-RFLP genetic markers were developed for this species. A total of nine (9 polymorphic and three (3 monomorphic allozyme marker loci were resolved out of 25 enzyme systems assessed for genetic activity in three electrophoretic buffers used. Polymorphic mitochondrial DNA gene segments of the control region with flanking sequences and the cytochrome oxidase I (CO1 were amplified after examining several gene regions for PCR product amplifications. Restriction enzyme screening of the CO1 region revealed variation of restriction profiles in seven (7 out of twenty (20 enzymes initially tested. Preliminary comparison of the genetic structure of L. laevigata based on allozyme and mtDNA markers for selected reefs are presented. The development of these genetic markers will be useful in inferring gene flow and reef connectivity in the South China Sea, Palawan shelf, and Sulu Sea.

  17. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB-) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the synthesis

  18. Comparison of plasmids from the cyanobacterium Nostoc PCC 7524 with two mutant strains unable to form heterocysts

    NARCIS (Netherlands)

    Reaston, J.; Hondel, C.A.M.J.J. van den; Ende, A. van der; Arkel, G.A. van; Stewart, W.D.P.; Herdman, M.

    1980-01-01

    Cyanobacteria (bluegreen bacteria) are O₂-evolving photosynthetic prokaryotes some species of which fix N₂ in air because the nitrogenase is protected from O₂ inactivation by being localized in differentiated cells called heterocysts. Recently much attention has been paid to the possible role

  19. Two-Step Separation of Nostotrebin 6 from Cultivated Soil Cyanobacterium (Nostoc sp. by High Performance Countercurrent Chromatography

    Directory of Open Access Journals (Sweden)

    José Cheel

    2014-06-01

    Full Text Available High performance countercurrent chromatography (HPCCC was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (4:5:4:5, v/v/v/v was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2 with those of an authentic standard and data available in the literature.

  20. Separation of Aeruginosin-865 from Cultivated Soil Cyanobacterium (Nostoc sp.) by Centrifugal Partition Chromatography combined with Gel Permeation Chromatography.

    Science.gov (United States)

    Cheel, José; Minceva, Mirjana; Urajová, Petra; Aslam, Rabya; Hrouzek, Pavel; Kopecký, Jiří

    2015-10-01

    Aeruginosin-865 was isolated from cultivated soil cyanobacteria using a combination of centrifugal partition chromatography (CPC) and gel permeation chromatography. The solubility of Aer-865 in different solvents was evaluated using the conductor-like screening model for real solvents (COSMO-RS). The CPC separation was performed in descending mode with a biphasic solvent system composed of water-n-BuOH-acetic acid (5:4:1, v/v/v). The upper phase was used as a stationary phase, whereas the lower phase was employed as a mobile phase at a flow rate of 10 mL/min. The revolution speed and temperature of the separation column were 1700 rpm and 25 degrees C, respectively. Preparative CPC separation followed by gel permeation chromatography was performed on 50 mg of crude extract yielding Aer-865 (3.5 mg), with a purity over 95% as determined by HPLC. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, HRESI-MS, HRESI-MS/MS) with those of an authentic standard and data available in the literature.

  1. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress.

    Science.gov (United States)

    Yingping, Fan; Lemeille, Sylvain; González, Andrés; Risoul, Véronique; Denis, Yann; Richaud, Pierre; Lamrabet, Otmane; Fillat, Maria F; Zhang, Cheng-Cai; Latifi, Amel

    2015-07-29

    The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation.

  2. Genetic Population Structure of the Coral Reef Sea Star Linckia laevigata in the Western Indian Ocean and Indo-West Pacific.

    Directory of Open Access Journals (Sweden)

    Levy Michael Otwoma

    Full Text Available The coral reef sea star Linckia laevigata is common on shallow water coral reefs of the Indo-West Pacific. Its large geographic distribution and comprehensive data from previous studies makes it suitable to examine genetic differentiation and connectivity over large geographical scales. Based on partial sequences of the mitochondrial cytochrome oxidase I (COI gene this study investigates the genetic population structure and connectivity of L. laevigata in the Western Indian Ocean (WIO and compares it to previous studies in the Indo-Malay-Philippines Archipelago (IMPA. A total of 138 samples were collected from nine locations in the WIO. AMOVA revealed a low but significant ΦST-value of 0.024 for the WIO populations. In the hierarchical AMOVA, the following grouping rejected the hypothesis of panmixia: (1 Kenya (Watamu, Mombasa, Diani and Tanzanian Island populations (Misali and Jambiani and (2 the rest of the WIO sites (mainland Tanzania and Madagascar; ΦCT = 0.03. The genetic population structure was stronger and more significant (ΦST = 0.13 in the comparative analysis of WIO and IMPA populations. Three clades were identified in the haplotype network. The strong genetic differentiation (ΦCT = 0.199, P < 0.001 suggests that Indo-West Pacific populations of L. laevigata can be grouped into four biogeographic regions: (1 WIO (2 Eastern Indian Ocean (3 IMPA and (4 Western Pacific. The findings of this study support the existence of a genetic break in the Indo-West Pacific consistent with the effect of lowered sea level during the Pleistocene, which limited gene flow between the Pacific and Indian Ocean.

  3. Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133

    Science.gov (United States)

    2011-01-01

    Background Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the hyp-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (hupSL) and the accessory maturation proteins (hyp genes) in the cyanobacteria Nostoc PCC 7120 and N. punctiforme were analysed using molecular methods. Findings The five ORFs, located in between the uptake hydrogenase structural genes and the hyp-genes, can form a transcript with the hyp-genes. An identical genomic localization of these ORFs are found in other filamentous, N2-fixing cyanobacterial strains. In N. punctiforme and Nostoc PCC 7120 the ORFs upstream of the hyp-genes showed similar transcript level profiles as hupS (hydrogenase structural gene), nifD (nitrogenase structural gene), hypC and hypF (accessory hydrogenase maturation genes) after nitrogen depletion. In silico analyzes showed that these ORFs in N. punctiforme harbor the same conserved regions as their homologues in Nostoc PCC 7120 and that they, like their homologues in Nostoc PCC 7120, can be transcribed together with the hyp-genes forming a larger extended hyp-operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended hyp-operon in N. punctiforme and Nostoc PCC 7120. Conclusions The five ORFs upstream of the hyp-genes in several filamentous N2-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In N. punctiforme and Nostoc PCC 7120 they are transcribed as one operon and may form transcripts together with the hyp-genes. The expression pattern of the five ORFs within the extended hyp-operon in both Nostoc punctiforme and Nostoc PCC 7120 is similar to

  4. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Bräu, L; Michalczyk, A A; Neilan, B A; Meeks, J C; Ackland, M L

    2015-12-01

    Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.

  5. Characterization and in vivo regulon determination of an ECF sigma factor and its cognate anti-sigma factor in Nostoc punctiforme.

    Science.gov (United States)

    Bell, Nicole; Lee, Jamie J; Summers, Michael L

    2017-04-01

    Based on primary sequence comparisons and genomic context, Npun_F4153 (SigG)/Npun_F4154 (SapG) of the cyanobacterium Nostoc punctiforme were hypothesized to encode an ECF sigma factor/anti-sigma factor pair. Transcription of sigG increased in heterocysts and akinetes, and after EDTA treatment. Interaction between SigG and the predicted cytoplasmic domain of SapG was observed in vitro. A SigG-GFP translational fusion protein localized to the periphery of vegetative cells in vivo, but lost this association following heat stress. A sigG mutant was unable to survive envelope damage caused by heat or EDTA, but was able to form functional heterocysts. Akinetes in the mutant strain appeared normal, but these cultures were less resistant to lysozyme and cold treatments than those of the wild-type strain. The SigG in vivo regulon was determined before and during akinete differentiation using DNA microarray analysis, and found to include multiple genes with putative association to the cell envelope. Mapped promoters common to both arrays enabled identification of a SigG promoter-binding motif that was supported in vivo by reporter studies, and in vitro by run-off transcription experiments. These findings support SigG/SapG as a sigma/anti-sigma pair involved in repair of envelope damage resulting from exogenous sources or cellular differentiation. © 2017 John Wiley & Sons Ltd.

  6. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc.

    Science.gov (United States)

    De Luca, Viviana; Del Prete, Sonia; Vullo, Daniela; Carginale, Vincenzo; Di Fonzo, Pietro; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-10-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the CO2 hydration/dehydration reversible reaction: CO2 + H2O ⇄ [Formula: see text] + H(+). Living organisms encode for at least six distinct genetic families of such catalyst, the α-, β-, γ-, δ-, ζ- and η-CAs. The main function of the CAs is to quickly process the CO2 derived by metabolic processes in order to regulate acid-base homeostasis, connected to the production of protons (H(+)) and bicarbonate. Few data are available in the literature on Antarctic CAs and most of the scientific information regards CAs isolated from mammals or prokaryotes (as well as other mesophilic sources). It is of great interest to study the biochemical behavior of such catalysts identified in organism living in the Antarctic sea where temperatures average -1.9 °C all year round. The enzymes isolated from Antarctic organisms represent a useful tool to study the relations among structure, stability and function of proteins in organisms adapted to living at constantly low temperatures. In the present paper, we report in detail the cloning, purification, and physico-chemical properties of NcoCA, a γ-CA isolated from the Antarctic cyanobacterium Nostoc commune. This enzyme showed a higher catalytic efficiency at lower temperatures compared to mesophilic counterparts belonging to α-, β-, γ-classes, as well as a limited stability at moderate temperatures.

  7. [Response of Nostoc flageliforme cell to Cu2+, Cr2+ and Pb2+ stress].

    Science.gov (United States)

    Guo, Jinying; Shi, Mingke; Zhao, Yanli; Ren, Guoyan; Yi, Junpeng; Niu, Leilei; Li, Juan

    2013-06-04

    This study aimed to investigate the effects of Cu2+, Cr2+ and Pb2+ stress on Nostoc flagelliforme cell. The response of Nostoc flagelliforme cell was analyzed under the stress. The modified BG11 culture medium containing different heavy metal ions of 0, 0.1, 1.0, 10, 100 mg/L was used to cultivate Nostoc flagelliforme cell at 25 degrees C and light intensity of 80 micromol/(m x s). Electrolyte leakage, the activities of superoxide dismutase, the content of malondialdehyde, proline, soluble protein and trehalose were analyzed. Under 1 - 100 mg/L Cu2+, Cr2+ and Pb2+ stress, electrolyte leakage and malondialdehyde contents in Nostoc flagelliforme cell were higher than those in the control group during heavy metal ions stress. Meanwhile, superoxide dismutase activity increased slightly under 10 mg/L, but was lower afterwards. The contents of proline, soluble protein and trehalose increased under 10 mg/L heavy metal ions stress, while declined under extreme heavy metal ions stress (100 mg/L). Nostoc flagelliforme cell has resistance to low heavy metal ions stress, but is damaged badly under extreme heavy metal ions stress.

  8. Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme.

    Science.gov (United States)

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2016-03-01

    Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.

  9. Enhanced biohydrogen production by the N{sub 2}-fixing cyanobacterium Anabaena siamensis strain TISTR 8012

    Energy Technology Data Exchange (ETDEWEB)

    Khetkorn, Wanthanee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand); Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Lindblad, Peter [Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120, Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 (Thailand)

    2010-12-15

    The efficiency of hydrogen production depends on several factors. We focused on external conditions leading to enhanced hydrogen production when using the N{sub 2}-fixing cyanobacterium Anabaena siamensis TISTR 8012, a novel strain isolated from a rice paddy field in Thailand. In this study, we controlled key factors affecting hydrogen production such as cell age, light intensity, time of light incubation and source of carbon. Our results showed an enhanced hydrogen production when cells, at log phase, were adapted under N{sub 2}-fixing condition using 0.5% fructose as carbon source and a continuous illumination of 200 {mu}E m{sup -2} s{sup -1} for 12 h under anaerobic incubation. The maximum hydrogen production rate was 32 {mu}mol H{sub 2} mg chl a{sup -1} h{sup -1}. This rate was higher than that observed in the model organisms Anabaena PCC 7120, Nostoc punctiforme ATCC 29133 and Synechocystis PCC 6803. This higher production was likely caused by a higher nitrogenase activity since we observed an upregulation of nifD. The production did not increase after 12 h which was probably due to an increased activity of the uptake hydrogenase as evidenced by an increased hupL transcript level. Interestingly, a proper adjustment of light conditions such as intensity and duration is important to minimize both the photodamage of the cells and the uptake hydrogenase activity. Our results indicate that A. siamensis TISTR 8012 has a high potential for hydrogen production with the ability to utilize sugars as substrate to produce hydrogen. (author)

  10. Elevated Atmospheric CO2 and Warming Stimulates Growth and Nitrogen Fixation in a Common Forest Floor Cyanobacterium under Axenic Conditions

    Directory of Open Access Journals (Sweden)

    Zoë Lindo

    2017-03-01

    Full Text Available The predominant input of available nitrogen (N in boreal forest ecosystems originates from moss-associated cyanobacteria, which fix unavailable atmospheric N2, contribute to the soil N pool, and thereby support forest productivity. Alongside climate warming, increases in atmospheric CO2 concentrations are expected in Canada’s boreal region over the next century, yet little is known about the combined effects of these factors on N fixation by forest floor cyanobacteria. Here we assess changes in N fixation in a common forest floor, moss-associated cyanobacterium, Nostoc punctiforme Hariot, under elevated CO2 conditions over 30 days and warming combined with elevated CO2 over 90 days. We measured rates of growth and changes in the number of specialized N2 fixing heterocyst cells, as well as the overall N fixing activity of the cultures. Elevated CO2 stimulated growth and N fixation overall, but this result was influenced by the growth stage of the cyanobacteria, which in turn was influenced by our temperature treatments. Taken together, climate change factors of warming and elevated CO2 are expected to stimulate N2 fixation by moss-associated cyanobacteria in boreal forest systems.

  11. Dark hydrogen production in nitrogen atmosphere - An approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, D.; Arun Kumar, D.; Uma, L.; Subramanian, G. [National Facility for Marine Cyanobacteria (Sponsored by DBT, Govt. of India), Department of Marine Biotechnology, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2010-10-15

    Biological hydrogen production is an ideal system for three main reasons i) forms a renewable energy source, ii) gives clean fuel and iii) serves as a good supplement to oil reserves. The major challenges faced in biological hydrogen production are the presence of uptake hydrogenase and lack of sustainability in the cyanobacterial hydrogen production system. Three different marine cyanobacterial species viz. Leptolyngbya valderiana BDU 20041, Dichothrix baueriana BDU 40481 and Nostoc calcicola BDU 40302 were studied for their potential use in hydrogen production. Among these, L. valderiana BDU 20041, was found to produce hydrogen even in 100% nitrogen atmosphere which was 85% of the hydrogen produced in argon atmosphere. This is the first report of such a high rate of production of hydrogen in a nitrogen atmosphere by a cyanobacterium, which makes it possible to develop sustained hydrogen production systems. L. valderiana BDU 20041, a dark hydrogen producer uses the reductant essentially supplied by the respiratory pathway for hydrogen production. Using inhibitors, this organism was found to produce hydrogen due to the activities of both nitrogenase and bidirectional hydrogenase, while it had no 'uptake' hydrogenase activity. The other two organisms though had low levels of bidirectional hydrogenase, possessed considerable 'uptake' hydrogenase activity and hence could not release much hydrogen either in argon or nitrogen atmosphere. (author)

  12. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    Science.gov (United States)

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  13. COMPONENŢA AMINOACIZILOR DIN BIOMASA ALGEI CIANOFITE NOSTOC GELATINOSUM (SCHOUSB ELENK.

    Directory of Open Access Journals (Sweden)

    Sergiu DOBROJAN

    2016-02-01

    Full Text Available În articol este analizată componenţa aminoacizilor din biomasa algei cianofite Nostoc gelatinosum (Schousb Elenk. colectate de pe mediul nutritiv Drew. Din grupa aminoacizilor esenţiali în biomasa algei Nostoc gelatinosum (Schousb Elenk. se conţine în cantităţi majore leucina (2,142±0,06 mg/100 mg, treonina (1,188±0,02 mg/100 mg şi valina (1,085±0,03 mg/100 mg. Din aminoacizii neesenţiali predomină acidul aspartic (4,523±0,11 mg/100 mg şi acidul glutamic (2,774±0,07 mg/100 mg. Alga Nostoc gelatinosum (Schousb Elenk. are un conţinut bogat de aminoacizi şi poate servi ca sursă pentru vaste domenii de aplicare.THE AMINO ACIDS COMPOSITION OF THE BLUE-GREEN ALGANOSTOC GELATINOSUM (SCHOUSB ELENKThis article presents the amino acid content of the blue-green alga Nostoc gelatinosum (Schousb Elenk. collected from the Drew nutritive medium. From the essential amino group in Nostoc gelatinosum (Schousb Elenk. biomass, major amounts are contained leucine (2,142 ± 0,06 mg/100 mg, threonine (1,188 ± 0,02 mg/100 mg and valine (1,085 ± 0,03 mg/100 mg. From nonessential amino acids predominates aspartic acid (4,523 ± 0,11 mg/100 mg and glutamic acid (2,774 ± 0.07 mg/100 mg. The alga Nostoc gelatinosum (Schousb Elenk. has a high content of amino acids and can serve as a source for vast areas of application. 

  14. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    Science.gov (United States)

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Metabolism and resources of spherical colonies of Nostoc zetterstedtii

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Raun, Ane-Marie Løvendahl; Borum, Jens

    2009-01-01

    by active transport that could extract most external DIC, accumulate DIC in the colony 150-fold above external concentrations, and retain respiratory CO2. The energy cost of solute transport and gel formation in Nostoc colonies and extensive self shading restrict their potential growth, whereas colony...

  16. Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.

    Science.gov (United States)

    Hillol, Chakdar; Pabbi, Sunil

    2012-01-01

    Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.

  17. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    Science.gov (United States)

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  18. Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase.

    Science.gov (United States)

    Warui, Douglas M; Pandelia, Maria-Eirini; Rajakovich, Lauren J; Krebs, Carsten; Bollinger, J Martin; Booker, Squire J

    2015-02-03

    A two-step pathway consisting of an acyl-acyl carrier protein (ACP) reductase (AAR) and an aldehyde-deformylating oxygenase (ADO) allows various cyanobacteria to convert long-chain fatty acids into hydrocarbons. AAR catalyzes the two-electron, NADPH-dependent reduction of a fatty acid attached to ACP via a thioester linkage to the corresponding fatty aldehyde, while ADO transforms the fatty aldehyde to a Cn-1 hydrocarbon and C1-derived formate. Considering that heptadec(a/e)ne is the most prevalent hydrocarbon produced by cyanobacterial ADOs, the insolubility of its precursor, octadec(a/e)nal, poses a conundrum with respect to its acquisition by ADO. Herein, we report that AAR from the cyanobacterium Nostoc punctiforme is activated almost 20-fold by potassium and other monovalent cations of similar ionic radius, and that AAR and ADO form a tight isolable complex with a Kd of 3 ± 0.3 μM. In addition, we show that when the aldehyde substrate is supplied to ADO by AAR, efficient in vitro turnover is observed in the absence of solubilizing agents. Similarly to studies by Lin et al. with AAR from Synechococcus elongatus [Lin et al. (2013) FEBS J. 280, 4773-4781], we show that catalysis by AAR proceeds via formation of a covalent intermediate involving a cysteine residue that we have identified as Cys294. Moreover, AAR specifically transfers the pro-R hydride of NADPH to the Cys294-thioester intermediate to afford its aldehyde product. Our results suggest that the interaction between AAR and ADO facilitates either direct transfer of the aldehyde product of AAR to ADO or formation of the aldehyde product in a microenvironment allowing for its efficient uptake by ADO.

  19. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments

    National Research Council Canada - National Science Library

    Sand-Jensen, Kaj

    2014-01-01

    The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing...

  20. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Science.gov (United States)

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  1. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Lindblad Peter

    2009-03-01

    Full Text Available Abstract Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW and LexA (hoxW. In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer

  2. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, P.; Lindblad, P. [Uppsala Univ. (Sweden). Dept. of Physiological Botany; Schuetz, K.; Happe, T. [Universitaet Bonn (Germany). Botanisches Inst.

    2002-12-01

    The hupL gene, encoding the uptake hydrogenase large subunit, in Nostoc sp. strain ATCC 29133, a strain lacking a bidirectional hydrogenase, was inactivated by insertional mutagenesis. Recombinant strains were isolated and analysed, and one hupL{sup -} strain, NHM5, was selected for further study. Cultures of NHM5 were grown under nitrogen-fixing conditions and H{sub 2} evolution under air was observed using an H{sub 2} electrode. (Author)

  3. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    Science.gov (United States)

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  4. Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803.

    Science.gov (United States)

    Shunmugam, Sumathy; Jokela, Jouni; Wahlsten, Matti; Battchikova, Natalia; Ateeq ur Rehman; Vass, Imre; Karonen, Maarit; Sinkkonen, Jari; Permi, Perttu; Sivonen, Kaarina; Aro, Eva-Mari; Allahverdiyeva, Yagut

    2014-06-01

    Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC6803 cells.After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non-peptide structure. We propose that M22 possesses a dualaction mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.

  5. Production of the Neurotoxin BMAA by a Marine Cyanobacterium

    Directory of Open Access Journals (Sweden)

    Paul Alan Cox

    2007-12-01

    Full Text Available Diverse species of cyanobacteria have recently been discovered to produce theneurotoxic non-protein amino acid β-methylamino-L-alanine (BMAA. In Guam, BMAAhas been studied as a possible environmental toxin in the diets of indigenous Chamorropeople known to have high levels of Amyotrophic Lateral Sclerosis/ ParkinsonismDementia Complex (ALS/PDC. BMAA has been found to accumulate in brain tissues ofpatients with progressive neurodegenerative illness in North America. In Guam, BMAAwas found to be produced by endosymbiotic cyanobacteria of the genus Nostoc which livein specialized cycad roots. We here report detection of BMAA in laboratory cultures of afree-living marine species of Nostoc. We successfully detected BMAA in this marinespecies of Nostoc with five different methods: HPLC-FD, UPLC-UV, Amino AcidAnalyzer, LC/MS, and Triple Quadrupole LC/MS/MS. This consensus of five differentanalytical methods unequivocally demonstrates the presence of BMAA in this marinecyanobacterium. Since protein-associated BMAA can accumulate in increasing levelswithin food chains, it is possible that biomagnification of BMAA could occur in marineecosystems similar to the biomagnification of BMAA in terrestrial ecosystems. Productionof BMAA by marine cyanobacteria may represent another route of human exposure toBMAA. Since BMAA at low concentrations causes the death of motor neurons, low levelsof BMAA exposure may trigger motor neuron disease in genetically vulnerableindividuals.

  6. POTENŢIALUL NUTRIŢIONAL AL BIOMASEI ALGALE DE NOSTOC FLAGELLIFORME (BERK ET CURT ELENK.

    Directory of Open Access Journals (Sweden)

    Irina STRATULAT

    2016-05-01

    Full Text Available În prezentul studiu este prezentată componenţa biochimică a biomasei algei cianofite Nostoc flagelli­forme (Berk et Curt Elenk. cultivată în condiţii de laborator pe mediul mineral Z-8. Biomasa algei conţine: Mn – 683,9 mg/kg, Zn – 131,5 mg/kg, Pb – <10 mg/kg, Fe – 1,09 g/kg, Na+ – 2,10 g/kg, K+ – 8,01 g/kg, Mg 2+ – 5,40 g/kg, Ca2+ – 7,94 g/kg. În componenţa aminoacizilor predomină: acidul glutamic – 3,8012 mg/100 mg, acidul aspartic – 2,7838 mg/100 mg, leucina – 2,4651 mg/100 mg, alanina – 2,3513 mg/100 mg. Conform acestor rezultate, biomasa algei cianofite Nostoc flagelliforme poate fi utilizată ca sursă importantă de supli­mente alimentare. THE NUTRITIONAL POTENTIAL OF ALGAL BIOMASS OF NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. In this study is presented the biochemical components of algal biomass Nostoc flagelliforme (Berk et Curt Elenk. cultivated in laboratory conditions in Z-8 medium. The algal biomass has the following chemical content: Mn – 683,9 mg/kg, Zn – 131,5 mg/kg, Pb – <10 mg/kg, Fe – 1,09 g/kg, Na+ - 2,10 g/kg, K+ – 8,01 g/kg, Mg2+ – 5,40 g/kg, Ca2+ – 7,94 g/kg. The highest amount of amino acids are specific for: glutamic acid – 3,8012 mg/100 mg, aspartic acid – 2,7838 mg/100 mg, leucine – 2,4651 mg/100 mg, alanine – 2,3513 mg/100 mg. According to these results the blue-green alga Nostoc flagelliforme can be considered an important potential source of nutritional supplements. 

  7. Diversity of endosymbiotic Nostoc in Gunnera magellanica from Tierra del Fuego, Chile [corrected].

    Science.gov (United States)

    Fernández-Martínez, M A; de Los Ríos, A; Sancho, L G; Pérez-Ortega, S

    2013-08-01

    Global warming is causing ice retreat in glaciers worldwide, most visibly over the last few decades in some areas of the planet. One of the most affected areas is the region of Tierra del Fuego (southern South America). Vascular plant recolonisation of recently deglaciated areas in this region is initiated by Gunnera magellanica, which forms symbiotic associations with the cyanobacterial genus Nostoc, a trait that likely confers advantages in this colonisation process. This symbiotic association in the genus Gunnera is notable as it represents the only known symbiotic relationship between angiosperms and cyanobacteria. The aim of this work was to study the genetic diversity of the Nostoc symbionts in Gunnera at three different, nested scale levels: specimen, population and region. Three different genomic regions were examined in the study: a fragment of the small subunit ribosomal RNA gene (16S), the RuBisCO large subunit gene coupled with its promoter sequence and a chaperon-like protein (rbcLX) and the ribosomal internal transcribed spacer (ITS) region. The identity of Nostoc as the symbiont was confirmed in all the infected rhizome tissue analysed. Strains isolated in the present study were closely related to strains known to form symbioses with other organisms, such as lichen-forming fungi or bryophytes. We found 12 unique haplotypes in the 16S rRNA (small subunit) region analysis, 19 unique haplotypes in the ITS region analysis and 57 in the RuBisCO proteins region (rbcLX). No genetic variability was found among Nostoc symbionts within a single host plant while Nostoc populations among different host plants within a given sampling site revealed major differences. Noteworthy, interpopulation variation was also shown between recently deglaciated soils and more ancient ones, between eastern and western sites and between northern and southern slopes of Cordillera Darwin. The cell structure of the symbiotic relationship was observed with low-temperature scanning

  8. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica.

    Science.gov (United States)

    Cohen, Y; Padan, E; Shilo, M

    1975-09-01

    An isolate from H2S-rich layers of the Solar Lake, the cyanobacterium Oscillatoria limnetica, exhibits both oxygenic and anoxygenic photosynthesis. It can use Na2S as an electron donor for CO2 photoassimilation (photosystem I supplies the energy) in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea or 700-nm light. A stoichiometric ratio of approximately 2 is observed between the Na2S consumed and the photoassimilated CO2. The anoxygenic phototrophic capability of this cyanobacterium explains its growth in nature in high sulfide concentrations and indicates a selective advantage.

  9. SPECTRUL AMINOACIZILOR ÎN BIOMASA ALGEI CIANOFITE NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. CULTIVATE PE MEDIUL DREW

    Directory of Open Access Journals (Sweden)

    Irina STRATULAT

    2016-02-01

    Full Text Available A fost studiat spectrul cantitativ şi calitativ al aminoacizilor în biomasa tulpinii Nostoc flagelliforme cultivate pe mediul nutritiv Drew. S-a constatat că biomasa algei Nostoc flagelliforme posedă cantităţi semnificative de aminoacizi, printre care aminoacizii neesenţiali constituie 10,1565 mg/100 mg, iar cei esenţiali se găsesc în cantităţi mai reduse – 7,31 mg/100 mg. De asemenea, au fost evidenţiaţi aminoacizii proteinogeni (17,4476 mg/100 mg şi imunoactivi (9,5518 mg/100 mg. SPECTRUM OF AMINO ACIDS IN BLUE-GREEN ALGA NOSTOC FLAGELLIFORME (BERK ET CURT ELENK. CULTIVATED IN DREW MEDIUMThere has been studied the quantitative and qualitative spectrum of amino acids in Nostoc flagelliforme biomass grown in nutritive medium Drew. It was found that Nostoc flagelliforme biomass has significant amounts of amino acids, including non-essential amino acids is 10,1565 mg/100 mg, and those essential are in smaller amounts – 7,31 mg/100 mg. Also, proteinogenic amino acids have been highlighted (17,4476 mg/100 mg and immunoactive (9,5518 mg/100 mg. 

  10. Solution NMR structure of Alr2454 from Nostoc sp. PCC 7120, the first structural representative of Pfam domain family PF11267

    OpenAIRE

    Aramini, James M.; Petrey, Donald; Lee, Dong Yup; Janjua, Haleema; Xiao, Rong; Acton, Thomas B.; Everett, John K.; Montelione, Gaetano T.

    2012-01-01

    Protein domain family PF11267 (DUF3067) is a family of proteins of unknown function found in both bacteria and eukaryotes. Here we present the solution NMR structure of the 102-residue Alr2454 protein from Nostoc sp. PCC 7120, which constitutes the first structural representative from this conserved protein domain family. The structure of Nostoc sp. Alr2454 adopts a novel protein fold.

  11. Solution NMR structure of Alr2454 from Nostoc sp. PCC 7120, the first structural representative of Pfam domain family PF11267.

    Science.gov (United States)

    Aramini, James M; Petrey, Donald; Lee, Dong Yup; Janjua, Haleema; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-09-01

    Protein domain family PF11267 (DUF3067) is a family of proteins of unknown function found in both bacteria and eukaryotes. Here we present the solution NMR structure of the 102-residue Alr2454 protein from Nostoc sp. PCC 7120, which constitutes the first structural representative from this conserved protein domain family. The structure of Nostoc sp. Alr2454 adopts a novel protein fold.

  12. The epistemological and historical concept of nostoc from an indiciary lecture of George Canguilhem's "The cell theory"

    Directory of Open Access Journals (Sweden)

    Maurício de Carvalho Ramos

    2016-05-01

    Full Text Available Through an indiciary lecture of Canguilhem's article  "The cell theory", I propose, methodically guided by a epistemological-historical style research, the construction of the concept of nostoc as a metamorphic concept that integrated the concepts of primordial blastema and biblical slime of the French botanist Charles Naudin, set up a scientific culture of broad reach committed to solving the riddle of the morphological unity of organic and vital beings. The concept of Nostoc refers alchemically a gelatinous substance from the stars and endowed with balsamic medical virtues and botanically, a cianoficea algae of Nostoc genus. Examined the ideas of Canguilhem, Naudin, Jung and Paracelsus, this concept is proposed as a nucleoplasmatic oscillation, understood as a specific form of expression of the mythical-scientific theme of tension between continuity and discontinuity, as shown by Canguilhem in his history of cell concept.

  13. Photosystem I from the unusual cyanobacterium Gloeobacter violaceus

    NARCIS (Netherlands)

    Mangels, D.; Kruip, J.; Berry, S.; Rögner, M.; Boekema, E.J.; Koenig, F.

    2002-01-01

    Photosystem I (PS I) from the primitive cyanobacterium Gloeobacter violaceus has been purified and characterised. Despite the fact that the isolated complexes have the same subunit composition as complexes from other cyanobacteria, the amplitude of flash-induced absorption difference spectra

  14. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  15. fixing cyanobacterium Anabaena oryzae Fritsch under salt stress

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... Phosphorous (P) starved cells of the cyanobacterium Anabaena oryzae showed higher phosphate uptake rates than P-sufficient cells. The P-uptake obeyed saturation kinetics. The Km value for P- deficient cells was lower (54.34 μM) than P-sufficient cells (82.64 μM) while Vmax was higher in P- deficient ...

  16. Enhanced hydrogen photoproduction by non-heterocystous cyanobacterium Plectonema boryanum

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, A.K.; Pandey, K.D.; Sarkar, S. [Banaras Hindu Univ., Varanasi (India). Centre of Advanced Study in Botany

    1996-02-01

    Nitrogenase activity was depressed in Plectonema boryanum following 18-24 h of microaerobic incubation. The cyanobacterium evolved hydrogen at a slow rate. Addition of reducing substances (sulfide, sulfite or dithionite) to the diazotrophic cultures resulted in an increase in nitrogenase activity or photoproduction of hydrogen. The reducing substances also restored phycocyanin degradation. (author)

  17. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov.

    Science.gov (United States)

    Bagchi, Suvendra Nath; Dubey, Neelam; Singh, Prashant

    2017-09-01

    Nostoc is a complex and tough genus to differentiate, and its morphological plasticity makes it taxonomically complicated. Its cryptic diversity and almost no distinguishable morphological characteristics make this genus incredibly heterogeneous to evaluate on taxonomic scales. The strain NOS, isolated from a eutrophic water body, is being described as a new genus Aliinostoc with the strain showing motile hormogonia with gas vesicles as an atypical feature, which is currently considered as the diacritical feature of the genus but should be subjected to critical evaluation in the near future. The phylogenetic placement of Aliinostoc along with some other related sequences of Nostoc clearly separated this clade from Nostoc sensu stricto with high bootstrap support and robust topology in all the methods tested, thus providing strong proof of the taxa being representative of a new genus which morphologically appears to be Nostoc-like. Subsequent phylogenetic assessment using the rbcL, psbA, rpoC1 and tufA genes was done with the aim of facilitating future multi-locus studies on the proposed genus for better taxonomic clarity and resolution. Folding of the 16S-23S internal transcribed spacer region and subsequent comparisons with members of the genera Nostoc, Anabaena, Aulosira, Cylindrospermum, Sphaerospermopsis, Raphidiopsis, Desmonostoc and Mojavia gave entirely new secondary structures for the D1-D1' and box-B helix. Clear and separate clustering from Nostoc sensu stricto supports the establishment of Aliinostoc gen. nov. with the type species being Aliinostoc morphoplasticum sp. nov. in accordance with the International Code of Nomenclature for algae, fungi and plants.

  18. [Promotion effects of vitamin B12 on the degradation of 2, 4, 4'-trichlorobiphenyl by Nostoc PD-2].

    Science.gov (United States)

    Liu, Jia-Yu; Xiao, Wen-Feng; Lu, Li-Ping; Zhang, Hang-Jun

    2014-08-01

    Polychlorinated biphenyls are typical persistent chlorinated organic compounds in the environment. Bioremediation of PCB-contaminated environment has become one of the hot issues. In this study, vitamin B12 (VB12) and chlorine-free culture medium were applied to study the effects of VB12 on the degradation of 2,4,4'-trichlorobiphenyl (PCB28) by Nostoc PD-2 and the gene expression during the PCB-degradation process. Results showed that addition of different concentrations of vitamin B12 could improve the PCB-biodegradation rates by Nostoc PD-2. Compared with the control group, the 7-day degradation rate in 10 microg x L(-1), 100 microg x L(-1), and 1 000 microg x L(-1) VB12-treated groups increased by 11.0%, 19.7%, and 21.9% , respectively. The degradation half-time decreased from 5.53 days (treated with 10 microg x L(-1) VB12) to 3.08 days (treated with 100 microg x L(-1) VB12). The expression of cytochrome b6f complex iron-sulfur protein gene and dioxygenase gene showed significant correlation with PCB28-degradation by Nostoc PD-2. While the expression of iron-sulfur protein gene showed more significant correlation with PCB28-degradation. Results in this study indicated that adding VB12 could promote PCB28-degradation by Nostoc PD-2. Moreover, VB12 addition improved the PCB-degradation activity of Nostoc PD-2 at the gene level. The above conclusions could provide a new choice for developing efficient bioremediation technology for PCB-contaminated environment and a new insight into the PCB-biodegradation mechanism by Nostoc PD-2.

  19. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  20. Engineered cyanophycin synthetase (CphA) from Nostoc ellipsosporum confers enhanced CphA activity and cyanophycin accumulation to Escherichia coli.

    Science.gov (United States)

    Hai, Tran; Frey, Kay M; Steinbüchel, Alexander

    2006-12-01

    The cyanophycin (CGP) synthetase gene (cphANE1) of the transposon-induced argL mutant NE1 of the cyanobacterium Nostoc ellipsosporum, which exhibits a CGP-leaky phenotype during diazotrophical growth, was cloned and expressed in Escherichia coli strain TOP10. Its amino acid sequence exhibited high similarities to CphAs of other cyanobacteria. Recombinant cells of E. coli, which harbored a fragment comprising the complete cphANE1 gene plus 400 bp of its downstream region in colinear orientation to the lacZ promoter, accumulated CGP up to 17 and 8.5% (wt/wt) of cellular dry matter (CDM) if cultivated in complex medium in the presence or absence of isopropyl-beta-D-thiogalactopyranoside, respectively. Two truncated CphAs, lacking 31 (CphANE1del96) or 59 (CphANE1del180) amino acids of the C-terminal region, were derived from cphANE1 by deleting 96 or 180 bp from its 3' region through the introduction of stop codons. In comparison to the wild-type gene, cphANE1del96 conferred about 2.1- to 2.2-fold-higher enzyme activity (up to 5.75 U/mg protein) on E. coli. Furthermore, these cells accumulated about twofold more CGP (up to 34.5% [wt/wt] of CDM) than cells expressing the wild-type gene. An engineered CphA possessing significantly enhanced activity and conferring the highest CGP content on E. coli is demonstrated. In contrast, CphANE1del180 was inactive and did not confer CGP accumulation on E. coli. Interestingly, a short conserved stretch of 4 to 5 hydrophobic amino acids is located in the protein region present in CphANE1del96 but absent in CphANE1del180. In addition, CphANE1 and CphANE1del96 are, besides CphA from Acinetobacter baylyi, the only CphAs exhibiting rigid substrate specificities that do not enable the incorporation of lysine instead of arginine into CGP.

  1. Engineered Cyanophycin Synthetase (CphA) from Nostoc ellipsosporum Confers Enhanced CphA Activity and Cyanophycin Accumulation to Escherichia coli▿

    Science.gov (United States)

    Hai, Tran; Frey, Kay M.; Steinbüchel, Alexander

    2006-01-01

    The cyanophycin (CGP) synthetase gene (cphANE1) of the transposon-induced argL mutant NE1 of the cyanobacterium Nostoc ellipsosporum, which exhibits a CGP-leaky phenotype during diazotrophical growth, was cloned and expressed in Escherichia coli strain TOP10. Its amino acid sequence exhibited high similarities to CphAs of other cyanobacteria. Recombinant cells of E. coli, which harbored a fragment comprising the complete cphANE1 gene plus 400 bp of its downstream region in colinear orientation to the lacZ promoter, accumulated CGP up to 17 and 8.5% (wt/wt) of cellular dry matter (CDM) if cultivated in complex medium in the presence or absence of isopropyl-β-d-thiogalactopyranoside, respectively. Two truncated CphAs, lacking 31 (CphANE1del96) or 59 (CphANE1del180) amino acids of the C-terminal region, were derived from cphANE1 by deleting 96 or 180 bp from its 3′ region through the introduction of stop codons. In comparison to the wild-type gene, cphANE1del96 conferred about 2.1- to 2.2-fold-higher enzyme activity (up to 5.75 U/mg protein) on E. coli. Furthermore, these cells accumulated about twofold more CGP (up to 34.5% [wt/wt] of CDM) than cells expressing the wild-type gene. An engineered CphA possessing significantly enhanced activity and conferring the highest CGP content on E. coli is demonstrated. In contrast, CphANE1del180 was inactive and did not confer CGP accumulation on E. coli. Interestingly, a short conserved stretch of 4 to 5 hydrophobic amino acids is located in the protein region present in CphANE1del96 but absent in CphANE1del180. In addition, CphANE1 and CphANE1del96 are, besides CphA from Acinetobacter baylyi, the only CphAs exhibiting rigid substrate specificities that do not enable the incorporation of lysine instead of arginine into CGP. PMID:17012590

  2. Colony formation in the cyanobacterium Microcystis.

    Science.gov (United States)

    Xiao, Man; Li, Ming; Reynolds, Colin S

    2018-02-22

    Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb 2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca 2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h -1 ) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade

  3. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail: aks_10@yahoo.com; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)

    2008-09-15

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  4. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Warshan, Denis; Espinoza, Josh L.; Stuart, Rhona K.; Richter, R. Alexander; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; C Kyrpides, Nikos; Barry, Kerrie; Singan, Vasanth; Lindquist, Erika; Ansong, Charles; Purvine, Samuel O.; M Brewer, Heather; Weyman, Philip D.; Dupont, Christopher L.; Rasmussen, Ulla

    2017-08-11

    Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feathermosses is the primary pathway of biological nitrogen (N) input into boreal forests. Despite its significance, little is known about the cyanobacterial gene repertoire and regulatory rewiring needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions and regulatory changes allowing cyanobacteria to form and maintain this symbiosis, we compared genomically closely related symbiotic-competent and -incompetent Nostoc strains using a proteogenomics approach and an experimental set up allowing for controlled chemical and physical contact between partners. Thirty-two gene families were found only in the genomes of symbiotic strains, including some never before associated with cyanobacterial symbiosis. We identified conserved orthologs that were differentially expressed in symbiotic strains, including protein families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, and glycosyl-modifying and oxidative stress-mediating exoenzymes. The physical moss–cyanobacteria epiphytic symbiosis is distinct from other cyanobacteria–plant symbioses, with Nostoc retaining motility, and lacking modulation of N2-fixation, photosynthesis, GS-GOGAT cycle and heterocyst formation. The results expand our knowledge base of plant–cyanobacterial symbioses, provide a model of information and material exchange in this ecologically significant symbiosis, and suggest new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining the cyanobacteria–feathermoss symbiosis.

