WorldWideScience

Sample records for cutaneous nerve regeneration

  1. Cutaneous lesions sensory impairment recovery and nerve regeneration in leprosy patients

    Directory of Open Access Journals (Sweden)

    Ximena Illarramendi

    2012-12-01

    Full Text Available It is important to understand the mechanisms that enable peripheral neurons to regenerate after nerve injury in order to identify methods of improving this regeneration. Therefore, we studied nerve regeneration and sensory impairment recovery in the cutaneous lesions of leprosy patients (LPs before and after treatment with multidrug therapy (MDT. The skin lesion sensory test results were compared to the histopathological and immunohistochemical protein gene product (PGP 9.5 and the p75 nerve growth factor receptors (NGFr findings. The cutaneous neural occupation ratio (CNOR was evaluated for both neural markers. Thermal and pain sensations were the most frequently affected functions at the first visit and the most frequently recovered functions after MDT. The presence of a high cutaneous nerve damage index did not prevent the recovery of any type of sensory function. The CNOR was calculated for each biopsy, according to the presence of PGP and NGFr-immunostained fibres and it was not significantly different before or after the MDT. We observed a variable influence of MDT in the recovery from sensory impairment in the cutaneous lesions of LPs. Nociception and cold thermosensation were the most recovered sensations. The recovery of sensation in the skin lesions appeared to be associated with subsiding inflammation rather than with the regenerative activity of nerve fibres.

  2. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  3. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  4. Beta secretase activity in peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Carolyn Tallon

    2017-01-01

    Full Text Available While the peripheral nervous system has the capacity to regenerate following a nerve injury, it is often at a slow rate and results in unsatisfactory recovery, leaving patients with reduced function. Many regeneration associated genes have been identified over the years, which may shed some insight into how we can manipulate this intrinsic regenerative ability to enhance repair following peripheral nerve injuries. Our lab has identified the membrane bound protease beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1, or beta secretase, as a potential negative regulator of peripheral nerve regeneration. When beta secretase activity levels are abolished via a null mutation in mice, peripheral regeneration is enhanced following a sciatic nerve crush injury. Conversely, when activity levels are greatly increased by overexpressing beta secretase in mice, nerve regeneration and functional recovery are impaired after a sciatic nerve crush injury. In addition to our work, many substrates of beta secretase have been found to be involved in regulating neurite outgrowth and some have even been identified as regeneration associated genes. In this review, we set out to discuss BACE1 and its substrates with respect to axonal regeneration and speculate on the possibility of utilizing BACE1 inhibitors to enhance regeneration following acute nerve injury and potential uses in peripheral neuropathies.

  5. Anterior cutaneous nerve entrapment syndrome: management challenges

    Directory of Open Access Journals (Sweden)

    Chrona E

    2017-01-01

    Full Text Available Eleni Chrona,1,2 Georgia Kostopanagiotou,1 Dimitrios Damigos,3 Chrysanthi Batistaki1 1Second Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, “Attikon” Hospital, Athens, 2Department of Anesthesiology, General Hospital of “Ag. Panteleimon,” Piraeus, 3Department of Medical Psychology, Medical School of Ioannina, University of Ioannina, Ioannina, Greece Abstract: Anterior cutaneous nerve entrapment syndrome (ACNES is a commonly underdiagnosed and undertreated chronic state of pain. This syndrome is characterized by the entrapment of the cutaneous branches of the lower thoracoabdominal intercostal nerves at the lateral border of the rectus abdominis muscle, which causes severe, often refractory, chronic pain. This narrative review aims to identify the possible therapeutic strategies for the management of the syndrome. Seventeen studies about ACNES therapy were reviewed; of them, 15 were case–control studies, case series, or case reports, and two were randomized controlled trials. The presently available management strategies for ACNES include trigger point injections (diagnostic and therapeutic, ultrasound-guided blocks, chemical neurolysis, and surgical ­neurectomy, in combination with systemic medication, as well as some emerging techniques, such as radiofrequency ablation and neuromodulation. An increased awareness of the syndrome and the use of specific diagnostic criteria for its recognition are required to facilitate an early and successful management. This review compiles the proposed ­management strategies for ACNES. Keywords: anterior cutaneous nerve entrapment syndrome, intercostal, neuralgia, management

  6. Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor

    OpenAIRE

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-01-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly target...

  7. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D

    2002-01-01

    Regeneration in the peripheral nervous system is often incomplete though it is uncertain which factors, such as the type and extent of the injury or the method or timing of repair, determine the degree of functional recovery. Serial electrophysiological techniques were used to follow recovery from...... median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...... muscle action potentials in the abductor pollicis brevis muscle, (2) the number and size of motor units in reinnervated muscle, and (3) compound sensory action potentials from digital nerve. A statistical model was used to assess the influence of three variables (repair type, nerve gap distance, and time...

  8. Nerve cross-bridging to enhance nerve regeneration in a rat model of delayed nerve repair.

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    Full Text Available There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB nerve and a recipient denervated common peroneal (CP nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1 CP neurons that regenerated their axons within three months or 2 CP motor nerves that reinnervated the extensor digitorum longus (EDL muscle within five months was determined by counting and motor unit number estimation (MUNE, respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.

  9. Lateral Antebrachial Cutaneous Nerve injury induced by phlebotomy

    Directory of Open Access Journals (Sweden)

    Azadi Arezoo

    2007-03-01

    Full Text Available Abstract Background Phlebotomy is one of the routine procedures done in medical labs daily. Case presentation A 52 yr woman noted shooting pain and dysesthesia over her right side anterolateral aspect of forearm, clinical examination and electrodiagnostic studies showed severe involvement of right side lateral antebrachial cutaneous nerve. Conclusion Phlebotomy around lateral aspect of antecubital fossa may cause lateral antebrachial cutaneous nerve injury, electrodiagnostic studies are needed for definite diagnosis.

  10. Enhancing Peripheral Nerve Regeneration with a Novel Drug-Delivering Nerve Conduit

    Science.gov (United States)

    2015-10-01

    NGF) and glial cell line-derived neurotrophic factor (GDNF) for at least 30 days to improve rate of nerve regeneration. We have successfully...deliver nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) for at least 30 days to improve the nerve regeneration. The...regeneration, nerve conduits, autograft, drug delivery device, nerve growth factor, glial cell line-derived neutrophic factor, polytetrafluoroethylene

  11. Natural history of sensory nerve recovery after cutaneous nerve injury following foot and ankle surgery

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2015-01-01

    Full Text Available Cutaneous nerve injury is the most common complication following foot and ankle surgery. However, clinical studies including long-term follow-up data after cutaneous nerve injury of the foot and ankle are lacking. In the current retrospective study, we analyzed the clinical data of 279 patients who underwent foot and ankle surgery. Subjects who suffered from apparent paresthesia in the cutaneous sensory nerve area after surgery were included in the study. Patients received oral vitamin B 12 and methylcobalamin. We examined final follow-up data of 17 patients, including seven with sural nerve injury, five with superficial peroneal nerve injury, and five with plantar medial cutaneous nerve injury. We assessed nerve sensory function using the Medical Research Council Scale. Follow-up immediately, at 6 weeks, 3, 6 and 9 months, and 1 year after surgery demonstrated that sensory function was gradually restored in most patients within 6 months. However, recovery was slow at 9 months. There was no significant difference in sensory function between 9 months and 1 year after surgery. Painful neuromas occurred in four patients at 9 months to 1 year. The results demonstrated that the recovery of sensory function in patients with various cutaneous nerve injuries after foot and ankle surgery required at least 6 months

  12. The impact of motor and sensory nerve architecture on nerve regeneration.

    Science.gov (United States)

    Moradzadeh, Arash; Borschel, Gregory H; Luciano, Janina P; Whitlock, Elizabeth L; Hayashi, Ayato; Hunter, Daniel A; Mackinnon, Susan E

    2008-08-01

    Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve's Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. To define the role of nerve architecture, we evaluated regeneration through acellular motor and sensory nerve grafts. Thirty-six Lewis rats underwent tibial nerve repairs with 5 mm double-cable motor or triple-cable sensory nerve isografts. Grafts were harvested and acellularized in University of Wisconsin solution. Control animals received fresh motor or sensory cable isografts. Nerves were harvested after 4 weeks and histomorphometry was performed. In 6 animals per group from the fresh motor and sensory cable graft groups, weekly walking tracks and wet muscle mass ratios were performed at 7 weeks. Histomorphometry revealed more robust nerve regeneration in both acellular and cellular motor grafts. Sensory groups showed poor regeneration with significantly decreased percent nerve, fiber count, and density (parchitecture (size of SC basal lamina tubes) plays an important role in nerve regeneration in a mixed nerve gap model.

  13. Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel

    2017-01-01

    Objective: Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber...... years, and results were compared to noninjured hands. Results: At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p ...% and the amplitudes only to 7 ± 1% (P Touch sensation correlated with SNAP areas (p

  14. Motonuclear changes after cranial nerve injury and regeneration.

    Science.gov (United States)

    Fernandez, E; Pallini, R; Lauretti, L; La Marca, F; Scogna, A; Rossi, G F

    1997-09-01

    Little is known about the mechanisms at play in nerve regeneration after nerve injury. Personal studies are reported regarding motonuclear changes after regeneration of injured cranial nerves, in particular of the facial and oculomotor nerves, as well as the influence that the natural molecule acetyl-L-carnitine (ALC) has on post-axotomy cranial nerve motoneuron degeneration after facial and vagus nerve lesions. Adult and newborn animal models were used. Massive motoneuron response after nerve section and reconstruction was observed in the motonuclei of all nerves studied. ALC showed to have significant neuroprotective effects on the degeneration of axotomized motoneurons. Complex quantitative, morphological and somatotopic nuclear changes occurred that sustain new hypotheses regarding the capacities of motoneurons to regenerate and the possibilities of new neuron proliferation. The particularities of such observations are described and discussed.

  15. Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration

    Science.gov (United States)

    2015-12-01

    of the cellular elements normally present in peripheral nerve . 2. KEYWORDS: peripheral nerve repair , nerve injury , decellularized nerve ... nerve regeneration. The slow rate of nerve re generation in limbs results in poor prognosis for patients suffering from severe injuries , leading to...allograft, neural regeneration, stem cells, stress altered cells, peripheral nerve injury model, nerve graft 3 This comprehensive final report summarizes

  16. Electrophysiologic studies of cutaneous nerves of the thoracic limb of the dog.

    Science.gov (United States)

    Kitchell, R L; Whalen, L R; Bailey, C S; Lohse, C L

    1980-01-01

    The cutaneous innervation of the thoracic limb was investigated in 36 barbiturate-anesthetized dogs, using electrophysiologic techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least five dogs by stroking the hair in the area with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed areas of considerable overlapping. The part of the CA of a given nerve supplied by only that nerve is referred to as its autonomous zone. Of all nerves arising from the brachial plexus, only the suprascapular, subscapular, lateral thoracic, thoracodorsal, and cranial and caudal pectoral nerves lacked cutaneous afferents. The dorsal cutaneous branch of C6 had a CA, but no grossly demonstrable dorsal cutaneous branches for C7 C8, or T1 were found. The cervical nerves had ventral cutaneous branches, but no lateral cutaneous branches. Thoracic nerves T2-T4 had dorsal, ventral, and lateral cutaneous branches. The cutaneous branches of the brachiocephalic, axillary, musculocutaneous, radial, median, and ulnar nerves all had CA which were overlapped by adjacent CA, thus their autonomous zones were much smaller than the cutaneous areas usually depicted for these nerves in anatomy and neurology textbooks.

  17. Visualizing peripheral nerve regeneration by whole mount staining.

    Directory of Open Access Journals (Sweden)

    Xin-peng Dun

    Full Text Available Peripheral nerve trauma triggers a well characterised sequence of events both proximal and distal to the site of injury. Axons distal to the injury degenerate, Schwann cells convert to a repair supportive phenotype and macrophages enter the nerve to clear myelin and axonal debris. Following these events, axons must regrow through the distal part of the nerve, re-innervate and finally are re-myelinated by Schwann cells. For nerve crush injuries (axonotmesis, in which the integrity of the nerve is maintained, repair may be relatively effective whereas for nerve transection (neurotmesis repair will likely be very poor as few axons may be able to cross between the two parts of the severed nerve, across the newly generated nerve bridge, to enter the distal stump and regenerate. Analysing axon growth and the cell-cell interactions that occur following both nerve crush and cut injuries has largely been carried out by staining sections of nerve tissue, but this has the obvious disadvantage that it is not possible to follow the paths of regenerating axons in three dimensions within the nerve trunk or nerve bridge. To try and solve this problem, we describe the development and use of a novel whole mount staining protocol that allows the analysis of axonal regeneration, Schwann cell-axon interaction and re-vascularisation of the repairing nerve following nerve cut and crush injuries.

  18. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  19. Role of metallothioneins in peripheral nerve function and regeneration

    DEFF Research Database (Denmark)

    Ceballos, D; Lago, N; Verdú, E

    2003-01-01

    postlesion (dpl) and electrophysiologically at 14 dpl. The quality of the regeneration was assessed by light microscopy and immunohistochemical methods. The results show that the regeneration distance was greater in the Mt3 KO than in the Mt1+ 2 KO mice, whereas control mice showed intermediate values....... Moreover, the number of regenerating axons in the distal tibial nerve was significantly higher in Mt3KO mice than in the other two strains at 14 dpl. Immunoreactive profiles to protein gene product 9.5 were present in the epidermis and the sweat glands of the plantar skin of the hindpaw of the Mt3 KO group....... The improved regeneration observed with the Mt3 KO mice was confirmed by compound nerve action potentials that were recorded from digital nerves at 14 dpl only in this group. We conclude that Mt3 normally inhibits peripheral nerve regeneration....

  20. The role of exosomes in peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Rosanna C Ching

    2015-01-01

    Full Text Available Peripheral nerve injuries remain problematic to treat, with poor functional recovery commonly observed. Injuries resulting in a nerve gap create specific difficulties for axonal regeneration. Approaches to address these difficulties include autologous nerve grafts (which are currently the gold standard treatment and synthetic conduits, with the latter option being able to be impregnated with Schwann cells or stem cells which provide an appropriate micro-environment for neuronal regeneration to occur. Transplanting stem cells, however, infers additional risk of malignant transformation as well as manufacturing difficulties and ethical concerns, and the use of autologous nerve grafts and Schwann cells requires the sacrifice of a functioning nerve. A new approach utilizing exosomes, secreted extracellular vesicles, could avoid these complications. In this review, we summarize the current literature on exosomes, and suggest how they could help to improve axonal regeneration following peripheral nerve injury.

  1. Electrophysiologic studies of cutaneous nerves of the forelimb of the cat.

    Science.gov (United States)

    Kitchell, R L; Canton, D D; Johnson, R D; Maxwell, S A

    1982-10-01

    The cutaneous innervation of the forelimb was investigated in 20 barbiturate-anesthetized cats by using electrophysiological techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least six cats by brushing the hair in the CA with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed larger overlap zones (OZ) than were noted in the dog. Remarkable findings were that the brachiocephalic nerve arose from the axillary nerve and the CA comparable to that supplied by the cutaneous branch of the brachiocephalic nerve in the dog was supplied by a cutaneous branch of the suprascapular nerve. The CA supplied by the communicating branch from the musculocutaneous to the median nerve was similar in both species except that the communicating branch arose proximal to any other branches of the musculocutaneous nerve in the cat, whereas it was a terminal branch in the dog. The superficial branch of the radial nerve gave off cutaneous brachial branches in the cat proximal to the lateral cutaneous antebrachial nerve. The CA of the palmar branches of the ulnar nerve did not completely overlap the CA of the palmar branches of the median nerve as occurred in the dog; thus an autonomous zone (AZ) for the CA of the palmar branches of the median nerve is present in the cat, whereas no AZ existed for the CA of this nerve in the dog.

  2. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    project was to develop an alternative to autologous nerve grafts used in repair of peripheral nerve injuries in war and civilian life. Based on our...gradient compositions tested in Aim 1 in preparation to studies in the large animal model of peripheral nerve injury and repair . As it was not...this specific aim was to test the efficacy of optimized nanofiber nerve guide in a canine model of peripheral nerve injury and repair . Peripheral nerve

  3. Use of electrospinning to construct biomaterials for peripheral nerve regeneration.

    Science.gov (United States)

    Quan, Qi; Chang, Biao; Meng, Hao Ye; Liu, Ruo Xi; Wang, Yu; Lu, Shi Bi; Peng, Jiang; Zhao, Qing

    2016-10-01

    A number of limitations associated with the use of hollow nerve guidance conduits (NGCs) require further discussion. Most importantly, the functional recovery outcomes after the placement of hollow NGCs are poor even after the successful bridging of peripheral nerve injuries. However, nerve regeneration scaffolds built using electric spinning have several advantages that may improve functional recovery. Thus, the present study summarizes recent developments in this area, including the key cells that are combined with the scaffold and associated with nerve regeneration, the structure and configuration of the electrospinning design (which determines the performance of the electrospinning scaffold), the materials the electrospinning fibers are composed of, and the methods used to control the morphology of a single fiber. Additionally, this study also discusses the processes underlying peripheral nerve regeneration. The primary goals of the present review were to evaluate and consolidate the findings of studies that used scaffolding biomaterials built by electrospinning used for peripheral nerve regeneration support. It is amazing that the field of peripheral nerve regeneration continues to consistently produce such a wide variety of innovative techniques and novel types of equipment, because the introduction of every new process creates an opportunity for advances in materials for nerve repair.

  4. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    Science.gov (United States)

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  5. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration

    Science.gov (United States)

    Kawamura, David H.; Johnson, Philip J.; Moore, Amy M.; Magill, Christina K.; Hunter, Daniel A.; Ray, Wilson Z.; Tung, Thomas HH.; Mackinnon, Susan E.

    2010-01-01

    The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery. This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts. PMID:20122927

  6. Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process.

    Science.gov (United States)

    Pirotte, Nicky; Leynen, Nathalie; Artois, Tom; Smeets, Karen

    2016-01-01

    The importance of nerve-derived signalling for correct regeneration has been the topic of research for more than a hundred years, but we are just beginning to identify the underlying molecular pathways of this process. Within the current review, we attempt to provide an extensive overview of the neural influences during early and late phases of both vertebrate and invertebrate regeneration. In general, denervation impairs limb regeneration, but the presence of nerves is not essential for the regeneration of aneurogenic extremities. This observation led to the "neurotrophic factor(s) hypothesis", which states that certain trophic factors produced by the nerves are necessary for proper regeneration. Possible neuron-derived factors which regulate regeneration as well as the denervation-affected processes are discussed. Copyright © 2015. Published by Elsevier Inc.

  7. Epimedium Extract Promotes Peripheral Nerve Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Yuhui Kou

    2013-01-01

    Full Text Available Effects of Epimedium extract and its constituent icariin on peripheral nerve repair were investigated in a crush injury rat model. Animals were divided into four groups: sham, control, Epimedium extract, and icariin groups. At postoperative weeks 1, 2, 4, and 8, nerve regeneration and functional recovery were evaluated by sciatic functional index (SFI, nerve electrophysiology, nerve pinch test, and muscle wet weight. Results showed that at 2 and 4 weeks after surgery rats in the Epimedium group displayed a better recovery of nerve function than that in the icariin and control groups, with better recovery in the icariin group than in the control group. The nerve pinch test showed that nerve regeneration was greater in the Epimedium group and the icariin group as compared to the control group. In addition, the muscle wet weight in the Epimedium group was significantly improved when compared with the icariin group, and the improvement in the icariin group was better than that in the control group at 8 weeks after operation. Our findings suggest that Epimedium extract effectively promotes peripheral nerve regeneration and improves the function of damaged nerves.

  8. Calcitonin pump improves nerve regeneration after transection injury and repair.

    Science.gov (United States)

    Yan, Ji-Geng; Logiudice, John; Davis, John; Zhang, Lin-Ling; Agresti, Michael; Sanger, James; Matloub, Hani S; Havlik, Robert

    2015-02-01

    After nerve injury, excessive calcium impedes nerve regeneration. We previously showed that calcitonin improved nerve regeneration in crush injury. We aimed to validate the direct effect of calcitonin on transected and repaired nerve. Two rat groups (n = 8) underwent sciatic nerve transection followed by direct repair. In the calcitonin group, a calcitonin-filled mini-osmotic pump was implanted subcutaneously, with a catheter parallel to the repaired nerve. The control group underwent repair only, without a pump. Evaluation and comparison between the groups included: (1) compound muscle action potential recording of the extensor digitorum longus (EDL) muscle; (2) tetanic muscle force test of EDL; (3) nerve calcium concentration; and (4) nerve fiber count and calcified spot count. The calcitonin pump group showed superior recovery. Calcitonin affects injured and repaired peripheral nerve directly. The calcitonin-filled mini-osmotic pump improved nerve functional recovery by accelerating calcium absorption from the repaired nerve. This finding has potential clinical applications. © 2014 Wiley Periodicals, Inc.

  9. A Need for Logical and Consistent Anatomical Nomenclature for Cutaneous Nerves of the Limbs

    Science.gov (United States)

    Gest, Thomas R.; Burkel, William E.; Cortright, Gerald W.

    2009-01-01

    The system of anatomical nomenclature needs to be logical and consistent. However, variations in translation to English of the Latin and Greek terminology used in Nomina Anatomica and Terminologia Anatomica have led to some inconsistency in the nomenclature of cutaneous nerves in the limbs. An historical review of cutaneous nerve nomenclature…

  10. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D

    2002-01-01

    median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...... predictors. Thus, nerve gap distance and repair type exert their influence through time to muscle reinnervation. These findings emphasize that factors that control early axonal outgrowth influence the final level of recovery attained years later. They also highlight that a time window exists within which...... muscle action potentials in the abductor pollicis brevis muscle, (2) the number and size of motor units in reinnervated muscle, and (3) compound sensory action potentials from digital nerve. A statistical model was used to assess the influence of three variables (repair type, nerve gap distance, and time...

  11. The recurrent branch of the lateral cutaneous nerve of the forearm.

    OpenAIRE

    Horiguchi, M

    1981-01-01

    Cutaneous nerves of the upper arm were observed in 31 Japanese cadavers dissected in a student course of gross anatomy dissection and in cadaver selected randomly for intensive dissection. Contrary to the descriptions in current textbooks of human anatomy, the lateral cutaneous nerve of the forearm supplies also the skin over the distal region of the anterolateral surface of the upper arm. A branch to the upper arm (the recurrent branch) arises from the proper trunk of the lateral cutaneous n...

  12. Peripheral nerve regeneration with conduits: use of vein tubes

    Directory of Open Access Journals (Sweden)

    Rodrigo Guerra Sabongi

    2015-01-01

    Full Text Available Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.

  13. Vascular endothelial growth factor promotes peripheral nerve regeneration after sciatic nerve transection in rat

    Directory of Open Access Journals (Sweden)

    Mohammadi Rahim

    2013-12-01

    Full Text Available 【Abstract】Objective: To evaluate the local effect of vascular endothelial growth factor (VEGF on transected sciatic nerve regeneration. Methods: Sixty male white Wistar rats were divided into four experimental groups randomly (n=15. In transected group the left sciatic nerve was transected and the stump was fixed to adjacent muscle. In treatment group the defect was bridged using a silicone graft filled with 10 µL VEGF. In silicone group the graft was filled with phosphate-buffered saline. In sham-operated group the sciatic nerve was ex- posed and manipulated. Each group was subdivided into three subgroups with five animals in each and nerve fibers were studied 4, 8 and 12 weeks after operation. Results: Behavioral test, functional study of sciatic nerve, gastrocnemius muscle mass and morphometric indi- ces confirmed a faster recovery of regenerated axons in VEGF group than in silicone group (P<0.05. In immunohistochemi- cal assessment, reactions to S-100 in VEGF group were more positive than that in silicone group. Conclusion: Local administration of VEGF will im- prove functional recovery and morphometric indices of sci- atic nerve. Key words: Peripheral nerves; Nerve regeneration; Sciatic nerve; Vascular endothelial growth factor

  14. Extrinsic and intrinsic determinants of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Toby A. Ferguson

    2011-01-01

    Full Text Available After central nervous system (CNS injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury.

  15. Carbon dioxide laser-assisted nerve repair: effect of solder and suture material on nerve regeneration in rat sciatic nerve

    NARCIS (Netherlands)

    Menovsky, Tomas; Beek, Johan F.

    2003-01-01

    In order to further improve and explore the role of lasers for nerve reconstruction, this study was designed to investigate regeneration of sharply transected peripheral nerves repaired with a CO(2) milliwatt laser in combination with three different suture materials and a bovine albumin protein

  16. Cutaneous benign epithelioid peripheral nerve sheath tumour: A rare entity

    Directory of Open Access Journals (Sweden)

    Anuradha CK Rao

    2013-01-01

    Full Text Available Benign epithelioid peripheral nerve sheath tumor, a rare entity is an umbrella term describing benign, neural origin tumors with epithelioid morphology. Clinically indistinguishable from other benign cutaneous lesions, histopathology offers the only source of accurate diagnosis. Morphologic mimics include many benign and malignant soft tissue lesions. Besides a predominant epithelioid component, the lesion can also show a fair share of spindle cells. A circumscribed nodular tumour of low mitotic activity, it often exhibits areas resembling schwannoma or neurofibroma. An awareness of this entity and its varied morphological aspects helps to arrive at the correct diagnosis and hence avoid unnecessary extensive surgical procedures. This case presents features of this benign tumor which occurred in a 47 years old man.

  17. A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats.

    Science.gov (United States)

    Matsumine, Hajime; Sasaki, Ryo; Yamato, Masayuki; Okano, Teruo; Sakurai, Hiroyuki

    2014-06-01

    This study developed a biodegradable nerve conduit with PLA non-woven fabric and evaluated its nerve regeneration-promoting effect. The buccal branch of the facial nerve of 8 week-old Lewis rats was exposed, and a 7 mm nerve defect was created. A nerve conduit made of either PLA non-woven fabric (mean fibre diameter 460 nm), or silicone tube filled with type I collagen gel, or an autologous nerve, was implanted into the nerve defect, and their nerve regenerative abilities were evaluated 13 weeks after the surgery. The number of myelinated neural fibres in the middle portion of the regenerated nerve was the highest for PLA tubes (mean ± SD, 5051 ± 2335), followed by autologous nerves (4233 ± 590) and silicone tubes (1604 ± 148). Axon diameter was significantly greater in the PLA tube group (5.17 ± 1.69 µm) than in the silicone tube group (4.25 ± 1.60 µm) and no significant difference was found between the PLA tube and autograft (5.53 ± 1.93 µm) groups. Myelin thickness was greatest for the autograft group (0.65 ± 0.24 µm), followed by the PLA tube (0.54 ± 0.18 µm) and silicone tube (0.38 ± 0.12 µm) groups, showing significant differences among the three groups. The PLA non-woven fabric tube, composed of randomly-connected PLA fibres, is porous and has a number of advantages, such as sufficient strength to maintain luminal structure. The tube has demonstrated a comparable ability to induce peripheral nerve regeneration following autologous nerve transplantation. Copyright © 2012 John Wiley & Sons, Ltd.

  18. PEMF fails to enhance nerve regeneration after sciatic nerve crush lesion.

    Science.gov (United States)

    Baptista, Abrahão Fontes; Goes, Bruno Teixeira; Menezes, Diego; Gomes, Flávia Carvalho Alcantara; Zugaib, João; Stipursky, Joice; Gomes, Joyce R S; Oliveira, Júlia Teixeira; Vannier-Santos, Marcos André; Martinez, Ana Maria Blanco

    2009-12-01

    The use of electromagnetic fields has been reported to enhance peripheral nerve regeneration. This study aimed to identify the effects of a prolonged protocol of low-frequency pulsed electromagnetic field (PEMF) on peripheral nerve regeneration. Thirty-four male Swiss mice (Mus musculus) were divided into PEMF (n = 17) and control (n = 17) groups. All animals underwent a unilateral sciatic-crush lesion, and the PEMF group was exposed to a 72-Hz, 2-G electromagnetic field for 30 min, five days a week, for three weeks. Functional analysis was carried out weekly. After three weeks, the animals were euthanized, and histological, morphometric, oxidative stress, and TGF-beta1 analyses were performed. Functional analysis showed no differences between the groups. Histological appearance was similar between PEMF and control nerves. Morphometric assessment showed that the PEMF nerves trended toward decreased regeneration. The levels of free radicals were more pronounced in PEMF nerves, but were not associated with an increase in the content of the TGF-beta1/Smad signaling pathway. Prolonged PEMF regimen leads to delayed histological peripheral nerve regeneration and increased oxidative stress but no loss of function recovery.

  19. Novel drug delivering conduit for peripheral nerve regeneration

    Science.gov (United States)

    Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay

    2017-12-01

    Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1–10 ng ml‑1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p  nerve guide can release NGF for extended periods of time and enhance axon growth in vitro and in vivo and has the potential to improve nerve regeneration following a peripheral nerve injury. Significance. This integrated drug delivering nerve guide simplifies the design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial–drug conjugate each time.

  20. Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Farjah

    2013-08-01

    Full Text Available Objective(s:  The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g were randomized into (1 ESM conduit, (2 autograft, and (3 sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pieces, rotated over the teflon mandrel and dried at   37°C. The left sciatic nerve was surgically cut. A 10-mm nerve segment was cut and removed. In the ESM group, the proximal and distal cut ends of the sciatic nerve were telescoped into the nerve guides. In the autograft group, the 10 mm nerve segment was reversed and used as an autologous nerve graft. All animals were evaluated by sciatic functional index (SFI and electrophysiology testing.  Results:The improvement in SFI from the first to the last evalution in ESM and autograft groups were evaluated. On days 49 and 60 post-operation, the mean SFI of ESM group was significantly greater than the autograft group (P 0.05. Conclusion:These findings demonstrate that ESM effectively enhances nerve regeneration and promotes functional recovery in injured sciatic nerve of rat.

  1. Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats

    OpenAIRE

    Liu, Dan; Mi, Daguo; Zhang, Tuanjie; Zhang, Yanping; Yan, Junying; Wang, Yaxian; Tan, Xuefeng; Yuan, Ying; Yang, Yumin; Gu, Xiaosong; Hu, Wen

    2018-01-01

    The repair of peripheral nerve laceration injury to obtain optimal function recovery remains a big challenge in the clinic. Misdirection of regenerating axons to inappropriate target, as a result of forced mismatch of endoneurial sheaths in the case of end-to-end nerve anastomosis or nerve autografting, represents one major drawback that limits nerve function recovery. Here we tested whether tubulation repair of a nerve defect could be beneficial in terms of nerve regeneration accuracy and ne...

  2. Role of Demyelination Efficiency within Acellular Nerve Scaffolds during Nerve Regeneration across Peripheral Defects

    Directory of Open Access Journals (Sweden)

    Meiqin Cai

    2017-01-01

    Full Text Available Hudson’s optimized chemical processing method is the most commonly used chemical method to prepare acellular nerve scaffolds for the reconstruction of large peripheral nerve defects. However, residual myelin attached to the basal laminar tube has been observed in acellular nerve scaffolds prepared using Hudson’s method. Here, we describe a novel method of producing acellular nerve scaffolds that eliminates residual myelin more effectively than Hudson’s method through the use of various detergent combinations of sulfobetaine-10, sulfobetaine-16, Triton X-200, sodium deoxycholate, and peracetic acid. In addition, the efficacy of this new scaffold in repairing a 1.5 cm defect in the sciatic nerve of rats was examined. The modified method produced a higher degree of demyelination than Hudson’s method, resulting in a minor host immune response in vivo and providing an improved environment for nerve regeneration and, consequently, better functional recovery. A morphological study showed that the number of regenerated axons in the modified group and Hudson group did not differ. However, the autograft and modified groups were more similar in myelin sheath regeneration than the autograft and Hudson groups. These results suggest that the modified method for producing a demyelinated acellular scaffold may aid functional recovery in general after nerve defects.

  3. Drug Delivery for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-11-01

    reservoir is designed, fabricated, tested. Devices loaded with nerve growth factor (NGF) are evaluated for sustained drug release and axon growth...life. Unfortunately, current treatments often result in inadequate or untimely repair, which can result in lifelong deficits in muscle function or...interest in learning and careers in science, technology, and the humanities. Nothing to Report What do you plan to do during the next reporting

  4. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    Science.gov (United States)

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  6. Mechanical Loading for Peripheral Nerve Stabilization and Regeneration

    Science.gov (United States)

    2013-04-01

    Meissl, G., and Berger, A. The interfascicular nerve-grafting of the median and ulnar nerves. J Bone Joint Surg Am 54, 727, 1972. 13. Strasberg, S.R...seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32, 787, 2011. 23. Harvey, A.R., Chen, M., Plant, G.W., and Dyson, S.E. Re...regeneration: a feasibility study. Artif Or- gans 33, 26, 2009. 25. Marchesi, C., Pluderi, M., Colleoni, F., Belicchi, M., Meregalli, M., Farini, A

  7. Experimental study of vascularized nerve graft: evaluation of nerve regeneration using choline acetyltransferase activity.

    Science.gov (United States)

    Iwai, M; Tamai, S; Yajima, H; Kawanishi, K

    2001-01-01

    A comparative study of nerve regeneration was performed on vascularized nerve graft (VNG) and free nerve graft (FNG) in Fischer strain rats. A segment of the sciatic nerve with vascular pedicle of the femoral artery and vein was harvested from syngeneic donor rat for the VNG group and the sciatic nerve in the same length without vascular pedicle was harvested for the FNG group. They were transplanted to a nerve defect in the sciatic nerve of syngeneic recipient rats. At 2, 4, 6, 8, 12, 16, and 24 weeks after operation, the sciatic nerves were biopsied and processed for evaluation of choline acetyltransferase (CAT) activity, histological studies, and measurement of wet weight of the muscle innervated by the sciatic nerve. Electrophysiological evaluation of the grafted nerve was also performed before sacrifice. The average CAT activity in the distal to the distal suture site was 383 cpm in VNG and 361 cpm in FNG at 2 weeks; 6,189 cpm in VNG and 2,264 cpm in FNG at 4 weeks; and 11,299 cpm in VNG and 9,424 cpm in FNG at 6 weeks postoperatively. The value of the VNG group was statistically higher than that of the FNG group at 4 weeks postoperatively. Electrophysiological and histological findings also suggested that nerve regeneration in the VNG group was superior to that in the FNG group during the same period. However, there was no significant difference between the two groups after 6 weeks postoperatively in any of the evaluations. The CAT measurement was useful in the experiments, because it was highly sensitive and reproducible. Copyright 2001 Wiley-Liss, Inc.

  8. Studies of Electrically Stimulated Rat Limb and Peripheral Nerve Regeneration.

    Science.gov (United States)

    1983-08-25

    absoltite necessity for formation of a recognizable limb. In addition, evidence from embryology suggests that externally applied polarizing influences...3], and in others (Borgens et al. * I 1,5 I; Becker, [61) have demonstrated that vertebrate limb regeneration can be .- markedly influenced by the...strikingly histologic evaluation of the nerves. influence the rate of growth and state of dif- ferentiation of adult vertebrate cells. A var- Table I lety

  9. Regeneration of peripheral nerve fibres following Haloxon-induced degeneration

    Directory of Open Access Journals (Sweden)

    Maria Veronica de Souza

    1996-12-01

    Full Text Available Delayed neurotoxicity has been associated with organophosphorus poisoning for years. In order to study such condition in sheep, 11 animals were given either one or two high doses of Haloxon. Exposed sheep were observed daily and between 16 and 25 days after administration neurological signs as incoordination and ataxia were detected in six of them. Biopsies of tibial and laryngeal nerves were performed as soon as neurotoxicity was diagnosed, and after death fragments of selected nerves were collected together with CNS tissues for light and electron microscopy and teased fiber studies. Laryngeal, tibial and sciatic nerves showed the most pronouced changes, consisting chiefly of wallerian degeneration that was seen either as a single fiber or as a complete fascicle feature. Exams performed after death clearly showed regenerating fascicles with axonal sprouts growing within a Schwann cell old basal lamina, and some thinly myelinated axonal sprouts.

  10. Vascular branches from cutaneous nerve of the forearm and hand: application to better understanding raynaud's disease.

    Science.gov (United States)

    Umemoto, K; Ohmichi, M; Ohmichi, Y; Yakura, T; Hammer, N; Mizuno, D; Naito, M; Nakano, T

    2017-09-29

    Cutaneous nerves have branches called vascular branches (VBs) that reach arteries. VBs are thought to be involved in arterial constriction, and this is the rationale for periarterial sympathectomy as a treatment option for Raynaud's disease. However, the branching patterns and distribution areas of the VBs remain largely unclear. The aim of the present study was to investigate the anatomical structures of the VBs of the cutaneous nerves. Forty hands and forearms were examined to assess the branching patterns and distribution areas of the VBs of the superficial branch of the radial nerve (SBRN), the lateral antebrachial cutaneous nerve (LACN), the medial antebrachial cutaneous nerve (MACN), and the palmar cutaneous branch of the ulnar nerve (PCUN). VBs reaching the radial and ulnar arteries were observed in all specimens. The branching patterns were classified into six types. The mean distance between the radial styloid process and the point where the VBs reached the radial artery was 34.3 ± 4.8 mm in the SBRN and 38.5 ± 15.8 mm in the LACN. The mean distance between the ulnar styloid process and the point where the VBs reached the ulnar artery was 60.3 ± 25.9 mm in the MACN and 43.8 ± 26.0 mm in the PCUN. This study showed that the VBs of the cutaneous nerves have diverse branching patterns. The VBs of the SBRN had a more limited distribution areas than those of the other nerves. Clin. Anat., 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  12. Effect of neurotrophic factor, MDP, on rats’ nerve regeneration

    Directory of Open Access Journals (Sweden)

    A.A. Fornazari

    2011-04-01

    Full Text Available Our objective was to determine the immune-modulating effects of the neurotrophic factor N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP on median nerve regeneration in rats. We used male Wistar rats (120-140 days of age, weighing 250-332 g and compared the results of three different techniques of nerve repair: 1 epineural neurorrhaphy using sutures alone (group S - 10 rats, 2 epineural neurorrhaphy using sutures plus fibrin tissue adhesive (FTA; group SF - 20 rats, and 3 sutures plus FTA, with MDP added to the FTA (group SFM - 20 rats. Functional assessments using the grasp test were performed weekly for 12 weeks to identify recovery of flexor muscle function in the fingers secondary to median nerve regeneration. Histological analysis was also utilized. The total number and diameter of myelinated fibers were determined in each proximal and distal nerve segment. Two indices, reported as percentage, were calculated from these parameters, namely, the regeneration index and the diameter change index. By the 8th week, superiority of group SFM over group S became apparent in the grasping test (P = 0.005. By the 12th week, rats that had received MDP were superior in the grasping test compared to both group S (P < 0.001 and group SF (P = 0.001. Moreover, group SF was better in the grasping test than group S (P = 0.014. However, no significant differences between groups were identified by histological analysis. In the present study, rats that had received MDP obtained better function, in the absence of any significant histological differences.

  13. Alpha-synuclein in cutaneous small nerve fibers

    Directory of Open Access Journals (Sweden)

    Siepmann T

    2016-10-01

    Full Text Available Timo Siepmann,1 Ben Min-Woo Illigens,2 Kristian Barlinn1 1Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; 2Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA Abstract: Despite progression in the development of pharmacological therapy, treatment of alpha synucleinopathies, such as Parkinson’s disease (PD and some atypical parkinsonism syndromes, is still challenging. To date, our knowledge of the mechanisms whereby the pathological form of alpha-synuclein causes structural and functional damage to the nervous system is limited and, consequently, there is a lack of specific diagnostic tools to evaluate pathology in these patients and differentiate PD from other neurodegenerative proteinopathies. Recent studies indicated that alpha-synuclein deposition in cutaneous small nerve fibers assessed by skin biopsies might be a valid disease marker of PD and facilitate early differentiation of PD from atypical parkinsonism syndromes. This observation is relevant since early diagnosis may enable timely treatment and improve quality of life. However, challenges include the necessity of standardizing immunohistochemical analysis techniques and the identification of potential distinct patterns of intraneural alpha-synuclein deposition among synucleinopathies. In this perspective, we explore the scientific and clinical opportunities arising from alpha-synuclein assessment using skin biopsies. These include elucidation of the peripheral nervous system pathology of PD and other synucleinopathies, identification of novel targets to study response to neuroprotective treatment, and improvement of clinical management. Furthermore, we discuss future challenges in exploring the diagnostic value of skin biopsy assessment for alpha-synuclein deposition and implementing the technique in clinical practice. Keywords: Parkinson’s disease, diagnosis, skin

  14. Experimental immunological demyelination enhances regeneration in autograft-repaired long peripheral nerve gaps

    OpenAIRE

    Jun Ge; Shu Zhu; Yafeng Yang; Zhongyang Liu; Xueyu Hu; Liangliang Huang; Xin Quan; Meng Wang; Jinghui Huang; Yunqing Li; Zhuojing Luo

    2016-01-01

    Peripheral nerve long gap defects are a clinical challenge in the regeneration field. Despite the wide variety of surgical techniques and therapies, autografting is the ?gold standard? for peripheral nerve gap reconstruction. The pathological process of Wallerian degeneration from the time of acute injury to efficient regeneration requires several weeks. Regeneration time is critical for nerve reconstruction. Immunological demyelination induced by anti-galactocerebroside antibodies plus guine...

  15. High-frequency electrical stimulation can be a complementary therapy to promote nerve regeneration in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Chia-Hong Kao

    Full Text Available The purpose of this study was to evaluate whether 1 mA of percutaneous electrical stimulation (ES at 0, 2, 20, or 200 Hz augments regeneration between the proximal and distal nerve stumps in streptozotocin diabetic rats. A10-mm gap was made in the diabetic rat sciatic nerve by suturing the stumps into silicone rubber tubes. Normal animals were used as the controls. Starting 1 week after transection, ES was applied between the cathode placed at the distal stump and the anode at the proximal stump every other day for 3 weeks. At 4 weeks after surgery, the normal controls and the groups receiving ES at 20, and 200 Hz had a higher success percentage of regeneration compared to the ES groups at 0 and 2 Hz. In addition, quantitative histology of the successfully regenerated nerves revealed that the groups receiving ES at a higher frequency, especially at 200 Hz, had a more mature structure with more myelinated fibers compared to those in the lower-frequency ES groups. Similarly, electrophysiology in the ES group at 200 Hz showed significantly shorter latency, larger amplitude, larger area of evoked muscle action potentials and faster conduction velocity compared to other groups. Immunohistochemical staining showed that ES at a higher frequency could significantly promote calcitonin gene-related peptide expression in lamina I-II regions in the dorsal horn and recruit a higher number of macrophages in the diabetic distal sciatic nerve. The macrophages were found that they could stimulate the secretion of nerve growth factor, platelet-derived growth factor, and transforming growth factor-β in dissected sciatic nerve segments. The ES at a higher frequency could also increase cutaneous blood flow in the ipsilateral hindpaw to the injury. These results indicated that a high-frequency ES could be necessary to heal severed diabetic peripheral nerve with a long gap to be repaired.

  16. Determining the functional sensibility of the hand in patients with peripheral nerve repair: Feasibility of using a novel manual tactile test for monitoring the progression of nerve regeneration.

    Science.gov (United States)

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Shieh, Shyh-Jou

    Case-controlled cohort study. Sensory function is difficult to observe during nerve regeneration processes. Traditional sensory tests are limited to identifying the level of functioning hand sensation for sensory stimulus is given passively to the cutaneous surface of the hand. To examine the outcome changes in the manual tactile test (MTT), Semmes-Weinstein monofilament (SWM) and 2-point discrimination (2PD) tests for patients with nerve repair and to investigate the concurrent validity of MTT by comparing it with the results of traditional tests. Fifteen patients with nerve injury of the upper limbs were recruited, along with 15 matched healthy controls. The MTT, SWM, and 2PD tests were used to examine the sensory status of the subjects. Three subtests (barognosis, roughness differentiation, and stereognosis) in MTT showed that the patients improved with time. A moderate and mild correlation was found between the MTT and 2PD results and between the barognosis and SWM results. The MTT provides practical and functional perspectives on detecting nerve progression during the courses of degeneration and regeneration. IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  17. Biological conduit small gap sleeve bridging method for peripheral nerve injury: regeneration law of nerve fibers in the conduit

    Directory of Open Access Journals (Sweden)

    Pei-xun Zhang

    2015-01-01

    Full Text Available The clinical effects of 2-mm small gap sleeve bridging of the biological conduit to repair peripheral nerve injury are better than in the traditional epineurium suture, so it is possible to replace the epineurium suture in the treatment of peripheral nerve injury. This study sought to identify the regeneration law of nerve fibers in the biological conduit. A nerve regeneration chamber was constructed in models of sciatic nerve injury using 2-mm small gap sleeve bridging of a biodegradable biological conduit. The results showed that the biological conduit had good histocompatibility. Tissue and cell apoptosis in the conduit apparently lessened, and regenerating nerve fibers were common. The degeneration regeneration law of Schwann cells and axons in the conduit was quite different from that in traditional epineurium suture. During the prime period for nerve fiber regeneration (2-8 weeks, the number of Schwann cells and nerve fibers was higher in both proximal and distal ends, and the effects of the small gap sleeve bridging method were better than those of the traditional epineurium suture. The above results provide an objective and reliable theoretical basis for the clinical application of the biological conduit small gap sleeve bridging method to repair peripheral nerve injury.

  18. Acceleration of Regeneration of Large Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts plus amniotic Fluid Derived Stem Cells (AFS)

    Science.gov (United States)

    2016-09-01

    seeded constructs were used to repair critical-sized, large gap nerve injury in rats and their functional recovery was monitored longitudinally using... injuries in non-human primates. These represent a more translational model of peripheral nerve injury and repair . 15. SUBJECT TERMS 16. SECURITY...AWARD NUMBER: W811XWH-13-1-0310 TITLE: Acceleration of Regeneration of Large-Gap Peripheral Nerve Injuries Using Acellular Nerve Allografts

  19. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  20. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves

    DEFF Research Database (Denmark)

    Barghash, Ziad; Larsen, Jytte Overgaard; Al-Bishri, Awad

    2013-01-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod...... for 30 s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both...... in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed...

  1. Surgical trainees neuropraxia? An unusual case of compression of the lateral cutaneous nerve of the forearm.

    LENUS (Irish Health Repository)

    Seoighe, D M

    2010-09-01

    Compression of the lateral cutaneous nerve of the forearm is an uncommon diagnosis but has been associated with strenuous upper limb activity. We report the unique case of a 32-year-old male orthopaedic trainee who suffered this nerve palsy as a result of prolonged elbow extension and forearm pronation while the single assistant during a hip resurfacing procedure. Conservative measures were sufficient for sensory recovery to be clinically detectable after 12 weeks.

  2. Complement inhibition accelerates regeneration in a model of peripheral nerve injury

    NARCIS (Netherlands)

    Ramaglia, Valeria; Tannemaat, Martijn Rudolf; de Kok, Maryla; Wolterman, Ruud; Vigar, Miriam Ann; King, Rosalind Helen Mary; Morgan, Bryan Paul; Baas, Frank

    2009-01-01

    Complement (C) activation is a crucial event in peripheral nerve degeneration but its effect on the subsequent regeneration is unknown. Here we show that genetic deficiency of the sixth C component, C6, accelerates axonal regeneration and recovery in a rat model of sciatic nerve injury. Foot-flick

  3. Misdirection and guidance of regenerating motor axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    Ruiter, Godard de

    2013-01-01

    Misdirection of regenerating motor axons is one of the factors that can explain the disappointing recovery of function often observed after nerve injury and repair. In the first part of this thesis we quantified misdirection of motor axon regeneration after different types of nerve injury and repair

  4. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...

  5. The Dilator Naris Muscle as a Reporter of Facial Nerve Regeneration in a Rat Model

    NARCIS (Netherlands)

    Weinberg, J.S.; Kleiss, I.J.; Knox, C.J.; Heaton, J.T.; Hadlock, T.A.

    2016-01-01

    OBJECTIVE: Many investigators study facial nerve regeneration using the rat whisker pad model, although widely standardized outcomes measures of facial nerve regeneration in the rodent have not yet been developed. The intrinsic whisker pad "sling" muscles producing whisker protraction, situated at

  6. Lateral femoral cutaneous nerve transposition: Renaissance of an old concept in the light of new anatomy.

    Science.gov (United States)

    Hanna, Amgad S

    2017-04-01

    Meralgia paresthetica causes pain in the anterolateral thigh. Most surgical procedures involve nerve transection or decompression. We conducted a cadaveric study to determine the feasibility of lateral femoral cutaneous nerve (LFCN) transposition. In three cadavers, the LFCN was exposed in the thigh and retroperitoneum. The two layers of the LFCN canal superficial and deep to the nerve were opened. The nerve was then mobilized medially away from the ASIS, by cutting the septum medial to sartorius. It was possible to mobilize the nerve for 2 cm medial to the ASIS. The nerve acquired a much straighter course with less tension. A new technique of LFCN transposition is presented here as an anatomical feasibility study. The surgical technique is based on the new understanding of the LFCN canal. Clin. Anat. 30:409-412, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Enhancement of Median Nerve Regeneration by Mesenchymal Stem Cells Engraftment in an Absorbable Conduit: Improvement of Peripheral Nerve Morphology with Enlargement of Somatosensory Cortical Representation.

    Directory of Open Access Journals (Sweden)

    Julia Teixeira Oliveira

    2014-10-01

    Full Text Available We studied the morphology and the cortical representation of the median nerve (MN, 10 weeks after a transection immediately followed by treatment with tubulization using a polycaprolactone (PCL conduit with or without bone marrow-derived mesenchymal stem cell (MSC transplant. In order to characterize the cutaneous representation of MN inputs in primary somatosensory cortex (S1, electrophysiological cortical mapping of the somatosensory representation of the forepaw and adjacent body parts was performed after acute lesion of all brachial plexus nerves, except for the MN. This was performed in ten adult male Wistar rats randomly assigned in 3 groups: MN Intact (n=4, PCL-Only (n=3 and PCL+MSC (n=3. Ten weeks before mapping procedures in animals from PCL-Only and PCL+MSC groups, animal were subjected to MN transection with removal of a 4-mm-long segment, immediately followed by suturing a PCL conduit to the nerve stumps with (PCL+MSC group or without (PCL-Only group injection of MSC into the conduit. After mapping the representation of the MN in S1, animals had a segment of the regenerated nerve processed for light and transmission electron microscopy. For histomorphometric analysis of the nerve segment, sample size was increased to 5 animals per experimental group. The PCL+MSC group presented a higher number of myelinated fibers and a larger cortical representation of MN inputs in S1 (3,383±390 fibers; 2.3 mm2, respectively than the PCL-Only group (2,226±575 fibers; 1.6 mm2. In conclusion, MSC-based therapy associated with PCL conduits can improve MN regeneration. This treatment seems to rescue the nerve representation in S1, thus minimizing the stabilization of new representations of adjacent body parts in regions previously responsive to the MN.

  8. Peripheral nerve regeneration through a silicone chamber implanted with negative carbon ions: Possibility to clinical application

    Science.gov (United States)

    Ikeguchi, Ryosuke; Kakinoki, Ryosuke; Tsuji, Hiroshi; Yasuda, Tadashi; Matsuda, Shuichi

    2014-08-01

    We investigated whether a tube with its inner surface implanted with negative-charged carbon ions (C- ions) would enable axons to extend over a distance greater than 10 mm. The tube was found to support nerves regenerating across a 15-mm-long inter-stump gap. We also investigated whether a C- ion-implanted tube pretreated with basic fibroblast growth factor (bFGF) promotes peripheral nerve regeneration. The C- ion implanted tube accelerated nerve regeneration, and this effect was enhanced by bFGF. Silicone treated with C- ions showed increased hydrophilic properties and cellular affinity, and axon regeneration was promoted with this increased biocompatibility.

  9. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice.

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-06-27

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (pelectrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  10. Regeneration of the nerves in the aerial cavity with an artificial nerve conduit --reconstruction of chorda tympani nerve gaps-.

    Directory of Open Access Journals (Sweden)

    Toshiaki Yamanaka

    Full Text Available Due to its anatomical features, the chorda tympani nerve (CTN is sometimes sacrificed during middle ear surgery, resulting in taste dysfunction. We examined the effect of placing an artificial nerve conduit, a polyglycolic acid (PGA-collagen tube, across the gap in the section of the resected chorda tympani nerve (CTN running through the tympanic cavity.The CTN was reconstructed with a PGA-collagen tube in three patients with taste disturbance who underwent CTN resection. To evaluate the effect of the reconstruction procedure on the patients' gustatory function, we measured the patients' electrogustometry (EGM thresholds. The patients were followed-up for at least two years.Gustatory function was completely restored in all of the patients after the reconstruction. The patients' EGM thresholds exhibited early improvements within one to two weeks and had returned to their normal ranges within three months. They subsequently remained stable throughout the two-year follow-up period. In a patient who underwent a second surgical procedure, it was found that the PGA-collagen tube used in the first surgical procedure had been absorbed and replaced by new CTN fibers with blood vessels on their surfaces.These results suggest that reconstruction of the CTN with an artificial nerve conduit, a PGA-collagen tube, allows functional and morphological regeneration of the nerve and facilitates the recovery of taste function. PGA-collagen tubes might be useful for repairing CTNs that are resected during middle ear surgery. Further research is required to confirm these preliminary results although this is the first report to describe the successful regeneration of a nerve running through an aerial space.

  11. Anterior cutaneous nerve entrapment syndrome with pain present only during Carnett's sign testing: a case report.

    Science.gov (United States)

    Tanizaki, Ryutaro; Takemura, Yousuke

    2017-10-11

    The identification of anterior cutaneous nerve entrapment syndrome is often challenging, due to no widely accepted standard guidelines regarding laboratory and imaging tests for the diagnosis of ACNES. A 77-year-old Japanese man presented with mild lower abdominal pain that had been present for the past 3 years. Physical examination revealed no abdominal pain during palpation, with normal laboratory and imaging testing; therefore, conservative therapy was initiated. However, the abdominal pain continued. Re-examination 16 days later revealed three tender points in accordance with intercostal nerves Th10, Th11, and Th12, with the pain occurring only during Carnett's sign testing. A cutaneous injection of 1% lidocaine was administered, and the abdominal pain was resolved about 30 min later. Based on these results, anterior cutaneous nerve entrapment syndrome was diagnosed. It is sometimes hard to diagnose anterior cutaneous nerve entrapment syndrome without testing for Carnett's sign. If patients present with chronic abdominal pain, clinicians should test for Carnett's sign even if no pain is elicited during regular abdominal palpation.

  12. Management of anterior cutaneous nerve entrapment syndrome in a cohort of 139 patients.

    NARCIS (Netherlands)

    Boelens, O.B.A.; Scheltinga, M.R.M.; Houterman, S.; Roumen, R.M.

