WorldWideScience

Sample records for current ubc vacancies

  1. NRC/UBC Node

    Energy Technology Data Exchange (ETDEWEB)

    Ellis-Perry, B. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Yogendran, Y. [NRC Inst. for Fuel Cell Innovation, Vancouver, British Columbia (Canada)

    2004-07-01

    'Full text:' In the search for cleaner, more sustainable energy sources, many of the most promising breakthroughs have been in hydrogen technology. However, this promise will remain unfulfilled without public interest and enthusiasm, and without the infrastructure to support the technology. In order to get there, we have to test, perfect, and demonstrate technology that is safe and affordable, and we must do so in practical, familiar settings. Ideally, such settings should be easily accessible to the engineers, planners, and architects of tomorrow while providing a showcase for hydrogen technology that will attract the general public. This place is the NRC/UBC Hydrogen Node. The UBC campus in Point Grey is home to leading edge, internationally recognized researchers in a range of disciplines, both within the University and at the NRC Institute for Fuel Cell Innovation. On average, 40,000 students, faculty, and staff use the campus every day; UBC graduates go on to leadership positions in communities around the globe. Its spectacular setting makes UBC a popular destination for thousands of visitors from around the world. In 2006 UBC will host the World Urban Forum, and in 2010 it will be one of the sites for the Vancouver-Whistler Olympic Games. UBC and its South Campus neighbourhoods are developing as a model sustainable community, offering an excellent opportunity to develop and showcase hydrogen infrastructure and technology in a real-life, attractive setting that will be seen by thousands of people around the world. UBC's facilities, location, and Trek 2010 commitment to excellence in learning, research, and sustainability make it an ideal location for such a project. The H2 Village at UBC will be an integrated hydrogen demonstration project, linked to the hydrogen highway. This project is bringing together leading companies, researchers, and government agencies committed to making the refinement and early adoption of safe hydrogen technology a

  2. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    Science.gov (United States)

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  3. Origin and enhancement of spin polarized current in diluted magnetic oxides by oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hsiung, E-mail: hchou@mail.nsysu.edu.tw; Yang, Kung-Shang; Tsao, Yao-Chung; Dwivedi, G. D.; Lin, Cheng-Pang [Department of Physics, National Sun Yat-Sen University, 70, Lienhai Road, Gushan District, Kaohsiung 804, Taiwan (China); Sun, Shih-Jye [Department of Applied Physics, National Kaohsiung University, 700, Gaoxiongdaxue Rd., Nanzi District, Kaohsiung 811, Taiwan (China); Lin, L. K.; Lee, S. F. [Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan (China)

    2016-04-04

    Spin polarized current (SPC) is a crucial characteristic of diluted magnetic oxides due to the potential application of oxides in spintronic devices. However, most research has been focused on ferromagnetic properties rather than polarization of electric current, because direct measurements are difficult and the origin of SPC has yet to be fully understood. The method to increase the SPC percentage is beyond practical consideration at present. To address this problem, we focus on the role of oxygen vacancies (V{sub O}) on SPC, which are controlled by growing the Co-doped ZnO thin-films at room temperature in a reducing atmosphere [Ar + (1%–30%)H{sub 2}]. We found that the conductivity increases with an increase of V{sub O} via two independent channels: the variable range hopping (VRH) within localized states and the itinerant transport in the conduction band. The point contact Andreev reflection measurements at 4.2 K, where the electric conduction is governed only by the VRH mechanism, prove that the current flowing in the VRH hopping channel is SPC. The percentage of SPC increases with the introduction of V{sub O} and increase in its concentration. The transport measurement shows that by manipulating V{sub O}, one can control the percentage of VRH hopping conduction such that it can even dominate room temperature conduction. The highest achieved SPC ratio at room temperature was 80%.

  4. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution

    KAUST Repository

    Lu, Ang-Yu

    2016-08-31

    The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

  5. Knockdown of UbcH10 Enhances the Chemosensitivity of Dual Drug Resistant Breast Cancer Cells to Epirubicin and Docetaxel

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    2015-03-01

    Full Text Available Breast cancer is one of the most common and lethal cancers in women. As a hub gene involved in a diversity of tumors, the ubiquitin-conjugating enzyme H10 (UbcH10, may also play some roles in the genesis and development of breast cancer. In the current study, we found that the expression of UbcH10 was up-regulated in some breast cancer tissues and five cell lines. We established a dual drug resistant cell line MCF-7/EPB (epirubicin/TXT (docetaxel and a lentiviral system expressing UbcH10 shRNA to investigate the effects of UbcH10 knockdown on the chemosensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel. The knockdown of UbcH10 inhibited the proliferation of both MCF-7 and MCF-7/EPB/TXT cells, due to the G1 phase arrest in cell cycle. Furthermore, UbcH10 knockdown increased the sensitivity of MCF-7/EPB/TXT cells to epirubicin and docetaxel and promoted the apoptosis induced by these two drugs. Protein detection showed that, in addition to inhibiting the expression of Ki67 and cyclin D1, UbcH10 RNAi also impaired the increased BCL-2 and MDR-1 expression levels in MCF-7/EPB/TXT cells, which may contribute to abating the drug resistance in the breast cancer cells. Our research in the current study demonstrated that up-regulation of UbcH10 was involved in breast cancer and its knockdown can inhibit the growth of cancer cells and increase the chemosensitivity of the dual drug resistant breast cancer cells to epirubicin and docetaxel, suggesting that UbcH10 may be a promising target for the therapy of breast cancer.

  6. Characterization of amino acid residues within the N-terminal region of Ubc9 that play a role in Ubc9 nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Sekhri, Palak [Department of Biological Sciences, Wayne State University, 5947 Gullen Mall, Detroit, MI 48202 (United States); Tao, Tao [School of Life Sciences, Xiamen University, Xiamen (China); Kaplan, Feige [Department of Human Genetics, McGill University, Montreal (Canada); Zhang, Xiang-Dong, E-mail: xzhang@wayne.edu [Department of Biological Sciences, Wayne State University, 5947 Gullen Mall, Detroit, MI 48202 (United States)

    2015-02-27

    As the sole E2 enzyme for SUMOylation, Ubc9 is predominantly nuclear. However, the underlying mechanisms of Ubc9 nuclear localization are still not well understood. Here we show that RNAi-depletion of Imp13, an importin known to mediate Ubc9 nuclear import, reduces both Ubc9 nuclear accumulation and global SUMOylation. Furthermore, Ubc9-R13A or Ubc9-H20D mutation previously shown to interrupt the interaction of Ubc9 with nucleus-enriched SUMOs reduces the nuclear enrichment of Ubc9, suggesting that the interaction of Ubc9 with the nuclear SUMOs may enhance Ubc9 nuclear retention. Moreover, Ubc9-R17E mutation, which is known to disrupt the interaction of Ubc9 with both SUMOs and Imp13, causes a greater decrease in Ubc9 nuclear accumulation than Ubc9-R13A or Ubc9-H20D mutation. Lastly, Ubc9-K74A/S89D mutations that perturb the interaction of Ubc9 with nucleus-enriched SUMOylation-consensus motifs has no effect on Ubc9 nuclear localization. Altogether, our results have elucidated that the amino acid residues within the N-terminal region of Ubc9 play a pivotal role in regulation of Ubc9 nuclear localization. - Highlights: • Imp13-mediated nuclear import of Ubc9 is critical for global SUMOylation. • Ubc9 mutations disrupting Ubc9-SUMO interaction decrease Ubc9 nuclear accumulation. • N-terminal amino acid residues of Ubc9 are critical for Ubc9 nuclear enrichment.

  7. Nitrogen-Vacancy Centers in Diamond for Current Imaging at the Redistributive Layer Level of Integrated Circuits

    CERN Document Server

    Nowodzinski, Antoine; Toraille, Loïc; Jacques, Vincent; Roch, Jean-François; Debuisschert, Thierry

    2015-01-01

    We present a novel technique based on an ensemble of Nitrogen-Vacancy (NV) centers in diamond to perform Magnetic Current Imaging (MCI) on an Integrated Circuit (IC). NV centers in diamond allow measuring the three components of the magnetic fields generated by a mA range current in an IC structure over a field of 50 x 200 {\\mu}m^2 with sub-micron resolution. Vector measurements allow using a more robust algorithm than those used for MCI using Giant Magneto Resistance (GMR) or Superconducting Quantum Interference Device (SQUID) sensors and it is opening new current reconstruction prospects. Calculated MCI from these measurements shows a very good agreement with theoretical current path. Acquisition time is around 10 sec, which is much faster than scanning measurements using SQUID or GMR. The experimental set-up relies on a standard optical microscope, and the measurements can be performed at room temperature and atmospheric pressure. These early experiments, not optimized for IC, show that NV centers in diamo...