  5. Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

    Directory of Open Access Journals (Sweden)

    Jouni Jokela

    2017-10-01

    Full Text Available Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetland area in Brazil. Nostoc sp. CENA543 produces exceptionally high amounts of nodularin-R. This is the first free-living Nostoc that produces nodularin at comparable levels as the toxic, bloom-forming, Nodularia spumigena. We also characterized pseudospumigins A–F, which are a novel family of linear tetrapeptides. Pseudospumigins are structurally related to linear tetrapeptide spumigins and aeruginosins both present in N. spumigena but differ in respect to their diagnostic amino acid, which is Ile/Leu/Val in pseudospumigins, Pro/mPro in spumigins, and Choi in aeruginosins. The pseudospumigin gene cluster is more similar to the spumigin biosynthetic gene cluster than the aeruginosin gene cluster. Pseudospumigin A inhibited trypsin (IC50 4.5 μM after 1 h in a similar manner as spumigin E from N. spumigena but was almost two orders of magnitude less potent. This study identifies another location and environment where the hepatotoxic nodularin has the potential to cause the death of eukaryotic organisms.

  6. Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers.

    Science.gov (United States)

    Mateo, Pilar; Perona, Elvira; Berrendero, Esther; Leganés, Francisco; Martín, Marta; Golubić, Stjepko

    2011-05-01

    The diversity within the genus Nostoc is still controversial and more studies are needed to clarify its heterogeneity. Macroscopic species have been extensively studied and discussed; however, the microscopic forms of the genus, especially those from running waters, are poorly known and likely represented by many more species than currently described. Nostoc isolates from biofilms of two Spanish calcareous rivers were characterized comparing the morphology and life cycle in two culture media with different levels of nutrients and also comparing the 16S rRNA gene sequences. The results showed that trichome shape and cellular dimensions varied considerably depending on the culture media used, whereas the characteristics expressed in the course of the life cycle remained stable for each strain independent of the culture conditions. Molecular phylogenetic analysis confirmed the distinction between the studied strains established on morphological grounds. A balanced approach to the evaluation of diversity of Nostoc in the service of autecological studies requires both genotypic information and the evaluation of stable traits. The results of this study show that 16S rRNA gene sequence similarity serves as an important criterion for characterizing Nostoc strains and is consistent with stable attributes, such as the life cycle. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga.

    Science.gov (United States)

    Thompson, Anne W; Foster, Rachel A; Krupke, Andreas; Carter, Brandon J; Musat, Niculina; Vaulot, Daniel; Kuypers, Marcel M M; Zehr, Jonathan P

    2012-09-21

    Symbioses between nitrogen (N)(2)-fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen acquisition in N-limited environments. Recently, a widely distributed planktonic uncultured nitrogen-fixing cyanobacterium (UCYN-A) was found to have unprecedented genome reduction, including the lack of oxygen-evolving photosystem II and the tricarboxylic acid cycle, which suggested partnership in a symbiosis. We showed that UCYN-A has a symbiotic association with a unicellular prymnesiophyte, closely related to calcifying taxa present in the fossil record. The partnership is mutualistic, because the prymnesiophyte receives fixed N in exchange for transferring fixed carbon to UCYN-A. This unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N(2) fixation.

  8. An early-branching microbialite cyanobacterium forms intracellular carbonates.

    Science.gov (United States)

    Couradeau, Estelle; Benzerara, Karim; Gérard, Emmanuelle; Moreira, David; Bernard, Sylvain; Brown, Gordon E; López-García, Purificación

    2012-04-27

    Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.

  9. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium

    Directory of Open Access Journals (Sweden)

    Laurie L. Richardson

    2014-12-01

    Full Text Available Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch’s Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis.

  10. Differentiation of free-living Anabaena and Nostoc cyanobacteria on the basis of fatty acid composition.

    Science.gov (United States)

    Caudales, R; Wells, J M

    1992-04-01

    The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS)

  11. COMPARATIVE GROWTH AND BIOCHEMICAL COMPOSITION OF FOUR STRAINS OF Nostoc AND Anabaena (CYANOBACTERIA, NOSTOCALES IN RELATION TO SODIUM NITRATE

    Directory of Open Access Journals (Sweden)

    Néstor Rosales Loaiza

    2016-04-01

    Full Text Available ABSTRACTNitrogen concentration is an essential parameter in cyanobacterial cultures to produce enriched biomass with biotechnological purposes. Growth and biochemical composition of Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 and Anabaena sp.2 were compared at 0, 4.25, 8.5 and 17 mM NaNO3. Cultures under laboratory conditions were maintained for 30 days at a volume of 500 mL. Anabaena sp.1 yielded the highest value of dry mass of 0.26 ± 2.49 mg mL-1 at 8.5 mM NaNO3. For chlorophyll, phycocyanin and phycoerythrin, maximum values were achieved at 17 mM NaNO3 with 18.09 ± 1.74, 102.90 ± 6.73 and 53.47 ± 2.40 μg mL-1, respectively. Nostoc LAUN0015 produced its maximum value of protein 644.86 ± 19.77 μg mL-1, and 890 mg mL-1 of carbohydrates in the absence of nitrogen. This comparative study shows that the most efficient strain for the production of protein, carbohydrates and lipids in diazotrophic conditions corresponded to Nostoc LAUN0015. However, Anabaena sp.1 and Anabaena sp.2 required high nitrogen concentrations to achieve higher values of metabolites, comparing with Nostoc strains. Nitrogen dependence for the production of pigments and high protein production in strains of Anabaena and in diazotrophic conditions for Nostoc was demonstrated. Nostoc can be cultured under nitrogen deficiency and Anabaena in sufficiency, for biomass production enriched with proteins and carbohydrates.Comparación del crecimiento y Composición Bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales en relación con el nitrato de sodioRESUMENLa concentración de nitrógeno constituye un parámetro esencial en cultivos de cianobacterias para la producción de biomasa enriquecida con fines biotecnológicos. Se comparó el crecimiento y composición bioquímica de las cepas Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 y Anabaena sp.2 a 0, 4,25; 8,5 y 17 mM NaNO3. Los cultivos en condiciones de laboratorio fueron mantenidos durante 30 d

  12. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme.

    Science.gov (United States)

    Han, Pei-pei; Sun, Ying; Jia, Shi-ru; Zhong, Cheng; Tan, Zhi-lei

    2014-05-25

    The influences of different wavelengths of light (red 660nm, yellow 590nm, green 520nm, blue 460nm, purple 400nm) and white light on extracellular polysaccharide (EPS) and capsular polysaccharide (CPS) production by Nostoc flagelliforme in liquid culture were demonstrated in this study. The results showed that, compared with white light, red and blue lights significantly increased both EPS and CPS production while yellow light reduced their production; purple and green lights stimulated EPS production but inhibited CPS formation. Nine constituent monosaccharides and one uronic acid were detected in both EPS and CPS, and their ratios showed significant differences among treatment with different light wavelengths. However, the advanced structure of EPS and CPS from various light conditions did not present obvious difference through Fourier transform infrared spectroscopy and X-ray diffraction characterization. These findings establish a basis for development of high-yielding polysaccharide production process and understanding their regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. System analysis of salt and osmotic stress induced proteins in Nostoc muscorum and Bradyrhizobium japonicum

    Directory of Open Access Journals (Sweden)

    Vipin Kaithwas

    2017-06-01

    Full Text Available In this study the proteome response of the two diazotrophic organism’s viz. Nostoc muscorum and Bradyrhizobium japonicum exposed to salt (NaCl and osmotic (sucrose stresses was compared. Out of the total over expressed proteins; we have selected only three over expressed proteins viz. GroEL chaperonin, nitrogenase Mo-Fe protein and argininosuccinate synthase for further analysis, and then we analyzed the amino acid frequencies of all the three over expressed proteins. That led to the conclusion that amino acids e.g. alanine, glycine and valine that were energetically cheaper to produce were showing higher frequencies. This study would help in tracing the phylogenetic relationship between protein families.

  14. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp.

    Science.gov (United States)

    Johnson, Eldin M; Kumar, Kanhaiya; Das, Debabrata

    2014-08-01

    The present study investigated the effects of several physicochemical parameters on the improvement of phycobiliproteins (especially phycocyanin) synthesis in a newly isolated species of Nostoc sp. Standard BG11₀ medium was modified to enhance the biomass productivity in different photobioreactors. The initial pH of 8, light intensity of 40 μmol m(-2)s(-1), temperature of 35 °C, diurnal cycle of 16:8 h (light:dark regime), 75.48 μM Na₂CO₃ and 17.65 mM NaNO₃ were found most suitable for the phycobiliproteins synthesis. Cyanobacteria exhibited chromatic adaptation, causing overexpression of phycocyanin in red and phycoerythrin in green light. The maximum phycobiliproteins yield of 0.13 gg(-1) dry cell weight was obtained in green light. Phycocyanin was further purified using thin layer chromatography (TLC), anion exchange chromatography and SDS-PAGE (denaturing gel) electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. COMPARATIVE GROWTH AND BIOCHEMICAL COMPOSITION OF FOUR STRAINS OF Nostoc AND Anabaena (CYANOBACTERIA, NOSTOCALES IN RELATION TO SODIUM NITRATE

    Directory of Open Access Journals (Sweden)

    Néstor ROSALES LOAIZA

    2016-01-01

    Full Text Available La concentración de nitrógeno constituye un parámetro esencial en cultivos de cianobacterias para la producción de biomasa enriquecida con fines biotecnológicos. Se comparó el crecimiento y composición bioquímica de las cepas Nostoc LAUN0015, Nostoc UAM206, Anabaena sp.1 y Anabaena sp.2 a 0, 4,25; 8,5 y 17 mM NaNO 3 . Los cultivos en condiciones de laboratorio fueron mantenidos durante 30 días a un volumen de 500 mL. En masa seca, Anabaena sp.1 obtuvo el mayor valor, con 2,49 ± 0,26 mg mL -1 a 8,5 mM NaNO 3 . Para clorofila, ficocianina y ficoeritrina, los máximos se alcanzaron a 17 mM NaNO 3 en Anabaena sp.1, con 18,09 ± 1,74; 102,90 ± 6,73 y 53,47 ± 2,40 μg mL -1 , respectivamente. Nostoc LAUN0015 produjo su máximo valor de proteínas de 644,86 ± 19,77μg mL -1 , y alrededor de 890 μg mL -1 de carbohidratos en ausencia de nitrógeno. El estudio comparativo indica que la cepa más eficiente para la producción de proteínas, carbohidratos y lípidos, en condiciones diazotróficas, correspondió a Nostoc LAUN0015. En cambio, las cepas de Anabaena sp.1 y sp.2 requieren de elevadas concentraciones de nitrógeno para alcanzar los mayores valores de metabolitos, respecto a las cepas de Nostoc . Se demuestra la dependencia de nitrógeno para la producción de los pigmentos y la alta producción proteica en las cepas de Anabaena y en condiciones diazotróficas para Nostoc . Esta última puede ser cultivada bajo una deficiencia de nitrógeno y Anabaena con suficiencia para la producción masiva de biomasa enriquecida con proteínas y carbohidratos.

  16. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Science.gov (United States)

    Rehm, Charlotte; Wurmthaler, Lena A; Li, Yuanhao; Frickey, Tancred; Hartig, Jörg S

    2015-01-01

    In prokaryotes simple sequence repeats (SSRs) with unit sizes of 1-5 nucleotides (nt) are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4) structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc), Xanthomonas axonopodis pv. citri str. 306 (Xac), and Nostoc sp. strain PCC7120 (Ana). In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs) and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  17. Genetic analysis reveals the identity of the photoreceptor for phototaxis in hormogonium filaments of Nostoc punctiforme.

    Science.gov (United States)

    Campbell, Elsie L; Hagen, Kari D; Chen, Rui; Risser, Douglas D; Ferreira, Daniela P; Meeks, John C

    2015-02-15

    In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Sodium-coupled motility in a swimming cyanobacterium.

    OpenAIRE

    Willey, J M; Waterbury, J B; Greenberg, E P

    1987-01-01

    The energetics of motility in Synechococcus strain WH8113 were studied to understand the unique nonflagellar swimming of this cyanobacterium. There was a specific sodium requirement for motility such that cells were immotile below 10 mM external sodium and cell speed increased with increasing sodium levels above 10 mM to a maximum of about 15 microns/s at 150 to 250 mM sodium. The sodium motive force increased similarly with increasing external sodium from -120 to -165 mV, but other energetic...

  19. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120*

    Science.gov (United States)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.

    2009-01-01

    The crystal structure of the cyanobacterial cytochrome b6f complex has previously been solved to 3.0-Å resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b6f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b6f complex. Purified b6f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b6f complex, determined to a resolution of 3.0Å (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme bp that is rotated 180° about the α- and γ-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b6f complex from other sources. PMID:19189962

  20. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study.

    Science.gov (United States)

    Soule, Tanya; Gao, Qunjie; Stout, Valerie; Garcia-Pichel, Ferran

    2013-01-01

    Cyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures. Of those genes, 473 were up-regulated, while only 100 were down-regulated. Many of the down-regulated genes were involved in photosynthetic pigment biosynthesis, indicating a significant shift in this metabolism. As expected, we detected the up-regulation of genes encoding antioxidant enzymes and the sunscreen, scytonemin. However, a majority of the up-regulated genes, 47%, were unassignable bioinformatically to known functional categories, suggesting that the UVA stress response is not well understood. Interestingly, the most dramatic up-regulation involved several contiguous genes of unassigned metabolism on plasmid A. This is the first global UVA stress response analysis of any phototrophic microorganism and the differential expression of 8% of the genes of the Nostoc genome indicates that adaptation to UVA in Nostoc has been an evolutionary force of significance. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  1. Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria).

    Science.gov (United States)

    Olsson, Sanna; Kaasalainen, Ulla; Rikkinen, Jouko

    2012-02-01

    In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem-loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.

  2. Investigation of a Quadruplex-Forming Repeat Sequence Highly Enriched in Xanthomonas and Nostoc sp.

    Directory of Open Access Journals (Sweden)

    Charlotte Rehm

    Full Text Available In prokaryotes simple sequence repeats (SSRs with unit sizes of 1-5 nucleotides (nt are causative for phase and antigenic variation. Although an increased abundance of heptameric repeats was noticed in bacteria, reports about SSRs of 6-9 nt are rare. In particular G-rich repeat sequences with the propensity to fold into G-quadruplex (G4 structures have received little attention. In silico analysis of prokaryotic genomes show putative G4 forming sequences to be abundant. This report focuses on a surprisingly enriched G-rich repeat of the type GGGNATC in Xanthomonas and cyanobacteria such as Nostoc. We studied in detail the genomes of Xanthomonas campestris pv. campestris ATCC 33913 (Xcc, Xanthomonas axonopodis pv. citri str. 306 (Xac, and Nostoc sp. strain PCC7120 (Ana. In all three organisms repeats are spread all over the genome with an over-representation in non-coding regions. Extensive variation of the number of repetitive units was observed with repeat numbers ranging from two up to 26 units. However a clear preference for four units was detected. The strong bias for four units coincides with the requirement of four consecutive G-tracts for G4 formation. Evidence for G4 formation of the consensus repeat sequences was found in biophysical studies utilizing CD spectroscopy. The G-rich repeats are preferably located between aligned open reading frames (ORFs and are under-represented in coding regions or between divergent ORFs. The G-rich repeats are preferentially located within a distance of 50 bp upstream of an ORF on the anti-sense strand or within 50 bp from the stop codon on the sense strand. Analysis of whole transcriptome sequence data showed that the majority of repeat sequences are transcribed. The genetic loci in the vicinity of repeat regions show increased genomic stability. In conclusion, we introduce and characterize a special class of highly abundant and wide-spread quadruplex-forming repeat sequences in bacteria.

  3. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated

  4. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  5. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Science.gov (United States)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  6. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant–cyanobacteria symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Warshan, Denis; Espinoza, Josh L.; Stuart, Rhona; Richter, Alexander R.; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Kyripides, Nikos; Barry, Kerrie W.; Singan, Vasanth; Lindquist, Erika; Ansong, Charles K.; Purvine, Samuel O.; Brewer, Heather M.; Weyman, Philip D.; Dupont, Chris; Rasmussen, Ulla

    2017-12-31

    Dinitrogen (N2)-fixation by cyanobacteria in symbiosis with feather mosses represents the main pathway of biological N input into boreal forests. Despite its significance, little is known about the gene repertoire needed for the establishment and maintenance of the symbiosis. To determine gene acquisitions or regulatory rewiring allowing cyanobacteria to form this symbiosis, we compared closely related Nostoc strains that were either symbiosis-competent or non-competent, using a proteogenomics approach and a unique experimental setup allowing for controlled chemical and physical contact between partners. Thirty-two protein families were only in the genomes of competent strains, including some never before associated with symbiosis. We identified conserved orthologs that were differentially expressed in competent strains, including gene families involved in chemotaxis and motility, NO regulation, sulfate/phosphate transport, sugar metabolism, and glycosyl-modifying and oxidative stress-mediating exoenzymes. In contrast to other cyanobacteria-plant symbioses, the moss-cyanobacteria epiphytic symbiosis is distinct, with the symbiont retaining motility and chemotaxis, and not modulating N-fixation, photosynthesis, GS-GOGAT cycle, and heterocyst formation. Our work expands our knowledge of plant cyanobacterial symbioses, provides an interaction model of this ecologically significant symbiosis, and suggests new currencies, namely nitric oxide and aliphatic sulfonates, may be involved in establishing and maintaining this symbiosis.

  7. Engineering split intein DnaE from Nostoc punctiforme for rapid protein purification.

    Science.gov (United States)

    Ramirez, Miguel; Valdes, Najla; Guan, Dongli; Chen, Zhilei

    2013-03-01

    We report the engineering of a DnaE intein able to catalyze rapid C-terminal cleavage in the absence of N-terminal cleavage. A single mutation in DnaE intein from Nostoc punctiforme PCC73102 (NpuDnaE), Asp118Gly, was introduced based on sequence alignment with a previously engineered C-terminal cleaving intein mini-MtuRecA. This mutation was able to both suppress N-terminal cleavage and significantly elevate C-terminal cleavage efficiency. Molecular modeling suggests that in NpuDnaE Asp118 forms a hydrogen bond with the penultimate Asn, preventing its spontaneous cyclization prior to N-terminal cleavage. Mutation of Asp118 to Gly essentially abolishes this restriction leading to subsequent C-terminal cleavage in the absence of N-terminal cleavage. The Gly118 NpuDnaE mutant exhibits rapid thio-dependent C-terminal cleavage kinetics with 80% completion within 3 h at room temperature. We used this newly engineered intein to develop both column-free and chromatography-based protein purification methods utilizing the elastin-like-polypeptide and chitin-binding protein as removable purification tags, respectively. We demonstrate rapid target protein purification to electrophoretic purity at yields up to 84 mg per liter of Escherichia coli culture.

  8. Multiple ketolases involved in light regulation of canthaxanthin biosynthesis in Nostoc punctiforme PCC 73102.

    Science.gov (United States)

    Schöpf, Lotte; Mautz, Jürgen; Sandmann, Gerhard

    2013-05-01

    In the genome of Nostoc punctiforme PCC 73102, three functional β-carotene ketolase genes exist, one of the crtO and two of the crtW type. They were all expressed and their corresponding enzymes were functional inserting 4-keto groups into β-carotene as shown by functional pathway complementation in Escherichia coli. They all synthesized canthaxanthin but with different efficiencies. Canthaxanthin is the photoprotective carotenoid of N. punctiforme PCC 73102. Under high-light stress, its synthesis was enhanced. This was caused by up-regulation of the transcripts of two genes in combination. The first crtB-encoding phytoene synthase is the gate way enzyme of carotenogenesis resulting in an increased inflow into the pathway. The second was the ketolase gene crtW148 which in high light takes over β-carotene conversion into canthaxanthin from the other ketolases. The other ketolases were down-regulated under high-light conditions. CrtW148 was also exclusively responsible for the last step in 4-keto-myxoxanthophyll synthesis.

  9. 2-Methylhopanoids are maximally produced in akinetes of Nostoc punctiforme: geobiological implications

    Science.gov (United States)

    Doughty, David M.; Hunter, Ryan C.; Summons, Roger E.; Newman, Dianne K.

    2010-01-01

    2-Methylhopanes, molecular fossils of 2-methylbacteriohopanepolyol (2-MeBHP) lipids, have been proposed as biomarkers for cyanobacteria, and by extension, oxygenic photosynthesis. However, the robustness of this interpretation is unclear, as 2-methylhopanoids occur in organisms besides cyanobacteria and their physiological functions are unknown. As a first step towards understanding the role of 2-MeBHP in cyanobacteria, we examined the expression and intercellular localization of hopanoids in the three cell types of Nostoc punctiforme: vegetative cells, akinetes, and heterocysts. Cultures in which N. punctiforme had differentiated into akinetes contained approximately 10-fold higher concentrations of 2-methylhopanoids than did cultures that contained only vegetative cells. In contrast, 2-methylhopanoids were only present at very low concentrations in heterocysts. Hopanoid production initially increased 3-fold in cells starved of nitrogen but returned to levels consistent with vegetative cells within two weeks. Vegetative and akinete cell types were separated into cytoplasmic, thylakoid, and outer membrane fractions; the increase in hopanoid expression observed in akinetes was due to a 34-fold enrichment of hopanoid content in their outer membrane relative to vegetative cells. Akinetes formed in response either to low light or phosphorus limitation, exhibited the same 2-methylhopanoid localization and concentration, demonstrating that 2-methylhopanoids are associated with the akinete cell type per se. Because akinetes are resting cells that are not photosynthetically active, 2-methylhopanoids cannot be functionally linked to oxygenic photosyntheis in N. punctiforme. PMID:19811542

  10. Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture.

    Science.gov (United States)

    Dai, Yu-Jie; Li, Jing; Wei, Shu-Mei; Chen, Nan; Xiao, Yu-Peng; Tan, Zhi-Lei; Jia, Shi-Ru; Yuan, Nan-Nan; Tan, Ning; Song, Yi-Jie

    2013-04-01

    The effects of lights with different wavelengths on the growth and the yield of extracellular polysaccharides of Nostoc flagelliforme cells were investigated in a liquid cultivation. N. flagelliforme cells were cultured for 16 days in 500 ml conical flasks containing BG11 culture medium under 27 micromol·m-2·s-1 of light intensity and 25 degrees C on a rotary shaker (140 rpm). The chlorophyll a, phycocyanin, allophycocyanin, and phycoerythrin contents in N. flagelliforme cells under the lights of different wavelengths were also measured. It was found that the cell biomass and the yield of polysaccharide changed with different wavelengths of light. The biomass and the yield of extracellular polysaccharides under the red or violet light were higher than those under other light colors. Chlorophyll a, phycocyanin, and allophycocyanin are the main pigments in N. flagelliforme cells. The results showed that N. flagelliforme, like other cyanobacteria, has the ability of adjusting the contents and relative ratio of its pigments with the light quality. As a conclusion, N. flagelliforme cells favor red and violet lights and perform the complementary chromatic adaptation ability to acclimate to the changes of the light quality in the environment.

  11. Ultraviolet radiation effects on pigmentation in the cyanobacterium ``Phormidium uncinatum``

    Energy Technology Data Exchange (ETDEWEB)

    Donkor, V.A.; Haeder, D.P. [Inst. fuer Botanik und Pharmaceutische Biologie, Friedrich-Alexander-Universitaet, Erlangen (Germany)

    1997-12-31

    The Baikal strain of the cyanobacterium Phormidium uncinatum was found to possess the photosynthetic pigments chlorophyll a, carotenoids, phycocyanin and allophycocyanin, while the Tuebingen strain of Phormidium contained, in addition to these, the biliprotein phycoerythrin. Sucrose gradient centrifugation of the pigment extracts resulted in a separation of the phycobiliproteins into several bands, which according to their absorption and fluorescence properties, were identified as monomers, trimers and hexamers. With increasing UV-B irradiation the heavier aggregates were broken down into smaller components. Photobleaching of these accessory pigments also occurred. FPLC gel filtration analyses of the pigments also showed loss of heavier aggregates of the phycobilins and bleaching of the pigments. SDS-polyacrylamide gel electrophoresis of the sucrose gradient and FPLC fractions indicated loss of the biliproteins with increasing UV-B irradiation. The loss of the {beta}- were more rapid than that of the {alpha}- subunits. Increasing levels of ultraviolet irradiation is therefore deleterious to these organism. (author). 41 refs, 7 figs.

  12. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica.

    Science.gov (United States)

    Oren, A; Padan, E

    1978-02-01

    Anaerobic photoautotrophic growth of the cyanobacterium Oscillatoria limnetica was demonstrated under nitrogen in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (5micron), a constant concentration of Na2S (2.5 mM), and constant pH (7.3). The photoanaerobic growth rate (2 days doubling time) was similar to that obtained under oxygenic photoautotrophic growth conditions. The potential of oxygenic photosynthesis is constitutive in the cells; that of anoxygenic photosynthesis is rapidly (2 h) induced in the presence of Na2S in the light in a process requiring protein synthesis. The facultative anaerobic phototrophic growth physiology exhibited by O. limnetica would seem to represent an intermediate physiological pattern between the obligate anaerobic one of photosynthetic bacteria and the oxygenic one of eucaryotic algae.

  13. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments.

    Science.gov (United States)

    Sand-Jensen, Kaj

    2014-07-01

    The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10-14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2-3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3(-) uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by

  14. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    OpenAIRE

    Ulla Kaasalainen; Sanna Olsson; Jouko Rikkinen

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II r...

  15. Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp.

    Science.gov (United States)

    Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang

    2014-02-01

    A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.

  16. Mutational studies of putative biosynthetic genes for the cyanobacterial sunscreen scytonemin in Nostoc punctiforme ATCC 29133

    Directory of Open Access Journals (Sweden)

    Daniela eFerreira

    2016-05-01

    Full Text Available The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (∆scyD, ∆scyE and ∆scyF and their phenotypes studied. Expectedly, ∆scyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ∆scyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ∆scyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

  17. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.

    Science.gov (United States)

    Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh

    2013-11-01

    Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton.

    Science.gov (United States)

    Díaz, Eva Maria; Vicente-Manzanares, Miguel; Sacristan, Mara; Vicente, Carlos; Legaz, Maria-Estrella

    2011-10-01

    A glycosylated arginase acting as a fungal lectin from Peltigera canina is able to produce recruitment of cyanobiont Nostoc cells and their adhesion to the hyphal surface. This implies that the cyanobiont would develop organelles to motility towards the chemoattractant. However when visualized by transmission electron microscopy, Nostoc cells recently isolated from P. canina thallus do not reveal any motile, superficial organelles, although their surface was covered by small spindles and serrated layer related to gliding. The use of S-(3,4-dichlorobenzyl)isothiourea, blebbistatin, phalloidin and latrunculin A provide circumstantial evidence that actin microfilaments rather than MreB, the actin-like protein from prokaryota, and, probably, an ATPase which develops contractile function similar to that of myosin II, are involved in cell motility. These experimental facts, the absence of superficial elements (fimbriae, pili or flagellum) related to cell movement, and the appearance of sunken cells during of after movement verified by scanning electron microscopy, support the hypothesis that the motility of lichen cyanobionts could be achieved by contraction-relaxation episodes of the cytoskeleton induced by fungal lectin act as a chemoattractant.

  19. Growth assessment of cyanobacteria Anabaena Sp. FS 76 and Nostoc Sp. FS 77 affected by thermal shock condition

    Directory of Open Access Journals (Sweden)

    R. Taheri

    2017-03-01

    Full Text Available Soil cyanobacteria Nostoc sp. FS 77 and Anabaena sp. FS 76 from the point of view to extreme constraints associated with light, carbon dioxide and cold shock, were evaluated. Samples were Prepared from algal museum of shahid Beheshti University and placed in vitro treatment limitations extreme light (2 micromoles quantum per square meter per second, carbon dioxide (non-inoculated carbon dioxide , non- aerated temperature of 25°C and cold shock (00C at different times (0.5, 2 , 4 , 6 , 8minutes. The results showed that the cyanobacteria are able to maintain their survival in cold shock treatments. In cyanobacteria Anabaena shocks cause a lag phase. In cyanobacteria Nostoc, behaviors were different related to thermal shocks and by contrast Anabaena within 6 minutes had negative growth the fifth day. The photoperiod shock eight minutes was not observed a significant difference in the carotenoid content. To achieve stability in the filament part of Phycobilisomes shocks have played a similar role in half and eight minutes. However, the system of will be affected in the short times. It appears that chlorophyll formation in relation to the time and thermal shock in these cyanobacteria varies depending on the species.

  20. Comparative transcriptomics with a motility-deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme.

    Science.gov (United States)

    Risser, Douglas D; Meeks, John C

    2013-02-01

    Many filamentous cyanobacteria are capable of gliding motility by an undefined mechanism. Within the heterocyst-forming clades, some strains, such as the Nostoc spp. and Fisherella spp., are motile only as specialized filaments termed hormogonia. Here we report on the phenotype of inactivation of a methyl-accepting chemotaxis-like protein in Nostoc punctiforme, designated HmpD. The gene hmpD was found to be essential for hormogonium development, motility and polysaccharide secretion. Comparative global transcriptional profiling of the ΔhmpD strain demonstrated that HmpD has a profound effect on the transcriptional programme of hormogonium development, influencing approximately half of the genes differentially transcribed during differentiation. Utilizing this transcriptomic data, we identified a gene locus, designated here as hps, that appears to encode for a novel polysaccharide secretion system. Transcripts for the genes in the hps locus are upregulated in two steps, with the second step dependent on HmpD. Deletion of hpsA, hpsBCD or hpsEFG resulted in the complete loss of motility and polysaccharide secretion, similar to deletion of hmpD. Genes in the hps locus are highly conserved in the filamentous cyanobacteria, but generally absent in unicellular strains, implying a common mechanism of motility unique to the filamentous cyanobacteria. © 2012 Blackwell Publishing Ltd.

  1. Phylogeny of Indonesian Nostoc (Cyanobac teria Isolated from Paddy Fields as Inferred from Partial Se quence of 16S rRNA Gene

    Directory of Open Access Journals (Sweden)

    Dian Hendrayanti

    2012-12-01

    Full Text Available In order to collect Indonesian Nostoc, isolation of soil microflora from several paddy fields in West Java, Bali, andSouth Celebes was carried out. Fast-growing isolates of Nostoc were selected to describe and perform molecular identification using partial sequences of 16S rRNA. The results showed that partial sequences of 16S rRNA could not resolve the phylogeny of the isolates. However, it supported the morphological studies that recognize isolates as different species of Nostoc. Potential use of Nostoc as a nitrogen source for paddy growth was carried out using six strains as single inoculums. A total biomass of 2 g (fresh weight for each strain was inoculated, respectively, into the pot planted with three paddy plants. This experiment was conducted in the green house for 115 days. Statistical analyses (ANOVA; α = 0.05 showed that of six strains tested in this study, only strain GIA13a had influence on the augmentation of root length and the total number of filled grains.

  2. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  3. Characterization and Optimization of Bioflocculant Exopolysaccharide Production by Cyanobacteria Nostoc sp. BTA97 and Anabaena sp. BTA990 in Culture Conditions.

    Science.gov (United States)

    Tiwari, Onkar Nath; Khangembam, Romi; Shamjetshabam, Minerva; Sharma, Aribam Subhalaxmi; Oinam, Gunapati; Brand, Jerry J

    2015-08-01

    Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.

  4. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  5. Sucrose secreted by the engineered cyanobacterium and its fermentability

    Science.gov (United States)

    Duan, Yangkai; Luo, Quan; Liang, Feiyan; Lu, Xuefeng

    2016-10-01

    The unicellular cyanobacterium, Synechococcus elongatus PCC 7942 (Syn7942), synthesizes sucrose as the only compatible solute under salt stress. A series of engineered Syn7942 strains for sucrose production were constructed. The overexpression of the native sps (encoding a natively fused protein of sucrose phosphate synthase SPS and sucrose phosphate phosphatase SPP) in Syn7942 wild type caused a 93% improvement of sucrose productivity. The strain FL130 co-overexpressing sps and cscB (encoding a sucrose transporter) exhibited a 74% higher extracellular sucrose production than that overexpressing cscB only. Both results showed the significant improvement of sucrose productivity by the double functional protein SPS-SPP. Afterwards, FL130 was cultivated under a modified condition, and the cell-free culture medium containing 1.5 g L-1 sucrose was pre-treated with an acid hydrolysis technique. Cultivated with the neutralized hydrolysates as the starting media, two widely used microorganisms, Escherichia coli and Saccharomyces cerevisiae, showed a comparable growth with that in the control media supplemented with glucose. These results clearly demonstrated that the cell-free culture of sucrose-secreting cyanobacteria can be applied as starting media in microbial cultivation.

  6. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Fang Linchuan [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Zhou Chen; Cai Peng [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Wenli [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Rong Xingmin; Dai Ke; Liang Wei [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Gu Jidong [Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong); Huang Qiaoyun, E-mail: qyhuang@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-06-15

    Highlights: {yields} The carboxyl groups play a vital role in the binding of Cu(II) and Cd(II) to S. platensis cells. {yields} Ion exchange and complexation are the dominating mechanism for Cu(II) and Cd(II) adsorption. {yields} XAFS analysis provided evidence for the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface. - Abstract: Cyanobacteria are promising biosorbent for heavy metals in bioremediation. Although sequestration of metals by cyanobacteria is known, the actual mechanisms and ligands involved are not very well understood. The binding characteristics of Cu(II) and Cd(II) by the cyanobacterium Spirulina platensis were investigated using a combination of chemical modifications, batch adsorption experiments, Fourier transform infrared (FTIR) spectroscopy and X-ray absorption fine structure (XAFS) spectroscopy. A significant increase in Cu(II) and Cd(II) binding was observed in the range of pH 3.5-5.0. Dramatical decrease in adsorption of Cu(II) and Cd(II) was observed after methanol esterification of the nonliving cells demonstrating that carboxyl functional groups play an important role in the binding of metals by S. platensis. The desorption rate of Cu(II) and Cd(II) from S. platensis surface was 72.7-80.7% and 53.7-58.0% by EDTA and NH{sub 4}NO{sub 3}, respectively, indicating that ion exchange and complexation are the dominating mechanisms for Cu(II) and Cd(II) adsorption. XAFS analysis provided further evidence on the inner-sphere complexation of Cu by carboxyl ligands and showed that Cu is complexed by two 5-membered chelate rings on S. platensis surface.

  7. Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium Synechococcus 6311.

    Science.gov (United States)

    Blumwald, E; Mehlhorn, R J; Packer, L

    1983-10-01

    The mechanisms of salt adaptation were studied in the cyanobacterium Synechococcus 6311. Intracellular volumes and ion concentrations were measured before and after abrupt increases of external NaCl concentrations up to 0.6 molar NaCl. Equilibrium volumes, measured with a rapid and accurate electron spin resonance spin probe method, showed that at low NaCl concentrations the cells did not shrink as expected for an impermeable solute. However, when the NaCl concentration exceeded a critical value, volume losses occurred. These losses were not fully reversed by hypoosmotic treatment, suggesting membrane damage. The critical value of irreversible volume loss paralleled the increase in salinity during cell growth. Rapid mixing experiments showed that exposure of Synechococcus 6311 to non-damaging NaCl concentrations caused water extrusion from the cells; the volume decreases were time resolved to about 200 milliseconds. Subsequently, volumes increased rapidly as NaCl moved into the cells. Controls recovered their volumes within 15 seconds, while salt-adapted cells grown at 0.6 molar NaCl required 1 minute for volume equilibration. This decrease in the rate of cell volume recovery indicates that salt adaptation is accompanied by changes in cell membrane properties. Subsequent to these initial rapid volume changes, a more gradual sequence of ion movement and sugar accumulation was observed. Under conditions for photoautotrophic growth, significant Na(+) extrusion was observed 30 min after salt shock. Sucrose accumulation reached a maximum value after 16 hours and K(+) accumulation reached equilibrium after 40 hours. The final concentrations of K(+) and Na(+) and sucrose and glucose inside the 0.6 molar NaCl-grown cells indicate that the inorganic ions and organic ;compatible' solutes are the major osmotic species which account for the adaptation of Synechococcus 6311 to salt.

  8. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes

    NARCIS (Netherlands)

    Bolhuis, H.; Severin, I.; Confurius - Guns, Veronique; Wollenzien, U.I.A.; Stal, L.J.

    2010-01-01

    The filamentous, non-heterocystous cyanobacterium Microcoleus chthonoplastes is a cosmopolitan organism, known to build microbial mats in a variety of different environments. Although most of these cyanobacterial mats are known for their capacity to fix dinitrogen, M. chthonoplastes has not been

  9. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.; Van Oosterhout, F.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  10. Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.

    NARCIS (Netherlands)

    Rabouille, S.A.M.; Staal, M.J.; Stal, L.J.; Soetaert, K.E.R.

    2006-01-01

    A physiological, unbalanced model is presented that explicitly describes growth of the marine cyanobacterium Trichodesmium sp. at the expense of N2 (diazotrophy). The model involves the dynamics of intracellular reserves of carbon and nitrogen and allows the uncoupling of the metabolism of these

  11. Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium

    NARCIS (Netherlands)

    Voss, B.; Bolhuis, H.; Fewer, D.P.; Kopf, M.; Möke, F.; Haas, F.; El-Shehawy, R.; Hayes, P.; Bergman, B.; Sivonen, K.; Dittmann, E.; Scanlan, D.J.; Hagemann, M.; Stal, L.J.; Hess, W.R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft

  12. Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Mehboob, A.; Stal, L.J.; Hasnain, S.

    2010-01-01

    The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole-3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture A. platensis strain MMG-9 and its identity was confirmed

  13. Production of indole-3-acetic acid by the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Stal, L.J.; Hasnain, S.

    2010-01-01

    The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole- 3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture of A. platensis strain MMG-9 and its identity was

  14. Competition for Light between Toxic and Nontoxic Strains of the Harmful Cyanobacterium Microcystis

    NARCIS (Netherlands)

    Kardinaal, W.E.A.; Tonk, L.; Janse, I.; Hol, S.; Slot, P.; Huisman, J.; Visser, P.M.