    2011-01-01

    OBJECTIVE: Anterior cutaneous nerve entrapment syndrome (ACNES) is generally neglected as a source of chronic abdominal pain. The aim of this study was to evaluate the efficacy of a diagnostic workup protocol and treatment regimen in patients with suspected ACNES. METHODS: A cohort of all

  13. Evaluation of peripheral nerve regeneration through biomaterial conduits via micro-CT imaging.

    Science.gov (United States)

    Pixley, Sarah K; Hopkins, Tracy M; Little, Kevin J; Hom, David B

    2016-12-01

    Hollow nerve conduits made of natural or synthetic biomaterials are used clinically to aid regeneration of peripheral nerves damaged by trauma or disease. To support healing, conduit lumen patency must be maintained until recovery occurs. New methods to study conduit structural integrity would provide an important means to optimize conduits in preclinical studies. We explored a novel combined technique to examine structural integrity of two types of nerve conduits after in vivo healing. Micro-CT imaging with iodine contrast was combined with histological analysis to examine two different nerve conduits after in vivo nerve reconstruction in rats. Sciatic nerve gaps in adult Lewis rats were reconstructed with poly(caprolactone) (PCL, 1.6 cm gap, 14-week survival) or silicone (1 cm gap, 6-week survival) conduits (N = 12 total). Conduits with regenerating tissues were imaged by micro-CT with iodine contrast and compared to the histology (hematoxylin and eosin, immunostaining for axons) of regenerated tissues after iodine removal. PCL nerve conduits showed extensive breakage throughout their length, but all showed successful nerve growth through the conduits. The silicone conduits remained intact, although significant constriction was uniquely detected by micro-CT, with 1 of 6 animals showing incomplete tissue regeneration. Micro-CT with iodine contrast offers a unique and valuable means to determine 3D structural integrity of nerve conduits and nerve healing following reconstruction. Furthermore, this paper shows that even if conduit compression and degradation occur, nerve regeneration can still take place.

  14. Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.

    Science.gov (United States)

    Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming

    2017-03-01

    Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush

    KAUST Repository

    Morrison, Brett M.

    2015-01-01

    Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21. days in wild-type mice to greater than 38. days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote mice have no recovery of CMAP at 42. days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42. days post-crush in the MCT1 heterozygote mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote mice at 4. weeks and tibial mixed sensory and motor nerve at 3. weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.

  16. Electrospun nanofiber sheets incorporating methylcobalamin promote nerve regeneration and functional recovery in a rat sciatic nerve crush injury model.

    Science.gov (United States)

    Suzuki, Koji; Tanaka, Hiroyuki; Ebara, Mitsuhiro; Uto, Koichiro; Matsuoka, Hozo; Nishimoto, Shunsuke; Okada, Kiyoshi; Murase, Tsuyoshi; Yoshikawa, Hideki

    2017-04-15

    Peripheral nerve injury is one of common traumas. Although injured peripheral nerves have the capacity to regenerate, axon regeneration proceeds slowly and functional outcomes are often poor. Pharmacological enhancement of regeneration can play an important role in increasing functional recovery. In this study, we developed a novel electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), one of the active forms of vitamin B12 homologues, to deliver it enough locally to the peripheral nerve injury site. We evaluated whether local administration of MeCbl at the nerve injury site was effective in promoting nerve regeneration. Electrospun nanofiber sheets gradually released MeCbl for at least 8weeks when tested in vitro. There was no adverse effect of nanofiber sheets on function in vivo of the peripheral nervous system. Local implantation of nanofiber sheets incorporating MeCbl contributed to the recovery of the motor and sensory function, the recovery of nerve conduction velocity, and the promotion of myelination after sciatic nerve injury, without affecting plasma concentration of MeCbl. Methylcobalamin (MeCbl) is a vitamin B12 analog and we previously reported its effectiveness in axonal outgrowth of neurons and differentiation of Schwann cells both in vitro and in vivo. Here we estimated the effect of local administered MeCbl with an electrospun nanofiber sheet on peripheral nerve injury. Local administration of MeCbl promoted functional recovery in a rat sciatic nerve crush injury model. These sheets are useful for nerve injury in continuity differently from artificial nerve conduits, which are useful only for nerve defects. We believe that the findings of this study are relevant to the scope of your journal and will be of interest to its readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Directory of Open Access Journals (Sweden)

    Farzaneh Samiee

    2017-09-01

    Full Text Available The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated. The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA. Evoked surface EMG was recorded from biceps femoris (BF and gluteus maximus (GM muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001, however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity.

  18. Effect of electrical stimulation on motor nerve regeneration in sciatic nerve ligated-mice

    Science.gov (United States)

    Samiee, Farzaneh; Zarrindast, Mohammad-Reza

    2017-01-01

    The purpose of this study was to investigate the effect of electrical stimulation on sciatic nerve regeneration and functional recovery of target muscles. Mice were randomly divided into 3 groups: ligated without electrical stimulation, ligated with electrical stimulation and control (non-ligated). The unilateral peripheral mononeuropathy was produced on the right hind limb. Sciatic nerve was then electrically stimulated daily for a period of 2 weeks (duration: 0.2 msec, frequency: 100Hz, amplitude: 15mA). Evoked surface EMG was recorded from biceps femoris (BF) and gluteus maximus (GM) muscles on the 3rd, 7th, 10th and 14th day after sciatic nerve ligation. Muscle force and sensitivity was determined by processing of the recorded EMG signals in time and frequency domains respectively. The results showed electrical stimulation (ES) produced a significant increase in the EMG response of BF, and muscle force significantly increased on the 14th day (p<0.001), however no significant difference was found in GM muscle force between experimental groups. This may be due to possible innervation by inferior gluteal nerve. Frequency analysis of BF signals indicates that hyperalgesia remained after 14 days in both ligated groups. On the 14th day no difference in GM muscle sensitivity was found between groups. In conclusion, the results of this study have shown that the electrical stimulation of sciatic nerve accelerates nerve repair and indirectly improves BF muscle force to a comparable level with control without effect on muscle sensitivity. However, ES had no effect on GM muscle force and sensitivity. PMID:29118955

  19. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve.

    Science.gov (United States)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-09-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff electrodes. The timing of laminectomy was based on the presence of regenerating fibres along the nerve within the tibial cuff. Stimulation of unlesioned tibial nerves (n = 6) evoked the largest motor response in S1 ventral root and the largest sensory response in L7 dorsal root. Growth rates were compared by mapping the regenerating nerve fibres within the tibial nerve cuff to all ventral or dorsal roots and, regardless of the lesion type, the fastest growth was similar in sensory and motor fibres. Maturation was assessed as recovery of the maximum motor and sensory conduction velocities (CVs) within the tibial nerve cuff. Throughout the observation period the CV was approximately 14% faster in regenerated sensory fibres than in motor fibres in accordance with the difference observed in control nerves. Recovery of amplitude was only partial after section, whereas the root distribution pattern was restored. Our data suggest that the fastest growth and maturation rates that can be achieved during regeneration are similar for motor and sensory myelinated fibres.

  20. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve......Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  1. Desmoplastic melanoma may mimic a cutaneous peripheral nerve sheath tumor: Report of 3 challenging cases.

    Science.gov (United States)

    Machado, Isidro; Llombart, Beatriz; Cruz, Julia; Traves, Víctor; Requena, Celia; Nagore, Eduardo; Parafioriti, Antonina; Monteagudo, Carlos; Llombart-Bosch, Antonio

    2017-04-12

    Desmoplastic melanoma (DM) and cutaneous malignant peripheral nerve sheath tumors (MPNST) reveal histological and immunohistochemical similarities, including S100 positivity and negative staining for conventional melanocytic markers. We present 3 cases of cutaneous S100-positive spindle cell tumors in elderly patients, in which first findings led to initial misdiagnoses as cutaneous MPNST and benign peripheral sheath nerve tumor (neurofibroma). The identification of adjacent atypical melanocytic hyperplasia in the overlying skin along with tumor cell proliferation, also in the superficial dermis, the neurotropic component and the absence of any relationship between the tumor and a major nerve, pre-existing neural benign tumor or the existence of stigmata suggestive of neurofibromatosis raised consideration of a DM. Careful attention should be paid to the presence of a firm dermal nodule and atypical scar lesions especially in sun-exposed areas (mainly head and neck region) in elderly patients associated with S100-positive spindle cell proliferation, solar elastosis and adjacent atypical melanocytic proliferation. In such cases, the possibility of a DM should be excluded with caution, especially if the tumor reveals a paucicellular morphology resembling various non-melanocytic neoplasms including malignant or benign peripheral sheath nerve tumors. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  3. Light-microscopic and electron-microscopic evaluation of short-term nerve regeneration using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide

    NARCIS (Netherlands)

    denDunnen, WFA; Stokroos, [No Value; Blaauw, EH; Holwerda, A; Pennings, AJ; Robinson, PH; Schakenraad, JM

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a IO-mm gap, using a biodegradable poly(DL-lactide-epsilon-caprolacton) nerve guide, with an internal diameter of 1.5 mm and a wall thickness of 0.30 mm. To do so, we evaluated regenerating nerves using light

  4. Improvement of sciatic nerve regeneration using laminin-binding human NGF-beta.

    Directory of Open Access Journals (Sweden)

    Wenjie Sun

    Full Text Available BACKGROUND: Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA, NGF-beta could target to nerve cells and improve nerve regeneration. METHODS: Laminin-binding assay and sustained release assay of NGF-beta fused with NtA (LBD-NGF from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested. FINDINGS: LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages. CONCLUSION: Fused with NtA, NGF-beta could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.

  5. Orientated Guidance of Peripheral Nerve Regeneration Using Conduits with a Microtube Array Sheet (MTAS).

    Science.gov (United States)

    Wang, Yueming; Wang, Wenjin; Wo, Yan; Gui, Ting; Zhu, Hao; Mo, Xiumei; Chen, Chien-Chung; Li, Qingfeng; Ding, Wenlong

    2015-04-29

    Material surface topography has been shown to affect the biological behavior of cells in vitro; however, the in vivo effect on peripheral nerve regeneration has not been explored. Here, we studied the potential of a microtube array sheet (MTAS) with a unique longitudinal surface topography to promote peripheral nerve regeneration efficiency, both in vivo and in vitro. Schwann cells, spinal cord motor neurons, and dorsal root ganglion neurons were seeded on the MTAS to study the effect of the construct on the biological properties and behaviors of neural cells. The MTAS guided the oriented migration of Schwann cells without affecting other critical biological properties, such as proliferation and neurotrophin expression. In addition, the MTAS guided the directed extension of neurites from both types of neurons. Next, we tested the capability of the MTAS to facilitate peripheral nerve regeneration by bridging a 10 mm sciatic nerve defect in rats with a nerve conduit equipped with an MTAS lining. The MTAS significantly promoted peripheral nerve regeneration, as suggested by the greater fiber caliber in the midconduit and the greater abundance of fibers in nerve segment distal to the conduit. Moreover, scanning electron microscopy (SEM) analysis suggested the orientated guidance of nerve regeneration by the MTAS, as indicated by the smaller eccentricity of the nerve fibers and the concordant arrangement of the collagen fiber in both the fibers and the matrix in the MTAS group. Our results collectively suggest that the conduits with the MTAS developed in this study have significant potential for facilitating peripheral nerve regeneration by modifying critical biological behaviors and guiding orientated nerve growth.

  6. Primary Cutaneous Carcinosarcoma: The first reported case with peripheral nerve sheath differentiation

    Directory of Open Access Journals (Sweden)

    Pelin Yıldız

    2014-06-01

    Full Text Available Primary cutaneous carcinosarcomas (CS are extremely rare biphasic tumors mainly located on sun-exposed areas. Two hypotheses–multiclonal (convergence and monoclonal (divergence- have been suggested for the evolution of the tumor. According to multiclonal hypothesis two or more stem cells of epithelial and mesenchymal origin give rise to these tumors, while a single totipotential cell differentiatiate into epithelial and mesenchymal components, either synchronously or metachronously according to monoclonal hypothesis. Cutaneous CSs are subdivided into two distinct groups as epidermal and adnexal CSs, due to their epithelial content. We present an interesting cutaneous adnexal CS, showing peripheral nerve sheath differentiation and having the spiradenocarcinoma component derived from spiradenoma. As far as we know, it is the first case of the literature with this features.

  7. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    Science.gov (United States)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  8. The functional and morphological characteristics of sciatic nerve degeneration and regeneration after crush injury in rats

    NARCIS (Netherlands)

    Sta, M.; Cappaert, N.L.M.; Ramekers, D.; Baas, F.; Wadman, W.J.

    2014-01-01

    BACKGROUND: Peripheral nerve damage induces a sequence of degeneration and regeneration events with a specific time course that leads to (partial) functional recovery. Quantitative electrophysiological analysis of degeneration and recovery over time is essential to understand the process. NEW

  9. Topographical anatomy of superficial veins, cutaneous nerves, and arteries at venipuncture sites in the cubital fossa.

    Science.gov (United States)

    Mikuni, Yuko; Chiba, Shoji; Tonosaki, Yoshikazu

    2013-01-01

    We investigated correlations among the superficial veins, cutaneous nerves, arteries, and venous valves in 128 cadaveric arms in order to choose safe venipuncture sites in the cubital fossa. The running patterns of the superficial veins were classified into four types (I-IV) and two subtypes (a and b). In types I and II, the median cubital vein (MCV) was connected obliquely between the cephalic and basilic veins in an N-shape, while the median antebrachial vein (MAV) opened into the MCV in type I and into the basilic vein in type II. In type III, the MCV did not exist. In type IV, additional superficial veins above the cephalic and basilic veins were developed around the cubital fossa. In types Ib-IVb, the accessory cephalic vein was developed under the same conditions as seen in types Ia-IVa, respectively. The lateral cutaneous nerve of the forearm descended deeply along the cephalic vein in 124 cases (97 %), while the medial cutaneous nerve of the forearm descended superficially along the basilic vein in 94 (73 %). A superficial brachial artery was found in 27 cases (21 %) and passed deeply under the ulnar side of the MCV. A median superficial antebrachial artery was found in 1 case (1 %), which passed deeply under the ulnar side of the MCV and ran along the MAV. Venous valves were found at 239 points in 28 cases with superficial veins, with a single valve seen at 79 points (33 %) and double valves at 160 points (67 %). At the time of intravenous injection, caution is needed regarding the locations of cutaneous nerves, brachial and superficial brachial arteries, and venous valves. The area ranging from the middle segment of the MCV to the confluence between the MCV and cephalic vein appears to be a relatively safe venipuncture site.

  10. Superficial or cutaneous malignant peripheral nerve sheath tumor--clinical experience at Taipei Veterans General Hospital.

    Science.gov (United States)

    Feng, Chin-Jung; Ma, Hsu; Liao, Wen-Chieh

    2015-05-01

    Primary malignant peripheral nerve sheath tumors (MPNSTs) with a cutaneous or subcutaneous origin represent a small subset of MPNSTs thought to be derived from cutaneous neurofibromas or small peripheral nerves. Few cases of superficial MPNSTs originating from the skin have been reported in the literature. From October 1999 to February 2014, 13 patients were diagnosed with superficial or cutaneous MPNSTs and received treatment at Taipei Veterans General Hospital. Clinical data were collected via retrospective chart review. A retrospective study was performed to compare superficial and deep-seated lesions in terms of local recurrence, distal metastasis, and survival analysis. The relevant literature is also briefly reviewed. The most frequent initial symptoms were local swelling and pain. Ten tumors were found in the extremities, and 3 tumors were located on the trunk. All patients underwent surgery with curative intent. Four patients developed local recurrence, and 3 developed distant metastasis. Three of 13 patients died after a follow-up period of 11 to 180 months (mean, 53.4). Compared to deep-seated MPNSTs, superficial MPNSTs had a lower histopathological grading and better survival rate. Superficial MPNSTs are a rare variant of MPNST. The relatively frequent lack of associated neurofibromatosis and superficial location within the dermis and subcutis may result in this entity being overlooked. According to our clinical experience, superficial MPNSTs might have better prognosis, but similar recurrence and metastasis rates compared with deep-seated lesions. Hence, awareness of this entity should prompt its consideration in the differential diagnosis of cutaneous sarcomas.

  11. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  12. Adipocyte-derived and dedifferentiated fat cells promoting facial nerve regeneration in a rat model.

    Science.gov (United States)

    Matsumine, Hajime; Takeuchi, Yuichi; Sasaki, Ryo; Kazama, Tomohiko; Kano, Koichiro; Matsumoto, Taro; Sakurai, Hiroyuki; Miyata, Mariko; Yamato, Masayuki

    2014-10-01

    Dedifferentiated fat cells, obtained from the ex vivo ceiling culture of mature adipocytes of mammals, have a high proliferative potential and pluripotency. The authors transplanted dedifferentiated fat cells into a nerve defect created in rat facial nerve and evaluated nerve regeneration ability. The buccal branch of the facial nerve of rats was exposed, and a 7-mm nerve defect was created. Green fluorescent protein-positive dedifferentiated fat cells prepared from adipocytes were mixed with type 1 collagen scaffold and infused into a silicone tube, which was then transplanted into the nerve defect in a green fluorescent protein-negative rat (the dedifferentiated fat group). Regenerated nerves were excised at 13 weeks after transplantation and examined histologically and physiologically. The findings were compared with those of autografts and silicone tubes loaded with collagen gel alone (the control group) transplanted similarly. Axon diameter of regenerated nerve increased significantly in the dedifferentiated fat group compared with the control group, whereas no significant difference was found between the dedifferentiated fat and autograft groups. Myelin thickness was found to be largest in the autograft group, followed by the dedifferentiated fat and the control groups, showing significant differences between all pairs of groups. Evaluation of physiologic function of nerves by compound muscle action potential revealed a significantly better result in the dedifferentiated fat group than in the control group. The regenerated nerves in the dedifferentiated fat group had S100 and green fluorescent protein-double-positive Schwann-like supportive cells. After being transplanted into a facial nerve defect, dedifferentiated fat cells promoted the maturation of the regenerated nerve.

  13. Sensory restoration by lateral antebrachial cutaneous to ulnar nerve transfer in children with global brachial plexus injuries.

    Science.gov (United States)

    Ruchelsman, David E; Price, Andrew E; Valencia, Herbert; Ramos, Lorna E; Grossman, John A I

    2010-12-01

    Selective peripheral nerve transfers represent an emerging reconstructive strategy in the management of both pediatric and adult brachial plexus and peripheral nerve injuries. Transfer of the lateral antebrachial cutaneous nerve of the forearm into the distal ulnar nerve is a useful means to restore sensibility to the ulnar side of the hand when indicated. This technique is particularly valuable in the management of global brachial plexus birth injuries in children for which its application has not been previously reported. Four children ages 4 to 9 years who sustained brachial plexus birth injury with persistent absent sensibility on the unlar aspect of the hand underwent transfer of the lateral antebrachial cutaneous nerve to the distal ulnar nerve. In three patients, a direct transfer with a distal end-to-side repair through a deep longitudinal neurotomy was performed. In a single patient, an interposition nerve graft was required. Restoration of sensibility was evaluated by the "wrinkle test."

  14. Posterior psoas vs 3-in-1 approach for lateral femoral cutaneous and obturator nerve block for anterior cruciate ligament repair.

    Science.gov (United States)

    Cappelleri, G; Ghisi, D; Fanelli, A; Aldegheri, G; La Colla, L; Albertin, A

    2009-10-01

    The aim of this article was to test the hypothesis that the posterior psoas compartment approach to the lumbar plexus help to achieve better blockade of the lateral femoral cutaneous and obturator nerves than the classic anterior 3-in-1 femoral nerve block. Thirty-six patients who were undergoing anterior cruciate ligament repair were randomly allocated to receive a femoral nerve block using either an anterior 3-in-1 femoral block (group Femoral, N=18) or a posterior psoas compartment approach (group Psoas, N=18) using 30 mL of 1.5% mepivacaine. Successful nerve block was defined as a complete loss of pinprick sensation in the region that is supplied by the lateral femoral cutaneous nerve along with adequate motor block of the obturator nerve 30 minutes after injection. The degree of motor block of the obturator nerve was measured using adduction strength with a mercury sphygmomanometer as previously described by Lang. Thirty minutes after the completion of the block, sensory block of the lateral femoral cutaneous nerve was observed in 14 patients (78%) from the Psoas group and in 3 patients (17%) from the Femoral group (P=0.001). Thirty minutes after the completion of the block, a 119+/-40 mmHg decrease was found in Psoas group, in contrast to the 25+/-22 mmHg decrease found in the Femoral group (Ppsoas compartment approach provides a more reliable block of the lateral femoral cutaneous and obturator nerves than the anterior 3-in-1 approach.

  15. Nerve regeneration-induced recovery of quinine avoidance after complete gustatory deafferentation of the tongue.

    Science.gov (United States)

    Geran, Laura C; Garcea, Mircea; Spector, Alan C

    2004-11-01

    The concentration-dependent decrease in quinine licking by rats is substantially attenuated by combined bilateral transection of the chorda tympani (CT) and glossopharyngeal (GL) nerves, but transection of either nerve alone produces marginal impairments at most. Here we tested whether regeneration of one or both of these nerves after combined transection would result in recovery of taste avoidance. Water-restricted rats were presented with a series of brief-access (5 s) taste trials (water and 0.003-3.0 mM quinine-HCl) in a 5-day test block of 40-min sessions both before nerve transection and starting 75-77 days after transection. Licking avoidance returned to presurgical levels when both nerves were allowed to regenerate. When only the GL was allowed to regenerate, performance did not differ from that of sham-transected animals. This suggests that even after considerable gustatory deafferentation, regeneration has the capacity to restore normal taste-guided behavior. Surprisingly, when only the CT was allowed to regenerate, avoidance behavior was severely impaired and was not different from that of rats in which regeneration of both nerves was prevented. Taking into account prior findings, it appears that the absence of the GL in the presence of an intact CT is fundamentally different from the absence of the GL in the presence of a regenerated CT with respect to some taste functions. This represents the first reported instance to our knowledge in which the capacity of a regenerated nerve to maintain taste-guided behavior was distinctly different from that of an intact nerve in a rodent model. Copyright 2004 American Physiological Society

  16. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    Science.gov (United States)

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm 2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  17. IGF-1 and Chondroitinase ABC Augment Nerve Regeneration after Vascularized Composite Limb Allotransplantation.

    Directory of Open Access Journals (Sweden)

    Nataliya V Kostereva

    Full Text Available Impaired nerve regeneration and inadequate recovery of motor and sensory function following peripheral nerve repair remain the most significant hurdles to optimal functional and quality of life outcomes in vascularized tissue allotransplantation (VCA. Neurotherapeutics such as Insulin-like Growth Factor-1 (IGF-1 and chondroitinase ABC (CH have shown promise in augmenting or accelerating nerve regeneration in experimental models and may have potential in VCA. The aim of this study was to evaluate the efficacy of low dose IGF-1, CH or their combination (IGF-1+CH on nerve regeneration following VCA. We used an allogeneic rat hind limb VCA model maintained on low-dose FK506 (tacrolimus therapy to prevent rejection. Experimental animals received neurotherapeutics administered intra-operatively as multiple intraneural injections. The IGF-1 and IGF-1+CH groups received daily IGF-1 (intramuscular and intraneural injections. Histomorphometry and immunohistochemistry were used to evaluate outcomes at five weeks. Overall, compared to controls, all experimental groups showed improvements in nerve and muscle (gastrocnemius histomorphometry. The IGF-1 group demonstrated superior distal regeneration as confirmed by Schwann cell (SC immunohistochemistry as well as some degree of extrafascicular regeneration. IGF-1 and CH effectively promote nerve regeneration after VCA as confirmed by histomorphometric and immunohistochemical outcomes.

  18. Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Ping Yao

    2018-01-01

    Full Text Available Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve physical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the control and poly (D, L-lactic acid groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration.

  19. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    Science.gov (United States)

    2015-12-01

    which cause extensive damage to skin, bones , and nerves. The management of damaged peripheral nerves is challenging for patients and surgeons... artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg 2009 Jan;25(1):55-61. Pace

  20. Recombinant human fibroblast growth factor-2 promotes nerve regeneration and functional recovery after mental nerve crush injury.

    Science.gov (United States)

    Lee, Sung Ho; Jin, Wei-Peng; Seo, Na Ri; Pang, Kang-Mi; Kim, Bongju; Kim, Soung-Min; Lee, Jong-Ho

    2017-04-01

    Several studies have shown that fibroblast growth factor-2 (FGF2) can directly affect axon regeneration after peripheral nerve damage. In this study, we performed sensory tests and histological analyses to study the effect of recombinant human FGF-2 (rhFGF2) treatment on damaged mental nerves. The mental nerves of 6-week-old male Sprague-Dawley rats were crush-injured for 1 minute and then treated with 10 or 50 μg/mL rhFGF2 or PBS in crush injury area with a mini Osmotic pump. Sensory test using von Frey filaments at 1 week revealed the presence of sensory degeneration based on decreased gap score and increased difference score. However, at 2 weeks, the gap score and difference score were significantly rebounded in the mental nerve crush group treated with 10 μg/mL rhFGF2. Interestingly, treatment with 10 μg/mL rhFGF had a more obviously positive effect on the gap score than treatment with 50 μg/mL rhFGF2. In addition, retrograde neuronal tracing with Dil revealed a significant increase in nerve regeneration in the trigeminal ganglion at 2 and 4 weeks in the rhFGF2 groups (10 μg/mL and 50 μg/mL) than in the PBS group. The 10 μg/mL rhFGF2 group also showed an obviously robust regeneration in axon density in the mental nerve at 4 weeks. Our results demonstrate that 10 μg/mL rhFGF induces mental nerve regeneration and sensory recovery after mental nerve crush injury.

  1. C6 deficiency does not alter intrinsic regeneration speed after peripheral nerve crush injury

    NARCIS (Netherlands)

    Sta, M.; Cappaert, N. L. M.; Ramekers, D.; Ramaglia, V.; Wadman, W. J.; Baas, F.

    2014-01-01

    Peripheral nerve injury leads to Wallerian degeneration, followed by regeneration, in which functionality and morphology of the nerve are restored. We previously described that deficiency for complement component C6, which prevents formation of the membrane attack complex, slows down degeneration

  2. Misdirection and guidance of regenerating axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    de Ruiter, Godard C W; Spinner, Robert J; Verhaagen, J.; Malessy, Martijn J A

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  3. Misdirection and guidance of regenerating axons after experimental nerve injury and repair A review

    NARCIS (Netherlands)

    Ruiter, G.C.W.; Spinner, R.J.; Verhaagen, J.; Malessay, M.J.A.

    2014-01-01

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  4. Regulation of semaphorin III/collapsin-1 gene expression during peripheral nerve regeneration

    NARCIS (Netherlands)

    Pasterkamp, R Jeroen; Giger, Roman J; Verhaagen, J

    1998-01-01

    The competence of neurons to regenerate depends on their ability to initiate a program of gene expression supporting growth and on the growth-permissive properties of glial cells in the distal stump of the injured nerve. Most studies on intrinsic molecular mechanisms governing peripheral nerve

  5. A Tool for Teaching Three-Dimensional Dermatomes Combined with Distribution of Cutaneous Nerves on the Limbs

    Science.gov (United States)

    Kooloos, Jan G. M.; Vorstenbosch, Marc A. T. M.

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two…

  6. Identification of adequate vehicles to carry nerve regeneration inducers using tubulisation

    Directory of Open Access Journals (Sweden)

    do Nascimento-Elias Adriana Helena

    2012-08-01

    Full Text Available Abstract Background Axonal regeneration depends on many factors, such as the type of injury and repair, age, distance from the cell body and distance of the denervated muscle, loss of surrounding tissue and the type of injured nerve. Experimental models use tubulisation with a silicone tube to research regenerative factors and substances to induce regeneration. Agarose, collagen and DMEM (Dulbecco’s modified Eagle’s medium can be used as vehicles. In this study, we compared the ability of these vehicles to induce rat sciatic nerve regeneration with the intent of finding the least active or inert substance. The experiment used 47 female Wistar rats, which were divided into four experimental groups (agarose 4%, agarose 0.4%, collagen, DMEM and one normal control group. The right sciatic nerve was exposed, and an incision was made that created a 10 mm gap between the distal and proximal stumps. A silicone tube was grafted onto each stump, and the tubes were filled with the respective media. After 70 days, the sciatic nerve was removed. We evaluated the formation of a regeneration cable, nerve fibre growth, and the functional viability of the regenerated fibres. Results Comparison among the three vehicles showed that 0.4% agarose gels had almost no effect on provoking the regeneration of peripheral nerves and that 4% agarose gels completely prevented fibre growth. The others substances were associated with profuse nerve fibre growth. Conclusions In the appropriate concentration, agarose gel may be an important vehicle for testing factors that induce regeneration without interfering with nerve growth.

  7. Anastomotic stoma coated with chitosan film as a betamethasone dipropionate carrier for peripheral nerve regeneration

    OpenAIRE

    Ping Yao; Peng Li; Jun-jian Jiang; Hong-ye Li

    2018-01-01

    Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve physical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfacto...

  8. Regeneration of the vagus nerve after highly selective vagotomy, an autoradiographic study in the ferret stomach .

    OpenAIRE

    Al Muhtaseb, M. H. [محمد هاشم المحتسب; Abu-Khalaf, M.

    1995-01-01

    This study investigates the regeneration of the vagal nerve fibres after highly selective vagotomy in the ferret stomach by using the autoradiographic technique. Autoradiographic examination of the body of the stomach in the acute experimental animals has failed to show any labelled nerve fibres after highly selective vagotomy while the pylorus has shown many labelled nerve fibres . These observations indicate that the highly selective vagotomy has been performed properly and adequately. ...

  9. Chitosan-film associated with mesenchymal stem cells enhanced regeneration of peripheral nerves: A rat sciatic nerve model.

    Science.gov (United States)

    Moattari, Mehrnaz; Kouchesfehani, Homa Mohseni; Kaka, Gholamreza; Sadraie, Seyed Homayoon; Naghdi, Majid; Mansouri, Korosh

    2018-03-01

    Peripheral nerve injuries comprise significant portion of the nervous system injuries. Although peripheral nerves show some capacity of regeneration after injury, but the extent of regeneration is not remarkable. Regeneration might be through the activity of the mesenchymal stem cells (MSCs) which can release growth factors or extracellular matrix components or by the therapeutic effect of some material with the MSCs. The present study aimed to evaluate the regeneration of transected sciatic nerve by a therapeutic value of mesenchymal stem cells (MSCs) associated with chitosan-film (Cs) in rat. Male Wistar rats (n=42, 180-200g) were randomly divided into intact; control; sham; Cs; MSCs; MSCs + Cs groups. Functional recovery was evaluated at 2, 4, 6 and 8 weeks after surgery using sciatic functional index (SFI), hot water paw immersion test, electrophysiological, histological analyses. The rats in the MSCs+Cs group showed significant decrease in SFI and hot water paw immersion test during the 2nd to 8th weeks after surgery. Electrophysiological findings showed a significant decrease in latency time in the MSCs +Cs group. Amplitude of the nerve impulses also increased. Number of nerve fibers with more than 6 μm diameters increased significantly in MSCs+Cs. The number of nerve fibers with less than 4 μm diameters also increased significantly in MSCs+Cs group. Taken together, mesenchymal stem cells associated with Cs could improve functional and histomorphological properties of the sciatic nerve after injury which may have some clinical outcomes as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    Regeneration of myelinated and unmyelinated sensory nerve fibres after a crush lesion of the rat sciatic nerve was investigated by means of retrograde labelling. The advantage of this method is that the degree of regeneration is estimated on the basis of sensory somata rather than the number...... of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...... cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate...

  11. Circadian Rhythm Influences the Promoting Role of Pulsed Electromagnetic Fields on Sciatic Nerve Regeneration in Rats

    Science.gov (United States)

    Zhu, Shu; Ge, Jun; Liu, Zhongyang; Liu, Liang; Jing, Da; Ran, Mingzi; Wang, Meng; Huang, Liangliang; Yang, Yafeng; Huang, Jinghui; Luo, Zhuojing

    2017-01-01

    Circadian rhythm (CR) plays a critical role in the treatment of several diseases. However, the role of CR in the treatment of peripheral nerve defects has not been studied. It is also known that the pulsed electromagnetic fields (PEMF) can provide a beneficial microenvironment to quicken the process of nerve regeneration and to enhance the quality of reconstruction. In this study, we evaluate the impact of CR on the promoting effect of PEMF on peripheral nerve regeneration in rats. We used the self-made “collagen-chitosan” nerve conduits to bridge the 15-mm nerve gaps in Sprague-Dawley rats. Our results show that PEMF stimulation at daytime (DPEMF) has most effective outcome on nerve regeneration and rats with DPEMF treatment achieve quickly functional recovery after 12 weeks. These findings indicate that CR is an important factor that determines the promoting effect of PEMF on peripheral nerve regeneration. PEMF exposure in the daytime enhances the functional recovery of rats. Our study provides a helpful guideline for the effective use of PEMF mediations experimentally and clinically. PMID:28360885

  12. Network-Based Method for Identifying Co- Regeneration Genes in Bone, Dentin, Nerve and Vessel Tissues.

    Science.gov (United States)

    Chen, Lei; Pan, Hongying; Zhang, Yu-Hang; Feng, Kaiyan; Kong, XiangYin; Huang, Tao; Cai, Yu-Dong

    2017-10-02

    Bone and dental diseases are serious public health problems. Most current clinical treatments for these diseases can produce side effects. Regeneration is a promising therapy for bone and dental diseases, yielding natural tissue recovery with few side effects. Because soft tissues inside the bone and dentin are densely populated with nerves and vessels, the study of bone and dentin regeneration should also consider the co-regeneration of nerves and vessels. In this study, a network-based method to identify co-regeneration genes for bone, dentin, nerve and vessel was constructed based on an extensive network of protein-protein interactions. Three procedures were applied in the network-based method. The first procedure, searching, sought the shortest paths connecting regeneration genes of one tissue type with regeneration genes of other tissues, thereby extracting possible co-regeneration genes. The second procedure, testing, employed a permutation test to evaluate whether possible genes were false discoveries; these genes were excluded by the testing procedure. The last procedure, screening, employed two rules, the betweenness ratio rule and interaction score rule, to select the most essential genes. A total of seventeen genes were inferred by the method, which were deemed to contribute to co-regeneration of at least two tissues. All these seventeen genes were extensively discussed to validate the utility of the method.

  13. Microanatomical and immunohistochemical study of the human lateral antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications.

    Science.gov (United States)

    Marx, S Chakravarthy; Kumar, Pramod; Dhalapathy, S; Prasad, Keerthana; Marx, C Anitha

    2010-09-01

    Changes in the intraneural anatomy with age can cause poor prognosis of nerve repair in patients after nerve injury. The occurrence of Complex Regional Pain Syndrome-Type II, secondary to peripheral nerve injury, is common. The purpose of this study is to asses changes in cross-sectional anatomy of the lateral antebrachial cutaneous nerve of forearm (LCNF) at the antecubital fossa in the fascicular, nonfascicular components (adipose and nonadipose tissue), and sympathetic fibers area with respect to age. For the purpose of the study, 32 human (37-88 years) fresh cadaveric LCNF were collected from left-antecubital fossae and processed for histological, morphometric analysis [total cross-sectional (Asc), fascicular (Af), and nonfascicular area (Anonf)], and immunohistochemical method (tyrosine hydroxylase) for sympathetic fibers. The LCNF's average total cross-sectional area was 3.024 mm(2), and fascicular area was 0.582 mm(2). The average number of fascicles per mm(2) was 3.09. The cross-sectional area in the nerve was mainly occupied by nonfascicular connective tissue (80.75%). There was increased adipose tissue deposition (48.48% of Asc) and decreased collagen fibers (32.24% of Asc) in interfascicular domains without any definite relationship with age. The average sympathetic fiber area was 0.026 mm(2) within the nerve fascicular area without any correlation with age. In LCNF, there was more adipose tissue and less collagen fibers deposition in the interfascicular domains of all age cases, and this may act as an obstacle for nerve fiber regeneration on using LCNF as an interpositional nerve graft.

  14. Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes

    Science.gov (United States)

    de Ruiter, Godard C.; Spinner, Robert J.; Malessy, Martijn J. A.; Moore, Michael J.; Sorenson, Eric J.; Currier, Bradford L.; Yaszemski, Michael J.; Windebank, Anthony J.

    2012-01-01

    Objective Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons. Methods Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons. Results In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair. Conclusion Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair. PMID:18728579

  15. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush.

    Science.gov (United States)

    Song, Jialin; Li, Xueyang; Li, Yingli; Che, Junyi; Li, Xiaoming; Zhao, Xiaotian; Chen, Yinghui; Zheng, Xianyou; Yuan, Weien

    2017-01-01

    MicroRNA (miRNA) has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI) was synthetized from low molecular weight polyethyleneimine (PEI1.8kDa) cross-linked with 2,6-pyridinedicarboxaldehyde. PDAPEI showed a lower cytotoxicity and higher transfection efficiency than PEI25kDa in transfecting miR-221/222 into rat Schwann cells (SCs). The upregulation of miR-221/222 in SCs promoted the expression of nerve growth factor and myelin basic protein in vitro. The mouse sciatic nerve crush injury model was used to evaluate the effectiveness of PDAPEI/miR-221/222 complexes for nerve regeneration in vivo. The results of electrophysiological tests, functional assessments, and histological and immunohistochemistry analyses demonstrated that PDAPEI/miR-221/222 complexes significantly promoted nerve regeneration after sciatic nerve crush, specifically enhancing remyelination. All these results show that the use of PDAPEI to deliver miR-221/222 may provide a safe therapeutic means of treating nerve crush injury and may help to overcome the barrier of biomaterial toxicity and low efficiency often encountered during medical intervention.

  16. Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats

    Directory of Open Access Journals (Sweden)

    Chiung-Chyi Shen

    2013-01-01

    Full Text Available This study proposed a novel combination of neural regeneration techniques for the repair of damaged peripheral nerves. A biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium phosphate (TCP ceramic particles (genipin-gelatin-TCP, GGT to bridge the transection of a 15 mm sciatic nerve in rats. Two trigger points were irradiated transcutaneously using 660 nm of gallium-aluminum arsenide phosphide (GaAlAsP via laser diodes for 2 min daily over 10 consecutive days. Walking track analysis showed a significant improvement in sciatic functional index (SFI (P<0.01 and pronounced improvement in the toe spreading ability of rats undergoing laser stimulation. Electrophysiological measurements (peak amplitude and area illustrated by compound muscle action potential (CMAP curves demonstrated that laser stimulation significantly improved nerve function and reduced muscular atrophy. Histomorphometric assessments revealed that laser stimulation accelerated nerve regeneration over a larger area of neural tissue, resulting in axons of greater diameter and myelin sheaths of greater thickness than that observed in rats treated with nerve conduits alone. Motor function, electrophysiological reactions, muscular reinnervation, and histomorphometric assessments all demonstrate that the proposed therapy accelerated the repair of transected peripheral nerves bridged using a GGT nerve conduit.

  17. Low-Level Laser-Accelerated Peripheral Nerve Regeneration within a Reinforced Nerve Conduit across a Large Gap of the Transected Sciatic Nerve in Rats

    Science.gov (United States)

    Shen, Chiung-Chyi; Yang, Yi-Chin; Huang, Tsung-Bin; Chan, Shiuh-Chuan; Liu, Bai-Shuan

    2013-01-01

    This study proposed a novel combination of neural regeneration techniques for the repair of damaged peripheral nerves. A biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium phosphate (TCP) ceramic particles (genipin-gelatin-TCP, GGT) to bridge the transection of a 15 mm sciatic nerve in rats. Two trigger points were irradiated transcutaneously using 660 nm of gallium-aluminum arsenide phosphide (GaAlAsP) via laser diodes for 2 min daily over 10 consecutive days. Walking track analysis showed a significant improvement in sciatic functional index (SFI) (P < 0.01) and pronounced improvement in the toe spreading ability of rats undergoing laser stimulation. Electrophysiological measurements (peak amplitude and area) illustrated by compound muscle action potential (CMAP) curves demonstrated that laser stimulation significantly improved nerve function and reduced muscular atrophy. Histomorphometric assessments revealed that laser stimulation accelerated nerve regeneration over a larger area of neural tissue, resulting in axons of greater diameter and myelin sheaths of greater thickness than that observed in rats treated with nerve conduits alone. Motor function, electrophysiological reactions, muscular reinnervation, and histomorphometric assessments all demonstrate that the proposed therapy accelerated the repair of transected peripheral nerves bridged using a GGT nerve conduit. PMID:23737818

  18. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  19. Relationship of distraction rate with inferior alveolar nerve degeneration-regeneration shift

    Directory of Open Access Journals (Sweden)

    Ying-hua Zhao

    2018-01-01

    Full Text Available Distraction osteogenesis is an important technique for the treatment of maxillofacial abnormities and defects. However, distraction osteogenesis may cause the injury of the inferior alveolar nerve. The relationship between distraction rate and nerve degeneration-regeneration shift remains poorly understood. In this study, 24 rabbits were randomly divided into four groups. To establish the rabbit mandibular distraction osteogenesis model, the mandibles of rabbits in distraction osteogenesis groups were subjected to continuous osteogenesis distraction at a rate of 1.0, 1.5 and 2.0 mm/d, respectively, by controlling rounds of screwing each day in the distractors. In the sham group, mandible osteotomy was performed without distraction. Pin-prick test with a 10 g blunt pin on the labium, histological and histomorphometric analyses with methylene blue staining, Bodian's silver staining, transmission electron microscopy and myelinated fiber density of inferior alveolar nerve cross-sections were performed to assess inferior alveolar nerve conditions. At 28 days after model establishment, in the pin-prick test, the inferior alveolar nerve showed no response in the labium to a pin pricks in the 2 mm/d group, indicating a severe dysfunction. Histological and histomorphometric analyses indicated that the inferior alveolar nerve suffered more degeneration and injuries at a high distraction rate (2 mm/d. Importantly, the nerve regeneration, indicated by newborn Schwann cells and axons, was more abundant in 1.0 and 1.5 mm/d groups than in 2.0 mm/d group. We concluded that the distraction rate was strongly associated with the inferior alveolar nerve function, and the distraction rates of 1.0 and 1.5 mm/d had regenerative effects on the inferior alveolar nerve. This study provides an experimental basis for the relationship between distraction rate and nerve degeneration-regeneration shift during distraction osteogenesis, and may facilitate reducing nerve

  20. Local administration of prostaglandin E1 combined with silicone chamber improves peripheral nerve regeneration.

    Science.gov (United States)

    Najafpour, Alireza; Mohammadi, Rahim; Faraji, Darab; Amini, Keyvan

    2013-01-01

    The aim of this study was to assess the effect of locally administered prostaglandin E1 on peripheral nerve regeneration and functional recovery. Sixty male healthy white Wistar rats were divided into four experimental groups (n = 15), randomly: In transected group (TC), left sciatic nerve was transected and stumps were fixed in the adjacent muscle. In treatment group defect was bridged using silicone graft (SIL/PE) filled with 10 μL prostaglandin E1. In silicone graft group (SIL), the graft was filled with phosphate-buffered saline alone. In sham-operated group (SHAM), sciatic nerve was exposed and manipulated. Each group was subdivided into three subgroups of five animals each and regenerated nerve fibers were studied 4, 8 and 12 weeks after surgery. Behavioral testing, sciatic nerve functional study, gastrocnemius muscle mass and morphometric indices confirmed faster recovery of regenerated axons in SIL/PE than SIL group (p prostaglandin E1 improved functional recovery and morphometric indices of sciatic nerve. Local application of prostaglandin E1 improved functional recovery and morphometric indices of sciatic nerve. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Contralateral eye surgery with adjustable suture for management of third nerve palsy with aberrant regeneration

    Directory of Open Access Journals (Sweden)

    Phuong Thi Thanh Nguyen

    2017-01-01

    Full Text Available Aberrant regeneration of the third nerve following its palsy is commonly seen after trauma and compressive lesions. This phenomenon is thought to result due to misdirection of the regenerating axons. Surgical management is a great challenge in the third nerve palsy owing to multiple muscle involvement and is often accompanied by ptosis and poor Bell's phenomenon. We present a case of a 27-year-old male who developed isolated complete third nerve palsy of the left eye following head trauma. Features of aberrant regeneration were seen after 6 months, namely, inverse Duane's sign and Pseudo-Von Graefe's sign. He underwent recess-resect procedure in the unaffected eye with adjustable suture technique which not only corrected the deviation but also the ptosis by utilizing the oculomotor synkinesis. Thus, contralateral eye surgery combined with adjustable suture technique resulted in an accurate alignment of the eye and obviated the need for ptosis correction.

  2. Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly(DLLA-epsilon-CL) nerve guide filled with modified denatured muscle tissue

    NARCIS (Netherlands)

    Meek, MF; Robinson, PH; Stokroos, [No Value; Blaauw, EH; Kors, G; den Dunnen, WFA

    The aim of this study was to evaluate short-term peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a thin-walled biodegradable poly(DL-lactide-epsilon -caprolactone) nerve guide filled with modified denatured muscle tissue (MDMT). The evaluation was performed

  3. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis

    Directory of Open Access Journals (Sweden)

    Na Han

    2015-01-01

    Full Text Available Electrical stimulation has been shown to accelerate and enhance nerve regeneration in sensory and motor neurons after injury, but there is little evidence that focuses on the varying degrees of fibrosis in the delayed repair of peripheral nerve tissue. In this study, a rat model of sciatic nerve transection injury was repaired with a biodegradable conduit at 1 day, 1 week, 1 month and 2 months after injury, when the rats were divided into two subgroups. In the experimental group, rats were treated with electrical stimuli of frequency of 20 Hz, pulse width 100 ms and direct current voltage of 3 V; while rats in the control group received no electrical stimulation after the conduit operation. Histological results showed that stained collagen fibers comprised less than 20% of the total operated area in the two groups after delayed repair at both 1 day and 1 week but after longer delays, the collagen fiber area increased with the time after injury. Immunohistochemical staining revealed that the expression level of transforming growth factor β (an indicator of tissue fibrosis decreased at both 1 day and 1 week after delayed repair but increased at both 1 and 2 months after delayed repair. These findings indicate that if the biodegradable conduit repair combined with electrical stimulation is delayed, it results in a poor outcome following sciatic nerve injury. One month after injury, tissue degeneration and distal fibrosis are apparent and are probably the main reason why electrical stimulation fails to promote nerve regeneration after delayed repair.

  4. Role of Schwann cells in the regeneration of penile and peripheral nerves

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2015-01-01

    Full Text Available Schwann cells (SCs are the principal glia of the peripheral nervous system. The end point of SC development is the formation of myelinating and nonmyelinating cells which ensheath large and small diameter axons, respectively. They play an important role in axon regeneration after injury, including cavernous nerve injury that leads to erectile dysfunction (ED. Despite improvement in radical prostatectomy surgical techniques, many patients still suffer from ED postoperatively as surgical trauma causes traction injuries and local inflammatory changes in the neuronal microenvironment of the autonomic fibers innervating the penis resulting in pathophysiological alterations in the end organ. The aim of this review is to summarize contemporary evidence regarding: (1 the origin and development of SCs in the peripheral and penile nerve system; (2 Wallerian degeneration and SC plastic change following peripheral and penile nerve injury; (3 how SCs promote peripheral and penile nerve regeneration by secreting neurotrophic factors; (4 and strategies targeting SCs to accelerate peripheral nerve regeneration. We searched PubMed for articles related to these topics in both animal models and human research and found numerous studies suggesting that SCs could be a novel target for treatment of nerve injury-induced ED.

  5. Retroperitoneal anatomy of the iliohypogastric, ilioinguinal, genitofemoral, and lateral femoral cutaneous nerve: consequences for prevention and treatment of chronic inguinodynia.

    Science.gov (United States)

    Reinpold, W; Schroeder, A D; Schroeder, M; Berger, C; Rohr, M; Wehrenberg, U

    2015-08-01

    Chronic inguinodynia is one of the most frequent complications after groin herniorrhaphy. We investigated the retroperitoneal anatomy of the iliohypogastric, ilioinguinal, genitofemoral, and lateral femoral cutaneous nerve to prevent direct nerve injury during hernia repairs and to find the most advantageous approach for posterior triple neurectomy. We dissected the inguinal nerves in 30 human anatomic specimens bilaterally. The distances from each nerve and their entry points in the abdominal wall were measured in relation to the posterior superior iliac spine, anterior superior iliac spine, and the midpoint between the two iliac spines on the iliac crest. We evaluated our findings by creating high-resolution summation images. The courses of the iliohypogastric and ilioinguinal nerve are most consistent on the anterior surface of the quadratus lumborum muscle. The genitofemoral nerve always runs on the psoas muscle. The entry points of the nerves in the abdominal wall are located as follows: the iliohypogastric nerve is above the iliac crest and lateral from the anterior superior iliac spine, the ilioinguinal nerve is with great variability, either above or below the iliac crest and lateral from the anterior superior iliac spine, the genital branch is around the internal inguinal ring, the femoral branch is either cranial or caudal to the iliopubic tract, and the lateral femoral cutaneous nerve is either medial or lateral to the anterior superior iliac spine. Nerve injury during inguinal hernia repairs can be avoided by taking the topographic anatomy of the inguinal nerves into consideration. The most advantageous plane to look for the iliohypogastric and ilioinguinal nerve during posterior neurectomy is on the anterior surface of the quadratus lumborum muscle. For the surgical treatment of severe chronic inguinodynia, especially after posterior open or endoscopic mesh repair (TAPP/TEP), the retroperitoneoscopic or open retroperitoneal approach for posterior

  6. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    Science.gov (United States)

    2012-10-01

    the issues associated w ith the use of autografts, nerve gui dance conduits have been developed to bridge the gap between the trans ected nerve ends...Biomaterial Hydrogel" Western North Carolina Society for Neuroscience : Winston-Salem, NC 11/2011; North Carolina Tissue Engineering and Regenerative...Technology Applications for Combat Casualty Care: St. Pete Beach, FL 8/2010; Society for Neuroscience : San Diego, CA 11/2010; Tissue Engineering and

  7. Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

    Directory of Open Access Journals (Sweden)

    Huanxing Su

    2014-01-01

    Full Text Available Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to investigate potential inhibitory signals which influence axonal regeneration after root avulsion injury. The results of the study showed that root avulsion triggered GSK-3β activation in the injured motoneurons and remaining axons in the ventral funiculus. Systemic application of a clinical dose of lithium suppressed activated GSK-3β in the lesioned spinal cord to the normal level and induced extensive axonal regeneration into replanted ventral roots. Our study suggests that GSK-3β activity is involved in negative regulation for axonal elongation and regeneration and lithium, the specific GSK-3β inhibitor, enhances motoneuron regeneration from CNS to PNS.

  8. Stem cells and related factors involved in facial nerve function regeneration

    Directory of Open Access Journals (Sweden)

    Kamil H. Nelke

    2015-09-01

    Full Text Available The facial nerve (VII is one of the most important cranial nerves for head and neck surgeons. Its function is closely related to facial expressions that are individual for every person. After its injury or palsy, its functions can be either impaired or absent. Because of the presence of motor, sensory and parasympathetic fibers, the biology of its repair and function restoration depends on many factors. In order to achieve good outcome, many different therapies can be performed in order to restore as much of the nerve function as possible. When rehabilitation and physiotherapy are not sufficient, additional surgical procedures and therapies are taken into serious consideration. The final outcome of many of them is discussable, depending on nerve damage etiology. Stem cells in facial nerve repair are used, but long-term outcomes and results are still not fully known. In order to understand this therapeutic approach, clinicians and surgeons should understand the immunobiology of nerve repair and regeneration. In this review, potential stem cell usage in facial nerve regeneration procedures is discussed.

  9. The use of the ALT Flap and Lateral Femoral Cutaneous Nerve for the Reconstruction of Carpal Soft Tissue and Ulnar Nerve Defects: a Case Report.

    Science.gov (United States)

    Karonidis, Athanasios; Bouloumpasis, Serafeim; Apostolou, Konstantinos; Tsoutsos, Dimosthenis

    2015-06-01

    The anterolateral thigh (ALT) flap has become one of the workhorse flaps, with indications including diverse reconstructive problems. The lateral thigh area is also a useful donor site for nerve grafts. The lateral femoral cutaneous (LFC) nerve can be dissected along with the ALT flap for a substantial length, depending on the requirements of the recipient site. The LFC nerve can be used as a vascularized or non-vascularized nerve graft. The technique offers advantages and it can find clinical applications, satisfying the functional and aesthetic reconstructive requirements of a complex defect. We report the case of a patient who presented with traumatic soft tissue defect of the volar aspect of the wrist and ulnar nerve defect as a complication of a fracture of distal radius. An ALT flap was used to reconstruct the soft tissue defect. The ulnar nerve was resected due to necrosis and the gap was repaired with non-vascularized grafts of the anterior branch of the LFC nerve. The soft tissues were resurfaced successfully without complications. Functional recovery was good for the superficial branch of the ulnar nerve, whereas it was variable for the deep branch of the ulnar nerve. The anterolateral thigh area offers significant advantages as donor site in the reconstruction of complex soft tissue defects being a large source of vascularized skin, fat, fascia, muscle and nerve. This availability allows for single donor site dissection, minimizing the operating time and the associated morbidity.

  10. Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation

    Science.gov (United States)

    2012-02-01

    10-1-0927 TITLE: Mesenchymal Stem Cell Therapy for Nerve Regeneration and Immunomodulation after Composite Tissue Allotransplantation...immunosuppression. Bone Marrow Derived Mesenchymal stem cells (BM-MSCs) are pluripotent cells, capable of differentiation along multiple mesenchymal lineages into...As part of implemented transition from University of Pittsburgh to Johns Hopkins University, we optimized our mesenchymal stem cell (MSC) isolation

  11. The functional and morphological characteristics of sciatic nerve degeneration and regeneration after crush injury in rats

    NARCIS (Netherlands)

    Sta, M.; Cappaert, N. L. M.; Ramekers, D.; Baas, F.; Wadman, W. J.

    2014-01-01

    Peripheral nerve damage induces a sequence of degeneration and regeneration events with a specific time course that leads to (partial) functional recovery. Quantitative electrophysiological analysis of degeneration and recovery over time is essential to understand the process. The presented ex vivo

  12. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...

  13. THE EFFECTS OF NERVE GROWTH FACTOR ON MYELINATION OF REGENERATED FIBERS IN RAT

    Directory of Open Access Journals (Sweden)

    M. Firouzi

    2003-07-01

    Full Text Available The effect of nerve growth factor (NGF on regeneration of rat sciatic nerves in adult rat was studied. The sciatic nerve was cut out across a 6‑mm gap, then the proximal and distal stumps were inserted into the silicone tube chamber. 7s NGF was extracted from submaxillary gland and then was injected into the silicone in experimental group. After seven months nerve was transected and stained with toluidine blue. Semithin sections (1 µm from middle of silicone (control group, without NGF showed that regenerated axons (mostly unmyelinated were dispersed randomly, and they were not grouped into bundles. In this group some of the myelinated fibers were degenerated and macrophages or in other word, schwann cells contained a large amount of these degenerated sheaths. Semithin section of experimental group (with NGF showed numerous regenerated axons (myelinated that were grouped into small bundles. Schwann cells in experimental group were large and eucromatin and some of them were divided. These data indicate that NGF causes myelinated axons, regenerate and making new myelinated sheaths.

  14. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration

    Directory of Open Access Journals (Sweden)

    Sethuraman Swaminathan

    2009-11-01

    Full Text Available Abstract Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.

  15. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections

    Directory of Open Access Journals (Sweden)

    Amadio Stefano

    2008-04-01

    Full Text Available Abstract Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They

  16. Lost in the jungle: new hurdles for optic nerve axon regeneration.

    Science.gov (United States)

    Pernet, Vincent; Schwab, Martin E

    2014-07-01

    The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effects of 660-nm gallium-aluminum-arsenide low-energy laser on nerve regeneration after acellular nerve allograft in rats.