  8. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis

    Science.gov (United States)

    Mattoscio, Domenico; Casadio, Chiara; Miccolo, Claudia; Maffini, Fausto; Raimondi, Andrea; Tacchetti, Carlo; Gheit, Tarik; Tagliabue, Marta; Galimberti, Viviana E.; De Lorenzi, Francesca; Chiesa, Fausto; Ansarin, Mohssen; Tommasino, Massimo

    2017-01-01

    UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV)-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells’ resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies. PMID:28253371

  9. Observation of an E2 (Ubc9)-homodimer by crystallography.

    Science.gov (United States)

    Alontaga, Aileen Y; Ambaye, Nigus D; Li, Yi-Jia; Vega, Ramir; Chen, Chih-Hong; Bzymek, Krzysztof P; Williams, John C; Hu, Weidong; Chen, Yuan

    2016-06-01

    Post-translational modifications by the small ubiquitin-like modifiers (SUMO), in particular the formation of poly-SUMO-2 and -3 chains, regulates essential cellular functions and its aberration leads to life-threatening diseases (Geoffroy and Hay, 2009) [1]. It was shown previously that the non-covalent interaction between SUMO and the conjugating enzyme (E2) for SUMO, known as Ubc9, is required for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. However, the structure of SUMO-Ubc9 non-covalent complex, by itself, could not explain how the poly-SUMO-2/3 chain forms and consequently a Ubc9 homodimer, although never been observed, was proposed for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007) [2]. Here, we solved the crystal structure of a heterotrimer containing a homodimer of Ubc9 and the RWD domain from RWDD3. The asymmetric Ubc9 homodimer is mediated by the N-terminal region of one Ubc9 molecule and a surface near the catalytic Cys of the second Ubc9 molecule (Fig. 1A). This N-terminal surface of Ubc9 that is involved in the homodimer formation also interacts with the RWD domain, the ubiquitin-fold domain of the SUMO activating enzyme (E1), SUMO, and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al.. 1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010; Alontaga et al., 2015) [2], [3], [4], [5], [6], [7], [8], [9], [10]. The existence of the Ubc9 homodimer in solution is supported by previously published solution NMR studies of rotational correlation time and chemical shift perturbation (Alontaga et al., 2015; Yuan et al., 1999) [10], [11]. Site-directed mutagenesis and biochemical analysis suggests that this dimeric arrangement of Ubc9 is likely important for poly-SUMO chain formation (Fig. 1B and C). The asymmetric Ubc9 homodimer described for the first time in this work could provide the critical missing link in the poly-SUMO chain formation mechanism. The

  10. Observation of an E2 (Ubc9-homodimer by crystallography

    Directory of Open Access Journals (Sweden)

    Aileen Y. Alontaga

    2016-06-01

    Full Text Available Post-translational modifications by the small ubiquitin-like modifiers (SUMO, in particular the formation of poly-SUMO-2 and -3 chains, regulates essential cellular functions and its aberration leads to life-threatening diseases (Geoffroy and Hay, 2009 [1]. It was shown previously that the non-covalent interaction between SUMO and the conjugating enzyme (E2 for SUMO, known as Ubc9, is required for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007 [2]. However, the structure of SUMO-Ubc9 non-covalent complex, by itself, could not explain how the poly-SUMO-2/3 chain forms and consequently a Ubc9 homodimer, although never been observed, was proposed for poly-SUMO-2/3 chain formation (Knipscheer et al., 2007 [2]. Here, we solved the crystal structure of a heterotrimer containing a homodimer of Ubc9 and the RWD domain from RWDD3. The asymmetric Ubc9 homodimer is mediated by the N-terminal region of one Ubc9 molecule and a surface near the catalytic Cys of the second Ubc9 molecule (Fig. 1A. This N-terminal surface of Ubc9 that is involved in the homodimer formation also interacts with the RWD domain, the ubiquitin-fold domain of the SUMO activating enzyme (E1, SUMO, and the E3 ligase, RanBP2 (Knipscheer et al., 2007; Tong et al.. 1997; Tatham et al., 2005; Reverter and Lima, 2005; Capili and Lima, 2007; Wang et al., 2009, 2010; Wang and Chen, 2010; Alontaga et al., 2015 [2–10]. The existence of the Ubc9 homodimer in solution is supported by previously published solution NMR studies of rotational correlation time and chemical shift perturbation (Alontaga et al., 2015; Yuan et al., 1999 [10,11]. Site-directed mutagenesis and biochemical analysis suggests that this dimeric arrangement of Ubc9 is likely important for poly-SUMO chain formation (Fig. 1B and C. The asymmetric Ubc9 homodimer described for the first time in this work could provide the critical missing link in the poly-SUMO chain formation mechanism. The data presented here are related

  11. Formation of vacancy-type defects in titanium nickelide

    Directory of Open Access Journals (Sweden)

    Baturin Anatolii

    2015-01-01

    Full Text Available In this report we briefly review the current state-of-the-art and challenges in determining point defect properties from first-principles calculations as well as from experimental measurements in titanium nickelid. . Based on the vacancy formation energy and their activation energy for vacancy migration in TiNi, vacancy mediated diffusion mechanism was examined. The behavior of vacancy defects in the TiNi structural phase transition has been described.

  12. The UBC{sup TM} test may be useful for diagnosis of recurred urinary bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Do Young; Jung, Se Il; Hwang, Joon Seong; Gil, Myung Cheol; Yoon, Jin Han; Kim, Duk Kyu [College of Medicine, Donga Univ., Seoul (Korea, Republic of)

    2001-07-01

    Previously we reported the usefulness of UBC{sup TM} test compared to urinary cytology for diagnosis of transitional cell carcinoma (TCC) of the bladder in patients with hematuria. Now we evaluated the usefulness of the UBC{sup TM} test for diagnosis of recurred urinary bladder cancer. 146 patients with hematuria were included in our study. UNC{sup TM} test (IDL Biotech, Sweden) were assayed in mid-stream urine according to the ordinary assay protocol. 33 patients were confirmed as TCC by cystoscopic examination and underwent transurethral resection (Group A). Other patients had various benign urinary tract conditions (Group B). Samples were considered positive as the UBC concentration was greater than 12 {mu} g/L. We compared UBC{sup TM} level with previous value 6 months later in patients whom diagnosed with TCC. UBC levels were significantly different between group A (95.9{+-}166.4 {mu} g/L) and group B (19.2{+-}85.6 {mu} g/L) (p<0.001). Sensitivity for diagnosis of TCC was 78.8% (26/33) in UBC test and 39.4% (13/33) in cytology (p<0.05). Specificity for diagnosis of TCC was 82.5% (80/97) in UBC{sup TM} test and 100% (97/97) in cytology. UBC{sup TM} test was significantly more sensitive in stage Ta. T{sub 1} tumors (80 vs 20 %, p<0.05) ad in grade I (80% vs 10%, p<0.05) than cytology, UBC{sup TM} test showed tendency to be more sensitive as the stage and grade was higher (80% in Ta, 83.3% in T1 and 100% in T2, 80% in Grade I, 85.7% in Grade II and 100% in Grade III). We follow-up UBC{sup TM} test in 5 patients after 6 months. UBC{sup TM} levels and recurrence were correlated in 4 patient (80%). Follow-up levels of UBC{sup TM} were increased in two recurred patients and normalized in non-recurred patients. One patient showed increased level of UBC{sup TM} test but clinically no evidence of recurrence. Although Also our patients were small, UBC{sup TM} test may be useful method for detecting the recurrence of TCC and further follow-up is necessary.

  13. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  14. Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage.

    Directory of Open Access Journals (Sweden)

    Yang-Ja Lee

    Full Text Available We have previously shown that a massive increase in global SUMOylation occurs during torpor in ground squirrels, and that overexpression of Ubc9 and/or SUMO-1 in cell lines and cortical neurons protects against oxygen and glucose deprivation. To examine whether increased global SUMOylation protects against ischemic brain damage, we have generated transgenic mice in which Ubc9 is expressed strongly in all tissues under the chicken β-actin promoter. Ubc9 expression levels in 10 founder lines ranged from 2 to 30 times the endogenous level, and lines that expressed Ubc9 at modestly increased levels showed robust resistance to brain ischemia compared to wild type mice. The infarction size was inversely correlated with the Ubc9 expression levels for up to five times the endogenous level. Although further increases showed no additional benefit, the Ubc9 expression level was highly correlated with global SUMO-1 conjugation levels (and SUMO-2,3 levels to a lesser extent up to a five-fold Ubc9 increase. Most importantly, there were striking reciprocal relationships between SUMO-1 (and SUMO-2,3 conjugation levels and cerebral infarction volumes among all tested animals, suggesting that the limit in cytoprotection by global SUMOylation remains undefined. These results support efforts to further augment global protein SUMOylation in brain ischemia.

  15. Perturbation of the hematopoietic system during embryonic liver development due to disruption of polyubiquitin gene Ubc in mice.

    Science.gov (United States)

    Ryu, Kwon-Yul; Park, Hyejin; Rossi, Derrick J; Weissman, Irving L; Kopito, Ron R

    2012-01-01

    Disruption of the polyubiquitin gene Ubc leads to a defect in fetal liver development, which can be partially rescued by increasing the amount of ubiquitin. However, it is still not known why Ubc is required for fetal liver development and the nature of the defective cell types responsible for embryonic lethality have not been characterized. In this study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We found that Ubc was highly expressed in the embryonic liver, and the proliferation capacity of fetal liver cells was reduced in Ubc(-/-) embryos. Specifically, Ubc was most highly expressed in hematopoietic cells, and the proliferation capacity of hematopoietic cells was significantly impaired in Ubc(-/-) embryos. While hematopoietic cell and hematopoietic stem cell (HSC) frequency was maintained in Ubc(-/-) embryos, the absolute number of these cells was diminished because of reduced total liver cell number in Ubc(-/-) embryos. Transplantations of fetal liver cells into lethally irradiated recipient mice by non-competitive and competitive reconstitution methods indicated that disruption of Ubc does not significantly impair the intrinsic function of fetal liver HSCs. These findings suggest that disruption of Ubc reduces the absolute number of HSCs in embryonic livers, but has no significant effect on the autonomous function of HSCs. Thus, the lethality of Ubc(-/-) embryos is not the result of intrinsic HSC failure.