    2007-01-01

    Abstract: The cyanobacterium Microcystis can produce microcystins, a family of toxins that are of major concern in water management. In several lakes, the average microcystin content per cell gradually declines from high levels at the onset of Microcystis blooms to low levels at the height of the

  15. Competition for Light between Toxic and Nontoxic Strains of the Harmful Cyanobacterium Microcystis

    NARCIS (Netherlands)

    Kardinaal, W.E.A.; Tonk, L.; Janse, I.; Hol, S.; Slot, P.; Huisman, J.; Visser, P.M.

    2007-01-01

    The cyanobacterium Microcystis can produce microcystins, a family of toxins that are of major concern in water management. In several lakes, the average microcystin content per cell gradually declines from high levels at the onset of Microcystis blooms to low levels at the height of the bloom. Such

  16. Chlorophyll concentration assays

    African Journals Online (AJOL)

    heaven

    2012-05-10

    May 10, 2012 ... In compliance to the recent surveys on algal species and their potentials to produce biologically active compounds, seven algal species belonging to cyanobacteria such as Spirulina platensis, Nostoc linckia, Phormidium autumnale, Tolypothrix distorta and Microcystis aeruginosa and green algae such.

  17. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b[subscript 6]f Complex from Nostoc sp. PCC 7120

    Energy Technology Data Exchange (ETDEWEB)

    Baniulis, Danas; Yamashita, Eiki; Whitelegge, Julian P.; Zatsman, Anna I.; Hendrich, Michael P.; Hasan, S. Saif; Ryan, Christopher M.; Cramer, William A.; (Semel); (Purdue); (Osaka)

    2009-06-08

    The crystal structure of the cyanobacterial cytochrome b{sub 6}f complex has previously been solved to 3.0-{angstrom} resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b{sub 6}f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b{sub 6}f complex. Purified b{sub 6}f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b{sub 6}f complex, determined to a resolution of 3.0{angstrom} (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme b{sub p} that is rotated 180 deg. about the {alpha}- and {gamma}-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme cn is similar to that previously found in the b{sub 6}f complex from other sources.

  18. The application of two-step linear temperature program to thermal analysis for monitoring the lipid induction of Nostoc sp. KNUA003 in large scale cultivation.

    Science.gov (United States)

    Kang, Bongmun; Yoon, Ho-Sung

    2015-02-01

    Recently, microalgae was considered as a renewable energy for fuel production because its production is nonseasonal and may take place on nonarable land. Despite all of these advantages, microalgal oil production is significantly affected by environmental factors. Furthermore, the large variability remains an important problem in measurement of algae productivity and compositional analysis, especially, the total lipid content. Thus, there is considerable interest in accurate determination of total lipid content during the biotechnological process. For these reason, various high-throughput technologies were suggested for accurate measurement of total lipids contained in the microorganisms, especially oleaginous microalgae. In addition, more advanced technologies were employed to quantify the total lipids of the microalgae without a pretreatment. However, these methods are difficult to measure total lipid content in wet form microalgae obtained from large-scale production. In present study, the thermal analysis performed with two-step linear temeperature program was applied to measure heat evolved in temperature range from 310 to 351 °C of Nostoc sp. KNUA003 obtained from large-scale cultivation. And then, we examined the relationship between the heat evolved in 310-351 °C (HE) and total lipid content of the wet Nostoc cell cultivated in raceway. As a result, the linear relationship was determined between HE value and total lipid content of Nostoc sp. KNUA003. Particularly, there was a linear relationship of 98% between the HE value and the total lipid content of the tested microorganism. Based on this relationship, the total lipid content converted from the heat evolved of wet Nostoc sp. KNUA003 could be used for monitoring its lipid induction in large-scale cultivation. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Descripción de la morfología microscópica de comunidades de nostoc sp, provenientes de la parroquia de Pintag provincia de Pichincha.

    OpenAIRE

    Ortega Tapia, Geovanny Daniel; Vinueza López, Felipe David

    2016-01-01

    This research describes the microscopic morphology of Nostoc sp., from Pintag (Pichincha), in relation to weather variables from May to September 2015. The features evaluated from the samples were: diameter of cells (µm), heterocyst diameter (µm), mucilage area (µm²), filament length (µm) and heterocyst number in relation to one hundred vegetative cells. Fifteen samples were analyzed using as reference the temperature, precipitation, relative humidity and solar radiation. ...

  20. Domain organization of photosystem II in membranes of the cyanobacterium Synechocystis PCC6803 investigated by electron microscopy

    NARCIS (Netherlands)

    Folea, I. Mihaela; Zhang, Pengpeng; Aro, Eva-Mari; Boekema, Egbert J.

    2008-01-01

    The supramolecular organization of photosystem II (PSII) complexes in the photosynthetic membrane of the cyanobacterium Synechocystis 6803 was studied by electron microscopy. After mild detergent solubilization, crystalline PSII arrays were extracted in which dimeric PSII particles associate in

  1. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L.

    Science.gov (United States)

    Liaimer, Anton; Jensen, John B.; Dittmann, Elke

    2016-01-01

    Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin. PMID:27847500

  2. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L.

    Directory of Open Access Journals (Sweden)

    Anton Liaimer

    2016-11-01

    Full Text Available Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analysed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.

  3. Phenotypic and genetic diversities are not correlated in strains of the cyanobacterium Microcystis aeruginosa isolated in SW Spain

    OpenAIRE

    López Rodas, Victoria; Costas, Eduardo; Figueirido, Borja

    2013-01-01

    Phenotypic and genetic diversities are not correlated in strains of the cyanobacterium Microcystis aeruginosa isolated in SW Spain. The cyanobacterium Microcystis aeruginosa (Kützing) Kützing is notorious for forming extensive and toxic blooms but the genetic structure of natural populations, and in particular during blooms, remains to be explored. In order to add more knowledge about the genetic structure of M. aeruginosa, we compared phenotypic and genetic variabilities in seventeen strains...

  4. Purification and primary structure of cytochrome c-552 from the cyanobacterium, Synechococcus PCC 6312.

    Science.gov (United States)

    Aitken, A

    1979-11-01

    Cytochrome c-552 (soluble 'cytochrome f') from the unicellular cyanobacterium Synechococcus PCC 6312 (ATCC 27167) was purified and the primary structure determined. The proposed sequence consists of one polypeptide chain of 87 residues. The sequence was determined by a combination of chemical and enzymatic cleavage, manual and automatic sequencing and mass spectroscopy. This is the first amino acid sequence of this cytochrome from a unicellular cyanobacterium to be determined in a study of the variation in primary structure between phylogenetically distant cyanobacteria. The sequence is compared to the primary structures of the cytochrome from filamentous cyanobacteria and from eukaryotic algae. The significance of these sequence comparisons to the current hypotheses concerning the origin of eukaryotic cells and their chloroplasts is discussed.

  5. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium

    DEFF Research Database (Denmark)

    Jacobsen, Jacob Hedemand; Frigaard, Niels-Ulrik

    2014-01-01

    d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically...... produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate...... to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis...

  6. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413

    OpenAIRE

    Teresa Thiel; Pratte, Brenda S.

    2014-01-01

    The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among...

  7. Oral toxicity of the microcystin-containing cyanobacterium Planktothrix rubescens in European whitefish (Coregonus lavaretus)

    OpenAIRE

    Ernst, Bernhard; Höger, Stefan J.; O'Brien, Evelyn; Dietrich, Daniel R.

    2006-01-01

    The microcystin-producing cyanobacterium Planktothrix is one of the most widespread genera amongst toxin producing cyanobacteria in European lakes. In particular, the metalimnic blooms of Planktothrix rubescens have been associated with growing problems in the professional freshwater fishery as a decrease in yearly yields in the important coregonids fishery often coincides with the appearance of P. rubescens. P. rubescens is a cyanobacterial species known to produce toxic compounds, e.g. micr...

  8. Reduction of Photoautotrophic Productivity in the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Phycobilisome Antenna Truncation

    Energy Technology Data Exchange (ETDEWEB)

    Page, Lawrence E.; Liberton, Michelle; Pakrasi, Himadri B.

    2012-06-15

    ABSTRACT

    Truncation of the algal light-harvesting antenna is expected to enhance photosynthetic productivity. The wild type and three mutant strains ofSynechocystissp. strain 6803 with a progressively smaller phycobilisome antenna were examined under different light and CO2conditions. Surprisingly, such antenna truncation resulted in decreased whole-culture productivity for this cyanobacterium.

  9. Cell Surface-Associated Proteins in the Filamentous Cyanobacterium Anabaena sp. strain PCC 7120

    OpenAIRE

    Yoshimura, Hidehisa; Ikeuchi, Masahiko; Ohomori, Masayuki

    2012-01-01

    The cell surface senses environmental changes first and transfers signals into the cell. To understand the response to environmental changes, it is necessary to analyze cell surface components, particularly cell surface-associated proteins. We therefore investigated cell surface-associated proteins from the filamentous cyanobacterium Anabaena sp. strain PCC 7120. The cell surface-associated proteins extracted by an acidic buffer were resolved by SDS-PAGE. Eighteen proteins were identified fro...

  10. Role of manganese in protection against oxidative stress under iron starvation in cyanobacterium Anabaena 7120.

    Science.gov (United States)

    Kaushik, Manish Singh; Srivastava, Meenakshi; Verma, Ekta; Mishra, Arun Kumar

    2015-06-01

    The cyanobacterium Anabaena sp. PCC 7120 was grown in presence and absence of iron to decipher the role of manganese in protection against the oxidative stress under iron starvation and growth, manganese uptake kinetics, antioxidative enzymes, lipid peroxidation, electrolyte leakage, thiol content, total peroxide, proline and NADH content was investigated. Manganese supported the growth of cyanobacterium Anabaena 7120 under iron deprived conditions where maximum uptake rate of manganese was observed with lower K(m) and higher V(max) values. Antioxidative enzymes were also found to be elevated in iron-starved conditions. Estimation of lipid peroxidation and electrolyte leakage depicted the role of manganese in stabilizing the integrity of the membrane which was considered as the prime target of oxygen free radicals in oxidative stress. The levels of total peroxide, thiol, proline and NADH content, which are the representative of oxidative stress response in Anabaena 7120, were also showed increasing trends in iron starvation. Hence, the results discerned, clearly suggested the role of manganese in protection against the oxidative stress in cyanobacterium Anabaena 7120 under iron starvation either due to its antioxidative properties or involvement as cofactor in a number of antioxidative enzymes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evolution of the tRNALeu (UAA Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    Directory of Open Access Journals (Sweden)

    Ulla Kaasalainen

    Full Text Available The group I intron interrupting the tRNALeu UAA gene (trnL is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.

  12. Evolution of the tRNALeu (UAA) Intron and Congruence of Genetic Markers in Lichen-Symbiotic Nostoc.

    Science.gov (United States)

    Kaasalainen, Ulla; Olsson, Sanna; Rikkinen, Jouko

    2015-01-01

    The group I intron interrupting the tRNALeu UAA gene (trnL) is present in most cyanobacterial genomes as well as in the plastids of many eukaryotic algae and all green plants. In lichen symbiotic Nostoc, the P6b stem-loop of trnL intron always involves one of two different repeat motifs, either Class I or Class II, both with unresolved evolutionary histories. Here we attempt to resolve the complex evolution of the two different trnL P6b region types. Our analysis indicates that the Class II repeat motif most likely appeared first and that independent and unidirectional shifts to the Class I motif have since taken place repeatedly. In addition, we compare our results with those obtained with other genetic markers and find strong evidence of recombination in the 16S rRNA gene, a marker widely used in phylogenetic studies on Bacteria. The congruence of the different genetic markers is successfully evaluated with the recently published software Saguaro, which has not previously been utilized in comparable studies.

  13. The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate.

    Science.gov (United States)

    Vilhauer, Laura; Jervis, Judith; Ray, W Keith; Helm, Richard F

    2014-05-01

    The ability of nitrogen-fixing filamentous Cyanobacteria to adapt to multiple environments comes in part from assessing and responding to external stimuli, an event that is initiated in the extracellular milieu. While it is known that these organisms produce numerous extracellular substances, little work has been done to characterize both the metabolites and proteins present under standard laboratory growth conditions. We have assessed the extracellular milieu of Nostoc punctiforme when grown in liquid culture in the presence and absence of a nitrogen source (nitrate). The extracellular proteins identified were enriched in integrin β-propellor domains and calcium-binding sites with sequences unique to N. punctiforme, supporting a role for extracellular proteins in modulating species-specific recognition and behavior processes. Extracellular proteases are present and active under both conditions, with the cells grown with nitrate having a higher activity when normalized to chlorophyll levels. The released metabolites are enriched in peptidoglycan-derived tetrasaccharides, with higher levels in nitrate-free media.

  14. Effect of Light Intensity and Photoperiod on Growth and Biochemical Composition of a Local Isolate of Nostoc calcicola.

    Science.gov (United States)

    Khajepour, Fateme; Hosseini, Seyed Abbas; Ghorbani Nasrabadi, Rasoul; Markou, Giorgos

    2015-08-01

    A study was conducted to investigate the effect of light intensity (21, 42, and 63 μmol photons m(-2) s(-1)) and photoperiod (8:16, 12:12, and 16:8 h light/dark) on the biomass production and its biochemical composition (total carotenoids, chlorophyll a, phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC), total protein, and carbohydrates) of a local isolate of Nostoc calcicola. The results revealed that N. calcicola prefers dim light; however, the most of the levels of light intensity and photoperiod investigated did not have a significant impact on biomass production. Increasing light intensity biomass content of chlorophyll a, PE, PC, APC, and total protein decreased, while total carotenoids and carbohydrate increased. The same behavior was observed also when light duration (photoperiod) increased. The interaction effect of increasing light intensity and photoperiod resulted in an increase of carbohydrate and total carotenoids, and to the decrease of chlorophyll a, PE, PC, APC, and total protein content. The results indicate that varying the light regime, it is capable to manipulate the biochemical composition of the local isolate of N. calcicola, producing either valuable phycobiliproteins or proteins under low light intensity and shorter photoperiods, or producing carbohydrates and carotenoids under higher light intensities and longer photoperiods.

  15. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  16. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    Science.gov (United States)

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Extracellular Polysaccharide Production in a Scytonemin-Deficient Mutant of Nostoc punctiforme Under UVA and Oxidative Stress.

    Science.gov (United States)

    Soule, Tanya; Shipe, Dexter; Lothamer, Justin

    2016-10-01

    Some cyanobacteria can protect themselves from ultraviolet radiation by producing sunscreen pigments. In particular, the sheath pigment scytonemin protects cells against long-wavelength UVA radiation and is only found in cyanobacteria which are capable of extracellular polysaccharide (EPS) production. The presence of a putative glycosyltransferase encoded within the scytonemin gene cluster, along with the localization of scytonemin and EPS to the extracellular sheath, prompted us to investigate the relationship between scytonemin and EPS production under UVA stress. In this study, it was hypothesized that there would be a relationship between the biosynthesis of scytonemin and EPS under both UVA and oxidative stress, since the latter is a by-product of UVA radiation. EPS production was measured following exposure of wild-type Nostoc punctiforme and the non-scytonemin-producing strain SCY59 to UVA and oxidative stress. Under UVA, SCY59 produced significantly more EPS than the unstressed controls and the wild type, while both strains produced more EPS under oxidative stress compared to the controls. The results suggest that EPS secretion occurs in response to the oxidative stress by-product of UVA rather than as a direct response to UVA radiation.

  18. Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (High-Atlas mountains of Marrakech, Morocco).

    Science.gov (United States)

    Oudra, B; Dadi-El Andaloussi, M; Vasconcelos, V M

    2009-02-01

    Health risks generated by cyanobacterial toxins in drinking and recreational waters are clearly recognised. During the monitoring programme on the distribution of toxic freshwater cyanobacteria in various water bodies including reservoirs, ponds and rivers of Morocco, many toxigenic cyanobacteria bloom-forming species have been identified. Particular attention was given to the investigation of the toxicology of a benthic Nostoc species-Nostoc muscorum Ag. (cyanobacteria, Nostocales, Nostocaceae)-that was found dominant in Oukaïmeden river located at 2,600 m of altitude in High-Atlas mountains of Marrakech. The massive growth of the mat-forming N. muscorum occurred yearly during the period of March-October, when the water temperature was above 10 degrees C. During 1997-1999, samples were collected from either floating or benthic mats. Hepatotoxicity associated to gastrointestinal (diarrhoea) intoxication symptoms was confirmed by intraperitoneal (i.p.) injection in mice of N. muscorum thallus extract. The survival time was estimated to be from 2-5 h, and the calculated i.p. LD(50) in mice ranged from 15 to 125 mg kg(-1) body weight. The application of the high performance liquid chromatography with photodiode array detection confirmed the occurrence of microcystin-LR (MC-LR) and three others microcystin variants from the methanolic Nostoc extract. The MC-LR represented a proportion of 39% of the total microcystin content however, the total concentration equivalents-eq-of MC-LR was estimated to be 139 microg MC-LR eq per gram dry weight. The existence of a benthic microcystin-producing N. muscorum strain under the particular environmental conditions of Oukaïmeden region may be a potential human health hazard and the ecological harmful effects of these cyanobacterial toxins need to be assessed. This paper constitutes the first report of the occurrence of a toxic benthic Nostoc in Morocco. So, the benthic species should be considered during monitoring of toxic

  19. Characterization of carotenogenesis genes in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Masukawa, Hajime; Mochimaru, Mari; Takaichi, Shinichi

    2012-01-01

    Cyanobacteria produce many kinds of carotenoids for light harvesting and light protection in photosynthesis. To elucidate the biosynthetic pathways of carotenoids in Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120), we have produced gene-disruption mutants lacking selected proposed carotenoid biosynthetic enzymes. Here we describe the construction of mutants by triparental mating. A cargo plasmid, bearing a target gene interrupted by an antibiotic-resistant cassette, is transformed to E. coli donor containing a helper plasmid, and is introduced into Anabaena cells by conjugation. Double-reciprocal recombination replaces the target genes in Anabaena genome with mutated ones on the plasmid. Carotenoids in the selected double recombinants are identified using high-performance liquid chromatography.

  20. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.

    Directory of Open Access Journals (Sweden)

    Liang Ran

    Full Text Available BACKGROUND: An ancient cyanobacterial incorporation into a eukaryotic organism led to the evolution of plastids (chloroplasts and subsequently to the origin of the plant kingdom. The underlying mechanism and the identities of the partners in this monophyletic event remain elusive. METHODOLOGY/PRINCIPAL FINDINGS: To shed light on this evolutionary process, we sequenced the genome of a cyanobacterium residing extracellularly in an endosymbiosis with a plant, the water-fern Azolla filiculoides Lam. This symbiosis was selected as it has characters which make it unique among extant cyanobacterial plant symbioses: the cyanobacterium lacks autonomous growth and is vertically transmitted between plant generations. Our results reveal features of evolutionary significance. The genome is in an eroding state, evidenced by a large proportion of pseudogenes (31.2% and a high frequency of transposable elements (approximately 600 scattered throughout the genome. Pseudogenization is found in genes such as the replication initiator dnaA and DNA repair genes, considered essential to free-living cyanobacteria. For some functional categories of genes pseudogenes are more prevalent than functional genes. Loss of function is apparent even within the 'core' gene categories of bacteria, such as genes involved in glycolysis and nutrient uptake. In contrast, serving as a critical source of nitrogen for the host, genes related to metabolic processes such as cell differentiation and nitrogen-fixation are well preserved. CONCLUSIONS/SIGNIFICANCE: This is the first finding of genome degradation in a plant symbiont and phenotypically complex cyanobacterium and one of only a few extracellular endosymbionts described showing signs of reductive genome evolution. Our findings suggest an ongoing selective streamlining of this cyanobacterial genome which has resulted in an organism devoted to nitrogen fixation and devoid of autonomous growth. The cyanobacterial symbiont of Azolla

  1. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae

    Science.gov (United States)

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-01-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL−1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-l-alanine are discussed. PMID:24662524

  2. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    Science.gov (United States)

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  3. Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium

    OpenAIRE

    Ulrike Pfreundt; Hess, Wolfgang R.

    2015-01-01

    The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in...

  4. Evaluation of the capacity of the cyanobacterium Microcystis novacekii to remove atrazine from a culture medium.

    Science.gov (United States)

    Campos, Marcela M C; Faria, Vanessa H F; Teodoro, Taciane S; Barbosa, Francisco A R; Magalhães, Sérgia M S

    2013-01-01

    The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L(-1). After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.

  5. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent?

    Science.gov (United States)

    Hrouzek, Pavel; Tomek, Petr; Lukešová, Alena; Urban, Jan; Voloshko, Ludmila; Pushparaj, Benjamin; Ventura, Stefano; Lukavský, Jaromír; Stys, Dalibor; Kopecký, Jiří

    2011-08-01

    Extensive selection of cyanobacterial strains (82 isolates) belonging to the genus Nostoc, isolated from different climatic regions and habitats, were screened for both their secondary metabolite content and their cytotoxic effects to mammalian cell lines. The overall occurrence of cytotoxicity was found to be 33%, which corresponds with previously published data. However, the frequency differs significantly among strains, which originate from different climatic regions and microsites (particular localities). A large fraction of intensely cytotoxic strains were found among symbiotic strains (60%) and temperate and continental climatic isolates (45%); compared with the less significant incidences in strains originating from cold regions (36%), deserts (14%), and tropical habitats (9%). The cytotoxic strains were not randomly distributed; microsites that clearly had a higher occurrence of cytotoxicity were observed. Apparently, certain natural conditions lead to the selection of cytotoxic strains, resulting in a high cytotoxicity occurrence, and vice versa. Moreover, in strains isolated from a particular microsite, the cytotoxic effects were caused by different compounds. This result supports our hypothesis for the environmental dependence of cytotoxicity. It also contradicts the hypothesis that clonality and lateral gene transfer could be the reason for this phenomenon. Enormous variability in the secondary metabolites was detected within the studied Nostoc extracts. According to their molecular masses, only 26% of these corresponded to any known structures; thus, pointing to the high potential for the use of many terrestrial cyanobacteria in both pharmacology and biotechnology. Copyright © 2010 Wiley Periodicals, Inc.

  6. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock.

    Science.gov (United States)

    Lee, Na Kyeong; Oh, Hee-Mock; Kim, Hee-Sik; Ahn, Chi-Yong

    2017-03-01

    Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Energy Technology Data Exchange (ETDEWEB)

    Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  8. Type 4 pili are dispensable for biofilm development in the cyanobacterium Synechococcus elongatus.

    Science.gov (United States)

    Nagar, Elad; Zilberman, Shaul; Sendersky, Eleonora; Simkovsky, Ryan; Shimoni, Eyal; Gershtein, Diana; Herzberg, Moshe; Golden, Susan S; Schwarz, Rakefet

    2017-07-01

    The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature.

    Science.gov (United States)

    Winckelmann, Dominik; Bleeke, Franziska; Bergmann, Peter; Klöck, Gerd

    2015-06-01

    The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L-1 per day was measured at an alga density below 0.75 g L-1. C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L-1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

  10. The Effect of Small Scale Turbulence on the Physiology of Microcystis aeruginosa cyanobacterium

    Science.gov (United States)

    Wilkinson, Anne; Hondzo, Miki; Guala, Michele

    2014-11-01

    Microcystis aeruginosa is a single-celled blue-green alga, or cyanobacterium, that is responsible for poor water quality and microcystin production, which in high concentrations can be harmful to humans and animals. These harmful effects arise during cyanobacterium blooms. Blooms occur mainly in the summer when the algae grow uncontrollably and bond together to form colonies which accumulate on the surface of freshwater ecosystems. The relationship between fluid motion generated by wind and internal waves in stratified aquatic ecosystems and Microcystis can help explain the mechanisms of such blooms. We investigated the effect of small scale fluid motion on the physiology of Microcystis in a reactor with two underwater speakers. Different turbulent intensities were achieved by systematically changing the input signal frequency (30-50 Hz) and magnitude (0.1-0.2V) to the speakers. The role of turbulence is quantified by relating energy dissipation rates with the cell number, chlorophyll amount, dissolved oxygen production/uptake, and pH. The results suggest that turbulence mediates the physiology of Microcystis. The findings could be instrumental in designing restoration strategies that can minimize Microcystis blooms. This work was supported by the NSF Graduate Research Fellowship and University of Minnesota start-up funding.

  11. Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica.

    Science.gov (United States)

    Oren, A; Padan, E; Avron, M

    1977-05-01

    A comparison of the quantum yield spectra of the oxygenic (H(2)O as the electron donor) with the anoxygenic (H(2)S as the electron donor) photosynthesis of the cyanobacterium, Oscillatoria limnetica reveals that anoxygenic photosynthesis is driven by photosystem I only. The highest quantum yields of the latter (maximum; 0.059 CO(2) molecules/quantum of absorbed light) were obtained with wavelengths which preferentially excite photosystem I (650) in which chlorophyll a and carotenoids are the major pigments. The addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea had no effect on anoxygenic photosynthesis, and no enhancement in quantum efficiency was observed by a superimposition of light preferentially exciting photosystem II.Oxygenic photosynthesis efficiently utilizes only a narrow range of the absorption spectrum (550-650 nm) where light is provided in excess to photosystem II via phycocyanin. The quantum yield (0.033 CO(2) molecules/quantum of absorbed light) is lower than the theoretical yield by a factor of 3, possibly due to inefficient light transfer from photosystem II to I. Thus, 3-fold enhancement of oxygenic photosynthesis by superimposition of photosystem I light, and low quantum yields for anoxygenic photosynthesis, were obtained in this region. These results are consonant with the suggestion that such a cyanobacterium represents an intermediate stage in phototrophic evolution.

  12. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Mao, Feijian; He, Yiliang; Kushmaro, Ariel; Gin, Karina Yew-Hoong

    2017-12-01

    Effects of benzophenone-3 (BP-3) on the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Microcystis aeruginosa, were investigated. The tested organisms were exposed to environmental levels of BP-3 for 10 days, at nominal concentrations from 0.01 to 5000μgL-1. Specific growth rate and photosynthetic pigments were employed to evaluate the toxic responses. The two tested algae had distinct toxic responses towards BP-3 stress, with the green alga C. reinhardtii being more sensitive than the cyanobacterium M. aeriginosa, based on EC20 and EC50 values. Uptake of BP-3 from the medium occurred in both species, with M. aeruginosa showing greater overall uptake (27.2-77.4%) compared to C. reinhardtii (1.1-58.4%). The effects of BP-3 on C. reinhardtii were variable at concentrations lower than 100μgL-1. At higher concentrations, the specific growth rate of C. reinhardtii decreased following a reduction in chlorophyll a (chl-a) content. Further experiments showed that BP-3 regulated the growth of C. reinhardtii by affecting the production of chl-a, chlorophyll b and carotenoids. In M. aeruginosa, specific growth rate was only moderately affected by BP-3. Additionally, the production of chl-a was significantly inhibited over the different exposure concentrations, while the production of carotenoids was stimulated. These results indicate a potential detrimental effect on prokaryotes and eukaryotes and that the mechanism of action varies with species. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Collapsing aged culture of the cyanobacterium Synechococcus elongatus produces compound(s toxic to photosynthetic organisms.

    Directory of Open Access Journals (Sweden)

    Assaf Cohen

    Full Text Available Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program.

  14. Dynamics of the Toxin Cylindrospermopsin and the Cyanobacterium Chrysosporum (Aphanizomenon ovalisporum in a Mediterranean Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Ali Fadel

    2014-10-01

    Full Text Available Chrysosporum ovalisporum is a cylindrospermopsin toxin producing cyanobacterium that was reported in several lakes and reservoirs. Its growth dynamics and toxin distribution in field remain largely undocumented. Chrysosporum ovalisporum was reported in 2009 in Karaoun Reservoir, Lebanon. We investigated the factors controlling the occurrence of this cyanobacterium and vertical distribution of cylindrospermopsin in Karaoun Reservoir. We conducted bi-weekly sampling campaigns between May 2012 and August 2013. Results showed that Chrysosporum ovalisporum is an ecologically plastic species that was observed in all seasons. Unlike the high temperatures, above 26 °C, which is associated with blooms of Chrysosporum ovalisporum in Lakes Kinneret (Israel, Lisimachia and Trichonis (Greece and Arcos Reservoir (Spain, Chrysosporum ovalisporum in Karaoun Reservoir bloomed in October 2012 at a water temperature of 22 °C during weak stratification. Cylindrospermopsin was detected in almost all water samples even when Chrysosporum ovalisporum was not detected. Chrysosporum ovalisporum biovolumes and cylindrospermopsin concentrations were not correlated (n = 31, r2 = −0.05. Cylindrospermopsin reached a maximum concentration of 1.7 µg L−1. The vertical profiles of toxin concentrations suggested its possible degradation or sedimentation resulting in its disappearance from the water column. The field growth conditions of Chrysosporum ovalisporum in this study revealed that it can bloom at the subsurface water temperature of 22 °C increasing the risk of its development and expansion in lakes located in temperate climate regions.

  15. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography.

    Science.gov (United States)

    Liberton, Michelle; Austin, Jotham R; Berg, R Howard; Pakrasi, Himadri B

    2011-04-01

    Cyanobacteria, descendants of the endosymbiont that gave rise to modern-day chloroplasts, are vital contributors to global biological energy conversion processes. A thorough understanding of the physiology of cyanobacteria requires detailed knowledge of these organisms at the level of cellular architecture and organization. In these prokaryotes, the large membrane protein complexes of the photosynthetic and respiratory electron transport chains function in the intracellular thylakoid membranes. Like plants, the architecture of the thylakoid membranes in cyanobacteria has direct impact on cellular bioenergetics, protein transport, and molecular trafficking. However, whole-cell thylakoid organization in cyanobacteria is not well understood. Here we present, by using electron tomography, an in-depth analysis of the architecture of the thylakoid membranes in a unicellular cyanobacterium, Cyanothece sp. ATCC 51142. Based on the results of three-dimensional tomographic reconstructions of near-entire cells, we determined that the thylakoids in Cyanothece 51142 form a dense and complex network that extends throughout the entire cell. This thylakoid membrane network is formed from the branching and splitting of membranes and encloses a single lumenal space. The entire thylakoid network spirals as a peripheral ring of membranes around the cell, an organization that has not previously been described in a cyanobacterium. Within the thylakoid membrane network are areas of quasi-helical arrangement with similarities to the thylakoid membrane system in chloroplasts. This cyanobacterial thylakoid arrangement is an efficient means of packing a large volume of membranes in the cell while optimizing intracellular transport and trafficking.

  16. Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in Braarudosphaera bigelowii (Prymnesiophyceae.

    Directory of Open Access Journals (Sweden)

    Kyoko Hagino

    Full Text Available Braarudosphaera bigelowii (Prymnesiophyceae is a coastal coccolithophore with a long fossil record, extending back to the late Cretaceous (ca. 100 Ma. A recent study revealed close phylogenetic relationships between B. bigelowii, Chrysochromulina parkeae (Prymnesiophyceae, and a prymnesiophyte that forms a symbiotic association with the nitrogen-fixing cyanobacterium UCYN-A. In order to further examine these relationships, we conducted transmission electron microscopic and molecular phylogenetic studies of B. bigelowii. TEM studies showed that, in addition to organelles, such as the nucleus, chloroplasts and mitochondria, B. bigelowii contains one or two spheroid bodies with internal lamellae. In the 18S rDNA tree of the Prymnesiophyceae, C. parkeae fell within the B. bigelowii clade, and was close to B. bigelowii Genotype III (99.89% similarity. Plastid 16S rDNA sequences obtained from B. bigelowii were close to the unidentified sequences from the oligotrophic SE Pacific Ocean (e.g. HM133411 (99.86% similarity. Bacterial16S rDNA sequences obtained from B. bigelowii were identical to the UCYN-A sequence AY621693 from Arabian Sea, and fell in the UCYN-A clade. From these results, we suggest that; 1 C. parkeae is the alternate life cycle stage of B. bigelowii sensu stricto or that of a sibling species of B. bigelowii, and 2 the spheroid body of B. bigelowii originated from endosymbiosis of the nitrogen-fixing cyanobacterium UCYN-A.

  17. Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum

    NARCIS (Netherlands)

    El-Shehawy, R.; Lugomela, C.; Ernst, A.; Bergman, B.

    2003-01-01

    The marine non-heterocystous cyanobacterium Trichodesmium fixes atmospheric N2 aerobically in light. In situ immunolocalization/light microscopy of NifH revealed that lighter, non-granulated cell regions observed correspond to the nitrogenase-containing diazocyte clusters in Trichodesmium IMS101.

  18. Organization and sequences of genes for the subunits of ATP synthase in the thermophilic cyanobacterium Synechococcus 6716

    NARCIS (Netherlands)

    van Walraven, H. S.; Lutter, R.; Walker, J. E.

    1993-01-01

    The sequences of the genes for the nine subunits of ATP synthase in the thermophilic cyanobacterium Synechococcus 6716 have been determined. The genes were identified by comparison of the encoded proteins with sequences of ATP synthase subunits in other species, and confirmed for subunits alpha,

  19. Potassium sensitivity differs among strains of the harmful cyanobacterium Microcystis and correlates with the presence of salt tolerance genes

    NARCIS (Netherlands)

    Sandrini, G.; Huisman, J.; Matthijs, H.C.P.

    2015-01-01

    Microcystis aeruginosa is a ubiquitous harmful cyanobacterium that causes problems in eutrophic lakes. Potassium ion (K+) addition is one of the suggested methods to combat harmful cyanobacterial blooms. To investigate the effectiveness of this method, we compared the potassium ion sensitivity of

  20. A comparison of fermentation in the cyanobacterium Microcystis PCC7806 grown under a light/dark cycle and continuous light

    NARCIS (Netherlands)

    Moezelaar, R.; Stal, L.J.

    1997-01-01

    The cyanobacterium Microcystis PCC7806, grown under continuous light, fermented endogenously stored glycogen to equimolar amounts of acetate and ethanol when incubated anaerobically in the dark. In addition, H-2, CO2 and some L-lactate were produced. This fermentation pattern differed from that

  1. Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942

    NARCIS (Netherlands)

    Geerts, D.; Bovy, A.; de Vrieze, G.; Borrias, M.; Weisbeek, P.

    1995-01-01

    High-level, inducible expression of heterologous genes in the cyanobacterium Synechococcus sp. strain PCC 7942 was obtained using the Escherichia coli trc promoter and lacI repressor. The petE gene of Anabaena sp. strain PCC 7937 encoding plastocyanin precursor protein and the E. coli uidA gene

  2. Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803.

    NARCIS (Netherlands)

    Krasikov, V.; Aguirre von Wobeser, E.; Dekker, H.L.; Huisman, J.; Matthijs, H.C.P.

    2012-01-01

    Sequential adaptation to nitrogen deprivation and ultimately to full starvation requires coordinated adjustment of cellular functions. We investigated changes in gene expression and cell physiology of the cyanobacterium Synechocystis PCC 6803 during 96 h of nitrogen starvation. During the first 6 h,

  3. Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase

    Science.gov (United States)

    Scherzinger, Daniel; Ruch, Sandra; Kloer, Daniel P.; Wilde, Annegret; Al-Babili, Salim

    2006-01-01

    The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts β-apo-carotenals instead of β-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography–MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting β-apo-carotenals, (3R)-3-hydroxy-β-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of β-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form. PMID:16759173

  4. Systems Level Approaches to Understanding and Manipulating Heterocyst Differentiation in Nostoc Punctiforme: Sites of Hydrogenase and Nitrogenase Synthesis and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, John C. [University of California, Davis, CA (United States)

    2015-04-02

    Heterocysts are specialized cells that establish a physiologically low oxygen concentration; they function as the sites of oxygen-sensitive nitrogen fixation and hydrogen metabolism in certain filamentous cyanobacteria. They are present at a frequency of less than 10% of the cells and singly in a nonrandom spacing pattern in the filaments. The extent of differential gene expression during heterocyst differentiation was defined by DNA microarray analysis in wild type and mutant cultures of Nostoc punctiforme. The results in wild-type cultures identified two groups of genes; approximately 440 that are unique to heterocyst formation and function, and 500 that respond positively and negatively to the transient stress of nitrogen starvation. Nitrogen fixation is initiated within 24 h after induction, but the cultures require another 24 h before growth is reinitiated. Microarray analyses were conducted on strains with altered expression of three genes that regulate the presence and spacing of heterocysts in the filaments; loss of function or over expression of these genes increases the heterocyst frequency 2 to 3 fold compared to the wild-type. Mutations in the genes hetR and hetF result in the inability to differentiate heterocysts, whereas over expression of each gene individually yields multiple contiguous heterocysts at sites in the filaments; they are positive regulatory elements. Mutation of the gene patN results in an increase in heterocysts frequency, but, in this case, the heterocysts are singly spaced in the filaments with a decrease in the number of vegetative cells in the interval between heterocysts; this is a negative regulatory element. However, over expression of patN resulted in the wild-type heterocyst frequency and spacing pattern. Microarray results indicated HetR and HetF influence the transcription of a common set of about 395 genes, as well as about 350 genes unique to each protein. HetR is known to be a transcriptional regulator and HetF is

  5. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum

    Directory of Open Access Journals (Sweden)

    Naoya Oku

    2014-08-01

    Full Text Available Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1, as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption.

  6. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    Science.gov (United States)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  7. Manganese acquisition is facilitated by PilA in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Lamb, Jacob J; Hohmann-Marriott, Martin F

    2017-01-01

    Manganese is an essential element required by cyanobacteria, as it is an essential part of the oxygen-evolving center of photosystem II. In the presence of atmospheric oxygen, manganese is present as manganese oxides, which have low solubility and consequently provide low bioavailability. It is unknown if cyanobacteria are able to utilize these manganese sources, and what mechanisms may be employed to do so. Recent evidence suggests that type IV pili in non-photosynthetic bacteria facilitate electron donation to extracellular electron acceptors, thereby enabling metal acquisition. Our present study investigates whether PilA1 (major pilin protein of type IV pili) enables the cyanobacterium Synechocystis PCC 6808 to access to Mn from manganese oxides. We present physiological and spectroscopic data, which indicate that the presence of PilA1 enhances the ability of cyanobacteria to grow on manganese oxides. These observations suggest a role of PilA1-containing pili in cyanobacterial manganese acquisition.

  8. Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus.

    Science.gov (United States)

    Pandey, Usha; Pandey, J

    2008-07-01

    A diazotrophic cyanobacterium Nostochopsis lobatus was evaluated for enhanced production of biomass, pigments and antioxidant capacity. N. lobatus showed potentially high antioxidant capacity (46.12 microM AEAC) with significant improvement under immobilized cell cultures (87.05 microM AEAC). When a mixture of P and Fe was supplemented, biomass, pigments, nutritive value and antioxidant capacity increased substantially at pH 7.8. When considered separately, P appeared to be a better supplement than Fe for the production of biomass, chlorophyll and carotenoids. However, for phycocyanin, phycoerythrin, nutritive value and antioxidant capacity, Fe appeared more effective than P. Our study indicates N. lobatus to be a promising bioresource for enhanced production of nutritionally rich biomass, pigments and antioxidants. The study also suggests that P and Fe are potentially effective supplements for scale-up production for commercial application.

  9. Sacrolide A, a new antimicrobial and cytotoxic oxylipin macrolide from the edible cyanobacterium Aphanothece sacrum.

    Science.gov (United States)

    Oku, Naoya; Matsumoto, Miyako; Yonejima, Kohsuke; Tansei, Keijiroh; Igarashi, Yasuhiro

    2014-01-01

    Macroscopic gelatinous colonies of freshwater cyanobacterium Aphanothece sacrum, a luxury ingredient for Japanese cuisine, were found to contain a new oxylipin-derived macrolide, sacrolide A (1), as an antimicrobial component. The configuration of two chiral centers in 1 was determined by a combination of chiral anisotropy analysis and conformational analysis of different ring-opened derivatives. Compound 1 inhibited the growth of some species of Gram-positive bacteria, yeast Saccharomyces cerevisiae and fungus Penicillium chrysogenum, and was also cytotoxic to 3Y1 rat fibroblasts. Concern about potential food intoxication caused by accidental massive ingestion of A. sacrum was dispelled by the absence of 1 in commercial products. A manual procedure for degrading 1 in raw colonies was also developed, enabling a convenient on-site detoxification at restaurants or for personal consumption.