    Science.gov (United States)

    Zhang, Li-Xin; Tong, Xiao-Jie; Yuan, Xiu-Hua; Sun, Xiao-Hong; Jia, Hua

    2010-02-01

    The purpose of this study was to explore and discuss the effects of 660-nm gallium-aluminum-arsenide low-energy laser (GaAlAs LEL) irradiation on neural regeneration after acellular nerve allograft repair of the sciatic nerve gap in rats. Eight male and female Sprague-Dawley rats were used as nerve donors, and 32 healthy Wistar rats were randomly divided into four groups: normal control group, acellular rat sciatic nerve (ARSN) group, laser group, and autograft group. Twelve weeks after surgery, nerve conduction velocity, restoration rate of tibialis anterior wet muscle weight, myelinated nerve number, and calcitonin gene-related peptide (CGRP) protein and mRNA expression of the spinal cord and muscle at the injury site were quantified and statistically analyzed. Compared with the ARSN group, laser therapy significantly increased nerve conduction velocity, restoration rate of tibialis anterior wet muscle weight, myelinated nerve number, and CGRP protein and mRNA expression of the L(4) spinal cord at the injury site. These findings demonstrate that 660-nm GaAlAs LEL therapy upregulates CGRP protein and mRNA expression of the L(4) spinal cord at the injury site and increases the rate of regeneration and target reinnervation after acellular nerve allograft repair of the sciatic nerve gap in rats. Low-energy laser irradiation may be a useful, noninvasive adjunct for promoting nerve regeneration in surgically induced defects repaired with ARSN.

  18. Biodegradable and biocompatible cationic polymer delivering microRNA-221/222 promotes nerve regeneration after sciatic nerve crush

    Directory of Open Access Journals (Sweden)

    Song J

    2017-06-01

    Full Text Available Jialin Song,1,2 Xueyang Li,3 Yingli Li,4,5 Junyi Che,6 Xiaoming Li,6 Xiaotian Zhao,6 Yinghui Chen,7,* Xianyou Zheng,1,* Weien Yuan6,* 1Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 2Department of Orthopedics, Shanghai University of Medicine and Health, Shanghai, Sixth People’s Hospital East Campus, Shanghai, 3Department of Plastic and Reconstructive Surgery, Xuzhou Medical College Affiliated Hospital, Xuzhou, Jiangsu, 4Department of Plastic Surgery, The General Hospital of Jinan Military Command, Jinan, Shandong, 5Department of Plastic Surgery, Chang Hai Hospital, Second Military Medical University, 6School of Pharmacy, Shanghai Jiao Tong University, 7Department of Neurology, Jinshan Hospital, Fudan University, JinShan District, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: MicroRNA (miRNA has great potential to treat a wide range of illnesses by regulating the expression of eukaryotic genes. Biomaterials with high transfection efficiency and low toxicity are needed to deliver miRNA to target cells. In this study, a biodegradable and biocompatible cationic polymer (PDAPEI was synthetized from low molecular weight polyethyleneimine (PEI1.8kDa cross-linked with 2,6-pyridinedicarboxaldehyde. PDAPEI showed a lower cytotoxicity and higher transfection efficiency than PEI25kDa in transfecting miR-221/222 into rat Schwann cells (SCs. The upregulation of miR-221/222 in SCs promoted the expression of nerve growth factor and myelin basic protein in vitro. The mouse sciatic nerve crush injury model was used to evaluate the effectiveness of PDAPEI/miR-221/222 complexes for nerve regeneration in vivo. The results of electrophysiological tests, functional assessments, and histological and immunohistochemistry analyses demonstrated that PDAPEI/miR-221/222 complexes significantly promoted nerve regeneration after sciatic nerve crush, specifically enhancing

  19. A NEW PLLA PCL COPOLYMER FOR NERVE REGENERATION

    NARCIS (Netherlands)

    DENDUNNEN, WFA; SCHAKENRAAD, JM; ZONDERVAN, GJ; PENNINGS, AJ; VANDERLEI, B; ROBINSON, PH

    The aim of this study is to evaluate the functional and cell biological applicability of a two-ply nerve guide constructed of a PLLA/PCL (i.e. poly-L-lactide and poly-epsilon-caprolactone) copolymer. To do so, we performed a cytotoxicity test, a subcutaneous biodegradation test and an in situ

  20. Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model.

    Science.gov (United States)

    Farrag, Tarik Y; Lehar, Mohamed; Verhaegen, Pauline; Carson, Kathryn A; Byrne, Patrick J

    2007-01-01

    To investigate the effects of platelet rich plasma (PRP) and fibrin sealant (FS) on facial nerve regeneration. Prospective, randomized, and controlled animal study. Experiments involved the transection and repair of facial nerve of 49 male adult rats. Seven groups were created dependant on the method of repair: suture; PRP (with/without suture); platelet poor plasma (PPP) (with/without suture); and FS (with/without suture) groups. Each method of repair was applied immediately after the nerve transection. The outcomes measured were: 1) observation of gross recovery of vibrissae movements within 8-week period after nerve transection and repair using a 5-point scale and comparing the left (test) side with the right (control) side; 2) comparisons of facial nerve motor action potentials (MAP) recorded before and 8 weeks after nerve transection and repair, including both the transected and control (untreated) nerves; 3) histologic evaluation of axons counts and the area of the axons. Vibrissae movement observation: the inclusion of suturing resulted in overall improved outcomes. This was found for comparisons of the suture group with PRP group; PRP with/without suture groups; and PPP with/without suture groups (P .05). The movement recovery of the suture group was significantly better than the FS group (P = .014). The recovery of function of the PRP groups was better than that of the FS groups, although this did not reach statistical significance (P = .09). Electrophysiologic testing: there was a significantly better performance of the suture group when compared with the PRP and PPP without suture groups in nerve conduction velocity (P facial nerve axotomy models occurred when the nerve ends were sutured together. At the same time, the data demonstrated a measurable neurotrophic effect when PRP was present, with the most favorable results seen with PRP added to suture. There was an improved functional outcome with the use of PRP in comparison with FS or no bioactive

  1. MRI-guided cryoablation of the posterior femoral cutaneous nerve for the treatment of neuropathy-mediated sitting pain

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Dharmdev H.; Thawait, Gaurav K.; Fritz, Jan [Johns Hopkins University School of Medicine, Section of Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Del Grande, Filippo [Johns Hopkins University School of Medicine, Section of Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Ospedale Regionale di Lugano, Servizio di Radiologia, Lugano, Ticino (Switzerland)

    2017-07-15

    Neuropathy of the posterior femoral cutaneous nerve may manifest as pain and paresthesia in the skin over the inferior buttocks, posterior thigh, and popliteal region. Current treatment options include physical and oral pain therapy, perineural injections, and surgical neurectomy. Perineural steroid injections may provide short-term pain relief; however, to our knowledge, there is currently no minimally invasive denervation procedure for sustained pain relief that could serve as an alternative to surgical neurectomy. Percutaneous cryoablation of nerves is a minimally invasive technique that induces a sustained nerve conduction block through temporary freezing of the neural layers. It can result in long-lasting pain relief, but has not been described for the treatment of neuropathy-mediated PFCN pain. We report a technique of MR-guided cryoablation of the posterior femoral cutaneous nerve resulting in successful treatment of PFCN-mediated sitting pain. Cryoablation of the posterior femoral cutaneous nerve seems a promising, minimally invasive treatment option that deserves further investigation. (orig.)

  2. How Far Have We Come in the Field of Nerve Regeneration After Trigeminal Nerve Injury?

    OpenAIRE

    Rosén, Annika; Tardast, Arezo; Shi, Tie-Jun

    2016-01-01

    Patients suffering from nerve injury with sensory disturbances or orofacial pain have greatly reduced quality of life, and it is a big cost for the society. Abnormal sensations caused by trigeminal nerve injury often become chronic, severely debilitating, and extremely difficult to treat. In general, non-invasive treatment such as drug treatment has been insufficient, and there are currently few available effective treatments. Surgical interventions such as end-to-end connection or nerve graf...

  3. The regulatory roles of non-coding RNAs in nerve injury and regeneration.

    Science.gov (United States)

    Yu, Bin; Zhou, Songlin; Yi, Sheng; Gu, Xiaosong

    2015-11-01

    Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have attracted much attention since their regulatory roles in diverse cell processes were recognized. Emerging studies demonstrate that many ncRNAs are differentially expressed after injury to the nervous system, significantly affecting nerve regeneration. In this review, we compile the miRNAs and lncRNAs that have been reported to be dysregulated following a variety of central and peripheral nerve injuries, including acquired brain injury, spinal cord injury, and peripheral nerve injury. We also list investigations on how these miRNAs and lncRNAs exert the regulatory actions in neurodegenerative and neuroregenerative processes through different mechanisms involving their interaction with target coding genes. We believe that comprehension of the expression profiles and the possible functions of ncRNAs during the processes of nerve injury and regeneration will help understand the molecular mechanisms responsible for post-nerve-injury changes, and may contribute to the potential use of ncRNAs as a diagnostic marker and therapeutic target for nerve injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats.

    Science.gov (United States)

    Serafim, Karla Guivernau Gaudens; Ramos, Solange de Paula; de Lima, Franciele Mendes; Carandina, Marcelo; Ferrari, Osny; Dias, Ivan Frederico Lupiano; Toginho Filho, Dari de Oliveira; Siqueira, Cláudia Patrícia Cardoso Martins

    2012-01-01

    The objective of the present study was to evaluate the effect of 940 nm wavelength light emitting diode (LED) phototherapy on nerve regeneration in rats. Forty male Wistar rats weighing approximately 300 g each were divided into four groups: control (C); control submitted to LED phototherapy (CLed); Sciatic Nerve Lesion without LED phototherapy (L); Sciatic Nerve Lesion with LED phototherapy (LLed). The lesion was caused by crushing the right sciatic nerve. A dose of 4 J/cm(2) was used for ten consecutive days beginning on the first postoperative day. Groups C and L were submitted to the same procedure as the LLed group, but the equipment was turned off. The LED phototherapy with 940 nm wavelength reduced the areas of edema, the number of mononuclear cells present in the inflammatory infiltration, and increased functional recovery scores at 7, 14 and 21 days. The results suggest that the use of phototherapy at 940 nm after nerve damage improves morphofunctional recovery and nerve regeneration.

  5. Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves

    Directory of Open Access Journals (Sweden)

    Xin-ze He

    2017-01-01

    Full Text Available Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was (or was not induced. After sciatic nerve injury, tacrolimus, an immunosuppressant, was (or was not intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus exhibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury.

  6. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration.

    Science.gov (United States)

    Moore, Amy M; Borschel, Gregory H; Santosa, Katherine A; Flagg, Eric R; Tong, Alice Y; Kasukurthi, Rahul; Newton, Piyaraj; Yan, Ying; Hunter, Daniel A; Johnson, Philip J; Mackinnon, Susan E

    2012-02-15

    In order to evaluate nerve regeneration in clinically relevant hindlimb surgical paradigms not feasible in fluorescent mice models, we developed a rat that expresses green fluorescent protein (GFP) in neural tissue. Transgenic Sprague-Dawley rat lines were created using pronuclear injection of a transgene expressing GFP under the control of the thy1 gene. Nerves were imaged under fluorescence microscopy and muscles were imaged with confocal microscopy to determine GFP expression following sciatic nerve crush, transection and direct suturing, and transection followed by repair with a nerve isograft from nonexpressing littermates. In each surgical paradigm, fluorescence microscopy demonstrated the loss and reappearance of fluorescence with regeneration of axons following injury. Nerve regeneration was confirmed with imaging of Wallerian degeneration followed by reinnervation of extensor digitorum longus (EDL) muscle motor endplates using confocal microscopy. The generation of a novel transgenic rat model expressing GFP in neural tissue allows in vivo imaging of nerve regeneration and visualization of motor endplate reinnervation. This rat provides a new model for studying peripheral nerve injury and regeneration over surgically relevant distances. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Treadmill Training Enhances Axon Regeneration In Injured Mouse Peripheral Nerves Without Increased Loss of Topographic Specificity

    Science.gov (United States)

    English, Arthur W.; Cucoranu, Delia; Mulligan, Amanda; Sabatier, Manning

    2009-01-01

    We investigated the extent of misdirection of regenerating axons when that regeneration was enhanced using treadmill training. Retrograde fluorescent tracers were applied to the cut proximal stumps of the tibial and common fibular nerves two or four weeks after transection and surgical repair of the mouse sciatic nerve. The spatial locations of retrogradely labeled motoneurons were studied in untreated control mice and in mice receiving two weeks of treadmill training, either according to a continuous protocol (10 m/min, one hour/day, five day/week) or an interval protocol (20 m/min for two minutes, followed by a five minute rest, repeated 4 times, five days/week). More retrogradely labeled motoneurons were found in both treadmill trained groups. The magnitude of this increase was as great as or greater than that found after using other enhancement strategies. In both treadmill trained groups, the proportions of motoneurons labeled from tracer applied to the common fibular nerve that were found in spinal cord locations reserved for tibial motoneurons in intact mice was no greater than in untreated control mice and significantly less than found after electrical stimulation or chondroitinase treatment. Treadmill training in the first two weeks following peripheral nerve injury produces a marked enhancement of motor axon regeneration without increasing the propensity of those axons to choose pathways leading to functionally inappropriate targets. PMID:19731339

  8. Anatomy of the palmar cutaneous branch of the median nerve: clinical significance.

    Science.gov (United States)

    DaSilva, M F; Moore, D C; Weiss, A P; Akelman, E; Sikirica, M

    1996-07-01

    A detailed anatomic, histologic, and immunohistochemical study of the palmar cutaneous branch of the median nerve (PCBMN) and its distal arborization was undertaken on 12 fresh human cadaveric hands. Small unmyelinated fibers terminated in the superficial loose connective tissue of the transverse carpal ligament. There were no nerve fibers detected in the deep, dense collagen aspect of the ligament. Based on these findings, during open carpal tunnel release, the skin incision should be placed along the axis of the ring finger to avoid injury to the superficial branches of the PCBMN. When open release is used, the very small terminal branches in the loose tissue of the ligament will be transected; this may in part be responsible for postoperative soft tissue pain. For endoscopic releases, some risk for transection of the main trunk of the PCBMN at the proximal incision exists. Repeated passes of the endoscopic knife should be avoided in an attempt to limit damage to the small fibers in the superficial aspect of the ligament.

  9. A tool for teaching three-dimensional dermatomes combined with distribution of cutaneous nerves on the limbs.

    Science.gov (United States)

    Kooloos, Jan G M; Vorstenbosch, Marc A T M

    2013-01-01

    A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models. © 2013 American Association of Anatomists.

  10. Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system

    Science.gov (United States)

    Sharma, Anup Dutt

    Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.

  11. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hsueh, Yu-Sheng [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai (India); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Sadhasivam, S. [Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Lin, Feng-Huei, E-mail: double@ntu.edu.tw [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); Division of Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Miaoli 350, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Shieh, Ming-Jium [Institute of Biomedical Engineering, College of Engineering, National Taiwan University, Taipei 100, Taiwan (China); College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Institute of Biomedical Engineering, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China)

    2014-05-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration.

  12. Design and synthesis of elastin-like polypeptides for an ideal nerve conduit in peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Hsueh, Yu-Sheng; Savitha, S.; Sadhasivam, S.; Lin, Feng-Huei; Shieh, Ming-Jium

    2014-01-01

    The study involves design and synthesis of three different elastin like polypeptide (ELP) gene monomers namely ELP1, ELP2 and ELP3 that encode for ELP proteins. The formed ELPs were assessed as an ideal nerve conduit for peripheral nerve regeneration. ELP1 was constructed with a small elongated pentapeptide carrying VPGVG sequence to mimic the natural polypeptide ELP. The ELP2 was designed by the incorporation of 4-penta peptide chains to improve the biocompatibility and mechanical strength. Thus, the third position in unique VPGVG was replaced with alanine to VPAVG and in a similar way modified to VPGKG, VPGEG and VPGIG with the substitution of lysine, glutamic acid and isoleucine. In ELP3, fibronectin C5 domain endowed with REDV sequence was introduced to improve the cell attachment. The ELP1, ELP2 and ELP3 proteins expressed by Escherichia coli were purified by inverse transition cycling (ITC). The purified ELPs were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blotting. The Schwann cell (SC) morphology and cell adhesion were assessed by fabrication of ELP membrane cross-linked with glutaraledhyde. The Schwann cell proliferation was measured by WST-1 assay. Immunofluorostaining of Schwann cells was accomplished with SC specific phenotypic marker, S100. - Highlights: • Design and synthesis of three gene monomers of elastin like polypeptides (ELP1, 2 and 3) were reported. • Molecular weight of ITC purified ELP1, ELP2 and ELP3 was in the range of 37–38 kDa. • Schwann cell adhesion was found to be prominent in ELP3 and could be used as nerve conduit for peripheral nerve regeneration

  13. Tissue-Engineered Nanofibrous Nerve Grafts for Enhancing the Rate of Nerve Regeneration

    Science.gov (United States)

    2015-10-01

    proliferation and differentiation studies were used to evaluate neurite outgrowth stimulating effects from PC-12 cells cultured on the nerve grafts by staining...tube: effect of collagen sponge prosthesis , laminin, and pyrimidine compound administration." Neurologia medico-chirurgica 36.7 (1996): 428-433. [10...immunogenicity, respectively. Due to the inherent limitations of using autografts, we proposed a tissue engineering approach to design a novel nerve

  14. Detrended fluctuation analysis of compound action potentials re-corded in the cutaneous nerves of diabetic rats

    International Nuclear Information System (INIS)

    Quiroz-González, Salvador; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Pereira-Venegas, Javier; Lopez-Gomez, Rosa Estela; Jiménez-Estrada, Ismael

    2016-01-01

    Highlights: • Fractal analysis of compound action potentials (CAP) evoked in diabetic nerves. • Diabetic rats showed an increment in the chaotic behavior of CAP responses. • Diabetes provokes impaired transmission of sensory information in rats. - Abstract: The electrophysiological alterations in nerves due to diabetes are classically studied in relation to their instantaneous frequency, conduction velocity and amplitude. However, analysis of amplitude variability may reflect the occurrence of feedback loop mechanisms that adjust the output as a function of its previous activity could indicate fractal dynamics. We assume that a peripheral neuropathy, such as that evoked by diabetes, the inability to maintain a steady flow of sensory information is reflected as a breakdown of the long range power-law correlation of CAP area fluctuation from cutaneous nerves. To test this, we first explored in normal rats whether fluctuations in the trial-to-trial CAP area showed a self-similar behavior or fractal structure by means of detrended fluctuations analysis (DFA), and Poincare plots. In addition, we determine whether such CAP fluctuations varied by diabetes induction. Results showed that CAP area fluctuation of SU nerves evoked in normal rats present a long term correlation and self-similar organization (fractal behavior) from trial to trial stimulation as evidenced by DFA of CAP areas. However, CAPs recorded in diabetic nerves exhibited significant reductions in area, larger duration and increased area variability and different Poincare plots than control nerves. The Hurst exponent value determined with the DFA method from a series of 2000 CAPs evoked in diabetic SU nerves was smaller than in control nerves. It is proposed that in cutaneous nerves of normal rats variability of the CAP area present a long term correlation and self-similar organization (fractal behavior), and reflect the ability to maintain a steady flow of sensory information through cutaneous nerves

  15. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Rosberg, Mette R.

    2016-01-01

    patients with surgically repaired complete injuries of peripheral nerves of the arm 22 months-26 years prior to investigation, deviation of excitability measures was explained by a hyperpolarizing shift in the resting membrane potential and an increase in the passive 'Barrett and Barrett' conductance (GBB......Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male...... activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment...

  16. Topically-administered acetyl-L-carnitine increases sciatic nerve regeneration and improves functional recovery after tubulization of transected short nerve gaps.

    Science.gov (United States)

    Mohammadi, Rahim; Amini, Keyvan

    2017-08-01

    Peripheral nerve injuries repair is still among the most challenging and concern-raising tasks in neurosurgery. The effect of an acetyl-L-carnitin-loaded silicone tube as an in-situ delivery system in defects bridging was studied using a rat sciatic nerve regeneration model. A 10-mm sciatic nerve defect was bridged using a silicone tube (SIL/ALC) filled with 10 µL acetyl-L-carnitine (100 ng/mL). In the control group (SIL), the tube was filled with the same volume of the phosphate-buffered solution. The regenerated fibers were studied 4, 8, 12 and 16 weeks after surgery. The functional study confirmed faster recovery of the regenerated axons in acetyl-L-carnitine treated than control group (PL-carnitine, when loaded in a silicone tube, can bring to an improvement in functional recovery and quantitative morphometric indices of sciatic nerve.

  17. Stretch-induced nerve injury: a proposed technique for the study of nerve regeneration and evaluation of the influence of gabapentin on this model

    Directory of Open Access Journals (Sweden)

    J.A. Machado

    2013-11-01

    Full Text Available The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP on nerve regeneration. Male Wistar rats (300 g; n=36 underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001, compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05. Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001, in the density of myelinated fibers/mm2 (P<0.05 and in the degeneration fragments (P<0.01. Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.

  18. Further Development of Scaffolds for Regeneration of Nerves

    Science.gov (United States)

    Sakamoto, Jeffrey; Tuszynski, Mark

    2009-01-01

    Progress has been made in continuing research on scaffolds for the guided growth of nerves to replace damaged ones. The scaffolds contain pores that are approximately cylindrical and parallel, with nearly uniform widths ranging from tens to hundreds of microns. At the earlier stage of development, experimental scaffolds had been made from agarose hydrogel. Such a scaffold was made in a multistep process in which poly(methyl methacrylate) [PMMA] fibers were used as templates for the pores. The process included placement of a bundle of the PMMA fibers in a tube, filling the interstices in the tube with a hot agarose solution, cooling to turn the solution into a gel, and then immersion in acetone to dissolve the PMMA fibers. The scaffolds were typically limited to about 25 pores per scaffold, square cross sections of no more than about 1.5 by 1.5 mm, and lengths of no more than about 2 mm.

  19. Recurrent laryngeal nerve regeneration using an oriented collagen scaffold containing Schwann cells.

    Science.gov (United States)

    Chitose, Shun-Ichi; Sato, Kiminori; Fukahori, Mioko; Sueyoshi, Shintaro; Kurita, Takashi; Umeno, Hirohito

    2017-07-01

    Regeneration of the recurrent laryngeal nerve (RLN), which innervates the intrinsic laryngeal muscles such that they can perform complex functions, is particularly difficult to achieve. Synkinesis after RLN neogenesis leads to uncoordinated movement of laryngeal muscles. Recently, some basic research studies have used cultured Schwann cells (SCs) to repair peripheral nerve injuries. This study aimed to regenerate the RLN using an oriented collagen scaffold containing cultured SCs. Preliminary animal experiment. A 10-mm-long autologous canine cervical ansa was harvested. The nerve tissue was scattered and subcultured on oriented collagen sheets in reduced serum medium. After verifying that the smaller cultivated cells with high nucleus-cytoplasm ratios were SCs, collagen sheets with longitudinally oriented cells were rolled and inserted into a 20-mm collagen conduit. The fabricated scaffolds containing SCs were autotransplanted to a 20-mm deficient RLN, and vocal fold movements and histological characteristics were observed. Scaffolds containing cultured SCs were successfully fabricated. Immunocytochemical examination revealed that these isolated and cultured cells, identified as SCs, expressed S-100 protein and GFAP but not vimentin. The orientation of SCs matched that of the oriented collagen sheet. Two months after successful transplantation, laryngeal endoscopy revealed coordinated movement of the bilateral vocal folds by external stimulation under light general anesthesia. Hematoxylin and eosin staining showed that the regenerated RLN lacked epineurium surrounding the nerve fibers and was interspersed with collagen fibers. Myelin protein zero was expressed around many axons. Partial regeneration of RLN was achieved through the use of oriented collagen scaffolding. NA Laryngoscope, 127:1622-1627, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  20. In vitro assessment of TAT — Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration

    International Nuclear Information System (INIS)

    Barbon, Silvia; Stocco, Elena; Negro, Alessandro; Dalzoppo, Daniele; Borgio, Luca; Rajendran, Senthilkumar; Grandi, Francesca; Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele

    2016-01-01

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6 h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. - Highlights: • TAT-CNTF is an optimized fusion protein that preserves neurotrophic activity. • In neural cell lines, TAT-CNTF triggers the activation of signal transduction. • Fast cellular uptake of TAT-CNTF was

  1. HuD-mediated distinct BDNF regulatory pathways promote regeneration after nerve injury.

    Science.gov (United States)

    Sanna, Maria Domenica; Ghelardini, Carla; Galeotti, Nicoletta

    2017-03-15

    Up-regulation of brain-derived neurotrophic factor (BDNF) synthesis is an important mechanism of peripheral nerve regeneration after injury. However, the cellular and molecular mechanisms underlying this process are not fully understood. This study examines the role of BDNF in the spared nerve injury (SNI) mice model. Protein expression and cellular localization were investigated in the dorsal root ganglia (DRG) and spinal cord by western blotting and immunofluorescence experiments respectively. BDNF protein was markedly increased 3 and 7days post-injury in the spinal cord and DRG. Following nerve injury sensory neurons produce molecules to promote regeneration, such as growth-associated protein 43 (GAP-43) and cytoskeletal proteins. Our results show that the expression of GAP-43 was increased in the DRG and spinal cord while, an increased of p-NFH content was detected in the spinal cord, with no modification in the DRG. Both events were counteracted by the administration of an anti-BDNF antibody. In DRG of SNI mice we also detected an increase of HuD expression, a RNA-binding protein known to stabilize BDNF and GAP-43 mRNA. Silencing of HuD prevented the nerve injury-induced BDNF and GAP-43 enhanced expression in the DRG. HuD-mediated BDNF synthesis in the primary sensory neurons, is followed by an anterograde transport of the neurotrophin to the central terminals of the primary afferents in the spinal dorsal horn, to modulate GAP-43 and NFH activation. Our data suggest that BDNF, GAP-43 and p-NFH proteins increase are linked events required for the enhanced regeneration after nerve injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Enhanced peripheral nerve regeneration by the combination of a polycaprolactone tubular prosthesis and a scaffold of collagen with supramolecular organization.

    Science.gov (United States)

    Maturana, Luiz G; Pierucci, Amauri; Simões, Gustavo F; Vidigal, Mateus; Duek, Eliana A R; Vidal, Benedicto C; Oliveira, Alexandre L R

    2013-07-01

    The purpose of this study was to investigate the influence of implanting collagen with a supramolecular organization on peripheral nerve regeneration, using the sciatic nerve tubulization technique. For this purpose, adult female Sprague Dawley rats were divided into five groups: (1) TP - sciatic nerve repaired with empty polyethylene tubular prothesis (n = 10), (2) TPCL - nerve repair with empty polycaprolactone (PCL) tubing (n = 8), (3) TPCLF - repair with PCL tubing filled with an implant of collagen with a supramolecular organization (n = 10), (4) AG - animals that received a peripheral nerve autograft (n = 8), and (5) Normal nerves (n = 8). The results were assessed by quantification of the regenerated fibers, nerve morphometry, and transmission electron microscopy, 60 days after surgery. Immunohistochemistry and polarization microscopy were also used to analyze the regenerated nerve structure and cellular elements. The results showed that the AG group presented a larger number of regenerated axons. However, the TPCL and TPCLF groups presented more compact regenerated fibers with a morphometric profile closer to normal, both at the tube midpoint and 2 mm distal to the prosthesis. These findings were reinforced by polarization microscopy, which indicated a better collagen/axons suprastructural organization in the TPCLF derived samples. In addition, the immunohistochemical results obtained using the antibody anti-p75NTR as a Schwann cell reactivity marker demonstrated that the Schwann cells were more reactive during the regenerative process in the TPCLF group as compared to the TPCL group and the normal sciatic nerve. Altogether, the results of this study indicated that the implant of collagen with a supramolecular organization positively influenced and stimulated the regeneration process through the nerve gap, resulting in the formation of a better morphologically arranged tissue.

  3. Fibrin glue repair leads to enhanced axonal elongation during early peripheral nerve regeneration in an in vivo mouse model

    Directory of Open Access Journals (Sweden)

    Georgios Koulaxouzidis

    2015-01-01

    Full Text Available Microsurgical suturing is the gold standard of nerve coaptation. Although literature on the usefulness of fibrin glue as an alternative is becoming increasingly available, it remains contradictory. Furthermore, no data exist on how both repair methods might influence the morphological aspects (arborization; branching of early peripheral nerve regeneration. We used the sciatic nerve transplantation model in thy-1 yellow fluorescent protein mice (YFP; n = 10. Pieces of nerve (1cm were grafted from YFP-negative mice (n = 10 into those expressing YFP. We performed microsuture coaptations on one side and used fibrin glue for repair on the contralateral side. Seven days after grafting, the regeneration distance, the percentage of regenerating and arborizing axons, the number of branches per axon, the coaptation failure rate, the gap size at the repair site and the time needed for surgical repair were all investigated. Fibrin glue repair resulted in regenerating axons travelling further into the distal nerve. It also increased the percentage of arborizing axons. No coaptation failure was detected. Gap sizes were comparable in both groups. Fibrin glue significantly reduced surgical repair time. The increase in regeneration distance, even after the short period of time, is in line with the results of others that showed faster axonal regeneration after fibrin glue repair. The increase in arborizing axons could be another explanation for better functional and electrophysiological results after fibrin glue repair. Fibrin glue nerve coaptation seems to be a promising alternative to microsuture repair.

  4. Antioxidative mechanism of Lycium barbarum polysaccharides promotes repair and regeneration following cavernous nerve injury

    Directory of Open Access Journals (Sweden)

    Zhan-kui Zhao

    2016-01-01

    Full Text Available Polysaccharides extracted from Lycium barbarum exhibit antioxidant properties. We hypothesized that these polysaccharides resist oxidative stress-induced neuronal damage following cavernous nerve injury. In this study, rat models were intragastrically administered Lycium barbarum polysaccharides for 2 weeks at 1, 7, and 14 days after cavernous nerve injury. Serum superoxide dismutase and glutathione peroxidase activities significantly increased at 1 and 2 weeks post-injury. Serum malondialdehyde levels decreased at 2 and 4 weeks. At 12 weeks, peak intracavernous pressure, the number of myelinated axons and nicotinamide adenine dinucleotide phosphate-diaphorase-positive nerve fibers, levels of phospho-endothelial nitric oxide synthase protein and 3-nitrotyrosine were higher in rats administered at 1 day post-injury compared with rats administered at 7 and 14 days post-injury. These findings suggest that application of Lycium barbarum polysaccharides following cavernous nerve crush injury effectively promotes nerve regeneration and erectile functional recovery. This neuroregenerative effect was most effective in rats orally administered Lycium barbarum polysaccharides at 1 day after cavernous nerve crush injury.

  5. A multi-walled silk fibroin/silk sericin nerve conduit coated with poly(lactic-co-glycolic acid) sheath for peripheral nerve regeneration.

    Science.gov (United States)

    Rao, Jianwei; Cheng, Yan; Liu, Yanxiao; Ye, Zhou; Zhan, Beilei; Quan, Daping; Xu, Yangbin

    2017-04-01

    The linearly oriented multi-walled silk fibroin/silk sericin (SF/SS) nerve conduits (NCs) can provide physical cues similar to native peripheral nerve fasciculi, but the mechanical properties of which are not excellent enough. In this study, NCs with a novel and bionic design with dual structures were developed. The important features of our NCs is that the internal skeleton (the multi-walled SF/SS conduits) has a bionic structure similar to the architecture of native peripheral nerve fasciculi, which is beneficial for nerve regeneration, and the outer sheath (the hollow poly(lactic-co-glycolic acid) [PLGA] conduits) could provide strong mechanical protection for the internal skeleton. The linearly oriented multi-walled SF/SS conduit was fabricated and inserted in the hollow PLGA sheath lumen and then used for the bridge across the sciatic nerve defect in rats. The outcome of the peripheral nerve repair post implantation was evaluated. The functional and morphological parameters were examined and showed that the novel PLGA-coated SF/SS NCs could promote peripheral nerve regeneration, approaching those elicited by nerve autografts that are the first candidate for repair of peripheral nerve defects. Thus, these updated NCs have potential usefulness to enhance functional recovery after repair of peripheral nerve defect. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Characterization of Pax2 expression in the goldfish optic nerve head during retina regeneration.

    Directory of Open Access Journals (Sweden)

    Marta Parrilla

    Full Text Available The Pax2 transcription factor plays a crucial role in axon-guidance and astrocyte differentiation in the optic nerve head (ONH during vertebrate visual system development. However, little is known about its function during regeneration. The fish visual system is in continuous growth and can regenerate. Müller cells and astrocytes of the retina and ONH play an important role in these processes. We demonstrate that pax2a in goldfish is highly conserved and at least two pax2a transcripts are expressed in the optic nerve. Moreover, we show two different astrocyte populations in goldfish: Pax2(+ astrocytes located in the ONH and S100(+ astrocytes distributed throughout the retina and the ONH. After peripheral growth zone (PGZ cryolesion, both Pax2(+ and S100(+ astrocytes have different responses. At 7 days after injury the number of Pax2(+ cells is reduced and coincides with the absence of young axons. In contrast, there is an increase of S100(+ astrocytes in the retina surrounding the ONH and S100(+ processes in the ONH. At 15 days post injury, the PGZ starts to regenerate and the number of S100(+ astrocytes increases in this region. Moreover, the regenerating axons reach the ONH and the pax2a gene expression levels and the number of Pax2(+ cells increase. At the same time, S100(+/GFAP(+/GS(+ astrocytes located in the posterior ONH react strongly. In the course of the regeneration, Müller cell vitreal processes surrounding the ONH are primarily disorganized and later increase in number. During the whole regenerative process we detect a source of Pax2(+/PCNA(+ astrocytes surrounding the posterior ONH. We demonstrate that pax2a expression and the Pax2(+ astrocyte population in the ONH are modified during the PGZ regeneration, suggesting that they could play an important role in this process.

  7. Anatomy of the lateral antebrachial cutaneous nerve in relation to the lateral epicondyle and cephalic vein.

    Science.gov (United States)

    Wongkerdsook, Wachara; Agthong, Sithiporn; Amarase, Chavarin; Yotnuengnit, Pattarapol; Huanmanop, Thanasil; Chentanez, Vilai

    2011-01-01

    The lateral antebrachial cutaneous nerve (LACN) is the terminal sensory branch of the musculocutaneous nerve supplying the lateral aspect of forearm. Because of its close proximity to the biceps brachii tendon (BBT), the lateral epicondyle (LE), and the cephalic vein (CV), surgery and venipuncture in the cubital fossa can injure the LACN. Measurement data regarding the relative anatomy of LACN are scarce. We, therefore, dissected 96 upper extremities from 26 males and 22 females to expose the LACN in the cubital fossa and forearm. The LACN consistently emerged from the lateral margin of BBT. It then pierced the deep fascia distal to the interepicondylar line (IEL) in 84.4% with mean distances of 1.8 ± 1.1 and 1.2 ± 0.9 cm (male and female, respectively). At the level of IEL, the LACN in all cases was medial to the LE (5.9 ± 1.1 cm male and 5.2 ± 0.9 cm female). Two types of branching were observed: single trunk (78.1%) and bifurcation (21.9%). Asymmetry in the branching pattern was observed in 6 males and 1 female. Concerning the relationship to the CV, the LACN ran medially within 1 cm at the level of IEL in 78.7%. Moreover, in 10 specimens, the LACN was directly beneath the CV. In the forearm, the LACN tends to course medial to the CV. Significant differences in the measurement data between genders but not sides were found in some parameters. These data are important for avoiding LACN injury and locating the LACN during relevant medical procedures. Copyright © 2010 Wiley-Liss, Inc.

  8. Evaluation of Inferior Alveolar Nerve Regeneration by Bifocal Distraction Osteogenesis with Retrograde Transportation of Horseradish Peroxidase in Dogs

    Science.gov (United States)

    Isomura, Emiko Tanaka

    2014-01-01

    Background Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function. Methods and Findings Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time. Conclusions We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects. PMID:24732938

  9. Enhancing Peripheral Nerve Regeneration with a Novel Drug Delivering Nerve Conduit

    Science.gov (United States)

    2014-10-01

    stump. Silicone sealant and a PDMS plug are used to seal and fix the two tubes. First generation device: Due to its relatively short half life...tubes of the PLGA nerve conduit. A polyether sulfone (PES) filter membrane, a polydimethyl siloxane (PDMS) plug and silicone sealant (RTV silicone , Dow...filled with the desired drug and sealed using the PDMS plug end with silicone sealant . The device was dried for 1 hour and then mounted individually

  10. Failure to restore vision after optic nerve regeneration in reptiles: interspecies variation in response to axotomy.

    Science.gov (United States)

    Dunlop, Sarah A; Tee, Lisa B G; Stirling, R Victoria; Taylor, Andrew L; Runham, Phil B; Barber, Andy B; Kuchling, Gerald; Rodger, Jenny; Roberts, J Dale; Harvey, Alan R; Beazley, Lyn D

    2004-10-18

    Optic nerve regeneration within the reptiles is variable. In a snake, Viper aspis, and the lizard Gallotia galloti, regeneration is slow, although some retinal ganglion cell (RGC) axons eventually reach the visual centers (Rio et al. [1989] Brain Res 479:151-156; Lang et al. [1998] Glia 23:61-74). By contrast, in a lizard, Ctenophorus ornatus, numerous RGC axons regenerate rapidly to the visual centers, but unless animals are stimulated visually, the regenerated projection lacks topography and animals remain blind via the experimental eye (Beazley et al. [2003] J. Neurotrauma 20:1263-1269). V. aspis, G. galloti, and C. ornatus belong respectively to the Serpentes, Lacertidae, and Agamidae within the Eureptilia, the major modern group of living reptiles comprising the Squamata (snakes, lizards, and geckos) and the Crocodyllia. Here we have extended the findings on Eureptilia to include two geckos (Gekkonidae), Cehyra variegata and Nephrurus stellatus. We also examined a turtle, Chelodina oblonga, the Testudines being the sole surviving representatives of the Parareptilia, the more ancient reptilian group. In all three species, visually elicited behavioral responses were absent throughout regeneration, a result supported electrophysiologically; axonal tracing revealed that only a small proportion of RGC axons crossed the lesion and none entered the contralateral optic tract. RGC axons failed to reach the chiasm in C. oblonga, and in G. variegata, and N. stellatus RGC axons entered the opposite optic nerve; a limited ipsilateral projection was seen in G. variegata. Our results support a heterogeneous response to axotomy within the reptiles, each of which is nevertheless dysfunctional. Copyright 2004 Wiley-Liss, Inc.

  11. Statin Therapy Negatively Impacts Skeletal Muscle Regeneration and Cutaneous Wound Repair in Type 1 Diabetic Mice.

    Science.gov (United States)

    Rebalka, Irena A; Cao, Andrew W; Raleigh, Matthew J; Henriksbo, Brandyn D; Coleman, Samantha K; Schertzer, Jonathan D; Hawke, Thomas J

    2017-01-01

    Those with diabetes invariably develop complications including cardiovascular disease (CVD). To reduce their CVD risk, diabetics are generally prescribed cholesterol-lowering 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors (i.e., statins). Statins inhibit cholesterol biosynthesis, but also reduce the synthesis of a number of mevalonate pathway intermediates, leading to several cholesterol-independent effects. One of the pleiotropic effects of statins is the reduction of the anti-fibrinolytic hormone plasminogen activator inhibitor-1 (PAI-1). We have previously demonstrated that a PAI-1 specific inhibitor alleviated diabetes-induced delays in skin and muscle repair. Here we tested if statin administration, through its pleiotropic effects on PAI-1, could improve skin and muscle repair in a diabetic rodent model. Six weeks after diabetes onset, adult male streptozotocin-induced diabetic (STZ), and WT mice were assigned to receive control chow or a diet enriched with 600 mg/kg Fluvastatin. Tibialis anterior muscles were injured via Cardiotoxin injection to induce skeletal muscle injury. Punch biopsies were administered on the dorsal scapular region to induce injury of skin. Twenty-four days after the onset of statin therapy (10 days post-injury), tissues were harvested and analyzed. PAI-1 levels were attenuated in statin-treated diabetic tissue when compared to control-treated tissue, however no differences were observed in non-diabetic tissue as a result of treatment. Muscle and skin repair were significantly attenuated in Fluvastatin-treated STZ-diabetic mice as demonstrated by larger wound areas, less mature granulation tissue, and an increased presence of smaller regenerating muscle fibers. Despite attenuating PAI-1 levels in diabetic tissue, Fluvastatin treatment impaired cutaneous healing and skeletal muscle repair in STZ-diabetic mice.

  12. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats.

    Science.gov (United States)

    Park, Kevin K; Luo, Xueting; Mooney, Skyler J; Yungher, Benjamin J; Belin, Stephane; Wang, Chen; Holmes, Melissa M; He, Zhigang

    2017-02-01

    In the adult mammalian central nervous system (CNS), axonal damage often triggers neuronal cell death and glial activation, with very limited spontaneous axon regeneration. In this study, we performed optic nerve injury in adult naked mole-rats, the longest living rodent, with a maximum life span exceeding 30 years, and found that injury responses in this species are quite distinct from those in other mammalian species. In contrast to what is seen in other mammals, the majority of injured retinal ganglion cells (RGCs) survive with relatively high spontaneous axon regeneration. Furthermore, injured RGCs display activated signal transducer and activator of transcription-3 (STAT3), whereas astrocytes in the optic nerve robustly occupy and fill the lesion area days after injury. These neuron-intrinsic and -extrinsic injury responses are reminiscent of those in "cold-blooded" animals, such as fish and amphibians, suggesting that the naked mole-rat is a powerful model for exploring the mechanisms of neuronal injury responses and axon regeneration in mammals. J. Comp. Neurol. 525:380-388, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration.

    Science.gov (United States)

    Yamamoto, Tsubasa; Osako, Yohei; Ito, Masataka; Murakami, Masashi; Hayashi, Yuki; Horibe, Hiroshi; Iohara, Koichiro; Takeuchi, Norio; Okui, Nobuyuki; Hirata, Hitoshi; Nakayama, Hidenori; Kurita, Kenichi; Nakashima, Misako

    2016-01-01

    Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.

  14. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model.

    Directory of Open Access Journals (Sweden)

    Hirofumi Yurie

    Full Text Available Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit.We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6 and silicone tube (silicone group, n = 6. Several assessments were conducted to examine nerve regeneration eight weeks post-surgery.Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01. Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01. Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01.We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.

  15. Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using Schwann cells and PLGA: in vitro and in vivo

    Science.gov (United States)

    Liu, Hui; Lv, Peizhen; Zhu, Yongjia; Wu, Huayu; Zhang, Kun; Xu, Fuben; Zheng, Li; Zhao, Jinmin

    2017-01-01

    Salidriside (SDS), a phenylpropanoid glycoside derived from Rhodiola rosea L, has been shown to be neuroprotective in many studies, which may be promising in nerve recovery. In this study, the neuroprotective effects of SDS on engineered nerve constructed by Schwann cells (SCs) and Poly (lactic-co-glycolic acid) (PLGA) were studied in vitro. We further investigated the effect of combinational therapy of SDS and PLGA/SCs based tissue engineering on peripheral nerve regeneration based on the rat model of nerve injury by sciatic transection. The results showed that SDS dramatically enhanced the proliferation and function of SCs. The underlying mechanism may be that SDS affects SCs growth through the modulation of neurotrophic factors (BDNF, GDNF and CNTF). 12 weeks after implantation with a 12 mm gap of sciatic nerve injury, SDS-PLGA/SCs achieved satisfying outcomes of nerve regeneration, as evidenced by morphological and functional improvements upon therapy by SDS, PLGA/SCs or direct suture group assessed by sciatic function index, nerve conduction assay, HE staining and immunohistochemical analysis. Our results demonstrated the significant role of introducing SDS into neural tissue engineering to promote nerve regeneration.

  16. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model.

    Science.gov (United States)

    Cho, Hyong-Ho; Jang, Sujeong; Lee, Sang-Chul; Jeong, Han-Seong; Park, Jong-Seong; Han, Jae-Young; Lee, Kyung-Hwa; Cho, Yong-Bum

    2010-05-01

    The purpose of this study was to investigate the effects of platelet-rich plasma (PRP) and neural-induced human mesenchymal stem cells (nMSCs) on axonal regeneration from a facial nerve axotomy injury in a guinea pig model. Prospective, controlled animal study. Experiments involved the transection and repair of the facial nerve in 24 albino guinea pigs. Four groups were created based on the method of repair: suture only (group I, control group); PRP with suture (group II); nMSCs with suture (group III); and PRP and nMSCs with suture (group IV). Each method of repair was applied immediately after nerve transection. The outcomes measured were: 1) functional outcome measurement (vibrissae and eyelid closure movements); 2) electrophysiologic evaluation; 3) neurotrophic factors assay; and 4) histologic evaluation. With respect to the functional outcome measurement, the functional outcomes improved after transection and reanastomosis in all groups. The control group was the slowest to demonstrate recovery of movement after transection and reanastomosis. The other three groups (groups II, III, and IV) had significant improvement in function compared to the control group 4 weeks after surgery (P facial nerve regeneration in an animal model of facial nerve axotomy. The use of nMSCs showed no benefit over the use of PRP in facial nerve regeneration, but the combined use of PRP and nMSCs showed a greater beneficial effect than use of either alone. This study provides evidence for the potential clinical application of PRP and nMSCs in peripheral nerve regeneration of an acute nerve injury. Laryngoscope, 2010.

  17. Feasibility of speckle variance OCT for imaging cutaneous microvasculature regeneration during healing of wounds in diabetic mice

    Science.gov (United States)

    Sharma, P.; Kumawat, J.; Kumar, S.; Sahu, K.; Verma, Y.; Gupta, P. K.; Rao, K. D.

    2018-02-01

    We report on a study to assess the feasibility of a swept source-based speckle variance optical coherence tomography setup for monitoring cutaneous microvasculature. Punch wounds created in the ear pinnae of diabetic mice were monitored at different times post wounding to assess the structural and vascular changes. It was observed that the epithelium thickness increases post wounding and continues to be thick even after healing. Also, the wound size assessed by vascular images is larger than the physical wound size. The results show that the developed speckle variance optical coherence tomography system can be used to monitor vascular regeneration during wound healing in diabetic mice.

  18. Identification of regeneration-associated genes after central and peripheral nerve injury in the adult rat

    Directory of Open Access Journals (Sweden)

    Brook Gary A

    2003-05-01

    Full Text Available Abstract Background It is well known that neurons of the peripheral nervous system have the capacity to regenerate a severed axon leading to functional recovery, whereas neurons of the central nervous system do not regenerate successfully after injury. The underlying molecular programs initiated by axotomized peripheral and central nervous system neurons are not yet fully understood. Results To gain insight into the molecular mechanisms underlying the process of regeneration in the nervous system, differential display polymerase chain reaction has been used to identify differentially expressed genes following axotomy of peripheral and central nerve fibers. For this purpose, axotomy induced changes of regenerating facial nucleus neurons, and non-regenerating red nucleus and Clarke's nucleus neurons have been analyzed in an intra-animal side-to-side comparison. One hundred and thirty five gene fragments have been isolated, of which 69 correspond to known genes encoding for a number of different functional classes of proteins such as transcription factors, signaling molecules, homeobox-genes, receptors and proteins involved in metabolism. Sixty gene fragments correspond to genomic mouse sequences without known function. In situ-hybridization has been used to confirm differential expression and to analyze the cellular localization of these gene fragments. Twenty one genes (~15% have been demonstrated to be differentially expressed. Conclusions The detailed analysis of differentially expressed genes in different lesion paradigms provides new insights into the molecular mechanisms underlying the process of regeneration and may lead to the identification of genes which play key roles in functional repair of central nervous tissues.

  19. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ronghua Wu

    2015-11-01

    Full Text Available Calpain 3 (CAPN3, also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA of gastrocnemius muscle were decreased gradually from 1–14 days and then recovery from 14–28 days. The active form of CAPN3 (~62 kDa protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury.

  20. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats.

    Science.gov (United States)

    Wu, Ronghua; Yan, Yingying; Yao, Jian; Liu, Yan; Zhao, Jianmei; Liu, Mei

    2015-11-11

    Calpain 3 (CAPN3), also known as p94, is a skeletal muscle-specific member of the calpain family that is involved in muscular dystrophy; however, the roles of CAPN3 in muscular atrophy and regeneration are yet to be understood. In the present study, we attempted to explain the effect of CAPN3 in muscle atrophy by evaluating CAPN3 expression in rat gastrocnemius muscle following reversible sciatic nerve injury. After nerve injury, the wet weight ratio and cross sectional area (CSA) of gastrocnemius muscle were decreased gradually from 1-14 days and then recovery from 14-28 days. The active form of CAPN3 (~62 kDa) protein decreased slightly on day 3 and then increased from day 7 to 14 before a decrease from day 14 to 28. The result of linear correlation analysis showed that expression of the active CAPN3 protein level was negatively correlated with muscle wet weight ratio. CAPN3 knockdown by short interfering RNA (siRNA) injection improved muscle recovery on days 7 and 14 after injury as compared to that observed with control siRNA treatment. Depletion of CAPN3 gene expression could promote myoblast differentiation in L6 cells. Based on these findings, we conclude that the expression pattern of the active CAPN3 protein is linked to muscle atrophy and regeneration following denervation: its upregulation during early stages may promote satellite cell renewal by inhibiting differentiation, whereas in later stages, CAPN3 expression may be downregulated to stimulate myogenic differentiation and enhance recovery. These results provide a novel mechanistic insight into the role of CAPN3 protein in muscle regeneration after peripheral nerve injury.

  1. Nerve Growth Factor Stimulates Cardiac Regeneration via Cardiomyocyte Proliferation in Experimental Heart Failure

    Science.gov (United States)

    Lam, Nicholas T.; Currie, Peter D.; Lieschke, Graham J.; Rosenthal, Nadia A.; Kaye, David M.

    2012-01-01

    Although the adult heart likely retains some regenerative capacity, heart failure (HF) typically remains a progressive disorder. We hypothesise that alterations in the local environment contribute to the failure of regeneration in HF. Previously we showed that nerve growth factor (NGF) is deficient in the failing heart and here we hypothesise that diminished NGF limits the cardiac regenerative response in HF. The capacity of NGF to augment cardiac regeneration was tested in a zebrafish model of HF. Cardiac injury with a HF phenotype was induced in zebrafish larvae at 72 hours post fertilization (hpf) by exposure to aristolochic acid (AA, 2.5 µM, 72–75 hpf). By 168 hpf, AA induced HF and death in 37.5% and 20.8% of larvae respectively (pheart by 4.8 fold (pheart, mediated by stimulation of cardiomyocyte proliferation. PMID:23300892

  2. Response of the regenerating telencephalon of Lacerta viridis to nerve growth factor.

    Science.gov (United States)

    Del Grande, P; Minelli, G

    1980-01-01

    To identify the nature of the dividing cells during the regenerative process of the telencephalon, the authors administered nerve growth factor (NGF) to Lacerta viridis with a wedge of telencephalon removed. Some known centers of cell proliferation were unresponsive to the treatment, whereas the ventral end of the telencephalic ventricle underwent an increase of up to 200% in proliferation rate. On the basis of this observation and data in the literature, the authors propose that the cell proliferation beginning in the medial area during the regeneration of the telencephalic ventricle is due to catecholaminergic neuroblasts still present in the adult.

  3. Prevalence and Risk Factors for Lateral Femoral Cutaneous Nerve Palsy in the Beach Chair Position.

    Science.gov (United States)

    Holtzman, Ari J; Glezos, Christopher D; Feit, Eric J; Gruson, Konrad I

    2017-11-01

    To report on the prevalence of lateral femoral cutaneous nerve (LFCN) palsy in patients who had undergone shoulder surgery in the beach chair position and to identify patient and surgical risk factors for its development. We retrospectively reviewed the medical records of 397 consecutive patients who underwent either open or arthroscopic shoulder surgery in the beach chair position by a single surgeon. Patient demographic and surgical data including age, gender, weight, body mass index (BMI), diabetes, procedure duration, and anesthesia type (general, regional, regional/general) were recorded. LFCN palsy symptoms were recorded prospectively at the initial postoperative visit and identified clinically by focal pain, numbness, and/or tingling over the anterolateral thigh. The median patient age was 59.0 years and consisted of 158 males (40%) and 239 (60%) females. Five cases of LFCN palsy were identified for a prevalence of 1.3%. These patients had a higher median weight (108.9 kg vs 80.7 kg, P = .005) and BMI (39.6 vs 29.4, P = .005) than the patients who did not develop LFCN palsy. Median age, gender, diabetes, and surgical time were not significantly different between the groups. All cases resolved completely within 6 months. LFCN palsy after shoulder surgery in the beach chair position in our study has a prevalence of 1.3%, making it an uncommon complication. Patients with elevated BMI should be counseled about its possible occurrence after shoulder surgery in the beach chair position. Level IV, prognostic. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Use of thallium transport to visualize functional olfactory nerve regeneration in vivo.

    Science.gov (United States)

    Shiga, Hideaki; Washiyama, Kohshin; Hirota, Kyoko; Amano, Ryohei; Furukawa, Mitsuru; Miwa, Takaki

    2009-12-01

    To image olfactory nerve regeneration in vivo using a high-resolution gamma cam- era and radiography after nasal administration of thallium-201 (olfacto-scintigraphy). Six Wistar rats were trained to avoid the smell of cycloheximide as a test of olfactory function. The olfactory nerve fibers of 3 rats were then carefully transected bilaterally with a Teflon knife, avoiding damage to the olfactory bulbs. The remaining 3 rats underwent sham operations and were used as controls. Steel wires were implanted in the left olfactory bulb of each rat for locating the bulbs with plain X-rays. The rats were assessed 2, 14, 28, and 42 d after the olfactory nerve transection or sham operation for their ability to detect odours and for transport of 201Tl to the olfactory bulb area 8 h after nasal administration of 201Tl. Both transport of 201Tl to the olfactory bulb area (p < 0.04) and ability to detect odours (p < 0.04) significantly increased with a time course after olfactory nerve transection. 201Tl transport to the olfactory bulb may be useful to visually assess olfactory ability in vivo. We plan to test olfacto-scintigraphy clinically by nasal administration of 201Tl in patients with posttraumatic olfactory loss.

  5. In vitro assessment of TAT - Ciliary Neurotrophic Factor therapeutic potential for peripheral nerve regeneration.

    Science.gov (United States)

    Barbon, Silvia; Stocco, Elena; Negro, Alessandro; Dalzoppo, Daniele; Borgio, Luca; Rajendran, Senthilkumar; Grandi, Francesca; Porzionato, Andrea; Macchi, Veronica; De Caro, Raffaele; Parnigotto, Pier Paolo; Grandi, Claudio

    2016-10-15

    In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage. Moreover, a compelling protein delivery method was defined, in the future perspective of improving nerve regeneration strategies. Following determination of TAT-CNTF molecular weight and concentration, its specific effect on neural SH-SY5Y and PC12 cultures was assessed. Cell proliferation assay demonstrated that the fusion protein triggers PC12 cell growth within 6h of stimulation. At the same time, the activation of signal transduction pathway and enhancement of cellular trafficking were found to be accomplished in both neural cell lines after specific treatment with TAT-CNTF. Finally, the recombinant growth factor was successfully loaded on oxidized polyvinyl alcohol (PVA) scaffolds, and more efficiently released when polymer oxidation rate increased. Taken together, our results highlight that the TAT domain addiction to the protein sequence preserves CNTF specific neurotrophic activity in vitro, besides improving cellular uptake. Moreover, oxidized PVA could represent an ideal biomaterial for the development of nerve conduits loaded with the fusion protein to be delivered to the site of nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. PTEN knockdown with the Y444F mutant AAV2 vector promotes axonal regeneration in the adult optic nerve

    Directory of Open Access Journals (Sweden)

    Zheng-ru Huang

    2018-01-01

    Full Text Available The lack of axonal regeneration is the major cause of vision loss after optic nerve injury in adult mammals. Activating the PI3K/AKT/mTOR signaling pathway has been shown to enhance the intrinsic growth capacity of neurons and to facilitate axonal regeneration in the central nervous system after injury. The deletion of the mTOR negative regulator phosphatase and tensin homolog (PTEN enhances regeneration of adult corticospinal neurons and ganglion cells. In the present study, we used a tyrosine-mutated (Y444F AAV2 vector to efficiently express a short hairpin RNA (shRNA for silencing PTEN expression in retinal ganglion cells. We evaluated cell survival and axonal regeneration in a rat model of optic nerve axotomy. The rats received an intravitreal injection of wildtype AAV2 or Y444F mutant AAV2 (both carrying shRNA to PTEN 4 weeks before optic nerve axotomy. Compared with the wildtype AAV2 vector, the Y444F mutant AAV2 vector enhanced retinal ganglia cell survival and stimulated axonal regeneration to a greater extent 6 weeks after axotomy. Moreover, post-axotomy injection of the Y444F AAV2 vector expressing the shRNA to PTEN rescued ~19% of retinal ganglion cells and induced axons to regenerate near to the optic chiasm. Taken together, our results demonstrate that PTEN knockdown with the Y444F AAV2 vector promotes retinal ganglion cell survival and stimulates long-distance axonal regeneration after optic nerve axotomy. Therefore, the Y444F AAV2 vector might be a promising gene therapy tool for treating optic nerve injury.