  16. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer

    Directory of Open Access Journals (Sweden)

    Hatoh Shinji

    2009-03-01

    Full Text Available Abstract Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.

  17. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region

    DEFF Research Database (Denmark)

    Nielsen, Inga Sig; Nielsen, Olaf; Murray, Johanne M

    2002-01-01

    in a screen for high-copy-number disruptors of silencing. Expression of cDNAs encoding the putative E2 ubiquitin-conjugating enzymes UbcP3, Ubc15 (ubiquitin-conjugating enzyme), or Rhp6 (Rad homolog pombe) from the strong nmt1 promoter derepressed the silent mating-type loci mat2 and mat3 and reporter genes...... was not suppressed by a mutation in the 26S proteasome, suggesting that loss of silencing is not due to an increased degradation of silencing factors but rather to the posttranslational modification of proteins by ubiquitination. We discuss the implications of these results for the possible modes of action of UbcP3...

  18. Control of p53 multimerization by Ubc13 is JNK-regulated

    OpenAIRE

    2009-01-01

    The p53 tumor suppressor protein is a key regulator of cellular proliferation and survival whose function is tightly regulated at the levels of transcription and protein stability. Here, we unveil the fine control of p53 on translationally active polysomes. We have previously reported that Ubc13, an E2 ubiquitin-conjugating enzyme, directly regulates p53 localization and transcriptional activity. We now demonstrate that the association of p53 and Ubc13 on polysomes requires ongoing translatio...

  19. UbcH7 regulates 53BP1 stability and DSB repair.

    Science.gov (United States)

    Han, Xiangzi; Zhang, Lei; Chung, Jinsil; Mayca Pozo, Franklin; Tran, Amanda; Seachrist, Darcie D; Jacobberger, James W; Keri, Ruth A; Gilmore, Hannah; Zhang, Youwei

    2014-12-09

    DNA double-strand break (DSB) repair is not only key to genome stability but is also an important anticancer target. Through an shRNA library-based screening, we identified ubiquitin-conjugating enzyme H7 (UbcH7, also known as Ube2L3), a ubiquitin E2 enzyme, as a critical player in DSB repair. UbcH7 regulates both the steady-state and replicative stress-induced ubiquitination and proteasome-dependent degradation of the tumor suppressor p53-binding protein 1 (53BP1). Phosphorylation of 53BP1 at the N terminus is involved in the replicative stress-induced 53BP1 degradation. Depletion of UbcH7 stabilizes 53BP1, leading to inhibition of DSB end resection. Therefore, UbcH7-depleted cells display increased nonhomologous end-joining and reduced homologous recombination for DSB repair. Accordingly, UbcH7-depleted cells are sensitive to DNA damage likely because they mainly used the error-prone nonhomologous end-joining pathway to repair DSBs. Our studies reveal a novel layer of regulation of the DSB repair choice and propose an innovative approach to enhance the effect of radiotherapy or chemotherapy through stabilizing 53BP1.

  20. UBC(®) Rapid Test for detection of carcinoma in situ for bladder cancer.

    Science.gov (United States)

    Ecke, Thorsten H; Weiß, Sarah; Stephan, Carsten; Hallmann, Steffen; Barski, Dimitri; Otto, Thomas; Gerullis, Holger

    2017-05-01

    UBC(®) Rapid Test is a test that detects fragments of cytokeratins 8 and 18 in urine. We present results of a multicentre study measuring UBC(®) Rapid Test in bladder cancer patients and healthy controls with focus on carcinoma in situ (CIS) and high-grade bladder cancer. From our study with N = 452 patients, we made a stratified sub-analysis for carcinoma in situ of the urinary bladder. Clinical urine samples were used from 87 patients with tumours of the urinary bladder (23 carcinoma in situ, 23 non-muscle-invasive low-grade tumours, 21 non-muscle-invasive high-grade tumours and 20 muscle-invasive high-grade tumours) and from 22 healthy controls. The cut-off value was defined at 10.0 µg/L. Urine samples were analysed by the UBC(®) Rapid Test point-of-care system (concile Omega 100 POC reader). Pathological levels of UBC Rapid Test in urine are higher in patients with bladder cancer in comparison to the control group (p Rapid Test using the optimal threshold obtained by receiveroperated curve analysis was 0.75. Pathological values of UBC(®) Rapid Test in urine are higher in patients with high-grade bladder cancer in comparison to low-grade tumours and the healthy control group. UBC(®) Rapid Test has potential to be more sensitive and specific urinary protein biomarker for accurate detection of high-grade patients and could be added especially in the diagnostics for carcinoma in situ and non-muscle-invasive high-grade tumours of urinary bladder cancer.

  1. Role of molten salt flux in melting of used beverage container (UBC) scrap

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J.; Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-12-31

    Recycling of aluminum scrap, such as Used Beverage Container (UBC) scrap is steadily increasing. In secondary remelting of such scrap, it is a common practice to use protective molten salt cover. An appropriate salt protects metal from oxidation, promotes coalescence of the suspended metal droplets, and separates clean metal from the oxide contamination. The molten salt also reacts with metal. This causes metal loss and change of resulting metal composition. In this paper, role of molten salt fluxes in melting of UBC scrap is discussed, and selection criteria for molten salt are provided.

  2. Mapping the Binding Site of P53 on UBC9 by NMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIN,Dong-Hai(林东海)

    2002-01-01

    Human UBC9 is a member of the E2 family of proteins. However, instead of conjugating to ubiquitin, it conjugates to a ubiquitin homologue SUMO-1 (also known as UBL1, GMP1,SMTP3, PICT-1 and sentrin). The SUMO-1 conjugation pathway is very similar to that of ubiquitin with regard to the primary sequences of the ubiquitin activating enzymes (E1), the three-dimensional structures of the ubiquitin conjugating enzymes (E2), and the chemistry of the overall conjugation pathway. The interaction of p53 and UBC9, the E2 of the SUMO-1 pathway, has been studied by nuclear magnetic resonance spectroscopy. A peptide corresponding to the nuclear localization domain of p53 specifically interacts with UBC9 and this interaction is likely to be important for conjugation of p53 with SUMO-1. The largest chenical shift changes on UBC9 occur at residues 94 and 129-135. Tnis region is adjacent to the active site and has significant dynamic behavior on the μs-ms and ps-ns timescales. Correlation of chemical shift changes and mobility of these residues further suggest the importance of these residues in substrate recognition.

  3. 大豆(Glycinemax)GmDREB5互作蛋白GmUBC13的特性及功能%Characteristics and Function of a GmDREB5-Interacting Protein GmUBC13 in Soybean

    Institute of Scientific and Technical Information of China (English)

    徐东北; 马有志; 陈明; 陈耀锋; 于月华; 韩巧玲; 马亚男; 高世庆; 田野; 徐兆师; 李连城; 曲延英

    2014-01-01

    【目的】鉴定大豆抗逆相关转录因子 GmDREB5的互作蛋白,分析其互作蛋白 GmUBC13的特性及其生物学功能,解析GmDREB5提高植物抗逆性的分子机制。【方法】通过酵母双杂交系统,以大豆GmDREB5的AP2功能域为诱饵对干旱处理的大豆cDNA文库进行筛选,获得GmDREB5候选互作蛋白后通过酵母互作及体外Pull-down试验确定GmDREB5与候选蛋白之间的互作关系;同时,分析互作蛋白GmUBC13的进化关系、蛋白结构及亚细胞定位等特性;通过半定量RT-PCR分析其互作蛋白GmUBC13在干旱、高盐、低温等非生物胁迫和激素ABA处理下的表达谱;通过转化烟草鉴定GmUBC13的生物学功能。【结果】通过筛选大豆干旱处理的cDNA文库获得一个GmDREB5互作蛋白GmUBC13(ubiquitin conjugating enzyme 13),GmUBC13属于泛素结合酶蛋白家族,GmUBC13含有UBCc保守域(ubiquitin-conjugating enzyme catalytic domain)、与泛素连接酶E3互作的氨基酸残基以及高度保守的半胱氨酸催化位点。进化树分析表明,GmUBC13的氨基酸序列与拟南芥(Arabidopsisthaliana)含有16个成员的E2家族的第XV亚组的AtUBC13A、AtUBC13B以及水稻(Oryza sativa)的泛素结合酶蛋白Os01g0673600分别具有99%、97%和97%的同源性。酵母互作试验及体外Pull-down分析证明GmUBC13与GmDREB5蛋白之间存在相互作用。表达特性分析表明,GmUBC13受干旱、高盐、低温等非生物胁迫和激素ABA处理的诱导表达。GmUBC13在ABA的胁迫条件下,1 h开始有表达,10 h时表达量上升到最大,24 h稍微降低;在干旱和盐胁迫条件下,1 h开始表达,并随着胁迫时间的增长,表达量逐渐上升,24 h表达量达到最大;在低温胁迫条件下,GmUBC13受诱导较快,5 h表达达到最大,在10 h和24 h时未表达。蛋白亚细胞定位结果显示,GmDREB5蛋白定位在细胞核和细胞膜上,GmUBC13定位在细胞