  10. Anoxygenic photosynthetic hydrogen production and electron transport in the cyanobacterium oscillatoria limnetica.

    Science.gov (United States)

    Sybesma, C; Schowanek, D; Slooten, L; Walravens, N

    1986-01-01

    The induction of anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica by sulfide was shown to involve the synthesis of a "sulfide oxidizing factor"; this factor, partly adsorbed on the thylakoid membrane, can be recovered in the soluble phase and is active also on membranes from oxygenically grown cells. The factor is required for sulfide dependent light-induced hydrogen evolution. It accelerates electron transport from sulfide to the electron donor of photosystem I, P700, in membranes from cells in which anoxygenic photosynthesis is induced. The plastiquinone analogue DBMIB does not inhibit electron transport to P700 but accelerates it. The analogue might promote cyclic electron transport involving P700, thus preventing electrons to reach hydrogenase.

  11. Genetic Basis for Geosmin Production by the Water Bloom-Forming Cyanobacterium, Anabaena ucrainica

    Directory of Open Access Journals (Sweden)

    Zhongjie Wang

    2014-12-01

    Full Text Available Geosmin is a common, musty-smelling sesquiterpene, principally produced by cyanobacteria. Anabaena ucrainica (Schhorb. Watanabe, a water bloom-forming cyanobacterium, is the geosmin producer responsible for odor problems in Dianchi and Erhai lakes in China. In this study, the geosmin synthase gene (geo of A. ucrainica and its flanking regions were identified and cloned by polymerase chain reaction (PCR and genome walking. The geo gene was found to be located in a transcription unit with two cyclic nucleotide-binding protein genes (cnb. The two cnb genes were highly similar and were predicted members of the cyclic adenosine monophosphate (cAMP receptor protein/fumarate nitrate reductase regulator (Crp–Fnr family. Phylogenetic and evolutionary analyses implied that the evolution of the geosmin genes involved a horizontal gene transfer process in cyanobacteria. These genes showed a close relationship to 2-methylisoborneol genes in origin and evolution.

  12. Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation.

    Science.gov (United States)

    Lama, Sanjaya; Muylaert, Koenraad; Karki, Tika Bahadur; Foubert, Imogen; Henderson, Rita K; Vandamme, Dries

    2016-11-01

    Flocculation holds great potential as a low-cost harvesting method for microalgae biomass production. Three flocculation methods (ferric chloride, chitosan, and alkaline flocculation) were compared in this study for the harvesting of 9 different freshwater and marine microalgae and one cyanobacterium species. Ferric chloride resulted in a separation efficiency greater than 90% with a concentration factor (CF) higher than 10 for all species. Chitosan flocculation worked generally very well for freshwater microalgae, but not for marine species. Alkaline flocculation was most efficient for harvesting of Nannochloropsis, Chlamydomonas and Chlorella sp. The concentration factor was highly variable between microalgae species. Generally, minimum flocculant dosages were highly variable across species, which shows that flocculation may be a good harvesting method for some species but not for others. This study shows that microalgae and cyanobacteria species should not be selected solely based on their productivity but also on their potential for low-cost separation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Differences in energy transfer of a cyanobacterium, Synechococcus sp. PCC 7002, grown in different cultivation media.

    Science.gov (United States)

    Niki, Kenta; Aikawa, Shimpei; Yokono, Makio; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Currently, cyanobacteria are regarded as potential biofuel sources. Large-scale cultivation of cyanobacteria in seawater is of particular interest because seawater is a low-cost medium. In the present study, we examined differences in light-harvesting and energy transfer processes in the cyanobacterium Synechococcus sp. PCC 7002 grown in different cultivation media, namely modified A medium (the optimal growth medium for Synechococcus sp. PCC 7002) and f/2 (a seawater medium). The concentrations of nitrate and phosphate ions were varied in both media. Higher nitrate ion and/or phosphate ion concentrations yielded high relative content of phycobilisome. The cultivation medium influenced the energy transfers within phycobilisome, from phycobilisome to photosystems, within photosystem II, and from photosystem II to photosystem I. We suggest that the medium also affects charge recombination at the photosystem II reaction center and formation of a chlorophyll-containing complex.

  14. Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium.

    Science.gov (United States)

    Pade, Nadin; Michalik, Dirk; Ruth, Wolfgang; Belkin, Natalia; Hess, Wolfgang R; Berman-Frank, Ilana; Hagemann, Martin

    2016-11-15

    The oceanic N2-fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.

  15. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Directory of Open Access Journals (Sweden)

    Hanène Badri

    Full Text Available The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA and Calvin-Benson-Bassham (CBB cycles, combined with an activation of the pentose phosphate pathway (PPP. For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation

  16. Cellular responses and bioremoval of nonylphenol by the bloom-forming cyanobacterium Planktothrix agardhii 1113

    Science.gov (United States)

    Medvedeva, Nadezda; Zaytseva, Tatyana; Kuzikova, Irina

    2017-07-01

    Nonylphenol (NP) is extensively used in agricultural, industrial and household applications. Moreover, NP is the major breakdown product of the nonionic surfactants, nonylphenol ethoxylates (NPEOs), the most widely used group of surfactants. Nonylphenol is persistent in the environment, highly toxic to aquatic organisms and is a potential endocrine disruptor. NP and NPEOs have been identified as priority hazardous substances under the Environmental Quality Standards Directive 2013/39/EU and are referred to in the list of substances of particular risk to the Baltic Sea. The toxicity of NP to the bloom-forming cyanobacterium Planktothrix agardhii 1113 isolated from the eastern Gulf of Finland, Baltic Sea and the bioremoval of NP by P. agardhii were studied. NP in concentrations > 0.4 mg L- 1 suppressed cyanobacterial growth. The median effective concentration of NP for P. agardhii after 4 days of treatment (EC50) was 1.5 mg L- 1. The removal of NP from the culture medium was primarily due to abiotic processes and biodegradation by the cyanobacterium rather than sorption by the cells. NP significantly increased the photosynthetic pigments, extracellular proteins and soluble exopolysaccharides content. The cyanobacterial growth inhibition was accompanied by the increased synthesis of microcystin dm-RR and of the odorous metabolites, geosmin and 2-methylisoborneol (MIB), by P. agardhii 1113. NP also notably increased the microcystin released into the environment. Increased levels of extracellular proteins, soluble exopolysaccharides, microcystins and odorous metabolites may affect the microbial loop in aquatic ecosystems. An increased level of malondialdehyde (MDA) was indicative of the formation of free radicals in P. agardhii under NP stress, whereas increased levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and proline indicated the occurrence of a scavenging mechanism.

  17. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Science.gov (United States)

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  18. Análise genômica e funcional da cianobactéria Nostoc sp. CENA67 e caracterização da sua comunidade microbiana associada

    OpenAIRE

    Danillo Oliveira de Alvarenga

    2015-01-01

    Nostoc é um gênero cianobacteriano com distribuição ubíqua que tem importância em diversos ecossistemas. Contudo, poucos genomas estão atualmente disponíveis para esse gênero. Enquanto Nostoc spp. são as cianobactérias mais comumente relatadas em relações simbióticas com fungos, animais, plantas e outros organismos, associações com outros micro organismos não receberam atenção similar. Como consequência das fortes interações entre cianobactérias e heterótrofos, culturas não axênicas são geral...

  19. Diel Vertical Movements of the Cyanobacterium Oscillatoria terebriformis in a Sulfide-Rich Hot Spring Microbial Mat †

    OpenAIRE

    Richardson, Laurie L.; Castenholz, Richard W.

    1987-01-01

    Oscillatoria terebriformis, a thermophilic cyanobacterium, carried out a diel vertical movement pattern in Hunter's Hot Springs, Oreg. Throughout most daylight hours, populations of O. terebriformis covered the surface of microbial mats in the hot spring outflows below an upper temperature limit of 54°C. Upon darkness trichomes moved downward by gliding motility into the substrate to a depth of 0.5 to 1.0 mm, where the population remained until dawn. At dawn the population rapidly returned to...

  20. Primary Structure and Carbohydrate Binding Specificity of a Potent Anti-HIV Lectin Isolated from the Filamentous Cyanobacterium Oscillatoria agardhii

    OpenAIRE

    SATO,Yuichiro; Okuyama, Satomi; Hori, Kanji

    2007-01-01

    The primary structure of a lectin,designated OAA, isolated from thefreshwater cyanobacterium, Oscillatoriaagardhii NIES-204, was determined by thecombination of Edman degradation andESI-mass spectrometry. OAA is apolypeptide (MW 13,925) consisting of twotandem repeats. Interestingly, each repeatsequence of OAA showed a high degree ofsimilarity to those of a myxobacterium,Myxococcus xanthus hemagglutinin(MBHA), and a marine red alga Eucheumaserra lectin (ESA-2). A systematic bindingassay with ...

  1. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga—Competition or Allelopathy?

    Directory of Open Access Journals (Sweden)

    Viktória B-Béres

    2015-10-01

    Full Text Available Cylindrospermopsin (CYN is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control. Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.

  2. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga—Competition or Allelopathy?

    Science.gov (United States)

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-01-01

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds. PMID:26528991

  3. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    Science.gov (United States)

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-10-30

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.

  4. Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production = Crescimento mixotrófico de Nostoc sp. Glucose, sacarose e melaço de cana-de-açúcar foram testados como substratos para produção de biomassa e ficobiliproteinas

    Directory of Open Access Journals (Sweden)

    Maria Helena Pimenta Pinotti

    2007-01-01

    Full Text Available Glucose, sacarose, and sugarcane molasses were tested as substrates for production of biomass and phycobiliproteins by Nostoc sp., varying their concentrations in relation to a mineral medium, BG11. All substrates increased the biomass and phycobiliproteins when compared with the control. Sugarcane molasses showed to be thebest substrate for production of both biomass and phycobiliproteins. Greater biomass production occurred in sugarcane molasses 1.0 g L-1 and it was 5.7 times greater than the control. With glucose, it was in 2.5 g L-1 and sucrose, in 1.5 g L-1, reaching 2.5 and 4.8 timesgreater than the control, respectively. For phycobiliproteins, the major production was in sugarcane molasses 1.0 g L-1, 12.5 times greater than the control. With glucose, it was in 1.0 g L-1 and sucrose, in 0,5 g L-1, reaching 3.0 and 4.5 times greater than the control, respectively. The Nostoc sp. assayed can grow mixotrophically, using glucose, sucrose, and sugarcane molasses as organic substrates, and a greater production of biomass andphycobiliproteins can be reached when compared with the autotrophic growth.Todos os substratos aumentaram a biomassa e ficobiliproteinas emrelação ao controle, meio mineral BG11. Melaço de cana-de-açúcar foi o melhor substrato tanto para a produção de biomassa como de ficobiliproteinas. A maior produção de biomassa ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 5,7 vezes maior que o controle. Com glucose foi em 2,5 g L-1 e sacarose 1,5 g L-1, sendo 2,5 e 4,8 vezes maior que o controle, respectivamente. A maior produção de ficobiliproteinas ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 12,5 vezes maior que o controle. Com glucose foi em 1,0g L-1 e sacarose 0,5 g L-1, 3,0 e 4,5 vezes maior que o controle, respectivamente. Nostoc sp. testado pode crescer mixotroficamente, usando glucose, sacarose e melaço de cana-deaçúcar como substratos orgânicos, uma maior produção de biomassa e

  5. Crescimento mixotrófico de Nostoc sp. Glucose, sacarose e melaço de cana-de-açúcar foram testados como substratos para produção de biomassa e ficobiliproteinas - DOI: 10.4025/actascibiolsci.v29i1.121 Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production

    Directory of Open Access Journals (Sweden)

    Maria Helena Pimenta Pinotti

    2007-11-01

    Full Text Available Todos os substratos aumentaram a biomassa e ficobiliproteinas em relação ao controle, meio mineral BG11. Melaço de cana-de-açúcar foi o melhor substrato tanto para a produção de biomassa como de ficobiliproteinas. A maior produção de biomassa ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 5,7 vezes maior que o controle. Com glucose foi em 2,5 g L-1 e sacarose 1,5 g L-1, sendo 2,5 e 4,8 vezes maior que o controle, respectivamente. A maior produção de ficobiliproteinas ocorreu usando melaço de cana-de-açúcar 1,0 g L-1 sendo 12,5 vezes maior que o controle. Com glucose foi em 1,0 g L-1 e sacarose 0,5 g L-1, 3,0 e 4,5 vezes maior que o controle, respectivamente. Nostoc sp. testado pode crescer mixotroficamente, usando glucose, sacarose e melaço de cana-deaçúcar como substratos orgânicos, uma maior produção de biomassa e ficobiliproteinas podendo ser alcançada nessas condições quando comparadas com o crescimento autotrófico.Glucose, sacarose, and sugarcane molasses were tested as substrates for production of biomass and phycobiliproteins by Nostoc sp., varying their concentrations in relation to a mineral medium, BG11. All substrates increased the biomass and phycobiliproteins when compared with the control. Sugarcane molasses showed to be the best substrate for production of both biomass and phycobiliproteins. Greater biomass production occurred in sugarcane molasses 1.0 g L-1 and it was 5.7 times greater than the control. With glucose, it was in 2.5 g L-1 and sucrose, in 1.5 g L-1, reaching 2.5 and 4.8 times greater than the control, respectively. For phycobiliproteins, the major production was in sugarcane molasses 1.0 g L-1, 12.5 times greater than the control. With glucose, it was in 1.0 g L-1 and sucrose, in 0,5 g L-1, reaching 3.0 and 4.5 times greater than the control, respectively. The Nostoc sp. assayed can grow mixotrophically, using glucose, sucrose, and sugarcane molasses as organic substrates, and a

  6. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    Science.gov (United States)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  7. Molecular exploration of the highly radiation resistant cyanobacterium Arthrospira sp. PCC 8005

    Science.gov (United States)

    Badri, Hanène; Leys, Natalie; Wattiez, Ruddy

    Arthrospira (Spirulina) is a photosynthetic cyanobacterium able to use sunlight to release oxygen from water and remove carbon dioxide and nitrate from water. In addition, it is suited for human consumption (edible). For these traits, the cyanobacterium Arthrospira sp. PCC 8005 was selected by the European Space Agency (ESA) as part of the life support system MELiSSA for recycling oxygen, water, and food during future long-haul space missions. However, during such extended missions, Arthrospira sp. PCC 8005 will be exposed to continuous artificial illumination and harmful cosmic radiation. The aim of this study was to investigate how Arthrospira will react and behave when exposed to such stress environment. The cyanobacterium Arthrospira sp. PCC 8005 was exposed to high gamma rays doses in order to unravel in details the response of this bacterium following such stress. Test results showed that after acute exposure to high doses of 60Co gamma radiation upto 3200 Gy, Arthrospira filaments were still able to restart photosynthesis and proliferate normally. Doses above 3200 Gy, did have a detrimental effect on the cells, and delayed post-irradiation proliferation. The photosystem activity, measured as the PSII quantum yield immediately after irradiation, decreased significantly at radiation doses above 3200 Gy. Likewise through pigment content analysis a significant decrease in phycocyanin was observed following exposure to 3200 Gy. The high tolerance of this bacterium to 60Co gamma rays (i.e. ca. 1000x more resistant than human cells for example) raised our interest to investigate in details the cellular and molecular mechanisms behind this amazing resistance. Optimised DNA, RNA and protein extraction methods and a new microarray chip specific for Arthrospira sp. PCC 8005 were developed to identify the global cellular and molecular response following exposure to 3200 Gy and 5000 Gy A total of 15,29 % and 30,18 % genes were found differentially expressed in RNA

  8. Anti-Chikungunya Viral Activities of Aplysiatoxin-Related Compounds from the Marine Cyanobacterium Trichodesmium erythraeum

    Directory of Open Access Journals (Sweden)

    Deepak Kumar Gupta

    2014-01-01

    Full Text Available Tropical filamentous marine cyanobacteria have emerged as a viable source of novel bioactive natural products for drug discovery and development. In the present study, aplysiatoxin (1, debromoaplysiatoxin (2 and anhydrodebromoaplysiatoxin (3, as well as two new analogues, 3-methoxyaplysiatoxin (4 and 3-methoxydebromoaplysiatoxin (5, are reported for the first time from the marine cyanobacterium Trichodesmium erythraeum. The identification of the bloom-forming cyanobacterial strain was confirmed based on phylogenetic analysis of its 16S rRNA sequences. Structural determination of the new analogues was achieved by extensive NMR spectroscopic analysis and comparison with NMR spectral data of known compounds. In addition, the antiviral activities of these marine toxins were assessed using Chikungunya virus (CHIKV-infected cells. Post-treatment experiments using the debrominated analogues, namely compounds 2, 3 and 5, displayed dose-dependent inhibition of CHIKV when tested at concentrations ranging from 0.1 µM to 10.0 µM. Furthermore, debromoaplysiatoxin (2 and 3-methoxydebromoaplysiatoxin (5 exhibited significant anti-CHIKV activities with EC50 values of 1.3 μM and 2.7 μM, respectively, and selectivity indices of 10.9 and 9.2, respectively.

  9. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  10. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  11. Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium, Cylindrospermopsis raciborskii

    Science.gov (United States)

    Burford, Michele A.; Willis, Anusuya; Chuang, Ann; Man, Xiao; Orr, Phil

    2017-11-01

    The harmful cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. Studies have demonstrated some key attributes of this species which may explain its global dominance. It has a high level of flexibility with respect to light and nutrients, being capable of growth under low and variable light conditions. However, it is the strategy with respect to nutrient utilization that has received more attention. Unlike many bloom forming species, the dominance of this species is not simply linked to higher nutrient loads. In fact it appears that it is more competitive when phosphorus and nitrogen availability is low and/or variable. An important component of this flexibility appears to be the result of within-population strain variability in responses to nutrients, as well as key physiological adaptations. Strain variability also appears to have an effect on the population-level cell quota of toxins, specifically cylindrospermopsins (CYNs). Field studies in Australia showed that populations had the highest proportion of toxic strains when dissolved inorganic phosphorus was added, resulting in stoichiometrically balanced nitrogen and phosphorus within the cells. These strategies are part of an arsenal of responses to environmental conditions, making it a challenging species to manage. However, our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology and ecology of this species.

  12. Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum

    Science.gov (United States)

    Hu, Jinlu; Jin, Liang; Wang, Xiaojuan; Cai, Wenkai; Liu, Yongding; Wang, Gaohong

    2014-01-01

    The present study investigated the physiological and biochemical characteristics of Scytonema javanicum, a pioneer species isolated from desert biological crusts, under salinity stress. Pigment analysis showed that salinity decreased chlorophyll a and phycocyanin content, while low salinity increased carotenoid concentration and high salinity decreased carotenoid concentration. Salinity also inhibited CO2 assimilation rate and photosynthetic oxygen evolution in this cyanobacterium. Chlorophyll a fluorescence transient parameters (φPo, φEo, ψO, RC/ABS, RC/CS, PIABS, and PICS) were decreased under salt stress, while dVo/dto(Mo), Vj and φDo were increased. The decrease of ETRmax and Yield and the change of chlorophyll a fluorescence transients showed that salt stress had an important influence on photosynthesis. These results indicated that the effects of salinity stress on photosynthesis in S. javanicum may depend on the inhibition of electron transport and the inactivation of the reaction centers, but this inhibition may occur in the electron transport pathway at the PSII donor and acceptor sites.

  13. Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium.

    Science.gov (United States)

    Pfreundt, Ulrike; Hess, Wolfgang R

    2015-11-18

    The marine cyanobacterium Trichodesmium is unusual in its genomic architecture as 40% of the genome is occupied by non-coding DNA. Although the majority of it is transcribed into RNA, it is not well understood why such a large non-coding genome fraction is maintained. Mobile genetic elements can contribute to genome expansion. Many bacteria harbor introns whereas twintrons, introns-in-introns, are rare and not known to interrupt protein-coding genes in bacteria. Here we show the sequential in vivo splicing of a 5400 nt long group II twintron interrupting a highly conserved gene that is associated with RNase HI in some cyanobacteria, but free-standing in others, including Trichodesmium erythraeum. We show that twintron splicing results in a putatively functional mRNA. The full genetic arrangement was found conserved in two geospatially distinct metagenomic datasets supporting its functional relevance. We further show that splicing of the inner intron yields the free intron as a true circle. This reaction requires the spliced exon reopening (SER) reaction to provide a free 5' exon. The fact that Trichodesmium harbors a functional twintron fits in well with the high intron load of these genomes, and suggests peculiarities in its genetic machinery permitting such arrangements.

  14. Envelope structure of Synechococcus sp. WH8113, a nonflagellated swimming cyanobacterium

    Directory of Open Access Journals (Sweden)

    Reese Thomas S

    2001-04-01

    Full Text Available Abstract Background Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation. Results Using quick-freeze electron microscopy, we have identified a crystalline surface layer that encloses the outer membrane of the motile strain Synechococcus sp. WH8113, the components of which are arranged in a rhomboid lattice. Spicules emerge in profusion from the layer and extend up to 150 nm into the surrounding fluid. These spicules also send extensions inwards to the inner cell membrane where motility is powered by an ion-motive force [17]. Conclusion The envelope structure of Synechococcus sp. WH8113 provides new constraints on its motile mechanism. The spicules are well positioned to transduce energy at the cell membrane into mechanical work at the cell surface. One model is that an unidentified motor embedded in the cell membrane utilizes the spicules as oars to generate a traveling wave external to the surface layer in the manner of ciliated eukaryotes.

  15. Effect of carbon and nitrogen assimilation on chlorophyll fluorescence emission by the cyanobacterium Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.M.; Lara, C. (Instituto de Bioquimica Vegetal y Fotosintesis, Univ. de Sevilla y CSIC, Sevilla (ES)); Sivak, M.N. (Dept. of Biochemistry, Michigan State Univ., East Lansing (US))

    1992-01-01

    O{sub 2} evolution and chlorophyll A fluorescence emission have been monitored in intact cells of the cyanobacterium Anacystis nidulans 1402-1 to study the influence of carbon and nitrogen assimilation on the operation of the photosynthetic apparatus. The pattern of fluorescence induction in dark-adapted cyanobacterial cells was different from that of higher plants. Cyanobacteria undergo large, rapid state transitions upon illumination, which lead to marked changes in the fluorescence yield, complicating the estimation of quenching coefficients. The Kautsky effect was not evident, although it could be masked by a state II-state I transition, upon illumination with actinic light. The use of inhibitors of carbon assimilation such as D,L-glyceraldehyde or iodoacetamide allowed us to relate changes in variable fluorescence to active CO{sub 2} fixation. Ammonium, but not nitrate, induced non-photochemical fluorescence quenching, in agreement with a previous report on green algae, indicative of an ammonium-induced state i transition. (au).

  16. Photosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium Synechocystis sp. PCC 6714.

    Science.gov (United States)

    Kamravamanesh, Donya; Pflügl, Stefan; Nischkauer, Winfried; Limbeck, Andreas; Lackner, Maximilian; Herwig, Christoph

    2017-12-01

    Poly-β-hydroxybutyrate (PHB) production from CO2 has the potential to reduce the production cost of this biodegradable polyesters, and also to make the material more sustainable compared to utilization of sugar feedstocks. In this study the unicellular cyanobacterium, Synechocystis sp. PCC 6714 has been identified as an unexplored potential organism for production of PHB. Synechocystis sp. PCC 6714 was studied under various cultivation conditions and nutritional limitations. Combined effects of nitrogen and phosphorus deficiency led to highest PHB accumulation under photoautotrophic conditions. Multivariate experimental design and quantitative bioprocess development methodologies were used to identify the key cultivation parameters for PHB accumulation. Biomass growth and PHB accumulation were studied under controlled defined conditions in a lab-scale photobioreactor. Specific growth rates were fourfold higher in photobioreactor experiments when cultivation conditions were controlled. After 14 days of cultivation in nitrogen and phosphorus, limited media intracellular PHB levels reached up to 16.4% from CO2. The highest volumetric production rate of PHB was 59 ± 6 mg L(-1) day(-1). Scanning electron microscopy of isolated PHB granules of Synechocystis sp. PCC 6714 cultivated under nitrogen and phosphorus limitations showed an average diameter of 0.7 µm. The results of this study might contribute towards a better understanding of photoautotrophic PHB production from cyanobacteria.

  17. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973.

    Science.gov (United States)

    Wendt, Kristen E; Ungerer, Justin; Cobb, Ryan E; Zhao, Huimin; Pakrasi, Himadri B

    2016-06-23

    As autotrophic prokaryotes, cyanobacteria are ideal chassis organisms for sustainable production of various useful compounds. The newly characterized cyanobacterium Synechococcus elongatus UTEX 2973 is a promising candidate for serving as a microbial cell factory because of its unusually rapid growth rate. Here, we seek to develop a genetic toolkit that enables extensive genomic engineering of Synechococcus 2973 by implementing a CRISPR/Cas9 editing system. We targeted the nblA gene because of its important role in biological response to nitrogen deprivation conditions. First, we determined that the Streptococcus pyogenes Cas9 enzyme is toxic in cyanobacteria, and conjugational transfer of stable, replicating constructs containing the cas9 gene resulted in lethality. However, after switching to a vector that permitted transient expression of the cas9 gene, we achieved markerless editing in 100 % of cyanobacterial exconjugants after the first patch. Moreover, we could readily cure the organisms of antibiotic resistance, resulting in a markerless deletion strain. High expression levels of the Cas9 protein in Synechococcus 2973 appear to be toxic and result in cell death. However, introduction of a CRISPR/Cas9 genome editing system on a plasmid backbone that leads to transient cas9 expression allowed for efficient markerless genome editing in a wild type genetic background.

  18. A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.

    Science.gov (United States)

    Narikawa, Rei; Nakajima, Takahiro; Aono, Yuki; Fushimi, Keiji; Enomoto, Gen; Ni-Ni-Win; Itoh, Shigeru; Sato, Moritoshi; Ikeuchi, Masahiko

    2015-01-22

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, λmax = 697 nm) and an orange light-absorbing form (Po, λmax = 622 nm). At room temperature, Pfr fluoresces with a maximum at 730 nm. These spectral features are red-shifted by 48~77 nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager.

  19. Theoretical investigation of biomass productivities achievable in solar rectangular photobioreactors for the cyanobacterium Arthrospira platensis.

    Science.gov (United States)

    Pruvost, Jeremy; Cornet, J F; Goetz, Vincent; Legrand, Jack

    2012-01-01

    Modeling was done to simulate whole-year running of solar rectangular photobioreactors (PBRs). Introducing the concept of ideal reactor, the maximal biomass productivity that could be achieved on Earth on nitrate as N-source was calculated. Two additional factors were also analyzed with respect to dynamic calculations over the whole year: the effect of PBR location and the effects of given operating conditions on the resulting decrease in productivity compared with the ideal one. Simulations were conducted for the cyanobacterium Arthospira platensis, giving an ideal productivity (upper limit) in the range 55-60 tX ha(-1) year(-1) for a sun tracking system (and around 35-40 tX ha(-1) year(-1) for a fixed horizontal PBR). For an implantation in France (Nantes, west coast), the modification in irradiation conditions resulted in a decrease in biomass productivity of 40%. Various parameters were investigated, with special emphasis on the influence of the incident angle of solar illumination on resulting productivities, affecting both light capture and light transfer inside the bulk culture. It was also found that with appropriate optimization of the residence time as permitted by the model, productivities close to maximal could be achieved for a given location. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803--What is New?

    Science.gov (United States)

    Cheregi, Otilia; Funk, Christiane

    2015-08-12

    In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP) proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5' GGCGATCGCC 3', was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1) motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.

  1. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Liu, Deming [State Key Laboratory Breeding Base of Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha 410128 (China); Gong, Daoxin; Zeng, Qingru; Yan, Zhiyong [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong, E-mail: jdgu@hku.hk [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: •Sanguinarine was found as a strong algicidal biologically derived substance. •Sanguinarine can induce oxidative stress in the cells of Microcystis aeruginosa. •Photosystem is a target of toxicity of sanguinarine on M. aeruginosa. •Sanguinarine can induce DNA damage and inhibit cell division. -- Abstract: Sanguinarine showed strong inhibitory effect against Microcystis aeruginosa, a typical water bloom-forming and microcystins-producing cyanobacterium. The EC50 of sanguinarine against the growth of M. aeruginosa NIES-843 was 34.54 ± 1.17 μg/L. Results of chlorophyll fluorescence transient analysis indicated that all the electron donating side, accepting side, and the reaction center of the Photosystem II (PS II) were the targets of sanguinarine against M. aeruginosa NIES-843. The elevation of reactive oxygen species (ROS) level in the cells of M. aeruginosa NIES-843 upon exposure indicated that sanguinarine induced oxidative stress in the active growing cells of M. aeruginosa NIES-843. Further results of gene expression analysis indicated that DNA damage and cell division inhibition were also involved in the inhibitory action mechanism of sanguinarine against M. aeruginosa NIES-843. The inhibitory characteristics of sanguinarine against M. aeruginosa suggest that the ecological- and public health-risks need to be evaluated before its application in cyanobacterial bloom control to avoid devastating events irreversibly.

  2. Bioprocess Engineering Aspects of Biopolymer Production by the Cyanobacterium Spirulina Strain LEB 18

    Directory of Open Access Journals (Sweden)

    Roberta Guimarães Martins

    2014-01-01

    Full Text Available Microbial biopolymers can replace environmentally damaging plastics derived from petrochemicals. We investigated biopolymer synthesis by the cyanobacterium Spirulina strain LEB 18. Autotrophic culture used unmodified Zarrouk medium or modified Zarrouk medium in which the NaNO3 content was reduced to 0.25 g L−1 and the NaHCO3 content reduced to 8.4 g L−1 or increased to 25.2 g L−1. Heterotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 with the NaHCO3 replaced by 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose (C6H12O6 or sodium acetate (CH3COONa. Mixotrophic culture used modified Zarrouk medium containing 0.25 g L−1 NaNO3 plus 16.8 g L−1 NaHCO3 with the addition of 0.2 g L−1, 0.4 g L−1, or 0.6 g L−1 of glucose or sodium acetate. The highest biopolymer yield was 44% when LEB 18 was growing autotrophically in media containing 0.25 g L−1 NaNO3 and 8.4 g L−1 NaHCO3.

  3. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64.

    Directory of Open Access Journals (Sweden)

    D P Singh

    Full Text Available This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L(-1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L(-1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L(-1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L(-1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L(-1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L(-1 indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate.

  5. Crystal Structure of Allophycocyanin from Marine Cyanobacterium Phormidium sp. A09DM.

    Directory of Open Access Journals (Sweden)

    Ravi Raghav Sonani

    Full Text Available Isolated phycobilisome (PBS sub-assemblies have been widely subjected to X-ray crystallography analysis to obtain greater insights into the structure-function relationship of this light harvesting complex. Allophycocyanin (APC is the phycobiliprotein always found in the PBS core complex. Phycocyanobilin (PCB chromophores, covalently bound to conserved Cys residues of α- and β- subunits of APC, are responsible for solar energy absorption from phycocyanin and for transfer to photosynthetic apparatus. In the known APC structures, heterodimers of α- and β- subunits (known as αβ monomers assemble as trimer or hexamer. We here for the first time report the crystal structure of APC isolated from a marine cyanobacterium (Phormidium sp. A09DM. The crystal structure has been refined against all the observed data to the resolution of 2.51 Å to Rwork (Rfree of 0.158 (0.229 with good stereochemistry of the atomic model. The Phormidium protein exists as a trimer of αβ monomers in solution and in crystal lattice. The overall tertiary structures of α- and β- subunits, and trimeric quaternary fold of the Phormidium protein resemble the other known APC structures. Also, configuration and conformation of the two covalently bound PCB chromophores in the marine APC are same as those observed in fresh water cyanobacteria and marine red algae. More hydrophobic residues, however, constitute the environment of the chromophore bound to α-subunit of the Phormidium protein, owing mainly to amino acid substitutions in the marine protein.

  6. Characterization and evolution of tetrameric photosystem I from the thermophilic cyanobacterium Chroococcidiopsis sp TS-821.

    Science.gov (United States)

    Li, Meng; Semchonok, Dmitry A; Boekema, Egbert J; Bruce, Barry D

    2014-03-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.

  7. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  8. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511.

    Science.gov (United States)

    Kumar Saha, Sushanta; Uma, Lakshmanan; Subramanian, Gopalakrishnan

    2003-08-01

    Exclusion of combined nitrogen (NaNO3) from the growth medium caused certain changes in metabolic processes leading to cessation in growth of the non-heterocystous, non nitrogen-fixing marine cyanobacterium Oscillatoria willei BDU 130511. But antioxidative enzymes, namely superoxide dismutase and peroxidase, helped the organism to survive the nitrogen stress. Prominent effects observed during nitrogen starvation/limitation were: (i) reduction of major and accessory photosynthetic pigments, (ii) impairment of photosynthesis due to loss of one major Rubisco isoenzyme, (iii) reduced synthesis of lipids and fatty acids, (iv) modifications of protein synthesis leading to the repression of three polypeptides and synthesis of two new polypeptides, (v) enhanced glutamine synthetase and reduced nitrate reductase activities, (vi) enhanced production of hydrogen peroxide and (vii) induced appearance of four new peroxidase isoenzymes. The observed metabolic changes were reversible, and the arrested growth under prolonged nitrogen deficiency could be fully restored upon subculturing in freshly prepared ASN III medium containing nitrogen (NaNO3). The present study demonstrates the capability of a non-nitrogen-fixer to withstand nitrogen stress making it an ecologically successful organism in the marine environment. The above pleiotropic effects of nitrogen deficiency also demonstrate that nitrogen plays a crucial role in growth and metabolism of marine cyanobacteria.

  9. Far-red light promotes biofilm formation in the cyanobacterium Acaryochloris marina.

    Science.gov (United States)

    Hernández-Prieto, Miguel A; Li, Yaqiong; Postier, Bradley L; Blankenship, Robert E; Chen, Min

    2017-10-20

    Light quantity and quality promotes ecological-niche differentiation of photosynthetic organisms. The existence of cyanobacteria capable of performing photosynthesis using red-shifted chlorophylls, chlorophyll d and f, reduces competition between species in light-limiting environments, and permits them to thrive in niches enriched in far-red light. We examined global transcriptome changes due to changing the culture light conditions in Acaryochloris marina, a chlorophyll d-containing cyanobacterium. We identified the functional category of 'photosynthesis' as the most down-regulated and the category of 'cell wall/membrane biogenesis' as the most up-regulated through a functional enrichment analysis of genes differentially expressed. Within the category of 'cell wall/membrane biogenesis', genes encoding glycosysltransferases accumulated the most in response to far-red light. Further experimental results confirmed that cells grown under far-red light form biofilms with a significantly increased adherence compared to cells grown under white light. Taken together, these results indicate that Acaryochloris marina shifts its lifestyle from a planktonic state under white light to an immobilized state under far-red light. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The stringent response regulates adaptation to darkness in the cyanobacterium Synechococcus elongatus.

    Science.gov (United States)

    Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F

    2016-08-16

    The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.

  11. Serinolamides and Lyngbyabellins from an Okeania sp. Cyanobacterium Collected from the Red Sea.

    Science.gov (United States)

    Petitbois, Julie G; Casalme, Loida O; Lopez, Julius Adam V; Alarif, Walied M; Abdel-Lateff, Ahmed; Al-Lihaibi, Sultan S; Yoshimura, Erina; Nogata, Yasuyuki; Umezawa, Taiki; Matsuda, Fuyuhiko; Okino, Tatsufumi

    2017-10-27

    NMR- and MS-guided fractionation of an extract of an Okeania sp. marine cyanobacterium, collected from the Red Sea, led to the isolation of four new metabolites, including serinolamides C (1) and D (2) and lyngbyabellins O (3) and P (4), together with the three known substances lyngbyabellins F (5) and G (6) and dolastatin 16 (7). The planar structures of the new compounds were determined using NMR and MS analyses. The absolute configurations of 1 and 2 were determined by Marfey's analysis of their hydrolysates. The absolute configuration of 3 was ascertained by chiral-phase chromatography of degradation products, while that of 4 was determined by comparison to 3 and 5. The cytotoxic and antifouling activities of these compounds were evaluated using MCF7 breast cancer cells and Amphibalanus amphitrite larvae, respectively. Compounds 3, 4, and 7 exhibited strong antifouling activity, and 3 and 7 were not cytotoxic. A structure-activity relationship was observed for the cytotoxicity of the lyngbyabellins with the presence of a side chain (4 is more active than 3) leading to greater activity. For the antifouling activity, the acyclic form without a side chain (3) was the most active.

  12. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Chi; Xiong, Wei; Paddock, Troy; Carrieri, Damian; Chang, Ing-Feng; Chiu, Hui-Fen; Ungerer, Justin; Hank Juo, Suh-Hang; Maness, Pin-Ching; Yu, Jianping

    2015-06-12

    Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introducing xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Moreover, isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.

  13. Feeding and filtration rates of zooplankton (rotifers and cladocerans) fed toxic cyanobacterium (Microcystis aeruginosa).

    Science.gov (United States)

    Pérez-Morales, Alfredo; Sarma, S S S; Nandini, S

    2014-11-01

    Microcystis aeruginosa is generally dominant in many Mexican freshwater ecosystems interacting with zooplankton species. Hence, feeding and filtration rates were quantified for three cladoceran (Daphnia pulex, Moina micrura and Ceriodaphnia dubia) and three rotifer species (Brachionus calyciflorus, Brachionus rubens and Plationus patulus) using sonicated M. aeruginosa alone or mixed with Scenedesmus acutus in different proportions (25, 50 and 75%, based on cell density), offering a combined initial density of 100,000 cells·ml(-1). All the three cladoceran species ingested M. aeruginosa (100-300 cells ind(-1) min(-1)) when fed exclusively with cyanobacterium. When green alga offered as exclusive diet, the number of cells ingested by the tested cladocerans varied from 80 to 400 cells ind(-1) min(-1). Compared to cladocerans, rotifers in general consumed much lower quantity (rotifer species, P. patulus filtered highest volume (100 μl ind(-1) min(-1) from mixed diets containing higher proportions (50 or 75%) of M. aeruginosa. Thus, there were species-specific differences in the filtration and feeding rates of zooplankton when offered mixed diets of green algae and toxic cyanobacteria. These probably explain the coexistence of different zooplankton species in Microcystis-dominant waterbodies.

  14. Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor

    Directory of Open Access Journals (Sweden)

    C. C. Reichert

    2006-03-01

    Full Text Available The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate (µx, day-1 and productivity (Px, in mg/L/day of Spirulina platensis biomass, dry weight basis of two S. platensis strains (LEB-52 and Paracas growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h at 30°C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L and high renewal rates (50% v/v resulted in a high specific growth rate (µx = 0.111 day-1 and high productivity (Px = 42.3 mg/L/day. These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable.