  7. A combination of Schwann-cell grafts and aerobic exercise enhances sciatic nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Camila Oliveira Goulart

    Full Text Available Despite the regenerative potential of the peripheral nervous system, severe nerve lesions lead to loss of target-organ innervation, making complete functional recovery a challenge. Few studies have given attention to combining different approaches in order to accelerate the regenerative process.Test the effectiveness of combining Schwann-cells transplantation into a biodegradable conduit, with treadmill training as a therapeutic strategy to improve the outcome of repair after mouse nerve injury.Sciatic nerve transection was performed in adult C57BL/6 mice; the proximal and distal stumps of the nerve were sutured into the conduit. Four groups were analyzed: acellular grafts (DMEM group, Schwann cell grafts (3×105/2 µL; SC group, treadmill training (TMT group, and treadmill training and Schwann cell grafts (TMT + SC group. Locomotor function was assessed weekly by Sciatic Function Index and Global Mobility Test. Animals were anesthetized after eight weeks and dissected for morphological analysis.Combined therapies improved nerve regeneration, and increased the number of myelinated fibers and myelin area compared to the DMEM group. Motor recovery was accelerated in the TMT + SC group, which showed significantly better values in sciatic function index and in global mobility test than in the other groups. The TMT + SC group showed increased levels of trophic-factor expression compared to DMEM, contributing to the better functional outcome observed in the former group. The number of neurons in L4 segments was significantly higher in the SC and TMT + SC groups when compared to DMEM group. Counts of dorsal root ganglion sensory neurons revealed that TMT group had a significant increased number of neurons compared to DMEM group, while the SC and TMT + SC groups had a slight but not significant increase in the total number of motor neurons.These data provide evidence that this combination of therapeutic strategies can significantly improve functional

  8. Fabrication and Optimization of Gelatin/ Nano Bioglass Conduits for Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    M. Foroutan Koudehi

    2014-07-01

    Full Text Available Introduction & Objective: Peripheral nerve injury is common in trauma patients and 4.5% of all soft-tissue injuries are accompanied by defects of peripheral nerve. Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Designed conduits com-prised of natural and synthetic materials are now widely used in the construction of damaged tissues. The aim of this project was to prepare nanocomposite conduits from gelatin and bioglass for damaged peripheral nerve reconstruction. Materials & Methods: In this experimental study,compound water solution of gelatin and nano bioglass synthesized through sol gel method, was made. After preparing the solution, special mandrels were dipped in solution several times and freeze dried in order to be emptied of wa-ter via sublimation. The conduits had the following dimensions: internal diameter: 1.6 mm, outside diameter: 2.2 mm and length about 12 mm. In order to evaluate the biocompatibility of conduits we used cytotoxicity test by Chinese ovary cells and MTT assay by Miapaca-2 (pancreatic cancer cell line. Results: The prepared nano bioglass and conduits were characterized using transmission elec-tron microscopy, scanning electron microscopy, fourier transformed infrared spectroscopy and X-ray diffraction. Results of biocompatibility test showed no sign of cytotoxicity and cells were found to be attached to the pore walls offered by the conduits. Conclusion: According to the results, nano bioglass conduits could be a good candidate for peripheral nerve regeneration. (Sci J Hamadan Univ Med Sci 2014; 21 (2:152-160

  9. Anatomical study of the nerve regeneration after selective neurectomy in the rabbit: clinical application for esthetic calf reduction

    OpenAIRE

    Shin, Kang-Jae; Yoo, Ja-Young; Lee, Ju-Young; Gil, Young-Chun; Kim, Jeong-Nam; Koh, Ki-Seok; Song, Wu-Chul

    2015-01-01

    The purposes of this study were therefore to characterize the degeneration and regeneration of nerves to the calf muscles after selective neurectomy, both macroscopically and microscopically, and to determine the incidence of such regeneration in a rabbit model. Seventy four New Zealand white rabbits were used. Selective neurectomy to the triceps surae muscles was performed, and the muscles were subsequently harvested and weighed 1-4 months postneurectomy. The gastrocnemius muscles were stain...

  10. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Science.gov (United States)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  11. BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration

    Science.gov (United States)

    Gao, Mingyong; Lu, Paul; Lynam, Dan; Bednark, Bridget; Campana, W. Marie; Sakamoto, Jeff; Tuszynski, Mark

    2016-12-01

    Objective. We combined implantation of multi-channel templated agarose scaffolds with growth factor gene delivery to examine whether this combinatorial treatment can enhance peripheral axonal regeneration through long sciatic nerve gaps. Approach. 15 mm long scaffolds were templated into highly organized, strictly linear channels, mimicking the linear organization of natural nerves into fascicles of related function. Scaffolds were filled with syngeneic bone marrow stromal cells (MSCs) secreting the growth factor brain derived neurotrophic factor (BDNF), and lentiviral vectors expressing BDNF were injected into the sciatic nerve segment distal to the scaffold implantation site. Main results. Twelve weeks after injury, scaffolds supported highly linear regeneration of host axons across the 15 mm lesion gap. The incorporation of BDNF-secreting cells into scaffolds significantly increased axonal regeneration, and additional injection of viral vectors expressing BDNF into the distal segment of the transected nerve significantly enhanced axonal regeneration beyond the lesion. Significance. Combinatorial treatment with multichannel bioengineered scaffolds and distal growth factor delivery significantly improves peripheral nerve repair, rivaling the gold standard of autografts.

  12. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Ting Rao

    2014-03-01

    Full Text Available Background:   Valproic acid (VPA is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods:   The rats in VPA group and control group were administered with valproic acid (300mg/kg and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results:   There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, and morphometrical results (regenerated axon number and thickness of myelin sheath in nerve regeneration between the VPA group and controls (   P

  13. Proteins isolated from regenerating sciatic nerves of rats form aggregates following posttranslational amino acid modification

    International Nuclear Information System (INIS)

    Ingoglia, N.A.; Chakroborty, G.; Yu, M.; Luo, D.; Sturman, J.A.

    1991-01-01

    Soluble proteins of regenerating sciatic nerves of rats can be posttranslationally, covalently modified by a variety of radioactive amino acids. The present study shows that once modified by a mixture of 15 amino acids, many of those proteins form aggregates that are unable to pass through a 0.45-micron filter and pellet following 20,000g centrifugation (suggesting a size of greater than 2 x 10(6) Da). Aggregation of proteins also occurs following modification by Arg or Lys alone, but does not occur following protein modification in nonregenerating nerves or in brain. Aggregates are not disrupted by treatment with 100 mM beta mercaptoethanol or by exposure to 1.0 M NaCl, but aggregates are solubilized by treatment with urea and by boiling in 1.5% SDS. Amino acid analysis of proteins modified by a mixture of [3H]amino acids shows a similar proportion of posttranslationally incorporated Ser, Pro, Val, Ala, Leu, Phe, Lys, and Arg in the soluble and pelletable fractions. Two-dimensional PAGE profiles of soluble and pelletable modified proteins show that the modified proteins in both fractions are in similar pI and molecular weight ranges, except that the soluble modified proteins include a high-molecular-weight component that is absent in the pelleted modified proteins. Kinetic studies show that while half-maximal levels of protein modification occur within 30 seconds of incubation, the appearance of the pelletable modified protein fraction is delayed significantly. These results indicate that amino acid modification of soluble proteins in regenerating sciatic nerves of rats results in physical changes in those proteins so that they form high-molecular-weight aggregates

  14. Anatomy of the lateral antebrachial cutaneous and superficial radial nerves in the forearm: a cadaveric and clinical study.

    Science.gov (United States)

    Beldner, Steven; Zlotolow, Dan A; Melone, Charles P; Agnes, Ann Marie; Jones, Morgan H

    2005-11-01

    To define the anatomy of the lateral antebrachial cutaneous nerve (LACN) and the superficial radial nerve (SRN) in relation to easily identifiable landmarks in the dorsoradial forearm to minimize the risk to both nerves during surgical approaches to the dorsal radius. In this study 37 cadaveric forearms and 20 patients having distal radius external fixation were dissected to identify these nerves in relation to various anatomic landmarks. Based on these dissections the anatomy was divided into 2 zones that can be identified by easily visible and palpable landmarks. Zone 1 extends from the elbow to the cross-over of the abductor pollicis longus with the extensor carpi radialis brevis and longus. Zone 2 is distal to the cross-over. In zone 1 the 2 nerves can be differentiated through limited incisions based on their depth and anatomic location. Within this zone the SRN is deep to the brachioradialis until 1.8 cm proximal to zone 2 (9 cm proximal to the radial styloid), where it becomes superficial and pierces the fascia of the mobile wad and then remains deep to the subcutaneous fat. In contrast the LACN pierces the fascia between the brachialis and biceps muscles at the level of the elbow. In all specimens the LACN ran parallel to the cephalic vein within the subcutaneous fat. In 31 specimens it ran volar to the vein and in 5 specimens the nerve crossed under the cephalic vein at the elbow and ran dorsal to the vein in the forearm. One specimen had 2 branches with 1 on either side of the vein. Differentiation of these nerves was found to be possible through limited incisions in zone 1 during placement of external fixation pins for distal radius fractures. The LACN always was located in the superficial fat running with the cephalic vein, whereas the SRN was deeper to this nerve either covered by the brachioradialis or closely adherent to it within the investing fascia of the mobile wad. In zone 2 the nerves arborized and ran in the same tissue plane, making

  15. Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs.

    Science.gov (United States)

    Yan, Wenxia; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Sun, Huimin; Li, Caiyun; Wang, Ning; Chu, Jing

    2017-07-01

    Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen. In the present study, noninvasive Raman microspectroscopy was used for tracing the regeneration status of collagen during diabetic wound healing with MSCs. Wound tissues of normal mice, diabetic mice, and MSC-treated diabetic mice were subjected to Masson trichrome staining assay and submitted to spectroscopic analysis by Raman microspectroscopy after wounding 7, 14, and 21 days. Masson trichrome staining demonstrated that there was more collagen deposition in diabetic + MSCs group relative to diabetic group. The relative intensity of Raman collagen peak positions at 937, 1004, 1321, 1452, and 1662 cm -1 increased in MSC-treated diabetic group compared to diabetic group, although normal mice group had the highest relative intensity of collagen peak bands. Correlation analysis suggested that the spectral bands had a high positive correlation with the collagen intensity detected by Masson trichrome staining in wound tissues of three groups. Our results demonstrate that Raman microspectroscopy has potential application in rapidly and quantitatively assessing diabetic wound healing with MSCs by monitoring collagen variation, which may provide a novel method for the study of skin regeneration.

  16. Effect of local administration of platelet-derived growth factor B on functional recovery of peripheral nerve regeneration: A sciatic nerve transection model.

    Science.gov (United States)

    Golzadeh, Atefeh; Mohammadi, Rahim

    2016-01-01

    Effects of platelet-derived growth factor B (PDGF-B) on peripheral nerve regeneration was studied using a rat sciatic nerve transection model. Forty-five male, white Wistar rats were divided into three experimental groups (n = 15), randomly: Normal control group (NC), silicon group (SIL), and PDGF-B treated group (SIL/PDGF). In NC group, left sciatic nerve was exposed through a gluteal muscle incision and after homeostasis muscle was sutured. In the SIL group, the left sciatic nerve was exposed in the same way and transected proximal to tibio-peroneal bifurcation leaving a 10-mm gap. Proximal and distal stumps were each inserted into a silicone conduit and filled with 10 μL phosphate buffered solution. In SIL/PDGF group, the silicon conduit was filled with 10 μL PDGF-B (0.5 ng/mL). Each group was subdivided into three subgroups of five and were studied in 4, 8, 12 weeks after surgery. Behavioral testing, sciatic nerve functional study, gastrocnemius muscle mass, and histomorphometric studies showed earlier regeneration of axons in SIL/PDGF than in SIL group (P recovery and may have clinical implications for the surgical management of patients after facial nerve transection.

  17. Evaluation of several techniques to modify denatured muscle tissue to obtain a scaffold for peripheral nerve regeneration

    NARCIS (Netherlands)

    Meek, MF; den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    The aim of this study was to (1) evaluate the effect of several preparation techniques of denatured muscle tissue to obtain an open three-dimensional structure, and (2) test if this scaffold is suitable for peripheral nerve regeneration. Four samples (A-D) of muscle tissue specimens were evaluated

  18. Vitamin B complex treatment improves motor nerve regeneration and recovery of muscle function in a rodent model of peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Nedeljković Predrag

    2017-01-01

    Full Text Available It is well known that the peripheral nervous system has a good potential for regeneration. The aim of this study was to explore the effects of vitamin B therapy (with a complex of vitamins B1, B2, B3, B5, B6, and B12 on motor nerve recovery after femoral nerve injury. Our study was conducted on an experimental animal model of femoral nerve injury in rats. All animals used in the experiment were subjected to the same set of analyses. A behavior test was used for the assessment of motor function recovery. Body weight was measured and electromyography was performed in order to assess recovery of quadriceps muscle. Samples of muscles and nerves were used for counting nuclei and determining nuclear density. The results of this study showed enhanced functional recovery, including improved walking, a decreased level of muscle atrophy and better electromyography recovery after administration of vitamin B complex. Further, after 14 days of treatment with the vitamin B complex nuclear nerve and muscle density was significantly lowered. In conclusion, using a model of femoral nerve injury we demonstrated that the application of vitamin B complex improved recovery of motor nerve in rats. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 175033

  19. Ibuprofen-loaded poly(trimethylene carbonate-co-ε-caprolactone) electrospun fibres for nerve regeneration.

    Science.gov (United States)

    Pires, Liliana R; Guarino, Vincenzo; Oliveira, Maria J; Ribeiro, Cristina C; Barbosa, Mário A; Ambrosio, Luigi; Pêgo, Ana Paula

    2016-03-01

    The development of scaffolds that combine the delivery of drugs with the physical support provided by electrospun fibres holds great potential in the field of nerve regeneration. Here it is proposed the incorporation of ibuprofen, a well-known non-steroidal anti-inflammatory drug, in electrospun fibres of the statistical copolymer poly(trimethylene carbonate-co-ε-caprolactone) [P(TMC-CL)] to serve as a drug delivery system to enhance axonal regeneration in the context of a spinal cord lesion, by limiting the inflammatory response. P(TMC-CL) fibres were electrospun from mixtures of dichloromethane (DCM) and dimethylformamide (DMF). The solvent mixture applied influenced fibre morphology, as well as mean fibre diameter, which decreased as the DMF content in solution increased. Ibuprofen-loaded fibres were prepared from P(TMC-CL) solutions containing 5% ibuprofen (w/w of polymer). Increasing drug content to 10% led to jet instability, resulting in the formation of a less homogeneous fibrous mesh. Under the optimized conditions, drug-loading efficiency was above 80%. Confocal Raman mapping showed no preferential distribution of ibuprofen in P(TMC-CL) fibres. Under physiological conditions ibuprofen was released in 24 h. The release process being diffusion-dependent for fibres prepared from DCM solutions, in contrast to fibres prepared from DCM-DMF mixtures where burst release occurred. The biological activity of the drug released was demonstrated using human-derived macrophages. The release of prostaglandin E2 to the cell culture medium was reduced when cells were incubated with ibuprofen-loaded P(TMC-CL) fibres, confirming the biological significance of the drug delivery strategy presented. Overall, this study constitutes an important contribution to the design of a P(TMC-CL)-based nerve conduit with anti-inflammatory properties. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Persistent alterations in active and passive electrical membrane properties of regenerated nerve fibers of man and mice.

    Science.gov (United States)

    Moldovan, Mihai; Alvarez, Susana; Rosberg, Mette R; Krarup, Christian

    2016-02-01

    Excitability of regenerated fibers remains impaired due to changes in both passive cable properties and alterations in the voltage-dependent membrane function. These abnormalities were studied by mathematical modeling in human regenerated nerves and experimental studies in mice. In three adult male patients with surgically repaired complete injuries of peripheral nerves of the arm 22 months-26 years prior to investigation, deviation of excitability measures was explained by a hyperpolarizing shift in the resting membrane potential and an increase in the passive 'Barrett and Barrett' conductance (GBB) bridging the nodal and internodal compartments. These changes were associated with an increase in the 'fast' K(+) conductance and the inward rectifier conductance (GH). Similar changes were found in regenerated mouse tibial motor axons at 1 month after a sciatic crush lesion. During the first 5 months of regeneration, GH showed partial recovery, which paralleled that in GBB. The internodal length remained one-third of normal. Excitability abnormalities could be reversed by the energy-dependent Na(+)/K(+) pump blocker ouabain resulting in membrane depolarization. Stressing the Na(+) pumping system during a strenuous activity protocol triggered partial Wallerian degeneration in regenerated nerves but not in control nerves from age-matched mice. The current data suggest that the nodal voltage-gated ion channel machinery is restored in regenerated axons, although the electrical separation from the internodal compartment remains compromised. Due to the persistent increase in number of nodes, the increased activity-dependent Na(+) influx could lead to hyperactivity of the Na(+)/K(+) pump resulting in membrane hyperpolarization and neurotoxic energy insufficiency during strenuous activity. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model.

    Science.gov (United States)

    Ribeiro, Jorge; Caseiro, Ana Rita; Pereira, Tiago; Armada-da-Silva, Paulo Alexandre; Pires, Isabel; Prada, Justina; Amorim, Irina; Leal Reis, Inês; Amado, Sandra; Santos, José Domingos; Bompasso, Simone; Raimondo, Stefania; Varejão, Artur Severo Proença; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette

    2017-05-01

    The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10 -6 S/m, 579 ± 0.6 × 10 -6 S/m, and 1837.5 ± 0.7 × 10 -6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017. © 2017 Wiley Periodicals, Inc.

  2. All-trans retinoic acid induces nerve regeneration and increases serum and nerve contents of neural growth factor in experimental diabetic neuropathy.

    Science.gov (United States)

    Hernández-Pedro, Norma; Ordóñez, Graciela; Ortiz-Plata, Alma; Palencia-Hernández, Guadalupe; García-Ulloa, Ana Cristina; Flores-Estrada, Diana; Sotelo, Julio; Arrieta, Oscar

    2008-07-01

    Local diminution of the neural growth factor (NGF) contributes to the apparition of diabetic neuropathy. All-trans retinoic acid (RA) increases the expression of neural growth factor and its receptor participating in translation pathways. This study evaluates RA as a treatment of diabetic neuropathy: 120 mice were assigned randomly to 4 groups. Group A (n = 30) was taken as control; group B (n = 30) received 50 mg/kg intraperitoneal streptozotocin (STZ); group C (n = 30) received STZ, and after diabetic neuropathy developed, they were treated with subcutaneous RA 20 mg/kg daily during 60 days; and group D (n = 30) only received RA. Plasma glucose, thermosensitive tests, serum, and the nerve contents of NGF were measured in all animals. Evaluation by electron microscopy was performed in search of morphologic changes secondary to neuropathy and nerve regeneration. Diabetic mice had an increased threshold to pain. Treatment with RA in diabetic mice reverted changes in sensitivity as compared with diabetic mice that received placebo (P pain threshold among controls, RA, and diabetes mellitus (DM) + RA groups were found. Glucose levels were not affected by the treatment with RA. NGF diminished significantly in the sciatic nerve in diabetic mice as compared with controls and with the RA group. Animals with DM + RA had a significant increase of NGF in nerves as compared with the other groups. RA also regressed the ultrastructural changes induced by diabetes that showed increased neural regeneration. RA can revert functional and ultrastructural changes and induce neural regeneration after the establishment of diabetic neuropathy, possibly because of the increased of NGF concentrations in nerve terminals.

  3. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-01-01

    Full Text Available Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated whether adipose-derived stem cell transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 × 105 or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8 × 105 or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellular matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury.

  4. Adipose-derived mesenchymal stem cells accelerate nerve regeneration and functional recovery in a rat model of recurrent laryngeal nerve injury

    Science.gov (United States)

    Li, Yun; Xu, Wen; Cheng, Li-yu

    2017-01-01

    Medialization thyroplasty or injection laryngoplasty for unilateral vocal fold paralysis cannot restore mobility of the vocal fold. Recent studies have shown that transplantation of mesenchymal stem cells is effective in the repair of nerve injuries. This study investigated whether adipose-derived stem cell transplantation could repair recurrent laryngeal nerve injury. Rat models of recurrent laryngeal nerve injury were established by crushing with micro forceps. Adipose-derived mesenchymal stem cells (ADSCs; 8 × 105) or differentiated Schwann-like adipose-derived mesenchymal stem cells (dADSCs; 8 × 105) or extracellular matrix were injected at the site of injury. At 2, 4 and 6 weeks post-surgery, a higher density of myelinated nerve fiber, thicker myelin sheath, improved vocal fold movement, better recovery of nerve conduction capacity and reduced thyroarytenoid muscle atrophy were found in ADSCs and dADSCs groups compared with the extracellular matrix group. The effects were more pronounced in the ADSCs group than in the dADSCs group. These experimental results indicated that ADSCs transplantation could be an early interventional strategy to promote regeneration after recurrent laryngeal nerve injury. PMID:29090002

  5. Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration.

    Science.gov (United States)

    Jung, Namhee; Park, Saeyoung; Choi, Yoonyoung; Park, Joo-Won; Hong, Young Bin; Park, Hyun Ho Choi; Yu, Yeonsil; Kwak, Geon; Kim, Han Su; Ryu, Kyung-Ha; Kim, Jae Kwang; Jo, Inho; Choi, Byung-Ok; Jung, Sung-Chul

    2016-11-09

    Schwann cells (SCs), which produce neurotropic factors and adhesive molecules, have been reported previously to contribute to structural support and guidance during axonal regeneration; therefore, they are potentially a crucial target in the restoration of injured nervous tissues. Autologous SC transplantation has been performed and has shown promising clinical results for treating nerve injuries and donor site morbidity, and insufficient production of the cells have been considered as a major issue. Here, we performed differentiation of tonsil-derived mesenchymal stem cells (T-MSCs) into SC-like cells (T-MSC-SCs), to evaluate T-MSC-SCs as an alternative to SCs. Using SC markers such as CAD19 , GFAP , MBP , NGFR , S100B , and KROX20 during quantitative real-time PCR we detected the upregulation of NGFR , S100B , and KROX20 and the downregulation of CAD19 and MBP at the fully differentiated stage. Furthermore, we found myelination of axons when differentiated SCs were cocultured with mouse dorsal root ganglion neurons. The application of T-MSC-SCs to a mouse model of sciatic nerve injury produced marked improvements in gait and promoted regeneration of damaged nerves. Thus, the transplantation of human T-MSCs might be suitable for assisting in peripheral nerve regeneration.

  6. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    Science.gov (United States)

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  7. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    Science.gov (United States)

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P < 0·05) in the VEGF group. The results of

  8. Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model.

    Science.gov (United States)

    Mørch, Carsten Dahl; Hennings, Kristian; Andersen, Ole Kæseler

    2011-04-01

    Electrical stimulation of cutaneous tissue through surface electrodes is an often used method for evoking experimental pain. However, at painful intensities both non-nociceptive Aβ-fibers and nociceptive Aδ- and C-fibers may be activated by the electrical stimulation. This study proposes a finite element (FE) model of the extracellular potential and stochastic branching fiber model of the afferent fiber excitation thresholds. The FE model described four horizontal layers; stratum corneum, epidermis, dermis, and hypodermal used to estimate the excitation threshold of Aβ-fibers terminating in dermis and Aδ-fibers terminating in epidermis. The perception thresholds of 11 electrodes with diameters ranging from 0.2 to 20 mm were modeled and assessed on the volar forearm of healthy human volunteers by an adaptive two-alternative forced choice algorithm. The model showed that the magnitude of the current density was highest for smaller electrodes and decreased through the skin. The excitation thresholds of the Aδ-fibers were lower than the excitation thresholds of Aβ-fibers when current was applied through small, but not large electrodes. The experimentally assessed perception threshold followed the lowest excitation threshold of the modeled fibers. The model confirms that preferential excitation of Aδ-fibers may be achieved by small electrode stimulation due to higher current density in the dermoepidermal junction.

  9. A rare cause of forearm pain: anterior branch of the medial antebrachial cutaneous nerve injury: a case report

    Directory of Open Access Journals (Sweden)

    Ardic Füsun

    2008-04-01

    Full Text Available Abstract Introduction Medial antebrachial cutaneous nerve (MACN neuropathy is reported to be caused by iatrogenic reasons. Although the cases describing the posterior branch of MACN neuropathy are abundant, only one case caused by lipoma has been found to describe the anterior branch of MACN neuropathy in the literature. As for the reason for the forearm pain, we report the only case describing isolated anterior branch of MACN neuropathy which has developed due to repeated minor trauma. Case presentation We report a 37-year-old woman patient with pain in her medial forearm and elbow following the shaking of a rug. Pain and symptoms of dysestesia in the distribution of the right MACN were found. Electrophysiological examination confirmed the normality of the main nerve trunks of the right upper limb and demonstrated abnormalities of the right MACN when compared with the left side. Sensory action potential (SAP amplitude on the right anterior branch of the MACN was detected to be lower in proportion to the left. In the light of these findings, NSAI drug and physical therapy was performed. Dysestesia and pain were relieved and no recurrence was observed after a follow-up of 14 months. Conclusion MACN neuropathy should be taken into account for the differential diagnosis of the patients with complaints of pain and dysestesia in medial forearm and anteromedial aspect of the elbow.

  10. Therapeutic Effect of Exendin-4, a Long-Acting Analogue of Glucagon-Like Peptide-1 Receptor Agonist, on Nerve Regeneration after the Crush Nerve Injury

    Directory of Open Access Journals (Sweden)

    Koji Yamamoto

    2013-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 is glucose-dependent insulinotropic hormone secreted from enteroendocrine L cells. Its long-acting analogue, exendin-4, is equipotent to GLP-1 and is used to treat type 2 diabetes mellitus. In addition, exendin-4 has effects on the central and peripheral nervous system. In this study, we administered repeated intraperitoneal (i.p. injections of exendin-4 to examine whether exendin-4 is able to facilitate the recovery after the crush nerve injury. Exendin-4 injection was started immediately after crush injury and was repeated every day for subsequent 14 days. Rats subjected to sciatic nerve crush exhibited marked functional loss, electrophysiological dysfunction, and atrophy of the tibialis anterior muscle (TA. All these changes, except for the atrophy of TA, were improved significantly by the administration of exendin-4. Functional, electrophysiological, and morphological parameters indicated significant enhancement of nerve regeneration 4 weeks after nerve crush. These results suggest that exendin-4 is feasible for clinical application to treat peripheral nerve injury.

  11. Specific paucity of unmyelinated C-fibers in cutaneous peripheral nerves of the African naked-mole rat: comparative analysis using six species of Bathyergidae.

    Science.gov (United States)

    St John Smith, Ewan; Purfürst, Bettina; Grigoryan, Tamara; Park, Thomas J; Bennett, Nigel C; Lewin, Gary R

    2012-08-15

    In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  12. Tesamorelin Therapy to Enhance Axonal Regeneration, Minimize Muscle Atrophy and Improve Functional Outcomes Following Peripheral Nerve Injury and Repair

    Science.gov (United States)

    2017-10-01

    with REDCap and our biostatistician. We have received IRB approval from JHU IRB and IRB waivers from our primary recruitment sites (Union Memorial ...will be eligible for enrolment. Subject recruitment will take place primarily at Johns Hopkins Hospital, Union Memorial Hospital (Curtis National Hand...peripheral nerve regeneration, Phase 2 clinical trial, motor recovery, sensory recovery. 3. ACCOMPLISHMENTS:  What were the major goals of the project? Below

  13. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration

    Science.gov (United States)

    Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace

    2018-02-01

    Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.

  14. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Sigal Tal

    2017-10-01

    Full Text Available Background: Recent clinical studies in stroke and traumatic brain injury (TBI victims suffering chronic neurological injury present evidence that hyperbaric oxygen therapy (HBOT can induce neuroplasticity.Objective: To assess the neurotherapeutic effect of HBOT on prolonged post-concussion syndrome (PPCS due to TBI, using brain microstructure imaging.Methods: Fifteen patients afflicted with PPCS were treated with 60 daily HBOT sessions. Imaging evaluation was performed using Dynamic Susceptibility Contrast-Enhanced (DSC and Diffusion Tensor Imaging (DTI MR sequences. Cognitive evaluation was performed by an objective computerized battery (NeuroTrax.Results: HBOT was initiated 6 months to 27 years (10.3 ± 3.2 years from injury. After HBOT, DTI analysis showed significantly increased fractional anisotropy values and decreased mean diffusivity in both white and gray matter structures. In addition, the cerebral blood flow and volume were increased significantly. Clinically, HBOT induced significant improvement in the memory, executive functions, information processing speed and global cognitive scores.Conclusions: The mechanisms by which HBOT induces brain neuroplasticity can be demonstrated by highly sensitive MRI techniques of DSC and DTI. HBOT can induce cerebral angiogenesis and improve both white and gray microstructures indicating regeneration of nerve fibers. The micro structural changes correlate with the neurocognitive improvements.

  15. High-Frequency Transcutaneous Peripheral Nerve Stimulation Induces a Higher Increase of Heat Pain Threshold in the Cutaneous Area of the Stimulated Nerve When Confronted to the Neighbouring Areas

    Directory of Open Access Journals (Sweden)

    M. Buonocore

    2013-01-01

    Full Text Available Background. TENS (transcutaneous electrical nerve stimulation is probably the most diffused physical therapy used for antalgic purposes. Although it continues to be used by trial and error, correct targeting of paresthesias evoked by the electrical stimulation on the painful area is diffusely considered very important for pain relief. Aim. To investigate if TENS antalgic effect is higher in the cutaneous area of the stimulated nerve when confronted to neighbouring areas. Methods. 10 volunteers (4 males, 6 females underwent three different sessions: in two, heat pain thresholds (HPTs were measured on the dorsal hand skin before, during and after electrical stimulation (100 Hz, 0.1 msec of superficial radial nerve; in the third session HPTs, were measured without any stimulation. Results. Radial nerve stimulation induced an increase of HPT significantly higher in its cutaneous territory when confronted to the neighbouring ulnar nerve territory, and antalgic effect persisted beyond the stimulation time. Conclusions. The location of TENS electrodes is crucial for obtaining the strongest pain relief, and peripheral nerve trunk stimulation is advised whenever possible. Moreover, the present study indicates that continuous stimulation could be unnecessary, suggesting a strategy for avoiding the well-known tolerance-like effect of prolonged TENS application.

  16. ErbB2 receptor over-expression improves post-traumatic peripheral nerve regeneration in adult mice.

    Science.gov (United States)

    Ronchi, Giulia; Gambarotta, Giovanna; Di Scipio, Federica; Salamone, Paolina; Sprio, Andrea E; Cavallo, Federica; Perroteau, Isabelle; Berta, Giovanni N; Geuna, Stefano

    2013-01-01

    In a transgenic mice (BALB-neuT) over-expressing ErbB2 receptor, we investigated the adult mouse median nerve in physiological and pathological conditions. Results showed that, in physiological conditions, the grip function controlled by the median nerve in BALB-neuT mice was similar to wild-type (BALB/c). Stereological assessment of ErbB2-overexpressing intact nerves revealed no difference in number and size of myelinated fibers compared to wild-type mice. By contrast, after a nerve crush injury, the motor recovery was significantly faster in BALB-neuT compared to BALB/c mice. Moreover, stereological assessment revealed a significant higher number of regenerated myelinated fibers with a thinner axon and fiber diameter and myelin thickness in BALB-neuT mice. At day-2 post-injury, the level of the mRNAs coding for all the ErbB receptors and for the transmembrane (type III) Neuregulin 1 (NRG1) isoforms significantly decreased in both BALB/c and BALB-neuT mice, as shown by quantitative real time PCR. On the other hand, the level of the mRNAs coding for soluble NRG1 isoforms (type I/II, alpha and beta) increased at the same post-traumatic time point though, intriguingly, this response was significantly higher in BALB-neuT mice with respect to BALB/c mice. Altogether, these results suggest that constitutive ErbB2 receptor over-expression does not influence the physiological development of peripheral nerves, while it improves nerve regeneration following traumatic injury, possibly through the up-regulation of soluble NRG1 isoforms.

  17. Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration

    NARCIS (Netherlands)

    Hu, Ying; Leaver, Simone G; Plant, Giles W; Hendriks, William T J; Niclou, Simone P; Verhaagen, J.; Harvey, Alan R; Cui, Qi

    We recently described a method for reconstituting peripheral nerve (PN) sheaths using adult Schwann cells (SCs). Reconstructed PN tissue grafted onto the cut optic nerve supports the regeneration of injured adult rat retinal ganglion cell (RGC) axons. To determine whether genetic manipulation of

  18. Semaphorin3A induces nerve regeneration in the adult cornea-a switch from its repulsive role in development.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available The peripheral sensory nerves that innervate the cornea can be easily damaged by trauma, surgery, infection or diabetes. Several growth factors and axon guidance molecules, such as Semaphorin3A (Sema3A are upregulated upon cornea injury. Nerves can regenerate after injury but do not recover their original density and patterning. Sema3A is a well known axon guidance and growth cone repellent protein during development, however its role in adult cornea nerve regeneration remains undetermined. Here we investigated the neuro-regenerative potential of Sema3A on adult peripheral nervous system neurons such as those that innervate the cornea. First, we examined the gene expression profile of the Semaphorin class 3 family members and found that all are expressed in the cornea. However, upon cornea injury there is a fast increase in Sema3A expression. We then corroborated that Sema3A totally abolished the growth promoting effect of nerve growth factor (NGF on embryonic neurons and observed signs of growth cone collapse and axonal retraction after 30 min of Sema3A addition. However, in adult isolated trigeminal ganglia or dorsal root ganglia neurons, Sema3A did not inhibited the NGF-induced neuronal growth. Furthermore, adult neurons treated with Sema3A alone produced similar neuronal growth to cells treated with NGF and the length of the neurites and branching was comparable between both treatments. These effects were replicated in vivo, where thy1-YFP neurofluorescent mice subjected to cornea epithelium debridement and receiving intrastromal pellet implantation containing Sema3A showed increased corneal nerve regeneration than those receiving pellets with vehicle. In adult PNS neurons, Sema3A is a potent inducer of neuronal growth in vitro and cornea nerve regeneration in vivo. Our data indicates a functional switch for the role of Sema3A in PNS neurons where the well-described repulsive role during development changes to a growth promoting effect

  19. Brachial branches of the medial antebrachial cutaneous nerve: A case report with its clinical significance and a short review of the literature

    Directory of Open Access Journals (Sweden)

    Kapetanakis Stylianos

    2016-01-01

    Full Text Available The medial antebrachial cutaneous nerve (MACN is a branch of the brachial plexus with a great variation within its branches. Knowledge of these variations is critical to neurologists, hand surgeons, plastic surgeons, and vascular surgeons. The aim of this study was to search for variations of the MACN and to discuss their clinical significance. For this study, six arm cadavers from three fresh cadavers were dissected and examined to find and study possible anatomical variations of the MACN. The authors report a rare case of a variation of the MACN, in which there are four brachial cutaneous branches, before the separation to anterior (volar and posterior (ulnar branch, that provide sensory innervation to the medial, inferior half of the arm, in the area that is commonly innervated from the medial brachial cutaneous nerve. To our knowledge, this is the first documented case of this nerve variation. This variation should be taken into serious consideration for the differential diagnosis of patients with complaints of hypoesthesia, pain, and paresthesia and for the surgical operations in the medial part of the arm.

  20. Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hideki Yagi

    Full Text Available No clinically applicable drug is currently available to enhance neurite elongation after nerve injury. To identify a clinically applicable drug, we screened pre-approved drugs for neurite elongation in the motor neuron-like NSC34 cells. We found that zonisamide, an anti-epileptic and anti-Parkinson's disease drug, promoted neurite elongation in cultured primary motor neurons and NSC34 cells in a concentration-dependent manner. The neurite-scratch assay revealed that zonisamide enhanced neurite regeneration. Zonisamide was also protective against oxidative stress-induced cell death of primary motor neurons. Zonisamide induced mRNA expression of nerve growth factors (BDNF, NGF, and neurotrophin-4/5, and their receptors (tropomyosin receptor kinase A and B. In a mouse model of sciatic nerve autograft, intragastric administration of zonisamide for 1 week increased the size of axons distal to the transected site 3.9-fold. Zonisamide also improved the sciatic function index, a marker for motor function of hindlimbs after sciatic nerve autograft, from 6 weeks after surgery. At 8 weeks after surgery, zonisamide was protective against denervation-induced muscle degeneration in tibialis anterior, and increased gene expression of Chrne, Colq, and Rapsn, which are specifically expressed at the neuromuscular junction. We propose that zonisamide is a potential therapeutic agent for peripheral nerve injuries as well as for neuropathies due to other etiologies.

  1. The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats.

    Science.gov (United States)

    Cao, Jiani; Sun, Changkai; Zhao, Hui; Xiao, Zhifeng; Chen, Bing; Gao, Jian; Zheng, Tiezheng; Wu, Wei; Wu, Shuang; Wang, Jingyu; Dai, Jianwu

    2011-06-01

    Nerve conduit provides a promising strategy for nerve injury repair in the peripheral nervous system (PNS). However, simply bridging the transected nerve with an empty conduit is hard to satisfy functional recovery. The regenerated axons may disperse during regeneration in the empty lumen, limiting the functional recovery. Our previous work had reported that linear ordered collagen scaffold (LOCS) could be used as a nerve guidance material. Here we cross-linked LOCS fibers with laminin which was a major component of the extracellular matrix in nervous system. Ciliary neurotrophic factor (CNTF) plays a critical role in peripheral nerve regeneration. But the lack of efficient CNTF delivery approach limits its clinical applications. To retain CNTF on the scaffold, a laminin binding domain (LBD) was fused to the N-terminal of CNTF. Compared with NAT-CNTF, LBD-CNTF exhibited specific laminin-binding ability and comparable neurotrophic bioactivity. We combined LBD-CNTF with the laminin modified LOCS fibers to construct a double-functional bio-scaffold. The functional scaffold was filled in silicon conduit and tested in the rat sciatic nerve transection model. Results showed that this functional biomaterial could guide the axon growth, retain more CNTF on the scaffolds and enhance the nerve regeneration as well as functional recovery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity.

    Science.gov (United States)

    Brandt, Jaclyn; Evans, Jonathan T; Mildenhall, Taylor; Mulligan, Amanda; Konieczny, Aimee; Rose, Samuel J; English, Arthur W

    2015-04-01

    Transection of a peripheral nerve results in withdrawal of synapses from motoneurons. Some of the withdrawn synapses are restored spontaneously, but those containing the vesicular glutamate transporter 1 (VGLUT1), and arising mainly from primary afferent neurons, are withdrawn permanently. If animals are exercised immediately after nerve injury, regeneration of the damaged axons is enhanced and no withdrawal of synapses from injured motoneurons can be detected. We investigated whether delaying the onset of exercise until after synapse withdrawal had occurred would yield similar results. In Lewis rats, the right sciatic nerve was cut and repaired. Reinnervation of the soleus muscle was monitored until a direct muscle (M) response was observed to stimulation of the tibial nerve. At that time, rats began 2 wk of daily treadmill exercise using an interval training protocol. Both M responses and electrically-evoked H reflexes were monitored weekly for an additional seven wk. Contacts made by structures containing VGLUT1 or glutamic acid decarboxylase (GAD67) with motoneurons were studied from confocal images of retrogradely labeled cells. Timing of full muscle reinnervation was similar in both delayed and immediately exercised rats. H reflex amplitude in delayed exercised rats was only half that found in immediately exercised animals. Unlike immediately exercised animals, motoneuron contacts containing VGLUT1 in delayed exercised rats were reduced significantly, relative to intact rats. The therapeutic window for application of exercise as a treatment to promote restoration of synaptic inputs onto motoneurons following peripheral nerve injury is different from that for promoting axon regeneration in the periphery. Copyright © 2015 the American Physiological Society.

  3. Blockade of ATP P2X7 receptor enhances ischiatic nerve regeneration in mice following a crush injury.

    Science.gov (United States)

    Ribeiro, Tatianne; Oliveira, Júlia Teixeira; Almeida, Fernanda Martins; Tomaz, Marcelo Amorim; Melo, Paulo A; Marques, Suelen Adriani; de Andrade, Geanne Matos; Martinez, Ana Maria Blanco

    2017-08-15

    Preventing damage caused by nerve degeneration is a great challenge. There is a growing body of evidence implicating extracellular nucleotides and their P2 receptors in many pathophysiological mechanisms. In this work we aimed to investigate the effects of the administration of Brilliant Blue G (BBG) and Pyridoxalphosphate-6-azophenyl-2', 4'- disulphonic acid (PPADS), P2X7 and P2 non-selective receptor antagonists, respectively, on sciatic nerve regeneration. Four groups of mice that underwent nerve crush lesion were used: two control groups treated with vehicle (saline), a group treated with BBG and a group treated with PPADS during 28days. Gastrocnemius muscle weight was evaluated. For functional evaluation we used the Sciatic Functional Index (SFI) and the horizontal ladder walking test. Nerves, dorsal root ganglia and spinal cords were processed for light and electron microscopy. Antinoceptive effects of BBG and PPADS were evaluated through von Frey E, and the levels of IL-1β and TNF-α were analyzed by ELISA. BBG promoted an increase in the number of myelinated fibers and on axon, fiber and myelin areas. BBG and PPADS led to an increase of TNF-α and IL-1β in the nerve on day 1 and PPADS caused a decrease of IL-1β on day 7. Mechanical allodynia was reversed on day 7 in the groups treated with BBG and PPADS. We concluded that BBG promoted a better morphological regeneration after ischiatic crush injury, but this was not followed by anticipation of functional improvement. In addition, both PPADS and BBG presented anti-inflammatory as well as antinociceptive effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In vivo visualisation of murine corneal nerve fibre regeneration in response to ciliary neurotrophic factor.

    Science.gov (United States)

    Reichard, Maria; Hovakimyan, Marina; Guthoff, Rudolf F; Stachs, Oliver

    2014-03-01

    The aim of this study was to examine the murine subbasal nerve fibre plexus (SNP) regeneration altered by surgical dissection. Investigations in the mouse model addressed the regeneration capabilities of the SNP, and the influence of local ciliary neurotrophic factor (CNTF) application on the regeneration process. In preliminary experiments, the healthy mouse cornea was monitored using in vivo confocal laser-scanning microscopy (CLSM) from the age of 8-52 weeks, to reveal and rule out the age-dependent changes in SNP. Nerve fibre density (NFD) was determined with the semi-automatic nerve tracing program NeuronJ. No quantitative or qualitative changes in NFD were detected in untreated animals over time; mean NFD in mice aged 8 weeks (28.30 ± 9.12 mm/mm2), 16 weeks (29.23 ± 7.28 mm/mm2), 30 weeks (26.31 ± 8.58 mm/mm2) and 52 weeks (26.34 ± 6.04 mm/mm2) showed no statistically significant differences between time points (p > 0.05). For regeneration studies a circular incision through corneal epithelium and anterior stroma of minimum 60 μm depth was generated with a custom-made guided trephine system to cut the subbasal corneal nerves in adult mice. The corneal nerve pattern was monitored and NFD was measured before and up to 8 weeks after surgery. Animals were divided in three groups each comprising 6 mice. The CNTF group received eye drops containing CNTF (25 ng/ml) 3 times daily for 3 weeks, whereas the control group received no further medication. In the sham group the same treatment schedule was applied as in CNTF group, using vehicle. The regenerating subbasal nerve fibres sprouted out of stromal nerves within the cut and additionally regrew over the scar rim from outside. They showed parallel orientation but were thinner than before incision. Whorl patterning was observed after 4 weeks. All three groups revealed a marked NFD reduction starting at one week after incision, followed by continuous recovery. After 8 weeks the NFD reached 23.5 ± 2.4 mm/mm2 (78

  5. Increased slow transport in axons of regenerating newt limbs after a nerve conditioning lesion made prior to amputation

    Energy Technology Data Exchange (ETDEWEB)

    Maier, C.E.

    1989-01-01

    The first part of this study shows that axonal density is constant in the limb stump of the next proximal to the area of traumatic nerve degeneration caused by limb amputation. The results of the second part of this work reveal that a nerve conditioning lesion made two weeks prior to amputation is associated with accelerated limb regeneration and that this accelerated limb regeneration is accompanied by an earlier arrival of axons. This is the first demonstration of naturally occurring limb regeneration being enhanced. In this study SCb cytoskeletal proteins were identified and measured using SDS-PAGE and liquid scintillation counting. Proteins were measured at 7, 14, 21, and 28 days after {sup 35}S-methionine injection and the normal rate of SCb transport determined to be 0.19 mm/day. A single axotomy does not enhance the rate of SCb transport but does increase the amount of labeled SCb proteins that are transported. When a conditioning lesion is employed prior to limb amputation and SCb proteins are measured at 7, 14, and 21 days after injection, there is a twofold acceleration in the rate of SCb transport and an increase in the amount of SCb proteins transported in conditioned axons.

  6. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  7. Fabrication and characterization of electrospun laminin-functionalized silk fibroin/poly(ethylene oxide) nanofibrous scaffolds for peripheral nerve regeneration.

    Science.gov (United States)

    Rajabi, Mina; Firouzi, Masoumeh; Hassannejad, Zahra; Haririan, Ismaeil; Zahedi, Payam

    2017-08-14

    The peripheral nerve regeneration is still one of the major clinical problems, which has received a great deal of attention. In this study, the electrospun silk fibroin (SF)/poly(ethylene oxide) (PEO) nanofibrous scaffolds were fabricated and functionalized their surfaces with laminin (LN) without chemical linkers for potential use in the peripheral nerve tissue engineering. The morphology, surface chemistry, thermal behavior and wettability of the scaffolds were examined to evaluate their performance by means of scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and water contact angle (WCA) measurements, respectively. The proliferation and viability of Schwann cells onto the surfaces of SF/PEO nanofibrous scaffolds were investigated using SEM and thiazolyl blue (MTT) assay. The results showed an improvement of SF conformation and surface hydrophilicity of SF/PEO nanofibers after methanol and O 2 plasma treatments. The immunostaining observation indicated a continuous coating of LN on the scaffolds. Improving the surface hydrophilicity and LN functionalization significantly increased the cell proliferation and this was more prominent after 5 days of culture time. In conclusion, the obtained results revealed that the electrospun LN-functionalized SF/PEO nanofibrous scaffold could be a promising candidate for peripheral nerve tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  8. Spontaneous Regeneration of Nerve Fiber and Irreversibility of Corporal Smooth Muscle Fibrosis after Cavernous Nerve Crush Injury: Evidence From Serial Transmission Electron Microscopy and Intracavernous Pressure.

    Science.gov (United States)

    Wu, Yi-No; Chen, Kuo-Chiang; Liao, Chun-Hou; Chiang, Han-Sun

    2017-10-16

    To determine the pathophysiological progresses following bilateral cavernous nerve crushing (BCNC) injury, as an index for a treatment point and establishment of adequate treatment strategies for neurogenic erectile dysfunction (ED). Thirty-six rats were assigned to 1 of 6 groups, and BCNC or sham surgery was performed. Functional testing and ultrastructural analyses were performed immediately and at 7, 14, 21, and 28 d after the cavernous nerve (CN) injury (n = 6). Intracavernos pressure lowered progressively from 7 d to 14 d post-injury, and histological staining revealed that the number of neuronal nitric oxide synthase-positive nerve fibers on the dorsal penile nerve decreased significantly and progressively from 7 d until 21 d post-injury. Furthermore, ultrastructural analyses revealed axon loss and demyelination of the CN at 7 and 14 d post-injury. However, it is followed by partial spontaneous recovery of erectile function and regeneration of the CN at 28 d post-injury, suggesting that these time points may be useful for evaluating the effects of drug treatments. Furthermore, we found that CN injury-induced damage to corporal smooth muscle cells was irreversible; therefore, focusing on protecting the corpus cavernosum from apoptosis may be more important than nerve protection when assessing treatment mechanisms in the CN injury model. Our study makes a significant contribution to the human diagnostic pathology literature because it describes characteristics of relevant tissue in the rat, and provides information regarding time points that may be useful for future studies of pathological mechanisms or treatment evaluations. Copyright © 2017. Published by Elsevier Inc.

  9. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue

    International Nuclear Information System (INIS)

    Escudero Castellanos, A.

    2016-01-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  10. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  11. COMPARISON OF HEMATOXYLIN AND EOSIN STAINING WITH AND WITHOUT PRE TREATMENT WITH MARCHI’S SOLUTION ON NERVE SAMPLES FOR NERVE DEGENERATION AND REGENERATION STUDIES

    Directory of Open Access Journals (Sweden)

    Malik Abu Rafee

    2017-12-01

    Full Text Available The study was conducted on four healthy guinea pigs (Cavia porcellus of either sex in which the nerve was identified and subjected to crush injury with the tip (3mm of a curved hemostatic forceps. 30 days after the injury nerve samples were collected and subjected to Hematoxylin and Eosin staining with or without pretreatment with Marchi’s solution. The routine Hematoxylin and Eosin (H&E stained all neural elements in various intensities of pink and in purple and the degenerative changes were seen as vacuoles ranging from vacuolated foci- containing eosinophilic material and associated with a distorted cell nucleus to larger, multilocular, linear array of compartmentalized digestion chambers supposed to contain myelin debris .The myelin on the other hand appeared as empty zones in H&E staining. Combining Marchi’s and H & E procedures revealed the presence black aggregates/ deposits in the vacuoles and digestion chambers. This method confirmed the presence of degenerated myelin inside the vacuoles and digestion chambers and thus may allow better analysis of nerve damage and regeneration.

  12. Ciliary neurotrophic factor and fibroblast growth factor increase the speed and number of regenerating axons after optic nerve injury in adult Rana pipiens.

    Science.gov (United States)

    Vega-Meléndez, Giam S; Blagburn, Jonathan M; Blanco, Rosa E

    2014-01-01

    Neurotrophins such as ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) and growth factors such as fibroblast growth factor (FGF-2) play important roles in neuronal survival and in axonal outgrowth during development. However, whether they can modulate regeneration after optic nerve injury in the adult animal is less clear. The present study investigates the effects of application of these neurotrophic factors on the speed, number, and distribution of regenerating axons in the frog Rana pipiens after optic nerve crush. Optic nerves were crushed and the factors, or phosphate-buffered saline, were applied to the stump or intraocularly. The nerves were examined at different times after axotomy, using anterograde labeling with biotin dextran amine and antibody against growth-associated protein 43. We measured the length, number, and distribution of axons projecting beyond the lesion site. Untreated regenerating axons show an increase in elongation rate over 3 weeks. CNTF more than doubles this rate, FGF-2 increases it, and BDNF has little effect. In contrast, the numbers of regenerating axons that have reached 200 μm at 2 weeks were more than doubled by FGF-2, increased by CNTF, and barely affected by BDNF. The regenerating axons were preferentially distributed in the periphery of the nerve; although the numbers of axons were increased by neurotrophic factor application, this overall distribution was substantially unaffected. Copyright © 2013 Wiley Periodicals, Inc.

  13. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats

    Directory of Open Access Journals (Sweden)

    Smith Malcolm

    2011-01-01

    Full Text Available Abstract Background Injury to the peripheral branch of dorsal root ganglia (DRG neurons prior to injury to the central nervous system (CNS DRG branch results in the regeneration of the central branch. The exact mechanism mediating this regenerative trigger is not fully understood. It has been proposed that following peripheral injury, the intraganglionic inflammatory response by macrophage cells plays an important role in the pre-conditioning of injured CNS neurons to regenerate. In this study, we investigated whether the presence of macrophage cells is crucial for this type of regeneration to occur. We used a clodronate liposome technique to selectively and temporarily deplete these cells during the conditioning phase of DRG neurons. Results Retrograde and anterograde tracing results indicated that in macrophage-depleted animals, the regenerative trigger characteristic of pre-conditioned DRG neurons was abolished as compared to injury matched-control animals. In addition, depletion of macrophage cells led to: (i a reduction in macrophage infiltration into the CNS compartment even after cellular repopulation, (ii astrocyte up-regulation at rostral regions and down-regulation in brain derived neurotrophic factor (BDNF concentration in the serum. Conclusion Activation of macrophage cells in response to the peripheral nerve injury is essential for the enhanced regeneration of ascending sensory neurons.

  14. Successful optic nerve regeneration in the senescent zebrafish despite age-related decline of cell intrinsic and extrinsic response processes.

    Science.gov (United States)

    Van Houcke, Jessie; Bollaerts, Ilse; Geeraerts, Emiel; Davis, Benjamin; Beckers, An; Van Hove, Inge; Lemmens, Kim; De Groef, Lies; Moons, Lieve

    2017-12-01

    Dysfunction of the central nervous system (CNS) in neurodegenerative diseases or after brain lesions seriously affects life quality of a growing number of elderly, since the adult CNS lacks the capacity to replace or repair damaged neurons. Despite intensive research efforts, full functional recovery after CNS disease and/or injury remains challenging, especially in an aging environment. As such, there is a rising need for an aging model in which the impact of aging on successful regeneration can be studied. Here, we introduce the senescent zebrafish retinotectal system as a valuable model to elucidate the cellular and molecular processes underlying age-related decline in axonal regeneration capacities. We found both intrinsic and extrinsic response processes to be altered in aged fish. Indeed, expression levels of growth-associated genes are reduced in naive and crushed retinas, and the injury-associated increase in innate immune cell density appears delayed, suggesting retinal inflammaging in old fish. Strikingly, however, despite a clear deceleration in regeneration onset and early axon outgrowth leading to an overall slowing of optic nerve regeneration, reinnervation of the optic tectum and recovery of visual function occurs successfully in the aged zebrafish retinotectal system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of prolonged ischaemic time on muscular atrophy and regenerating nerve fibres in transplantation of the rat hind limb

    OpenAIRE

    Tsuji, Naoko; Yamashita, Shuji; Sugawara, Yasushi; Kobayashi, Eiji

    2012-01-01

    Our aim was to test the influence of cold ischaemia on replanted limbs, focusing on muscular atrophy and neurological recovery. Inbred wild-type and green fluorescent protein (GFP) transgenic (Tg) Lewis rats aged 8?10 weeks were used. The amputated limbs were transplanted at several cold ischaemic times (0, 1, 8, 12, 24, 48, and 72 hours). An arterial ischaemic model and a denervation model were used as controls. To study nerve regeneration, a GFP limb was transplanted on to the syngenic wild...

  16. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto

    Directory of Open Access Journals (Sweden)

    Pan Hung-Chuan

    2009-08-01

    Full Text Available Abstract Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days; Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  17. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice.