  4. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Science.gov (United States)

    Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kang, Jee-Sook; Chung, Young Soo; Lee, Jai-Heon

    2013-01-01

    The ubiquitin conjugating enzyme E2 (UBC E2) mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1). RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA), but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana). The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1), a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  5. Overexpression of VrUBC1, a Mung Bean E2 Ubiquitin-Conjugating Enzyme, Enhances Osmotic Stress Tolerance in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Eunsook Chung

    Full Text Available The ubiquitin conjugating enzyme E2 (UBC E2 mediates selective ubiquitination, acting with E1 and E3 enzymes to designate specific proteins for subsequent degradation. In the present study, we characterized the function of the mung bean VrUBC1 gene (Vigna radiata UBC 1. RNA gel-blot analysis showed that VrUBC1 mRNA expression was induced by either dehydration, high salinity or by the exogenous abscisic acid (ABA, but not by low temperature or wounding. Biochemical studies of VrUBC1 recombinant protein and complementation of yeast ubc4/5 by VrUBC1 revealed that VrUBC1 encodes a functional UBC E2. To understand the function of this gene in development and plant responses to osmotic stresses, we overexpressed VrUBC1 in Arabidopsis (Arabidopsis thaliana. The VrUBC1-overexpressing plants displayed highly sensitive responses to ABA and osmotic stress during germination, enhanced ABA- or salt-induced stomatal closing, and increased drought stress tolerance. The expression levels of a number of key ABA signaling genes were increased in VrUBC1-overexpressing plants compared to the wild-type plants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that VrUBC1 interacts with AtVBP1 (A. thalianaVrUBC1 Binding Partner 1, a C3HC4-type RING E3 ligase. Overall, these results demonstrate that VrUBC1 plays a positive role in osmotic stress tolerance through transcriptional regulation of ABA-related genes and possibly through interaction with a novel RING E3 ligase.

  6. Crystal Structure of UBA2[superscript ufd]-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Taherbhoy, Asad M.; Hunt, Harold W.; Seyedin, Steven N.; Miller, David W.; Miller, Darcie J.; Huang, Danny T.; Schulman, Brenda A. (SJCH)

    2012-04-30

    Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called Sae1-Uba2), which activates Sumo's C-terminus, binds the dedicated E2 enzyme Ubc9, and promotes Sumo C-terminal transfer between the Uba2 and Ubc9 catalytic cysteines. To gain insights into details of E1-E2 interactions in the Sumo pathway, we determined crystal structures of the C-terminal ubiquitin fold domain (ufd) from yeast Uba2 (Uba2{sup ufd}), alone and in complex with Ubc9. The overall structures of both yeast Uba2{sup ufd} and Ubc9 superimpose well on their individual human counterparts, suggesting conservation of fundamental features of Sumo conjugation. Docking the Uba2{sup ufd}-Ubc9 and prior full-length human Uba2 structures allows generation of models for steps in Sumo transfer from Uba2 to Ubc9, and supports the notion that Uba2 undergoes remarkable conformational changes during the reaction. Comparisons to previous structures from the NEDD8 cascade demonstrate that UBL cascades generally utilize some parallel E1-E2 interaction surfaces. In addition, the structure of the Uba2{sup ufd}-Ubc9 complex reveals interactions unique to Sumo E1 and E2. Comparison with a previous Ubc9-E3 complex structure demonstrates overlap between Uba2 and E3 binding sites on Ubc9, indicating that loading with Sumo and E3-catalyzed transfer to substrates are strictly separate steps. The results suggest mechanisms establishing specificity and order in Sumo conjugation cascades.

  7. Disruption of polyubiquitin gene Ubc leads to defective proliferation of hepatocytes and bipotent fetal liver epithelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyejin; Yoon, Min-Sik; Ryu, Kwon-Yul, E-mail: kyryu@uos.ac.kr

    2013-06-07

    Highlights: •Proliferation capacity of Ubc{sup −/−} FLCs was reduced during culture in vitro. •Ubc is required for proliferation of both hepatocytes and bipotent FLEPCs. •Bipotent FLEPCs exhibit highest Ubc transcription and proliferation capacity. •Cell types responsible for Ubc{sup −/−} fetal liver developmental defect were identified. -- Abstract: We have previously demonstrated that disruption of polyubiquitin gene Ubc leads to mid-gestation embryonic lethality most likely due to a defect in fetal liver development, which can be partially rescued by ectopic expression of Ub. In a previous study, we assessed the cause of embryonic lethality with respect to the fetal liver hematopoietic system. We confirmed that Ubc{sup −/−} embryonic lethality could not be attributed to impaired function of hematopoietic stem cells, which raises the question of whether or not FLECs such as hepatocytes and bile duct cells, the most abundant cell types in the liver, are affected by disruption of Ubc and contribute to embryonic lethality. To answer this, we isolated FLCs from E13.5 embryos and cultured them in vitro. We found that proliferation capacity of Ubc{sup −/−} cells was significantly reduced compared to that of control cells, especially during the early culture period, however we did not observe the increased number of apoptotic cells. Furthermore, levels of Ub conjugate, but not free Ub, decreased upon disruption of Ubc expression in FLCs, and this could not be compensated for by upregulation of other poly- or mono-ubiquitin genes. Intriguingly, the highest Ubc expression levels throughout the entire culture period were observed in bipotent FLEPCs. Hepatocytes and bipotent FLEPCs were most affected by disruption of Ubc, resulting in defective proliferation as well as reduced cell numbers in vitro. These results suggest that defective proliferation of these cell types may contribute to severe reduction of fetal liver size and potentially mid

  8. HYDROGEN VACANCY INTERACTION IN TUNGSTEN

    NARCIS (Netherlands)

    FRANSENS, [No Value; ELKERIEM, MSA; PLEITER, F

    1991-01-01

    Hydrogen-vacancy interaction in tungsten was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. Hydrogen trapping at an In-111-vacancy cluster manifests itself as a change of the local electric field gradient, which gives rise to an observable

  9. Counting vacancies and nitrogen-vacancy centers in detonation nanodiamond

    Science.gov (United States)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian; Boothroyd, Chris B.; Hocking, Rosalie K.; Ōsawa, Eiji; Nicholls, Rebecca J.

    2016-05-01

    Detonation nanodiamond particles (DND) contain highly-stable nitrogen-vacancy (N-V) centers, making it important for quantum-optical and biotechnology applications. However, due to the small particle size, the N-V concentrations are believed to be intrinsically very low, spawning efforts to understand the formation of N-V centers and vacancies, and increase their concentration. Here we show that vacancies in DND can be detected and quantified using simulation-aided electron energy loss spectroscopy. Despite the small particle size, we find that vacancies exist at concentrations of about 1 at%. Based on this experimental finding, we use ab initio calculations to predict that about one fifth of vacancies in DND form N-V centers. The ability to directly detect and quantify vacancies in DND, and predict the corresponding N-V formation probability, has a significant impact to those emerging technologies where higher concentrations and better dispersion of N-V centres are critically required.Detonation nanodiamond particles (DND) contain highly-stable nitrogen-vacancy (N-V) centers, making it important for quantum-optical and biotechnology applications. However, due to the small particle size, the N-V concentrations are believed to be intrinsically very low, spawning efforts to understand the formation of N-V centers and vacancies, and increase their concentration. Here we show that vacancies in DND can be detected and quantified using simulation-aided electron energy loss spectroscopy. Despite the small particle size, we find that vacancies exist at concentrations of about 1 at%. Based on this experimental finding, we use ab initio calculations to predict that about one fifth of vacancies in DND form N-V centers. The ability to directly detect and quantify vacancies in DND, and predict the corresponding N-V formation probability, has a significant impact to those emerging technologies where higher concentrations and better dispersion of N-V centres are critically

  10. Mapping the Binding Site of P53 on UBC9 by NMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    林东海

    2002-01-01

    Human UBCP9 is a member of the E2 family of proteins.However,instead of conjugating to ubiquitin,it conjugates to a ubiquitin bomologue SUMO-1(also known as UBL1,GMP1,SMTP3,PICT-1 and sentrin).The SUMO-1 conjugation pathway is very similar to that of ubiquin with regard to the primary sequences of the ubiquitin activating enzymes(E1),the three-dimensional structures of the ubiquitin conjugating enzymes(E2),and the chemistry of the overall conjugation pathway.The interactiov of p53 and UBC9,the E2 of the SUMO-1 pathway,has heen studied by nuclear magnetic resonance spectroscopy.A peptide corresponding to the nuclear localization domain of p53 specifically interacts with UBC9 and this interaction is likely to be important for conjugation of p53 with SUMO-1.The largest chemical shift changes on UBC9 occur at residues94 and 129-135.This region is adjacent to the active site and has slgniflcant dynamic behavior on the μs-ms and ps-ns timescales.Correlation of chemical shift changes and mobility of these residues further suggest the importance of these residues in substrate recognition.

  11. TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k

    Science.gov (United States)

    Li, Yi-Ping; Lecker, Stewart H.; Chen, Yuling; Waddell, Ian D.; Goldberg, Alfred L.; Reid, Michael B.