  15. Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Chung [Institute of Clinical Nutrition, Hungkuang University, 34, Chung-Chie Road, Sha Lu, Taichung 433 (China); Fan, Shin-Huei; Chiang, Char-Lin; Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 402 (China)

    2008-03-15

    Cyanobacteria could use sugars as carbon source and reductant to produce hydrogen by nitrogenase. However, oxygen is also produced during photosynthesis and it is an inhibitor of the enzyme nitrogenase. Filamentous cyanobacterium Anabaena sp. CH{sub 3} could use sugars as substrate to produce molecular hydrogen anaerobically. The production activity was dependent on growth phases. It was found that the cells at sub-stage of late-log phase had better ability to produce hydrogen than at log phase. In such case, oxygen content was too low to be detected to inhibit hydrogen production. Among different kinds of sugar, fructose and glucose had the best performance for producing hydrogen. Hydrogen could be accumulated to 0.6 mmol (in 40 ml head space) in 100 h from 1000 ppm fructose. Increasing light intensities from 65 to 130{mu}molm{sup -2}s{sup -1} would enhance hydrogen production to 0.8 mmol. Under illumination of 130{mu}molm{sup -2}s{sup -1} and 2000 ppm fructose, 1.7 mmol of hydrogen could be accumulated. When fructose content was higher than 2000 ppm, cells could not produce more hydrogen at all. (author)

  16. Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Helena Čelešnik

    2016-04-01

    Full Text Available In recent years, photosynthetic autotrophic cyanobacteria have attracted interest for biotechnological applications for sustainable production of valuable metabolites. Although biosafety issues can have a great impact on public acceptance of cyanobacterial biotechnology, biosafety of genetically modified cyanobacteria has remained largely unexplored. We set out to incorporate biocontainment systems in the model cyanobacterium Synechocystis sp. PCC 6803. Plasmid-encoded safeguards were constructed using the nonspecific nuclease NucA from Anabaena combined with different metal-ion inducible promoters. In this manner, conditional lethality was dependent on intracellular DNA degradation for regulated autokilling as well as preclusion of horizontal gene transfer. In cells carrying the suicide switch comprising the nucA gene fused to a variant of the copM promoter, efficient inducible autokilling was elicited. Parallel to nuclease-based safeguards, cyanobacterial toxin/antitoxin (TA modules were examined in biosafety switches. Rewiring of Synechocystis TA pairs ssr1114/slr0664 and slr6101/slr6100 for conditional lethality using metal-ion responsive promoters resulted in reduced growth, rather than cell killing, suggesting cells could cope with elevated toxin levels. Overall, promoter properties and translation efficiency influenced the efficacy of biocontainment systems. Several metal-ion promoters were tested in the context of safeguards, and selected promoters, including a nrsB variant, were characterized by beta-galactosidase reporter assay.

  17. Changes in photosynthesis and pigmentation in an agp deletion mutant of the cyanobacterium Synechocystis sp.

    Science.gov (United States)

    Miao, Xiaoling; Wu, Qingyu; Wu, Guifang; Zhao, Nanming

    2003-03-01

    The agp gene encoding ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis. By in vitro DNA recombination technology, agp deletion mutant (agp-) of cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutation led to a complete absence of glycogen biosynthesis. As compared with WT (wild type), a 60% decrease in ratio of the c-phycocyanine/chlorophyll a and no significant change in the carotenoid/chlorophyll a were observed in agp- cells. The agp- mutant had 38% less photosynthetic capacity when grown in light over 600 micromol m(-2) s(-1). Under lower light intensity, the final biomass of the mutant strain was only 1.1 times of that of the WT strain under mixotrophic condition after 6 d culture. Under higher light intensity, however, the final biomass of the WT strain under mixotrophic conditions was 3 times that of the mutant strain after 6 d culture and 1.5 times under photoautotrophic conditions. The results indicate that there is a minimum requirement for glycogen synthesis for normal growth and development in cyanobacteria.

  18. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs.

    Science.gov (United States)

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    2015-09-01

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Determination of the toxicity level of the fluoropolymers production wastes by reaction of soil microflora and cyanobacteria Nostoc paludosum Kütz

    Directory of Open Access Journals (Sweden)

    Elkina Tatyana

    2014-03-01

    Full Text Available The environment is constantly receiving the substances that are artificially synthesized by human, hence, not inherent in nature, that are circulating in it. One of the most common wastes of fluoroelastomer SKF-26 production is the mother solution entering the environment together with the wastewater of chemical enterprises. Until now limits of allowable concentrations of these compounds have not been established, as they are considered practically safe. By determining the toxicity level of the waste of fluoropolymers production conducted by reaction of soil algae , cyanobacteria and micromycetes it was showed that the waste of fluorine rubber SKF-26 production are not safe or neutral for these groups of microorganisms. The toxicity of high concentrations of the mother solution SKF-26 was particularly evident in the damaging effects to the of the test organism Nostoc paludosum in aqueous medium. Field experiments confirmed that not only mother solutions, but also the possible products of their transformations are toxic. This fact clearly illustrates the change in the structure of mikocenoses where a progressive increase in populations with melanized mycelium takes place.

  20. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun, E-mail: eom@gist.ac.kr [Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}. The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  1. Genetic characterization of the hmp locus, a chemotaxis-like gene cluster that regulates hormogonium development and motility in Nostoc punctiforme.

    Science.gov (United States)

    Risser, Douglas D; Chew, William G; Meeks, John C

    2014-04-01

    Filamentous cyanobacteria are capable of gliding motility, but the mechanism of motility is not well defined. Here we present a detailed characterization of the hmp locus from Nostoc punctiforme, which encodes chemotaxis-like proteins. Deletions of hmpB, C, D and E abolished differentiation of hormogonia under standard growth conditions, but, upon addition of a symbiotic partner exudate, the mutant strains differentiated hormogonium-like filaments that lacked motility and failed to secrete hormogonium specific polysaccharide. The hmp locus is expressed as two transcripts, one originating 5' of hmpA and encompassing the entire hmp locus, and the other 5' of hmpB and encompassing hmpBCDE. The CheA-like HmpE donates phosphate to its own C-terminal receiver domain, and to the CheY-like HmpB, but not to the PatA family CheY-like HmpA. A GFP-tagged variant of each hmp locus protein localized to a ring adjacent to the septum on each end of the rod-shaped cell. Immunofluorescence demonstrated that PilA localizes to a ring at the junction between cells. The phenotype of the deletion strains, and the localization of the Hmp proteins and the putative PilA protein to rings at the cell junctions are consistent with the hypothesis that these proteins are part of the junctional pore complex observed in a number of filamentous cyanobacteria. © 2014 John Wiley & Sons Ltd.

  2. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Science.gov (United States)

    Ferroni, Lorenzo; Klisch, Manfred; Pancaldi, Simonetta; Häder, Donat-Peter

    2010-01-01

    Mycosporine-like amino acids (MAAs) and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW−1), concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm). The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm) and UV-B (280–320 nm) range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments. PMID:20161974

  3. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    Science.gov (United States)

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Complementary UV-Absorption of Mycosporine-like Amino Acids and Scytonemin is Responsible for the UV-Insensitivity of Photosynthesis in Nostoc flagelliforme

    Directory of Open Access Journals (Sweden)

    Donat-Peter Häder

    2010-01-01

    Full Text Available Mycosporine-like amino acids (MAAs and scytonemin are UV-screening compounds that have presumably appeared early in the history of life and are widespread in cyanobacteria. Natural colonies of the UV-insensitive Nostoc flagelliforme were found to be especially rich in MAAs (32.1 mg g DW-1, concentrated in the glycan sheath together with scytonemin. MAAs are present in the form of oligosaccharide-linked molecules. Photosystem II activity, measured using PAM fluorescence and oxygen evolution, was used as a most sensitive physiological parameter to analyse the effectiveness of UV-protection. Laboratory experiments were performed under controlled conditions with a simulated solar radiation specifically deprived of UV-wavebands with cut-off filters (295, 305, 320, 345 and 395 nm. The UV-insensitivity of N. flagelliforme was found to cover the whole UV-A (315–400 nm and UV-B (280–320 nm range and is almost certainly due to the complementary UV-absorption of MAAs and scytonemin. The experimental approach used is proposed to be suitable for the comparison of the UV-protection ability in organisms that differ in their complement of UV-sunscreen compounds. Furthermore, this study performed with a genuinely terrestrial organism points to the relevance of marine photoprotective compounds for life on Earth, especially for the colonization of terrestrial environments.

  5. Substrate Specificity and Allosteric Regulation of a D-Lactate Dehydrogenase from a Unicellular Cyanobacterium are Altered by an Amino Acid Substitution.

    Science.gov (United States)

    Ito, Shoki; Takeya, Masahiro; Osanai, Takashi

    2017-11-08

    Lactate/lactic acid is an important chemical compound for the manufacturing of bioplastics. The unicellular cyanobacterium Synechocystis sp. PCC 6803 can produce lactate from carbon dioxide and possesses D-lactate dehydrogenase (Ddh). Here, we performed a biochemical analysis of the Ddh from this cyanobacterium (SyDdh) using recombinant proteins. SyDdh was classified into a cyanobacterial clade similar to those from Gram-negative bacteria, although it was distinct from them. SyDdh can use both pyruvate and oxaloacetate as a substrate and is activated by fructose-1,6-bisphosphate and repressed by divalent cations. An amino acid substitution based on multiple sequence alignment data revealed that the glutamine at position 14 and serine at position 234 are important for the allosteric regulation by Mg 2+ and substrate specificity of SyDdh, respectively. These results reveal the characteristic biochemical properties of Ddh in a unicellular cyanobacterium, which are different from those of other bacterial Ddhs.

  6. The success of the cyanobacterium Cylindrospermopsis raciborskii in freshwaters is enhanced by the combined effects of light intensity and temperature

    Directory of Open Access Journals (Sweden)

    Sylvia Bonilla

    2016-06-01

    Full Text Available Toxic cyanobacterial blooms in freshwaters are thought to be a consequence of the combined effects of anthropogenic eutrophication and climate change. It is expected that climate change will affect water mixing regimes that alter the water transparency and ultimately the light environment for phytoplankton. Blooms of the potentially toxic cyanobacterium Cylindrospermopsis raciborskii are expanding from tropical towards temperate regions. Several hypotheses have been proposed to explain this expansion, including an increase in water temperature due to climate change and the high phenotypic plasticity of the species that allows it to exploit different light environments. We performed an analysis based on eight lakes in tropical, subtropical and temperate regions to examine the distribution and abundance of C. raciborskii in relation to water temperature and transparency. We then conducted a series of short-term factorial experiments that combined three temperatures and two light intensity levels using C. raciborskii cultures alone and in interaction with another cyanobacterium to identify its growth capacity. Our results from the field, in contrast to predictions, showed no differences in dominance (>40% to the total biovolume of C. raciborskii between climate regions. C. raciborskii was able to dominate the phytoplankton in a wide range of light environments (euphotic zone = 1.5 to 5 m, euphotic zone/mixing zone ratio <0.5 to >1.5. Moreover, C. raciborskii was capable of dominating the phytoplankton at low temperatures (<15°C. Our experimental results showed that C. raciborskii growing in interaction was enhanced by the increase of the temperature and light intensity. C. raciborskii growth in high light intensities and at a wide range of temperatures, suggests that any advantage that this species may derive from climate change that favors its dominance in the phytoplankton is likely due to changes in the light environment rather than changes in

  7. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  8. Uptake of Pb(2+ )by a cyanobacterium belonging to the genus Synechocystis, isolated from East Kolkata Wetlands.

    Science.gov (United States)

    Roy, Sanchita; Ghosh, Amar Nath; Thakur, Ashoke Ranjan

    2008-10-01

    East Kolkata Wetlands is a conserved wetland utilizing sewage and garbage, generated by Kolkata Municipal Corporation area for cultivation purpose. Cyanobacteria are the photosynthetic prokaryotes having bioremedial capacity. We have isolated a cyanobacterium from the sewage recycling fish-pond of East Kolkata Wetlands. Partial sequence of 16S rDNA gene of the isolated strain showed 100% similarity with that of genus Synechocystis. Isolated strain and Synechocystis sp. PCC6803 survived up to 300 mug ml(-1) Pb(2+ )and growth was completely inhibited at 400 mug ml(-1) Pb(2+). All experiments were carried out with 100 mug ml(-1) Pb(2+) in which growth was the maximum. 91.67% of the total Pb(2+) got adsorbed to the outer surface of the cell and 1% of the total Pb(2+) entered the cell of the isolated strain as estimated by atomic absorption spectrometry, but in Synechocystis sp. PCC6803 72.72% adsorbed and 0.96% penetrated. Intracellular and periplasmic depositions of Pb(2+) were observed in both the strain. A filamentous structure developed outside the cell wall of the isolated cyanobacterium, but very little change was observed in Synechocystis sp. PCC6803. ZiaR-SmtB like regulator gene was expressed in both the strains after Pb(2+) induction. The cDNA sequence of ZiaR of the isolated cyanobacterium shows 100% homology with that of Synechocystis sp. PCC6803. Upon Pb(2+) induction, expression of SOD gene increased. cDNA sequence of the SOD gene from the isolated strain showed 98% homology with that of Synechocystis sp. PCC6803. Enzymatic activity of catalase and SOD was also increased. No DNA damage was monitored upon induction with Pb(2+).

  9. Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran; Williams, Philip G.; Lindsey, Jonathan S.; Miller, Eric S.; Nojiri, Hideaki

    2017-07-28

    ABSTRACT

    The cyanobacterial culture HT-58-2 was originally described as a strain ofTolypothrix nodosawith the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align withBrasilonemastrains and not withTolypothrixisolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated byErythrobacteraceae, 97% of which arePorphyrobacterspecies. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophylla, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with

  10. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer.

    Directory of Open Access Journals (Sweden)

    Ankita eKothari

    2013-12-01

    Full Text Available The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long, encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells at the breakage point. Short, sheath-less, motile filaments (hormogonia are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1 %. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp. It contained 6515 putative protein-encoding genes, of which, 43 % encode proteins of known functional role, 26 % corresponded to proteins with domain or family assignments, 19.6 % encode conserved hypothetical proteins, and 11.3 % encode apparently unique hypothetical proteins. The strain’s genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose and glycine

  11. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium

    Directory of Open Access Journals (Sweden)

    Latifi Amel

    2008-06-01

    Full Text Available Abstract Background The colonial cyanobacterium Microcystis proliferates in a wide range of freshwater ecosystems and is exposed to changing environmental factors during its life cycle. Microcystis blooms are often toxic, potentially fatal to animals and humans, and may cause environmental problems. There has been little investigation of the genomics of these cyanobacteria. Results Deciphering the 5,172,804 bp sequence of Microcystis aeruginosa PCC 7806 has revealed the high plasticity of its genome: 11.7% DNA repeats containing more than 1,000 bases, 6.8% putative transposases and 21 putative restriction enzymes. Compared to the genomes of other cyanobacterial lineages, strain PCC 7806 contains a large number of atypical genes that may have been acquired by lateral transfers. Metabolic pathways, such as fermentation and a methionine salvage pathway, have been identified, as have genes for programmed cell death that may be related to the rapid disappearance of Microcystis blooms in nature. Analysis of the PCC 7806 genome also reveals striking novel biosynthetic features that might help to elucidate the ecological impact of secondary metabolites and lead to the discovery of novel metabolites for new biotechnological applications. M. aeruginosa and other large cyanobacterial genomes exhibit a rapid loss of synteny in contrast to other microbial genomes. Conclusion Microcystis aeruginosa PCC 7806 appears to have adopted an evolutionary strategy relying on unusual genome plasticity to adapt to eutrophic freshwater ecosystems, a property shared by another strain of M. aeruginosa (NIES-843. Comparisons of the genomes of PCC 7806 and other cyanobacterial strains indicate that a similar strategy may have also been used by the marine strain Crocosphaera watsonii WH8501 to adapt to other ecological niches, such as oligotrophic open oceans.

  12. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface.

    Directory of Open Access Journals (Sweden)

    J Jeffrey Morris

    Full Text Available The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH. In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co

  13. Water and CO₂ permeability of SsAqpZ, the cyanobacterium Synechococcus sp. PCC7942 aquaporin.

    Science.gov (United States)

    Ding, Xiaodong; Matsumoto, Tadashi; Gena, Patrizia; Liu, Chengwei; Pellegrini-Calace, Marialuisa; Zhong, Shihua; Sun, Xiaoli; Zhu, Yanming; Katsuhara, Maki; Iwasaki, Ikuko; Kitagawa, Yoshichika; Calamita, Giuseppe

    2013-03-01

    Cyanobacteria possess Aquaporin-Z (AqpZ) membrane channels which have been suggested to mediate the water efflux underlying osmostress-inducible gene expression and to be essential for glucose metabolism under photomixotrophic growth. However, preliminary observations suggest that the biophy-sical properties of transport and physiological meaning of AqpZ in such photosynthetic microorganisms are not yet completely assessed. In this study, we used Xenopus laevis oocyte and proteoliposome systems to directly demonstrate the water permeability of the cyanobacterium Synechococcus sp. PCC7942 aquaporin, SsAqpZ. By an in vitro assay of intracellular acidification in yeast cells, SsAqpZ was found to transport also CO2 . Consistent with this result, during the entire exponential phase of growth, Synechococcus SsAqpZ-null-mutant cells grew slower than the corresponding wild-type cells. This phenotype was stronger with higher levels of extracellular CO2 . In line with the conversion of CO2 gas into HCO3(-) ions under alkaline conditions, the impairment in growth of the SsAqpZ-null strain was weaker in more alkaline culture medium. Cyanobacterial SsAqpZ may exert a pleiotropic function in addition to the already reported roles in macronutrient homeostasis and osmotic-stress response as it appears to constitute an important pathway in CO2 uptake, a fundamental step in photosynthesis. Copyright © 2013 Soçiété Française des Microscopies and Soçiété de Biologie Cellulaire de France.

  14. Phosphoproteome of the cyanobacterium Synechocystis sp. PCC 6803 and its dynamics during nitrogen starvation.

    Directory of Open Access Journals (Sweden)

    Philipp eSpät

    2015-03-01

    Full Text Available Cyanobacteria have shaped the earth’s biosphere as the first oxygenic photoautotrophs and still play an important role in many ecosystems. The ability to adapt to changing environmental conditions is an essential characteristic in order to ensure survival. To this end, numerous studies have shown that bacteria use protein post-translational modifications such as Ser/Thr/Tyr phosphorylation in cell signalling, adaptation and regulation. Nevertheless, our knowledge of cyanobacterial phosphoproteomes and their dynamic response to environmental stimuli is relatively limited. In this study, we applied gel-free methods and high accuracy mass spectrometry towards the unbiased detection of Ser/Thr/Tyr phosphorylation events in the model cyanobacterium Synechocystis sp. PCC 6803. We could identify over 300 phosphorylation events in cultures grown on nitrate as exclusive nitrogen source. Chemical dimethylation labelling was applied to investigate proteome and phosphoproteome dynamics during nitrogen starvation. Our dataset describes the most comprehensive (phosphoproteome of Synechocystis to date, identifying 2,382 proteins and 183 phosphorylation events and quantifying 2,111 proteins and 148 phosphorylation events during nitrogen starvation. Global protein phosphorylation levels were increased in response to nitrogen depletion after 24 hours. Among the proteins with increased phosphorylation, the PII signalling protein showed the highest fold-change, serving as positive control. Other proteins with increased phosphorylation levels comprised functions in photosynthesis and in carbon and nitrogen metabolism. This study reveals dynamics of Synechocystis phosphoproteome in response to environmental stimuli and suggests an important role of protein Ser/Thr/Tyr phosphorylation in fundamental mechanisms of homeostatic control in cyanobacteria.

  15. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Welsh, Eric A.; Liberton, Michelle L.; Stockel, Jana; Loh, Thomas; Elvitigala, Thanura R.; Wang, Chunyan; Wollam, Aye; Fulton, Robert S.; Clifton, Sandra W.; Jacobs, Jon M.; Aurora, Rajeev; Ghosh, Bijoy K.; Sherman, Louis A.; Smith, Richard D.; Wilson, Richard K.; Pakrasi, Himadri B.

    2008-09-30

    Cyanobacteria are oxygenic photosynthetic bacteria that have significant roles in global biological carbon sequestration and oxygen production. They occupy a diverse range of habitats, from open ocean, to hot springs, deserts, and arctic waters. Cyanobacteria are known as the progenitors of the chloroplasts of plants and algae, and are the simplest known organisms to exhibit circadian behavior4. Cyanothece sp. ATCC 51142 is a unicellular marine cyanobacterium capable of N2-fixation, a process that is biochemically incompatible with oxygenic photosynthesis. To resolve this problem, Cyanothece performs photosynthesis during the day and nitrogen fixation at night, thus temporally separating these processes in the same cell. The genome of Cyanothece 51142 was completely sequenced and found to contain a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of such a linear element in a photosynthetic bacterium. Annotation of the Cyanothece genome was aided by the use of highthroughput proteomics data, enabling the reclassification of 25% of the proteins with no informative sequence homology. Phylogenetic analysis suggests that nitrogen fixation is an ancient process that arose early in evolution and has subsequently been lost in many cyanobacterial strains. In cyanobacterial cells, the circadian clock influences numerous processes, including carbohydrate synthesis, nitrogen fixation, photosynthesis, respiration, and the cell division cycle. During a diurnal period, Cyanothece cells actively accumulate and degrade different storage inclusion bodies for the products of photosynthesis and N2-fixation. This ability to utilize metabolic compartmentalization and energy storage makes Cyanothece an ideal system for bioenergy research, as well as studies of how a unicellular organism balances multiple, often incompatible, processes in the same cell.

  16. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal.

    Directory of Open Access Journals (Sweden)

    Ineke van Gremberghe

    Full Text Available BACKGROUND: Free-living microorganisms have long been assumed to have ubiquitous distributions with little biogeographic signature because they typically exhibit high dispersal potential and large population sizes. However, molecular data provide contrasting results and it is far from clear to what extent dispersal limitation determines geographic structuring of microbial populations. We aimed to determine biogeographical patterns of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. Being widely distributed on a global scale but patchily on a regional scale, this prokaryote is an ideal model organism to study microbial dispersal and biogeography. METHODOLOGY/PRINCIPAL FINDINGS: The phylogeography of M. aeruginosa was studied based on a dataset of 311 rDNA internal transcribed spacer (ITS sequences sampled from six continents. Richness of ITS sequences was high (239 ITS types were detected. Genetic divergence among ITS types averaged 4% (maximum pairwise divergence was 13%. Preliminary analyses revealed nearly completely unresolved phylogenetic relationships and a lack of genetic structure among all sequences due to extensive homoplasy at multiple hypervariable sites. After correcting for this, still no clear phylogeographic structure was detected, and no pattern of isolation by distance was found on a global scale. Concomitantly, genetic differentiation among continents was marginal, whereas variation within continents was high and was mostly shared with all other continents. Similarly, no genetic structure across climate zones was detected. CONCLUSIONS/SIGNIFICANCE: The high overall diversity and wide global distribution of common ITS types in combination with the lack of phylogeographic structure suggest that intercontinental dispersal of M. aeruginosa ITS types is not rare, and that this species might have a truly cosmopolitan distribution.

  17. Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1.

    Science.gov (United States)

    Carillo, Sara; Pieretti, Giuseppina; Bedini, Emiliano; Parrilli, Michelangelo; Lanzetta, Rosa; Corsaro, Maria Michela

    2014-03-31

    Cyanobacteria are aquatic and photosynthetic microorganisms, which contribute up to 30% of the yearly oxygen production on the earth. They have the distinction of being the oldest known fossils, more than 3.5 billion years old, and are one of the largest and most important groups of bacteria on earth. Cyanobacteria are an emerging source of potentially pharmacologically active products and, among these, there are the lipopolysaccharides. Despite their significant and well documented activity, very little is known about the cyanobacteria lipopolysaccharides (LPS) structure. The aim of this work is to investigate the structure of the highly TLR4-antagonist lipopolysaccharide from the cyanobacterium Oscillatoria plankthotrix FP1. The LPS was purified and analysed by means of chemical analysis and 1H and 13C NMR spectroscopy. The LPS was then degraded by Smith degradation, HF and acetic acid hydrolyses. All the obtained products were investigated in detail by chemical analysis, NMR spectroscopy and by mass spectrometry. The LPS consists of a high molecular mass and very complex molecule lacking Kdo and heptose residues, where the polysaccharide chain is mainly constituted by a backbone of 3-substituted α-l-rhamnose units. The core region is rich in galacturonic acid and mannose residues. Moreover a glycolipid portion, similar to Gram-negative lipid A, was identified. This was built up of a non phosphorylated (1'→6) linked glucosamine disaccharide, acylated with 3-hydroxylated fatty acids. In particular 3-hydroxypentadecanoic and 3-hydroxyesadecanoic acids were found, together with esadecanoic and tetradecanoic ones. Finally the presence of a galacturonic acid residue at 6-position of the distal glucosamine in place of the Kdo residue is suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Short RNA half-lives in the slow-growing marine cyanobacterium Prochlorococcus

    Science.gov (United States)

    2010-01-01

    Background RNA turnover plays an important role in the gene regulation of microorganisms and influences their speed of acclimation to environmental changes. We investigated whole-genome RNA stability of Prochlorococcus, a relatively slow-growing marine cyanobacterium doubling approximately once a day, which is extremely abundant in the oceans. Results Using a combination of microarrays, quantitative RT-PCR and a new fitting method for determining RNA decay rates, we found a median half-life of 2.4 minutes and a median decay rate of 2.6 minutes for expressed genes - twofold faster than that reported for any organism. The shortest transcript half-life (33 seconds) was for a gene of unknown function, while some of the longest (approximately 18 minutes) were for genes with high transcript levels. Genes organized in operons displayed intriguing mRNA decay patterns, such as increased stability, and delayed onset of decay with greater distance from the transcriptional start site. The same phenomenon was observed on a single probe resolution for genes greater than 2 kb. Conclusions We hypothesize that the fast turnover relative to the slow generation time in Prochlorococcus may enable a swift response to environmental changes through rapid recycling of nucleotides, which could be advantageous in nutrient poor oceans. Our growing understanding of RNA half-lives will help us interpret the growing bank of metatranscriptomic studies of wild populations of Prochlorococcus. The surprisingly complex decay patterns of large transcripts reported here, and the method developed to describe them, will open new avenues for the investigation and understanding of RNA decay for all organisms. PMID:20482874

  19. Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium.

    Science.gov (United States)

    Tabatabai, Behnam; Arumanayagam, AnithaChristy S; Enitan, Oluwatomisin; Mani, Arunmani; Natarajan, Savithiry S; Sitther, Viji

    2017-08-01

    Fremyella diplosiphon is a freshwater cyanobacterium that has great potential as a biofuel agent due to its ability to grow in low light intensity and acclimation to different wavelengths. To enhance its halotolerance for growth in 35gL-1 sodium chloride (NaCl), plasmids harboring hemolysin B (hlyB) and malate dehydrogenase (mdh) genes were transformed into wild type F. diplosiphon (WT-Fd33). Electroporation-mediated overexpression of the genes resulted in two transformants, HSF33-1 and HSF33-2, with 9- and 20-fold increases in hlyB and mdh transcript levels. In addition, up-regulation of proteins at the expected size ranges of 50-60kDa for HlyB and 40-50kDa for MDH was observed. Two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry revealed a protein spot corresponding to HlyB in HSF33-1 with a significant MOWSE score of 164 and 3% sequence coverage, and a spot corresponding to MDH in HSF33-2 gave a significant MOWSE score of 124 with 10% sequence coverage. Physiological evaluation in BG11/HEPES medium and seawater adjusted to 35gL-1 NaCl confirmed that the transformants could thrive in high salinity with no loss of photosynthetic pigments. Results of the study indicate that overexpression of hlyB and mdh genes confer halotolerance in F. diplosiphon, thus maximizing its potential as a large-scale biofuel agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    Science.gov (United States)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  1. NaCl-induced physiological and biochemical changes in two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different photosynthetically active radiation.

    Science.gov (United States)

    Kumar, Jitendra; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2015-10-01

    The present study is aimed at investigating physiological and biochemical behavior of two cyanobacteria Nostoc muscorum and Phormidium foveolarum acclimatized to different levels (sub-optimum; 25 ± 0.5, optimum; 75 ± 2.5 and supra-optimum; 225 ± 3.5 μmol photons m(-2) s(-1)) of photosynthetic active radiation (PAR), and subsequently treated with two doses (30 and 90 mM) of NaCl. PAR influences growth in tested cyanobacteria being maximum in supra-optimum PAR acclimatized cells. NaCl-induced maximum percent decline in growth was observed in sub-optimum PAR acclimatized cells, which was in consonance with a decrease in chlorophyll content. Sub-optimum PAR acclimatization stimulated phycocyanin content in control cells, whereas maximum carotenoids content was observed in supra-optimum PAR acclimatized cells. Photosystem II photochemistry viz. Fv/F0, Fv/Fm, Ψ0, ϕE0, PIABS, ABS/RC, TR0/RC, ET0/RC and DI0/RC was also influenced by PAR and NaCl. Maximum percent rise in superoxide radical (SOR), hydrogen peroxide (H2O2) and lipid peroxidation was observed in sub-optimum PAR acclimatized cells exposed to NaCl, which could be correlated with lower values of enzymatic (superoxide dismutase, catalase, peroxidase and glutathione-S-transferase) and non-enzymatic (NP-SH and cysteine) antioxidants. In supra-optimum PAR acclimatized cells level of oxidative stress markers was in parallel with enhanced antioxidants. The results suggest that PAR significantly changes physiological and biochemical responses of studied cyanobacteria under NaCl stress. Besides this, this study also shows that P. foveolarum is more tolerant than N. muscorum under test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.

    Science.gov (United States)

    Cheriyan, Manoj; Chan, Siu-Hong; Perler, Francine

    2014-12-12

    Inteins self-catalytically cleave out of precursor proteins while ligating the surrounding extein fragments with a native peptide bond. Much attention has been lavished on these molecular marvels with the hope of understanding and harnessing their chemistry for novel biochemical transformations including coupling peptides from synthetic or biological origins and controlling protein function. Despite an abundance of powerful applications, the use of inteins is still hampered by limitations in our understanding of their specificity (defined as flanking sequences that permit splicing) and the challenge of inserting inteins into target proteins. We examined the frequently used Nostoc punctiforme Npu DnaE intein after the C-extein cysteine nucleophile (Cys+1) was mutated to serine or threonine. Previous studies demonstrated reduced rates and/or splicing yields with the Npu DnaE intein after mutation of Cys+1 to Ser+1. In this study, genetic selection identified extein sequences with Ser+1 that enabled the Npu DnaE intein to splice with only a 5-fold reduction in rate compared to the wild-type Cys+1 intein and without mutation of the intein itself to activate Ser+1 as a nucleophile. Three different proteins spliced efficiently after insertion of the intein flanked by the selected sequences. We then used this selected specificity to achieve traceless splicing in a targeted enzyme at a location predicted by primary sequence similarity to only the selected C-extein sequence. This study highlights the latent catalytic potential of the Npu DnaE intein to splice with an alternative nucleophile and enables broader intein utility by increasing insertion site choices. Copyright © 2014. Published by Elsevier Ltd.

  3. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    Science.gov (United States)

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  4. In vitro and in vivo safety assessment of edible blue-green algae, Nostoc commune var. sphaeroides Kützing and Spirulina plantensis.

    Science.gov (United States)

    Yang, Yue; Park, Youngki; Cassada, David A; Snow, Daniel D; Rogers, Douglas G; Lee, Jiyoung

    2011-07-01

    Blue-green algae (BGA) have been consumed as food and herbal medicine for centuries. However, safety for their consumption has not been well investigated. This study was undertaken to evaluate in vitro and in vivo toxicity of cultivated Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP). Neither NO nor SP contained detectable levels of microcystin (MC)-LA, MC-RR, MC-LW and MC-LR by LC/MS/MS. Cell viability remained ∼70-80% when HepG2 cells were incubated with 0-500 μg/ml of hexane, chloroform, methanol and water-extractable fractions of NO and SP. Four-week-old male and female C57BL/6J mice were fed an AIN-93G/M diet supplemented with 0%, 2.5% or 5% of NO and SP (wt/wt) for 6 months. For both genders, BGA-rich diets did not induce noticeable abnormality in weight gain and plasma alanine aminotransferase (ALT) and aspartate aminotransferase concentrations except a significant increase in plasma ALT levels by 2.5% NO supplementation in male mice at 6 month. Histopathological analysis of livers, however, indicated that BGA did not cause significant liver damage compared with controls. In conclusion, our results suggest that NO and SP are free of MC and the long-term dietary supplementation of up to 5% of the BGA may be consumed without evident toxic side-effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. High Iron Requirement for Growth, Photosynthesis, and Low-light Acclimation in the Marine Cyanobacterium Synechococcus bacillaris

    Science.gov (United States)

    Sunda, W. G.; Huntsman, S. A.

    2016-02-01

    Iron is a critical nutrient in photosynthesis and limits phytoplankton growth in large regions of the ocean. Most of the iron in phytoplankton occurs in iron-containing proteins in the photosynthetic apparatus, and thus interactions among cellular iron, light, and growth rate are predicted. In agreement with this prediction, decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate by 2- to 3-fold in both a coastal diatom Thalassiosira pseudonana, and a coastal cyanobacterium Synechococcus bacillaris due to an increase in iron-containing photosynthetic units. However, although the light responses were similar, the cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher in the cyanobacterium than in the diatom, a pattern seen in other Syechococcus isolates and eukaryotic phytoplankton. Due to the high iron requirement for growth and low light acclimation, we might expect Synechococcus to be at a competitive disadvantage in many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean's deep chlorophyll maximum (DCM), where iron and light levels are low and lower-iron requiring eukaryotic algae typically dominate the phytoplankton biomass in the mid to lower DCM.

  6. Pathway-Level Acceleration of Glycogen Catabolism by a Response Regulator in the Cyanobacterium Synechocystis Species PCC 68031[W

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-01-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium. PMID:24521880

  7. Pathway-level acceleration of glycogen catabolism by a response regulator in the cyanobacterium Synechocystis species PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Oikawa, Akira; Numata, Keiji; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Saito, Kazuki; Hirai, Masami Yokota

    2014-04-01

    Response regulators of two-component systems play pivotal roles in the transcriptional regulation of responses to environmental signals in bacteria. Rre37, an OmpR-type response regulator, is induced by nitrogen depletion in the unicellular cyanobacterium Synechocystis species PCC 6803. Microarray and quantitative real-time polymerase chain reaction analyses revealed that genes related to sugar catabolism and nitrogen metabolism were up-regulated by rre37 overexpression. Protein levels of GlgP(slr1367), one of the two glycogen phosphorylases, in the rre37-overexpressing strain were higher than those of the parental wild-type strain under both nitrogen-replete and nitrogen-depleted conditions. Glycogen amounts decreased to less than one-tenth by rre37 overexpression under nitrogen-replete conditions. Metabolome analysis revealed that metabolites of the sugar catabolic pathway and amino acids were altered in the rre37-overexpressing strain after nitrogen depletion. These results demonstrate that Rre37 is a pathway-level regulator that activates the metabolic flow from glycogen to polyhydroxybutyrate and the hybrid tricarboxylic acid and ornithine cycle, unraveling the mechanism of the transcriptional regulation of primary metabolism in this unicellular cyanobacterium.

  8. Characterization of the coccoid cyanobacterium Myxosarcina sp. KIOST-1 isolated from mangrove forest in Chuuk State, Federated States of Micronesia

    Science.gov (United States)

    Kim, Ji Hyung; Lee, JunMo; Affan, Md-Abu; Lee, Dae-Won; Kang, Do-Hyung

    2017-09-01

    Mangrove forests are known to be inhabited by diverse symbiotic cyanobacterial communities that are capable of N2 fixation. To investigate its biodiversity, root sediments were collected from a mangrove forest in Chuuk State, Federated States of Micronesia (FSM), and an entangled yellow-brown coccoid cyanobacterium was isolated. The isolated cyanobacterium was reproduced by multiple fission and eventually produced baeocytes. Phylogenetic analysis revealed that the isolate was most similar to the genera Myxosarcina and Chroococcidiopsis in the order Pleurocapsales. Compositions of protein, lipid and carbohydrate in the cyanobacterial cells were estimated to be 19.4 ± 0.1%, 18.8 ± 0.4% and 31.5 ± 0.1%, respectively. Interestingly, total fatty acids in the isolate were mainly composed of saturated fatty acids and monounsaturated fatty acids, whereas polyunsaturated fatty acids were not detected. Based on the molecular and biochemical characteristics, the isolate was finally classified in the genus Myxosarcina, and designated as Myxosarcina sp. KIOST-1. These results will contribute to better understanding of cyanobacterial biodiversity in the mangrove forest in FSM as well as the genus Myxosarcina, and also will allow further exploitation of its biotechnological potential on the basis of its cellular characteristics.

  9. The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for delta 12 desaturase.

    Science.gov (United States)

    Wada, H; Avelange-Macherel, M H; Murata, N

    1993-09-01

    The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 was expressed in Escherichia coli, which does not contain any fatty acid desaturase. The product of the desA gene catalyzed the desaturation of fatty acids at the delta 12 position. This result demonstrates that desA is the structural gene for a delta 12 desaturase.

  10. Changes in photosynthetic properties measured by oxygen evolution and variable chlorophyll fluorescence in a simulated entrainment experiment with the cyanobacterium Planktothrix rubescens

    NARCIS (Netherlands)

    Kromkamp, J.C.; Domin, A.; Dubinsky, Z.; Lehmann, C.; Schanz, F.

    2001-01-01

    The metalimnion of lake Zurich is dominated by the red coloured cyanobacterium Planktotrix rubescens, where it lives in an extremely low light environment. Photosynthesis of the organism was studied using oxygen evolution and variable fluorescence. After transfer to 2 in depth in the epilimnion.

  11. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Løbner, Morten; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus...

  12. Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium Nodularia spumigena sp. CCY9414 based on a genome-transcriptome analysis

    NARCIS (Netherlands)

    Voß, B.; Bolhuis, H.; Fewer, D.; Kopf, M.; Möke, F.; Haas, F.; El-Shehawy, R.; Hayes, P.; Bergman, B.; Sivonen, K.; Dittmann, E.; Scanlan, D.J.; Hagemann, M.; Stal, L.J.; Hess, W.R.

    2013-01-01

    Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft

  13. Concerted changes in gene expression and cell physiology of the cyanobacterium Synechocystis sp. strain PCC 6803 during transitions between nitrogen and light-limited growth

    NARCIS (Netherlands)

    Aquirre von Wobeser, E.; Ibelings, B.W.; Bok, J.M.; Krasikov, V.; Huisman, J.; Matthijs, H.C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment

  14. The blue-colored linker polypeptide L-55 is a fusion protein of phycobiliproteins in the cyanobacterium Synechocystis sp strain BO 8402

    NARCIS (Netherlands)

    Neuschaefer-Rube, O.; Westermann, M.; Bluggel, M.; Meyer, H.E.; Ernst, A.

    2000-01-01

    The cyanobacterium Synechocystis sp. strain BO 8402, isolated from Lake Constance, lacks phycobilisomes but instead forms inclusion bodies containing remnants of phycobiliproteins. The inclusion bodies are surrounded by a proteinaceous capsule and contain alpha-phycocyanin and beta-phycocyanin, the

  15. Biotic factors in induced defence revisited: cell aggregate formation in the toxic cyanobacterium Microcystis aeruginosa PCC 7806 is triggered by spent Daphnia medium and disrupted cells

    NARCIS (Netherlands)

    Becker, S.