    Science.gov (United States)

    Gallaher, Zachary R; Steward, Oswald

    2018-05-01

    Axons within the peripheral nervous system are capable of regeneration, but full functional recovery is rare. Recent work has shown that conditional deletion of two key signaling inhibitors of the PI3K and Jak/Stat pathways-phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling-3 (SOCS3), respectively-promotes regeneration of normally non-regenerative central nervous system axons. Moreover, in studies of optic nerve regeneration, co-deletion of both PTEN and SOCS3 has an even greater effect. Here, we test the hypotheses (1) that PTEN deletion enhances axon regeneration following sciatic nerve crush and (2) that PTEN/SOCS3 co-deletion further promotes regeneration. PTEN fl/fl and PTEN/SOCS3 fl/fl mice received direct injections of AAV-Cre into the fourth and fifth lumbar dorsal root ganglia (DRG) two weeks prior to sciatic nerve crush. Western blot analysis of whole cell lysates from DRG using phospho-specific antibodies revealed that PTEN deletion did not enhance or prolong PI3K signaling following sciatic nerve crush. However, PTEN/SOCS3 co-deletion activated PI3K for at least 7 days post-injury in contrast to controls, where activation peaked at 3 days. Quantification of SCG10-expressing regenerating sensory axons in the sciatic nerve after crush injury revealed longer distance regeneration at 3 days post-injury with both PTEN and PTEN/SOCS3 co-deletion. Additionally, analysis of noxious thermosensation and mechanosensation with PTEN/SOCS3 co-deletion revealed enhanced sensation at 14 and 21 days after crush, respectively, after which all treatment groups reached the same functional plateau. These findings indicate that co-deletion of PTEN and SOCS3 results in modest but measureable enhancement of early regeneration of DRG axons following crush injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Dual-Component Gelatinous Peptide/Reactive Oligomer Formulations as Conduit Material and Luminal Filler for Peripheral Nerve Regeneration.

    Science.gov (United States)

    Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C

    2017-05-21

    Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.

  19. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

    Science.gov (United States)

    Clements, Melanie P; Byrne, Elizabeth; Camarillo Guerrero, Luis F; Cattin, Anne-Laure; Zakka, Leila; Ashraf, Azhaar; Burden, Jemima J; Khadayate, Sanjay; Lloyd, Alison C; Marguerat, Samuel; Parrinello, Simona

    2017-09-27

    Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Human dental pulp stem cells expressing STRO-1, c-kit and CD34 markers in peripheral nerve regeneration.

    Science.gov (United States)

    Carnevale, Gianluca; Pisciotta, Alessandra; Riccio, Massimo; Bertoni, Laura; De Biasi, Sara; Gibellini, Lara; Zordani, Alessio; Cavallini, Gian Maria; La Sala, Giovanni Battista; Bruzzesi, Giacomo; Ferrari, Adriano; Cossarizza, Andrea; de Pol, Anto

    2018-02-01

    Peripheral nerve injuries are a commonly encountered clinical problem and often result in long-term functional defects. The application of stem cells able to differentiate in Schwann cell-like cells in vitro and in vivo, could represent an attractive therapeutic approach for the treatment of nerve injuries. Further, stem cells sources sharing the same embryological origin as Schwann cells might be considered a suitable tool. The aim of this study was to demonstrate the ability of a neuroectodermal subpopulation of human STRO-1 + /c-Kit + /CD34 + DPSCs, expressing P75 NTR , nestin and SOX-10, to differentiate into Schwann cell-like cells in vitro and to promote axonal regeneration in vivo, which led to functional recovery as measured by sustained gait improvement, in animal rat model of peripheral nerve injury. Transplanted human dental pulp stem cells (hDPSCs) engrafted into sciatic nerve defect, as revealed by the positive staining against human nuclei, showed the expression of typical Schwann cells markers, S100b and, noteworthy, a significant number of myelinated axons was detected. Moreover, hDPSCs promoted axonal regeneration from proximal to distal stumps 1 month after transplantation. This study demonstrates that STRO-1 + /c-Kit + /CD34 + hDPSCs, associated with neural crest derivation, represent a promising source of stem cells for the treatment of demyelinating disorders and might provide a valid alternative tool for future clinical applications to achieve functional recovery after injury or peripheral neuropathies besides minimizing ethical issues. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    Science.gov (United States)

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  2. Potential genotoxic effects of GSM-1800 exposure on human cutaneous and nerve cells

    International Nuclear Information System (INIS)

    Sanchez, S.; Poulletier De Gannes, F.; Haro, E.; Ruffie, G.; Lagroye, I.; Billaudel, B.; Veyret, B.

    2006-01-01

    Introduction The GSM-1800 signal has been in use for several years in Europe and questions raised about its potential biological effects, in view of the fact that, with respect to GSM-900, the increase in the carrier frequency corresponds to a more superficial absorption in the tissues. Consequently, the skin becomes an even more important target for the absorption of the radiofrequency radiation (R.F.R.) emitted by mobile phones. Nevertheless, brain tissues remain a critical target. Cells In order to determine whether R.F.R. at 1800 MHz could behave as a genotoxic agent, skin and brain cells were exposed to a 217-Hz-modulated GSM-1800 signal and assayed using the comet assay: (1) normal human epidermal keratinocytes (N.H.E.K.) and dermal fibroblasts (N.H.D.F.) which are cutaneous cells from epidermis and dermis respectively, and (2) the S.H. -S.Y.5.Y. and C.H.M.E.-5 human cell lines, which are neuroblastoma and micro-glial cells, respectively. Exposure The R.F.R. exposure system that was used in these experiments was manufactured by I.T. I.S. (Zurich, Switzerland). It consists in two shorted waveguides allowing to run exposed and sham conditions at the same time in the same culture incubator, at 37 Celsius degrees, 5% CO 2 . It is controlled by a software, which provides blind conditions until completion of data analysis. The specific absorption rate (S.A.R.) used was 2 W/kg, corresponding to the public exposure limit recommended by I.C.N.I.R.P. and the exposure duration was 48 hours. Comet assay At the end of the exposure, cells were removed from their Petri dish by trypsin/EDTA treatment, counted and 5 x 10 4 cells were used to detect DNA damage including single DNA breaks. Positive controls were performed using hydrogen peroxidase (1%, 1 hour). The genotoxic effects were detected using the alkaline comet assay kit (Trevigen slides) following the supplier procedure. Under these conditions, 6 independent experiments were performed for each cell type (2 Petri

  3. Potential genotoxic effects of GSM-1800 exposure on human cutaneous and nerve cells

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S.; Poulletier De Gannes, F.; Haro, E.; Ruffie, G.; Lagroye, I.; Billaudel, B.; Veyret, B. [PIOM laboratory, UMR 5501 CNRS, ENSCPB, 33 -Pessac (France)

    2006-07-01

    Introduction The GSM-1800 signal has been in use for several years in Europe and questions raised about its potential biological effects, in view of the fact that, with respect to GSM-900, the increase in the carrier frequency corresponds to a more superficial absorption in the tissues. Consequently, the skin becomes an even more important target for the absorption of the radiofrequency radiation (R.F.R.) emitted by mobile phones. Nevertheless, brain tissues remain a critical target. Cells In order to determine whether R.F.R. at 1800 MHz could behave as a genotoxic agent, skin and brain cells were exposed to a 217-Hz-modulated GSM-1800 signal and assayed using the comet assay: (1) normal human epidermal keratinocytes (N.H.E.K.) and dermal fibroblasts (N.H.D.F.) which are cutaneous cells from epidermis and dermis respectively, and (2) the S.H. -S.Y.5.Y. and C.H.M.E.-5 human cell lines, which are neuroblastoma and micro-glial cells, respectively. Exposure The R.F.R. exposure system that was used in these experiments was manufactured by I.T. I.S. (Zurich, Switzerland). It consists in two shorted waveguides allowing to run exposed and sham conditions at the same time in the same culture incubator, at 37 Celsius degrees, 5% CO{sub 2}. It is controlled by a software, which provides blind conditions until completion of data analysis. The specific absorption rate (S.A.R.) used was 2 W/kg, corresponding to the public exposure limit recommended by I.C.N.I.R.P. and the exposure duration was 48 hours. Comet assay At the end of the exposure, cells were removed from their Petri dish by trypsin/EDTA treatment, counted and 5 x 10{sup 4} cells were used to detect DNA damage including single DNA breaks. Positive controls were performed using hydrogen peroxidase (1%, 1 hour). The genotoxic effects were detected using the alkaline comet assay kit (Trevigen slides) following the supplier procedure. Under these conditions, 6 independent experiments were performed for each cell type (2

  4. Effect of superficial radial nerve stimulation on the activity of nigro-striatal dopaminergic neurons in the cat: role of cutaneous sensory input

    International Nuclear Information System (INIS)

    Nieoullon, A.; Dusticier, N.

    1982-01-01

    The release of 3 H-dopamine (DA) continuously synthesized from 3 H-thyrosine was measured in the caudate nucleus (CN) and in the substantia nigra (SN) in both sides of the brain during electrical stimulation of the superficial radial nerve in cats lightly anaesthetized with halothane. Use of appropriate electrophysiologically controlled stimulation led to selective activation of low threshold afferent fibers whereas high stimulation activated all cutaneous afferents. Results showed that low threshold fiber activation induced a decreased dopaminergic activity in CN contralateral to nerve stimulation and a concomitant increase in dopaminergic activity on the ipsilateral side. Stimulation of group I and threshold stimulation of group II afferent fibers induced changes in the release of 3 H-DA mainly on the contralateral CN and SN and in the ipsilateral CN. High stimulation was followed by a general increase of the neurotransmitter release in the four structures. This shows that the nigro-striatal dopaminergic neurons are mainly-if not exclusively-controlled by cutaneous sensory inputs. This control, non-specific when high threshold cutaneous fibers are also activated. Such activations could contribute to restablish sufficient release of DA when the dopaminergic function is impaired as in Parkinson's disease. (Author)

  5. Acute Appendicitis, Somatosensory Disturbances ("Head Zones"), and the Differential Diagnosis of Anterior Cutaneous Nerve Entrapment Syndrome (ACNES).

    Science.gov (United States)

    Roumen, Rudi M H; Vening, Wouter; Wouda, Rosanne; Scheltinga, Marc M

    2017-06-01

    Anterior cutaneous nerve entrapment syndrome (ACNES) is a neuropathic abdominal wall pain syndrome typically characterized by locally altered skin sensations. On the other hand, visceral disease may also be associated with similar painful and altered skin sensations ("Head zones"). Aim of the study was to determine if patients with acute appendicitis demonstrated somatosensory disturbances in the corresponding right lower quadrant Head zone. The presence of somatosensory disturbances such as hyperalgesia, hypoesthesia, altered cool perception, or positive pinch test was determined in 100 patients before and after an appendectomy. Potential associations between altered skin sensations and various items including age, sex, history, body temperature, C-reactive protein (CRP), leukocyte count, and type of appendicopathy (normal, inflamed, necrotic, or perforated) were assessed. A total of 39 patients demonstrated at least one right lower abdominal quadrant skin somatosensory disturbance before the laparoscopic appendectomy. However, locoregional skin sensation normalized in all but 2 patients 2 weeks postoperatively. No differences were found concerning patient characteristics or type of appendicopathy between populations with or without altered lower abdominal skin sensations. A substantial portion of patients with acute appendicitis demonstrate right lower abdominal somatosensory disturbances that are similar as observed in acute ACNES. Both may be different sides of the same coin and are possibly expressions of segmental phenomena as described by Head. McBurney's point, a landmark area of maximum pain in acute appendicitis, is possibly a trigger point within a Head zone. Differentiating acute appendicitis from acute ACNES is extremely difficult, but imaging and observation may aid in the diagnostic process.

  6. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D; So, P T

    2015-12-23

    We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.

  7. Proteomics of the injured rat sciatic nerve reveals protein expression dynamics during regeneration

    NARCIS (Netherlands)

    Jiménez, Connie R; Stam, Floor J; Li, Ka Wan; Gouwenberg, Yvonne; Hornshaw, Martin P; De Winter, Fred; Verhaagen, J.; Smit, August B

    Using proteomics, we investigated the temporal expression profiles of proteins in rat sciatic nerve after experimental crush. Extracts of sciatic nerves collected at 5, 10, and 35 days after injury were analyzed by two-dimensional gel electrophoresis and quantitative image analysis. Of the

  8. Development of Novel 3-D Printed Scaffolds With Core-Shell Nanoparticles for Nerve Regeneration.

    Science.gov (United States)

    Lee, Se-Jun; Zhu, Wei; Heyburn, Lanier; Nowicki, Margaret; Harris, Brent; Zhang, Lijie Grace

    2017-02-01

    A traumatic injury of peripheral nerves is serious clinical problem that may lead to major loss of nerve function, affecting quality of patient's life. Currently, nerve autograft is widely used to reconstruct the nerve gap. However, such surgical procedure suffers from many disadvantages including donor site morbidity and limited availability. In order to address these issues, neural tissue engineering has focused on the development of synthetic nerve scaffolds to support bridging a larger gap and improving nerve generation. For this purpose, we fabricated a novel 3-D biomimetic scaffold, which has tunable porous structure and embedded core-shell nanoparticles with sustained neurogenic factor delivery system, using stereolithography based 3-D printing and coaxial electrospraying techniques. Our results showed that scaffolds with larger porosity significantly improve PC-12 neural cell adhesion compared to ones with smaller porosity. Furthermore, scaffolds embedded with bovine serum albumin containing nanoparticles showed an enhancement in cell proliferation relative to bared control scaffolds. More importantly, confocal microscopy images illustrated that the scaffold with nerve growth factor nanoparticles greatly increased the length of neurites and directed neurite extension of PC-12 cells along the fiber. In addition, the 3-D printed nanocomposite scaffolds also improved the average neurite length of primary cortical neurons. The results in this study demonstrate the potential of this 3-D printed scaffold in improving neural cell function and nerve growth.

  9. Functional evaluation of peripheral nerve regeneration in the rat : walking track analysis

    NARCIS (Netherlands)

    Varejao, ASP; Meek, MF; Patricio, JAB; Cabrita, AMS

    2001-01-01

    The experimental model of choice for many peripheral nerve investigators is the rat. Walking track analysis is a useful tool in the evaluation of functional peripheral nerve recovery in the rat. This quantitative method of analyzing hind limbs performance by examining footprints, known as the

  10. Effect of prolonged ischaemic time on muscular atrophy and regenerating nerve fibres in transplantation of the rat hind limb.

    Science.gov (United States)

    Tsuji, Naoko; Yamashita, Shuji; Sugawara, Yasushi; Kobayashi, Eiji

    2012-09-01

    Our aim was to test the influence of cold ischaemia on replanted limbs, focusing on muscular atrophy and neurological recovery. Inbred wild-type and green fluorescent protein (GFP) transgenic (Tg) Lewis rats aged 8-10 weeks were used. The amputated limbs were transplanted at several cold ischaemic times (0, 1, 8, 12, 24, 48, and 72 hours). An arterial ischaemic model and a denervation model were used as controls. To study nerve regeneration, a GFP limb was transplanted on to the syngenic wild Lewis rat. These animals were evaluated histologically, electrophysiologically, and immunohistochemically. The longer the ischaemic time, the more evident was atrophy of the muscles. Electrophysiological investigation showed that the latency at 3 weeks was longer in the transplantation models than in the normal controls, particularly in the longer ischaemia group. Larger numbers of migrating Schwann cells were seen in the group with no delay than in the group that had been preserved for 12 hours. Ischaemia after amputation of a limb causes muscle cells to necrose and atrophy, and these changes worsen in proportion to the ischaemic preservation time. A delay in nerve regeneration and incomplete paralysis caused by malregeneration also affect muscular atrophy.

  11. The effects of FK1706 on nerve regeneration and bladder function recovery following an end-to-side neurorrhaphy in rats.

    Science.gov (United States)

    Gao, Wansheng; He, Xiangfei; Li, Yunlong; Wen, Jianguo

    2017-11-07

    Immunophilin ligands are neuroregenerative agents binding to FK506 binding proteins, by which stimulate recovery of neurons in a variety of injury nerves. FK1706 is a novel immunophilin ligand which has neuroprotective and neuroregenerative effects but without immunosuppressive activity. At present, most reports about FK1706 in ameliorating nerve injury and functional recovery are limited to cavernous nerve injury and erectile function recovery. This study aimed to demonstrate the effects of FK1706 on nerve regeneration and bladder function recovery following an end-to-side neurorrhaphy in rat models. The numbers of regenerated myelinated axons of the pelvic parasympathetic nerve (PPN) in the three groups' rats (FK1706 + ETS, ETS and control groups) were evaluated. Their intravesical pressure (IVP), S100β and growth associated protein 43 (GAP43) expressions were also compared. In FK1706 + ETS group, 90% the rats showed that the frequency of FG labeled neurons was larger than the 3.5 cutoff value, 100% the rats showed that the frequency of FG-FB double-labeled neurons was larger than the 5.5 cutoff value. The average maximum of IVP in FK1706 + ETS group reached 76.3% of the value in control group. Their average number of myelinated axons of regenerated PPN reached 80% of the amount in control group. The nerve regeneration-associated markers data indicated that the expression level of S100β and GAP43 in FK1706 + ETS group was approximately 2-fold higher than that of ETS group (P side neurorrhaphy, FK1706 effectively enhanced the nerve regeneration and bladder function recovery.

  12. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel.

    Science.gov (United States)

    Shou, Kangquan; Huang, Yao; Qi, Baiwen; Hu, Xiang; Ma, Zhanjun; Lu, Ang; Jian, Chao; Zhang, Lina; Yu, Aixi

    2018-02-01

    Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered to be a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder its application. Few studies report the induction of BMSC differentiation into the skin regeneration-related cell types using natural biopolymer, e.g. chitin and its derivative. Here we utilized a chitin nanofiber (CNF) hydrogel as a directive cue to induce BMSC differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors. First, a 'green' fabrication of CNF hydrogels encapsulating green fluorescence protein (GFP)-transfected rat BMSCs was performed via in-situ physical gelation without chemical cross-linking. Without soluble differentiation inducers, CNF hydrogels decreased the expression of BMSC transcription factors (Oct4 and Klf4) and concomitantly induced their differentiation into the angiogenic cells and fibroblasts, which are indispensable for wound regeneration. In vivo, rat full-thickness cutaneous wounds treated with BMSC hydrogel exhibited better viability of the cells than did local BMSC injection-treated wounds. Similar to that of the in vitro result, CNF hydrogels induced BMSCs to differentiate into beneficial cell types, resulting in accelerated wound repair characterized by granulation tissue formation. Our data suggest that three-dimensional CNF hydrogel may not only serve as a 'protection' to improve the viability of exogenous BMSCs, but also provide a functional scaffold capable of enhancing BMSC regenerative potential to promote wound healing. This may help to overcome the current limitations to stem cell therapy that are faced in the field of wound regeneration. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Peptide mimetic of the S100A4 protein modulates peripheral nerve regeneration and attenuates the progression of neuropathy in myelin protein P0 null mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Pinchenko, Volodymyr; Dmytriyeva, Oksana

    2013-01-01

    and survival of myelinated axons. H3 accelerated electrophysiological, behavioral and morphological recovery after sciatic nerve crush while transiently delaying regeneration after sciatic nerve transection and repair. On the basis of the finding that both S100A4 and H3 increased neurite branching in vitro......, these effects were attributed to the modulatory effect of H3 on initial axonal sprouting. In contrast to the modest effect of H3 on the time course of regeneration, H3 had a long-term neuroprotective effect in the myelin protein P0 null mice, a model of dysmyelinating neuropathy (Charcot-Marie-Tooth type 1...

  14. The anatomical relationship of the superficial radial nerve and the lateral antebrachial cutaneous nerve: A possible factor in persistent neuropathic pain

    NARCIS (Netherlands)

    Poublon, A.R.; Walbeehm, E.T.; Duraku, L.S.; Eilers, P.H.; Kerver, A.L.; Kleinrensink, G.J.; Coert, J.H.

    2015-01-01

    The superficial branch of the radial nerve (SBRN) is known for developing neuropathic pain syndromes after trauma. These pain syndromes can be hard to treat due to the involvement of other nerves in the forearm. When a nerve is cut, the Schwann cells, and also other cells in the distal segment of

  15. The anatomical relationship of the superficial radial nerve and the lateral antebrachial cutaneous nerve : A possible factor in persistent neuropathic pain

    NARCIS (Netherlands)

    Poublon, A. R.; Walbeehm, E. T.; Duraku, L. S.; Eilers, P. H C; Kerver, A. L A; Kleinrensink, G. J.; Coert, J. H.

    The superficial branch of the radial nerve (SBRN) is known for developing neuropathic pain syndromes after trauma. These pain syndromes can be hard to treat due to the involvement of other nerves in the forearm. When a nerve is cut, the Schwann cells, and also other cells in the distal segment of

  16. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging.

    Science.gov (United States)

    Chen, Guangcun; Tian, Fei; Li, Chunyan; Zhang, Yejun; Weng, Zhen; Zhang, Yan; Peng, Rui; Wang, Qiangbin

    2015-06-01

    Mesenchymal stem cells (MSCs) have shown great potential for cutaneous wound regeneration in clinical practice. However, the in vivo homing behavior of intravenously transplanted MSCs to the wounds is still poorly understood. In this work, fluorescence imaging with Ag2S quantum dots (QDs) in the second near-infrared (NIR-II) window was performed to visualize the dynamic homing behavior of transplanted human mesenchymal stem cells (hMSCs) to a cutaneous wound in mice. Benefiting from the desirable spatial and temporal resolution of Ag2S QDs-based NIR-II imaging, for the first time, the migration of hMSCs to the wound was dynamically visualized in vivo. By transplanting a blank collagen scaffold in the wound to help the healing, it was found that hMSCs were slowly recruited at the wound after intravenous injection and were predominantly accumulated around the edge of wound. This resulted in poor healing effects in terms of slow wound closure and thin thickness of the regenerated skin. In contrast, for the wound treated by the collagen scaffold loaded with stromal cell derived factor-1α (SDF-1α), more hMSCs were recruited at the wound within a much shorter time and were homogenously distributed across the whole wound area, which enhances the re-epithelialization, the neovascularization, and accelerates the wound healing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Science.gov (United States)

    Jung, Yookyung; Ng, Joanna H; Keating, Cameron P; Senthil-Kumar, Prabhu; Zhao, Jie; Randolph, Mark A; Winograd, Jonathan M; Evans, Conor L

    2014-01-01

    Peripheral nerve injury (PNI), a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout nerves in a PNI model

  18. Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model.

    Directory of Open Access Journals (Sweden)

    Yookyung Jung

    Full Text Available Peripheral nerve injury (PNI, a common injury in both the civilian and military arenas, is usually associated with high healthcare costs and with patients enduring slow recovery times, diminished quality of life, and potential long-term disability. Patients with PNI typically undergo complex interventions but the factors that govern optimal response are not fully characterized. A fundamental understanding of the cellular and tissue-level events in the immediate postoperative period is essential for improving treatment and optimizing repair. Here, we demonstrate a comprehensive imaging approach to evaluate peripheral nerve axonal regeneration in a rodent PNI model using a tissue clearing method to improve depth penetration while preserving neural architecture. Sciatic nerve transaction and end-to-end repair were performed in both wild type and thy-1 GFP rats. The nerves were harvested at time points after repair before undergoing whole mount immunofluorescence staining and tissue clearing. By increasing the optic depth penetration, tissue clearing allowed the visualization and evaluation of Wallerian degeneration and nerve regrowth throughout entire sciatic nerves with subcellular resolution. The tissue clearing protocol did not affect immunofluorescence labeling and no observable decrease in the fluorescence signal was observed. Large-area, high-resolution tissue volumes could be quantified to provide structural and connectivity information not available from current gold-standard approaches for evaluating axonal regeneration following PNI. The results are suggestive of observed behavioral recovery in vivo after neurorrhaphy, providing a method of evaluating axonal regeneration following repair that can serve as an adjunct to current standard outcomes measurements. This study demonstrates that tissue clearing following whole mount immunofluorescence staining enables the complete visualization and quantitative evaluation of axons throughout

  19. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF

    NARCIS (Netherlands)

    Hoyng, Stefan A; De Winter, Fred; Gnavi, Sara; de Boer, Ralph; Boon, Lennard I; Korvers, Laura M; Tannemaat, Martijn R; Malessy, Martijn J A; Verhaagen, J.

    2014-01-01

    The clinical outcome of microsurgical repair of an injured peripheral nerve with an autograft is suboptimal. A key question addressed here is: can axon regeneration through an autograft be further improved? In this article the impact of six neurotrophic factors (BDNF, CNTF, GDNF, NGF, NT3 or VEGF)

  20. Combination of Local Transplantation of In Vitro Bone-marrow Stromal Cells and Pulsed Electromagnetic Fields Accelerate Functional Recovery of Transected Sciatic Nerve Regeneration: A Novel Approach in Transected Nerve Repair.

    Science.gov (United States)

    Mohammadi, Rahim; Mahmoodzadeh, Sirvan

    2015-01-01

    Effect of combination of undifferentiated bone marrow stromal cells (BMSCs) and pulsed electromagnetic fields (PEMF) on transected sciatic nerve regeneration was assessed in rats. A 10 mm nerve segment was excised and a vein graft was used to bridge the gap. Twenty microliter undifferentiated BMSCs (2× 107 cells /mL) were administered into the graft inBMSC group with no exposure to PEMF. In BMSC/PEMF group the whole body was exposed to PEMF (0.3 mT, 2Hz) for 4h/day within 1-5 days. In PEMF group the transected nerve was bridged and phosphate buffered saline was administered into the graft. In authograft group (AUTO), the transected nervesegments were reimplanted reversely and the whole body was exposed to PEMF. The regenerated nerve fibers were studied within 12 weeks after surgery. Behavioral, functional, electrophysiological, biomechanical, gastrocnemius muscle mass findings, morphometric indices and immuonohistochemical reactions confirmed faster recovery of regenerated axons in BMSC/PEMF group compared to those in the other groups (PPEMF improved functional recovery. Combination of local transplantation of in vitro bone-marrow stromal cells and pulsed electromagnetic fields could be considered as an effective, safe and tolerable treatment for peripheral nerve repair in clinical practice.

  1. Effect of 4G-alpha-glucopyranosyl hesperidin on brown fat adipose tissue- and cutaneous-sympathetic nerve activity and peripheral body temperature.

    Science.gov (United States)

    Shen, Jiao; Nakamura, Hiroyasu; Fujisaki, Yoshiyuki; Tanida, Mamoru; Horii, Yuko; Fuyuki, Risa; Takumi, Hiroko; Shiraishi, Koso; Kometani, Takashi; Nagai, Katsuya

    2009-09-11

    Changes in the activity of the autonomic nervous system are good indicators of alterations in physiological phenomena such as the body temperature, blood glucose, blood pressure. Hesperidin, a flavanone known as vitamin P, has been shown to reduce the levels of serum lipids, cholesterol, and blood pressure. However, hesperidin is not water-soluble and is not well absorbed from the intestine. G-hesperidin (4G-alpha-glucopyranosyl hesperidin) is more water-soluble and more rapidly absorbed than hesperidin. In order to clarify the functions of G-hesperidin, we examined the effects of oral administration of G-hesperidin on interscapular brown adipose tissue-sympathetic nerve activity (BAT-SNA) and cutaneous sympathetic nerve activity (CASNA) in rats weighing about 300 g. In this study, we found that oral administration of 60 mg of G-hesperidin increased the BAT-SNA but decreased the CASNA in urethane-anesthetized rats. Since an elevation in BAT-SNA increases heat production (i.e. body temperature (BT)) and a decrease in CASNA increases cutaneous perfusion, we examined whether oral administration of G-hesperidin had an effect on the peripheral BT in rats. Consequently, we observed that the subcutaneous BT at the caudal end of the back after oral administration of 60 mg of G-hesperidin was significantly higher than the subcutaneous BT after oral administration of water in conscious rats. These findings suggest that G-hesperidin enhances the BAT-SNA and suppresses the CASNA resulting in an increase in the peripheral BT, probably by an increase in the thermogenesis in the BAT and an elevation in the cutaneous blood flow.

  2. Nerve Regeneration in Vitro: Comparative Effects of Direct and Induced Current and NGF. Appendix.

    Science.gov (United States)

    1985-11-26

    stimulation on the denervated extensor digitorum longus muscle of the rabbit. Acta Neurol. Scandinav. j, 521-528 Nix, W. A. and Hope, H. C. (1983...peroneal nerve of the rabbit. Stimulation of the external digitorum longus muscle with 10- 12 Hz for 8 hr/day via implanted electrodes into the muscle

  3. Remodeling of motor units after nerve regeneration studied by quantitative electromyography

    DEFF Research Database (Denmark)

    Krarup, Christian; Boeckstyns, Michel; Ibsen, Allan

    2016-01-01

    units was studied by quantitative EMG and recording of evoked compound muscle action potential (CMAP) during a 24-month observation period after nerve repair. Results: Force recovered partially to about 80% of normal. Denervation activity gradually decreased during reinnervation though it was still...

  4. Schwann-like cells differentiated from human dental pulp stem cells combined with a pulsed electromagnetic field can improve peripheral nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Kim, Soochan; Park, Joo-Cheol; Seo, Young-Kwon; Kim, Soung-Min; Jahng, Jeong Won; Lee, Jong-Ho

    2016-03-15

    The purpose of this study was to investigate the effect of Schwann-like cells combined with pulsed electromagnetic field (PEMF) on peripheral nerve regeneration. Schwann-like cells were derived from human dental pulp stem cells (hDPSCs) and verified with CD104, S100, glial fibrillary acidic protein (GFAP), laminin, and P75 NTR immunocytochemistry. Gene expression of P75 NTR and S100 were analyzed. Male Sprague-Dawley rats (200-250g, 6-week-old) were divided into seven groups (n = 10 each): control, sham, PEMF, hDPSCs, hDPSCs + PEMF, Schwann-like cells, Schwann-like cells + PEMF. Cells were transplanted (1 × 10 6 /10µl/rat) at crush-injury site or combined with PEMF (50 Hz, 1 h/day, 1 mT). Nerve regeneration was evaluated with functional test, histomorphometry and retrograde labelled neurons. Schwann-like cells expressed CD104, S100, GFAP, laminin, and p75 neurotrophin receptor (P75 NTR ). P75 NTR and S100 mRNA expression was highest in Schwann-like cells + PEMF group, which also showed increased Difference and Gap scores. Axons and retrograde labeled neurons increased in all treatment groups. Schwann-like cells, hDPSCs with or without PEMF, and PEMF only improved peripheral nerve regeneration. Schwann-like cells + PEMF showed highest regeneration ability; PEMF has additive effect on hDPSCs, Schwann-like cell in vitro and nerve regeneration ability after transplantation in vivo. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Neural Progenitor-Like Cells Induced from Human Gingiva-Derived Mesenchymal Stem Cells Regulate Myelination of Schwann Cells in Rat Sciatic Nerve Regeneration.

    Science.gov (United States)

    Zhang, Qunzhou; Nguyen, Phuong; Xu, Qilin; Park, Wonse; Lee, Sumin; Furuhashi, Akihiro; Le, Anh D

    2017-02-01

    Regeneration of peripheral nerve injury remains a major clinical challenge. Recently, mesenchymal stem cells (MSCs) have been considered as potential candidates for peripheral nerve regeneration; however, the underlying mechanisms remain elusive. Here, we show that human gingiva-derived MSCs (GMSCs) could be directly induced into multipotent NPCs (iNPCs) under minimally manipulated conditions without the introduction of exogenous genes. Using a crush-injury model of rat sciatic nerve, we demonstrate that GMSCs transplanted to the injury site could differentiate into neuronal cells, whereas iNPCs could differentiate into both neuronal and Schwann cells. After crush injury, iNPCs, compared with GMSCs, displayed superior therapeutic effects on axonal regeneration at both the injury site and the distal segment of the injured sciatic nerve. Mechanistically, transplantation of GMSCs, especially iNPCs, significantly attenuated injury-triggered increase in the expression of c-Jun, a transcription factor that functions as a major negative regulator of myelination and plays a central role in dedifferentiation/reprogramming of Schwann cells into a progenitor-like state. Meanwhile, our results also demonstrate that transplantation of GMSCs and iNPCs consistently increased the expression of Krox-20/EGR2, a transcription factor that governs the expression of myelin proteins and facilitates myelination. Altogether, our findings suggest that transplantation of GMSCs and iNPCs promotes peripheral nerve repair/regeneration, possibly by promoting remyelination of Schwann cells mediated via the regulation of the antagonistic myelination regulators, c-Jun and Krox-20/EGR2. Stem Cells Translational Medicine 2017;6:458-470. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Long-Term Regeneration and Functional Recovery of a 15 mm Critical Nerve Gap Bridged by Tremella fuciformis Polysaccharide-Immobilized Polylactide Conduits

    Directory of Open Access Journals (Sweden)

    Shan-hui Hsu

    2013-01-01

    Full Text Available Novel peripheral nerve conduits containing the negatively charged Tremella fuciformis polysaccharide (TF were prepared, and their efficacy in bridging a critical nerve gap was evaluated. The conduits were made of poly(D,L-lactide (PLA with asymmetric microporous structure. TF was immobilized on the lumen surface of the nerve conduits after open air plasma activation. The TF-modified surface was characterized by the attenuated total reflection Fourier-transformed infrared spectroscopy and the scanning electron microscopy. TF modification was found to enhance the neurotrophic gene expression of C6 glioma cells in vitro. TF-modified PLA nerve conduits were tested for their ability to bridge a 15 mm gap of rat sciatic nerve. Nerve regeneration was monitored by the magnetic resonance imaging. Results showed that TF immobilization promoted the nerve connection in 6 weeks. The functional recovery in animals receiving TF-immobilized conduits was greater than in those receiving the bare conduits during an 8-month period. The degree of functional recovery reached ~90% after 8 months in the group of TF-immobilized conduits.

  7. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  8. Effects of electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study.

    Science.gov (United States)

    Hei, Wei-Hong; Byun, Soo-Hwan; Kim, Jong-Sik; Kim, Soochan; Seo, Young-Kwon; Park, Joo-Cheol; Kim, Soung-Min; Jahng, Jeong Won; Lee, Jong-Ho

    2016-08-01

    The purpose was to clarify the influence of frequency and exposure time of pulsed electromagnetic fields (PEMF) on the peripheral nerve regeneration. Immortalized rat Schwann cells (iSCs) (1 × 10(2)/well) were exposed at four different conditions in 1 mT (50 Hz 1 h/d, 50 Hz 12 h/d, 150 Hz 1 h/d and 150 Hz 12h/d). Cell proliferation, mRNA expression of S100 and brain-derived neurotrophic factor (BDNF) were analyzed. Sprague-Dawley rats (200-250 g) were divided into six groups (n = 10 each): control, sham, 50 Hz 1 h/d, 50 Hz 12 h/d, 150 Hz 1 h/d and 150 Hz 12 Hr/d. Mental nerve was crush-injured and exposed at four different conditions in 1 mT (50 Hz 1 Hr/d, 50 Hz 12 Hr/d, 150 Hz 1 h/d and 150 Hz 12 h/d). Nerve regeneration was evaluated with functional test, histomorphometry and retrograde labeling of trigeminal ganglion. iSCs proliferation with 50 Hz, 1 h/d was increased from fourth to seventh day; mRNA expression of S100 and BDNF was significantly increased at the same condition from first week to third week (p PEMF compared with control while other conditions showed no statistical meaning. Axon counts and retrograde labeled neurons were significantly increased under PEMF of four different conditions compared with control. Although there was no statistical difference, 50 Hz, 1 h PEMF showed highest regeneration ability than other conditions. PEMF enhanced peripheral nerve regeneration, and that it may be due to cell proliferation and increase in BDNF and S100 gene expression.

  9. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications

    Science.gov (United States)

    Wang, Han Bing; Mullins, Michael E.; Cregg, Jared M.; Hurtado, Andres; Oudega, Martin; Trombley, Matthew T.; Gilbert, Ryan J.

    2009-02-01

    Aligned, electrospun polymer fibers have shown considerable promise in directing regenerating axons in vitro and in vivo. However, in several studies, final electrospinning parameters are presented for producing aligned fiber scaffolds, and alignment where minimal fiber crossing occurs is not achieved. Highly aligned species are necessary for neural tissue engineering applications to ensure that axonal extension occurs through a regenerating environment efficiently. Axonal outgrowth on fibers that deviate from the natural axis of growth may delay axonal extension from one end of a scaffold to the other. Therefore, producing aligned fiber scaffolds with little fiber crossing is essential. In this study, the contributions of four electrospinning parameters (collection disk rotation speed, needle size, needle tip shape and syringe pump flow rate) were investigated thoroughly with the goal of finding parameters to obtain highly aligned electrospun fibers made from poly-L-lactic acid (PLLA). Using an 8 wt% PLLA solution in chloroform, a collection disk rotation speed of 1000 revolutions per minute (rpm), a 22 gauge, sharp-tip needle and a syringe pump rate of 2 ml h-1 produced highly aligned fiber (1.2-1.6 µm in diameter) scaffolds verified using a fast Fourier transform and a fiber alignment quantification technique. Additionally, the application of an insulating sheath around the needle tip improved the rate of fiber deposition (electrospinning efficiency). Optimized scaffolds were then evaluated in vitro using embryonic stage nine (E9) chick dorsal root ganglia (DRGs) and rat Schwann cells (SCs). To demonstrate the importance of creating highly aligned scaffolds to direct neurite outgrowth, scaffolds were created that contained crossing fibers. Neurites on these scaffolds were directed down the axis of the aligned fibers, but neurites also grew along the crossed fibers. At times, these crossed fibers even stopped further axonal extension. Highly aligned PLLA fibers

  10. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve

    Directory of Open Access Journals (Sweden)

    NaRi Seo

    2018-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BMSCs have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments. In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker, glial fibrillary acidic protein (astrocyte marker, and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells. DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon

  11. Low-frequency pulsed electromagnetic field pretreated bone marrow-derived mesenchymal stem cells promote the regeneration of crush-injured rat mental nerve.

    Science.gov (United States)

    Seo, NaRi; Lee, Sung-Ho; Ju, Kyung Won; Woo, JaeMan; Kim, BongJu; Kim, SoungMin; Jahng, Jeong Won; Lee, Jong-Ho

    2018-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments. In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 10 6 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and

  12. The effect of sub-epineural platelet-rich plasma (PRP on regeneration of the sciatic nerve in a rat model

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Fatemi

    2016-01-01

    Full Text Available Background: Peripheral nerve injury is one of the most challenging of modern surgical problem. Recent advances in understanding the physiological and molecular pathways demonstrated the important role of growth factors in peripheral nerve regeneration. Platelet-rich plasma (PRP is a biological product that has many growth factors. The aim of this study was to investigate the effect of PRP in the regeneration of sciatic nerve crush in the rat model. Methods: In this experimental study that established in the animal lab of the Hazrat Fatemeh Hospital in Tehran from September to October 2013, Twenty-four healthy male Sprague-Dawley rats (200-250 g were randomly divided into two groups. In all rats the sciatic nerve was cut and then carefully repaired by the tension free method under a light microscope. In group 1, after the repair, 0.05 µL of PRP was injected below the epineurium to the proximal and distal parts of the repaired area. In group 2 the same amount of normal saline was injected to the proximal and distal of the repaired area. After six weeks footprint analysis, neurophysiologic and histopathology evaluations were performed. Results: Significant differences existed between the two groups footprint analysis (P= 0.001. Also the nerve conduction latency test was significantly shorter in PRP group. (1.0233 ms in PRP group and 1.7375 ms in control (P< 0.001. The average amplitude in the first group and the second group was 7.6250 mv (control 6.3667 mv that does not show a statistically significant difference (P= 0.093. Significant differences between the two groups in the number of axons of the proximal portion of the study was not seen (P= 0.29. The parameters included number of axons of the proximal and the distal part of axons, the diameter of the distal and proximal axons in the two groups were compared. In the two groups there was statistically significant difference between the above parameters. (P= 0.298. Conclusion: It seems that PRP

  13. [On the number and morphometrical parameters of the nucleus ambiguous neurons after the injury and regeneration of the recurrent laryngeal nerve in the rat].

    Science.gov (United States)

    Pascual-Font, Arán; Maranillo, Eva; Vázquez, Teresa; Sañudo, José Ramón; Valderrama-Canales, Francisco J

    2008-04-01

    In laryngeal nerves injuries it is essential to know the morpho-functional reorganization of the neurons which supply the larynx in order to be successful with the clinical techniques of functional reinnervation and/or orthotopic transplant. Due to the lack of this type of studies in the literature, we investigated the organization of laryngeal motoneurons in the nucleus ambiguous (NA) after the axotomy and regeneration of the recurrent laryngeal nerve (RLN) in adult rats. We used biotinylated dextran amines (BDA, 3 kDa), this fact is an innovation in the field, because this is a novel methodological approach to this model. We studied a control group of 14 animals and four experimental groups of between 10 and 16 animals each one. In the experimental groups we studied the regeneration of the axotomized nerve in four different intervals of time after the injury: 21-28 days, 42-60 days, 90-120 days, and 150-180 days. In the control group we traced the RLN without injury while in the experimental groups we traced the axotomized RLN after each regeneration interval. The number of traced neurons in the control group was 143 +/- 38; in the experimental groups the number was always lower than in the control (21-28 days: 14 +/- 23 neurons; 42-60 days: 46 +/- 49; 90-120 days: 55 +/- 57; 150-180 days: 61 +/- 60). The morphologic parameters studied within the neuronal bodies in the experimental groups were no statistically different when compared with those in the control group. Results show that the tracing of the RLN after its axotomy and regeneration, in the adult rat, involves a decrease in the number of traced neurons within the NA but no changes in their size or shape during the analysed periods.

  14. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3.

    Directory of Open Access Journals (Sweden)

    Maria João Godinho

    Full Text Available We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs modified to express brain-derived neurotrophic factor (BDNF, a secretable form of ciliary neurotrophic factor (CNTF, or neurotrophin-3 (NT3. Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.

  15. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    2016-05-13

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  16. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts

    NARCIS (Netherlands)

    DenDunnen, WFA; VanderLei, B; Schakenraad, JM; Stokroos, [No Value; Blaauw, E; Pennings, AJ; Robinson, PH; Bartels, H.

    1996-01-01

    The aim of this study was to compare the speed and quality of nerve regeneration after reconstruction using a biodegradable nerve guide or an autologous nerve graft. We evaluated nerve regeneration using light microscopy, transmission electron microscopy and morphometric analysis. Nerve regeneration

  17. Ultrastructural immunolocalization of nestin in the regenerating tail of lizards shows its presence during cytoskeletal modifications in the epidermis, muscles and nerves.

    Science.gov (United States)

    Alibardi, Lorenzo

    2015-04-01

    Nestin has been considered a neural stem cell marker, and represents an intermediate filament protein likely involved in restructuring the cytoskeleton in different cell types. The present ultrastructural study has immunodetected nestin especially in the wound epidermis, regenerating myotubes and in the growing nerves of the regenerating tail of lizards. In keratinocytes of the stratified wound epidermis nestin is present in the irregular electron-paler meshwork located along the cell perimeter and among keratin bundles converging into desmosomes. In the regenerating muscles nestin-immunoreactivity remains confined to some external regions along the myotubes and in the cytoplasmic ends of the myotubes not occupied by myofibrils. A diffuse nestin immunolabeling is also present among the neurofilaments of growing axons, in Schwann cells and in ependymal cells of the regenerating spinal cord of the tail. The localization of nestin in sites of cytoskeletal remodeling in keratinocytes, myotubes, ependymal cells and axons, suggests that this protein is associated to the reassembling of keratin tonofilaments in moving keratinocytes, assembling of contractile proteins in myotubes, and in the organization of neurofilaments during the growth and myelination of axons within the regenerating lizard tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of endoscopic brow lift on contractures and synkinesis of the facial muscles in patients with a regenerated postparalytic facial nerve syndrome.

    Science.gov (United States)

    Bran, Gregor M; Börjesson, Pontus K E; Boahene, Kofi D; Gosepath, Jan; Lohuis, Peter J F M

    2014-01-01

    Delayed recovery after facial palsy results in aberrant nerve regeneration with symptomatic movement disorders, summarized as the postparalytic facial nerve syndrome. The authors present an alternative surgical approach for improvement of periocular movement disorders in patients with postparalytic facial nerve syndrome. The authors proposed that endoscopic brow lift leads to an improvement of periocular movement disorders by reducing pathologically raised levels of afferent input. Eleven patients (seven women and four men) with a mean age of 54 years (range, 33 to 85 years) and with postparalytic facial nerve syndrome underwent endoscopic brow lift under general anesthesia. Patients' preoperative condition was compared with their postoperative condition using a retrospective questionnaire. Subjects were also asked to compare the therapeutic effectiveness of endoscopic brow lift and botulinum toxin type A. Mean follow-up was 52 months (range, 22 to 83 months). No intraoperative or postoperative complications occurred. During follow-up, patients and physicians observed an improvement of periorbital contractures and oculofacial synkinesis. Scores on quality of life improved significantly after endoscopic brow lift. Best results were obtained when botulinum toxin type A was adjoined after the endoscopic brow lift. Patients described a cumulative therapeutic effect. These findings suggest endoscopic brow lift as a promising additional treatment modality for the treatment of periocular postparalytic facial nerve syndrome-related symptoms, leading to an improved quality of life. Even though further prospective investigation is needed, a combination of endoscopic brow lift and postsurgical botulinum toxin type A administration could become a new therapeutic standard.

  19. Transplantation of Human Dental Pulp-Derived Stem Cells or Differentiated Neuronal Cells from Human Dental Pulp-Derived Stem Cells Identically Enhances Regeneration of the Injured Peripheral Nerve.

    Science.gov (United States)

    Ullah, Imran; Park, Ju-Mi; Kang, Young-Hoon; Byun, June-Ho; Kim, Dae-Geon; Kim, Joo-Heon; Kang, Dong-Ho; Rho, Gyu-Jin; Park, Bong-Wook

    2017-09-01

    Human dental mesenchymal stem cells isolated from the dental follicle, pulp, and root apical papilla of extracted wisdom teeth have been known to exhibit successful and potent neurogenic differentiation capacity. In particular, human dental pulp-derived stem cells (hDPSCs) stand out as the most prominent source for in vitro neuronal differentiation. In this study, to evaluate the in vivo peripheral nerve regeneration potential of hDPSCs and differentiated neuronal cells from DPSCs (DF-DPSCs), a total of 1 × 10 6 hDPSCs or DF-hDPSCs labeled with PKH26 tracking dye and supplemented with fibrin glue scaffold and collagen tubulization were transplanted into the sciatic nerve resection (5-mm gap) of rat models. At 12 weeks after cell transplantation, both hDPSC and DF-hDPSC groups showed notably increased behavioral activities and higher muscle contraction forces compared with those in the non-cell transplanted control group. In immunohistochemical analysis of regenerated nerve specimens, specific markers for angiogenesis, axonal fiber, and myelin sheath increased in both the cell transplantation groups. Pretransplanted labeled PKH26 were also distinctly detected in the regenerated nerve tissues, indicating that transplanted cells were well-preserved and differentiated into nerve cells. Furthermore, no difference was observed in the nerve regeneration potential between the hDPSC and DF-hDPSC transplanted groups. These results demonstrate that dental pulp tissue is an excellent stem cell source for nerve regeneration, and in vivo transplantation of the undifferentiated hDPSCs could exhibit sufficient and excellent peripheral nerve regeneration potential.

  20. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold.

    Science.gov (United States)

    Ansari, Sahar; Diniz, Ivana M; Chen, Chider; Sarrion, Patricia; Tamayol, Ali; Wu, Benjamin M; Moshaverinia, Alireza

    2017-12-01

    Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for βIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (βIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Regeneração pós-traumática do nervo facial em coelhos Posttraumatic facial nerve regeneration in rabbits

    Directory of Open Access Journals (Sweden)

    Heloisa Juliana Zabeu Rossi Costa

    2006-12-01

    Full Text Available A paralisia facial periférica traumática constitui-se em afecção freqüente. OBJETIVO: estudo da regeneração pós-traumática do nervo facial em coelhos, por avaliação funcional histológica dos nervos traumatizados comparados aos normais contralaterais. METODOLOGIA: Vinte coelhos foram submetidos à compressão do tronco do nervo facial esquerdo e sacrificados após duas (grupo AL, quatro (BL e seis (CL semanas da lesão. A comparação entre os grupos foi feita pelas densidades total e parcial de axônios mielinizados. ESTUDO ESTATÍSTICO: método de Tukey (p Posttraumatic facial paralysis is a frequent disease. This work studies posttraumatic regeneration of the facial nerve in rabbits. Functional and histological analysis compared injured and normal nerves on opposite sides. The left facial nerve trunk of twenty rabbits were subjectedto compression lesion, and sacrificed after two (subgroup AL, four (BL and six (CL weeks. Comparison between groups was made by analysing total and partial densities of myelinated axons. STATISTICAL ANALYSIS: Tukey Method (p<0.05. RESULTS:There was partial functional recovery after two weeks, and complete recovery after five weeks. Qualitative analysis demonstrated a degenerative pattern in the AL group, with an increased tissue inflammatory process. Evident regeneration signs were observed in the BL group, and almost complete regeneration was seen in the CL group. Normal nerves (N had an average TD of 15705.59 and average PD of 21800.75. The BL group had an average TD of 10818.55 and an average PD of 15340.56. The CL group had an average TD of 13920.36 and an average PD of 16589.15. The BL group had an average TD of N equal to 68.88%, and the CL group had an average TD of N equal to 88,63% (statistically significant. N showed a significant higher PD than injured nerves. However, this was not statistically different between BL and CL subgroups. Nerve DT was a more reliable method than PD in this study.

  2. A prospective, double-blinded, randomized comparison of ultrasound-guided femoral nerve block with lateral femoral cutaneous nerve block versus standard anesthetic management for pain control during and after traumatic femur fracture repair in the pediatric population

    Directory of Open Access Journals (Sweden)

    Elsey NM

    2017-09-01

    Full Text Available Nicole M Elsey,1 Joseph D Tobias,1–3 Kevin E Klingele,4 Ralph J Beltran,1,2 Tarun Bhalla,1,2 David Martin,1,2 Giorgio Veneziano,1,2 Julie Rice,1,2 Dmitry Tumin1,2 1Department of Anesthesiology and Pain Medicine, Nationwide Children’s Hospital, 2The Ohio State University, 3Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University College of Medicine, 4Department of Orthopedic Surgery and Sports Medicine, Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA Background: Traumatic injury of the femur resulting in femoral fracture may result in significant postoperative pain. As with other causes of acute pain, regional anesthesia may offer a benefit over conventional therapy with intravenous opioids. This study prospectively assesses the effects of femoral nerve blockade with a lateral femoral cutaneous nerve block (FN-LFCN on intraoperative anesthetic requirements, postoperative pain scores, and opioid requirements.Materials and methods: Seventeen pediatric patients (age 2–18 years undergoing surgical repair of a traumatic femur fracture fulfilled the study criteria and were randomly assigned to general anesthesia with either an FN-LFCN block (n = 10 or intravenous opioids (n = 7. All patients received a general anesthetic with isoflurane for maintenance anesthesia during the surgical repair of the femur fracture. Patients randomized to the FN-LFCN block group received ultrasound-guided nerve blockade using ropivacaine (0.2%/0.5% based on patient weight. At the conclusion of surgery, the airway device was removed once tracheal extubation criteria were achieved, and patients were transported to the post-anesthesia care unit (PACU for recovery and assessment of pain by a blinded study nurse.Results: The final study cohort included 17 patients (n = 10 for FN-LFCN block group; n = 7 for the intravenous opioid group. Although the median of the maximum postoperative pain scores in the

  3. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice.

    Directory of Open Access Journals (Sweden)

    Marc A DePaul

    Full Text Available The loss of lower urinary tract (LUT control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG, acidic fibroblast growth factor (aFGF, and chondroitinase ABC (ChABC to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice's injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure.

  4. Corneal Confocal Microscopy Detects Small Fibre Neuropathy in Patients with Upper Gastrointestinal Cancer and Nerve Regeneration in Chemotherapy Induced Peripheral Neuropathy.

    Directory of Open Access Journals (Sweden)

    Maryam Ferdousi

    Full Text Available There are multiple neurological complications of cancer and its treatment. This study assessed the utility of the novel non-invasive ophthalmic technique of corneal confocal microscopy in identifying neuropathy in patients with upper gastrointestinal cancer before and after platinum based chemotherapy. In this study, 21 subjects with upper gastrointestinal (oesophageal or gastric cancer and 21 healthy control subjects underwent assessment of neuropathy using the neuropathy disability score, quantitative sensory testing for vibration perception threshold, warm and cold sensation thresholds, cold and heat induced pain thresholds, nerve conduction studies and corneal confocal microscopy. Patients with gastro-oesophageal cancer had higher heat induced pain (P = 0.04 and warm sensation (P = 0.03 thresholds with a significantly reduced sural sensory (P<0.01 and peroneal motor (P<0.01 nerve conduction velocity, corneal nerve fibre density (CNFD, nerve branch density (CNBD and nerve fibre length (CNFL (P<0.0001. Furthermore, CNFD correlated significantly with the time from presentation with symptoms to commencing chemotherapy (r = -0.54, P = 0.02, and CNFL (r = -0.8, P<0.0001 and CNBD (r = 0.63, P = 0.003 were related to the severity of lymph node involvement. After the 3rd cycle of chemotherapy, there was no change in any measure of neuropathy, except for a significant increase in CNFL (P = 0.003. Corneal confocal microscopy detects a small fibre neuropathy in this cohort of patients with upper gastrointestinal cancer, which was related to disease severity. Furthermore, the increase in CNFL after the chemotherapy may indicate nerve regeneration.

  5. Regeneração de nervos periféricos: terapia celular e fatores neurotróficos Peripheral nerve regeneration: cell therapy and neurotrophic factors

    Directory of Open Access Journals (Sweden)

    Alessandra Deise Sebben

    2011-01-01

    surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair.

  6. Bone marrow-derived mesenchymal stem cells versus adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Marcela Fernandes

    2018-01-01

    Full Text Available Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed, Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle, ADSCs (sciatic nerve injury + intravenous MG containing ADSCs, and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury, increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for

  7. Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration.

    Science.gov (United States)

    Wang, Shuping; Guan, Shui; Zhu, Zhibo; Li, Wenfang; Liu, Tianqing; Ma, Xuehu

    2017-02-01

    Conducting polymer, as a "smart" biomaterial, has been increasingly used to construct tissue engineered scaffold for nerve tissue regeneration. In this study, a novel porous conductive scaffold was prepared by incorporating conductive hyaluronic acid (HA) doped-poly(3,4-ethylenedioxythiophene) (PEDOT-HA) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physicochemical characteristics of Cs/Gel scaffold with 0-10wt% PEDOT-HA were analyzed and the results indicated that the incorporation of PEDOT-HA into scaffold increased the electrical and mechanical properties while decreasing the porosity and water absorption. Moreover, in vitro biodegradation of scaffold displayed a declining trend with the PEDOT-HA content increased. About the biocompatibility of conductive scaffold, neuron-like rat phaeochromocytoma (PC12) cells were cultured in scaffold to evaluate cell adhesion and growth. 8% PEDOT-HA/Cs/Gel scaffold had a higher cell adhesive efficiency and cell viability than the other conductive scaffolds. Furthermore, cells in the scaffold with 8wt% PEDOT-HA expressed higher synapse growth gene of GAP43 and SYP compared with Cs/Gel control group. These results suggest that 8%PEDOT-HA/Cs/Gel scaffold is an attractive cell culture conductive substrate which could support cell adhesion, survival, proliferation, and synapse growth for the application in nerve tissue regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Suradip Das

    2015-09-01

    Full Text Available In the present data article we report the in vitro and in vivo biocompatibility of fabricated nerve conduits described in Das et al. [1]. Green synthesised gold nanoparticles (GNPs were evaluated for their cytotoxicity in rat Schwann cells (SCTM41. We also describe herein the adhesion and proliferation of Schwann cells over the nanofibrous scaffolds. Methods describing surgical implantation of conduits in a rat sciatic nerve injury model, confirming its accurate implantation as well as the porosity and swelling tendency of the nerve conduits are illustrated in the various figures and graphs.