    2003-01-01

    In some inflammatory diseases, TNF-alpha is thought to stimulate muscle catabolism via an NF-kappaB-dependent process that increases ubiquitin conjugation to muscle proteins. The transcriptional mechanism of this response has not been determined. Here we studied the potential role of UbcH2, a ubiquitin carrier protein and homologue of murine E220k. We find that UbcH2 is constitutively expressed by human skeletal and cardiac muscles, murine limb muscle, and cultured myotubes. TNF-alpha stimulates UbcH2 expression in mouse limb muscles in vivo and in cultured myotubes. The UbcH2 promoter region contains a functional NF-kappaB binding site; NF-kappaB binding to this sequence is increased by TNF-alpha stimulation. A dominant negative inhibitor of NF-kappaB activation blocks both UbcH2 up-regulation and the increase in ubiquitin-conjugating activity stimulated by TNF-alpha. In extracts from TNF-alpha-treated myotubes, ubiquitin-conjugating activity is limited by UbcH2 availability; activity is inhibited by an antiserum to UbcH2 or a dominant negative mutant of UbcH2 and is enhanced by wild-type UbcH2. Thus, UbcH2 up-regulation is a novel response to TNF-alpha/NF-kappaB signaling in skeletal muscle that appears to be essential for the increased ubiquitin conjugation induced by this cytokine.

  12. Ordering of vacancies on Si(001)

    NARCIS (Netherlands)

    Zandvliet, H.J.W.

    1997-01-01

    Missing dimer vacancies are always present on the clean Si(001) surface. The vacancy density can be increased by ion bombardment (Xe+, Ar+), etching (O2, Br2, I2, etc.) or Ni contamination. The equilibrium shape at low vacancy concentrations (<0.2¿0.3 monolayers) of these vacancy islands is elongate

  13. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells

    Science.gov (United States)

    Giorgino, Francesco; de Robertis, Ottilia; Laviola, Luigi; Montrone, Carmela; Perrini, Sebastio; McCowen, Karen C.; Smith, Robert J.

    2000-01-01

    Glucose transport in insulin-regulated tissues is mediated by the GLUT4 and GLUT1 transporters. Using the yeast two-hybrid system, we have cloned the sentrin-conjugating enzyme mUbc9 as a protein that interacts with the GLUT4 COOH-terminal intracellular domain. The mUbc9 enzyme was found to bind directly to GLUT4 and GLUT1 through an 11-aa sequence common to the two transporters and to modify both transporters covalently by conjugation with the mUbc9 substrate, sentrin. Overexpression of mUbc9 in L6 skeletal muscle cells decreased GLUT1 transporter abundance 65%, resulting in decreased basal glucose transport. By contrast, mUbc9 overexpression increased GLUT4 abundance 8-fold, leading to enhanced transport stimulation by insulin. A dominant-negative mUbc9 mutant lacking catalytic activity had effects opposite to those of wild-type mUbc9. The regulation of GLUT4 and GLUT1 was specific, as evidenced by an absence of mUbc9 interaction with or regulation of the GLUT3 transporter isoform in L6 skeletal muscle cells. The mUbc9 sentrin-conjugating enzyme represents a novel regulator of GLUT1 and GLUT4 protein levels with potential importance as a determinant of basal and insulin-stimulated glucose uptake in normal and pathophysiological states. PMID:10655495

  14. Quantum transport in graphene Hall bars: Effects of vacancy disorder

    Science.gov (United States)

    Petrović, M. D.; Peeters, F. M.

    2016-12-01

    Using the tight-binding model, we investigate the influence of vacancy disorder on electrical transport in graphene Hall bars in the presence of quantizing magnetic fields. Disorder, induced by a random distribution of monovacancies, breaks the graphene sublattice symmetry and creates states localized on the vacancies. These states are observable in the bend resistance, as well as in the total DOS. Their energy is proportional to the square root of the magnetic field, while their localization length is proportional to the cyclotron radius. At the energies of these localized states, the electron current flows around the monovacancies and, as we show, it can follow unexpected paths depending on the particular arrangement of vacancies. We study how these localized states change with the vacancy concentration, and what are the effects of including the next-nearest-neighbor hopping term. Our results are also compared with the situation when double vacancies are present in the system. Double vacancies also induce localized states, but their energy and magnetic field dependencies are different. Their localization energy scales linearly with the magnetic field, and their localization length appears not to depend on the field strength.

  15. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  16. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  17. 7 CFR 982.35 - Vacancy.

    Science.gov (United States)

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON Order Regulating Handling Hazelnut Control Board § 982.35 Vacancy. To fill any vacancy occasioned by...

  18. HYDROGEN VACANCY INTERACTION IN MOLYBDENUM

    NARCIS (Netherlands)

    Abd El Keriem, M.S.; van der Werf, D.P.; Pleiter, F

    1993-01-01

    Vacancy-hydrogen interaction in molybdenum was investigated by means of the perturbed angular correlation technique, using the isotope In-111 as a probe. The complex InV2 turned out to trap up to two hydrogen atoms: trapping of a single hydrogen atom gives rise to a decrease of the quadrupole

  19. Ubiquitin Conjugating Enzyme Ubc9 is Involved in Protein Degradation of Redox Factor-1 (Ref-1)%泛蛋白连接酶Ubc9参与氧还蛋白Ref-1的降解

    Institute of Scientific and Technical Information of China (English)

    严明达; 徐蔚晶; 鲁林荣; 孙兰英; 刘新垣; 郑仲承

    2000-01-01

    氧还蛋白Ref-1是一种双功能蛋白质,在细胞氧还调控和DNA无嘌呤/无嘧啶损伤修复中起重要作用.为寻找与它相互作用的蛋白Rips(Ref-1interacting proteins),用Ref-1氧还功能域进行了酵母双杂交库的筛选,得到了5种阳性克隆.其中Rip3经测序证实为泛蛋白连接酶Ubc9.Hela细胞中共过表达Ubc9可以明显抑制Ref-1对AP-1报告系统的增强作用.Western印迹发现Ref-1的蛋白质水平由于Ubc9的共过表达而下调.这些结果表明Ubc9参与了Ref-1的蛋白质降解,从而下调了Ref-1的生理功能.

  20. 7 CFR 932.33 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulating Handling Olive Administrative Committee § 932.33 Vacancies. To fill any vacancy occasioned by the failure of any person selected as a member, or as an alternate member of the committee to qualify, or in....29 insofar as such provisions are applicable. If nomination to fill any such vacancy is not...

  1. Usefulness of the UBC{sup TM} (urinary bladder cancer) test compared to urinary cytology for transitional cell carcinoma of the bladder in patients with hematuria

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Myung Cheol; Kang, Do Young; Seong, Youl Koon [School of Medicine, Donaga Univ., Busan (Korea, Republic of)] [and others

    2001-06-01

    Urinary cytology and cystoscopic exam are effective methods for diagnosis of transitional cell carcinoma (TCC). But the former shows drawbacks such as the need for a well-trained examiner, and wide imprecision related to the variability of microscopic exam; the latter is a invasive method. UBC{sup TM} test detects the epitope on specific cytokeratin fragments released from epithelium of bladder cancer by immunoradiometric assay. We compared UBC{sup TM} test with urinary cytology for diagnosis of TCC to evaluate the utility of UBC{sup TM} test. Eighty-four patients with hematuria were included in our study, UBC{sup TM} tests (IDL Biotech, Sweden) were assayed in mid-stream urine according to the ordinary assay protocol. Nineteen patients were confirmed as TCC by cystoscopic examination and underwent transurethral resection (Group A). Other patients had various benign urinary tract conditions (Group B). Samples were considered positive as the UBC{sup TM} concentration was greater than 12 {mu}g/L. UBC{sup TM} levels were significantly different between group A (95.9 {+-}166.4 {mu}g/L) and group B (19.2 {+-} 85.6 {mu}g/L)(p<0.001). Sensitivity for diagnosis of TCC was 89.5% (17/19) in UBC test and 47.4% (9/19) in cytology (p<0.05). Specificity for diagnosis of TCC was 81.5% (53/65) in UBC{sup TM} test and 100% (65/65) in cytology. UBC{sup TM} test was significantly more sensitive in stage Ta, T{sub 1} tumors (84.6 vs 38.5%, p<0.05) and in grade I (83.3% vs 16.7%, p<005) than cytology. UBC{sup TM} test showed a tendency to be more sensitive as the grade was higher (83.3% in Grade 1, 90% in Grade II and 100% in Grade III). UBC{sup TM} test could be a useful method in distinguishing TCC from other benign genitourinary diseases. Moreover, UBC{sup TM} test could be an especially valuable marker for diagnosis of TCC in patients with early TCC of low grade TCC compared to urinary cytology. Therefore, mbined use of UBC{sup TM} test in association with cytology is helpful to

  2. Are We Doing Any Good? A Value-Added Analysis of UBC's Science One Program

    Directory of Open Access Journals (Sweden)