    2010-01-01

    Bioassays with the toxic cyanobacterium Microcystis aeruginosa PCC 7806, its non-toxic mutant ΔmcyB, and Daphnia magna as grazer were used to evaluate biotic factors in induced defence, in particular cyanobacterial and grazer-released info-chemicals. Three main questions were addressed in this

  16. The Genome Sequence of the Cyanobacterium Oscillatoria sp. PCC 6506 Reveals Several Gene Clusters Responsible for the Biosynthesis of Toxins and Secondary Metabolites▿

    Science.gov (United States)

    Méjean, Annick; Mazmouz, Rabia; Mann, Stéphane; Calteau, Alexandra; Médigue, Claudine; Ploux, Olivier

    2010-01-01

    We report a draft sequence of the genome of Oscillatoria sp. PCC 6506, a cyanobacterium that produces anatoxin-a and homoanatoxin-a, two neurotoxins, and cylindrospermopsin, a cytotoxin. Beside the clusters of genes responsible for the biosynthesis of these toxins, we have found other clusters of genes likely involved in the biosynthesis of not-yet-identified secondary metabolites. PMID:20675499

  17. Toxicokinetics of Microcystin and Dihydro-Microcystin in Swine

    Science.gov (United States)

    1994-05-14

    cyanobacteria (blue-green algae) including, Nicrocystis, Anabaena, Nostoc , and Oscillatoria, produce cyclic heptapeptida hepatotoxins that have been termed...1990) describe three hepatotoxic MCs from Nostoc spp. which retained toxicity similar to MCLR despite the fact that they contained an acetoxyl group...W. W. (1990) Structures of three new cyclic hepatapeptide hepatotoxins produced by the cyanobacterium (blue-green algae) Nostoc sp. Strain 152. J

  18. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-12-01

    The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS

  19. Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans UTEX 625.

    Science.gov (United States)

    Kalla, S R; Lind, L K; Lidholm, J; Gustafsson, P

    1988-01-01

    The phycocyanin subunit gene cluster is duplicated on the chromosome of the cyanobacterium Anacystis nidulans UTEX 625. The two gene clusters cpcB1A1 (left) and cpcB2A2 (right) are separated by about 2,500 base pairs, and in each cluster the beta-subunit gene is located upstream from the alpha-subunit gene. Filter hybridizations with phycocyanin-specific probes to total RNA detected at least two major transcripts that were 1,300 to 1,400 nucleotides long. Besides these major mRNA species, two minor transcripts of 3,400 and 3,700 nucleotides covering one of the gene clusters and the region between the clusters were found. No additional minor transcripts were found in the intergenic region between the two phycocyanin gene clusters. The lengths of the major mRNAs indicated that the beta- and alpha-subunit genes were cotranscribed. No apparent homologies were found when the DNA sequences located upstream from the proposed ribosome-binding site of the two phycocyanin beta-subunit genes were compared. Northern hybridizations with gene cluster-specific probes from the regions 5' of the beta-subunit genes, as well as S1 nuclease mapping and mRNA primer extension experiments, showed that both gene clusters were transcribed. The minor transcripts were found to initiate upstream from the left gene cluster. Two mRNA 5' ends were mapped upstream from the cpcB1A1 gene cluster, while only one 5' end was mapped in front of the cpcB2A2 gene cluster. All transcripts were present in RNA preparations from cultures grown under high levels of white light as well as under low levels of red light. The level of phycocyanin-specific mRNA, measured as part of the total RNA, was lower under low levels of red light compared with that under high levels of white light. Conserved sequence motifs were found when the promoter region of the cpcB1A1 gene cluster and promoter regions from other cyanobacterial photosynthesis genes were compared. The DNA sequences covering the proposed transcriptional

  20. Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Kopka, Joachim; Schmidt, Stefanie; Dethloff, Frederik; Pade, Nadin; Berendt, Susanne; Schottkowski, Marco; Martin, Nico; Dühring, Ulf; Kuchmina, Ekaterina; Enke, Heike; Kramer, Dan; Wilde, Annegret; Hagemann, Martin; Friedrich, Alexandra

    2017-01-01

    Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms, which are engineered to synthesize valuable products directly from CO2 and sunlight. As cyanobacteria can be cultivated in large scale on non-arable land, these phototrophic bacteria have become attractive organisms for production of biofuels. Synechococcus sp. PCC 7002, one of the cyanobacterial model organisms, provides many attractive properties for biofuel production such as tolerance of seawater and high light intensities. Here, we performed a systems analysis of an engineered ethanol-producing strain of the cyanobacterium Synechococcus sp. PCC 7002, which was grown in artificial seawater medium over 30 days applying a 12:12 h day-night cycle. Biosynthesis of ethanol resulted in a final accumulation of 0.25% (v/v) ethanol, including ethanol lost due to evaporation. The cultivation experiment revealed three production phases. The highest production rate was observed in the initial phase when cells were actively growing. In phase II growth of the producer strain stopped, but ethanol production rate was still high. Phase III was characterized by a decrease of both ethanol production and optical density of the culture. Metabolomics revealed that the carbon drain due to ethanol diffusion from the cell resulted in the expected reduction of pyruvate-based intermediates. Carbon-saving strategies successfully compensated the decrease of central intermediates of carbon metabolism during the first phase of fermentation. However, during long-term ethanol production the producer strain showed clear indications of intracellular carbon limitation. Despite the decreased levels of glycolytic and tricarboxylic acid cycle intermediates, soluble sugars and even glycogen accumulated in the producer strain. The changes in carbon assimilation patterns are partly supported by proteome analysis, which detected decreased levels of many enzymes and also revealed the stress

  1. The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus.

    Science.gov (United States)

    Saker, M L; Eaglesham, G K

    1999-07-01

    Redclaw crayfish, Cherax quadricarinatus harvested from an aquaculture pond infested by a bloom of the cyanobacterium Cylindrospermopsis raciborskii (order: Nostocales), were shown to accumulate the toxic alkaloid cylindrospermopsin. Pond water samples collected during the bloom contained 589 microg l(-1) of the toxin (93% in the cyanobacterial cells, 7% in the water). Crayfish from the pond contained cylindrospermopsin at concentrations of 4.3 microg g freeze dried hepatopancreas tissue and 0.9 microg g freeze dried muscle tissue. Trichomes of C. raciborskii were observed in gut contents of crayfish harvested during the cyanobacterial bloom, indicating that the most likely mechanism for accumulation of the toxin was by ingestion of cyanobacterial cells. Crayfish subjected to an extract of harvested bloom material under laboratory conditions for a period of 14 days were also found to accumulate cylindrospermopsin, indicating that this toxin is also absorbed into the tissues by direct uptake of the toxin in solution.

  2. Influence of mixotrophic growth on rhythmic oscillations in expression of metabolic pathways in diazotrophic cyanobacterium Cyanothece sp. ATCC 51142.

    Science.gov (United States)

    Krishnakumar, S; Gaudana, Sandeep B; Digmurti, Madhuri G; Viswanathan, Ganesh A; Chetty, Madhu; Wangikar, Pramod P

    2015-01-01

    This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is marked by an extended respiratory phase compared with photoautotrophy. It can be argued that glycerol provides supplementary energy for nitrogen fixation, which is derived primarily from the glycogen reserves during photoautotrophy. The genes of NDH complex, cytochrome c oxidase and ATP synthase are significantly overexpressed in mixotrophy during the day compared to autotrophy with synchronous expression of the bidirectional hydrogenase genes possibly to maintain redox balance. However, nitrogenase complex remains exclusive to nighttime metabolism concomitantly with uptake hydrogenase. This study throws light on interrelations between metabolic pathways with implications in design of hydrogen producer strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Investigation of in vitro digestibility of dietary microalga Chlorella vulgaris and cyanobacterium Spirulina platensis as a nutritional supplement.

    Science.gov (United States)

    Kose, Ayse; Ozen, Mehmet O; Elibol, Murat; Oncel, Suphi S

    2017-07-01

    Microalgal proteins are promising sources for functional nutrition and a sustainable candidate for nutraceutical formulations. They also gain importance due to emerging focus on a healthy nutrition and increase in the number of chronic diseases. In this study, dried dietary species of microalga, Chlorella vulgaris, and cyanobacterium Spirulina platensis were hydrolyzed with pancreatin enzyme to obtain protein hydrolysates. The hydrolysis yield of biomass was 55.1 ± 0.1 and 64.8 ± 3.6% for C. vulgaris and S. platensis; respectively. Digestibility, as an indicator for dietary utilization, was also investigated. In vitro protein digestibility (IVPD) values depicted that cell wall structure due to the taxonomical differences affected both hydrolysis and digestibility yield of the crude biomass (p microalgae, which shows elevated digestibility values as a sustainable and reliable source.

  4. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pichel, F.; Sherry, N.D.; Castenholz, R.W. (Oregon Univ., Eugene, OR (United States). Dept. of Biology)

    1992-07-01

    The proposed photoprotective role of the UV-A absorbing, extracellular pigment scytonemin was studied in the terrestrial cyanobacterium Chlorogloeopsis sp. strain O-89-Cgs(1). UV-A (315-400 nm) caused growth delay, cell growth restarting only when scytonemin had accumulated in the extracellular envelopes. Cultures with scytonemin were more resistant to photoinhibition of photosynthesis than cultures without scytonemin the differential resistance being much greater to UV-A-caused photoinhibition than to photoinhibition caused by visible light. The presence of scytonemin in the extracellular envelopes was correlated with the inability of UV-A radiation to induce strong photopigment fluorescence (685 nm emission), regardless of the specific content of photosynthetic pigments. (author).

  5. Photosystem Trap Energies and Spectrally-Dependent Energy-Storage Efficiencies in the Chl d-Utilizing Cyanobacterium, Acaryochloris Marina

    Science.gov (United States)

    Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David

    2012-01-01

    Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

  6. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris

    Directory of Open Access Journals (Sweden)

    William eSunda

    2015-06-01

    Full Text Available Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II. Decreasing light intensity increased the cellular iron:carbon (Fe:C ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean’s deep chlorophyll maximum (DCM where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM.

  7. High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris.

    Science.gov (United States)

    Sunda, William G; Huntsman, Susan A

    2015-01-01

    Iron limits carbon fixation in much of the modern ocean due to the very low solubility of ferric iron in oxygenated ocean waters. We examined iron-limitation of growth rate under varying light intensities in the coastal cyanobacterium Synechococcus bacillaris, a descendent of the oxygenic phototrophs that evolved ca. 3 billion years ago when the ocean was reducing and iron was present at much higher concentrations as soluble Fe(II). Decreasing light intensity increased the cellular iron:carbon (Fe:C) ratio needed to support a given growth rate, indicating that iron and light may co-limit the growth of Synechococcus in the ocean, as shown previously for eukaryotic phytoplankton. The cellular Fe:C ratios needed to support a given growth rate were 5- to 8-fold higher than ratios for coastal eukaryotic algae growing under the same light conditions. The higher iron requirements for growth in the coastal cyanobacterium may be largely caused by the high demand for iron in photosynthesis, and to higher ratios of iron-rich photosystem I to iron-poor photosystem II in Synechococcus than in eukaryotic algae. This high iron requirement may also be vestigial and represent an adaptation to the much higher iron levels in the ancient reducing ocean. Due to the high cellular iron requirement for photosynthesis and growth, and for low light acclimation, Synechococcus may be excluded from many low-iron and low-light environments. Indeed, it decreases rapidly with depth within the ocean's deep chlorophyll maximum (DCM) where iron and light levels are low, and lower-iron requiring picoeukaryotes typically dominate the biomass of phytoplankton community within the mid to lower DCM.

  8. Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris – a filamentous cyanobacterium containing chlorophyll f

    Directory of Open Access Journals (Sweden)

    Yaqiong eLi

    2014-02-01

    Full Text Available A chlorophyll f containing cyanobacterium, Halomicronema hongdechloris (H. hongdechloris was isolated from a stromatolite cyanobacterial community. However, the extremely slower growth rate of H. hongdechloris culture became a critical factor, hindering the research on this newly isolated cyanobacterium and the investigation of chlorophyll f-photosynthesis. Therefore, optimizing H. hongdechloris culture conditions has become an essential requirement for future research. This work investigated the effects of various culture conditions, essential nutrients and light environments to determine the optimal growth conditions for H. hongdechloris and the biosynthetic rate of chlorophyll f. Based on the total chlorophyll concentration, an optimal growth rate of 0.22 ± 0.02 day-1 (doubling time: 3.1 ± 0.3 days was observed when cells were grown under continuous illumination with far-red light with an intensity of 20 µE at 32°C in modified K+ES seawater (pH 8.0 with additional supplements of 11.75 mM NaNO3 and 0.15 mM K2HPO4. High performance liquid chromatography on H. hongdechloris pigments confirmed that chlorophyll a is the major chlorophyll and chlorophyll f constitutes approximately 10% of the total chlorophyll from cells grown under far-red light. Fluorescence confocal image analysis demonstrated changes of photosynthetic membranes and the distribution of photopigments in response to different light conditions. The total photosynthetic oxygen evolution yield per cell showed no changes under different light conditions, which confirms the involvement of chlorophyll f in oxygenic photosynthesis. The implications of the presence of chlorophyll f in H. hongdechloris and its relationship to light environment are discussed.

  9. Microenvironmental Ecology of the Chlorophyll b-containing Symbiotic Cyanobacterium Prochloron in the Didemnid Ascidian Lissoclinum patella

    Directory of Open Access Journals (Sweden)

    Michael eKühl

    2012-11-01

    Full Text Available The discovery of the cyanobacterium Prochloron was the first finding of a bacterial oxyphototroph with chlorophyll (Chl b, in addition to Chl a. It was first described as Prochloron didemni but a number of clades have since been described. Prochloron is a conspicuously large (7-25 µm unicellular cyanobacterium living in a symbiotic relationship, primarily with (sub- tropical didemnid ascidians; it has resisted numerous cultivation attempts and appears truly obligatory symbiotic. Recently, a Prochloron draft genome was published, revealing no lack of metabolic genes that could explain the apparent inability to reproduce and sustain photosynthesis in a free-living stage. Possibly, the unsuccessful cultivation is partly due to a lack of knowledge about the microenvironmental conditions and ecophysiology of Prochloron in its natural habitat. We used microsensors, variable chlorophyll fluorescence imaging and imaging of O2 and pH to obtain a detailed insight to the microenvironmental ecology and photobiology of Prochloron in hospite in the didemnid ascidian Lissoclinum patella. The microenvironment within ascidians is characterized by steep gradients of light and chemical parameters that change rapidly with varying irradiances. The interior zone of the ascidians harboring Prochloron thus became anoxic and acidic within a few min of darkness, while the same zone exhibited O2 super-saturation and strongly alkaline pH after a few min of illumination. Photosynthesis showed lack of photoinhibition even at high irradiances equivalent to full sunlight, and photosynthesis recovered rapidly after periods of anoxia. We discuss these new insights on the ecological niche of Prochloron and possible interactions with its host and other microbes in light of its recently published genome and a recent study of the overall microbial diversity and metagenome of L. patella.

  10. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. These proteins were involved in (i PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase; (ii transport processes [e.g., ATP-binding cassette (ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase; (iv electron transport (cytochrome b6f complex Fe-S protein; (v general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable; (vi carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta; and (vii nitrogen reductase (nitrous oxide reductase. The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  11. Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter.

    Directory of Open Access Journals (Sweden)

    Matthew J Harke

    Full Text Available Whole transcriptome shotgun sequencing (RNA-seq was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N, low levels of dissolved inorganic phosphorus (low P, and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM. Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE, and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC, and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed, transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.

  12. Changes in gene expression, cell physiology and toxicity of the harmful cyanobacterium Microcystis aeruginosa at elevated CO2

    Directory of Open Access Journals (Sweden)

    Giovanni eSandrini

    2015-05-01

    Full Text Available Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7 fold increase of the cyanobacterial biomass and ~2.5 fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4,691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.

  13. The Cyanobacterium Cylindrospermopsis raciborskii (CYRF-01 Responds to Environmental Stresses with Increased Vesiculation Detected at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Victor Zarantonello

    2018-02-01

    Full Text Available Secretion of membrane-limited vesicles, collectively termed extracellular vesicles (EVs, is an important biological process of both eukaryotic and prokaryotic cells. This process has been observed in bacteria, but remains to be better characterized at high resolution in cyanobacteria. In the present work, we address the release of EVs by Cylindrospermopsis raciborskii (CYRF-01, a filamentous bloom-forming cyanobacterium, exposed to environmental stressors. First, non-axenic cultures of C. raciborskii (CYRF-01 were exposed to ultraviolet radiation (UVA + UVB over a 6 h period, which is known to induce structural damage to this species. Second, C. raciborskii was co-cultured in interaction with another cyanobacterium species, Microcystis aeruginosa (MIRF-01, over a 24 h period. After the incubation times, cell density and viability were analyzed, and samples were processed for transmission electron microscopy (TEM. Our ultrastructural analyses revealed that C. raciborskii constitutively releases EVs from the outer membrane during its normal growth and amplifies such ability in response to environmental stressors. Both situations induced significant formation of outer membrane vesicles (OMVs by C. raciborskii compared to control cells. Quantitative TEM revealed an increase of 48% (UV and 60% (interaction in the OMV numbers compared to control groups. Considering all groups, the OMVs ranged in size from 20 to 300 nm in diameter, with most OMVs showing diameters between 20 and 140 nm. Additionally, we detected that OMV formation is accompanied by phosphatidylserine exposure, a molecular event also observed in EV-secreting eukaryotic cells. Altogether, we identified for the first time that C. raciborskii has the competence to secrete OMVs and that under different stress situations the genesis of these vesicles is increased. The amplified ability of cyanobacteria to release OMVs may be associated with adaptive responses to changes in environmental

  14. Cytotoxicity and Pro-Apoptotic Activity of 2,2´-Bis[4,5-bis(4-hydroxybenzyl-2-(4-hydroxyphenylcyclopent-4-en-1,3-dione], a Phenolic Cyclopentenedione Isolated from the Cyanobacterium Strain Nostoc sp. str. Lukešová 27/97

    Directory of Open Access Journals (Sweden)

    Jan Vacek

    2011-05-01

    Full Text Available The cytotoxicity of the polyphenol 2,2´-bis[4,5-bis(4-hydroxybenzyl-2-(4-hydroxyphenylcyclopent-4-en-1,3-dione], nostotrebin 6 (NOS-6, was tested under in vitro conditions using mouse fibroblasts (BALB/c cells. Identification of NOS-6 and its uptake into fibroblasts was examined by multi-stage mass spectrometry analysis with the following fragmentation pattern: MS (m/z [M+H]+ 799.1 → MS2 399.1 → MS3 305.1 → MS4 277.1. Using several cell viability assays, the IC50 of NOS-6 after 24 h incubation was found to be 8.48 ± 0.16/12.15 ± 1.96 µM (neutral red/MTT assay which was higher than that of doxorubicin. It was found that NOS-6 is capable of inducing both types of cell death, apoptosis and necrosis in a dose-dependent manner. The biological activities of the cyclopentenediones and preliminary data on NOS-6 cytotoxicity are discussed.

  15. Characterization of the cyanobacterium Oscillatoria sp. isolated from extreme sulphureous water from Los Baños de la Hedionda (S Spain)

    OpenAIRE

    Martín-Clemente, Elena; Melero Jiménez, Ignacio José; Reul, Andreas; Hernández-López, Miguel; Salvo, Enrique; Bañares-España, Elena; García-Sánchez, María Jesús; Flores-Moya, Antonio

    2017-01-01

    Los Baños de la Hedionda (Málaga, S Spain) is a natural sulphureous spa (150-200 µM sulphide). Although this high sulphide levels can affect the photosynthetic process, there are numerous photosynthetic microorganisms inhabiting the spa. Among them, we isolated a strain of the cyanobacterium Oscillatoria sp., a genus well known by its tolerance to sulphide. Objectives Firstly, to analyze the photosynthetic characteristics and growth rate of the isolated strain, as well as the effect of...

  16. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis

    DEFF Research Database (Denmark)

    Pedersen, Morten Løbner; Walsted, Anette; Larsen, Rune

    2008-01-01

    The effect of consumption of Immulina, a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis, on adaptive immune responses was investigated by evaluation of changes in leukocyte responsiveness to two foreign recall antigens, Candida albicans (CA) and tetanus......beta, and IL-6 responses, indicating that it acts by inducing a pro-inflammatory state. Taken together, the data suggest that Immulina causes an age-dependent, temporary enhancement of adaptive immune responses....

  17. Draft Genome Sequence of Cyanobacterium sp. Strain HL-69, Isolated from a Benthic Microbial Mat from a Magnesium Sulfate-Dominated Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Mobberley, J. M.; Romine, M. F.; Cole, J. K.; Maezato, Y.; Lindemann, S. R.; Nelson, W. C.

    2018-02-08

    ABSTRACT

    The complete genome sequence ofCyanobacteriumsp. strain HL-69 consists of 3,155,247 bp and contains 2,897 predicted genes comprising a chromosome and two plasmids. The genome is consistent with a halophilic nondiazotrophic phototrophic lifestyle, and this organism is able to synthesize most B vitamins and produces several secondary metabolites.

  18. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    Science.gov (United States)

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  19. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.

    Science.gov (United States)

    Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

    2013-03-01

    Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.

  20. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Nakahira, Yoichi; Ogawa, Atsushi; Asano, Hiroyuki; Oyama, Tokitaka; Tozawa, Yuzuru

    2013-10-01

    The cyanobacterium Synechococcus elongatus PCC 7942 is a major model species for studies of photosynthesis. It is are also a potential cell factory for the production of renewable biofuels and valuable chemicals. We employed engineered riboswitches to control translational initiation of target genes in this cyanobacterium. A firefly luciferase reporter assay revealed that three theophylline riboswitches performed as expected in the cyanobacterium. Riboswitch-E* exhibited very low leaky expression of luciferase and superior and dose-dependent on/off regulation of protein expression by theophylline. The maximum magnitude of the induction vs. basal level was ∼190-fold. Furthermore, the induction level was responsive to a wide range of theophylline concentrations in the medium, from 0 to 2 mM, facilitating the fine-tuning of luciferase expression. We adapted this riboswitch to another gene regulation system, in which expression of the circadian clock kaiC gene product is controlled by the theophylline concentration in the culture medium. The results demonstrated that the adequately adjusted expression level of KaiC restored complete circadian rhythm in the kaiC-deficient arrhythmic mutant. This theophylline-dependent riboswitch system has potential for various applications as a useful genetic tool in cyanobacteria.

  1. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    Directory of Open Access Journals (Sweden)

    Jan Bornikoel

    2017-09-01

    Full Text Available Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  2. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Wood Thomas K

    2007-05-01

    Full Text Available Abstract Background Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g. Results Hydrogen yields were enhanced up to 41-fold by cloning the bidirectional hydrogenase (encoded by hoxEFUYH from the cyanobacterium into E. coli. Using an optimized medium, E. coli cells expressing hoxEFUYH also produced twice as much hydrogen as the well-studied Enterobacter aerogenes HU-101, and hydrogen gas bubbles are clearly visible from the cultures. Overexpression of HoxU alone (small diaphorase subunit accounts for 43% of the additional hydrogen produced by HoxEFUYH. In addition, hydrogen production in E. coli mutants with defects in the native formate hydrogenlyase system show that the cyanobacterial hydrogenase depends on both the native E. coli hydrogenase 3 as well as on its maturation proteins. Hydrogen absorption by cells expressing hoxEFUYH was up to 10 times lower than cells which lack the cloned cyanobacterial hydrogenase; hence, the enhanced hydrogen production in the presence of hoxEFUYH is due to inhibition of hydrogen uptake activity in E. coli. Hydrogen uptake by cells expressing hoxEFUYH was suppressed in three wild-type strains and in two hycE mutants but not in a double mutant defective in hydrogenase 1 and hydrogenase 2; hence, the active cyanobacterial locus suppresses hydrogen uptake by hydrogenase 1 and hydrogenase 2 but not by hydrogenase 3. Differential gene expression indicated that overexpression of HoxEFUYH does not alter expression of the native E. coli hydrogenase system; instead, biofilm-related genes are differentially regulated by expression of the cyanobacterial enzymes which resulted in 2-fold elevated biofilm formation. This appears to be the first enhanced hydrogen production

  3. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401.

    Science.gov (United States)

    Chrismas, Nathan A M; Barker, Gary; Anesio, Alexandre M; Sánchez-Baracaldo, Patricia

    2016-08-02

    Cyanobacteria are major primary producers in extreme cold ecosystems. Many lineages of cyanobacteria thrive in these harsh environments, but it is not fully understood how they survive in these conditions and whether they have evolved specific mechanisms of cold adaptation. Phormidesmis priestleyi is a cyanobacterium found throughout the cold biosphere (Arctic, Antarctic and alpine habitats). Genome sequencing of P. priestleyi BC1401, an isolate from a cryoconite hole on the Greenland Ice Sheet, has allowed for the examination of genes involved in cold shock response and production of extracellular polymeric substances (EPS). EPSs likely enable cyanobacteria to buffer the effects of extreme cold and by identifying mechanisms for EPS production in P. priestleyi BC1401 this study lays the way for investigating transcription and regulation of EPS production in an ecologically important cold tolerant cyanobacterium. We sequenced the draft genome of P. priestleyi BC1401 and implemented a new de Bruijn graph visualisation approach combined with BLAST analysis to separate cyanobacterial contigs from a simple metagenome generated from non-axenic cultures. Comparison of known cold adaptation genes in P. priestleyi BC1401 with three relatives from other environments revealed no clear differences between lineages. Genes involved in EPS biosynthesis were identified from the Wzy- and ABC-dependent pathways. The numbers of genes involved in cell wall and membrane biogenesis in P. priestleyi BC1401 were typical relative to the genome size. A gene cluster implicated in biofilm formation was found homologous to the Wps system, although the intracellular signalling pathways by which this could be regulated remain unclear. Results show that the genomic characteristics and complement of known cold shock genes in P. priestleyi BC1401 are comparable to related lineages from a wide variety of habitats, although as yet uncharacterised cold shock genes in this organism may still exist. EPS

  4. Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore.

    Science.gov (United States)

    Quest, Benjamin; Hübschmann, Thomas; Sharda, Shivani; Tandeau de Marsac, Nicole; Gärtner, Wolfgang

    2007-04-01

    Bacteriophytochromes constitute a light-sensing subgroup of sensory kinases with a chromophore-binding motif in the N-terminal half and a C-terminally located histidine kinase activity. The cyanobacterium Fremyella diplosiphon (also designated Calothrix sp.) expresses two sequentially very similar bacteriophytochromes, cyanobacterial phytochrome A (CphA) and cyanobacterial phytochrome B (CphB). Cyanobacterial phytochrome A has the canonical cysteine residue, by which covalent chromophore attachment is accomplished in the same manner as in plant phytochromes; however, its paralog cyanobacterial phytochrome B carries a leucine residue at that position. On the basis of in vitro experiments that showed, for both cyanobacterial phytochrome A and cyanobacterial phytochrome B, light-induced autophosphorylation and phosphate transfer to their cognate response regulator proteins RcpA and RcpB [Hübschmann T, Jorissen HJMM, Börner T, Gärtner W & deMarsac NT (2001) Eur J Biochem268, 3383-3389], we aimed at the identification of a chromophore that is incorporated in vivo into cyanobacterial phytochrome B within the cyanobacterial cell. The approach was based on the introduction of a copy of cphB into the cyanobacterium via triparental conjugation. The His-tagged purified, recombinant protein (CphBcy) showed photoreversible absorption bands similar to those of plant and bacterial phytochromes, but with remarkably red-shifted maxima [lambda(max) 700 and 748 nm, red-absorbing (P(r)) and far red-absorbing (P(fr)) forms of phytochrome, respectively]. A comparison of the absorption maxima with those of the heterologously generated apoprotein, assembled with phycocyanobilin (lambda(max) 686 and 734 nm) or with biliverdin IXalpha (lambda(max) 700 and 750 +/- 2 nm), shows biliverdin IXalpha to be a genuine chromophore. The kinase activity of CphBcy and phosphotransfer to its cognate response regulator was found to be strictly P(r)-dependent. As an N-terminally located cysteine was

  5. Probit Analysis of Carbamate-Pesticide-Toxicity at Soil-Water Interface to N2-Fixing Cyanobacterium Cylindrospermum sp

    Directory of Open Access Journals (Sweden)

    Rabindra N. Padhy

    2015-03-01

    Full Text Available Toxicity-data of two carbamate insecticides, carbaryl and carbofuran, and three fungicides, ziram, zineb and mancozeb with rice-field N2-fixing cyanobacterium Cylindrospermum sp., obtained by in vitro growth and at soil-water interface, were analyzed by the probit method. Growth enhancing concentration, no-observed effective concentration, minimum inhibitory concentration, the highest permissive concentration and lethal concentration100 (LC100 were determined experimentally. The LC50 values of carbaryl, carbofuran, ziram, zineb and mancozeb in N2-fixing liquid medium were 56.2, 588.8, 0.07, 4.2 and 3.4 μg/mL, respectively, whereas the corresponding LC100 values were 100.0, 1500.0, 0.17, 25.0 and 9.0 μg/mL, respectively. The LC50 values of these pesticides in succession in N2-fixing agar medium were 44.7, 239.9, 0.07, 1.8 and 2.3 μg/mL, respectively, whereas the corresponding LC100 values were 100.0, 600.0, 0.17, 10.0 and 7.0 μg/mL, respectively. Similar results with nitrate supplemented liquid and agar media indicated that nitrate supplementation had toxicity reducing effect. The LC50 and LC100 values of toxicity in the N2-fixing liquid medium at soil-water interface were 91.2 and 200.0 μg/mL for carbaryl, 2 317 and 6 000 μg/mL for carbofuran, 0.15 and 0.50 μg/mL for ziram, 16.4 and 50.0 μg/mL for zineb, and 7.2 and 25.0 μg/mL for mancozeb, respectively. Each LC100 value at soil-water interface with a pesticide was significantly higher than its corresponding LC100 value at liquid/agar media. It can be concluded that, under the N2-fixing conditions, the cyanobacterium tolerated higher levels of each pesticide at soil-water interface.

  6. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol

    Directory of Open Access Journals (Sweden)

    Li Han

    2013-01-01

    Full Text Available Abstract Background The modern society primarily relies on petroleum and natural gas for the production of fuels and chemicals. One of the major commodity chemicals 1,2-propanediol (1,2-PDO, which has an annual production of more than 0.5 million tons in the United States, is currently produced by chemical processes from petroleum derived propylene oxide, which is energy intensive and not sustainable. In this study, we sought to achieve photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Compared to the previously reported biological 1,2-PDO production processes which used sugar or glycerol as the substrates, direct chemical production from CO2 in photosynthetic organisms recycles the atmospheric CO2 and will not compete with food crops for arable land. Results In this study, we reported photosynthetic production of 1,2-PDO from CO2 using a genetically engineered cyanobacterium Synechococcus elongatus PCC 7942. Introduction of the genes encoding methylglyoxal synthase (mgsA, glycerol dehydrogenase (gldA, and aldehyde reductase (yqhD resulted in the production of ~22mg/L 1,2-PDO from CO2. However, a comparable amount of the pathway intermediate acetol was also produced, especially during the stationary phase. The production of 1,2-PDO requires a robust input of reducing equivalents from cellular metabolism. To take advantage of cyanobacteria’s NADPH pool, the synthetic pathway of 1,2-PDO was engineered to be NADPH-dependent by exploiting the NADPH-specific secondary alcohol dehydrogenases which have not been reported for 1,2-PDO production previously. This optimization strategy resulted in the production of ~150mg/L 1,2-PDO and minimized the accumulation of the incomplete reduction product, acetol. Conclusion This work demonstrated that cyanobacteria can be engineered as a catalyst for the photosynthetic conversion of CO2 to 1,2-PDO. This work also characterized two NADPH

  7. An assessment of the usefulness of the cyanobacterium Synechococcus subsalsus as a source of biomass for biofuel production

    Directory of Open Access Journals (Sweden)

    Bruno R.S. Setta

    2014-05-01

    Full Text Available Nowadays algal biofuels are considered one of the most promising solutions of global energy crisis and climate change for the years to come. By manipulation of the culture conditions, many algal species can be induced to accumulate high concentrations of particular biomolecules and can be directed to the desired output for each fuel. In this context, the present study involved the assessment of the effects of CO2 availability and nitrogen starvation on growth and chemical composition of the cyanobacterium Synechococcus subsalsus, testing a fast-growing native strain. The control experiments were performed with Conway culture medium in 12-day batch cultures, in 6-liter flasks and 12 h photoperiod, with addition of 2 L min-1 filtered air to each flask. Other two experimental conditions were also tested: (i the placement into the cultures of additional dissolved nutrients except nitrogen, one week after the start of growth (N-, and (ii the input of pure CO2 into the flasks from the 5th day of growth (C+. In all cultures, daily cell counts were done throughout the cultivation, as well as measurements of pH and cell biovolumes. Maximum cell yield were found in N-experiments, while cell yields of C+ and control were similar. Dissolved nitrogen was exhausted before the end of the experiments, but dissolved phosphorus was not totally consumed. Protein and chlorophyll-a concentrations decreased from the exponential to the stationary growth phase of all experiments, except for protein in the control. In all experiments, carbohydrate, lipid and total carotenoid increased from the exponential to the stationary growth phase, as an effect of nitrogen limitation. Increments in carbohydrate concentrations were remarkable, achieving more than 42% of the dry weight (dw, but concentrations of lipid were always lower than 13% dw. The addition of pure CO2 did not cause a significant increase in biomass of S. subsalsus nor generated more lipid and carbohydrate than

  8. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium.

    Science.gov (United States)

    Monshupanee, Tanakarn; Nimdach, Palida; Incharoensakdi, Aran

    2016-11-15

    Sustainable production of bioplastics by heterotrophic microbes has been restricted by the limited resources of organic substrates and the energy required for biomass harvest. Here, the easy-to-harvest cyanobacterium (Chlorogloea fritschii TISTR 8527), from which the biomass instantaneously settled to the bottom of liquid culture, was utilized to produce poly-3-hydroxybutyrate (PHB) using a two-stage cultivation strategy. The cells were first pre-grown under normal photoautotrophy to increase their biomass and then recultivated under a heterotrophic condition with a single organic substrate to produce the product. Through optimization of this two-stage cultivation, the mass conversion efficiency of acetate substrate to PHB was obtained at 51 ± 7% (w/w), the comparable level to the theoretical biochemical conversion efficiency of acetate to PHB. This two-stage cultivation that efficiently converted the substrate to the product, concurrent with a reduced culture biomass, may be applicable for the production of other biopolymers by cyanobacteria.

  9. CHARACTERIZATION OF A FUNCTIONAL VANADIUM-DEPENDENT BROMOPEROXIDASE IN THE MARINE CYANOBACTERIUM SYNECHOCOCCUS SP. CC9311(1).

    Science.gov (United States)

    Johnson, Todd L; Palenik, Brian; Brahamsha, Bianca

    2011-08-01

    Vanadium-dependent bromoperoxidases (VBPOs) are characterized by the ability to oxidize halides using hydrogen peroxide. These enzymes are well-studied in eukaryotic macroalgae and are known to produce a variety of brominated secondary metabolites. Though genes have been annotated as VBPO in multiple prokaryotic genomes, they remain uncharacterized. The genome of the coastal marine cyanobacterium Synechococcus sp. CC9311 encodes a predicted VBPO (YP_731869.1, sync_2681), and in this study, we show that protein extracts from axenic cultures of Synechococcus possess bromoperoxidase activity, oxidizing bromide and iodide, but not chloride. In-gel activity assays of Synechococcus proteins separated using PAGE reveal a single band having VBPO activity. When sequenced via liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS), peptides from the band aligned to the VBPO sequence predicted by the open reading frame (ORF) sync_2681. We show that a VBPO gene is present in a closely related strain, Synechococcus sp. WH8020, but not other clade I Synechococcus strains, consistent with recent horizontal transfer of the gene into Synechococcus. Diverse cyanobacterial-like VBPO genes were detected in a pelagic environment off the California coast using PCR. Investigation of functional VBPOs in unicellular cyanobacteria may lead to discovery of novel halogenated molecules and a better understanding of these organisms' chemical ecology and physiology. © 2011 Phycological Society of America.

  10. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova

    2014-04-01

    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  11. Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium

    Directory of Open Access Journals (Sweden)

    Alexis eGagnon

    2012-06-01

    Full Text Available Anatoxin-a (ANTX is a neurotoxin produced by several freshwater cyanobacteria and implicated in lethal poisonings of domesticated animals and wildlife. The factors leading to its production in nature and in culture are not well understood. Resource availability may influence its cellular production as suggested by the carbon-nutrient hypothesis, which links the amount of secondary metabolites produced by plants or microbes to the relative abundance of nutrients. We tested the effects of nitrogen supply on ANTX production and release in a toxic strain of the cyanobacterium Aphanizomenon issatschenkoi (Nostocales. We hypothesized that nitrogen deficiency might constrain the production of ANTX. However, the total concentration and more significantly the cellular content of anatoxin-a peaked (max. 146 µg/L and 1683 µg•g-1 dry weight at intermediate levels of nitrogen supply when N-deficiency was evident based on phycocyanin to chlorophyll a and carbon to nitrogen ratios. The results suggest that the cellular production of anatoxin-a may be stimulated by moderate nutrient stress as described recently for another cyanotoxin (microcystin.

  12. Exopolymer production as a function of cell permeability and death in a diatom (Thalassiosira weissflogii) and a cyanobacterium (Synechococcus elongatus).

    Science.gov (United States)

    Thornton, Daniel C O; Chen, Jie

    2017-04-01

    Exopolymer particles are found throughout the ocean and play a significant biogeochemical role in carbon cycling. Transparent exopolymer particles (TEP) are composed of acid polysaccharides, and Coomassie staining particles (CSP) are proteins. TEPs have been extensively studied in the ocean, while CSP have been largely overlooked. The objective of this research was to determine the role of stress and cell permeability in the formation of TEP and CSP. The diatom Thalassiosira weissflogii and cyanobacterium Synechococcus elongatus were grown in batch cultures and exposed to hydrogen peroxide (0, 10, and 100 μM) as an environmental stressor. There was no correlation between TEP and CSP concentrations, indicating that they are different populations of particles rather than different chemical components of the same particles. CSP concentrations were not affected by hydrogen peroxide concentration and did not correlate with indicators of stress and cell death. In contrast, TEP concentrations in both taxa were correlated with a decrease in the effective quantum yield of photosystem II, increased activity of caspase-like enzymes, and an increase in the proportion of the population with permeable cell membranes, indicating that TEP production was associated with the process of cell death. These data show that different environmental factors and physiological processes affected the production of TEP and CSP by phytoplankton. TEP and CSP are separate populations of exopolymer particles with potentially different biogeochemical roles in the ocean. © 2016 Phycological Society of America.

  13. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism

    Directory of Open Access Journals (Sweden)

    Hiroko eIijima

    2015-04-01

    Full Text Available Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria.

  14. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-12-01

    Full Text Available Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC-producing cyanobacterium (Microcystis aeruginosa were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L−1, but not at 1 and 2 mg L−1. Peroxide dosed at 4 or 8 mg L−1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L−1 and 12-times (8 mg L−1 H2O2 higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine. Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria.

  15. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101

    Science.gov (United States)

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-01-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N2 fixation). N2 fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2–20 μ) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μ) and ammonium (20 μ). However, nifH transcript levels were below detection at ammonium concentrations >20 μ. napA mRNA was found at low levels in both N2-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μ. This effect was restored upon addition of the glutamine synthetase inhibitor -methionin--sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101. PMID:21938021

  16. Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources.

    Science.gov (United States)

    Ludwig, Marcus; Bryant, Donald A

    2012-01-01

    The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO(2), nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO(2) fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO(2) was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO(2) fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences.

  17. Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Marcus eLudwig

    2012-04-01

    Full Text Available The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences.

  18. Decoupling of ammonium regulation and ntcA transcription in the diazotrophic marine cyanobacterium Trichodesmium sp. IMS101.