  9. Effects of microRNA-21 on Nerve Cell Regeneration and Neural Function Recovery in Diabetes Mellitus Combined with Cerebral Infarction Rats by Targeting PDCD4.

    Science.gov (United States)

    Guo, Yun-Bao; Ji, Tie-Feng; Zhou, Hong-Wei; Yu, Jin-Lu

    2018-03-01

    We aimed to determine the effect and mechanism of microRNA-21 (miR-21) on nerve cell regeneration and nerve functional recovery in diabetes mellitus combined with cerebral infarction (DM + CI) rats by targeting PDCD4. A total of 125 male Wistar rats were selected for DM + CI rat model construction and assigned into the blank, miR-21 mimics, mimics control, miR-21 inhibitor, inhibitor control, miR-21 inhibitor + si-PDCD4 and si-PDCD4 groups. And, 20 healthy rats were selected for the normal group. Triphenylterazolium chloride (TTC) staining and HE staining were used for determination of the area of CI and pathological changes, respectively. Behaviors of rats in the eight groups were determined by forelimb placement test and balance beam walking test. Immunohistochemical staining, double immunofluorescence staining assay, Western blotting, and qRT-PCR were used to detect expressions of miR-21, PDCD4, HNA, Nestin, NeuN, β-III-Tub, PTEN, FasL, and GFAP. DNA laddering and TUNEL staining was used for cell apoptosis. TTC and HE staining confirmed that 87.5% rats were induced into CI + DM models successfully. Results of forelimb placement test and balance beam walking test showed that miR-21 mimics, and si-PCDC4 improved the nerve defect of model rats. Comparing with the blank group at the same time, rats in the miR-21 inhibitor group displayed significant decrease in the forelimb placement test score, significant increase in the balance beam walking test score, and exacerbation of nerve defect, while rats in the miR-21 mimics and si-PCDC4 groups displayed significant increase in forelimb placement test score and significant decrease in the balance beam walking test score and improvement of nerve defect situation. The HNA, Nestin, and PDCD4 expressions were decreased and the NeuN, β-III-Tub, and GFAP expressions were increased in the miR-21 mimics and si-PDCD4 groups comparing with the blank group. The results of miR-21 inhibitor group were on the contrary. In

  10. Investigation into Regeneration Mechanism of Hydroalcoholic Lavender (Lavandula officianalis Extract through the Evaluation of NT3 Gene Expression after Sciatic Nerve Compression in Rats

    Directory of Open Access Journals (Sweden)

    Fereshteh Naderi Allaf

    2017-05-01

    Full Text Available Abstract Background: Retrograde transport to the alpha motoneurons causes spinal degeneration. The neurotrophic factor (NT3 increases the number of myelinated axons in the dorsal root, leads to differentiation and survival of sensory neurons, parasympathetic motoneurons and prevents cell death. Lavender is a plant in the family Lamiaceae which is reported to have antioxidant, antispasmodic, diuretic, anti-asthmatic, refrigerant, and antipyretic effects. This study examined NT3 gene expression changes after sciatic nerve compression in rats, in the presence of Lavandula officinalis extract. Materials and Methods: Lavender Soxhlet hydroalcoholic extraction was prepared. 36 male Wistar rats were randomly divided into 3 groups including control, compression and treatment (compression group + hydroalcoholic extract of Lavender injections 75mg/kg groups. In controls the muscle was opened without damage to gain access to the sciatic nerve. In compression and treatment groups, the sciatic nerve (right leg was compressed. The extract was injected intraperitoneally in two occasions. A biopsy was taken from the spinal cord segments L4-L6 on day 28, total RNA was extracted and cDNA was synthesized and NT3 gene expression changes were analyzed by ANOVA test by using SPSS software. Results: The results showed that NT3 gene expression had a significant reduction in compression group compared to the control group (p<0.001 and it had a significant increase in treatment group compared with the compression group (p<0.001. Conclusion: A significant increase in gene expression shows that Lavandula officinalis hydroalcoholic extract improves nerve regeneration via NT3 gene expression.

  11. Co-treatment effect of pulsed electromagnetic field (PEMF) with human dental pulp stromal cells and FK506 on the regeneration of crush injured rat sciatic nerve.

    Science.gov (United States)

    Kim, Yoon-Tae; Hei, Wei-Hong; Kim, Soochan; Seo, Young-Kwon; Kim, Soung-Min; Jahng, Jeong-Won; Lee, Jong-Ho

    2015-01-01

    The purpose of this study was to determine whether crush injured rat sciatic nerve could be benefit from pulsed electromagnetic field (PEMF) combined with human dental pulp stromal cells (hDPSCs), with FK506 (Tacrolimus) for immune suppression and neuropromotion. Male Sprague-Dawley rats (200-250 g, 6 week old) were distributed into 6 groups (n = 18 each): control, PEMF, FK506, PEMF + hDPSCs, PEMF + FK506, and PEMF + hDPSCs + FK506 groups. hDPSCs (cell = 1 × 106/10 μl/rat) were injected at the crush site immediate after injury. FK506 was administered 3 weeks in FK506 group (0.5 mg/kg/d) while pre-op 1 d and post-op 7 d in PEMF + FK506 and PEMF + hDPSCs + FK506 group; cell tracking was done with PKH26-labeled hDPSCs (cell = 1 × 106/10 μl/rat). The rats were follow-up for 3 weeks. PEMF + FK506 and PEMF + hDPSCs + FK506 group showed a sharp increase in sciatic function index (SFI), axon counts, densities, and labeled neurons in dorsal root ganglia (DRG) than control at 3 weeks. Other three treatment groups also showed higher axon counts, densities, and labeled neurons than control. Higher axon counts and densities were found in PEMF + FK506 and PEMF + hDPSCs + FK506 groups comparing with PEMF group. Brain-derived neurotrophic factor (BDNF) mRNA expression pattern in nerve segment and DRG was almost same. Higher expression level in all the treatment groups was discovered in the follow-up period, but there was no significant difference. All treatment groups can improve regeneration of neurons following crushed injury, PEMF + FK506 and PEMF + hDPSCs + FK506 groups showed higher regeneration ability than other three groups. FK506 plays an important role during hDPSCs transplantation.

  12. Combination of Mn(2+)-enhanced and diffusion tensor MR imaging gives complementary information about injury and regeneration in the adult rat optic nerve.

    Science.gov (United States)

    Thuen, Marte; Olsen, Oystein; Berry, Martin; Pedersen, Tina Bugge; Kristoffersen, Anders; Haraldseth, Olav; Sandvig, Axel; Brekken, Christian

    2009-01-01

    To evaluate manganese (Mn(2+))-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) as tools for detection of axonal injury and regeneration after intravitreal peripheral nerve graft (PNG) implantation in the rat optic nerve (ON). In adult Fischer rats, retinal ganglion cell (RGC) survival was evaluated in Flurogold (FG) back-filled retinal whole mounts after ON crush (ONC), intravitreal PNG, and intravitreal MnCl(2) injection (150 nmol) at 0 and 20 days post lesion (dpl). MEMRI and echo-planar DTI (DTI-EPI) was obtained of noninjured ON one day after intravitreal MnCl(2) injection, and at 1 and 21 dpl after ONC, intravitreal PNG, and intravitreal MnCl(2) injections given at 0 and 20 dpl. GAP-43 immunohistochemistry was performed after the last MRI. ONC reduced RGC density in retina by 94% at 21 dpl compared to noninjured ON without MnCl(2) injections. Both intravitreal PNG and intravitreal MnCl(2) injections improved RGC survival in retina, which was reduced by 90% (ONC+MnCl(2)), 82% (ONC+PNG), and 74% (ONC+PNG+MnCl(2)) compared to noninjured ON. DTI-derived parameters (fractional anisotropy [FA], mean diffusivity, axial diffusivity lambda( parallel), and radial diffusivity lambda( perpendicular)) were unaffected by the presence of Mn(2+) in the ON. At 1 dpl, CNR(MEMRI) and lambda( parallel) were reduced at the injury site, while at 21 dpl they were increased at the injury site compared to values measured at 1 dpl. GAP-43 immunoreactive axons were present in the ON distal to the ONC injury site. MEMRI and DTI enabled detection of functional and structural degradation after rat ON injury, and there was correlation between the MRI-derived and immunohistochemical measures of axon regeneration.

  13. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    Directory of Open Access Journals (Sweden)

    Éva Korpos

    2015-01-01

    Full Text Available The extracellular matrix (ECM performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2 in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth.

  14. Long-Chain Omega-3 Fatty Acids Supplementation Accelerates Nerve Regeneration and Prevents Neuropathic Pain Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Rafaela V. Silva

    2017-10-01

    Full Text Available Fish oil (FO is the main source of long chain omega-3 polyunsaturated fatty acids (ω-3 PUFAs, which display relevant analgesic and anti-inflammatory properties. Peripheral nerve injury is driven by degeneration, neuroinflammation, and neuronal plasticity which results in neuropathic pain (NP symptoms such as allodynia and hyperalgesia. We tested the preventive effect of an EPA/DHA-concentrate fish oil (CFO on NP development and regenerative features. Swiss mice received daily oral treatment with CFO 4.6 or 2.3 g/kg for 10 days after NP was induced by partial sciatic nerve ligation. Mechanical allodynia and thermal hypernociception were assessed 5 days after injury. CFO 2.3 g/kg significantly prevented mechanical and thermal sensitization, reduced TNF levels in the spinal cord, sciatic MPO activity, and ATF-3 expression on DRG cells. CFO improved Sciatic Functional Index (SFI as well as electrophysiological recordings, corroborating the increased GAP43 expression and total number of myelinated fibers observed in sciatic nerve. No locomotor activity impairment was observed in CFO treated groups. These results point to the regenerative and possibly protective properties of a combined EPA and DHA oral administration after peripheral nerve injury, as well as its anti-neuroinflammatory activity, evidencing ω-3 PUFAs promising therapeutic outcomes for NP treatment.

  15. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.

    Science.gov (United States)

    Wendelken, Suzanne; Page, David M; Davis, Tyler; Wark, Heather A C; Kluger, David T; Duncan, Christopher; Warren, David J; Hutchinson, Douglas T; Clark, Gregory A

    2017-11-25

    Despite advances in sophisticated robotic hands, intuitive control of and sensory feedback from these prostheses has been limited to only 3-degrees-of-freedom (DOF) with 2 sensory percepts in closed-loop control. A Utah Slanted Electrode Array (USEA) has been used in the past to provide up to 81 sensory percepts for human amputees. Here, we report on the advanced capabilities of multiple USEAs implanted in the residual peripheral arm nerves of human amputees for restoring control of 5 DOF and sensation of up to 131 proprioceptive and cutaneous hand sensory percepts. We also demonstrate that USEA-restored sensory percepts provide a useful source of feedback during closed-loop virtual prosthetic hand control. Two 100-channel USEAs were implanted for 4-5 weeks, one each in the median and ulnar arm nerves of two human subjects with prior long-duration upper-arm amputations. Intended finger and wrist positions were decoded from neuronal firing patterns via a modified Kalman filter, allowing subjects to control many movements of a virtual prosthetic hand. Additionally, USEA microstimulation was used to evoke numerous sensory percepts spanning the phantom hand. Closed-loop control was achieved by stimulating via an electrode of the ulnar-nerve USEA while recording and decoding movement via the median-nerve USEA. Subjects controlled up to 12 degrees-of-freedom during informal, 'freeform' online movement decode sessions, and experienced up to 131 USEA-evoked proprioceptive and cutaneous sensations spanning the phantom hand. Independent control was achieved for a 5-DOF real-time decode that included flexion/extension of the thumb, index, middle, and ring fingers, and the wrist. Proportional control was achieved for a 4-DOF real-time decode. One subject used a USEA-evoked hand sensation as feedback to complete a 1-DOF closed-loop virtual-hand movement task. There were no observed long-term functional deficits due to the USEA implants. Implantation of high-channel-count USEAs

  16. How Can Nanotechnology Help to Repair the Body? Advances in Cardiac, Skin, Bone, Cartilage and Nerve Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Juan Antonio Marchal

    2013-03-01

    Full Text Available Nanotechnologists have become involved in regenerative medicine via creation of biomaterials and nanostructures with potential clinical implications. Their aim is to develop systems that can mimic, reinforce or even create in vivo tissue repair strategies. In fact, in the last decade, important advances in the field of tissue engineering, cell therapy and cell delivery have already been achieved. In this review, we will delve into the latest research advances and discuss whether cell and/or tissue repair devices are a possibility. Focusing on the application of nanotechnology in tissue engineering research, this review highlights recent advances in the application of nano-engineered scaffolds designed to replace or restore the followed tissues: (i skin; (ii cartilage; (iii bone; (iv nerve; and (v cardiac.

  17. Pharmacological immunomodulation enhances peripheral nerve regeneration Imunomodulação farmacológica aumenta a regeneração de nervos periféricos

    Directory of Open Access Journals (Sweden)

    Ana Paula Inoe

    2007-09-01

    Full Text Available To assess the effect of N-Acetylmuramyl-L-Alanyl-D-Isoglutamine MDP topically administrated on the regenerating peripheral neurons, twelve male C57BL/6J adult mice were equally distributed into three groups. Four mice underwent unilateral sciatic nerve transection and polyethylene tubulization, with a 4mm gap between the proximal and distal nerve stumps and were implanted with collagen + PBS (COL. Other four animals underwent the same surgical procedure but received collagen + MDP (COL/MDP inside the prosthesis. Four animals were not operated and served as control group (NOR. After 4 weeks, the regenerated nerve cables were processed for total myelinated axon counting and myelinated fiber diameter measurement. The L5 dorsal root ganglion (DRG was also removed and sectioned for sensory neurons counting and measurement. The results revealed significant difference (pPara avaliar o efeito do NAcetilmuramil- L-Alanil-D-Isoglutamina administrado topicamente em neurônios periféricos em regeneração, doze camundongos C57BL/6J machos adultos foram igualmente separados em três grupos. Quatro animais sofreram transecção unilateral do nervo ciático que foi ancorado no interior de um tubo de polietileno, mantendo-se 4 mm de distância entre as extremidades dos nervos e receberam colágeno + PBS (COL dentro do tubo. Outros quatro animais sofreram o mesmo procedimento cirúrgico, porém receberam colágeno + MDP (COL/MDP no interior da prótese. Quatro animais não foram operados e serviram como controle de normalidade (NOR. Após quatro semanas, os cabos de regeneração foram coletados para determinação do número de axônios mielínicos e da mêdia do diâmetro das fibras mielínicas regeneradas. O gânglio da raiz dorsal L5 também foi coletado para contagem e mensuração dos neurônios sensitivos. Os resultados revelaram diferença significativa no número de axônios entre os grupos NOR (4355±32, COL (1869±289 e COL/MDP (2430±223. Houve redu

  18. Cutaneous leishmaniasis

    OpenAIRE

    Ramesh V; Kumar Joginder

    2006-01-01

    ABSTRACTLeishmaniasis is considered to be zoonotic disease, caused by a protozoan parasite of the genus Leishmania, and transmitted by a bite of infected female sandfly. Primary cutaneous leishmaniasis is not common disease in Nepal, however, there were cases reported from Terai region of Nepal. The patients with cutaneous leishmaniasis present with a papule or nodule at the site of inoculation, followed by formation of crusts. Differential diagnoses of cutaneous leishmaniasis include variety...

  19. Cutaneous Porphyrias

    DEFF Research Database (Denmark)

    Lindegaard Christiansen, Anne; Aagaard, Lise; Krag, Aleksander

    2016-01-01

    and a flowchart for the diagnosis of cutaneous porphyrias, with recommendations for monitoring and an update of treatment options. From the Danish Porphyria Register, we present the incidences and approximate prevalences of cutaneous porphyrias within the last 25 years. A total of 650 patients with porphyria...

  20. An unusual ulnar nerve-median nerve communicating branch.

    OpenAIRE

    Hoogbergen, M M; Kauer, J M

    1992-01-01

    Branching of the ulnar nerve distal to the origin of the dorsal cutaneous branch was investigated in 25 hands in one of which an anatomical variation was observed. This finding may be of importance in the evaluation of certain entrapment phenomena of the ulnar nerve or unexplained sensory loss after trauma or surgical intervention in that particular area.

  1. Nerve growth factor accelerates wound healing in diabetic mice.

    Science.gov (United States)

    Muangman, Pornprom; Muffley, Lara A; Anthony, Joanne P; Spenny, Michelle L; Underwood, Robert A; Olerud, John E; Gibran, Nicole S

    2004-01-01

    Patients with diabetic neuropathy have reduced numbers of cutaneous nerves, which may contribute to an increased incidence of nonhealing wounds. Nerve growth factor (NGF) has been reported to augment wound closure. We hypothesized that topical 2.5S NGF, a biologically active subunit of the NGF polymer, would accelerate wound repair, augment nerve regeneration, and increase inflammation in excisional wounds in diabetic mice. A full-thickness 6-mm punch biopsy wound was created on the dorsum of C57BL/6J-m+ Leprdb mice (db/db) and heterozygous (db/-) littermates and treated daily with normal saline or 2.5S NGF (1 microg/day or 10 microg/day) on post-injury days 0-6. Time to closure, wound epithelialization, and degree of inflammation were compared using a Student's t-test. Color subtractive-computer-assisted image analysis was used to quantify immunolocalized nerves in wounds. Non-overlapping (20x) digital images of the wound were analyzed for nerve profile counts, area density (number of protein gene product 9.5 positive profiles per unit dermal area) and area fraction (protein gene product 9.5 positive area per unit dermal area). Healing times in db/db mice decreased from 30 days in normal saline-treated mice to 26 days in mice treated with 1 microg/day NGF (pnerve number, area density, and area fraction were increased in NGF-treated wounds at 14, 21, and 35 days (pnerve regeneration. Further studies to determine the role of nerves in wound repair are warranted.

  2. Cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ram Chandra Adhikari

    2017-09-01

    Full Text Available ABSTRACTLeishmaniasis is considered to be zoonotic disease, caused by a protozoan parasite of the genus Leishmania, and transmitted by a bite of infected female sandfly. Primary cutaneous leishmaniasis is not common disease in Nepal, however, there were cases reported from Terai region of Nepal. The patients with cutaneous leishmaniasis present with a papule or nodule at the site of inoculation, followed by formation of crusts. Differential diagnoses of cutaneous leishmaniasis include variety of skin diseases, inflammatory like impetigo, eczema, or granulomatous like sarcoidosis, lupus vulgaris, to skin tumor like basal cell carcinoma & squamous cell carcinoma. There are various procedures and laboratory techniques used to diagnose leishmaniasis. Punch skin biopsy is widely used & popular technique to diagnose cutaneous leishmaniasis. Different drugs like sodium stibogluconate, sodium antimony gluconate, Amphotericin B and Miltefosine: are used for its treatment. No vaccines are available for prevention. 

  3. Cutaneous Angiosarcoma

    Directory of Open Access Journals (Sweden)

    Heloisa Rampinelli

    2018-03-01

    Full Text Available Cutaneous angiosarcoma is a rare malignant tumor showing blood or lymphatic vessel differentiation, corresponding to < 2% of all sarcomas. It preferably affects elderly, with predilection for the head and neck. Diagnosis is frequently late due to the early interpretation by the patient as a benign lesion similar to ecchymosis, which explains its aggressiveness with high metastasis and recurrence rates. We report the case of an elderly man whose histopathologic diagnosis confirmed the clinical suspicion of cutaneous angiosarcoma.

  4. Sodium Channel Nav1.8 Underlies TTX-Resistant Axonal Action Potential Conduction in Somatosensory C-Fibers of Distal Cutaneous Nerves.

    Science.gov (United States)

    Klein, Amanda H; Vyshnevska, Alina; Hartke, Timothy V; De Col, Roberto; Mankowski, Joseph L; Turnquist, Brian; Bosmans, Frank; Reeh, Peter W; Schmelz, Martin; Carr, Richard W; Ringkamp, Matthias

    2017-05-17

    Voltage-gated sodium (Na V ) channels are responsible for the initiation and conduction of action potentials within primary afferents. The nine Na V channel isoforms recognized in mammals are often functionally divided into tetrodotoxin (TTX)-sensitive (TTX-s) channels (Na V 1.1-Na V 1.4, Na V 1.6-Na V 1.7) that are blocked by nanomolar concentrations and TTX-resistant (TTX-r) channels (Na V 1.8 and Na V 1.9) inhibited by millimolar concentrations, with Na V 1.5 having an intermediate toxin sensitivity. For small-diameter primary afferent neurons, it is unclear to what extent different Na V channel isoforms are distributed along the peripheral and central branches of their bifurcated axons. To determine the relative contribution of TTX-s and TTX-r channels to action potential conduction in different axonal compartments, we investigated the effects of TTX on C-fiber-mediated compound action potentials (C-CAPs) of proximal and distal peripheral nerve segments and dorsal roots from mice and pigtail monkeys ( Macaca nemestrina ). In the dorsal roots and proximal peripheral nerves of mice and nonhuman primates, TTX reduced the C-CAP amplitude to 16% of the baseline. In contrast, >30% of the C-CAP was resistant to TTX in distal peripheral branches of monkeys and WT and Na V 1.9 -/- mice. In nerves from Na V 1.8 -/- mice, TTX-r C-CAPs could not be detected. These data indicate that Na V 1.8 is the primary isoform underlying TTX-r conduction in distal axons of somatosensory C-fibers. Furthermore, there is a differential spatial distribution of Na V 1.8 within C-fiber axons, being functionally more prominent in the most distal axons and terminal regions. The enrichment of Na V 1.8 in distal axons may provide a useful target in the treatment of pain of peripheral origin. SIGNIFICANCE STATEMENT It is unclear whether individual sodium channel isoforms exert differential roles in action potential conduction along the axonal membrane of nociceptive, unmyelinated peripheral nerve

  5. Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Mehmet Harman

    2015-12-01

    Full Text Available Leishmaniasis is used to describe a spectrum of diseases caused by the parasitic protozoa leishmania spp. and transmitted by infected female sandflies. There are three main forms of the disease; cutaneous, mucocutaneous, and visceral. According to the World Health Organization, almost 12 million people from 98 countries worldwide are currently infected with leishmaniasis, while 350 million people are at risk. It was reported that 2 million new cases are diagnosed every year, with three-fourth are cutaneous leishmaniasis (CL cases. The scientific and medical communities have learnt a lot about CL during the 20th and early 21st centuries. However, the management and control of the disease remains a difficult task. This article was focused on the most common form of the disease, cutaneous leishmaniasis, and especially its epidemiological aspects and treatment.

  6. Detergent-free Decellularized Nerve Grafts for Long-gap Peripheral Nerve Reconstruction

    Directory of Open Access Journals (Sweden)

    Srikanth Vasudevan, PhD

    2014-08-01

    Conclusions: This study describes a detergent-free nerve decellularization technique for reconstruction of long-gap nerve injuries. We compared DFD grafts with an established detergent processing technique and found that DFD nerve grafts are successful in promoting regeneration across long-gap peripheral nerve defects as an alternative to existing strategies.

  7. Fastklemt nerve som årsag til svære postoperative smerter fra arvæv

    DEFF Research Database (Denmark)

    Møller, Michael; Venzo, Alessandro

    2014-01-01

    Entrapment of a cutaneous nerve in a surgical scar may cause chronic post-operative pain. The condition presents with similar symptoms as a traumatic neuroma or as an anterior cutaneous nerve entrapment syndrome, which, however, is often idiopathic. We present a case, where entrapment of a cutane...... of a cutaneous nerve in a laparotomy scar caused chronic pain. The symptoms were immediately relieved after selective neurectomy....

  8. The bilateral anatomical variation of the sural nerve and a review of relevant literature.

    Science.gov (United States)

    Vuksanovic-Bozaric, Aleksandra; Radunovic, Miroslav; Radojevic, Nemanja; Abramovic, Marija

    2014-01-01

    The sural nerve is a sensory nerve, usually formed in the distal part of the leg by the union of the lateral sural cutaneous nerve or the communicating fibular branch with the medial sural cutaneous nerve. The aim of this paper is to present a case of a variant formation of the sural nerve and a review of the literature related to this case. During the dissection of an adult male cadaver, the medial sural cutaneous nerve and communicating fibular branch, after respectively deriving from the tibial and common fibular nerve, were noticed to continue their course without any formation of a unique nerve trunk on the posterior side of both lower limbs. A transverse communicating branch, connecting these two nerves, was present in both legs. As the sural nerve is of significant diagnostic and therapeutic importance, detailed knowledge of the sural nerve's anatomy and its contributing nerves is also of great importance.

  9. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cutaneous mechanisms of isometric ankle force control

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Jesper Lundbye; Leukel, Christian

    2013-01-01

    The sense of force is critical in the control of movement and posture. Multiple factors influence our perception of exerted force, including inputs from cutaneous afferents, muscle afferents and central commands. Here, we studied the influence of cutaneous feedback on the control of ankle force...... output. We used repetitive electrical stimulation of the superficial peroneal (foot dorsum) and medial plantar nerves (foot sole) to disrupt cutaneous afferent input in 8 healthy subjects. We measured the effects of repetitive nerve stimulation on (1) tactile thresholds, (2) performance in an ankle force......-matching and (3) an ankle position-matching task. Additional force-matching experiments were done to compare the effects of transient versus continuous stimulation in 6 subjects and to determine the effects of foot anesthesia using lidocaine in another 6 subjects. The results showed that stimulation decreased...

  11. Comprehensive gas chromatography with Time of Flight MS and large volume introduction for the detection of fluoride-induced regenerated nerve agent in biological samples

    NARCIS (Netherlands)

    Meer, J.A. van der; Trap, H.C.; Noort, D.; Schans, M.J. van der

    2010-01-01

    Recently, several methods have been developed to verify exposure to nerve agents. Most of these methods, such as the fluoride reactivation technique and the analysis of inhibited phosphonylated butyrylcholinesterase (BuChE), are based on mass spectrometry. The high specificity of the mass

  12. Genetic modification of human sural nerve segments by a lentiviral vector encoding nerve growth factor

    NARCIS (Netherlands)

    Tannemaat, Martijn R; Boer, Gerard J; Verhaagen, J.; Malessy, Martijn J A

    2007-01-01

    OBJECTIVE: Autologous nerve grafts are used to treat severe peripheral nerve injury, but recovery of nerve function after grafting is rarely complete. Exogenous application of neurotrophic factors may enhance regeneration, but thus far the application of neurotrophic factors has been hampered by

  13. Unmyelinated Tactile Cutaneous Nerves Signal Erotic Sensations

    NARCIS (Netherlands)

    Jönsson, Emma H; Backlund Wasling, Helena; Wagnbeck, Vicktoria; Dimitriadis, Menelaos; Georgiadis, Janniko R; Olausson, Håkan; Croy, Ilona

    IntroductionIntrapersonal touch is a powerful tool for communicating emotions and can among many things evoke feelings of eroticism and sexual arousal. The peripheral neural mechanisms of erotic touch signaling have been less studied. C tactile afferents (unmyelinated low-threshold

  14. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    Science.gov (United States)

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  15. Regenerative scaffold electrodes for peripheral nerve interfacing.

    Science.gov (United States)

    Clements, Isaac P; Mukhatyar, Vivek J; Srinivasan, Akhil; Bentley, John T; Andreasen, Dinal S; Bellamkonda, Ravi V

    2013-07-01

    Advances in neural interfacing technology are required to enable natural, thought-driven control of a prosthetic limb. Here, we describe a regenerative electrode design in which a polymer-based thin-film electrode array is integrated within a thin-film sheet of aligned nanofibers, such that axons regenerating from a transected peripheral nerve are topographically guided across the electrode recording sites. Cultures of dorsal root ganglia were used to explore design parameters leading to cellular migration and neurite extension across the nanofiber/electrode array boundary. Regenerative scaffold electrodes (RSEs) were subsequently fabricated and implanted across rat tibial nerve gaps to evaluate device recording capabilities and influence on nerve regeneration. In 20 of these animals, regeneration was compared between a conventional nerve gap model and an amputation model. Characteristic shaping of regenerated nerve morphology around the embedded electrode array was observed in both groups, and regenerated axon profile counts were similar at the eight week end point. Implanted RSEs recorded evoked neural activity in all of these cases, and also in separate implantations lasting up to five months. These results demonstrate that nanofiber-based topographic cues within a regenerative electrode can influence nerve regeneration, to the potential benefit of a peripheral nerve interface suitable for limb amputees.

  16. Cutaneous Sensibility Changes in Bell's Palsy Patients.

    Science.gov (United States)

    Cárdenas Palacio, Carlos Andrés; Múnera Galarza, Francisco Alejandro

    2017-05-01

    Objective Bell's palsy is a cranial nerve VII dysfunction that renders the patient unable to control facial muscles from the affected side. Nevertheless, some patients have reported cutaneous changes in the paretic area. Therefore, cutaneous sensibility changes might be possible additional symptoms within the clinical presentation of this disorder. Accordingly, the aim of this research was to investigate the relationship between cutaneous sensibility and facial paralysis severity in these patients. Study Design Prospective longitudinal cohort study. Settings Tertiary care medical center. Subjects and Methods Twelve acute-onset Bell's palsy patients were enrolled from March to September 2009. In addition, 12 sex- and age-matched healthy volunteers were tested. Cutaneous sensibility was evaluated with pressure threshold and 2-point discrimination at 6 areas of the face. Facial paralysis severity was evaluated with the House-Brackmann scale. Results Statistically significant correlations based on the Spearman's test were found between facial paralysis severity and cutaneous sensitivity on forehead, eyelid, cheek, nose, and lip ( P Bell's palsy patients but not in healthy subjects. Conclusion Such results suggest a possible relationship between the loss of motor control of the face and changes in facial sensory information processing. Such findings are worth further research about the neurophysiologic changes associated with the cutaneous sensibility disturbances of these patients.

  17. Spatial clustering analysis in neuroanatomy: Applications of different approaches to motor nerve fiber distribution

    NARCIS (Netherlands)

    Crunelli, V.; Prodanov, D.P.; Nagelkerke, Nico; Marani, Enrico

    2007-01-01

    Spatial organization of the nerve fibers in the peripheral nerves may be important for the studies of axonal regeneration, the degenerative nerve diseases and the construction of interfaces with peripheral nerves, such as nerve prostheses. Functional topography of motor axons related to the

  18. The surgery of peripheral nerves (including tumors)

    DEFF Research Database (Denmark)

    Fugleholm, Kåre

    2013-01-01

    Surgical pathology of the peripheral nervous system includes traumatic injury, entrapment syndromes, and tumors. The recent significant advances in the understanding of the pathophysiology and cellular biology of peripheral nerve degeneration and regeneration has yet to be translated into improved...

  19. [Cutaneous leishmaniasis].

    Science.gov (United States)

    von Stebut, E; Sunderkötter, C

    2007-05-01

    Infections with Leishmania are increasing worldwide because of tourism and job-related travel; central Europe is no exception. Infections often first become apparent after return from an endemic region. Depending on the Leishmania species and the host immune status, different forms of cutaneous (CL), mucocutaneous (MCL) (L. brasiliensis complex) or visceral leishmaniasis (L. donovani as well as L. infantum) may develop. CL may heal spontaneously with scarring but can evolve into diffuse CL (with reduced immune response to L. amazonensis, L. guyanensis, L. mexicana or L. aethiopica) or into recurrent CL. Diagnostic criteria include travel to an endemic area as well as ulcerated plaques or nodules on an exposed site which show no tendency towards healing over 3-4 weeks. Differential diagnostic considerations include ecthyma, other infectious ulcers, and malignant neoplasms. The diagnosis is confirmed by finding Leishmania in a smear or tissue biopsy, as well as by culture. Therapy options range from topical treatment of simple CL of the Old World caused by L. major to systemic therapy which is needed for most complex cases of CL as well as MCL. Miltefosine is a less toxic option to replace the antimony compounds.

  20. The Physiology of Neural Injury and Regeneration: The Role of Neurotrophic Factors

    Science.gov (United States)

    Gordon, Tessa

    2010-01-01

    Injured nerves regenerate slowly and often over long distances. Prolonged periods for regenerating nerves to make functional connections with denervated targets prolong the period of isolation of the neurons from the target (chronic axotomy) and of the denervation of Schwann cells in the distal nerve pathways (chronic denervation). In an animal…

  1. Omental pedicle transposition and suture repair of peripheral nerve ...

    African Journals Online (AJOL)

    The peripheral nervous system is able to regenerate after injury. Etiologies of injuries include penetrating injury, crush, traction, and ischemia compression. However, the presence of various nerve injury treatments such as coaptation and another technique to attain functional nerve regeneration are still inadequate.

  2. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  3. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  4. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Xing-long Cheng

    2015-01-01

    Full Text Available Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery.

  5. Recovery of Peripheral Nerve with Massive Loss Defect by Tissue Engineered Guiding Regenerative Gel

    Directory of Open Access Journals (Sweden)

    Shimon Rochkind

    2014-01-01

    Full Text Available Objective. Guiding Regeneration Gel (GRG was developed in response to the clinical need of improving treatment for peripheral nerve injuries and helping patients regenerate massive regional losses in peripheral nerves. The efficacy of GRG based on tissue engineering technology for the treatment of complete peripheral nerve injury with significant loss defect was investigated. Background. Many severe peripheral nerve injuries can only be treated through surgical reconstructive procedures. Such procedures are challenging, since functional recovery is slow and can be unsatisfactory. One of the most promising solutions already in clinical practice is synthetic nerve conduits connecting the ends of damaged nerve supporting nerve regeneration. However, this solution still does not enable recovery of massive nerve loss defect. The proposed technology is a biocompatible and biodegradable gel enhancing axonal growth and nerve regeneration. It is composed of a complex of substances comprising transparent, highly viscous gel resembling the extracellular matrix that is almost impermeable to liquids and gasses, flexible, elastic, malleable, and adaptable to various shapes and formats. Preclinical study on rat model of peripheral nerve injury showed that GRG enhanced nerve regeneration when placed in nerve conduits, enabling recovery of massive nerve loss, previously unbridgeable, and enabled nerve regeneration at least as good as with autologous nerve graft “gold standard” treatment.

  6. Keratin gel filler for peripheral nerve repair in a rodent sciatic nerve injury model.

    Science.gov (United States)

    Lin, Yen-Chih; Ramadan, Mostafa; Van Dyke, Mark; Kokai, Lauren E; Philips, Brian J; Rubin, J Peter; Marra, Kacey G

    2012-01-01

    Restoration with sufficient functional recovery after long-gap peripheral nerve damage remains a clinical challenge. In vitro, keratins, which are derived from human hair, enhance activity and gene expression of Schwann cells. The specific aim of the authors' study was to examine keratin gel as conduit filler for peripheral nerve regeneration in a rat sciatic nerve injury model. Incorporation of glial cell line-derived, neurotrophic factor, double-walled microspheres into polycaprolactone nerve guides has demonstrated an off-the-shelf product alternative to promote nerve regeneration, and this conduit was filled with keratin gel and examined in a rat 15-mm sciatic nerve defect model. As an indicator of recovery, nerve sections were stained with S100 and protein gene product 9.5 antibody. The keratin-treated groups, compared with both saline and empty polycaprolactone (control) groups (p nerve conduits possess optimal mechanical and degradative properties, rendering the biocompatible conduits potentially useful in peripheral nerve repair. From their studies, the authors conclude that polycaprolactone nerve guides with glial cell line-derived, neurotrophic factor-loaded, double-walled microspheres filled with keratin gel represent a potentially viable guiding material for Schwann cell and axon migration and proliferation in the treatment of peripheral nerve regeneration.

  7. Shrapnel Injury of Isolated Third Cranial Nerve

    OpenAIRE

    Ulutaş, Murat; Seçer, Mehmet

    2014-01-01

    Isolated third nerve palsy develops in numerous intracranial pathologies such as closed head trauma, tumor, and aneurysm. Isolated oculomotor nerve palsy caused by shrapnel injury is uncommon. After a penetrating intracranial shrapnel injury, our patient with oculomotor ophthalmoplegia underwent surgery. Microsurgery removed the shrapnel that was applying pressure on the third nerve, resulting in contusion. A partial recovery associated with regeneration was observed at month 9. Extraocular m...

  8. Peripheral nerve injury causes transient expression of MHC class I antigens in rat motor neurons and skeletal muscles

    DEFF Research Database (Denmark)

    Maehlen, J; Nennesmo, I; Olsson, A B

    1989-01-01

    After a peripheral nerve lesion (rat facial and sciatic) an induction of major histocompatibility complex (MHC) antigens class I was detected immunohistochemically in skeletal muscle fibers and motor neurons. This MHC expression was transient after a nerve crush, when regeneration occurred......, but persisted after a nerve cut, when regeneration was prevented. Since the time course of MHC class I expression correlates to that of regeneration a role for this cell surface molecule in regeneration may be considered....

  9. Musculocutaneous nerve substituting for the distal part of radial nerve: A case report and its embryological basis

    Directory of Open Access Journals (Sweden)

    A S Yogesh

    2011-01-01

    Full Text Available In the present case, we have reported a unilateral variation of the radial and musculocutaneous nerves on the left side in a 64-year-old male cadaver. The radial nerve supplied all the heads of the triceps brachii muscle and gave cutaneous branches such as lower lateral cutaneous nerve of the arm and posterior cutaneous nerve of forearm. The radial nerve ended without continuing further. The musculocutaneous nerve supplied the brachioradialis, extensor carpi radialis longus and extensor carpi radialis brevis muscles. The musculocutaneous nerve divided terminally into two branches, superficial and deep. The deep branch of musculocutaneous nerve corresponded to usual deep branch of the radial nerve while the superficial branch of musculocutaneous nerve corresponded to usual superficial branch of the radial nerve. The dissection was continued to expose the entire brachial plexus from its origin and it was found to be normal. The structures on the right upper limb were found to be normal. Surgeons should keep such variations in mind while performing the surgeries of the upper limb.

  10. Shocking therapy: Brief electrical stimulation for delayed nerve repair.

    Science.gov (United States)

    Shapira, Yuval; Midha, Rajiv

    2015-09-01

    This commentary provides perspective on a recent paper published in Experimental Neurology by Elzinga et al. where the authors investigated the effect of brief electrical stimulation (ES) on nerve regeneration after delayed nerve repair in a rodent model. Their results from a well controlled series of experiments indicated that brief ES promoted axonal outgrowth after chronic axotomy as well after chronic Schwann cell and muscle denervation. ES also increased chronically axotomized neurons regenerating into chronically denervated stumps, which represent a true delayed repair. The authors conclude that brief ES promotion of nerve regeneration after delayed nerve repair is as effective as after immediate repair. Given the prior experimental evidence, and the prior clinical data from patients with carpal tunnel syndrome and digital nerve repair, the implication of this new work is to consider a well designed clinical trial for use of brief ES in nerve graft and nerve transfer repairs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer.

    Science.gov (United States)

    Sullivan, Robert; Dailey, Travis; Duncan, Kelsey; Abel, Naomi; Borlongan, Cesario V

    2016-12-14

    Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration.

  12. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer

    Directory of Open Access Journals (Sweden)

    Robert Sullivan

    2016-12-01

    Full Text Available Peripheral nerve injury can lead to great morbidity in those afflicted, ranging from sensory loss, motor loss, chronic pain, or a combination of deficits. Over time, research has investigated neuronal molecular mechanisms implicated in nerve damage, classified nerve injury, and developed surgical techniques for treatment. Despite these advancements, full functional recovery remains less than ideal. In this review, we discuss historical aspects of peripheral nerve injury and introduce nerve transfer as a therapeutic option, as well as an adjunct therapy to transplantation of Schwann cells and their stem cell derivatives for repair of the damaged nerve. This review furthermore, will provide an elaborated discussion on the sources of Schwann cells, including sites to harvest their progenitor and stem cell lines. This reflects the accessibility to an additional, concurrent treatment approach with nerve transfers that, predicated on related research, may increase the efficacy of the current approach. We then discuss the experimental and clinical investigations of both Schwann cells and nerve transfer that are underway. Lastly, we provide the necessary consideration that these two lines of therapeutic approaches should not be exclusive, but conversely, should be pursued as a combined modality given their mutual role in peripheral nerve regeneration.

  13. Comparison of nerve regenerative efficacy between decellularized nerve graft and nonwoven chitosan conduit.

    Science.gov (United States)

    Kusaba, Hiroki; Terada-Nakaishi, Michiko; Wang, Wei; Itoh, Soichiro; Nozaki, Kosuke; Nagai, Akiko; Ichinose, Shizuko; Takakuda, Kazuo

    2016-05-12

    Recently decellularized nerves with various methods are reported as highly functional nerve grafts for the treatment of nerve defects. To evaluate the efficacy of decellularized allogeneic nerve, compared with oriented chitosan mesh tube, and an autologous nerve. Sciatic nerves harvested from Sprague-Dawley (SD) rats were decellularized in combination with Sodium dodecyl sulfate and Triton X-100. A graft into the sciatic nerve in Wistar rats was performed with the decellularized SD rat sciatic nerves or oriented chitosan nonwoven nanofiber mesh tubes (15 mm in length, N=5 in each group). A portion of sciatic nerve of Wistar rat was cut, reversed and re-sutured in-situ as a control. Nerve functional and histological evaluations were performed 25 weeks postoperatively. It was revealed that functional, electrophysiological and histological recoveries in the decellularized nerve group match those in the autograft group. Recovery of sensory function and nerve maturation in the decellularized nerve group were superior to those in the chitosan mesh tube group. Nerve regeneration in the decellularized nerves could match that in the autografts and is somehow superior to artificial chitosan mesh tube. Detergents wash of SDS and Triton X-100 could obtain highly functional nerve grafts from allografts.

  14. A novel method of lengthening the accessory nerve for direct coaptation during nerve repair and nerve transfer procedures.

    Science.gov (United States)

    Tubbs, R Shane; Maldonado, Andrés A; Stoves, Yolanda; Fries, Fabian N; Li, Rong; Loukas, Marios; Oskouian, Rod J; Spinner, Robert J

    2018-01-01

    OBJECTIVE The accessory nerve is frequently repaired or used for nerve transfer. The length of accessory nerve available is often insufficient or marginal (under tension) for allowing direct coaptation during nerve repair or nerve transfer (neurotization), necessitating an interpositional graft. An attractive maneuver would facilitate lengthening of the accessory nerve for direct coaptation. The aim of the present study was to identify an anatomical method for such lengthening. METHODS In 20 adult cadavers, the C-2 or C-3 connections to the accessory nerve were identified medial to the sternocleidomastoid (SCM) muscle and the anatomy of the accessory nerve/cervical nerve fibers within the SCM was documented. The cervical nerve connections were cut. Lengths of the accessory nerve were measured. Samples of the cut C-2 and C-3 nerves were examined using immunohistochemistry. RESULTS The anatomy and adjacent neural connections within the SCM are complicated. However, after the accessory nerve was "detethered" from within the SCM and following transection, the additional length of the accessory nerve increased from a mean of 6 cm to a mean of 10.5 cm (increase of 4.5 cm) after cutting the C-2 connections, and from a mean of 6 cm to a mean length of 9 cm (increase of 3.5 cm) after cutting the C-3 connections. The additional length of accessory nerve even allowed direct repair of an infraclavicular target (i.e., the proximal musculocutaneous nerve). The cervical nerve connections were shown not to contain motor fibers. CONCLUSIONS An additional length of the accessory nerve made available in the posterior cervical triangle can facilitate direct repair or neurotization procedures, thus eliminating the need for an interpositional nerve graft, decreasing the time/distance for regeneration and potentially improving clinical outcomes.

  15. Axonal elongation through long acellular nerve segments depends on recruitment of phagocytic cells from the near-nerve environment. Electrophysiological and morphological studies in the cat

    DEFF Research Database (Denmark)

    Sørensen, J; Fugleholm, K; Moldovan, M

    2001-01-01

    The distal nerve stump plays a central role in the regeneration of peripheral nerve but the relative importance of cellular and humoral factors is not clear. We have studied this question by freezing the tibial nerve distal to a crush lesion in cat. The importance of constituents from the near......-nerve environment was assessed by modification of the contact between the tibial nerve and the environment. Silicone cuffs, containing electrodes for electrophysiological assessment of nerve regeneration, were placed around the tibial nerve distal to the crush site. The interaction between long acellular frozen...... nerve segments (ANS) and the near-nerve environment was ascertained by breaching the silicone cuff to allow access of cellular or humoral components. Tibial nerves were crushed and frozen for 40 mm and enclosed in nerve cuffs with 0.45-microm holes or 2.0-mm holes to allow access of humoral factors...

  16. The spinal nerves that constitute the lumbosacral plexus and their distribution in the chinchilla

    Directory of Open Access Journals (Sweden)

    M. A. Martinez-Pereira

    2011-04-01

    Full Text Available In this study, the spinal nerves that constitute the lumbosacral plexus (plexus lumbosacrales (LSP and its distribution in Chinchilla lanigera were investigated. Ten chinchillas (6 males and 4 females were used in this research. The spinal nerves that constitute the LSP were dissected and the distribution of pelvic limb nerves originating from the plexus was examined. The iliohypogastric nerve arose from L1 and L2,, giving rise to the cranial and caudal nerves, and the ilioinguinal nerve arose from L3. The other branch of L3 gave rise to the genitofemoral nerve and 1 branch from L4 gave rise to the lateral cutaneous femoral nerve. The trunk formed by the union of L4–5 divided into medial (femoral nerve and lateral branches (obturator nerve. It was found that the LSP was formed by all the ventral branches of L4 at L6 and S1 at S3. At the caudal part of the plexus, a thick branch, the ischiadic plexus, was formed by contributions from L5–6 and S1. This root gave rise to the nerve branches which were disseminated to the posterior limb (cranial and caudal gluteal nerves, caudal cutaneous femoral nerve and ischiadic nerve. The ischiadic nerve divided into the caudal cutaneous surae, lateral cutaneous surae, common fibular and tibial nerve. The pudendal nerve arose from S1–2 and the other branch of S2 and S3 formed the rectal caudal nerve. The results showed that the origins and distribution of spinal nerves that constitute the LSP of chinchillas were similar to those of a few rodents and other mammals.

  17. Exercício imediato versus tardio na regeneração do nervo isquiático de ratos após axoniotmese: análise histomorfométrica e funcional Immediate versus later exercises for rat sciatic nerve regeneration after axonotmesis: histomorphometric and functional analyses

    Directory of Open Access Journals (Sweden)

    LL Sobral

    2008-08-01

    Full Text Available OBJETIVO: Devido à controvérsia sobre o melhor momento para iniciar o exercício físico, bem como sua influência sobre a regeneração nervosa periférica, este estudo realizou uma análise histomorfométrica e funcional para avaliar a influência do exercício físico em esteira, aplicado nas fases imediata e tardia da regeneração do nervo isquiático de ratos, após axoniotmese. MÉTODOS: Vinte ratos Wistar machos (229,05±18,02g foram divididos nos grupos: controle (CON; desnervado (D; desnervado+exercício+gaiola (DEG e desnervado+ gaiola+exercício (DGE. Após 24 horas da axoniotmese, o grupo DEG iniciou o exercício, enquanto o grupo DGE iniciou no 14º dia, com o seguinte protocolo: velocidade=8m/min, inclinação=0%, 30min/dia, durante 14 dias. Em seguida, a porção distal do nervo isquiático foi retirada para análise histomorfométrica. Realizou-se o registro da marcha (pré-operatório e 7º, 14º, 21º, 28º dias pós-operatório (PO, através do índice funcional do ciático (IFC. RESULTADOS: O número de axônios regenerados nos grupos D foi maior que no CON (pOBJECTIVE: Considering the controversies regarding the best period to begin physical exercise in relation to peripheral nerve regeneration, along with its influence on regeneration, this study accomplished a histomorphometric and functional analysis to evaluate the influence of physical exercise on a treadmill, applied to the immediate and late stages of sciatic nerve regeneration in rats following crushing injury. METHODS: Twenty male Wistar rats (229.05±18.02g were divided into the following groups: control (CON; denervated (D; denervated+exercise+cage (DEC and denervated+cage+exercise (DCE. The DEC group started the exercise 24 hours after the nerve injury, while the DCE group started on the 14th day after the injury, with the following protocol: speed=8m/min, inclination=0%, 30min/day, for 14 days. The distal segment of the sciatic nerve was then removed for

  18. Early regulation of axolotl limb regeneration.

    Science.gov (United States)

    Makanae, Aki; Satoh, Akira

    2012-10-01

    Amphibian limb regeneration has been studied for a long time. In amphibian limb regeneration, an undifferentiated blastema is formed around the region damaged by amputation. The induction process of blastema formation has remained largely unknown because it is difficult to study the induction of limb regeneration. The recently developed accessory limb model (ALM) allows the investigation of limb induction and reveals early events of amphibian limb regeneration. The interaction between nerves and wound epidermis/epithelium is an important aspect of limb regeneration. During early limb regeneration, neurotrophic factors act on wound epithelium, leading to development of a functional epidermis/epithelium called the apical epithelial cap (AEC). AEC and nerves create a specific environment that inhibits wound healing and induces regeneration through blastema formation. It is suggested that FGF-signaling and MMP activities participate in creating a regenerative environment. To understand why urodele amphibians can create such a regenerative environment and humans cannot, it is necessary to identify the similarities and differences between regenerative and nonregenerative animals. Here we focus on ALM to consider limb regeneration from a new perspective and we also reported that focal adhesion kinase (FAK)-Src signaling controlled fibroblasts migration in axolotl limb regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  19. Nerve conduction

    Science.gov (United States)

    ... the central nervous system (CNS) and peripheral nervous system (PNS). The CNS contains the brain and the spinal cord and the PNS consists of thousands of nerves that connect the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve ...

  20. [Development of peripheral nerve surgery].

    Science.gov (United States)

    Sames, M

    1998-03-01

    In the submitted review the author deals with the development of peripheral nerve surgery (PN) from ancient times to the present time incl. hithero unpublished details. He analyses in great detail the period of the last 40 years which is divided into three stages--the mechanical, biological period and the period of neurotrophism. From the Second World War to the sixties the period bears the term mechanical. The results of reinnervation during this period were not satisfactory as the nerves were connected without the use of a microscope, in major defects they were connected under considerable traction and the only criterion was the resistance against dehiscence. Significant improvement of results of regeneration of PN was recorded during the biological period. Mechanical ideas were overcome and biological and physiological reactions of the peripheral nerves were taken into account. Suture of nerves under traction was refuted and into clinical practice the surgical microscope, microsurgical technique and microsurgical autotransplantation with a nervous graft were introduced. The anatomical structure of the nerve with a plexiform pattern of the fascicles became however the limitation of surgical methods. After discovery of NGF (nerve growth factor) we can speak of the onset of a new period, neurotrophism. In laboratory experiments many substances are studied and theoretically new non-surgical possibilities how to promote regeneration lie ahead. However they cannot be applied yet in clinical practice. In injuries of peripheral nerves the only correct reconstruction method is still microsuture of the nerve and in case of losses microsurgical autotransplantation using a nerve graft.

  1. The Role of Current Techniques and Concepts in Peripheral Nerve Repair

    Directory of Open Access Journals (Sweden)

    K. S. Houschyar

    2016-01-01

    Full Text Available Patients with peripheral nerve injuries, especially severe injury, often face poor nerve regeneration and incomplete functional recovery, even after surgical nerve repair. This review summarizes treatment options of peripheral nerve injuries with current techniques and concepts and reviews developments in research and clinical application of these therapies.

  2. The Role of Current Techniques and Concepts in Peripheral Nerve Repair

    OpenAIRE

    Houschyar, K. S.; Momeni, A.; Pyles, M. N.; Cha, J. Y.; Maan, Z. N.; Duscher, D.; Jew, O. S.; Siemers, F.; van Schoonhoven, J.

    2016-01-01

    Patients with peripheral nerve injuries, especially severe injury, often face poor nerve regeneration and incomplete functional recovery, even after surgical nerve repair. This review summarizes treatment options of peripheral nerve injuries with current techniques and concepts and reviews developments in research and clinical application of these therapies.

  3. Inhibition of motoneurons during the cutaneous silent period in the spinal cord of the turtle

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jørn Dybkjær; Alaburda, Aidas

    2012-01-01

    motoneurons in the isolated carapace-spinal cord preparation from adult turtles during rhythmic scratch-like reflex. Electrical stimulation of cutaneous nerves induced CSP-like suppression of motor nerve firing during rhythmic network activity. The stimulus that generated the CSP-like suppression of motor...

  4. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  5. Can mammalian vision be restored following optic nerve degeneration?

    Directory of Open Access Journals (Sweden)

    Kuffler DP

    2016-07-01

    Full Text Available Damien P Kuffler Institute of Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico Abstract: For most adult vertebrates, glaucoma, trauma, and tumors close to retinal ganglion cells (RGCs result in their neuron death and no possibility of vision reestablishment. For more distant traumas, RGCs survive, but their axons do not regenerate into the distal nerve stump due to regeneration-inhibiting factors and absence of regeneration-promoting factors. The annual clinical incidence of blindness in the United States is 1:28 (4% for persons >40 years, with the total number of blind people approaching 1.6 million. Thus, failure of optic nerves to regenerate is a significant problem. However, following transection of the optic nerve of adult amphibians and fish, the RGCs survive and their axons regenerate through the distal optic nerve stump and reestablish appropriate functional retinotopic connections and fully functional vision. This is because they lack factors that inhibit axon regeneration and possess factors that promote regeneration. The axon regeneration in lower vertebrates has led to extensive studies by using them as models in studies that attempt to understand the mechanisms by which axon regeneration is promoted, so that these mechanisms might be applied to higher vertebrates for restoring vision. Although many techniques have been tested, their successes have varied greatly from the recovery of light and dark perceptions to partial restoration of the optomotor response, depth perception, and circadian photoentrainment, thus demonstrating the feasibility of reconstructing central circuitry for vision after optic nerve damage in mature mammals. Thus, further research is required to induce the restoration of vision in higher vertebrates. This paper examines the causes of vision loss and techniques that promote transected optic nerve axons to regenerate and reestablish functional vision, with a focus on approaches

  6. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  7. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves

    OpenAIRE

    Wendelken, Suzanne; Page, David M.; Davis, Tyler; Wark, Heather A. C.; Kluger, David T.; Duncan, Christopher; Warren, David J.; Hutchinson, Douglas T.; Clark, Gregory A.

    2017-01-01

    Background Despite advances in sophisticated robotic hands, intuitive control of and sensory feedback from these prostheses has been limited to only 3-degrees-of-freedom (DOF) with 2 sensory percepts in closed-loop control. A Utah Slanted Electrode Array (USEA) has been used in the past to provide up to 81 sensory percepts for human amputees. Here, we report on the advanced capabilities of multiple USEAs implanted in the residual peripheral arm nerves of human amputees for restoring control o...

  8. Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators.