    Chris Waltham

    2012-12-01

    Full Text Available Science One is a full academic year interdisciplinary alternative to the traditional first-year experience in the Faculty of Science at the University of British Columbia (UBC. Anecdotal reports suggest that alumni/ae of the program do very well in upper-level classes and many become successful graduate and medical students. The high faculty/student ratio makes the program an expensive one, however, and thus we have sought rigorous evidence of the benefits to our students. Our approach has been a value-added one; we have compared high-school and upper-level undergraduate grades for students in all UBC's first-year science programs. We have found a clear signal that there is a large benefit to participating in Science One, and conclude that this arises from a combination of the recruitment of enthusiastic students who are up for a challenge, the Science One admissions process, and taking the program itself.Science One consiste en une année scolaire interdisciplinaire complète qui représente une variante de l’expérience traditionnelle vécue en première année à la Faculté des sciences de l’Université de la Colombie-Britannique (UBC. Des rapports isolés suggèrent que les anciens étudiants du programme obtiennent de très bons résultats dans les cours de niveau supérieur et plusieurs obtiennent leur diplôme avec succès et étudient en médecine. Cependant, le ratio élevé enseignant/étudiant fait en sorte que le programme coûte cher, c’est pourquoi les auteurs ont cherché à obtenir des données probantes sur les avantages qu’il présente pour leurs étudiants. Ils ont employé la méthode de la valeur ajoutée; ont comparé les notes obtenues au secondaire et celles des étudiants de premier cycle inscrits à des cours de niveau supérieur dans tous les programmes scientifiques offerts à l’UBC. Ils ont découvert que la participation à Science One est très bénéfique et ont conclu que cela résulte d

  3. Proteasome inhibition promotes Parkin-Ubc13 interaction and lysine 63-linked ubiquitination.

    Directory of Open Access Journals (Sweden)

    Grace G Y Lim

    Full Text Available Disruption of the ubiquitin-proteasome system, which normally identifies and degrades unwanted intracellular proteins, is thought to underlie neurodegeneration. Supporting this, mutations of Parkin, a ubiquitin ligase, are associated with autosomal recessive parkinsonism. Remarkably, Parkin can protect neurons against a wide spectrum of stress, including those that promote proteasome dysfunction. Although the mechanism underlying the preservation of proteasome function by Parkin is hitherto unclear, we have previously proposed that Parkin-mediated K63-linked ubiquitination (which is usually uncoupled from the proteasome may serve to mitigate proteasomal stress by diverting the substrate load away from the machinery. By means of linkage-specific antibodies, we demonstrated here that proteasome inhibition indeed promotes K63-linked ubiquitination of proteins especially in Parkin-expressing cells. Importantly, we further demonstrated that the recruitment of Ubc13 (an E2 that mediates K63-linked polyubiquitin chain formation exclusively by Parkin is selectively enhanced under conditions of proteasomal stress, thus identifying a mechanism by which Parkin could promote K63-linked ubiquitin modification in cells undergoing proteolytic stress. This mode of ubiquitination appears to facilitate the subsequent clearance of Parkin substrates via autophagy. Consistent with the proposed protective role of K63-linked ubiquitination in times of proteolytic stress, we found that Ubc13-deficient cells are significantly more susceptible to cell death induced by proteasome inhibitors compared to their wild type counterparts. Taken together, our study suggests a role for Parkin-mediated K63 ubiquitination in maintaining cellular protein homeostasis, especially during periods when the proteasome is burdened or impaired.

  4. Graphene with vacancies: Supernumerary zero modes

    Science.gov (United States)

    Weik, Norman; Schindler, Johannes; Bera, Soumya; Solomon, Gemma C.; Evers, Ferdinand

    2016-08-01

    The density of states ϱ (E ) of graphene is investigated within the tight-binding (Hückel) approximation in the presence of vacancies. They introduce a nonvanishing density of zero modes nzm that act as midgap states, ϱ (E ) =nzmδ (E ) +smooth . As is well known, the actual number of zero modes per sample can, in principle, exceed the sublattice imbalance, Nzm≥|NA-NB| , where NA,NB denote the number of carbon atoms in each sublattice. In this paper, we establish a stronger relation that is valid in the thermodynamic limit and that involves the concentration of zero modes, nzm>|cA-cB| , where cA and cB denote the concentration of vacancies per sublattice; in particular, nzm is nonvanishing even in the case of balanced disorder, NA/NB=1 . Adopting terminology from benzoid graph theory, the excess modes associated with the current carrying backbone (percolation cluster) are called supernumerary. In the simplest cases, such modes can be associated with structural elements such as carbon atoms connected with a single bond, only. Our result suggests that the continuum limit of bipartite hopping models supports nontrivial "supernumerary" terms that escape the present continuum descriptions.

  5. Overexpression of the long non-coding RNA, linc-UBC1, is associated with poor prognosis and facilitates cell proliferation, migration, and invasion in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Gao X

    2017-02-01

    Full Text Available Xunfeng Gao, Jianfan Wen, Peng Gao, Guowei Zhang, Gangqing Zhang Department of General Surgery, The Second People’s Hospital of Guangdong Province, The Third Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, People’s Republic of China Abstract: Long non-coding RNAs (lncRNAs serve comprehensive roles in various diseases, including cancer. lncRNA upregulated in bladder cancer 1 (linc-UBC1 is a notable biomarker of prognosis in certain cancer types; however, its involvement in the progression of colorectal cancer (CRC remains unknown. The present study aimed to investigate the expression of linc-UBC1 in patients with CRC and to investigate its effect on CRC cells. The expression levels of linc-UBC1 were estimated by reverse transcription-quantitative polymerase chain reaction in clinical CRC specimens and matched adjacent non-tumor mucosa from 96 cases of CRC, as well as in a number of CRC cell lines. In addition, the biological roles of linc-UBC1 were examined using a cell counting kit-8 assay, flow cytometry, and migration and invasion assays following the downregulation of linc-UBC1 by small interfering RNA. The results revealed that linc-UBC1 was significantly overexpressed in CRC tissues and the majority of CRC cell lines compared with the matched non-tumor mucosa and normal intestinal epithelial cells. Furthermore, high expression levels of linc-UBC1 were significantly associated with large tumor size, greater tumor depth, lymph node metastasis, and advanced tumor-node-metastasis stages. Patients with abnormal expression of linc-UBC1 had poorer overall survival times according to Kaplan–Meier analyses. Furthermore, multivariate Cox regression analysis indicated that linc-UBC1 was a significant independent prognostic factor. The results also revealed that reducing the expression of linc-UBC1 led to the inhibition of migration, invasion, and proliferation of CRC cells in vitro. Taken together, the results of

  6. Vacancy Transport and Interactions on Metal Surfaces

    Science.gov (United States)

    2014-03-06

    AFRL-OSR-VA-TR-2013-0317 VACANCY TRANSPORT AND INTERACTIONS ON METAL SURFACES Gert Ehrlich UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 03/06/2014...30, 2012 Gert Ehrlich , PI Abstract This proposal is a study of vacancy transport and vacancy interaction on metal surfaces. Adatom self...Trembułowicz, Gert Ehrlich , Grażyna Antczak,Surface diffusion of gold on quasihexagonal-reconstructed Au(100) ,Physical Review B 84 (2011) 245445-1

  7. Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B*

    Science.gov (United States)

    Li, Shengjian; Liang, Yu-He; Mariano, Jennifer; Metzger, Meredith B.; Stringer, Daniel K.; Hristova, Ventzislava A.; Li, Jess; Randazzo, Paul A.; Tsai, Yien Che; Ji, Xinhua; Weissman, Allan M.

    2015-01-01

    RING proteins constitute the largest class of E3 ubiquitin ligases. Unlike most RINGs, AO7 (RNF25) binds the E2 ubiquitin-conjugating enzyme, UbcH5B (UBE2D2), with strikingly high affinity. We have defined, by co-crystallization, the distinctive means by which AO7 binds UbcH5B. AO7 contains a structurally unique UbcH5B binding region (U5BR) that is connected by an 11-amino acid linker to its RING domain, forming a clamp surrounding the E2. The U5BR interacts extensively with a region of UbcH5B that is distinct from both the active site and the RING-interacting region, referred to as the backside of the E2. An apparent paradox is that the high-affinity binding of the AO7 clamp to UbcH5B, which is dependent on the U5BR, decreases the rate of ubiquitination. We establish that this is a consequence of blocking the stimulatory, non-covalent, binding of ubiquitin to the backside of UbcH5B. Interestingly, when non-covalent backside ubiquitin binding cannot occur, the AO7 clamp now enhances the rate of ubiquitination. The high-affinity binding of the AO7 clamp to UbcH5B has also allowed for the co-crystallization of previously described and functionally important RING mutants at the RING-E2 interface. We show that mutations having marked effects on function only minimally affect the intermolecular interactions between the AO7 RING and UbcH5B, establishing a high degree of complexity in activation through the RING-E2 interface. PMID:26475854

  8. 7 CFR 1150.136 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE DAIRY PROMOTION PROGRAM Dairy Promotion and Research Order National Dairy Promotion and Research Board § 1150.136 Vacancies. To fill any vacancy...

  9. 7 CFR 1160.205 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE FLUID MILK PROMOTION PROGRAM Fluid Milk Promotion Order National Fluid Milk Processor Promotion Board § 1160.205 Vacancies. To fill any vacancy occasioned by...

  10. 7 CFR 993.32 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Order Regulating Handling Prune Marketing Committee § 993.32 Vacancies. In the event of any committee vacancy occasioned by the removal, resignation, disqualification, or death of any member, or in the event... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing...

  11. 7 CFR 989.34 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... CALIFORNIA Order Regulating Handling Raisin Administrative Committee § 989.34 Vacancies. To fill any vacancy occasioned by the failure of any person selected as a member or as an alternate member of the committee to... set forth in §§ 989.29 and 989.30, insofar as such provisions are applicable. If nomination to...