    Science.gov (United States)

    Post, Anton F; Rihtman, Branko; Wang, Qingfeng

    2012-03-01

    Nitrogen (N) physiology in the marine cyanobacterium Trichodesmium IMS101 was studied along with transcript accumulation of the N-regulatory gene ntcA and of two of its target genes: napA (nitrate assimilation) and nifH (N(2) fixation). N(2) fixation was impaired in the presence of nitrite, nitrate and urea. Strain IMS101 was capable of growth on these combined N sources at nitrate and urea was impaired in the presence of ammonium. Whereas ecologically relevant N concentrations (2-20 μM) suppressed growth and assimilation, much higher concentrations were required to affect transcript levels. Transcripts of nifH accumulated under nitrogen-fixing conditions; these transcript levels were maintained in the presence of nitrate (100 μM) and ammonium (20 μM). However, nifH transcript levels were below detection at ammonium concentrations >20 μM. napA mRNA was found at low levels in both N(2)-fixing and ammonium-utilizing filaments, and it accumulated in filaments grown with nitrate. The positive effect of nitrate on napA transcription was abolished by ammonium additions of >200 μM. This effect was restored upon addition of the glutamine synthetase inhibitor L-methionin-DL-sulfoximine. Surprisingly, ntcA transcript levels remained high in the presence of ammonium, even at elevated concentrations. These findings indicate that ammonium repression is decoupled from transcriptional activation of ntcA in Trichodesmium IMS101.

  19. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  20. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  1. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga.

    Science.gov (United States)

    Pivokonsky, Martin; Safarikova, Jana; Baresova, Magdalena; Pivokonska, Lenka; Kopecka, Ivana

    2014-03-15

    This study investigated characteristics of algal organic matter (AOM) derived from three species (cyanobacterium Microcystis aeruginosa, diatom Fragilaria crotonensis and green alga Chlamydomonas geitleri) which dominate phytoplanktonic populations in reservoirs supplying drinking water treatment plants. Algal growth was monitored by cell counting, optical density and dissolved organic carbon concentration measurements. Extracellular organic matter (EOM) released at exponential and stationary growth phases and cellular organic matter (COM) were characterised in terms of specific UV absorbance (SUVA), peptide/protein and non-peptide content, hydrophobicity and molecular weight (MW). It was found that both EOM and COM were predominantly hydrophilic with low SUVA. COM was richer in peptides/proteins, more hydrophilic (with about 89% of hydrophilic fraction for all three species) and had lower SUVA than EOM. MW fractionation showed that both EOM and COM of all three species contain large portions of low-MW (100 kDa) polysaccharides. Peptides/proteins exhibited narrower MW distribution than non-peptide fraction and it widened as the cultures grew. The highest amount of peptides/proteins with a significant portion of high-MW ones (22%) was observed in COM of M. aeruginosa. The results imply that the knowledge of AOM composition and characteristics predetermine which processes would be effective in the treatment of AOM laden water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  3. Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (Ehrenberg in northeast Brasil

    Directory of Open Access Journals (Sweden)

    LAO Proença

    2009-01-01

    Full Text Available Blooms of the cyanobacterium Trichodesmium occur in massive colored patches over large areas of tropical and subtropical oceans. Recently, the interest in such events has increased given their role in major nitrogen and carbon dioxide oceanic fluxes. Trichodesmium occurs all along the Brazilian coast and patches frequently migrate towards the coast. In this paper we screen the toxicity and toxin content of Trichodesmium blooms off the coast of Bahia state. Four samples, collected from February to April 2007, were analyzed. Organisms were identified and assessed for toxicity by means of several methods. Analogues of microcystins, cylindrospermopsins and saxitoxins were analyzed using HPLC. Microcystins were also assayed through ELISA. Results showed dominance of T. erythraeum, which makes up as much as 99% of cell counts. Other organisms found in smaller quantities include the dinoflagellates Prorocentrum minimum and P. rhathymum. Extracts from all samples delayed or interrupted sea urchin larval development, but presented no acute toxicity during a mouse bioassay. Saxitoxin congeners and microcystins were present at low concentrations in all samples, occurrences that had not previously been reported in the literature. Despite our finding of saxitoxin analogues and microcystins in Trichodesmium blooms, these toxins do not represent a potential harm to human health by primary contact. We conclude, based on our results and those reported in the recent literature, which differ from results published in 1963, that although toxins are present, there is no evidence that T. erythraeum blooms represent a threat to humans.

  4. Seawater cultivation of freshwater cyanobacterium Synechocystis sp. PCC 6803 drastically alters amino acid composition and glycogen metabolism.

    Science.gov (United States)

    Iijima, Hiroko; Nakaya, Yuka; Kuwahara, Ayuko; Hirai, Masami Yokota; Osanai, Takashi

    2015-01-01

    Water use assessment is important for bioproduction using cyanobacteria. For eco-friendly reasons, seawater should preferably be used for cyanobacteria cultivation instead of freshwater. In this study, we demonstrated that the freshwater unicellular cyanobacterium Synechocystis sp. PCC 6803 could be grown in a medium based on seawater. The Synechocystis wild-type strain grew well in an artificial seawater (ASW) medium supplemented with nitrogen and phosphorus sources. The addition of HEPES buffer improved cell growth overall, although the growth in ASW medium was inferior to that in the synthetic BG-11 medium. The levels of proteins involved in sugar metabolism changed depending on the culture conditions. The biosynthesis of several amino acids including aspartate, glutamine, glycine, proline, ornithine, and lysine, was highly up-regulated by cultivation in ASW. Two types of natural seawater (NSW) were also made available for the cultivation of Synechocystis cells, with supplementation of both nitrogen and phosphorus sources. These results revealed the potential use of seawater for the cultivation of freshwater cyanobacteria, which would help to reduce freshwater consumption during biorefinery using cyanobacteria.

  5. Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata.

    Science.gov (United States)

    Kakimoto, Masayuki; Ishikawa, Toshiki; Miyagi, Atsuko; Saito, Kazuaki; Miyazaki, Motonobu; Asaeda, Takashi; Yamaguchi, Masatoshi; Uchimiya, Hirofumi; Kawai-Yamada, Maki

    2014-02-15

    A volatile metabolite, 2-methylisoborneol (2-MIB), causes an unpleasant taste and odor in tap water. Some filamentous cyanobacteria produce 2-MIB via a two-step biosynthetic pathway: methylation of geranyl diphosphate (GPP) by methyl transferase (GPPMT), followed by the cyclization of methyl-GPP by monoterpene cyclase (MIBS). We isolated the genes encoding GPPMT and MIBS from Pseudanabaena galeata, a filamentous cyanobacterium known to be a major causal organism of 2-MIB production in Japanese lakes. The predicted amino acid sequence showed high similarity with that of Pseudanabaena limnetica (96% identity in GPPMT and 97% identity in MIBS). P. galeata was cultured at different temperatures to examine the effect of growth conditions on the production of 2-MIB and major metabolites. Gas chromatograph-mass spectrometry (GC-MS) measurements showed higher accumulation of 2-MIB at 30 °C than at 4 °C or 20 °C after 24 h of culture. Real-time-RT PCR analysis showed that the expression levels of the genes encoding GPPMT and MIBS decreased at 4 °C and increased at 30 °C, compared with at 20 °C. Furthermore, metabolite analysis showed dramatic changes in primary metabolite concentrations in cyanobacteria grown at different temperatures. The data indicate that changes in carbon flow in the TCA cycle affect 2-MIB biosynthesis at higher temperatures. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Bo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eckert, Carrie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Maness, Pin-Ching [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E. coli s70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. These systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.

  7. Regulation of the scp Genes in the Cyanobacterium Synechocystis sp. PCC 6803—What is New?

    Directory of Open Access Journals (Sweden)

    Otilia Cheregi

    2015-08-01

    Full Text Available In the cyanobacterium Synechocystis sp. PCC 6803 there are five genes encoding small CAB-like (SCP proteins, which have been shown to be up-regulated under stress. Analyses of the promoter sequences of the scp genes revealed the existence of an NtcA binding motif in two scp genes, scpB and scpE. Binding of NtcA, the key transcriptional regulator during nitrogen stress, to the promoter regions was shown by electrophoretic mobility shift assay. The metabolite 2-oxoglutarate did not increase the affinity of NtcA for binding to the promoters of scpB and scpE. A second motif, the HIP1 palindrome 5ʹ GGCGATCGCC 3ʹ, was detected in the upstream regions of scpB and scpC. The transcription factor encoded by sll1130 has been suggested to recognize this motif to regulate heat-responsive genes. Our data suggest that HIP1 is not a regulatory element within the scp genes. Further, the presence of the high light regulatory (HLR1 motif was confirmed in scpB-E, in accordance to their induced transcriptions in cells exposed to high light. The HLR1 motif was newly discovered in eight additional genes.

  8. [NiFe]-hydrogenase is essential for cyanobacterium Synechocystis sp. PCC 6803 aerobic growth in the dark.

    Science.gov (United States)

    De Rosa, Edith; Checchetto, Vanessa; Franchin, Cinzia; Bergantino, Elisabetta; Berto, Paola; Szabò, Ildikò; Giacometti, Giorgio M; Arrigoni, Giorgio; Costantini, Paola

    2015-07-28

    The cyanobacterium Synechocystis sp. PCC 6803 has a bidirectional [NiFe]-hydrogenase (Hox hydrogenase) which reversibly reduces protons to H2. This enzyme is composed of a hydrogenase domain and a diaphorase moiety, which is distinctly homologous to the NADH input module of mitochondrial respiratory Complex I. Hox hydrogenase physiological function is still unclear, since it is not required for Synechocystis fitness under standard growth conditions. We analyzed the phenotype under prolonged darkness of three Synechocystis knock-out strains, lacking either Hox hydrogenase (ΔHoxE-H) or one of the proteins responsible for the assembly of its NiFe active site (ΔHypA1 and ΔHypB1). We found that Hox hydrogenase is required for Synechocystis growth under this condition, regardless of the functional status of its catalytic site, suggesting an additional role beside hydrogen metabolism. Moreover, quantitative proteomic analyses revealed that the expression levels of several subunits of the respiratory NADPH/plastoquinone oxidoreductase (NDH-1) are reduced when Synechocystis is grown in the dark. Our findings suggest that the Hox hydrogenase could contribute to electron transport regulation when both photosynthetic and respiratory pathways are down-regulated, and provide a possible explanation for the close evolutionary relationship between mitochondrial respiratory Complex I and cyanobacterial [NiFe]-hydrogenases.

  9. Characterization and Evolution of Tetrameric Photosystem I from the Thermophilic Cyanobacterium Chroococcidiopsis sp TS-821[C][W][OPEN

    Science.gov (United States)

    Li, Meng; Semchonok, Dmitry A.; Boekema, Egbert J.; Bruce, Barry D.

    2014-01-01

    Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae. PMID:24681621

  10. Diel Vertical Movements of the Cyanobacterium Oscillatoria terebriformis in a Sulfide-Rich Hot Spring Microbial Mat †

    Science.gov (United States)

    Richardson, Laurie L.; Castenholz, Richard W.

    1987-01-01

    Oscillatoria terebriformis, a thermophilic cyanobacterium, carried out a diel vertical movement pattern in Hunter's Hot Springs, Oreg. Throughout most daylight hours, populations of O. terebriformis covered the surface of microbial mats in the hot spring outflows below an upper temperature limit of 54°C. Upon darkness trichomes moved downward by gliding motility into the substrate to a depth of 0.5 to 1.0 mm, where the population remained until dawn. At dawn the population rapidly returned to the top of the mats. Field studies with microelectrodes showed that the dense population of O. terebriformis moved each night across an oxygen-sulfide interface, entering a microenvironment which was anaerobic and reducing, a dramatic contrast to the daytime environment at the mat surface where oxygenic photosynthesis resulted in supersaturated O2. Laboratory experiments on motility with the use of sulfide gradients produced in agar revealed a negative response to sulfide at concentrations similar to those found in the natural mats. The motility response may help explain the presence of O. terebriformis below the mat surface at night. The movement back to the surface at dawn appears to be due to a combination of phototaxis, photokinesis, and the onset of oxygenic photosynthesis which consumes sulfide. Images PMID:16347435

  11. Sulfide and pH effects on variable fluorescence of photosystem II in two strains of the cyanobacterium Oscillatoria amphigranulata.

    Science.gov (United States)

    Dodds, W K; Castenholz, R W

    1990-06-01

    Changes in fluorescence of photosystem II (PS II) chlorophyll were used to monitor the in vivo effects of sulfide and pH on photosynthesis by the cyanobacterium Oscillatoria amphigranulata. O. amphigranulata is capable of both oxygenic photosynthesis and sulfide dependent anoxygenic photosynthesis. A genetic variant of O. amphigranulata which photosynthesizes oxygenically at normal rates, but is incapable of anoxygenic photosynthesis and cannot tolerate sulfide, was also used to explore the mode of action of sulfide. In vivo fluorescence responses of PS II chlorophyll in the first few seconds of exposure to light (Kautsky transients) reflected the electrochemical states of PS II and associated electron donors and acceptors. Kautsky transients showed a distinct difference between PS II of the wild type and the variant, but sulfide lowered fluorescence in both. Kautsky transients with sulfide were similar to transients with addition of NH2OH, NH4 (+) or HCN, indicating sulfide interacts with a protein on the donor side of PS II. The fluorescence steady-state (after 2 min) was measured in the presence of sulfide, cyanide and ammonium with pH ranging from 7.2-8.7. Sulfide and cyanide had the most impact at pH 7.2, ammonium at pH 8.7. This suggests that the uncharged forms (HCN, NH3 and H2S) had the strongest effect on PS II, possibly because of increased membrane permeability.

  12. Diel Vertical Movements of the Cyanobacterium Oscillatoria terebriformis in a Sulfide-Rich Hot Spring Microbial Mat.

    Science.gov (United States)

    Richardson, L L; Castenholz, R W

    1987-09-01

    Oscillatoria terebriformis, a thermophilic cyanobacterium, carried out a diel vertical movement pattern in Hunter's Hot Springs, Oreg. Throughout most daylight hours, populations of O. terebriformis covered the surface of microbial mats in the hot spring outflows below an upper temperature limit of 54 degrees C. Upon darkness trichomes moved downward by gliding motility into the substrate to a depth of 0.5 to 1.0 mm, where the population remained until dawn. At dawn the population rapidly returned to the top of the mats. Field studies with microelectrodes showed that the dense population of O. terebriformis moved each night across an oxygen-sulfide interface, entering a microenvironment which was anaerobic and reducing, a dramatic contrast to the daytime environment at the mat surface where oxygenic photosynthesis resulted in supersaturated O(2). Laboratory experiments on motility with the use of sulfide gradients produced in agar revealed a negative response to sulfide at concentrations similar to those found in the natural mats. The motility response may help explain the presence of O. terebriformis below the mat surface at night. The movement back to the surface at dawn appears to be due to a combination of phototaxis, photokinesis, and the onset of oxygenic photosynthesis which consumes sulfide.

  13. Alterations in cell pigmentation, protein expression, and photosynthetic capacity of the cyanobacterium Oscillatoria tenuis grown under low iron conditions.

    Science.gov (United States)

    Trick, C G; Wilhelm, S W; Brown, C M

    1995-12-01

    To better describe the iron-limited nutrient status of aquatic photosynthetic microorganisms, we examined the effects of iron limitation on pigment content, maximum rates of photosynthetic oxygen evolution, and respiratory oxygen consumption in the filamentous cyanobacterium Oscillatoria tenuis Ag. Within the range of iron (4.2 x 10(-5)-5.1 x 10(-9) M FeCl3), growth rates were not limited by photosynthetic capacity but rather by another, as of yet undetermined, iron-requiring cellular function. We have also investigated membrane proteins that are induced when the cells are grown in low iron medium. Using membrane fractionation techniques we were able to recognize specific proteins localized in the outer membrane and periplasmic space of O. tenuis. The recovery of growth rates at low iron levels occurred in parallel with the induction of these proteins and the production of extracellular siderophores. The additional iron acquired by this high affinity transport system did not reestablish photosynthesis in O. tenuis to the iron-satiated level but did reestablish growth to iron-replete levels. Oscillatoria tenuis appears to invoke an alternate physiology to compensate for iron deficiency.

  14. Genetic diversity along the life cycle of the cyanobacterium Microcystis: highlight on the complexity of benthic and planktonic interactions.

    Science.gov (United States)

    Sabart, Marion; Misson, Benjamin; Jobard, Marlène; Bronner, Gisèle; Donnadieu-Bernard, Florence; Duffaud, Emilie; Salençon, Marie-José; Amblard, Christian; Latour, Delphine

    2015-03-01

    Microcystis is a toxic freshwater cyanobacterium with an annual life cycle characterized by the alternation of a planktonic proliferation stage in summer and a benthic resting stage in winter. Given the importance of both stages for the development and the survival of the population, we investigated the genotypic composition of the planktonic and benthic Microcystis subpopulations from the Grangent reservoir (France) during two distinct proliferation periods. Our results showed a succession of different dominant genotypes in the sediment as well as in the water all along the study periods with some common genotypes to both compartments. Analysis of molecular variance and UniFrac analysis confirmed the similarity between some benthic and planktonic samples, thus evidencing exchanges of genotypes between water and sediment. Thanks to these data, recruitment and sedimentation were proven not to be restricted to spring and autumn, contrary to what was previously thought. Finally, genetic diversity was significantly higher in the sediment than in the water (P < 0.01; Student's t-test). Taken together, our results shed light on the hidden contribution of the benthic compartment in maintaining the genetic diversity of Microcystis populations throughout their annual cycle, which could explain their ecological success in aquatic ecosystems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Soft x-ray imaging of intracellular granules of filamentous cyanobacterium generating musty smell in Lake Biwa

    Science.gov (United States)

    Takemoto, K.; Mizuta, G.; Yamamoto, A.; Yoshimura, M.; Ichise, S.; Namba, H.; Kihara, H.

    2013-10-01

    A planktonic blue-green algae, which are currently identified as Phormidium tenue, was observed by a soft x-ray microscopy (XM) for comparing a musty smell generating green strain (PTG) and a non-smell brown strain (PTB). By XM, cells were clearly imaged, and several intracellular granules which could not be observed under a light microscope were visualized. The diameter of granules was about 0.5-1 μm, and one or a few granules were seen in a cell. XM analyses showed that width of cells and sizes of intracellular granules were quite different between PTG and PTB strains. To study the granules observed by XM, transmission in more detail, transmission electron microscopy (TEM) and indirect fluorescent-antibody technique (IFA) were applied. By TEM, carboxysomes, thylakoids and polyphosphate granules were observed. IFA showed the presence of carboxysomes. Results lead to the conclusion that intracellular granules observed under XM are carboxysomes or polyphosphate granules. These results demonstrate that soft XM is effective for analyzing fine structures of small organisms such as cyanobacterium, and for discriminating the strains which generates musty smells from others.

  16. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Schuergers, Nils; Nürnberg, Dennis J; Wallner, Thomas; Mullineaux, Conrad W; Wilde, Annegret

    2015-05-01

    Twitching motility depends on the adhesion of type IV pili (T4P) to a substrate, with cell movement driven by extension and retraction of the pili. The mechanism of twitching motility, and the events that lead to a reversal of direction, are best understood in rod-shaped bacteria such as Myxococcus xanthus. In M. xanthus, the direction of movement depends on the unipolar localization of the pilus extension and retraction motors PilB and PilT to opposite cell poles. Reversal of direction results from relocalization of PilB and PilT. Some cyanobacteria utilize twitching motility for phototaxis. Here, we examine twitching motility in the cyanobacterium Synechocystis sp. PCC 6803, which has a spherical cell shape without obvious polarity. We use a motile Synechocystis sp. PCC 6803 strain expressing a functional GFP-tagged PilB1 protein to show that PilB1 tends to localize in 'crescents' adjacent to a specific region of the cytoplasmic membrane. Crescents are more prevalent under the low-light conditions that favour phototactic motility, and the direction of motility strongly correlates with the orientation of the crescent. We conclude that the direction of twitching motility in Synechocystis sp. PCC 6803 is controlled by the localization of the T4P apparatus, as it is in M. xanthus. The PilB1 crescents in the spherical cells of Synechocystis can be regarded as being equivalent to the leading pole in the rod-shaped cells. © 2015 The Authors.

  17. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pichel, F.; Wingard, C.E.; Castenholz, R.W. (Univ. of Oregon, Eugene (United States))

    1993-01-01

    The mycosporine-like amino acids (MAAs) have been thought to serve a UV sunscreen role in organisms that produce or contain them because MAAs present strong absorbance in the UV region and because there is no other apparent biological function. The researchers used the cyanobacterium Gloeocapsa sp. to assess the possible sunscreen role of MAAs. Five conditions are evaluated: (1) absorption of radiation high enough to provide benefit to the organisms; (2) correlation of presence of the compound with enhansed fitness under UV; (3) concentration of the compound and resistance to UV still present under physiological inactivity; (4) effect maximal at wavelengths of maximal absorption; (5) loss of protection after artificial removal of compound. The results indicate that only a small sunscreen effect can be ascribed to the MAA in the Gloecapsa sp. under these experimental conditions. It is possible however, that in the typical undisturbed colonial growth form, MAAs and their screening action may become major factors in resistance to UV radiation. 25 refs., 7 figs., 1 tab.

  18. The complete amino acid sequence of both subunits of allophycocyanin, a light harvesting protein-pigment complex from the cyanobacterium Mastigocladus laminosus.

    Science.gov (United States)

    Sidler, W; Gysi, J; Isker, E; Zuber, H

    1981-06-01

    The amino acid sequences of the alpha- and beta-subunit of allophycocyanin, a water-soluble light-harvesting protein-pigment complex from the thermophilic cyanobacterium Mastigocladus laminosus have been determined. The alpha-chain consists of 160 amino acid residues and the beta-chain of 161 amino acid residues. The homology of the alpha- and beta-chains is 37%. A comparison with C-phycocyanin reveals that the second chromophore of the C-phycocyanin beta-subunit is attached to an inserted peptide of 10 amino acid residues at position 151-160.

  19. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    Science.gov (United States)

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of 60Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  20. Gene Inactivation in the Cyanobacterium Synechococcus sp. PCC 7002 and the Green Sulfur Bacterium Chlorobium tepidum Using In Vitro-Made DNA Constructs and Natural Transformation

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Sakuragi, Yumiko; Bryant, Donald A

    2004-01-01

    Inactivation of a chromosomal gene is a useful approach to study the function of the gene in question and can be used to produce a desired phenotype in the organism. This chapter describes how to generate such mutants of the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium...... Chlorobium tepidum by natural transformation with synthetic DNA constructs. Two alternative methods to generate the DNA constructs, both performed entirely in vitro and based on the polymerase chain reaction (PCR), are also presented. These methods are ligation of DNA fragments with T4 DNA ligase...

  1. Global Proteomics Reveal An Atypical Strategy for Carbon/Nitrogen Assimilation by a Cyanobacterium Under Diverse Environmental Perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, Kimberly M.; Singh, Abhay K.; Jacobs, Jon M.; Elvitigala, Thanura R.; Welsh, Eric A.; Keren, Nir S.; Gritsenko, Marina A.; Ghosh, Bijoy K.; Camp, David G.; Smith, Richard D.; Pakrasi, Himadri B.

    2010-12-01

    Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, are present in diverse ecological niches and play crucial roles in global carbon and nitrogen cycles. To proliferate in nature, cyanobacteria utilize a host of stress responses to accommodate periodic changes in environmental conditions. A detailed knowledge of the composition of, as well as the dynamic changes in, the proteome is necessary to gain fundamental insights into such stress responses. Toward this goal, we have performed a largescale proteomic analysis of the widely studied model cyanobacterium Synechocystis sp. PCC 6803 under 33 different environmental conditions. The resulting high-quality dataset consists of 22,318 unique peptides corresponding to 1,955 proteins, a coverage of 53% of the predicted proteome. Quantitative determination of protein abundances has led to the identification of 1,198 differentially regulated proteins. Notably, our analysis revealed that a common stress response under various environmental perturbations, irrespective of amplitude and duration, is the activation of atypical pathways for the acquisition of carbon and nitrogen from urea and arginine. In particular, arginine is catabolized via putrescine to produce succinate and glutamate, sources of carbon and nitrogen, respectively. This study provides the most comprehensive functional and quantitative analysis of the Synechocystis proteome to date, and shows that a significant stress response of cyanobacteria involves an uncommon mode of acquisition of carbon and nitrogen. Oxygenic phototrophic prokaryotes, the progenitors of the chloroplast, are crucial to global oxygen production and worldwide carbon and nitrogen cycles. These microalgae are robust organisms capable carbon neutral biofuel production. Synechocystis sp. PCC 6803 has historically been a model cyanobacterium for photosynthetic research and is emerging as a promising biofuel platform. Cellular responses are severely modified by environmental

  2. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zess, Erin K; Begemann, Matthew B; Pfleger, Brian F

    2016-02-01

    Predictive control of gene expression is an essential tool for developing synthetic biological systems. The current toolbox for controlling gene expression in cyanobacteria is a barrier to more in-depth genetic analysis and manipulation. Towards relieving this bottleneck, this work describes the use of synthetic biology to construct an anhydrotetracycline-based induction system and adapt a trans-acting small RNA (sRNA) system for use in the cyanobacterium Synechococcus sp. strain PCC 7002. An anhydrotetracycline-inducible promoter was developed to maximize intrinsic strength and dynamic range. The resulting construct, PEZtet , exhibited tight repression and a maximum 32-fold induction upon addition of anhydrotetracycline. Additionally, a sRNA system based on the Escherichia coli IS10 RNA-IN/OUT regulator was adapted for use in Synechococcus sp. strain PCC 7002. This system exhibited 70% attenuation of target gene expression, providing a demonstration of the use of sRNAs for differential gene expression in cyanobacteria. These systems were combined to produce an inducible sRNA system, which demonstrated 59% attenuation of target gene expression. Lastly, the role of Hfq, a critical component of sRNA systems in E. coli, was investigated. Genetic studies showed that the Hfq homolog in Synechococcus sp. strain PCC 7002 did not impact repression by the engineered sRNA system. In summary, this work describes new synthetic biology tools that can be applied to physiological studies, metabolic engineering, or sRNA platforms in Synechococcus sp. strain PCC 7002. © 2015 Wiley Periodicals, Inc.

  3. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Science.gov (United States)

    2017-01-01

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals. PMID:28402123

  4. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica.

    Directory of Open Access Journals (Sweden)

    Nicolas von Alvensleben

    Full Text Available Microalgae are ideal candidates for waste-gas and -water remediation. However, salinity often varies between different sites. A cosmopolitan microalga with large salinity tolerance and consistent biochemical profiles would be ideal for standardised cultivation across various remediation sites. The aims of this study were to determine the effects of salinity on Picochlorum atomus growth, biomass productivity, nutrient uptake and biochemical profiles. To determine if target end-products could be manipulated, the effects of 4-day nutrient limitation were also determined. Culture salinity had no effect on growth, biomass productivity, phosphate, nitrate and total nitrogen uptake at 2, 8, 18, 28 and 36 ppt. 11 ppt, however, initiated a significantly higher total nitrogen uptake. While salinity had only minor effects on biochemical composition, nutrient depletion was a major driver for changes in biomass quality, leading to significant increases in total lipid, fatty acid and carbohydrate quantities. Fatty acid composition was also significantly affected by nutrient depletion, with an increased proportion of saturated and mono-unsaturated fatty acids. Having established that P. atomus is a euryhaline microalga, the effects of culture salinity on the development of the freshwater cyanobacterial contaminant Pseudanabaena limnetica were determined. Salinity at 28 and 36 ppt significantly inhibited establishment of P. limnetica in P. atomus cultures. In conclusion, P. atomus can be deployed for bioremediation at sites with highly variable salinities without effects on end-product potential. Nutrient status critically affected biochemical profiles--an important consideration for end-product development by microalgal industries. 28 and 36 ppt slow the establishment of the freshwater cyanobacterium P. limnetica, allowing for harvest of low contaminant containing biomass.

  5. Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin

    Directory of Open Access Journals (Sweden)

    Seawright Alan A

    2006-03-01

    Full Text Available Abstract Background Freshwater cyanobacteria are common inhabitants of recreational waterbodies throughout the world; some cyanobacteria can dominate the phytoplankton and form blooms, many of which are toxic. Numerous reports in the literature describe pruritic skin rashes after recreational or occupational exposure to cyanobacteria, but there has been little research conducted on the cutaneous effects of cyanobacteria. Using the mouse ear swelling test (MEST, we sought to determine whether three toxin-producing cyanobacteria isolates and the purified cyanotoxin cylindrospermopsin produced delayed-contact hypersensitivity reactions. Methods Between 8 and 10 female Balb/c mice in each experiment had test material applied to depilated abdominal skin during the induction phase and 10 or 11 control mice had vehicle only applied to abdominal skin. For challenge (day 10 and rechallenge (day 17, test material was applied to a randomly-allocated test ear; vehicle was applied to the other ear as a control. Ear thickness in anaesthetised mice was measured with a micrometer gauge at 24 and 48 hours after challenge and rechallenge. Ear swelling greater than 20% in one or more test mice is considered a positive response. Histopathology examination of ear tissues was conducted by independent examiners. Results Purified cylindrospermopsin (2 of 9 test mice vs. 0 of 5 control mice; p = 0.51 and the cylindrospermopsin-producing cyanobacterium C. raciborskii (8 of 10 test mice vs. 0 of 10 control mice; p = 0.001 were both shown to produce hypersensitivity reactions. Irritant reactions were seen on abdominal skin at induction. Two other toxic cyanobacteria (Microcystis aeruginosa and Anabaena circinalis did not generate any responses using this model. Histopathology examinations to determine positive and negative reactions in ear tissues showed excellent agreement beyond chance between both examiners (κ = 0.83. Conclusion The irritant properties and cutaneous

  6. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium

    Directory of Open Access Journals (Sweden)

    Chen eYang

    2015-05-01

    Full Text Available Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats.

  7. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002.

    Science.gov (United States)

    Swanner, E D; Bayer, T; Wu, W; Hao, L; Obst, M; Sundman, A; Byrne, J M; Michel, F M; Kleinhanns, I C; Kappler, A; Schoenberg, R

    2017-05-02

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  8. Transcriptional analysis of the unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles

    Energy Technology Data Exchange (ETDEWEB)

    Toepel, Jorg; McDermott, Jason E.; Summerfield, Tina; Sherman, Louis A.

    2009-06-01

    Cyanothece sp. strain ATCC 51142 is a unicellular, diazotrophic cyanobacterium that demonstrates extensive metabolic periodicities of photosynthesis, respiration and nitrogen fixation when grown under N2-fixing conditions. We have performed a global transcription analysis of this organism using 6 h light/dark cycles in order to determine the response of the cell to these conditions and to differentiate between diurnal and circadian regulated genes. In addition, we used a context-likelihood of relatedness (CLR) analysis with this data and those from two-day light/dark and light-dark plus continuous light experiments to better differentiate between diurnal and circadian regulated genes. Cyanothece sp. adapted in several ways to growth under short light/dark conditions. Nitrogen was fixed in every second dark period and only once in each 24 h period. Nitrogen fixation was strongly correlated to the energy status of the cells and glycogen breakdown and high respiration rates were necessary to provide appropriate energy and anoxic conditions for this process. We conclude that glycogen breakdown is a key regulatory step within these complex processes. Our results demonstrated that the main metabolic genes involved in photosynthesis, respiration, nitrogen fixation and central carbohydrate metabolism have strong (or total) circadian-regulated components. The short light/dark cycles enable us to identify transcriptional differences among the family of psbA genes, as well as the differing patterns of the hup genes, which follow the same pattern as nitrogenase genes, relative to the hox genes which displayed a diurnal, dark-dependent gene expression.

  9. Changes in N:P Supply Ratios Affect the Ecological Stoichiometry of a Toxic Cyanobacterium and Its Fungal Parasite

    Directory of Open Access Journals (Sweden)

    Thijs Frenken

    2017-06-01

    Full Text Available Human activities have dramatically altered nutrient fluxes from the landscape into receiving waters. As a result, not only the concentration of nutrients in surface waters has increased, but also their elemental ratios have changed. Such shifts in resource supply ratios will alter autotroph stoichiometry, which may in turn have consequences for higher trophic levels, including parasites. Here, we hypothesize that parasite elemental composition will follow changes in the stoichiometry of its host, and that its reproductive success will decrease with host nutrient limitation. We tested this hypothesis by following the response of a host–parasite system to changes in nitrogen (N and phosphorus (P supply in a controlled laboratory experiment. To this end, we exposed a fungal parasite (the chytrid Rhizophydium megarrhizum to its host (the freshwater cyanobacterium Planktothrix rubescens under control, low N:P and high N:P conditions. Host N:P followed treatment conditions, with a decreased N:P ratio under low N:P supply, and an increased N:P ratio under high N:P supply, as compared to the control. Shifts in host N:P stoichiometry were reflected in the parasite stoichiometry. Furthermore, at low N:P supply, host intracellular microcystin concentration was lowered as compared to high N:P supply. In contrast to our hypothesis, zoospore production decreased at low N:P and increased at high N:P ratio as compared to the control. These findings suggest that fungal parasites have a relatively high N, but low P requirement. Furthermore, zoospore elemental content, and thereby presumably their size, decreased at high N:P ratios. From these results we hypothesize that fungal parasites may exhibit a trade-off between zoospore size and production. Since zooplankton can graze on chytrid zoospores, changes in parasite production, stoichiometry and cell size may have implications for aquatic food web dynamics.

  10. Changes in N:P Supply Ratios Affect the Ecological Stoichiometry of a Toxic Cyanobacterium and Its Fungal Parasite.

    Science.gov (United States)

    Frenken, Thijs; Wierenga, Joren; Gsell, Alena S; van Donk, Ellen; Rohrlack, Thomas; Van de Waal, Dedmer B

    2017-01-01

    Human activities have dramatically altered nutrient fluxes from the landscape into receiving waters. As a result, not only the concentration of nutrients in surface waters has increased, but also their elemental ratios have changed. Such shifts in resource supply ratios will alter autotroph stoichiometry, which may in turn have consequences for higher trophic levels, including parasites. Here, we hypothesize that parasite elemental composition will follow changes in the stoichiometry of its host, and that its reproductive success will decrease with host nutrient limitation. We tested this hypothesis by following the response of a host-parasite system to changes in nitrogen (N) and phosphorus (P) supply in a controlled laboratory experiment. To this end, we exposed a fungal parasite (the chytrid Rhizophydium megarrhizum) to its host (the freshwater cyanobacterium Planktothrix rubescens) under control, low N:P and high N:P conditions. Host N:P followed treatment conditions, with a decreased N:P ratio under low N:P supply, and an increased N:P ratio under high N:P supply, as compared to the control. Shifts in host N:P stoichiometry were reflected in the parasite stoichiometry. Furthermore, at low N:P supply, host intracellular microcystin concentration was lowered as compared to high N:P supply. In contrast to our hypothesis, zoospore production decreased at low N:P and increased at high N:P ratio as compared to the control. These findings suggest that fungal parasites have a relatively high N, but low P requirement. Furthermore, zoospore elemental content, and thereby presumably their size, decreased at high N:P ratios. From these results we hypothesize that fungal parasites may exhibit a trade-off between zoospore size and production. Since zooplankton can graze on chytrid zoospores, changes in parasite production, stoichiometry and cell size may have implications for aquatic food web dynamics.

  11. Sulfide-dependent photosynthetic electron flow coupled to proton translocation in thylakoids of the cyanobacterium Oscillatoria limnetica.

    Science.gov (United States)

    Shahak, Y; Arieli, B; Binder, B; Padan, E

    1987-12-01

    Light-induced proton translocation coupled to sulfide-dependent electron transport has been studied in isolated thylakoids of the cyanobacterium Oscillatoria limnetica. The thylakoids are obtained by osmotic shock of washed spheroplasts, prepared with glycine-betaine as the osmotic stabilizer. 13C NMR studies suggests that betaine is the major osmoregulator in O. limnetica. Thylakoid preparations obtained from both sulfide-induced anoxygenic cells and noninduced oxygenic cells are capable of proton pumping coupled to phenazinemethosulfate-mediated cyclic electron flow. However, only in the induced thylakoids can sulfide-dependent proton gradient (delta pH) formation be measured, using either NADP or methyl viologen as the terminal acceptor. Sulfide-dependent delta pH formation correlates with a high-affinity electron donation site (apparent Km 44 microM at pH 7.9). This site is not lost upon washing of the thylakoids. In addition, both sulfide-dependent electron transport and delta pH formation are sensitive to inhibitors of the cytochrome b6f complex such as 2-n-nonyl-4-hydroxyquinoline-N-oxide, 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol, or stigmatellin. Sulfide-dependent NADP photoreduction of low affinity (which does not saturate by as much as 7 mM sulfide) is detected in both induced and noninduced thylakoids, but this activity is insensitive to the inhibitors and is not coupled to proton transport. It is suggested that the adaptation of O. limnetica to anoxygenic photosynthesis involves the induction of a thylakoid factor(s) which creates a high-affinity site for sulfide, and the transfer of its electrons via the cytochrome b6f complex, coupled to proton translocation.

  12. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae.

    Science.gov (United States)

    Saker, M L; Jungblut, A-D; Neilan, B A; Rawn, D F K; Vasconcelos, V M

    2005-10-01

    In this study we investigated the presence of toxin-producing cyanobacterial contaminants in food supplements manufactured from blooms of the non-toxic freshwater cyanobacterium Aphanizomenon flos-aquae. Previous reports investigating the contamination of health food supplements with toxin-producing cyanobacteria have used chemical and or biochemical methods such as HPLC, ELISA and protein phosphatase assays. Whilst these studies have drawn attention to the presence of hepatotoxic microcystins in some commercially available food supplements, the methods used do not provide any information on the source of the contaminant. Such information would be useful for the quality control of food supplements produced for human consumption. In this study we applied a molecular technique, involving the amplification of the 16s rRNA gene, the phycocyanin operon, and two genes of the microcystin synthetase gene cluster to show that all 12 food supplement samples, sourced from various internet distributors and containing non-toxic A. flos-aquae, also contained toxigenic cyanobacteria. Sequencing of the microcystin synthetase genes detected in all of the food supplements showed that M. aeruginosa was the organism responsible for the production of microcystins in the samples. The presence of microcystins in the food supplements was confirmed by ELISA, with concentrations within the range of 0.1--4.72 microgg(-1) (microcystin-LR equivalents). Given that the molecular methods applied here are highly sensitive, and show good agreement with the results obtained from ELISA, we believe that they could potentially be used as a quality control technique for food products that contain cyanobacteria.

  13. Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2.

    Science.gov (United States)

    Van de Waal, Dedmer B; Verspagen, Jolanda M H; Finke, Jan F; Vournazou, Vasiliki; Immers, Anne K; Kardinaal, W Edwin A; Tonk, Linda; Becker, Sven; Van Donk, Ellen; Visser, Petra M; Huisman, Jef

    2011-09-01

    Climate change scenarios predict a doubling of the atmospheric CO(2) concentration by the end of this century. Yet, how rising CO(2) will affect the species composition of aquatic microbial communities is still largely an open question. In this study, we develop a resource competition model to investigate competition for dissolved inorganic carbon in dense algal blooms. The model predicts how dynamic changes in carbon chemistry, pH and light conditions during bloom development feed back on competing phytoplankton species. We test the model predictions in chemostat experiments with monocultures and mixtures of a toxic and non-toxic strain of the freshwater cyanobacterium Microcystis aeruginosa. The toxic strain was able to reduce dissolved CO(2) to lower concentrations than the non-toxic strain, and became dominant in competition at low CO(2) levels. Conversely, the non-toxic strain could grow at lower light levels, and became dominant in competition at high CO(2) levels but low light availability. The model captured the observed reversal in competitive dominance, and was quantitatively in good agreement with the results of the competition experiments. To assess whether microcystins might have a role in this reversal of competitive dominance, we performed further competition experiments with the wild-type strain M. aeruginosa PCC 7806 and its mcyB mutant impaired in microcystin production. The microcystin-producing wild type had a strong selective advantage at low CO(2) levels but not at high CO(2) levels. Our results thus demonstrate both in theory and experiment that rising CO(2) levels can alter the community composition and toxicity of harmful algal blooms.