    Science.gov (United States)

    MacEwan, Matthew R; Gamble, Paul; Stephen, Manu; Ray, Wilson Z

    2018-02-09

    OBJECTIVE Electrical stimulation of peripheral nerve tissue has been shown to accelerate axonal regeneration. Yet existing methods of applying electrical stimulation to injured peripheral nerves have presented significant barriers to clinical translation. In this study, the authors examined the use of a novel implantable wireless nerve stimulator capable of simultaneously delivering therapeutic electrical stimulation of injured peripheral nerve tissue and providing postoperative serial assessment of functional recovery. METHODS Flexible wireless stimulators were fabricated and implanted into Lewis rats. Thin-film implants were used to deliver brief electrical stimulation (1 hour, 20 Hz) to sciatic nerves after nerve crush or nerve transection-and-repair injuries. RESULTS Electrical stimulation of injured nerves via implanted wireless stimulators significantly improved functional recovery. Brief electrical stimulation was observed to increase the rate of functional recovery after both nerve crush and nerve transection-and-repair injuries. Wireless stimulators successfully facilitated therapeutic stimulation of peripheral nerve tissue and serial assessment of nerve recovery. CONCLUSIONS Implantable wireless stimulators can deliver therapeutic electrical stimulation to injured peripheral nerve tissue. Implantable wireless nerve stimulators might represent a novel means of facilitating therapeutic electrical stimulation in both intraoperative and postoperative settings.

  9. Exogenous nerve growth factor protects the hypoglossal nerve against crush injury

    Directory of Open Access Journals (Sweden)

    Li-yuan Fan

    2015-01-01

    Full Text Available Studies have shown that sensory nerve damage can activate the p38 mitogen-activated protein kinase (MAPK pathway, but whether the same type of nerve injury after exercise activates the p38MAPK pathway remains unclear. Several studies have demonstrated that nerve growth factor may play a role in the repair process after peripheral nerve injury, but there has been little research focusing on the hypoglossal nerve injury and repair. In this study, we designed and established rat models of hypoglossal nerve crush injury and gave intraperitoneal injections of exogenous nerve growth factor to rats for 14 days. p38MAPK activity in the damaged neurons was increased following hypoglossal nerve crush injury; exogenous nerve growth factor inhibited this increase in acitivity and increased the survival rate of motor neurons within the hypoglossal nucleus. Under transmission electron microscopy, we found that the injection of nerve growth factor contributed to the restoration of the morphology of hypoglossal nerve after crush injury. Our experimental findings indicate that exogenous nerve growth factor can protect damaged neurons and promote hypoglossal nerve regeneration following hypoglossal nerve crush injury.

  10. Canine cutaneous leishmaniasis

    OpenAIRE

    Sasani, F.; Javanbakht, J.; Samani, R.; Shirani, D.

    2014-01-01

    Canine cutaneous leishmaniasis (CCL) is a significant veterinary problem. Infected dogs also serve as parasite reservoirs and contribute to human transmission of cutaneous leishmaniasis. Histologically, the lesions were nodular to diffuse interstitial granulomatous dermatitis with histiocytic pseudorosettes together with numerous amastigotes within macrophages and occasionally within the interstitium. Organisms were often contained within clear and intracellular vacuoles. The other inflammato...

  11. Terminal nerve: cranial nerve zero

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  12. The challenges and beauty of peripheral nerve regrowth.

    Science.gov (United States)

    Zochodne, Douglas W

    2012-03-01

    This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery. © 2012 Peripheral Nerve Society.

  13. Intermediate filaments of zebrafish retinal and optic nerve astrocytes and M?ller glia: differential distribution of cytokeratin and GFAP

    OpenAIRE

    Koke, Joseph R; Mosier, Amanda L; Garc?a, Dana M

    2010-01-01

    Abstract Background Optic nerve regeneration (ONR) following injury is a model for central nervous system regeneration. In zebrafish, ONR is rapid - neurites cross the lesion and enter the optic tectum within 7 days; in mammals regeneration does not take place unless astrocytic reactivity is suppressed. Glial fibrillary acidic protein (GFAP) is used as a marker for retinal and optic nerve astrocytes in both fish and mammals, even though it has long been known that astrocytes of optic nerves i...

  14. Sensoric Protection after Median Nerve Injury: Babysitter-Procedure Prevents Muscular Atrophy and Improves Neuronal Recovery

    OpenAIRE

    Beck-Broichsitter, Benedicta E.; Becker, Stephan T.; Lamia, Androniki; Fregnan, Federica; Geuna, Stefano; Sinis, Nektarios

    2014-01-01

    The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous n...

  15. Terminal nerve: cranial nerve zero

    OpenAIRE

    Jorge Eduardo Duque Parra; Carlos Alberto Duque Parra

    2006-01-01

    It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH). In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a co...

  16. Anatomical aspects of the nerves of the leg and foot of the giant anteater (Myrmecophaga tridactyla, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    V.S. Cruz

    2014-10-01

    Full Text Available Although distal stifle joint nerve distribution has been well established in domestic animals, this approach is scarcely reported in wild animals. Therefore, the aim of this study was to describe the nerves of the leg and foot of Myrmecophaga tridactyla with emphasis on their ramification, distribution, topography and territory of innervation. For this purpose, six adult cadavers fixed and preserved in 10% formalin solution were used. The nerves of the leg and foot of the M. tridactyla were the saphenous nerve (femoral nerve branch, fibular and tibial nerves and lateral sural cutaneous nerve (branches of the sciatic nerve and caudal sural cutaneous nerve (tibial nerve branch. The saphenous nerve branches to the skin, the craniomedial surface of the leg, the medial surface of the tarsal and metatarsal regions and the dorsomedial surface of the digits I and II (100% of cases, III (50% of cases and IV (25% of cases. The lateral sural cutaneous nerve innervates the skin of the craniolateral region of the knee and leg. The fibular nerve innervates the flexor and extensor muscles of the tarsal region of the digits and skin of the craniolateral surface of the leg and dorsolateral surface of the foot. The tibial nerve innervates the extensor muscles of the tarsal joint and flexor, adductor and abductor muscles of the digits and the skin of the plantar surface. The caudal sural cutaneous nerve innervates the skin of the caudal surface of the leg. The nerves responsible for the leg and foot innervation were the same as reported in domestic and wild animals, but with some differences, such as the more distal division of the common fibular nerve, the absence of dorsal metatarsal branches of the deep fibular nerve and a greater involvement of the saphenous nerve in the digital innervation with branches to the digits III and IV, in addition to digits I and II.

  17. Recurrent cutaneous leishmaniasis

    OpenAIRE

    Gomes,Ciro Martins; Damasco,Fabiana dos Santos; Morais,Orlando Oliveira de; Paula,Carmen Dea Ribeiro de; Sampaio,Raimunda Nonata Ribeiro

    2013-01-01

    We present a case of an 18-year-old male patient who, after two years of inappropriate treatment for cutaneous leishmaniasis, began to show nodules arising at the edges of the former healing scar. He was immune competent and denied any trauma. The diagnosis of recurrent cutaneous leishmaniasis was made following positive culture of aspirate samples. The patient was treated with N-methylglucamine associated with pentoxifylline for 30 days. Similar cases require special attention mainly because...

  18. Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve-Muscle Injury Model.

    Science.gov (United States)

    Wanner, Renate; Gey, Manuel; Abaei, Alireza; Warnecke, Daniela; de Roy, Luisa; Dürselen, Lutz; Rasche, Volker; Knöll, Bernd

    2017-09-01

    Traumatic injuries to human peripheral nerves are frequently associated with damage to nerve surrounding tissues including muscles and blood vessels. Currently, most rodent models of peripheral nerve injuries (e.g., facial or sciatic nerve) employ surgical nerve transection with scissors or scalpels. However, such an isolated surgical nerve injury only mildly damages neighboring tissues and weakly activates an immune response. In order to provide a rodent nerve injury model accounting for such nerve-associated tissue damage and immune cell activation, we developed a drop tower-based facial nerve trauma model in mice. We compare nerve regeneration in this novel peripheral nerve trauma model with the established surgical nerve injury along several parameters. These include gene expression, histological and functional facial motoneuron (FMN) regeneration, facial nerve degeneration, immune cell activation and muscle damage. Regeneration-associated genes (RAGs; e.g., Atf3) were strongly induced in FMNs subjected to traumatic and surgical injury. Regeneration of FMNs and functional recovery of whisker movement were faster in traumatic versus complete surgical injury, thus cutting down experimentation time. Wallerian degeneration of distal nerve stumps was readily observed in this novel trauma injury model. Importantly, drop tower-inflicted facial nerve injury resulted in muscle damage, activation of muscle satellite cell markers (PAX7) and pronounced infiltration of immune cells to the injury site only in this model but not upon surgical nerve transection. Thus, we provide a novel rodent PNS trauma model that can be easily adopted to other PNS nerves such as the sciatic nerve. Since this nerve trauma model replicates multiple tissue damage frequently encountered in clinical routine, it will be well suited to identify molecular and cellular mechanisms of PNS nerve repair in wild-type and genetically modified rodents.

  19. BIOLOGICAL PERFORMANCE OF A DEGRADABLE POLY(LACTIC ACID-EPSILON-CAPROLACTONE) NERVE GUIDE - INFLUENCE OF TUBE DIMENSIONS

    NARCIS (Netherlands)

    DENDUNNEN, WFA; VANDERLEI, B; ROBINSON, PH; HOLWERDA, A; PENNINGS, AJ; SCHAKENRAAD, JM

    One of the ways to reconstruct a nerve defect is to use a biodegradable nerve guide. The aim of this study was to establish a nerve guide constructed of an amorphous copolymer of lactic acid-caprolactone. A pilot study was set up to elucidate the effect of the tube dimensions on nerve regeneration.

  20. Workup and Management of Persistent Neuralgia following Nerve Block

    Directory of Open Access Journals (Sweden)

    Paul David Weyker

    2016-01-01

    Full Text Available Neurological injuries following peripheral nerve blocks are a relatively rare yet potentially devastating complication depending on the type of lesion, affected extremity, and duration of symptoms. Medical management continues to be the treatment modality of choice with multimodal nonopioid analgesics as the cornerstone of this therapy. We report the case of a 28-year-old man who developed a clinical common peroneal and lateral sural cutaneous neuropathy following an uncomplicated popliteal sciatic nerve block. Workup with electrodiagnostic studies and magnetic resonance neurography revealed injury to both the femoral and sciatic nerves. Diagnostic studies and potential mechanisms for nerve injury are discussed.

  1. Workup and Management of Persistent Neuralgia following Nerve Block.

    Science.gov (United States)

    Weyker, Paul David; Webb, Christopher Allen-John; Pham, Thoha M

    2016-01-01

    Neurological injuries following peripheral nerve blocks are a relatively rare yet potentially devastating complication depending on the type of lesion, affected extremity, and duration of symptoms. Medical management continues to be the treatment modality of choice with multimodal nonopioid analgesics as the cornerstone of this therapy. We report the case of a 28-year-old man who developed a clinical common peroneal and lateral sural cutaneous neuropathy following an uncomplicated popliteal sciatic nerve block. Workup with electrodiagnostic studies and magnetic resonance neurography revealed injury to both the femoral and sciatic nerves. Diagnostic studies and potential mechanisms for nerve injury are discussed.

  2. Ultrastructural changes of compressed lumbar ventral nerve roots following decompression

    International Nuclear Information System (INIS)

    El-Barrany, Wagih G.; Hamdy, Raid M.; Al-Hayani, Abdulmonem A.; Jalalah, Sawsan M.; Al-Sayyad, Mohammad J.

    2006-01-01

    To study whether there will be permanent lumbar nerve rot scanning or degeneration secondary to continuous compression followed by decompression on the nerve roots, which can account for postlaminectomy leg weakness or back pain. The study was performed at the Department of Anatomy, Faulty of Medicine, king Abdulaziz University, Jeddah, Kingdom of Saudi Arabia during 2003-2005. Twenty-six adult male New Zealand rabbits were used in the present study. The ventral roots of the left fourth lumbar nerve were clamped for 2 weeks then decompression was allowed by removal of the clips. The left ventral roots of the fourth lumbar nerve were excised for electron microscopic study. One week after nerve root decompression, the ventral root peripheral to the site of compression showed signs of Wallerian degeneration together with signs of regeneration. Schwann cells and myelinated nerve fibers showed severe degenerative changes. Two weeks after decompression, the endoneurium of the ventral root showed extensive edema with an increase in the regenerating myelinated and unmyentilated nerve fibers, and fibroblasts proliferation. Three weeks after decompression, the endoneurium showed an increase in the regenerating myelinated and unmyelinated nerve fibers with diminution of the endoneurial edema, and number of macrophages and an increase in collagen fibrils. Five and 6 weeks after decompression, the endoneurium showed marked diminution of the edema, macrophages, mast cells and fibroblasts. The enoneurium was filed of myelinated and unmyelinated nerve fibers and collagen fibrils. Decompression of the compressed roots of a spinal nerve is followed by regeneration of the nerve fibers and nerve and nerve recovery without endoneurial scarring. (author)

  3. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue; Evaluacion de la biocompatibilidad in vitro de materiales polimericos para la regeneracion de tejido cutaneo

    Energy Technology Data Exchange (ETDEWEB)

    Escudero Castellanos, A.

    2016-07-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  4. Anomalous Innervation of the Median Nerve in the Arm in the Absence of the Musculocutaneous Nerve

    Directory of Open Access Journals (Sweden)

    Khursheed Raza

    2017-03-01

    Full Text Available The brachial plexus innervates the upper extremities. While variations in the formation of the brachial plexus and its terminal branches are quite common, it is uncommon for the median nerve to innervate the muscles of the arm. During the dissection of an elderly male cadaver at the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India, in 2016, the coracobrachialis muscle was found to be supplied by a direct branch from the lateral root of the median nerve and the musculocutaneous nerve was absent. The branches of the median nerve supplied the biceps brachii and brachialis muscles and the last branch continued as the lateral cutaneous nerve of the forearm. These variations may present atypically in cases of arm flexor paralysis or sensory loss on the lateral forearm. Knowledge of these variations is important in surgeries and during the administration of regional anaesthesia near the shoulder joint and upper arm.

  5. Avaliação clínica da dor e sensibilidade cutânea de pacientes submetidas à dissecção axilar com preservação do nervo intercostobraquial para tratamento cirúrgico do câncer de mama Clinical evaluation of pain and cutaneous sensitivity in patients with preservation of intercostobrachial nerve during the axillary dissection for breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Mônica Duarte Pimentel

    2007-06-01

    Full Text Available OBJETIVO: avaliar a dor e a sensibilidade cutânea superficial no dermátomo do nervo intercostobraquial (NICB em pacientes submetidas à dissecção axilar com preservação do NICB para tratamento cirúrgico do câncer de mama. MÉTODOS: realizamos estudo tipo coorte prospectivo de 77 pacientes divididas em Grupo NP (n=34, sem preservação do NICB, e Grupo ICB (n=43, com preservação do NICB. A sensibilidade cutânea foi avaliada um ano após a cirurgia, empregando-se: 1 questionário modificado de McGill; 2 exame clínico incluindo perimetria braquial, pesquisa de sensibilidade táctil e dolorosa; 3 aplicação dos monofilamentos de Semmes-Weinsten que permitem avaliar de forma objetiva, qualitativa e quantitativamente, lesões de nervo periférico. Para análise estatística, foram usados os testes do chi2, Kruskal-Wallis e exato de Fisher. RESULTADOS: a dor foi relatada com maior freqüência pelas pacientes do Grupo NP (23/33 do que pelas pacientes do Grupo ICB (17/42; p=0,012. A sensibilidade dolorosa estava preservada na maioria das pacientes do Grupo ICB (38/42 e em apenas 11/33 do Grupo NP (pPURPOSE: loss of cutaneous sensitivity has been related to lesions of the intercostobrachial nerve (ICBN during the axillary lymph node dissection for breast cancer treatment. We evaluated pain and cutaneous sensitivity in the ICBN dermatome of patients in which the nerve was preserved during the axillary dissection. METHODS: we carried out a prospective cohort study of 77 patients divided into: NP group (n=34, patients without ICBN preservation, and ICB group (n=43, patients in which the nerve was preserved. Cutaneous sensitivity was evaluated one year after surgery using 1 a modified McGill Pain Questionnaire; 2 clinical examination including brachial perimetry and evaluation of pain and tactile sensitivity; 3 Semmes-Weinstein monofilaments which allow an objective, qualitative, and quantitative evaluation of peripheral nerve lesions. RESULTS

  6. Perineurial Glia Are Essential for Motor Axon Regrowth following Nerve Injury

    OpenAIRE

    Lewis, Gwendolyn M.; Kucenas, Sarah

    2014-01-01

    Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration ...

  7. Expression patterns and role of PTEN in rat peripheral nerve development and injury.

    Science.gov (United States)

    Chen, Hui; Xiang, Jianping; Wu, Junxia; He, Bo; Lin, Tao; Zhu, Qingtang; Liu, Xiaolin; Zheng, Canbin

    2018-04-09

    Studies have suggested that phosphatase and tensin homolog (PTEN) plays an important role in neuroprotection and neuronal regeneration. To better understand the potential role of PTEN with respect to peripheral nerve development and injury, we investigated the expression pattern of PTEN at different stages of rat peripheral nerve development and injury and subsequently assessed the effect of pharmacological inhibition of PTEN using bpV(pic) on axonal regeneration in a rat sciatic nerve crush injury model. During the early stages of development, PTEN exhibits low expression in neuronal cell bodies and axons. From embryonic day (E) 18.5 and postnatal day (P)5 to adult, PTEN protein becomes more detectable, with high expression in the dorsal root ganglia (DRG) and axons. PTEN expression is inhibited in peripheral nerves, preceding myelination during neuronal development and remyelination after acute nerve injury. Low PTEN expression after nerve injury promotes Akt/mammalian target of rapamycin (mTOR) signaling pathway activity. In vivo pharmacological inhibition of PTEN using bpV(pic) promoted axonal regrowth, increased the number of myelinated nerve fibers, improved locomotive recovery and enhanced the amplitude response and nerve conduction velocity following stimulation in a rat sciatic nerve crush injury model. Thus, we suggest that PTEN may play potential roles in peripheral nerve development and regeneration and that inhibition of PTEN expression is beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Copyright © 2018. Published by Elsevier B.V.

  8. Canine cutaneous leishmaniasis.

    Science.gov (United States)

    Sasani, F; Javanbakht, J; Samani, R; Shirani, D

    2016-03-01

    Canine cutaneous leishmaniasis (CCL) is a significant veterinary problem. Infected dogs also serve as parasite reservoirs and contribute to human transmission of cutaneous leishmaniasis. Histologically, the lesions were nodular to diffuse interstitial granulomatous dermatitis with histiocytic pseudorosettes together with numerous amastigotes within macrophages and occasionally within the interstitium. Organisms were often contained within clear and intracellular vacuoles. The other inflammatory cells, which were present in the biopsies of the Leishmania-infected dog, were lymphocytes and plasma cells. The histopathology results emphasized the role of dog, particularly asymptomatic dog, as reservoirs for CCL because of the high cutaneous parasite loads. These results may help to explain the maintenance of high transmission rates and numbers of CCL cases in endemic urban regions.

  9. Cutaneous signs of piety.

    Science.gov (United States)

    Ramesh, V; Al Aboud, Khalid

    2014-07-01

    It is important for dermatologists to be aware of cutaneous changes related to religious practices to help in their recognition and management. The anatomic location of cutaneous lesions associated with friction from praying varies based on religious practice. Allergic contact dermatitis from products and substances commonly used in worshipping also vary by religion. Some religious practices may render individuals prone to infections that manifest on the skin. Tattoos of godly figures also may adorn the body. Religious practices also have been implicated in cases of urticaria, köbnerization, and leukoderma. This article reviews the clinical presentation of some of the most common cutaneous changes that occur in individuals who practice the following religions: Christianity, Islam, Judaism, Hinduism, and Sikhism.

  10. Guinea pigs as an animal model for sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Malik Abu Rafee

    2017-01-01

    Full Text Available The overwhelming use of rat models in nerve regeneration studies is likely to induce skewness in treatment outcomes. To address the problem, this study was conducted in 8 adult guinea pigs of either sex to investigate the suitability of guinea pig as an alternative model for nerve regeneration studies. A crush injury was inflicted to the sciatic nerve of the left limb, which led to significant decrease in the pain perception and neurorecovery up to the 4th weak. Lengthening of foot print and shortening of toe spread were observed in the paw after nerve injury. A 3.49 ± 0.35 fold increase in expression of neuropilin 1 (NRP1 gene and 2.09 ± 0.51 fold increase in neuropilin 2 (NRP2 gene were recorded 1 week after nerve injury as compared to the normal nerve. Ratios of gastrocnemius muscle weight and volume of the experimental limb to control limb showed more than 50% decrease on the 30th day. Histopathologically, vacuolated appearance of the nerve was observed with presence of degenerated myelin debris in digestion chambers. Gastrocnemius muscle also showed degenerative changes. Scanning electron microscopy revealed loose and rough arrangement of connective tissue fibrils and presence of large spherical globules in crushed sciatic nerve. The findings suggest that guinea pigs could be used as an alternative animal model for nerve regeneration studies and might be preferred over rats due to their cooperative nature while recording different parameters.

  11. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers

    Science.gov (United States)

    Yalom, Anisa; Berns, Eric J.; Stephanopoulos, Nicholas; McClendon, Mark T.; Segovia, Luis A.; Spigelman, Igor; Stupp, Samuel I.; Jarrahy, Reza

    2014-01-01

    Peripheral nerve injuries can result in lifelong disability. Primary coaptation is the treatment of choice when the gap between transected nerve ends is short. Long nerve gaps seen in more complex injuries often require autologous nerve grafts or nerve conduits implemented into the repair. Nerve grafts, however, cause morbidity and functional loss at donor sites, which are limited in number. Nerve conduits, in turn, lack an internal scaffold to support and guide axonal regeneration, resulting in decreased efficacy over longer nerve gap lengths. By comparison, peptide amphiphiles (PAs) are molecules that can self-assemble into nanofibers, which can be aligned to mimic the native architecture of peripheral nerve. As such, they represent a potential substrate for use in a bioengineered nerve graft substitute. To examine this, we cultured Schwann cells with bioactive PAs (RGDS-PA, IKVAV-PA) to determine their ability to attach to and proliferate within the biomaterial. Next, we devised a PA construct for use in a peripheral nerve critical sized defect model. Rat sciatic nerve defects were created and reconstructed with autologous nerve, PLGA conduits filled with various forms of aligned PAs, or left unrepaired. Motor and sensory recovery were determined and compared among groups. Our results demonstrate that Schwann cells are able to adhere to and proliferate in aligned PA gels, with greater efficacy in bioactive PAs compared to the backbone-PA alone. In vivo testing revealed recovery of motor and sensory function in animals treated with conduit/PA constructs comparable to animals treated with autologous nerve grafts. Functional recovery in conduit/PA and autologous graft groups was significantly faster than in animals treated with empty PLGA conduits. Histological examinations also demonstrated increased axonal and Schwann cell regeneration within the reconstructed nerve gap in animals treated with conduit/PA constructs. These results indicate that PA nanofibers may

  12. Primary cutaneous leiomysarcoma

    Directory of Open Access Journals (Sweden)

    Shubhangi Vinayak Agale

    2011-01-01

    Full Text Available Primary cutaneous leiomyosarcoma of the skin is a rare soft tissue neoplasm, accounting for about 2-3% of all superficial soft tissue sarcomas. It arises between the ages of 50 and 70 years, and shows a greater predilection for the lower extremities. Clinically, it presents with solitary, well-circumscribed nodule and, microscopically, consists of fascicles of spindle-shaped cells with "cigar-shaped" nuclei. Local recurrence is known in this tumor. We document a case of primary cutaneous leiomyosarcoma in a 77-year-old man and discuss the histological features and immunohistochemical profile of this uncommon neoplasm.

  13. Multifunctional Silk Nerve Guides for Axon Outgrowth

    Science.gov (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  14. Vascularized nerve grafts: an experimental study.

    Science.gov (United States)

    Donzelli, Renato; Capone, Crescenzo; Sgulò, Francesco Giovanni; Mariniello, Giuseppe; Maiuri, Francesco

    2016-08-01

    The aim of this study is to define an experimental model in order to promote the functional recovery of the nerves using grafts with vascular support (Vascular Nerve Grafts - VNG). The aim of this study is to define, on an experimental model in normal recipient bed, whether the functional recovery with VNG is superior to that obtained non-vascularized graft (NNG). Twenty male rabbits, which underwent dissection of sciatic nerve, were later treated by reinnervation through an autograft. In 10 animals the reconstruction of sciatic nerve was realized with VNG; in 10 control animals the reconstruction of sciatic nerve was realized with NNG. The VNG group showed a better axonal organization and a significantly higher number of regenerated axons in the early phases (after 30 days) than the NNG group, whereas the difference in the axonal number at day 90 was less significant; besides, the axon diameter and the myelin thickness were not significantly improved by VNG group. Our data suggests that the use of VNG leads to a faster regeneration process and a better functional recovery, although the final results are comparable to those of the NNG. VNG improve the quality of the axonal regeneration (axonal diameter and Schwann cells), although the increase in the axonal number is not significant and does not improve the long-term functional outcome.

  15. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  16. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-04-09

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  17. Cutaneous infections in wrestlers.

    Science.gov (United States)

    Wilson, Eugene K; Deweber, Kevin; Berry, James W; Wilckens, John H

    2013-09-01

    Cutaneous infections are common in wrestlers. Although many are simply a nuisance in the everyday population, they can be problematic to wrestlers because such infections may result in disqualification from practice or competition. Prompt diagnosis and treatment are therefore important. Medline and PubMed databases, the Cochrane Database of Systematic Reviews, and UpToDate were searched through 2012 with the following keywords in various combinations: skin infections, cutaneous infections, wrestlers, athletes, methicillin-resistant Staphylococcus aureus, skin and soft tissue infections, tinea corporis, tinea capitis, herpes simplex, varicella zoster, molluscum contagiosum, verruca vulgaris, warts, scabies, and pediculosis. Relevant articles found in the primary search, and selected references from those articles were reviewed for pertinent clinical information. The most commonly reported cutaneous infections in wrestlers are herpes simplex virus infections (herpes gladiatorum), bacterial skin and soft tissue infections, and dermatophyte infections (tinea gladiatorum). The clinical appearance of these infections can be different in wrestlers than in the community at large. For most cutaneous infections, diagnosis and management options in wrestlers are similar to those in the community at large. With atypical presentations, testing methods are recommended to confirm the diagnosis of herpes gladiatorum and tinea gladiatorum. There is evidence to support the use of prophylactic medications to prevent recurrence of herpes simplex virus and reduce the incidence of dermatophyte infections in wrestlers.

  18. Staging of cutaneous melanoma

    NARCIS (Netherlands)

    P. Mohr (P.); A.M.M. Eggermont (Alexander); A. Hauschild (Axel); A. Buzaid (A.)

    2009-01-01

    textabstractThe American Joint Committee on Cancer (AJCC) staging of cutaneous melanoma is a continuously evolving system. The identification of increasingly more accurate prognostic factors has led to major changes in melanoma staging over the years, and the current system described in this review

  19. Primaty Cutaneous Histoplasmosis

    Directory of Open Access Journals (Sweden)

    Nair S

    2000-01-01

    Full Text Available A 29-year old woman presented with diffuse swelling of the base of the right thumb along with ulceration. X-ray indicated bony damage. Histopathology showed PAS positive intracellular organisms suggestive of histoplasmosis. We are reporting a very rare case of primary cutaneous histoplasmosis from this part of the country.

  20. Chemotherapy of Cutaneous Leishmaniasis

    Science.gov (United States)

    2012-10-01

    country of Colombia a large numbers of cutaneous leishmania cases (over 40,000) were reported between 2005 and 2009. It was caused by Leishmania...Activity Relationships of Peroxide- Based Artemisinin Antimalarials. In: Biologically Active Natural Products: Pharmaceuticals , Cutler, S.J., Cutler

  1. Cutaneous leishmaniasis in Assam

    Directory of Open Access Journals (Sweden)

    Baishya B

    1996-01-01

    Full Text Available A case of cutaneous leishmaniasis is being reported from Assam, a North Eastern state of India. Clinical feature and direct smear examination of the case confirmed the diagnosis. Dramatic resolution of the lesions with sodium antimony gluconate during 10 days of therapy was achieved.

  2. Cutaneous changes in chronic alcoholics

    Directory of Open Access Journals (Sweden)

    Rao Gatha

    2004-03-01

    Full Text Available BACKGROUND: Alcohol consumption can have a variety of cutaneous manifestations. Awareness of the cutaneous changes of alcohol abuse can allow early detection and intervention in an attempt to limit the adverse medical consequences. Hence a study was planned to determine the cutaneous changes in chronic alcoholics. AIMS: To determine the cutaneous changes in chronic alcoholics. METHODS: All the patients attending alcohol de-addiction camps were examined for cutaneous changes. The results were analyzed using Gausian test and compared with other reports. RESULTS: Out of 200 alcoholics examined for cutaneous changes, 182 (91% had cutaneous, nail, hair or oral cavity changes. Nail changes were found in 51 (25.5% alcoholics, koilonychia being the commonest (16%. Oral changes were present in 107 (53.5% alcoholics and changes due to nutritional deficiency in 20 (10%. Diseases due to poor hygiene were seen in 55 (27.5% alcoholics. Tinea versicolor (14% and seborrheic dermatitis (11.5% were the commonest cutaneous changes noted. CONCLUSION: Even though alcohol abuse has a variety of cutaneous manifestations and perhaps aggravates many diseases, there are no specific cutaneous signs of alcoholism. Knowledge of the spectrum of cutaneous manifestations of alcohol abuse can allow its early detection and treatment in an attempt to minimize the medical consequences.

  3. Nerve fascicle transfer using a part of the C-7 nerve for spinal accessory nerve injury.

    Science.gov (United States)

    Ye, Xuan; Shen, Yun-Dong; Feng, Jun-Tao; Xu, Wen-Dong

    2018-02-09

    OBJECTIVE Spinal accessory nerve (SAN) injury results in a series of shoulder dysfunctions and continuous pain. However, current treatments are limited by the lack of donor nerves as well as by undesirable nerve regeneration. Here, the authors report a modified nerve transfer technique in which they employ a nerve fascicle from the posterior division (PD) of the ipsilateral C-7 nerve to repair SAN injury. The technique, first performed in cadavers, was then undertaken in 2 patients. METHODS Six fresh cadavers (12 sides of the SAN and ipsilateral C-7) were studied to observe the anatomical relationship between the SAN and C-7 nerve. The length from artificial bifurcation of the middle trunk to the point of the posterior cord formation in the PD (namely, donor nerve fascicle) and the linear distance from the cut end of the donor fascicle to both sites of the jugular foramen and medial border of the trapezius muscle (d-SCM and d-Traps, respectively) were measured. Meanwhile, an optimal route for nerve fascicle transfer (NFT) was designed. The authors then performed successful NFT operations in 2 patients, one with an injury at the proximal SAN and another with an injury at the distal SAN. RESULTS The mean lengths of the cadaver donor nerve fascicle, d-SCM, and d-Traps were 4.2, 5.2, and 2.5 cm, respectively. In one patient who underwent proximal SAN excision necessitated by a partial thyroidectomy, early signs of reinnervation were seen on electrophysiological testing at 6 months after surgery, and an impaired left trapezius muscle, which was completely atrophic preoperatively, had visible signs of improvement (from grade M0 to grade M3 strength). In the other patient in whom a distal SAN injury was the result of a neck cyst resection, reinnervation and complex repetitive discharges were seen 1 year after surgery. Additionally, the patient's denervated trapezius muscle was completely resolved (from grade M2 to grade M4 strength), and her shoulder pain had disappeared

  4. Histological analysis of low-intensity laser therapy effects in peripheral nerve regeneration in Wistar rats Avaliação histológica dos efeitos da laserterapia de baixa potência sobre os processos de regeneração nervosa periférica em ratos Wistar

    Directory of Open Access Journals (Sweden)

    Cibele Nazaré da Silva Câmara

    2011-02-01

    Full Text Available Purpose: Analyze the influence of low-intensity laser therapy in the sciatic nerve regeneration of rats submitted to controlled crush through histological analysis. Methods: Were used 20 Wistar rats, to analyze the influence of low-intensity laser therapy in the sciatic nerve regeneration, where the injury of the type axonotmesis was induced by a haemostatic clamp Crile (2nd level of the rack. The animals were randomly distributed in 2 groups. Control group (CG n = 10 and Laser group (LG n = 10. These were subdivided in 2 subgroups each, according to the euthanasia period: (CG14 _ n = 5 and CG21 _ n = 5 and (LG14 _ n = 5 and LG21 _ n = 5. At the end of treatment, the samples were removed and prepared for histological analysis, where were analyzed and quantified the following findings: Schwann cells, myelinic axons with large diameter and neurons. Results: In the groups submitted to low-intensity laser therapy, were observed an increase in the number of all analyzed aspects with significance level. Conclusion: The irradiation with low intensity laser (904nm influenced positively the regeneration of the sciatic nerve in Wistar rats after being injured by crush (axonotmesis, becoming the nerve recovery more rapid and efficient.Objetivo: Verificar a influência da terapia com laser de baixa potência na regeneração histológica do nervo ciático de ratos submetidos à neuropraxia controlada. Métodos: Foi utilizada a amostra de 20 ratos da linhagem Wistar, para verificar a influência da terapia com laser de baixa intensidade na regeneração nervosa periférica, onde a lesão do tipo axoniotmese foi induzida por meio de preensão com pinça hemostática de Crile. Os animais foram distribuídos randomicamente dois grupos. Grupo controle (CG n = 10, e Grupo laser (LG n = 10. Cada um destes grupos foi subdividido em dois subgrupos dependendo do período da eutanásia: (CG14 - n = 5 e CG21 - n = 5 e (LG14 - n = 5 e LG21 - n = 5. Ao final do

  5. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the “elevator technique”. All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the “Journal of Ultrasonography”.

  6. Effect of hyperbaric oxygen on the regeneration of experimental crush injuries of nerves Efeito da oxigenioterapia hiperbárica na regeneração de lesões experimentais de nervos

    Directory of Open Access Journals (Sweden)

    Paulo Tuma Jr.

    1999-06-01

    Full Text Available Hyperbaric oxygen has been successfully used on treatment of acute ischemic injuries involving soft tissues and chronic injuries. In nerve crush injuries, the mechanisms involved are very similar to those found in ischemic injuries. Consequently, it is logical to hypothesize that hyperbaric oxygen should improve nerve repair, which is a critical step on functional recovery. In the present study, we created standard nerve crush injuries on sciatic nerves of rats, which underwent treatment with hyperbaric oxygen. Results were assessed by functional evaluation using walking-track analysis. The functional recovery indexes observed did not differ from control group. We concluded that hyperbaric oxygen therapy, in the schedule used, had no influence on functional recovery after nerve crush injuries.O oxigênio hiperbárico exerce efeitos comprovadamente benéficos no tratamento de lesões isquêmicas agudas de partes moles e em feridas de difícil cicatrização. Nas lesões neurais por esmagamento, os mecanismos fisiopatológicos assemelham-se aos efeitos dependentes da isquemia tissular. Portanto, a terapia com oxigênio hiperbárico teria participação nos processos de reparação neural, que constitui um dos pontos críticos para a recuperação funcional após as lesões por esmagamento de nervos periféricos. Neste estudo, foram realizadas lesões por esmagamento em nervo ciático de ratos, submetidos à terapia com oxigênio hiperbárico no pós-operatório. Os resultados foram quantificados através de avaliação funcional pelo método de "walking-track analysis". Os índices de recuperação funcional observados não diferiram dos observados no grupo controle. Portanto, verificou-se que a terapia com oxigênio hiperbárico, no esquema proposto, não teve influência na recuperação funcional após lesões neurais por esmagamento.

  7. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  8. Carcinogenesis of cutaneous malignancies.

    Science.gov (United States)

    Buzzell, R A

    1996-03-01

    Over the past several years significant progress has been made in identifying the cellular and biochemical mechanisms underlying carcinogenesis. This review summarizes recent advances that have helped clarify the process of malignant transformation in cutaneous tumors. Ultraviolet radiation-induced mutations in the p53 tumor suppressor gene and human papilloma virus inhibition of the p53 and retinoblastoma tumor suppressor gene products appear to play significant roles in the development of many cutaneous squamous cell carcinomas. Studies of patients with the nevoid basal cell carcinoma syndrome suggest the existence of an additional regulatory gene that may be involved in the development of basal cell carcinomas. Carcinogenesis is multistep process involving genetic and epigenetic alterations to specific proto-oncogene and tumor suppressor gene products that progressively release the cell from normal controlled growth and replication.

  9. Cutaneous amebiasis in pediatrics.

    Science.gov (United States)

    Magaña, Mario L; Fernández-Díez, Jorge; Magaña, Mario

    2008-10-01

    Cutaneous amebiasis (CA), which is still a health problem in developing countries, is important to diagnose based on its clinical and histopathologic features. Retrospective medical record review of 26 patients with CA (22 adults and 4 children) treated from 1955 to 2005 was performed. In addition to the age and sex of the patients, the case presentation, associated illness or factors, and method of establishing the diagnosis, clinical pictures and microscopic slides were also analyzed. Cutaneous amebiasis always presents with painful ulcers. The ulcers are laden with amebae, which are relatively easy to see microscopically with routine stains. Erythrophagocytosis is an unequivocal sign of CA. Amebae reach the skin via 2 mechanisms: direct and indirect. Amebae are able to reach the skin if there is a laceration (port of entry) and if conditions in the patient are favorable. Amebae are able to destroy tissues by means of their physical activity, phagocytosis, enzymes, secretagogues, and other molecules.

  10. Effect of non-autologous adipose-derived stem cells transplantation and nerve growth factor on the repair of crushed sciatic nerve in rats

    Directory of Open Access Journals (Sweden)

    Azadeh Tajik

    2014-02-01

    Conclusion: Transplantation of non-autologous of adipose-derived stem cells (ASDc is an appropriate therapeutic approach in repairing of neurological injuries and NGF has a positive effect in crushed sciatic nerve regeneration.

  11. Chronic zosteriform cutaneous leishmaniasis

    OpenAIRE

    Omidian M; Mapar M

    2006-01-01

    Cutaneous leishmanasis (CL) may present with unusual clinical variants such as acute paronychial, annular, palmoplantar, zosteriform, erysipeloid, and sporotrichoid. The zosteriform variant has rarely been reported. Unusual lesions may be morphologically attributed to an altered host response or owing to an atypical strain of parasites in these lesions. We report a patient with CL in a multidermatomal pattern on the back and buttock of a man in Khozestan province in the south of Iran. To our ...

  12. Cutaneous Tuberculosis Ineastern Libya

    Directory of Open Access Journals (Sweden)

    A J Kanwar

    1988-01-01

    Full Text Available Analysis of the clinical and laboratory data from 21 patents of cutaneous tuberculosis seen over a period of 10 years revealed that it is rare in eastern Libya. There were 15 males and 6 females. Lupus vulgaris was seen in 11, scrofuloderma in 4. Three patients each had tuberculosis verrucosa cutis and papulonecrotic tuberculid. The diagnosis in each case was confirmed histopathologically.

  13. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    Science.gov (United States)

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  14. Vein Wrapping Technique for Nerve Reconstruction in Patients with Thyroid Cancer Invading the Recurrent Laryngeal Nerve

    Directory of Open Access Journals (Sweden)

    Young Moon Yoo

    2012-01-01

    Full Text Available Recurrent laryngeal nerve paralysis is the most common and serious complication after thyroid cancer surgery. The objective of this study was to report the advantages of the vein wrapping technique for nerve reconstruction in patients with thyroid cancer invading the recurrent laryngeal nerve and its effects on postoperative phonatory function. The subjects were three patients who underwent resection of the recurrent laryngeal nerve during surgical extirpation of papillary thyroid cancer. Free ansa cervicalis nerve graft or direct neurorrhaphy with a vein wrapping technique was used to facilitate nerve regeneration, protect the anastomosed nerve site mechanically, and prevent neuroma formation. One-year postoperative laryngoscopic examination revealed good vocal cord mobility. Maximum phonation time (19.5 ± 0.3 sec was longer than a previously-reported value in conventional reconstruction patients (18.8 ± 6.6 sec. The present phonation efficiency index (7.88 ± 0.78 was higher than that previously calculated in conventional reconstruction (7.59 ± 2.82. The mean value of the Voice Handicap Index-10 was 6, which was within the normal range. This study demonstrates improvement in phonation indices measured 1 year after recurrent laryngeal nerve reconstruction. Our results confirm that the vein wrapping technique has theoretical advantages and could be favored over conventional reconstruction techniques for invenerate nerve injuries.

  15. Cutaneous manifestations in patients with mastocytosis

    DEFF Research Database (Denmark)

    Hartmann, Karin; Escribano, Luis; Grattan, Clive

    2016-01-01

    Cutaneous lesions in patients with mastocytosis are highly heterogeneous and encompass localized and disseminated forms. Although a classification and criteria for cutaneous mastocytosis (CM) have been proposed, there remains a need to better define subforms of cutaneous manifestations in patient...

  16. [Morphology research of the rat sciatic nerve bridged by collage-heparin sulfate scaffold].

    Science.gov (United States)

    Wang, Shu-sen; Hu, Yun-yu; Luo, Zhuo-jing; Chen, Liang-wei; Liu, Hui-ling; Meng, Guo-lin; Lü, Rong; Xu, Xin-zhi

    2005-04-15

    To observe the treating effect of collage-heparin sulfate after the 10 mm rat sciatic nerve defect was bridged by it. A new kind of nervous tissue engineering scaffold was produced by freeze-drying technique from collagen-heparin sulfate. Thirty-two SD rats were randomly divided into A, B, C and D groups. Sciatic nerve defect in group A was bridged by collagen-heparin sulfate. In group B, sciatic nerve was bridged by auto-nerve transplantation. Group C was the blank control group. Animals in group D were normal. And 10 mm sciatic nerve defect was bridged in the experiment. Thirty-six weeks after the operation, the experimental animals were detected by HRP labeled retrograde trace, HE staining, toluidine staining, silvering staining, S100, GAP-43 and NF immunohistological staining, MBP immunofluorescence staining and transmission electron microscope to observe the nerve regeneration inducing effect of this new scaffold. Nine months after operation, the collage-heparin sulfate scaffold was replaced by newly regenerated nerve. The number of HRP labeled spinal cord anterior horn cells and the area of sensation nerve fiber at the posterior horn were similar with that was repaired by auto-nerve. GAP-43, NF and S100 labeled regenerated nerve fiber had passed the total scaffold and entered the distal terminal. The regenerated nerve fibers were paralleled, lineage arranged, coincide with the prearranged regenerating "channel" in the collagen-heparin sulfate scaffold. MBP immunofluorescence staining also proved that the newly regenerated nerve fiber could be ensheathed. In the experimental group, the area of myelinated nerve fiber and the thickness of the myelin sheath had no obvious difference with that of the group repaired by auto-nerve, except that the density of the regenerated myelinated sheath fiber was lower than that of the control group. Nervous tissue engineering scaffold produced by collagen-heparin sulfate can guide the regeneration of nerve fibers. The nerve

  17. Cutaneous Nocardiosis Simulating Cutaneous Lymphatic Sporotrichosis.

    Science.gov (United States)

    Secchin, Pedro; Trope, Beatriz Moritz; Fernandes, Larissa Araujo; Barreiros, Glória; Ramos-E-Silva, Marcia

    2017-01-01

    Sporotrichosis is the subcutaneous mycosis caused by several species of the Sporothrix genus. With worldwide occurrence, the State of Rio de Janeiro is presently undergoing a zoonotic sporotrichosis epidemic. The form of lymphocutaneous nocardiosis is rare, being caused especially by Nocardia brasiliensis. It appears as a nodular or ulcerated lesion, with multiple painful erythematous nodules or satellite pustules distributed along the lymphatic tract, similar to the lymphocutaneous variant of sporotrichosis. We present a 61-year-old man who, after an insect bite in the left leg, developed an ulcerated lesion associated with ascending lymphangitis, nonresponsive to previous antibiotic therapies. The patient was admitted for investigation, based on the main diagnostic hypothesis of lymphatic cutaneous sporotrichosis entailed by the highly suggestive morphology, associated with the epidemiologic information that he is a resident of the city of Rio de Janeiro. While culture results were being awaited, the patient was medicated with sulfamethoxazole-trimethoprim to cover CA-MRSA and evolved with total healing of the lesions. After hospital discharge, using an ulcer fragment, an Actinomyces sp. was cultivated and N. brasiliensis was identified by molecular biology. The objective of this report is to demonstrate a case of lymphocutaneous nocardiosis caused by N. brasiliensis after a probable insect bite. Despite the patient being a resident of the State of Rio de Janeiro (endemic region for sporotrichosis), it is highlighted that it is necessary to be aware of the differential diagnoses of an ulcerated lesion with lymphangitis, favoring an early diagnosis and appropriate treatment of the illness.

  18. Multiple Variations of the Nerves of Gluteal Region and their Clinical Implications

    Directory of Open Access Journals (Sweden)

    Prasad AM

    2016-01-01

    Full Text Available Knowledge of variations of nerves of gluteal region is important for clinicians administering intramuscular injections, for orthopedic surgeons dealing with the hip surgeries and possibly for physiotherapists managing the painful conditions and paralysis of this region. We report multiple variations of the nerves of gluteal region through this article. In the current case, the sciatic nerve was absent. The common peroneal and tibial nerves arose from sacral plexus and reached the gluteal region through greater sciatic foramen above and below piriformis respectively. The common peroneal nerve gave a muscular branch to the gluteus maximus. The inferior gluteal nerve and posterior cutaneous nerve of the thigh arose from a common trunk. The common trunk was formed by three roots. Upper and middle roots arose from sacral plexus and entered gluteal region through greater sciatic foramen respectively above and below piriformis. The lower root arose from the pudendal nerve and joined the common trunk. We discuss the clinical implications of the variations.

  19. Zosteriform impetigo: Wolf's isotopic response in a cutaneous immunocompromised district.

    Science.gov (United States)

    Cohen, Philip R

    2015-07-01

    Impetigo can result from Staphylococcus aureus (S. aureus). Wolf's isotopic response is the occurrence of a new cutaneous disorder at the site of a previously healed disease. A cutaneous immunocompromised district is an area of skin that is more vulnerable than the rest of the individual's body. To describe a man with impetigo localized to a unilateral dermatome and review the clinical features of other patients with zosteriform Staphylococcus aureus cutaneous infection. PubMed was used to search the following terms, separately and in combination: cutaneous, dermatome, dermatomal, district, herpes, immunocompromised, impetigo, infection, isotopic, response, skin, staphylococcal, Staphylococcus aureus, Wolf, zoster, zosteriform. All papers were reviewed and relevant manuscripts, along with their reference citations, were evaluated. Crusted, eroded and intact, erythematous papules and nodules acutely presented localized to the mandibular branch of the left trigeminal nerve on the face of a 66-year-old man; he did not recall a prior episode of varicella-zoster virus infection in that area. A bacterial culture isolated methicillin-susceptible S. aureus. Viral cultures and direct fluorescent absorption studies were negative for herpes simplex and herpes zoster virus. All of the lesions resolved after oral treatment with cefdinir. Impetigo and/or furunculosis in a zosteriform distribution have also been described in 3 additional patients. The bacterial culture showed either methicillin-susceptible or methicillin-resistant S. aureus; the skin infection resolved after treatment with oral antibiotics; however one man experienced 2 recurrences in the same area. Zosteriform cutaneous staphylococcal impetigo may be an example of Wolf's isotopic response in a cutaneous immunocompromised district.

  20. Cutaneous stimulation and generation of breathing in the fetus.

    Science.gov (United States)

    Scarpelli, E M; Condorelli, S; Cosmi, E V

    1977-01-01

    The generation of spontaneous regular breathing by cutaneous stimulation and by direct electrical stimulation of the sciatic nerve was examined in six previously apneic mature fetal lambs in utero. The fetuses were stable throughout the course of the experiments: PaO2 less than or equal to 27 mm Hg, PaCO2 less than 44 mm Hg, pH 7.29-7.34, blood pressure and heart rate steady and normal. It is shown that electrical stimulation of the fetal skin (66 cps, 4.0 msec, 6 V, 0.77 ma) can be as effective as direct stimulation of the sciatic nerve (66 cps, 4.0 msec, 1.5 V, 0.08 ma) when the higher voltage and current are used. Mechanical cutaneous stimulation also produced spontaneous breathing which, however, was short lived compared with that produced by electrical stimuli. The results are consonant with our concept of activation and recruitment of quiescent respiratory center neurones by somatic sensory stimulation, and they give fundamental support to the clinical observation of others that cutaneous stimulation is effective for the treatment of apnea of prematurity. Speculation Somatic sensory stimuli from the skin may be important determinants of the onset of breathing in the fetus and newborn.

  1. The anatomy of the perineal branch of the sciatic nerve.

    Science.gov (United States)

    Gibbs, Christopher M; Ginsburg, Alexander D; Wilson, Thomas J; Lachman, Nirusha; Hevesi, Mario; Spinner, Robert J; Krych, Aaron J

    2018-04-01

    A "perineal" branch of the sciatic nerve has been visualized during surgery, but there is currently no description of this nerve branch in the literature. Our study investigates the presence and frequency of occurrence of perineal innervation by the sciatic nerve and characterizes its anatomy in the posterior thigh. Fifteen cadavers were obtained for dissection. Descriptive results were recorded and analyzed statistically. Twenty-one sciatic nerves were adequately anatomically preserved. Six sciatic nerves contained a perineal branch. Five sciatic nerves had a branch contributing to the perineal branch of the posterior femoral cutaneous (PFC) nerve. In specimens with adequate anatomical preservation, the perineal branch of the sciatic nerve passed posterior to the ischial tuberosity in three specimens and posterior to the conjoint tendon of the long head of biceps femoris and semitendinosus muscles (conjoint tendon) in one. In specimens in which the perineal branch of the PFC nerve received a contribution from the sciatic nerve, the branch passed posterior to the sacrotuberous ligament in one case and posterior to the conjoint tendon in three. Unilateral nerve anatomy was found to be a poor predictor of contralateral anatomy (Cohen's kappa = 0.06). Our study demonstrates for the first time the presence and frequency of occurrence of the perineal branch of the sciatic nerve and a sciatic contribution to the perineal branch of the PFC nerve. Clinicians should be cognizant of this nerve and its varying anatomy so their practice is better informed. Clin. Anat. 31:357-363, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  2. Cutaneous Nocardiosis Simulating Cutaneous Lymphatic Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Pedro Secchin

    2017-08-01

    Full Text Available Sporotrichosis is the subcutaneous mycosis caused by several species of the Sporothrix genus. With worldwide occurrence, the State of Rio de Janeiro is presently undergoing a zoonotic sporotrichosis epidemic. The form of lymphocutaneous nocardiosis is rare, being caused especially by Nocardia brasiliensis. It appears as a nodular or ulcerated lesion, with multiple painful erythematous nodules or satellite pustules distributed along the lymphatic tract, similar to the lymphocutaneous variant of sporotrichosis. We present a 61-year-old man who, after an insect bite in the left leg, developed an ulcerated lesion associated with ascending lymphangitis, nonresponsive to previous antibiotic therapies. The patient was admitted for investigation, based on the main diagnostic hypothesis of lymphatic cutaneous sporotrichosis entailed by the highly suggestive morphology, associated with the epidemiologic information that he is a resident of the city of Rio de Janeiro. While culture results were being awaited, the patient was medicated with sulfamethoxazole-trimethoprim to cover CA-MRSA and evolved with total healing of the lesions. After hospital discharge, using an ulcer fragment, an Actinomyces sp. was cultivated and N. brasiliensis was identified by molecular biology. The objective of this report is to demonstrate a case of lymphocutaneous nocardiosis caused by N. brasiliensis after a probable insect bite. Despite the patient being a resident of the State of Rio de Janeiro (endemic region for sporotrichosis, it is highlighted that it is necessary to be aware of the differential diagnoses of an ulcerated lesion with lymphangitis, favoring an early diagnosis and appropriate treatment of the illness.

  3. Insulin and IGF-II, but not IGF-I, stimulate the in vitro regeneration of adult frog sciatic sensory axons

    DEFF Research Database (Denmark)

    Edbladh, M; Svenningsen, Åsa Fex; Ekström, P A

    1994-01-01

    We used the in vitro regenerating frog sciatic nerve to look for effects of insulin and insulin-like growth factors I and II (IGF-I, IGF-II) on regeneration of sensory axons and on injury induced support cell proliferation in the outgrowth region. In nerves cultured for 11 days, a physiological...

  4. Efeitos da aplicação do laser de baixa potência na regeneração do nervo isquiático de ratos Effects of low-power laser on injured rat sciatic nerve regeneration

    Directory of Open Access Journals (Sweden)

    Renata Batagini Gonçalves

    2010-03-01

    Full Text Available Os nervos periféricos sofrem constantes lesões de origem traumática, o que resulta em perdas funcionais. A terapia com laser de baixa potência vem sendo utilizada para minimizar os efeitos maléficos da inflamação e acelerar o processo de cicatrização dos tecidos lesados. Este estudo teve como objetivo verificar o efeito da irradiação do laser 830 nm no comportamento do nervo isquiático de ratos submetido a esmagamento. Foram utilizados 20 ratos, todos tendo tido o nervo isquiático esmagado, divididos em 4 grupos (n=5: P7 e P14, tratamento placebo por 7 e 14 dias; L7 e L14, tratamento por laser (dosagem de 4 J/cm² por 7 e 14 dias. Os animais dos grupos P7 e P14 foram submetidos aos mesmos procedimentos, mas com o laser desligado. Os parâmetros analisados foram presença de infiltrado inflamatório e fibroblastos, destruição da bainha de mielina e degeneração axonal. Na análise estatística foi observada diferença estatística com relação a três parâmetros: os animais do grupo L14 apresentaram maior quantidade de fibroblastos (p=0,0001, menor degeneração da bainha de mielina (p=0,007 e menor quantidade de infiltrado inflamatório (p=0,001. A aplicação do laser de baixa potência contribuiu para a redução do processo inflamatório decorrente da lesão do nervo isquiático de ratos.Peripheral nerves are commonly subject to traumatic injuries, leading to functional loss. Low-power laser therapy has been used in order to minimize harmful effects of inflammation and to accelerate healing of injured tissues. The purpose of this study was to assess the effect of 830 nm-laser irradiation on rat sciatic nerves submitted to crush. Twenty male Wistar rats had their sciatic nerve crushed and were divided into 4 groups (n=5: Sham7 and Sham14, placebo-treated for 7 and 14 days; L7 and L14, laser-treated (at 4 J/cm² for 7 and 14 days. Sham group animals were submitted to the same procedures, but with the laser turned off. Assessed

  5. Chronic zosteriform cutaneous leishmaniasis

    Directory of Open Access Journals (Sweden)

    Omidian M

    2006-01-01

    Full Text Available Cutaneous leishmanasis (CL may present with unusual clinical variants such as acute paronychial, annular, palmoplantar, zosteriform, erysipeloid, and sporotrichoid. The zosteriform variant has rarely been reported. Unusual lesions may be morphologically attributed to an altered host response or owing to an atypical strain of parasites in these lesions. We report a patient with CL in a multidermatomal pattern on the back and buttock of a man in Khozestan province in the south of Iran. To our knowledge, this is the first reported case of multidermatomal zosteriform CL. It was resistant to conventional treatment but responded well to a combination of meglumine antimoniate, allopurinol, and cryotherapy.

  6. Primary cutaneous myoepithelial carcinoma

    DEFF Research Database (Denmark)

    Frost, Markus Winther; Steiniche, Torben; Damsgaard, Tine Engberg

    2014-01-01

    This study describes a case of primary myoepithelial carcinoma of the skin and reviews the available literature on this topic. Myoepitheliomas and carcinomas arise most frequently from myoepithelial cells within the salivary glands but are found in many anatomical locations. We documented a case...... literature search identified 23 papers that reported 58 cases of cutaneous myoepitheliomas and myoepithelial carcinomas. All cases are reviewed in the presented paper. This case report and literature review serves to increase awareness regarding myoepithelial carcinomas. These tumours exhibit high metastatic...