  12. Chemical Potential of Vacancies in Metal Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Jun; W.R.Tyson

    2000-01-01

    In this paper, a concept, the chemical potential of vacancies in metal crystals, has been derived from the partial mole free energy of vacancies based on a model of an atom-vacancy binary solution.For a pure metal crystal containing the mole concentration of vacancies, Cv and it's value in thermal equilibrium,C0, at temperature T the chemical potential can be expressed respectively as: μ v(Cv)=RT[1+1n(C√Co)]and μ v (Co)=RT The second term in μ v(Cv) is the chemical potential of the vacancies referred to the standardstate concentration given by J. P. Hirth [1] and first term is the standard-state one presented in this paper.

  13. SUMO and SUMO-Conjugating Enzyme E2 UBC9 Are Involved in White Spot Syndrome Virus Infection in Fenneropenaeus chinensis.

    Directory of Open Access Journals (Sweden)

    Xiaoqian Tang

    Full Text Available In previous work, small ubiquitin-like modifier (SUMO in hemocytes of Chinese shrimp Fenneropenaeus chinensis was found to be up-regulated post-white spot syndrome virus (WSSV infection using proteomic approach. However, the role of SUMO in viral infection is still unclear. In the present work, full length cDNAs of SUMO (FcSUMO and SUMO-conjugating enzyme E2 UBC9 (FcUBC9 were cloned from F. chinensis using rapid amplification of cDNA ends approach. The open reading frame (ORF of FcSUMO encoded a 93 amino acids peptide with the predicted molecular weight (M.W of 10.55 kDa, and the UBC9 ORF encoded a 160 amino acids peptide with the predicted M.W of 18.35 kDa. By quantitative real-time RT-PCR, higher mRNA transcription levels of FcSUMO and FcUBC9 were detected in hemocytes and ovary of F. chinensis, and the two genes were significantly up-regulated post WSSV infection. Subsequently, the recombinant proteins of FcSUMO and FcUBC9 were expressed in Escherichia coli BL21 (DE3, and employed as immunogens for the production of polyclonal antibody (PAb. Indirect immunofluorescence assay revealed that the FcSUMO and UBC9 proteins were mainly located in the hemocytes nuclei. By western blotting, a 13.5 kDa protein and a 18.7 kDa protein in hemocytes were recognized by the PAb against SUMO or UBC9 respectively. Furthermore, gene silencing of FcSUMO and FcUBC9 were performed using RNA interference, and the results showed that the number of WSSV copies and the viral gene expressions were inhibited by knockdown of either SUMO or UBC9, and the mortalities of shrimp were also reduced. These results indicated that FcSUMO and FcUBC9 played important roles in WSSV infection.

  14. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    Science.gov (United States)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-01-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec−1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm−2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction. PMID:28220847

  15. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    Science.gov (United States)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  16. SUMO-conjugating enzyme E2 UBC9 mediates viral immediate-early protein SUMOylation in crayfish to facilitate reproduction of white spot syndrome virus.

    Science.gov (United States)

    Chen, An-Jing; Gao, Lu; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2013-01-01

    Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host "arms race" and contribute to the development of novel methods against virulent viruses.

  17. In Silico cloning of full length cDNA of cryphonectria parasitica ubiquitin conjugated enzyme gene (CpUBC)%栗疫病菌泛素结合酶基因(CpUBC)全长cDNA的电子克隆

    Institute of Scientific and Technical Information of China (English)

    冯友军; 张会敏; 姜明国; 兰秀万

    2004-01-01

    In silico cloning is a novel eukarytic gene cloning strategy, which is developed recently to achieve full length gene or cDNA, basing BLAST or alignment in Genbank of only partial target sequence information known to us, and the acquired cDNA sequence can be identified further through RT-PCR. Here we report a full length cDNA of ubiquitin conjugated enzyme gene (CpUBC) in chestnut blight fungi, Cryphonectria parasitica through in silica cloning, consisting of 1023 base pairs (bp) and predicted to contain a 444 bp of ORF starting with ATG initial codon, and stopping with TAG stop codon at the position of 245 and 686 nucleotide acid respectively, by the free software of ORF Finder provided by NCBI. Sequence analysis of the open coding region (ORF) of CpUBC, compared with those of Maganaporthe grisea, Neurospora crassa, and Metarhizium anisopliae, shows that CpUBC has 93.8%, 72.2%, 66.9% of identity in deductive amino acid level, in addition to 80.0%, 73.2%, 64.9% of identity in nucleotide acid level, respectively.%电子克隆是一类近来发展起来的,通过有限的部分序列信息探针在Genbank数据库中比对,进而获得全长cDNA的真核基因克隆策略,而且该方法获得的全cDNAD克隆能为RT-PCR所验证.本研究首次应用电子克隆技术从粟疫病菌中克隆到一个1023个核苷酸长度的泛素结合酶基因(CpUBC)的全长cDNA.由NCBI提供的免费ORF Finder软件推导的该基因的开放阅读框(ORF)全长444个核苷酸,且起始密码子ATG及终止密码子TAG分别位于该泛素结合酶基因(CpUBC)cDNA的第245个核苷酸和第686个核苷酸.序列分析表明该基因(CpUBC)与稻瘟菌(Maganaporthe grises)、粗糙脉孢菌(Neurosporacrassa)及绿僵菌(Metarhizium anisopliae)在核苷酸水平的同源性分别为80.0%、73.2%和64.95;在氨基酸水平上的相似性分别为93.8%、72.2%和66.9%.

  18. Vacancy Defect Reconstruction and its Effect on Electron Transport in Si-C Nanotubes

    Directory of Open Access Journals (Sweden)

    S. Choudhary

    2011-01-01

    Full Text Available We investigate the vacancy defect reconstruction and its effect on I-V characteristics in a (4, 0 zigzag and (5, 5 armchair silicon-carbide nanotubes (SiCNTs by applying self consistent non-equilibrium Green’s function formalism in combination with the density-functional theory to a two probe molecular junction constructed from SiCNTs. The results show that single vacancies and di-vacancies in SiCNTs have different reconstructions. A single vacancy when optimized, reconstructs into a 5-1DB configuration in both zigzag and armchair SiCNTs, and a di-vacancy reconstructs into a 5-8-5 configuration in zigzag and into a 5-2DB configuration in armchair SiCNTs. Introduction of vacancy increases the band gap of (4, 0 metallic SiCNT and decreases the bandgap of (5, 5 semiconducting SiCNT, bias voltage dependent current characteristic show reduction in overall current in metallic SiCNT and an increase in overall current in semiconducting SiCNT.

  19. A sesquiterpene lactone from a medicinal herb inhibits proinflammatory activity of TNF-α by inhibiting ubiquitin-conjugating enzyme UbcH5.

    Science.gov (United States)

    Liu, Li; Hua, Yaping; Wang, Dan; Shan, Lei; Zhang, Yuan; Zhu, Junsheng; Jin, Huizi; Li, Honglin; Hu, Zhenlin; Zhang, Weidong

    2014-10-23

    UbcH5 is the key ubiquitin-conjugating enzyme catalyzing ubiquitination during TNF-α-triggered NF-κB activation. Here, we identified an herb-derived sesquiterpene lactone compound IJ-5 as a preferential inhibitor of UbcH5 and explored its therapeutic value in inflammatory and autoimmune disease models. IJ-5 suppresses TNF-α-induced NF-κB activation and inflammatory gene transcription by inhibiting the ubiquitination of receptor-interacting protein 1 and NF-κB essential modifier, which is essential to IκB kinase activation. Mechanistic investigations revealed that IJ-5 preferentially binds to and inactivates UbcH5 by forming a covalent adduct with its active site cysteine and thereby preventing ubiquitin conjugation to UbcH5. In preclinical models, pretreatment of IJ-5 exhibited potent anti-inflammatory activity against TNF-α- and D-galactosamine-induced hepatitis and collagen-induced arthritis. These findings highlight the potential of UbcH5 as a therapeutic target for anti-TNF-α interventions and provide an interesting lead compound for the development of new anti-inflammation agents.

  20. Human Ubc9 is involved in intracellular HIV-1 Env stability after trafficking out of the trans-Golgi network in a Gag dependent manner.

    Directory of Open Access Journals (Sweden)

    Christopher R Bohl

    Full Text Available The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER and its trafficking to the trans-Golgi network (TGN were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.

  1. 7 CFR 1207.324 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN Potato Research and Promotion Plan National Potato Promotion Board § 1207.324 Vacancies. To fill...

  2. Magnetic moments in graphene with vacancies.

    Science.gov (United States)

    Chen, Jing-Jing; Wu, Han-Chun; Yu, Da-Peng; Liao, Zhi-Min

    2014-08-07

    Vacancies can induce local magnetic moments in graphene, paving the way to make magnetic functional graphene. Due to the interaction between magnetic moments and conduction carriers, the magnetotransport properties of graphene can be modulated. Here, the effects of vacancy induced magnetic moments on the electrical properties of graphene are studied via magnetotransport measurements and spin-polarized density functional theory calculations. We show by quantum Hall measurements that a sharp resonant Vπ state is introduced in the midgap region of graphene with vacancies, resulting in the local magnetic moment. The coupling between the localized Vπ state and the itinerant carrier is tuned by varying the carrier concentration, temperature, magnetic field, and vacancy density, which results in a transition between hopping transport and the Kondo effect and a transition between giant negative magnetoresistance (MR) and positive MR. This modulated magnetotransport is valuable for graphene based spintronic devices.