  14. Produção de exopolissacarídeos pela cianobactéria Nostoc sp em diferentes concentrações de nitrogênio e glicose

    Directory of Open Access Journals (Sweden)

    Liege Abdallah Kawai

    2006-05-01

    Full Text Available Cianobactérias são microrganismos procariontes que, durante o crescimento celular, são capazes de produzir exopolissacarídeos (EPS. Devido à diversidade bioquímica destes, podem ser excelentes para vários fins biotecnológicos, tendo aplicações em indústrias alimentícias, têxteis, de tintas, cosméticos, de papel, e farmacêuticas, como floculantes, espessantes ou estabilizadores, substituindo os polissacarídeos de macroalgas e plantas. Além disso, as cianobactérias apresentam taxas maiores de crescimento e são mais fáceis de manipular do que plantas e macroalgas. Este estudo teve por objetivo otimizar a produção de EPS no meio BG11, com relação a diferentes concentrações de nitrogênio e glicose do meio de cultivo na produção de EPS e biomassa pela cianobactéria Nostoc sp.

  15. Production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing 10S-dioxygenase from Nostoc punctiforme PCC 73102 with the aid of a chaperone.

    Science.gov (United States)

    Kim, Min-Ji; Seo, Min-Ju; Shin, Kyung-Chul; Oh, Deok-Kun

    2017-01-01

    To increase the production of 10S-hydroxy-8(E)-octadecenoic acid from oleic acid by whole recombinant Escherichia coli cells expressing Nostoc punctiforme 10S-dioxygenase with the aid of a chaperone. The optimal conditions for 10S-hydroxy-8(E)-octadecenoic acid production by recombinant cells co-expressing chaperone plasmid were pH 9, 35 °C, 15 % (v/v) dimethyl sulfoxide, 40 g cells l(-1), and 10 g oleic acid l(-1). Under these conditions, recombinant cells co-expressing chaperone plasmid produced 7.2 g 10S-hydroxy-8(E)-octadecenoic acid l(-1) within 30 min, with a conversion yield of 72 % (w/w) and a volumetric productivity of 14.4 g l(-1) h(-1). The activity of recombinant cells expressing 10S-dioxygenase was increased by 200 % with the aid of a chaperone, demonstrating the first biotechnological production of 10S-hydroxy-8(E)-octadecenoic acid using recombinant cells expressing 10S-dioxygenase.

  16. Persistent phytoplankton bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) caused by a cyanobacterium closely associated with the genus Cyanothece (Synechococcaceae, Chroococcales).

    Science.gov (United States)

    Muir, David G; Perissinotto, Renzo

    2011-09-01

    Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped.

  17. Persistent Phytoplankton Bloom in Lake St. Lucia (iSimangaliso Wetland Park, South Africa) Caused by a Cyanobacterium Closely Associated with the Genus Cyanothece (Synechococcaceae, Chroococcales) ▿

    Science.gov (United States)

    Muir, David G.; Perissinotto, Renzo

    2011-01-01

    Lake St. Lucia, iSimangaliso Wetland Park, South Africa, is the largest estuarine lake in Africa. Extensive use and manipulation of the rivers flowing into it have reduced freshwater inflow, and the lake has also been subject to a drought of 10 years. For much of this time, the estuary has been closed to the Indian Ocean, and salinities have progressively risen throughout the system, impacting the biotic components of the ecosystem, reducing zooplankton and macrobenthic biomass and diversity in particular. In June 2009, a bloom of a red/orange planktonic microorganism was noted throughout the upper reaches of Lake St. Lucia. The bloom persisted for at least 18 months, making it the longest such bloom on record. The causative organism was characterized by light and electron microscopy and by 16S rRNA sequencing and was shown to be a large, unicellular cyanobacterium most strongly associated with the genus Cyanothece. The extent and persistence of the bloom appears to be unique to Lake St. Lucia, and it is suggested that the organism's resistance to high temperatures, to intense insolation, and to hypersalinity as well as the absence of grazing pressure by salinity-sensitive zooplankton all contributed to its persistence as a bloom organism until a freshwater influx, due to exceptionally heavy summer rains in 2011, reduced the salinity for a sufficient length of time to produce a crash in the cyanobacterium population as a complex, low-salinity biota redeveloped. PMID:21742912

  18. CO2Removal from Biogas by Cyanobacterium Leptolyngbya sp. CChF1 Isolated from the Lake Chapala, Mexico: Optimization of the Temperature and Light Intensity.

    Science.gov (United States)

    Choix, Francisco J; Snell-Castro, Raúl; Arreola-Vargas, Jorge; Carbajal-López, Alberto; Méndez-Acosta, Hugo O

    2017-12-01

    In the present study, the capacity of the cyanobacterium Leptolyngbya sp. CChF1 to remove CO 2 from real and synthetic biogas was evaluated. The identification of the cyanobacterium, isolated from the lake Chapala, was carried out by means of morphological and molecular analyses, while its potential for CO 2 removal from biogas streams was evaluated by kinetic experiments and optimized by a central composite design coupled to a response surface methodology. Results demonstrated that Leptolyngbya sp. CChF1 is able to remove CO 2 and grow indistinctly in real or synthetic biogas streams, showing tolerance to high concentrations of CO 2 and CH 4 , 25 and 75%, respectively. The characterization of the biomass composition at the end of the kinetic assays revealed that the main accumulated by-products under both biogas streams were lipids, followed by proteins and carbohydrates. Regarding the optimization experiments, light intensity and temperature were the studied variables, while synthetic biogas was the carbon source. Results showed that light intensity was significant for CO 2 capture efficiency (p = 0.0290), while temperature was significant for biomass production (p = 0.0024). The predicted CO 2 capture efficiency under optimal conditions (27.1 °C and 920 lx) was 93.48%. Overall, the results of the present study suggest that Leptolyngbya sp. CChF1 is a suitable candidate for biogas upgrading.

  19. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    Directory of Open Access Journals (Sweden)

    Padhy Rabindra N.

    2014-03-01

    Full Text Available Effects of chemical fertilizers (urea, super phosphate and potash on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp.

  20. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions.

    Science.gov (United States)

    Combes, Audrey; Dellinger, Marc; Cadel-six, Sabrina; Amand, Severine; Comte, Katia

    2013-01-15

    The proliferation of microcystins (MCs)-producing cyanobacteria (MCs) can have detrimental effects on the food chain in aquatic environments. Until recently, few studies had focused on the fate of MCs in exposed organisms, such as primary consumers of cyanobacteria. In this study, we investigate the impact of an MC-producing strain of the cyanobacterium Planktothrix agardhii on the growth and physiology of a Nassula sp. ciliate isolated from a non-toxic cyanobacterial bloom. We show that this Nassula sp. strain was able to consume and grow while feeding exclusively on an MC-producing cyanobacterium over a prolonged period of time (8 months). In short-term exposure experiments (8 days), ciliates consuming an MC-producing cyanobacterial strain displayed slower growth rate and higher levels of antioxidant enzymes than ciliates feeding on two non-MC-producing strains. Three high-performance methods (LC/MS, LC/MS-MS and ELISA) were used to quantify the free and bound MCs in the culture medium and in the cells. We show that ciliate grazing led to a marked decrease in free MCs (methanol extractable) in cells, the MCs were therefore no longer found in the surrounding culture medium. These findings suggest that MCs may have undergone redistribution (free vs bound MCs) or chemical degradation within the ciliates. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Ciliate Nassula sp. grazing on a microcystin-producing cyanobacterium (Planktothrix agardhii): impact on cell growth and in the microcystin fractions

    Energy Technology Data Exchange (ETDEWEB)

    Combes, Audrey; Dellinger, Marc [' Molecules de communication et adaptation des microorganismes' , UMR 7245 CNRS-MNHN, Museum national d' Histoire naturelle, CP 39, 57 rue Cuvier, F-75231 Paris Cedex 05 (France); Cadel-six, Sabrina [' Unite Caracterisation des Toxines' - Laboratoire de securite des aliments de Maisons-Alfort - ANSES, F-94701 Maisons Alfort Cedex (France); Amand, Severine [' Molecules de communication et adaptation des microorganismes' , UMR 7245 CNRS-MNHN, Museum national d' Histoire naturelle, CP 39, 57 rue Cuvier, F-75231 Paris Cedex 05 (France); Comte, Katia, E-mail: kcomte@mnhn.fr [' Molecules de communication et adaptation des microorganismes' , UMR 7245 CNRS-MNHN, Museum national d' Histoire naturelle, CP 39, 57 rue Cuvier, F-75231 Paris Cedex 05 (France)

    2013-01-15

    The proliferation of microcystins (MCs)-producing cyanobacteria (MCs) can have detrimental effects on the food chain in aquatic environments. Until recently, few studies had focused on the fate of MCs in exposed organisms, such as primary consumers of cyanobacteria. In this study, we investigate the impact of an MC-producing strain of the cyanobacterium Planktothrix agardhii on the growth and physiology of a Nassula sp. ciliate isolated from a non-toxic cyanobacterial bloom. We show that this Nassula sp. strain was able to consume and grow while feeding exclusively on an MC-producing cyanobacterium over a prolonged period of time (8 months). In short-term exposure experiments (8 days), ciliates consuming an MC-producing cyanobacterial strain displayed slower growth rate and higher levels of antioxidant enzymes than ciliates feeding on two non-MC-producing strains. Three high-performance methods (LC/MS, LC/MS-MS and ELISA) were used to quantify the free and bound MCs in the culture medium and in the cells. We show that ciliate grazing led to a marked decrease in free MCs (methanol extractable) in cells, the MCs were therefore no longer found in the surrounding culture medium. These findings suggest that MCs may have undergone redistribution (free vs bound MCs) or chemical degradation within the ciliates.

  2. Combined Effects of CO2 and Light on the N2-Fixing Cyanobacterium Trichodesmium IMS101: Physiological Responses1[OA

    Science.gov (United States)

    Kranz, Sven A.; Levitan, Orly; Richter, Klaus-Uwe; Prášil, Ondřej; Berman-Frank, Ilana; Rost, Björn

    2010-01-01

    Recent studies on the diazotrophic cyanobacterium Trichodesmium erythraeum (IMS101) showed that increasing CO2 partial pressure (pCO2) enhances N2 fixation and growth. Significant uncertainties remain as to the degree of the sensitivity to pCO2, its modification by other environmental factors, and underlying processes causing these responses. To address these questions, we examined the responses of Trichodesmium IMS101 grown under a matrix of low and high levels of pCO2 (150 and 900 μatm) and irradiance (50 and 200 μmol photons m−2 s−1). Growth rates as well as cellular carbon and nitrogen contents increased with increasing pCO2 and light levels in the cultures. The pCO2-dependent stimulation in organic carbon and nitrogen production was highest under low light. High pCO2 stimulated rates of N2 fixation and prolonged the duration, while high light affected maximum rates only. Gross photosynthesis increased with light but did not change with pCO2. HCO3− was identified as the predominant carbon source taken up in all treatments. Inorganic carbon uptake increased with light, but only gross CO2 uptake was enhanced under high pCO2. A comparison between carbon fluxes in vivo and those derived from 13C fractionation indicates high internal carbon cycling, especially in the low-pCO2 treatment under high light. Light-dependent oxygen uptake was only detected under low pCO2 combined with high light or when low-light-acclimated cells were exposed to high light, indicating that the Mehler reaction functions also as a photoprotective mechanism in Trichodesmium. Our data confirm the pronounced pCO2 effect on N2 fixation and growth in Trichodesmium and further show a strong modulation of these effects by light intensity. We attribute these responses to changes in the allocation of photosynthetic energy between carbon acquisition and the assimilation of carbon and nitrogen under elevated pCO2. These findings are supported by a complementary study looking at photosynthetic

  3. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium.

    Science.gov (United States)

    Grim, Sharon L; Dick, Gregory J

    2016-01-01

    Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating

  4. Laboratory Simulation of Biogeochemical Interactions Between Cyanobacterium-Growth and CaCO3 Deposition: Implications for Carbon Accumulation Under Extreme Atmospheric Conditions of Precambrian Earth

    Science.gov (United States)

    Wu, Q.; Chen, L.; Chen, G.; Yang, H.

    2004-05-01

    The atmosphere of Precambrian Earth was characterized by high PCO2, low PO2, and high violent UV radiation. To better understand the interaction between cyanobacterium-growth and CaCO3 deposition in such extreme environments, we grew Oscillatoria tenuis, a prokaryotic alga that is morphologically similar to micro-fossils found in Precambrian chert, in the laboratory under controlled temperature and patial presure of CO2. During algal cell growth, oxygen was absorbed continously by chromous chloride oxygen-absorbent and the levels of PCO2 were controlled by adding different amounts of HCO3- (NaHCO3) in culture medium with initial pH 7.4. Our observation indicates that PCO2 excerises the first order of control on the accumulation of cyanobaterium biomass. Under 100,000 Pa of PCO2, the growth rate of cyanobaterium increases along with the elevation of CO2 partial pressure; however, when PCO2 is higher than 100,000 Pa, the increase of PCO2 results in the decrease of cyanobacterium biomass. On the other hand, photosynthesis of cyanobacteria controls CaCO3 deposition via the function of adjusting pH in the solution. In a 5 day cell growth experiment with PCO2 controlled at about 50,000 Pa and additional 0.0001, 0.001, 0.01, 0.1 and 1.0 M Ca2+ input separately at speed of 2.5 ml/h, the largest total biomass of cyanobacterium (896 mg/L) including living suspension cells and deposited cells was obtained when Ca2+ input was maintained at 0.01 M with 2.5 ml/h. Otherwise, less Ca2+ input resulted in more living suspension cells and less deposited cells. More Ca2+ input resulted in less living suspension cells and more deposited cells. At last both conditions were not good for cell growth and accumulation of organic matter in carbonate deposition in long term. Our laboratory simulation illustrates that the Ca2+ input is critical to CaCO3 deposition and such controls are indirectly enforced through the accumulation of cyanobacteria biomass under a warm, anoxic and high pCO2

  5. Efficiency of Photosynthesis in a Chl d-Utilizing Cyanobacterium is Comparable to or Higher than that in Chl a-Utilizing Oxygenic Species

    Science.gov (United States)

    Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.

    2011-01-01

    The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.

  6. Cloning, expression, crystallization and preliminary X-ray studies of the ferredoxin-NAD(P)+ reductase from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1.

    Science.gov (United States)

    Liauw, Pasqual; Mashiba, Tomohiro; Kopczak, Marta; Wiegand, Katrin; Muraki, Norifumi; Kubota, Hisako; Kawano, Yusuke; Ikeuchi, Masahiko; Hase, Toshiharu; Rögner, Matthias; Kurisu, Genji

    2012-09-01

    Ferredoxin-NADP(+) reductase (FNR) is a flavoenzyme that catalyses the reduction of NADP(+) in the final step of the photosynthetic electron-transport chain. FNR from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TeFNR) contains an additional 9 kDa domain at its N-terminus relative to chloroplastic FNRs and is more thermostable than those from mesophilic cyanobacteria. With the aim of understanding the structural basis of the thermostability of TeFNR and assigning a structural role to the small additional domain, the gene encoding TeFNR with and without an additional domain was engineered for heterologous expression and the recombinant proteins were purified and crystallized. Crystals of TeFNR without the additional domain belonged to space group P2(1), with unit-cell parameters a = 55.05, b = 71.66, c = 89.73 Å, α = 90, β = 98.21, γ = 90°.

  7. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) under photoautotrophy and heterotrophy by non-heterocystous N2-fixing cyanobacterium.

    Science.gov (United States)

    Taepucharoen, Keerati; Tarawat, Somchai; Puangcharoen, Monthira; Incharoensakdi, Aran; Monshupanee, Tanakarn

    2017-09-01

    The photoautotrophically grown cyanobacterium Oscillatoria okeni TISTR 8549 was found to produce bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). This PHBV production occurred under nitrogen deprivation (-N) that yielded PHBV accumulation of 14±4% (w/w DW) in which 3-hydroxyvalerate accounted for 5.5mol%. The heterotrophically grown (-N condition with acetate supplementation) cells under light showed no increase of PHBV storage, but under dark condition these cells increased PHBV accumulation to 42±8% (w/w DW) with 6.5mol% of 3-hydroxyvalerate. Compared to poly-3-hydroxybutyrate (PHB), the PHBV from O. okeni had a lower melting temperature by 5-7°C, a higher % elongation at break by 4-7times and a greater Young's elastic modulus by 2.3-2.5times. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Björn Voss

    Full Text Available Nodularia spumigena is a filamentous diazotrophic cyanobacterium that dominates the annual late summer cyanobacterial blooms in the Baltic Sea. But N. spumigena also is common in brackish water bodies worldwide, suggesting special adaptation allowing it to thrive at moderate salinities. A draft genome analysis of N. spumigena sp. CCY9414 yielded a single scaffold of 5,462,271 nucleotides in length on which genes for 5,294 proteins were annotated. A subsequent strand-specific transcriptome analysis identified more than 6,000 putative transcriptional start sites (TSS. Orphan TSSs located in intergenic regions led us to predict 764 non-coding RNAs, among them 70 copies of a possible retrotransposon and several potential RNA regulators, some of which are also present in other N2-fixing cyanobacteria. Approximately 4% of the total coding capacity is devoted to the production of secondary metabolites, among them the potent hepatotoxin nodularin, the linear spumigin and the cyclic nodulapeptin. The transcriptional complexity associated with genes involved in nitrogen fixation and heterocyst differentiation is considerably smaller compared to other Nostocales. In contrast, sophisticated systems exist for the uptake and assimilation of iron and phosphorus compounds, for the synthesis of compatible solutes, and for the formation of gas vesicles, required for the active control of buoyancy. Hence, the annotation and interpretation of this sequence provides a vast array of clues into the genomic underpinnings of the physiology of this cyanobacterium and indicates in particular a competitive edge of N. spumigena in nutrient-limited brackish water ecosystems.

  9. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Mo, Ran; Yang, Mingkun; Chen, Zhuo; Cheng, Zhongyi; Yi, Xingling; Li, Chongyang; He, Chenliu; Xiong, Qian; Chen, Hui; Wang, Qiang; Ge, Feng

    2015-02-06

    Cyanobacteria are the oldest known life form inhabiting Earth and the only prokaryotes capable of performing oxygenic photosynthesis. Synechocystis sp. PCC 6803 (Synechocystis) is a model cyanobacterium used extensively in research on photosynthesis and environmental adaptation. Posttranslational protein modification by lysine acetylation plays a critical regulatory role in both eukaryotes and prokaryotes; however, its extent and function in cyanobacteria remain unexplored. Herein, we performed a global acetylome analysis on Synechocystis through peptide prefractionation, antibody enrichment, and high accuracy LC-MS/MS analysis; identified 776 acetylation sites on 513 acetylated proteins; and functionally categorized them into an interaction map showing their involvement in various biological processes. Consistent with previous reports, a large fraction of the acetylation sites are present on proteins involved in cellular metabolism. Interestingly, for the first time, many proteins involved in photosynthesis, including the subunits of phycocyanin (CpcA, CpcB, CpcC, and CpcG) and allophycocyanin (ApcA, ApcB, ApcD, ApcE, and ApcF), were found to be lysine acetylated, suggesting that lysine acetylation may play regulatory roles in the photosynthesis process. Six identified acetylated proteins associated with photosynthesis and carbon metabolism were further validated by immunoprecipitation and Western blotting. Our data provide the first global survey of lysine acetylation in cyanobacteria and reveal previously unappreciated roles of lysine acetylation in the regulation of photosynthesis. The provided data set may serve as an important resource for the functional analysis of lysine acetylation in cyanobacteria and facilitate the elucidation of the entire metabolic networks and photosynthesis process in this model cyanobacterium.

  10. Influence of Extractive Solvents on Lipid and Fatty Acids Content of Edible Freshwater Algal and Seaweed Products, the Green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jarmila Vavra Ambrozova

    2014-02-01

    Full Text Available Total lipid contents of green (Chlorella pyrenoidosa, C, red (Porphyra tenera, N; Palmaria palmata, D, and brown (Laminaria japonica, K; Eisenia bicyclis, A; Undaria pinnatifida, W, WI; Hizikia fusiformis, H commercial edible algal and cyanobacterial (Spirulina platensis, S products, and autotrophically cultivated samples of the green microalga Chlorella kessleri (CK and the cyanobacterium Spirulina platensis (SP were determined using a solvent mixture of methanol/chloroform/water (1:2:1, v/v/v, solvent I and n-hexane (solvent II. Total lipid contents ranged from 0.64% (II to 18.02% (I by dry weight and the highest total lipid content was observed in the autotrophically cultivated cyanobacterium Spirulina platensis. Solvent mixture I was found to be more effective than solvent II. Fatty acids were determined by gas chromatography of their methyl esters (% of total FAMEs. Generally, the predominant fatty acids (all results for extractions with solvent mixture I were saturated palmitic acid (C16:0; 24.64%–65.49%, monounsaturated oleic acid (C18:1(n-9; 2.79%–26.45%, polyunsaturated linoleic acid (C18:2(n-6; 0.71%–36.38%, α-linolenic acid (C18:3(n-3; 0.00%–21.29%, γ-linolenic acid (C18:3(n-6; 1.94%–17.36%, and arachidonic acid (C20:4(n-6; 0.00%–15.37%. The highest content of ω-3 fatty acids (21.29% was determined in Chlorella pyrenoidosa using solvent I, while conversely, the highest content of ω-6 fatty acids (41.42% was observed in Chlorella kessleri using the same solvent.

  11. The marine cyanobacterium

    NARCIS (Netherlands)

    Pade, N.; Compaoré, J.; Klähn, S.; Stal, L.J.; Hagemann, M.

    2012-01-01

    Compatible solutes are small organic molecules that are involved in the acclimation to various stresses such as temperature and salinity. Marine or moderate halotolerant cyanobacteria accumulate glucosylglycerol, while cyanobacteria with low salt tolerance (freshwater strains) usually accumulate

  12. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82.

    Science.gov (United States)

    Kim, Kyoung-Rok; An, Jung-Ung; Lee, Seon-Hwa; Oh, Deok-Kun

    2015-01-01

    Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology.

  13. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase.

    Science.gov (United States)

    Bueno, Marta; Fillat, Maria F; Strasser, Reto J; Maldonado-Rodriguez, Ronald; Marina, Nerea; Smienk, Henry; Gómez-Moreno, Carlos; Barja, Francisco

    2004-01-01

    Cyanobacteria have the natural ability to degrade moderate amounts of organic pollutants. However, when pollutant concentration exceeds the level of tolerance, bleaching of the cells and death occur within 24 hours. Under stress conditions, cyanobacterial response includes the short-term adaptation of the photosynthetic apparatus to light quality, named state transitions. Moreover, prolonged stresses produce changes in the functional organization of phycobilisomes and in the core-complexes of both photosystems, which can result in large changes in the PS II fluorescence yield. The localization of ferredoxin-NADP+ reductase (FNR) at the ends of some peripheral rods of the cyanobacterial phycobilisomes, makes this protein a useful marker to check phycobilisome integrity. The goal of this work is to improve the knowledge of the mechanism of action of a very potent pesticide, lindane (gamma-hexaclorociclohexane), in the cyanobacterium Anabaena sp., which can be considered a potential candidate for bioremediation of pesticides. We have studied the effect of lindane on the photosynthetic apparatus of Anabaena using fluorescence induction studies. As ferredoxin-NADP+ reductase plays a key role in the response to oxidative stress in several systems, changes in synthesis, degradation and activity of FNR were analyzed. Immunolocalization of this enzyme was used as a marker of phycobilisome integrity. The knowledge of the changes caused by lindane in the photosynthetic apparatus is essential for rational further design of genetically-modified cyanobacteria with improved biorremediation abilities. Polyphasic chlorophyll a fluorescence rise measurements (OJIP) have been used to evaluate the vitality and stress adaptation of the nitrogen-fixing cyanobacterium Anabaena PCC 7119 in the presence of increasing concentrations of lindane. Effects of the pesticide on the ultrastructure have been investigated by electron microscopy, and FNR has been used as a marker of phycobilisome

  14. Therapeutic properties in Tunisian hot springs: first evidence of phenolic compounds in the cyanobacterium Leptolyngbya sp. biomass, capsular polysaccharides and releasing polysaccharides.

    Science.gov (United States)

    Trabelsi, Lamia; Mnari, Amira; Abdel-Daim, Mohamed M; Abid-Essafi, Salwa; Aleya, Lotfi

    2016-12-13

    In Tunisia, the use of hot spring waters for both health and recreation is a tradition dating back to Roman times. In fact, thermal baths, usually called "Hammam" are recommended as a therapeutic and prophylactic measure against many types of illness and toxicity. While the chemical concentration of thermal water is admittedly associated with its therapeutic effects, the inclusion in spa waters of efficient bioproduct additives produced by photosynthetic microorganisms and that act against oxidative stress may comprise a significant supplementary value for thermal centers. The aim of this study was to investigate the antioxidant potential of the Tunisian thermophilic cyanobacterium Leptolyngbya sp. and to determine its phytochemical constituents and phenolic profile. BME (Biomass Methanolic Extract), CME (Capsular polysaccharides Methanolic Extract) and RME (Releasing polysaccharides Methanolic Extract) of Leptolyngbya sp. were examined for their antioxidant activities by means of DPPH, hydroxyl radical scavenging and ferrous ion chelating assays. Their total phenols, flavonoids, carotenoids, Mycosporine-like amino acids (MAAs) and vitamin C contents, as well as their phenolic profiles were also determined. BME has the highest content of phenols (139 ± 1.2 mg/g), flavonoids (34.9 ± 0.32 mg CEQ/g), carotenoids (2.03 ± 0.56 mg/g) and vitamin C (15.7 ± 1.55 mg/g), while the highest MAAs content (0.42 ± 0.03 mg/g) was observed in CME. BME presented both the highest DPPH and hydroxyl radical scavenging ability with an IC50 of 0.07 and 0.38 mg/ml, respectively. The highest ferrous chelating capacity was detected in CME with an IC50 = 0.59 mg/ml. Phenolic profiles revealed the presence of 25 phenolic compounds with the existence of hydroxytyrosol, oleuropein, resveratrol and pinoresinol. The study demonstrated that the cyanobacterium Leptolyngbya sp. possesses abundant natural antioxidant products which may have prophylactic and

  15. Impact of different group 2 sigma factors on light use efficiency and high salt stress in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Taina Tyystjärvi

    Full Text Available Sigma factors of RNA polymerase recognize promoters and have a central role in controlling transcription initiation and acclimation to changing environmental conditions. The cyanobacterium Synechocystis sp. PCC 6803 encodes four non-essential group 2 sigma factors, SigB, SigC, SigD and SigE that closely resemble the essential SigA factor. Three out of four group 2 sigma factors were simultaneously inactivated and acclimation responses of the triple inactivation strains were studied. All triple inactivation strains grew slowly in low light, and our analysis suggests that the reason is a reduced capacity to adjust the perception of light. Simultaneous inactivation of SigB and SigD hampered growth also in high light. SigB is the most important group 2 sigma factor for salt acclimation, and elimination of all the other group 2 sigma factors slightly improved the salt tolerance of Synechocystis. Presence of only SigE allowed full salt acclimation including up-regulation of hspA and ggpS genes, but more slowly than SigB. Cells with only SigD acclimated to high salt but the acclimation processes differed from those of the control strain. Presence of only SigC prevented salt acclimation.

  16. The AplI restriction-modification system in an edible cyanobacterium, Arthrospira (Spirulina) platensis NIES-39, recognizes the nucleotide sequence 5'-CTGCAG-3'.

    Science.gov (United States)

    Shiraishi, Hideaki; Tabuse, Yosuke

    2013-01-01

    The degradation of foreign DNAs by restriction enzymes in an edible cyanobacterium, Arthrospira platensis, is a potential barrier for gene-transfer experiments in this economically valuable organism. We overproduced in Escherichia coli the proteins involved in a putative restriction-modification system of A. platensis NIES-39. The protein produced from the putative type II restriction enzyme gene NIES39_K04640 exhibited an endonuclease activity that cleaved DNA within the sequence 5'-CTGCAG-3' between the A at the fifth position and the G at the sixth position. We designated this enzyme AplI. The protein from the adjacent gene NIES39_K04650, which encodes a putative DNA (cytosine-5-)-methyltransferase, rendered DNA molecules resistant to AplI by modifying the C at the fourth position (but not the C at the first position) in the recognition sequence. This modification enzyme, M.AplI, should be useful for converting DNA molecules into AplI-resistant forms for use in gene-transfer experiments. A summary of restriction enzymes in various Arthrospira strains is also presented in this paper.

  17. The small CAB-like proteins of the cyanobacterium Synechocystis sp. PCC 6803: their involvement in chlorophyll biogenesis for Photosystem II.

    Science.gov (United States)

    Hernandez-Prieto, Miguel A; Tibiletti, Tania; Abasova, Leyla; Kirilovsky, Diana; Vass, Imre; Funk, Christiane

    2011-09-01

    The five small CAB-like proteins (ScpA-E) of the cyanobacterium Synechocystis sp. PCC 6803 belong to the family of stress-induced light-harvesting-like proteins, but are constitutively expressed in a mutant deficient of Photosystem I (PSI). Using absorption, fluorescence and thermoluminescence measurements this PSI-less strain was compared with a mutant, in which all SCPs were additionally deleted. Depletion of SCPs led to structural rearrangements in Photosystem II (PSII): less photosystems were assembled; and in these, the Q(B) site was modified. Despite the lower amount of PSII, the SCP-deficient cells contained the same amount of phycobilisomes (PBS) as the control. Although the excess PBS were functionally disconnected, their fluorescence was quenched under high irradiance by the activated Orange Carotenoid Protein (OCP). Additionally the amount of OCP, but not of the iron-stress induced protein (isiA), was higher in this SCP-depleted mutant compared with the control. As previously described, the lack of SCPs affects the chlorophyll biosynthesis (Vavilin, D., Brune, D. C., Vermaas, W. (2005) Biochim Biophys Acta 1708, 91-101). We demonstrate that chlorophyll synthesis is required for efficient PSII repair and that it is partly impaired in the absence of SCPs. At the same time, the amount of chlorophyll also seems to influence the expression of ScpC and ScpD. 2011 Elsevier B.V. All rights reserved.

  18. Interactive effects of cadmium and Microcystis aeruginosa (cyanobacterium) on the growth, antioxidative responses and accumulation of cadmium and microcystins in rice seedlings.

    Science.gov (United States)

    Kuang, Xiaolin; Gu, Ji-Dong; Tie, BaiQing; Yao, Bangsong; Shao, Jihai

    2016-10-01

    Cadmium pollution and harmful cyanobacterial blooms are two prominent environmental problems. The interactive effects of cadmium(II) and harmful cyanobacteria on rice seedlings remain unknown. In order to elucidate this issue, the interactive effects of cadmium(II) and Microcystis aeruginosa FACHB905 on the growth and antioxidant responses of rice seedling were investigated in this study, as well as the accumulation of cadmium(II) and microcystins. The results showed that the growth of rice seedlings was inhibited by cadmium(II) stress but promoted by inoculation of M. aeruginosa FACHB905. cadmium(II) stress induced oxidative damage on rice seedlings. Inoculation of M. aeruginosa FACHB905 alleviated the toxicity of cadmium(II) on rice seedlings. The accumulation of cadmium(II) in rice seedlings was decreased by M. aeruginosa FACHB905, but the translocation of cadmium(II) from root to shoot was increased by this cyanobacterium. The accumulation of microcystins in rice seedlings was decreased by cadmium(II). Results presented in this study indicated that cadmium(II) and M. aeruginosa had antagonistic toxicity on rice seedlings. The findings of this study throw new light on evaluation of ecological- and public health-risks for the co-contamination of cadmium(II) and harmful cyanobacteria.

  19. Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328 ▿ †

    Science.gov (United States)

    Carrieri, Damian; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A.; Dismukes, G. Charles

    2011-01-01

    Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism. PMID:21890670

  20. Genome-scale modeling of light-driven reductant partitioning and carbon fluxes in diazotrophic unicellular cyanobacterium Cyanothece sp. ATCC 51142.

    Directory of Open Access Journals (Sweden)

    Trang T Vu

    Full Text Available Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.

  1. Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures.

    Science.gov (United States)

    Kuno, Sotaro; Yoshida, Takashi; Kaneko, Takakazu; Sako, Yoshihiko

    2012-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.

  2. Response of H{sub 2} production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803

    Energy Technology Data Exchange (ETDEWEB)

    Baebprasert, Wipawee [Program of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Lindblad, Peter [Department of Photochemistry and Molecular Science, The Aangstroem Laboratories, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Incharoensakdi, Aran [Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-07-15

    The effects of external factors on both H{sub 2} production and bidirectional Hox-hydrogenase activity were examined in the non-N{sub 2}-fixing cyanobacterium Synechocystis PCC 6803. Exogenous glucose and increased osmolality both enhanced H{sub 2} production with optimal production observed at 0.4% and 20 mosmol kg{sup -1}, respectively. Anaerobic condition for 24 h induced significant higher H{sub 2}ase activity with cells in BG11{sub 0} showing highest activities. Increasing the pH resulted in an increased Hox-hydrogenase activity with an optimum at pH 7.5. The Hox-hydrogenase activity gradually increased with increasing temperature from 30 {sup circle} C to 60 {sup circle} C with the highest activity observed at 70 {sup circle} C. A low concentration at 100 {mu}M of either DTT or {beta}-mercaptoethanol resulted in a minor stimulation of H{sub 2} production. {beta}-Mercaptoethanol added to nitrogen- and sulfur-deprived cells stimulated H{sub 2} production significantly. The highest Hox-hydrogenase activity was observed in cells in BG11{sub 0}-S-deprived condition and 750 {mu}M {beta}-mercaptoethanol measured at a temperature of 70 C; 14.32 {mu}mol H{sub 2} mg chl a{sup -1} min{sup -1}. (author)

  3. МОРФОЛОГИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ ХАРАТЕРИСТИКА ЦИАНОБАКТЕРИИ NOSTOC SP., ИЗОЛИРОВАННОЙ ИЗ ПОЧВЫ МУРМАНСКОЙ ОБЛАСТИ

    OpenAIRE

    ШАЛЫГИНА Р.Р.; ШАЛЫГИН С.С.; РЕДЬКИНА В.В.

    2016-01-01

    Штамм Nostoc sp., выделенный в чистую культуру из почв Кольского полуострова в районе Кандалакшского алюминиевого завода (КАЗ), отличается намного большим размером гетероцит и акинет по сравнению с другими видами рода Nostoc. Филогенетический анализ участка 16S рРНК показал, что данный штамм располагается точно в середине Nostoc sensu lato в кладе с Nostoc Bashkir 6A и Nostoc PCC9709. Мы предполагаем, что выделенный штамм является новым видом рода Nostoc sp., но для точного определения видово...

  4. Author Details

    African Journals Online (AJOL)

    Singh, PK. Vol 16 (2014) - Articles Biocidal spectrum of a rice field cyanobacterium Nostoc sp. Abstract PDF. ISSN: 1110-6859. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News.

  5. Nitrogen availability for nitrogen fixing cyanobacteria upon growth ...

    African Journals Online (AJOL)

    The filamentous cyanobacterium Nostoc PCC 7120 is able to convert dinitrogen to ammonia in the absence of combined nitrogen. The expression of 20% of coding sequences from all major metabolic categories was examined in nitrogen fixing and non-nitrogen fixing growth conditions. The expression data were correlated ...

  6. Biological and technological effects of some mulberry varieties and ...

    African Journals Online (AJOL)

    egyptian hak

    controlling plant pathogens while maintaining soil fertility and environmental safety. Cyanobacteria from ... substances responsible for the controlling the growth of local pathogenic microorganisms. (Dukare et al. 2011). ... biocidal spectrum of a rice-field cyanobacterium, Nostoc sp., and its potential as a biocontrol agent.

  7. Characterization of nifB, nifS, and nifU genes in the cyanobacterium Anabaena variabilis: NifB is required for the vanadium-dependent nitrogenase.

    OpenAIRE

    Lyons, E M; Thiel, T

    1995-01-01

    Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by...

  8. The tryptophan-rich sensory protein (TSPO is involved in stress-related and light-dependent processes in the cyanobacterium Fremyella diplosiphon

    Directory of Open Access Journals (Sweden)

    Andrea eBusch

    2015-12-01

    Full Text Available The tryptophan-rich sensory protein (TSPO is a membrane protein, which is a member of the 18 kilodalton translocator protein/peripheral-type benzodiazepine receptor (MBR family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO showed altered responses compared to the wild type strain under stress conditions, including salt treatment, osmotic stress and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the wild type. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the wild type strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.

  9. Essential Role of Acyl-ACP Synthetase in Acclimation of the Cyanobacterium Synechococcus elongatus Strain PCC 7942 to High-Light Conditions.

    Science.gov (United States)

    Takatani, Nobuyuki; Use, Kazuhide; Kato, Akihiro; Ikeda, Kazutaka; Kojima, Kouji; Aichi, Makiko; Maeda, Shin-Ichi; Omata, Tatsuo

    2015-08-01

    Most organisms capable of oxygenic photosynthesis have an aas gene encoding an acyl-acyl carrier protein synthetase (Aas), which activates free fatty acids (FFAs) via esterification to acyl carrier protein. Cyanobacterial aas mutants are often used for studies aimed at photosynthetic production of biofuels because the mutation leads to intracellular accumulation of FFAs and their secretion into the external medium, but the physiological significance of the production of FFAs and their recycling involving Aas has remained unclear. Using an aas-deficient mutant of Synechococcus elongatus strain PCC 7942, we show here that remodeling of membrane lipids is activated by high-intensity light and that the recycling of FFAs is essential for acclimation to high-light conditions. Unlike wild-type cells, the mutant cells could not increase their growth rate as the light intensity was increased from 50 to 400 µmol photons m(-2) s(-1), and the high-light-grown mutant cells accumulated FFAs and the lysolipids derived from all the four major classes of membrane lipids, revealing high-light-induced lipid deacylation. The high-light-grown mutant cells showed much lower PSII activity and Chl contents as compared with the wild-type cells or low-light-grown mutant cells. The loss of Aas accelerated photodamage of PSII but did not affect the repair process of PSII, indicating that PSII is destabilized in the mutant. Thus, Aas is essential for acclimation of the cyanobacterium to high-light conditions. The relevance of the present finding s to biofuel production using cyanobacteria is discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene.

    Science.gov (United States)

    Tsuchiya, Tohru; Mizoguchi, Tadashi; Akimoto, Seiji; Tomo, Tatsuya; Tamiaki, Hitoshi; Mimuro, Mamoru

    2012-03-01

    In oxygenic photosynthetic organisms, the properties of photosynthetic reaction systems primarily depend on the Chl species used. Acquisition of new Chl species with unique optical properties may have enabled photosynthetic organisms to adapt to various light environments. The artificial production of a new Chl species in an existing photosynthetic organism by metabolic engineering provides a model system to investigate how an organism responds to a newly acquired pigment. In the current study, we established a transformation system for a Chl d-dominated cyanobacterium, Acaryochloris marina, for the first time. The expression vector (constructed from a broad-host-range plasmid) was introduced into A. marina by conjugal gene transfer. The introduction of a gene for chlorophyllide a oxygenase, which is responsible for Chl b biosynthesis, into A. marina resulted in a transformant that synthesized a novel Chl species instead of Chl b. The content of the novel Chl in the transformant was approximately 10% of the total Chl, but the level of Chl a, another Chl in A. marina, did not change. The chemical structure of the novel Chl was determined to be [7-formyl]-Chl d(P) by mass spectrometry and nuclear magnetic resonance spectroscopy. [7-Formyl]-Chl d(P) is hypothesized to be produced by the combined action of chlorophyllide a oxygenase and enzyme(s) involved in Chl d biosynthesis. These results demonstrate the flexibility of the Chl biosynthetic pathway for the production of novel Chl species, indicating that a new organism with a novel Chl might be discovered in the future.

  11. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain.

    Science.gov (United States)

    Bañares-España, Elena; del Mar Fernández-Arjona, María; García-Sánchez, María Jesús; Hernández-López, Miguel; Reul, Andreas; Mariné, Mariona Hernández; Flores-Moya, Antonio

    2016-05-01

    The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The