  7. Cutavirus in Cutaneous Malignant Melanoma

    DEFF Research Database (Denmark)

    Mollerup, Sarah; Fridholm, Helena; Vinner, Lasse

    2017-01-01

    A novel human protoparvovirus related to human bufavirus and preliminarily named cutavirus has been discovered. We detected cutavirus in a sample of cutaneous malignant melanoma by using viral enrichment and high-throughput sequencing. The role of cutaviruses in cutaneous cancers remains...

  8. Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity.

    Directory of Open Access Journals (Sweden)

    Sinyoung Kang

    Full Text Available Three observations have suggested that acid-sensing ion channels (ASICs might be mammalian cutaneous mechanoreceptors; they are structurally related to Caenorhabditis elegans mechanoreceptors, they are localized in specialized cutaneous mechanosensory structures, and mechanical displacement generates an ASIC-dependent depolarization in some neurons. However, previous studies of mice bearing a single disrupted ASIC gene showed only subtle or no alterations in cutaneous mechanosensitivity. Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, we hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous mechanosensation. We found the opposite. In behavioral studies, mice with simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts, TKOs showed increased paw withdrawal frequencies when mechanically stimulated with von Frey filaments. Moreover, in single-fiber nerve recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-mechanonociceptors of ASIC TKOs compared to wild-type mice. Responses of all other fiber types did not differ between the two genotypes. These data indicate that ASIC subunits influence cutaneous mechanosensitivity. However, it is unlikely that ASICs directly transduce mechanical stimuli. We speculate that physical and/or functional association of ASICs with other components of the mechanosensory transduction apparatus contributes to normal cutaneous mechanosensation.

  9. Simultaneous Disruption of Mouse ASIC1a, ASIC2 and ASIC3 Genes Enhances Cutaneous Mechanosensitivity

    Science.gov (United States)

    Kang, Sinyoung; Jang, Jun Ho; Price, Margaret P.; Gautam, Mamta; Benson, Christopher J.; Gong, Huiyu; Welsh, Michael J.; Brennan, Timothy J.

    2012-01-01

    Three observations have suggested that acid-sensing ion channels (ASICs) might be mammalian cutaneous mechanoreceptors; they are structurally related to Caenorhabditis elegans mechanoreceptors, they are localized in specialized cutaneous mechanosensory structures, and mechanical displacement generates an ASIC-dependent depolarization in some neurons. However, previous studies of mice bearing a single disrupted ASIC gene showed only subtle or no alterations in cutaneous mechanosensitivity. Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, we hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous mechanosensation. We found the opposite. In behavioral studies, mice with simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts, TKOs) showed increased paw withdrawal frequencies when mechanically stimulated with von Frey filaments. Moreover, in single-fiber nerve recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-mechanonociceptors of ASIC TKOs compared to wild-type mice. Responses of all other fiber types did not differ between the two genotypes. These data indicate that ASIC subunits influence cutaneous mechanosensitivity. However, it is unlikely that ASICs directly transduce mechanical stimuli. We speculate that physical and/or functional association of ASICs with other components of the mechanosensory transduction apparatus contributes to normal cutaneous mechanosensation. PMID:22506072

  10. Skin innervation: important roles during normal and pathological cutaneous repair.

    Science.gov (United States)

    Laverdet, Betty; Danigo, Aurore; Girard, Dorothée; Magy, Laurent; Demiot, Claire; Desmoulière, Alexis

    2015-08-01

    The skin is a highly sensitive organ. It is densely innervated with different types of sensory nerve endings, which discriminate between pain, temperature and touch. Autonomic nerve fibres which completely derive from sympathetic (cholinergic) neurons are also present. During all the phases of skin wound healing (inflammatory, proliferative and remodelling phases), neuromediators are involved. Several clinical observations indicate that damage to the peripheral nervous system influences wound healing, resulting in chronic wounds within the affected area. Patients with cutaneous sensory defects due to lepromatous leprosy, spinal cord injury and diabetic neuropathy develop ulcers that fail to heal. In addition, numerous experimental observations suggest that neurogenic stimuli profoundly affect wound repair after injury and that delayed wound healing is observed in animal models after surgical resection of cutaneous nerves. All these observations clearly suggest that innervation and neuromediators play a major role in wound healing. Interactions between neuromediators and different skin cells are certainly crucial in the healing process and ultimately the restoration of pain, temperature, and touch perceptions is a major challenge to solve in order to improve patients' quality of life.

  11. Developmental and adult-specific processes contribute to de novo neuromuscular regeneration in the lizard tail.

    Science.gov (United States)

    Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M

    2018-01-15

    Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cutaneous tuberculosis in Tunisia.

    Science.gov (United States)

    Abdelmalek, R; Mebazaa, A; Berriche, A; Kilani, B; Ben Osman, A; Mokni, M; Tiouiri Benaissa, H

    2013-09-01

    Tuberculosis is endemic in Tunisia. Pulmonary tuberculosis is the most common presentation in our country. Cutaneous presentations are rare (1-2% of cases). The diagnosis of cutaneous tuberculosis (CT) is difficult. Histological and clinical presentations are polymorphous, many differential diagnoses are available, and it is difficult to isolate Mycobacterium. We had for aim to study the epidemiological and clinical features of CT in Tunisia, and to compare presentations before and after 1990. We conducted a retrospective study between January 1991 and December 2011, in which we included all cases of CT observed at the Infectious Diseases and Dermatology Units of the Tunis la Rabta Hospital. Hundred and thirty-seven patients were included, with a mean age of 43.8years; 72.3% were female patients. Hundred and fifty locations were observed, most of which on the head and neck. Scrofuloderma was the most frequent presentation, observed in 65% of cases. The diagnosis was confirmed by histology and/or microbiology in 75.8% of cases. The treatment was prescribed for a mean 11.3months, leading to full recovery in most cases. CT is still reported in Tunisia. The diagnosis relies mainly on histology. Controlling this mutilating tuberculosis requires a global control of this disease, and especially lymph node location, given the high rate of scrofuloderma. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Adverse cutaneous drug reaction

    Directory of Open Access Journals (Sweden)

    Nayak Surajit

    2008-01-01

    Full Text Available In everyday clinical practice, almost all physicians come across many instances of suspected adverse cutaneous drug reactions (ACDR in different forms. Although such cutaneous reactions are common, comprehensive information regarding their incidence, severity and ultimate health effects are often not available as many cases go unreported. It is also a fact that in the present world, almost everyday a new drug enters market; therefore, a chance of a new drug reaction manifesting somewhere in some form in any corner of world is unknown or unreported. Although many a times, presentation is too trivial and benign, the early identification of the condition and identifying the culprit drug and omit it at earliest holds the keystone in management and prevention of a more severe drug rash. Therefore, not only the dermatologists, but all practicing physicians should be familiar with these conditions to diagnose them early and to be prepared to handle them adequately. However, we all know it is most challenging and practically difficult when patient is on multiple medicines because of myriad clinical symptoms, poorly understood multiple mechanisms of drug-host interaction, relative paucity of laboratory testing that is available for any definitive and confirmatory drug-specific testing. Therefore, in practice, the diagnosis of ACDR is purely based on clinical judgment. In this discussion, we will be primarily focusing on pathomechanism and approach to reach a diagnosis, which is the vital pillar to manage any case of ACDR.

  14. Corynebacterium ulcerans cutaneous diphtheria.

    Science.gov (United States)

    Moore, Luke S P; Leslie, Asuka; Meltzer, Margie; Sandison, Ann; Efstratiou, Androulla; Sriskandan, Shiranee

    2015-09-01

    We describe the case of a patient with cutaneous diphtheria caused by toxigenic Corynebacterium ulcerans who developed a right hand flexor sheath infection and symptoms of sepsis such as fever, tachycardia, and elevated C-reactive protein, after contact with domestic cats and dogs, and a fox. We summarise the epidemiology, clinical presentation, microbiology, diagnosis, therapy, and public health aspects of this disease, with emphasis on improving recognition. In many European countries, C ulcerans has become the organism commonly associated with cutaneous diphtheria, usually seen as an imported tropical disease or resulting from contact with domestic and agricultural animals. Diagnosis relies on bacterial culture and confirmation of toxin production, with management requiring appropriate antimicrobial therapy and prompt administration of antitoxin, if necessary. Early diagnosis is essential for implementation of control measures and clear guidelines are needed to assist clinicians in managing clinical diphtheria. This case was a catalyst to the redrafting of the 2014 national UK interim guidelines for the public health management of diphtheria, released as final guidelines in March, 2015. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Early interfaced neural activity from chronic amputated nerves

    Directory of Open Access Journals (Sweden)

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  16. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  17. Combined effect of substance P and curcumin on cutaneous wound healing in diabetic rats.

    Science.gov (United States)

    Kant, Vinay; Kumar, Dinesh; Prasad, Raju; Gopal, Anu; Pathak, Nitya N; Kumar, Pawan; Tandan, Surender K

    2017-05-15

    Our earlier studies demonstrated that topically applied substance P (SP) or curcumin on excision skin wound accelerated the wound healing in streptozotocin-induced diabetic rats. In the present study, we aimed to evaluate the wound healing potential of combination of SP and curcumin in diabetic rats. Open cutaneous excision wound was created on the back of each of the 60 diabetic rats. Wound-inflicted rats were equally divided into three groups namely, control, gel treated, and SP + curcumin treated. Normal saline, pluronic gel, and SP (0.5 × 10 -6 M) + curcumin (0.15%) were topically applied once daily for 19 d to these control, gel-treated, and SP + curcumin groups, respectively. SP + curcumin combination significantly accelerated wound closure and decreased messenger RNA expressions of tumor necrosis factor-alpha, interleukin-1beta, and matrix metalloproteinase-9, whereas the combination markedly increased the expressions of interleukin-10, vascular endothelial growth factor, transforming growth factor-beta1, hypoxia-inducible factor 1-alpha, stromal cell-derived factors-1alpha, heme oxygenase-1 and endothelial nitric oxide synthase, and activities of superoxide dismutase, catalase, and glutathione peroxidase in granulation-healing tissue, compared with control and gel-treated groups. In combination group, granulation tissue was better, as was evidenced by improved fibroblast proliferation, collagen deposition, microvessel density, growth-associated protein 43-positive nerve fibers, and thick regenerated epithelial layer. The combination of SP and curcumin accelerated wound healing in diabetic rats and both the drugs were compatible at the doses used in this study. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Far-Infrared Therapy Promotes Nerve Repair following End-to-End Neurorrhaphy in Rat Models of Sciatic Nerve Injury

    Directory of Open Access Journals (Sweden)

    Tai-Yuan Chen

    2015-01-01

    Full Text Available This study employed a rat model of sciatic nerve injury to investigate the effects of postoperative low-power far-infrared (FIR radiation therapy on nerve repair following end-to-end neurorrhaphy. The rat models were divided into the following 3 groups: (1 nerve injury without FIR biostimulation (NI/sham group; (2 nerve injury with FIR biostimulation (NI/FIR group; and (3 noninjured controls (normal group. Walking-track analysis results showed that the NI/FIR group exhibited significantly higher sciatic functional indices at 8 weeks after surgery (P<0.05 compared with the NI/sham group. The decreased expression of CD4 and CD8 in the NI/FIR group indicated that FIR irradiation modulated the inflammatory process during recovery. Compared with the NI/sham group, the NI/FIR group exhibited a significant reduction in muscle atrophy (P<0.05. Furthermore, histomorphometric assessment indicated that the nerves regenerated more rapidly in the NI/FIR group than in the NI/sham group; furthermore, the NI/FIR group regenerated neural tissue over a larger area, as well as nerve fibers of greater diameter and with thicker myelin sheaths. Functional recovery, inflammatory response, muscular reinnervation, and histomorphometric assessment all indicated that FIR radiation therapy can accelerate nerve repair following end-to-end neurorrhaphy of the sciatic nerve.

  19. Local effect of celecoxib on peripheral nerve repair combined with silicone tubulization in rat

    Directory of Open Access Journals (Sweden)

    Mohammadi Rahim

    2013-10-01

    Full Text Available 【Abstract】Objective: To assess local effect of celecoxib on nerve regeneration in a rat sciatic nerve transection model. Methods: Forty-five male healthy white Wistar rats were randomly divided into three experimental groups (n=15 for each: sham-oper ation (SHAM, control (SIL and celecoxib treated (SIL/CLX groups. In SHAM group after anesthesia left sciatic nerve was exposed and after homeostasis muscle was sutured. In SIL group the left sciatic nerve was exposed in the same way and transected proximal to tibioperoneal bifurcation leaving a 10 mm gap. Proximal and distal stumps were each inserted into a silicone tube and filled with 10 µl phosphate buffered solution. In SIL/CLX group defect was bridged using a silicone tube filled with 10 µl celecoxib (0.1 g/L. Results: Functional study and gastrocnemius muscle mass confirmed faster and better recovery of regenerated axons in SIL/CLX than in SIL group(P<0.05. Morphometric indices of regenerated fibers showed number and diameter of the my elinated fibers in SIL/CLX were significantly greater than those in control group. In immunohistochemistry, location of reactions to S-100 in SIL/CLX was clearly more positive than that in SIL group. Conclusion: Response to local treatment of celecoxib demonstrates that it influences and improves functional recovery of peripheral nerve regeneration. Key words: Peripheral nerve; Sciaticnerve; Celecoxib; Nerve regeneration

  20. Cutaneous larva migrans

    Directory of Open Access Journals (Sweden)

    Aleksandra Wieczorek

    2016-09-01

    Full Text Available Introduction . Cutaneous larva migrans (CLM is a tropical zoonosis, caused by parasites, usually Ancylostoma braziliense. Humans are an accidental host. Polish patients with CLM are usually tourists visiting tropical and subtropical countries. The first symptoms do not always appear as creeping eruptions, which complicates the diagnosis. Objective. To present the case of a man with CLM after returning from Thailand to Poland and associated diagnostic difficulties. Case report. We present a case of a 28-year-old man who returned to Poland from Thailand. The first symptoms appeared as disseminated pruritic papules. No improvement after treatment with corticosteroids and antihistamines was observed. The diagnosis was established after the appearance of serpentine erythemas and improvement after albendazole therapy. Conclusions. In the case of returnees from exotic countries suffering from raised, pruritic rashes, and no improvement after treatment with corticosteroids and antihistamines, parasitic etiology should be considered.

  1. Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair

    NARCIS (Netherlands)

    Shakhbazau, A.; Kawasoe, J.; Hoyng, S.A.; Kumar, R.; van Minnen, J.; Verhaagen, J.; Midha, R.

    2012-01-01

    Peripheral nerve injury leads to a rapid and robust increase in the synthesis of neurotrophins which guide and support regenerating axons. To further optimize neurotrophin supply at the earliest stages of regeneration, we over-expressed NGF in Schwann cells (SCs) by transducing these cells with a

  2. Nerve injuries of the upper extremity and hand

    Science.gov (United States)

    Dahlin, Lars B.; Wiberg, Mikael

    2017-01-01

    A nerve injury has a profound impact on the patient’s daily life due to the impaired sensory and motor function, impaired dexterity, sensitivity to cold as well as eventual pain problems. To perform an appropriate treatment of nerve injuries, a correct diagnosis must be made, where the injury is properly classified, leading to an optimal surgical approach and technique, where timing of surgery is also important for the outcome. Knowledge about the nerve regeneration process, where delicate processes occur in neurons, non-neuronal cells (i.e. Schwann cells) and other cells in the peripheral as well as the central nervous systems, is crucial for the treating surgeon. The surgical decision to perform nerve repair and/or reconstruction depends on the type of injury, the condition of the wound as well as the vascularity of the wound. To reconnect injured nerve ends, various techniques can be used, which include both epineurial and fascicular nerve repair, and if a nerve defect is caused by the injury, a nerve reconstruction procedure has to be performed, including bridging the defect using nerve-grafts or nerve transfer techniques. The patients must be evaluated properly and regularly after the surgical procedure and appropriate rehabilitation programmes are useful to improve the final outcome. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160071. Originally published online at www.efortopenreviews.org PMID:28630754

  3. Miltefosine in cutaneous leishmaniasis

    International Nuclear Information System (INIS)

    Rahman, S.B.; Mumtaz, N.; Bari, A.

    2007-01-01

    To determine the efficacy of oral Miltefosine in patients with cutaneous leishmaniasis and its comparison with the most effective standard treatment, pentavalent antimony compound. Thirty patients, 12 years of age or older clinically and histopathologically diagnosed as cutaneous leishmaniasis were selected. Fifteen patients received orally administered Miltefosine 2.5mg/kg/day for 28 days and remaining 15 received injectable pentavalent antimony 20mg/kg/day for 28 days. Pre-treatment complete physical examination was done along with necessary laboratory investigations in all cases. These were repeated again after 2 weeks and at the end of treatment to note any deviation from the normal limits. Groups were almost matched in terms of age, weight, parasitological score. The efficacy was evaluated by ulcer size, before therapy, at 2 weeks and 4 weeks. Patients were followed-up at 3 and 6 months. Efficacy of two groups was statistically compared by calculating p-value by z-test. All patients completed the study without any serious complication. Lesions improved significantly and only scarring and post-inflammatory pigmentation was left. At 3 months, cure rate was 93% in group A and it was 73.33% in group B while at the end of 6 months, it was 86% and 66.6% respectively. This difference between efficacies of two groups was not found to be statistically significant (p-value >0.5). Miltefosine appears to be a safe and effective alternative to currently used therapies. The striking advantage of Miltefosine is its oral administration and it may also be helpful in regions where parasites are resistant to current agents. (author)

  4. Lateralization Technique and Inferior Alveolar Nerve Transposition

    Directory of Open Access Journals (Sweden)

    Angélica Castro Pimentel

    2016-01-01

    Full Text Available Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics.

  5. Evolutionary history of regeneration in crinoids (Echinodermata).

    Science.gov (United States)

    Gahn, Forest J; Baumiller, Tomasz K

    2010-10-01

    The fossil record indicates that crinoids have exhibited remarkable regenerative abilities since their origin in the Ordovician, abilities that they likely inherited from stem-group echinoderms. Regeneration in extant and fossil crinoids is recognized by abrupt differences in the size of abutting plates, aberrant branching patterns, and discontinuities in carbon isotopes. While recovery is common, not all lost body parts can be regenerated; filling plates and overgrowths are evidence of non-regenerative healing. Considering them as a whole, Paleozoic crinoids exhibit the same range of regenerative and non-regenerative healing as Recent crinoids. For example, Paleozoic and extant crinoids show evidence of crown regeneration and stalk regrowth, which can occur only if the entoneural nerve center (chambered organ) remains intact. One group of Paleozoic crinoids, the camerates, may be an exception in that they probably could not regenerate their complex calyx-plating arrangements, including arm facets, but their calyxes could be healed with reparative plates. With that exception, and despite evidence for increases in predation pressure, there is no compelling evidence that crinoids have changed though time in their ability to recover from wounds. Finally, although crinoid appendages may be lost as a consequence of severe abiotic stress and through ontogenetic development, spatiotemporal changes in the intensity and frequency of biotic interactions, especially direct attacks, are the most likely explanation for observed patterns of regeneration and autotomy in crinoids. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  6. Effect of cold nerve allograft preservation on antigen presentation and rejection

    Science.gov (United States)

    Ray, Wilson Z.; Kale, Santosh S.; Kasukurthi, Rahul; Papp, Esther M.; Johnson, Philip J.; Santosa, Katherine B.; Yan, Ying; Hunter, Daniel A.; Mackinnon, Susan E.; Tung, Thomas H.

    2010-01-01

    Object Nerve allotransplantation provides a temporary scaffold for host nerve regeneration and allows for the reconstruction of significant segmental nerve injuries. The need for systemic the current clinical utilization of nerve allografts, although this need is reduced by the practice of cold nerve allograft preservation. Activation of T cells in response to alloantigen presentation occurs in the context of donor antigen presenting cells (direct pathway) or host antigen-presenting cells (indirect pathway). The relative role of each pathway in eliciting an alloimmune response and its potential for rejection of the nerve allograft model has not previously been investigated. The objective of this investigation was to study the effect of progressive periods of cold nerve allograft preservation on antigen presentation and the alloimmune response. Methods The authors used wild type C57Bl/6 (B6), BALB/c, and major histocompatibility Class II–deficient (MHC−/−) C57Bl/6 mice as both nerve allograft recipients and donors. A nonvascularized nerve allograft was used to reconstruct a 1-cm sciatic nerve gap. Progressive cold preservation of donor nerve allografts was used. Quantitative assessment was made after 3 weeks using nerve histomorphometry. Results The donor-recipient combination lacking a functional direct pathway (BALB/c host with MHC−/− graft) rejected nerve allografts as vigorously as wild-type animals. Without an intact indirect pathway (MHC−/− host with BALB/c graft), axonal regeneration was improved (p < 0.052). One week of cold allograft preservation did not improve regeneration to any significant degree in any of the donor-recipient preservation did improve regeneration significantly (p < 0.05) for all combinations compared with wild-type animals without pretreatment. However, only in the presence of an intact indirect pathway (no direct pathway) did 4 weeks of cold preservation improve regeneration significantly compared with 1 week and no

  7. Study of the effects of semiconductor laser irradiation on peripheral nerve injury

    Science.gov (United States)

    Xiong, G. X.; Li, P.

    2012-11-01

    In order to study to what extent diode laser irradiation effects peripheral nerve injury, the experimental research was made on rabbits. Experimental results show that low-energy semiconductor laser can promote axonal regeneration and improve nervous function. It is also found that simultaneous exposure of the injured peripheral nerve and corresponding spinal segments to laser irradiation may achieve the most significant results.

  8. High-voltage electrical stimulation improves nerve regeneration after sciatic crush injury Estimulação elétrica de alta voltagem favorece a regeneração nervosa após compressão do nervo isquiático

    Directory of Open Access Journals (Sweden)

    Rosana M. Teodori

    2011-08-01

    Full Text Available BACKGROUND: Peripheral nerve injury causes prolonged functional limitation being a clinical challenge to identify resources that accelerates its recovery. OBJECTIVES: To investigate the effect of high-voltage electrical stimulation (HVES on the morphometric and functional characteristics of the regenerated nerve after crush injury in rats. METHODS: Twenty Wistar rats were randomly allocated into 4 groups: Control (CON - without injury and without HVES; Denervated (D - sciatic nerve crush only; Denervated + HVES - sciatic nerve crush and HVES; SHAM - without injury but HVES. The HVES and SHAM groups were stimulated (100 Hz; minimum voltage of 100 V, 20 μs, 100 μs interpulse interval for 30 min/day, 5 days/week. The sciatic functional index (SFI was evaluated before the injury and at the 7th, 14th and 21st postoperatory (PO days. Neural components and the area density of connective tissue, blood vessels and macrophages were analyzed. RESULTS: Axonal diameter was higher on the HVES than on D group, reaching almost 80% above the control values after 21 days (pCONTEXTUALIZAÇÃO: Lesões nervosas periféricas provocam limitação funcional prolongada, sendo um desafio para a clínica identificar recursos que acelerem sua recuperação. OBJETIVOS: Investigar a influência da estimulação elétrica de alta voltagem (EEAV sobre a morfologia e a função do nervo regenerado após esmagamento em ratos. MÉTODOS: Vinte ratos Wistar foram divididos nos grupos: controle (CON - sem lesão e sem EEAV; desnervado (D - esmagamento do nervo isquiático; desnervado + EEAV (EEAV - esmagamento do nervo e EEAV; SHAM - sem lesão, porém submetido à EEAV. Os grupos EEAV e SHAM foram estimulados (100 Hz, tensão mínima de 100 V; 20 μs e 100 μs interpulso 30 min/dia, 5 dias/semana. O índice funcional do ciático (IFC foi avaliado antes da lesão, nos 7º, 14º e 21º dias pós-operatório (PO. Componentes neurais, densidade de área de tecido conjuntivo, de

  9. Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther; Holst, Helle; Arendt-Nielsen, Lars

    2010-01-01

    Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin-glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor.......002). In conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors....

  10. Hodgkin's Lymphoma with Cutaneous Involvement

    Directory of Open Access Journals (Sweden)

    Ahmad Ameri

    2016-10-01

    Full Text Available Cutaneous Hodgkin’s lymphoma is a rare disease (0.5% to 3.4% which tends to be in the setting of an advanced disease and has a poor prognosis. Treatment of patients with cutaneous involvement of Hodgkin’s lymphoma is according to dissemination of disease (systemic or localized therapy. The majority of data in this context are based on individual case reports or literature reviews. We have reported a case of Hodgkin’s lymphoma that relapsed with isolated cutaneous involvement two years after completion of his first treatment. Our case had no response to systemic chemotherapy but obtained a complete remission to radiation therapy and had longterm disease-free survival. Radiotherapy might be considered a good salvage treatment in patients with cutaneous Hodgkin’s lymphoma with long-term disease-free survival.

  11. Multiple Cutaneous (pre)-Malignancies

    NARCIS (Netherlands)

    R.J.T. van der Leest (Robert)

    2015-01-01

    markdownabstract__Abstract__ The three most common cutaneous malignancies are derived from melanocytes and keratinocytes (ordered in decreasing aggressiveness): melanoma, squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). This thesis focuses only on these three types of cancer and

  12. Prurigo Nodularis With Cutaneous Horn

    Directory of Open Access Journals (Sweden)

    Thadeus Joseph

    1997-01-01

    Full Text Available Cutaneous horns are rare horny excrescences which occur in various dermatoses. We report a girl with prurigo nodularis who developed a horn on one of the nodules. This unique association has not been reported so far.

  13. Primary cutaneous sweat gland carcinoma

    OpenAIRE

    Xiao-Xia Wang; Hai-Yan Wang; Jun-Nian Zheng; Jian-Chao Sui

    2014-01-01

    Primary cutaneous sweat gland carcinoma is a rare neoplasm of malignant sweat gland lesions. It is characterized clinically with non-symptomatic, slow-growing nodules. We report the case of a patient with cutaneous sweat gland carcinoma with local recurrence and metastasis to the lung that was treated with surgical resection therapy and chemotherapy. The initial neoplasm was excised but biopsy was not performed. The tumor then recurred 7 years later, was re-excised, biopsy was performed, and ...

  14. Cutaneous leishmaniasis in North Dakota.

    Science.gov (United States)

    Douvoyiannis, Miltiadis; Khromachou, Tamim; Byers, Norman; Hargreaves, James; Murray, Henry W

    2014-09-01

    In the United States, autochthonous cutaneous leishmaniasis caused by infection with Leishmania mexicana has been reported from Texas and Oklahoma. Here, we describe a child with 2 new features: cutaneous infection acquired outside of the south-central United States (in North Dakota) and infection caused by Leishmania donovani species complex. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Peripheral Motor and Sensory Nerve Conduction following Transplantation of Undifferentiated Autologous Adipose Tissue-Derived Stem Cells in a Biodegradable U.S. Food and Drug Administration-Approved Nerve Conduit.

    Science.gov (United States)

    Klein, Silvan M; Vykoukal, Jody; Li, De-Pei; Pan, Hui-Lin; Zeitler, Katharina; Alt, Eckhard; Geis, Sebastian; Felthaus, Oliver; Prantl, Lukas

    2016-07-01

    Conduits preseeded with either Schwann cells or stem cells differentiated into Schwann cells demonstrated promising results for the outcome of nerve regeneration in nerve defects. The concept of this trial combines nerve repair by means of a commercially available nerve guidance conduit and preseeding with autologous, undifferentiated, adipose tissue-derived stem cells. Adipose tissue-derived stem cells were harvested from rats and subsequently seeded onto a U.S. Food and Drug Administration-approved type I collagen conduit. Sciatic nerve gaps 10 mm in length were created, and nerve repair was performed by the transplantation of either conduits preseeded with autologous adipose tissue-derived stem cells or acellular (control group) conduits. After 6 months, the motor and sensory nerve conduction velocity were assessed. Nerves were removed and examined by hematoxylin and eosin, van Gieson, and immunohistochemistry (S100 protein) staining for the quality of axonal regeneration. Nerve gaps treated with adipose tissue-derived stem cells showed superior nerve regeneration, reflected by higher motor and sensory nerve conduction velocity values. The motor and sensory nerve conduction velocity were significantly greater in nerves treated with conduits preseeded with adipose tissue-derived stem cells than in nerves treated with conduits alone (p adipose tissue-derived stem cell group. In this group, axon arrangement inside the conduits was more organized. Transplantation of adipose tissue-derived stem cells significantly improves motor and sensory nerve conduction velocity in peripheral nerve gaps. Preseeded conduits showed a more organized axon arrangement inside the conduit in comparison with nerve conduits alone. The approach used here could readily be translated into a clinical therapy. Therapeutic, V.

  16. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    Science.gov (United States)

    Neal, Rebekah Anne

    Peripheral nerve transection occurs commonly in traumatic injury, causing motor and sensory deficits distal to the site of injury. One option for surgical repair is the nerve conduit. Conduits currently on the market are hollow tubes into which the nerve ends are sutured. Although these conduits fill the gap, they often fail due to the slow rate of regeneration over long gaps. To facilitate increased speed of regeneration and greater potential for functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in peripheral nerve regeneration. In this dissertation, I fabricated laminin-1 and laminin-polycaprolactone (PCL) blend nanofibers that mimic the geometry and functionality of the peripheral nerve basement membrane. These fibers resist hydration in aqueous media and require no harsh chemical crosslinkers. Adhesion and differentiation of both neuron-like and neuroprogenitor cells is improved on laminin nanofibrous meshes over two-dimensional laminin substrates. Blend meshes with varying laminin content were characterized for composition, tensile properties, degradation rates, and bioactivity in terms of cell attachment and axonal elongation. I have established that 10% (wt) laminin content is sufficient to retain the significant neurite-promoting effects of laminin critical in peripheral nerve repair. In addition, I utilized modified collector plate design to manipulate electric field gradients during electrospinning for the fabrication of aligned nanofibers. These aligned substrates provide enhanced directional guidance cues to the regenerating axons. Finally, I replicated the clinical problem of peripheral nerve transection using a rat tibial nerve defect model for conduit implantation. When the lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment, I observed significant recovery of sensory and motor function over six weeks. This recovery was

  17. Balance and coordination training after sciatic nerve injury.

    Science.gov (United States)

    Bonetti, Leandro Viçosa; Korb, Arthiese; Da Silva, Sandro Antunes; Ilha, Jocemar; Marcuzzo, Simone; Achaval, Matilde; Faccioni-Heuser, Maria Cristina

    2011-07-01

    Numerous therapeutic interventions have been tested to enhance functional recovery after peripheral nerve injuries. After sciatic nerve crush in rats we tested balance and coordination and motor control training in sensorimotor tests and analyzed nerve and muscle histology. The balance and coordination training group and the sham group had better results than the sedentary and motor control groups in sensorimotor tests. The sham and balance and coordination groups had a significantly larger muscle area than the other groups, and the balance and coordination group showed significantly better values than the sedentary and motor control groups for average myelin sheath thickness and g-ratio of the distal portion of the nerve. The findings indicate that balance and coordination training improves sciatic nerve regeneration, suggesting that it is possible to revert and/or prevent soleus muscle atrophy and improve performance on sensorimotor tests. Copyright © 2011 Wiley Periodicals, Inc.

  18. Efeitos das células tronco adultas de medula óssea e do plasma rico em plaquetas na regeneração e recuperação funcional nervosa em um modelo de defeito agudo em nervo perfiférico em rato Bone marrow and platelet-rich plasma stem cells effects on nervous regeneration and functional recovery in an acute defect model of rats' peripheral nerve

    Directory of Open Access Journals (Sweden)

    Jefferson Braga-Silva

    2006-01-01

    Full Text Available OBJETIVOS: Foram avaliados os efeitos do uso de células tronco da medula óssea (CTM e do plasma rico em plaquetas (PRP na regeneração de nervos periféricos, utilizando um modelo estabelecido de regeneração de nervo ciático em ratos. MÉTODOS: Um defeito nervoso de 10 mm foi reconstruído com a utilização de um tubo de silicone preenchido com CTM, PRP ou ambos. O grupo controle recebeu somente o tubo de silicone. Foi realizado ainda um quinto grupo no qual o intervalo foi reconstruído utilizando o segmento ressecado do nervo. A função motora foi testada seis semanas após a cirurgia utilizando teste de marcha. Após o teste motor, os ratos foram anestesiados, o nervo ciático e o tubo foram ressecados e foi realizada microscopia eletrônica de transmissão. RESULTADOS: A análise quantitativa demonstra uma melhora na recuperação funcional no grupo CTM em comparação com os demais grupos. Regeneração nervosa foi demonstrada no grupo CTM por microscopia eletrônica de trasmissão com uma recuperação praticamente completa da anatomia neural. CONCLUSÃO: Nossos resultados sugerem que o uso de CTM associado com a técnica de tubulização promove uma satisfatória recuperação da função motora e regeneração nervosa.OBJECTIVES: The effects of the use of bone marrow stem cells (MSC and platelet-rich plasma (PRP on peripheral nerves regeneration were assessed by using an established model of sciatic nerve regeneration in rats. METHODS: A 10-mm nervous defect was reconstructed by using a silicone tube filled with MSC, PRP or both. The control group received only the silicone tube. A fifth group was also set, in which the interval was reconstructed by using a dried segment of the nerve. Motor function was tested six weeks after surgery, by means of a gait test. After motor test, the rats were anesthetized, the sciatic nerve and the tube were dried, and the transmission electronic microscopy was performed. RESULTS: The quantitative

  19. Interfacing peripheral nerve with macro-sieve electrodes following spinal cord injury

    OpenAIRE

    Nathan K Birenbaum; Matthew R MacEwan; Wilson Z Ray

    2017-01-01

    Macro-sieve electrodes were implanted in the sciatic nerve of five adult male Lewis rats following spinal cord injury to assess the ability of the macro-sieve electrode to interface regenerated peripheral nerve fibers post-spinal cord injury. Each spinal cord injury was performed via right lateral hemisection of the cord at the T9?10 site. Five months post-implantation, the ability of the macro-sieve electrode to interface the regenerated nerve was assessed by stimulating through the macro-si...

  20. Short-term electrical stimulation to promote nerve repair and functional recovery in a rat model.

    Science.gov (United States)

    Calvey, Colleen; Zhou, Wenda; Stakleff, Kimberly Sloan; Sendelbach-Sloan, Patricia; Harkins, Amy B; Lanzinger, William; Willits, Rebecca Kuntz

    2015-02-01

    To evaluate the effect of duration of electrical stimulation on peripheral nerve regeneration and functional recovery. Based on previous work, we hypothesized that applying 10 minutes of electrical stimulation to a 10-mm rat sciatic nerve defect would significantly improve nerve regeneration and functional recovery compared with the non-electrical stimulation group. A silicone tube filled with a collagen gel was used to bridge a 10-mm nerve defect in rats, and either 10 minutes or 60 minutes of electrical stimulation was applied to the nerve during surgery. Controls consisted of a silicone tube with collagen gel and no electrical stimulation or an isograft. We analyzed recovery over a 12-week period, measuring sciatic functional index and extensor postural thrust scores and concluding with histological examination of the nerve. Functional assessment scores at week 12 increased 24% in the 10-minute group as compared to the no stimulation control group. Electrical stimulation of either 10 or 60 minutes improved the number of nerve fibers over no stimulation. Additionally, the electrical stimulation group's histomorphometric analysis was not different from the isograft group. Several previous studies have demonstrated the effectiveness of 60-minute stimulations on peripheral nerve regeneration. This study demonstrated that an electrical stimulation of 10 minutes enhanced several functional and histomorphometric outcomes of nerve regeneration and was overall similar to a 60-minute stimulation over 12 weeks. Decreasing the electrical stimulation time from 60 minutes to 10 minutes provided a potential clinically feasible and safe method to enhance nerve regeneration and functional recovery. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  1. Workup and Management of Persistent Neuralgia following Nerve Block

    OpenAIRE

    Weyker, Paul David; Webb, Christopher Allen-John; Pham, Thoha M.

    2016-01-01

    Neurological injuries following peripheral nerve blocks are a relatively rare yet potentially devastating complication depending on the type of lesion, affected extremity, and duration of symptoms. Medical management continues to be the treatment modality of choice with multimodal nonopioid analgesics as the cornerstone of this therapy. We report the case of a 28-year-old man who developed a clinical common peroneal and lateral sural cutaneous neuropathy following an uncomplicated popliteal s...

  2. Maffucci syndrome and intracranial chondrosarcomas: a case report featuring spontaneous resolution of sixth nerve palsy.

    Science.gov (United States)

    Munro, Monique; Costello, Fiona; Burrowes, David; Yau, Ryan

    2015-03-01

    Maffucci syndrome is a rare disease process characterized by enchondromatosis with cutaneous hemangiomatosis. We report a 20-year-old woman with Maffucci syndrome with a 5-day history of diplopia. She was found to have a left sixth nerve palsy due to a parasellar chondrosarcoma. Three weeks later, the patient's diplopia spontaneously resolved. This unusual clinical course prompted us to review frequency of sixth nerve palsy with skull base neoplasms and the phenomenon of spontaneous resolution of diplopia.

  3. Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy

    OpenAIRE

    Lennertz, Richard C.; Medler, Karen A.; Bain, James L.; Wright, Douglas E.; Stucky, Cheryl L.

    2011-01-01

    Diabetes is the most prevalent metabolic disorder in the United States, and between 50% and 70% of diabetic patients suffer from diabetes-induced neuropathy. Yet our current knowledge of the functional changes in sensory nerves and their distal terminals caused by diabetes is limited. Here, we set out to investigate the functional and morphological consequences of diabetes on specific subtypes of cutaneous sensory nerves in mice. Diabetes was induced in C57Bl/6 mice by a single intraperitonea...

  4. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  5. Cutaneous papillomatosis in cattle.

    Science.gov (United States)

    Jelínek, F; Tachezy, R

    2005-01-01

    Three of four heifers housed together developed multiple cutaneous tumours in the linea alba and on the teats 3 months after the application of plastic muzzle plates with sharp tips to prevent mutual sucking and licking. Fibropapilloma with many koilocytes but few intranuclear inclusions was diagnosed histologically. The dermis showed neoplastic fibroblasts and a structureless intercellular matrix, and nonpurulent vasculitis was also recorded. Immunohistochemical examination with an antibody against L1 papillomavirus antigen demonstrated intranuclear positivity in single cells of the granular and cornified layers and in many mesenchymal cells in the fibrous parts of the tumours. CD3-positive lymphocytes were present in the wall of some blood vessels, and in the dermis and epidermis. Proliferating cell nuclear antigen was detected predominantly in the basal layer of the epidermis and in the superficial dermis. Electron microscopy revealed small intranuclear aggregates of virus particles in an epidermocyte, damage to desmosomes and disorganization of cytokeratin filaments in many epidermocytes. Aggregates of virus particles were revealed also in a fibroblast in the dermis. In blood capillaries of the corium, acute swelling, inflammation and necrosis of the endothelium were observed. By means of the polymerase chain reaction (PCR) and nucleotide DNA sequencing of the PCR product, the virus was identified as bovine papilloma virus type 1 (BPV 1). The presence of this virus in the tissue was further confirmed by in-situ hybridization with a BPV 1 probe.

  6. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  7. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model

    Directory of Open Access Journals (Sweden)

    Noguchi Takashi

    2010-11-01

    Full Text Available Abstract Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of Sry and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.

  8. Nerve transfer for sensory reconstruction of C8-T1 dermatomes in tetraplegia.

    Science.gov (United States)

    Bertelli, Jayme A; Ghizoni, Marcos F

    2016-11-01

    Absence of sensation in C8-T1 dermatome is a common finding in midcervical spinal cord injury. The goal was to restore sensation on the C8-T1 dermatomes by transferring sensory nerves with afferents on C5-C6 roots. A mean 10 months post spinal cord injury, we operated on 10 upper limbs from 5 tetraplegics averaging 23 years old. Cutaneous branches of the median nerve were transferred to the palm to the ulnar proper digital nerve of the little finger. In two patients, the lateral antebrachial cutaneous nerve was also transferred to the medial antebrachial cutaneous nerve. At a mean 20 months after surgery, on the ulnar side of the hand and little finger, all patients were able to perceive 19.3 g Semmes-Weinstein monofilament pressure. Nociception was restored on the medial side of the elbow, forearm, and hand. Faulty location was a common finding, but not as a major complaint. Sensory nerve transfers should be incorporated into the reconstruction of the upper limb in tetraplegics. © 2015 Wiley Periodicals, Inc. Microsurgery 36:637-641, 2016. © 2016 Wiley Periodicals, Inc.

  9. Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.

    Science.gov (United States)

    Pfister, Bryan J; Gordon, Tessa; Loverde, Joseph R; Kochar, Arshneel S; Mackinnon, Susan E; Cullen, D Kacy

    2011-01-01

    Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. This article reviews the clinical presentations and classification of nerve injuries, in addition to the state of the art for surgical decision-making and repair strategies. This discussion presents specific challenges that must be addressed to realistically improve the treatment of nerve injuries and promote widespread recovery. In particular, nerve defects a few centimeters in length use a sensory nerve autograft as the standard technique; however, this approach is limited by the availability of donor nerve and comorbidity associated with additional surgery. Moreover, we currently have an inadequate ability to noninvasively assess the degree of nerve injury and to track axonal regeneration. As a result, wait-and-see surgical decisions can lead to undesirable and less successful "delayed" repair procedures. In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.

  10. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies.

    Science.gov (United States)

    Wieringa, Paul A; Gonçalves de Pinho, Ana Rita; Micera, Silvestro; van Wezel, Richard J A; Moroni, Lorenzo

    2018-01-19

    Biofabrication techniques have endeavored to improve the regeneration of the peripheral nervous system (PNS), but nothing has surpassed the performance of current clinical practices. However, these current approaches have intrinsic limitations that compromise patient care. The "gold standard" autograft provides the best outcomes but requires suitable donor material, while implantable hollow nerve guide conduits (NGCs) can only repair small nerve defects. This review places emphasis on approaches that create structural cues within a hollow NGC lumen in order to match or exceed the regenerative performance of the autograft. An overview of the PNS and nerve regeneration is provided. This is followed by an assessment of reported devices, divided into three major categories: isotropic hydrogel fillers, acting as unstructured interluminal support for regenerating nerves; fibrous interluminal fillers, presenting neurites with topographical guidance within the lumen; and patterned interluminal scaffolds, providing 3D support for nerve growth via structures that mimic native PNS tissue. Also presented is a critical framework to evaluate the impact of reported outcomes. While a universal and versatile nerve repair strategy remains elusive, outlined here is a roadmap of past, present, and emerging fabrication techniques to inform and motivate new developments in the field of peripheral nerve regeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cutaneous ganglioneuroma associated with overlying hyperkeratotic epidermal changes: a report of 2 cases.

    Science.gov (United States)

    Furmanczyk, Paul S; Hughes, Sarah R; Walsh, John S; Bass, Jonathan; McFarlane, Joe R; Argenyi, Zsolt B

    2008-12-01

    The occurrence of primary cutaneous ganglioneuroma is rare. We report 2 separate cases of primary cutaneous ganglioneuroma, both of which are associated with prominent overlying hyperkeratosis. The first case was in a 38-year-old woman with overlying verrucous keratosis. The second case was in a 93-year-old man with epidermal changes reminiscent of a seborrheic keratosis. Histologically, both lesions were composed of a proliferation of hyperplastic nerve fibers with spindled Schwann cells and axons with intermingled ganglion cells. Immunohistochemistry for neurofilament highlighted nerve fascicles; S100 protein displayed the associated Schwann cells, and neuron-specific enolase stained the interspersed ganglion cells. Variation in immunohistochemical staining was present between the 2 cases. A review of the literature demonstrates variable immunohistochemical staining of ganglion and Schwann cells in prior cases. Familiarity with these findings is important in establishing a diagnosis. The significance of the associated hyperkeratosis remains speculative.

  12. [Cutaneous chondroid syringoma].

    Science.gov (United States)

    Aoun, Agathe; Dufrenot-Petitjean-Roget, Leila; Amazan, Emmanuelle; Derancourt, Christian; Alexandre, Marina; Quist, Danièle; Grossin, Maggy; Molinié, Vincent

    2015-08-01

    Chondroid syringoma (CS) is a rare cutaneous tumor characterized by mixte epithelial and mesenchymal component. The confident histological diagnosis can be obtained by immuno-histochemistry study. Here we present 10 new cases with their clinico-hystological characteristics. The 10 cases were observed between January 2000 and august 2013, in Fort-de-France and Louis-Mourier universitary hospitals. For all the cases a controlled histological study was performed by a dermatopathologist expert and immuno-histochemistry was added. Clinical and immuno-histological data were analyzed. The lesions were almost localized on the face (3/10) and the extremities (3/10). The size was about 1.2 to 5.2cm. Every case was treated by surgery, no malignant case was diagnosed. Histologically, all the 10 cases presented as a well-limited dermic tumor with a mixte epithelial and mesenchymal component. The stroma was myxo-chondroid, and the epithelial component consisted in epithelial cavities lined by one or two cell layers with eccrine (4/10) or apocrine (5/10) features. Immuno-chemistry study reveals positivity for EMA, ACE and CK7 for the internal cells, and positivity for S100 protein and vimentin of the extern cell layer. Chondroid syringoma is characterized by a mixte epithelial with eccrine and apocrine cells and a myxo-chondroid stroma. Our study has some clinical and histological particularities (lesions on the extremities, epidermic connecting…). The main differentials diagnoses are the other annexial tumors. The treatment is surgical. The histological diagnosis of CS is quite easy, but in case of doubt, immuno-chemistry will help, showing a double mesenchymal and epithelial differentiation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. An analysis of facial nerve function in irradiated and unirradiated facial nerve grafts

    International Nuclear Information System (INIS)

    Brown, Paul D.; Eshleman, Jeffrey S.; Foote, Robert L.; Strome, Scott E.

    2000-01-01

    irradiated group. Therefore, planned postoperative radiation therapy is not a contraindication to facial nerve grafting. Consideration for regeneration of the facial nerve should not influence the timing of postoperative radiotherapy, because early initiation of radiotherapy after facial nerve grafting did not have a deleterious effect on facial nerve function. However, the time required to attain best facial nerve function postoperatively may be slightly longer in irradiated patients

  14. Localized cutaneous sporotrichosis lasting for 10 years

    Directory of Open Access Journals (Sweden)

    Rathi S

    2003-05-01

    Full Text Available A case of localized cutaneous sporotrichosis lasting for 10 years is being reported. The fixed cutaneous variety creates diagnostic difficulty by mimicking other conditions, chiefly lupus vulgaris.

  15. Cutaneous human myiasis due to Dermatobia hominis.

    Science.gov (United States)

    Suite, M; Polson, K

    2007-10-01

    This is a case report of cutaneous myiasis due to Dermatobia hominis in a female physician who had travelled to Belize. Cutaneous myiasis is endemic in Central and South America but is seldom reported from the Caribbean islands.

  16. Partial epineural burying of nerve grafts with different sizes next to or distant from neurorrhaphy?s site: histological and electrophysiological studies in rat sciatic nerves

    Directory of Open Access Journals (Sweden)

    Cunha Marco Túlio Rodrigues da

    2001-01-01

    Full Text Available The aim of the present study was to compare and correlate histologically and electromyographically the effects of partial epineural burying of sural nerve segments in sectioned and sutured rat sciatic nerves. Sixty adult male Wistar rats were operated on 3 groups: Group 1, sural nerve graft, 9mm long, placed next to neurorrhaphy; Group 2, sural nerve graft, 9mm long, buryied 10mm distant from neurorrhaphy; Group 3, sural nerve graft, 18mm long, set next to neurorrhaphy. The morphological features were examined at light microscope after 3 months in 45 rats. The elements observed were: vascularization, vacuoles in nerve fibers, mastocytes and inflammatory infiltrate. The morphometry was made after 6 months in 15 rats from Group 1, 2 and 3, measuring external nerve fiber diameters and counting myelinated nerve fibers/mm². The electrophysiological study was perfomed after 6 months, registering maximum amplitude and frequency of EMG pontentials, at rest, in extensor digitorum longus muscle. Group 3 rats presented sciatic nerves better conserved morphologically and mean external nerve fiber diameters greater than those from Groups 1 and 2. There were no significant differences in density of nerve fibers/mm², and in the electrophysiological study in rats from Group 1, 2 and 3. The epineural burying of sural nerve grafts with greater length and placed next to the neurorrhaphy?s site had a significantly better regeneration of the histological features than the smaller ones distant from neurorrhaphy.

  17. Nerve Injuries in Athletes.

    Science.gov (United States)

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  18. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair.

    Science.gov (United States)

    Ryan, Alan J; Lackington, William A; Hibbitts, Alan J; Matheson, Austyn; Alekseeva, Tijna; Stejskalova, Anna; Roche, Phoebe; O'Brien, Fergal J

    2017-12-01

    Clinically available hollow nerve guidance conduits (NGCs) have had limited success in treating large peripheral nerve injuries. This study aims to develop a biphasic NGC combining a physicochemically optimized collagen outer conduit to bridge the transected nerve, and a neuroconductive hyaluronic acid-based luminal filler to support regeneration. The outer conduit is mechanically optimized by manipulating crosslinking and collagen density, allowing the engineering of a high wall permeability to mitigate the risk of neuroma formation, while also maintaining physiologically relevant stiffness and enzymatic degradation tuned to coincide with regeneration rates. Freeze-drying is used to seamlessly integrate the luminal filler into the conduit, creating a longitudinally aligned pore microarchitecture. The luminal stiffness is modulated to support Schwann cells, with laminin incorporation further enhancing bioactivity by improving cell attachment and metabolic activity. Additionally, this biphasic NGC is shown to support neurogenesis and gliogenesis of neural progenitor cells and axonal outgrowth from dorsal root ganglia. These findings highlight the paradigm that a successful NGC requires the concerted optimization of both a mechanical support phase capable of bridging a nerve defect and a neuroconductive phase with an architecture capable of supporting both Schwann cells and neurons in order to achieve functional regenerative outcome. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anatomy, biogenesis and regeneration of salivary glands.

    Science.gov (United States)

    Holmberg, Kyle V; Hoffman, Matthew P

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph.

  20. Damage to the superficial peroneal nerve in operative treatment of fibula fractures: straight to the bone? Case report and review of the literature.

    Science.gov (United States)

    Halm, Jens A; Schepers, Tim

    2012-01-01

    Ankle fractures are a significant part of the lower extremity trauma seen in the emergency department. Neurologic complications of ankle fracture surgery are infrequently described but account for significant morbidity. The risk of nerve injury is increased for the Blair and Botte type B pattern of the intermediate cutaneous dorsal nerve branch, crossing the distal fibula from posterior to anterior (at 5 to 7 cm from malleolar tip). This pattern is present in about 10% to 15% of patients. Injuries to the superficial peroneal nerve and its branches negatively influence the outcome. Early recognition and protection might reduce the incidence of superficial peroneal nerve injuries during open reduction and internal fixation of lateral malleolus fractures. We describe 2 surgically treated ankle fractures with superficial peroneal nerve branch (intermediate cutaneous dorsal nerve) involvement and review the current literature. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  1. [Adverse cutaneous reactions to drugs].

    Science.gov (United States)

    Suástegui-Rodríguez, Irvin; Campos-Jiménez, Karin Ivette; Domínguez-Cherit, Judith; Méndez-Flores, Silvia

    2018-01-01

    Adverse cutaneous reactions to drugs are any undesirable change in the structure or function of the skin. These are among the adverse side effects to common drugs. The most commonly implicated drugs are antibiotics and anticonvulsants. Cutaneous clinical manifestations are diverse ranging from mild or moderate reactions, such as urticaria and maculopapular rash, to severe cutaneous adverse reactions (SCAR), which are known due to their high morbidity and mortality (among these: Stevens-Johnson syndrome, toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). The clinical pattern, etiology, prognosis and treatment differ among these skin reactions, which is why it is necessary a clear diagnosis based on a comprehensive clinical examination, skin biopsy, and specific laboratory tests. The therapeutic options depend on the clinical diagnosis. For all reactions, a symptomatic and adequate supportive therapy is necessary; in some cases, a systemic immunomodulatory therapy can be useful.

  2. Cutaneous Plasmacytosis with Perineural Involvement

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Brezinski

    2014-01-01

    Full Text Available Importance. Cutaneous and systemic plasmacytosis are rare conditions of unknown etiology with characteristic red-brown skin lesions and a mature polyclonal plasma cell infiltrate within the dermis. Perineural plasma cell infiltrates may be a histologic clue to the diagnosis of cutaneous plasmacytosis. Observations. Our patient had a five-year history of persistent reddish-brown plaques on the neck and trunk without systemic symptoms. Histologic examination showed dermal perivascular and perineural plasma cells with excess lambda light chain expression. Due to decreased quality of life caused by his skin lesions, he was placed on a chemotherapeutic regimen with bortezomib. Conclusions and Relevance. The patient was diagnosed with cutaneous plasmacytosis based on classic histopathology results with a recently characterized pattern of perineural involvement. Bortezomib therapy was initiated to manage his skin eruption, which has not been previously described as a treatment for this chronic condition.

  3. Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors

    Science.gov (United States)

    2017-07-01

    of completion: 20% Estimated time for completing Milestone #1 Demonstration that DOR agonists inhibit action potential firing in cutaneous... action . Furthermore, we found that in two models of injuries, namely skin incision and nerve trauma, a single injection of deltorphin II eliminates the...a first step towards understanding the analgesic mechanism of action of DOR agonists. We are currently extending these findings by performing the

  4. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  5. Sensoric protection after median nerve injury: babysitter-procedure prevents muscular atrophy and improves neuronal recovery.

    Science.gov (United States)

    Beck-Broichsitter, Benedicta E; Becker, Stephan T; Lamia, Androniki; Fregnan, Federica; Geuna, Stefano; Sinis, Nektarios

    2014-01-01

    The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous nerve grafting from the contralateral median nerve in the babysitter and the control groups. Grasping tests measured functional recovery over 15 weeks. At the end of the observation period the weight of the flexor digitorum sublimis muscle was determined. The median nerve was excised for histological examinations. Muscle weight (P nerve fiber (P = 0.0409), and nerve surface (P = 0.0184) in the babysitter group. We conclude that sensory protection of a motor nerve is capable of preserving muscule weight and we may presume that metabolism of the sensory nerve was sufficient to keep the target muscle's weight and vitality.

  6. Sensoric Protection after Median Nerve Injury: Babysitter-Procedure Prevents Muscular Atrophy and Improves Neuronal Recovery

    Directory of Open Access Journals (Sweden)

    Benedicta E. Beck-Broichsitter

    2014-01-01

    Full Text Available The babysitter-procedure might offer an alternative when nerve reconstruction is delayed in order to overcome muscular atrophy due to denervation. In this study we aimed to show that a sensomotoric babysitter-procedure after median nerve injury is capable of preserving irreversible muscular atrophy. The median nerve of 20 female Wistar rats was denervated. 10 animals received a sensory protection with the N. cutaneous brachii. After six weeks the median nerve was reconstructed by autologous nerve grafting from the contralateral median nerve in the babysitter and the control groups. Grasping tests measured functional recovery over 15 weeks. At the end of the observation period the weight of the flexor digitorum sublimis muscle was determined. The median nerve was excised for histological examinations. Muscle weight (P<0.0001 was significantly superior in the babysitter group compared to the control group at the end of the study. The histological evaluation revealed a significantly higher diameter of axons (P=0.0194, nerve fiber (P=0.0409, and nerve surface (P=0.0184 in the bab