  3. Vacancy Duration, Wage Offers, and Job Requirements

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Chen, Long-Hwa

    Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper adds some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate...... the business cycle. However, firms vary their skills requirements over the business cycle: our empirical analysis shows that, for a given wage offer, requirements are stricter in recessions and downturns. Separating between reasons for posting vacancies turned out important in explaining differences in vacancy...

  4. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis.

    Science.gov (United States)

    Zhou, Guo-An; Chang, Ru-Zhen; Qiu, Li-Juan

    2010-03-01

    Previous studies have shown that ubiquitination plays important roles in plant abiotic stress responses. In the present study, the ubiquitin-conjugating enzyme gene GmUBC2, a homologue of yeast RAD6, was cloned from soybean and functionally characterized. GmUBC2 was expressed in all tissues in soybean and was up-regulated by drought and salt stress. Arabidopsis plants overexpressing GmUBC2 were more tolerant to salinity and drought stresses compared with the control plants. Through expression analyses of putative downstream genes in the transgenic plants, we found that the expression levels of two ion antiporter genes AtNHX1 and AtCLCa, a key gene involved in the biosynthesis of proline, AtP5CS, and the copper chaperone for superoxide dismutase gene AtCCS, were all increased significantly in the transgenic plants. These results suggest that GmUBC2 is involved in the regulation of ion homeostasis, osmolyte synthesis, and oxidative stress responses. Our results also suggest that modulation of the ubiquitination pathway could be an effective means of improving salt and drought tolerance in plants through genetic engineering.

  5. Ubc2, an Ortholog of the Yeast Ste50p Adaptor, Possesses a Basidiomycete-Specific Carboxy terminal Extension Essential for Pathogenicity Independent of Pheromone Response.

    Science.gov (United States)

    Proteins involved in the MAP kinase pathway controlling mating, morphogenesis and pathogenicity have been identified previously in the fungus Ustilago maydis. One of these, the Ubc2 adaptor protein, possesses a basidiomycete-specific structure. In addition to containing SAM and RA domains typical of...

  6. Role of exchange interaction in nitrogen vacancy center based magnetometry

    Science.gov (United States)

    Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.; Chen, Zilong; Krivitsky, Leonid A.

    2016-12-01

    We propose a multilayer device comprising a thin-film-based ferromagnetic heterostructure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC's). We find that when the NVC's are in close proximity (1-2 nm) to the FMH, the exchange energy is comparable to, and may even surpass, the magnetostatic interaction energy. This calls forth the need to consider and utilize both effects in magnetometry based on NVC's in diamond. As the distance between the FMH and NVC is decreased to the subnanometer scale, the exponential increase in the exchange energy suggests spintronic applications of NVC's beyond magnetometry, such as detection of spin Hall effect or spin currents.

  7. The nitrogen vacancy in aluminium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Vail, J M [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2 (Canada); Chevrier, D K [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2 (Canada); Pandey, R [Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States); Blanco, M A [Departamento de QuImica Fisica y AnalItica, Universidad de Oviedo, E-33006-Oviedo (Spain)

    2006-02-22

    We have carried out a computational study for the nitrogen vacancy in charge states +3, +2 and +1 in AlN in the metastable zinc-blende phase. The vacancy and its four nearest-neighbour Al ions are treated as a molecular cluster, embedded in an infinite classical shell-model crystal. The following ground state properties, all of which are determinable from experiment, have been calculated: total spin, nearest-neighbour displacement, electron spin density at nearest-neighbour nuclei and breathing-mode force constant. The issue of disproportionation among the three charge states is also addressed. Most importantly, the optical excitation energies are evaluated.

  8. Influence of additives on the increase of the heating value of Bayah's coal with upgrading brown coal (UBC) method

    Science.gov (United States)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-01

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  9. Skin-sparing mastectomy and immediate autologous breast reconstruction in locally advanced breast cancer patients: a UBC perspective.

    Science.gov (United States)

    Ho, Adelyn L; Tyldesley, Scott; Macadam, Sheina A; Lennox, Peter A

    2012-03-01

    To describe the clinical outcomes of patients with locally advanced breast cancer (LABC) receiving neoadjuvant chemotherapy and preoperative radiotherapy, followed by skin-sparing mastectomy (SSM) and immediate autologous breast reconstruction (IABR). A retrospective review of 30 LABC patients who underwent SSM and IABR between 1997 to 2007 was performed. Data were drawn from patient records and the University of British Columbia (UBC) Breast Reconstruction and British Columbia Cancer Agency databases. All 30 patients received neoadjuvant chemotherapy, preoperative radiotherapy, SSM, and IABR. Fifteen patients (50%) had stage IIIA disease, 13 (43%) stage IIIB, and 2 (6.7%) stage IIIC. Reconstruction types included the pedicled transverse rectus myocutaneous flap (n = 24), the latissimus dorsi flap (n = 5), and a combination of transverse rectus myocutaneous and latissimus dorsi flap (n = 1). The median follow-up was 3.51 years (range 1-9.4 years). Local complications included mastectomy flap necrosis (n = 3), partial flap necrosis (n = 1), fat necrosis (n = 1), seroma (n = 3), infection (n = 2), and flap fibrosis (n = 1). The incidence of donor site complications was 20%. Overall 5-year actuarial locoregional relapse-free, distant relapse-free, and disease-specific survival rates were 80, 65, and 68%, respectively. Excellent or good physician-rated aesthetic results were achieved in 66% of patients. The UBC protocol avoids irradiation of the autologous breast reconstruction. Outcomes compare with findings from similar studies with respect to local recurrence, distant relapse, overall survival, and surgical complication rates. Neoadjuvant chemotherapy and preoperative radiotherapy in LABC patients desiring autologous breast reconstruction can be considered a safe option.

  10. An E2 enzyme Ubc11 is required for ubiquitination of Slp1/Cdc20 and spindle checkpoint silencing in fission yeast.

    Science.gov (United States)

    Horikoshi, Yasunori; Habu, Toshiyuki; Matsumoto, Tomohiro

    2013-03-15

    For ordered mitotic progression, various proteins have to be regulated by an ubiquitin ligase, the anaphase-promoting complex or cyclosome (APC/C) with appropriate timing. Recent studies have implied that the activity of APC/C also contributes to release of mitotic checkpoint complexes (MCCs) from its target Cdc20 in the process of silencing the spindle assembly checkpoint (SAC). Here we describe a temperature-sensitive mutant (ubc11-P93L) in which cell cycle progression is arrested at mitosis. The mutant grows normally at the restrictive temperature when SAC is inactivated, suggesting that the arrest is not due to abnormal spindle assembly, but rather due to prolonged activation of SAC. Supporting this notion, MCCs remain bound to APC/C even when SAC is satisfied. The ubc11 (+) gene encodes one of the two E2 enzymes required for progression through mitosis in fission yeast. Remarkably, Slp1 (a fission yeast homolog of Cdc20), which is degraded in an APC/C-dependent manner, stays stable throughout the cell cycle in the ubc11-P93L mutant lacking the functional SAC. Other APC/C substrates, in contrast, were degraded on schedule. We have also found that a loss of Ubc4, the other E2 required for progression through mitosis, does not affect the stability of Slp1. We propose that each of the two E2 enzymes is responsible for collaborating with APC/C for a specific set of substrates, and that Ubc11 is responsible for regulating Slp1 with APC/C for silencing the SAC.

  11. 7 CFR 924.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 924.26 Section 924.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... an alternate member of the committee to qualify, or in the event of the death, removal,...

  12. 7 CFR 945.28 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 945.28 Section 945.28 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate to qualify, or in the event of the death, removal, resignation,...

  13. 7 CFR 920.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 920.26 Section 920.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate member of the committee to qualify, or in the event of the death,...

  14. 7 CFR 930.27 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 930.27 Section 930.27 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... a member or as an alternate member of the Board to qualify, or in the event of the death,...

  15. 7 CFR 929.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 929.26 Section 929.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member of the committee to qualify, or in the event of the death, removal, resignation,...

  16. 7 CFR 922.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 922.26 Section 922.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... qualify, or in the event of the death, removal, resignation, or disqualification of any member...

  17. 7 CFR 955.26 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 955.26 Section 955.26 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... member or as an alternate to qualify, or in the event of the death, removal, resignation,...

  18. 7 CFR 948.58 - Vacancies.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Vacancies. 948.58 Section 948.58 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... of any person selected as a member or as an alternate to qualify, or in the event of the...

  19. Significant room-temperature ferromagnetism in porous ZnO films: The role of oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue; Liu, Huiyuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Sun, Huiyuan, E-mail: huiyuansun@126.com [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Liu, Lihu; Jia, Xiaoxuan [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Porous ZnO films were deposited on porous anodic alumina substrates. • Significant ferromagnetism (FM) has been observed in porous ZnO films (110 emu/cm{sup 3}). • The strong magnetic anisotropy was observed in the porous ZnO films. • The origin of FM is attributed to the oxygen vacancy with a local magnetic moment. - Abstract: Pure porous ZnO films were prepared by direct current reactive magnetron sputtering on porous anodic alumina substrates. Remarkably large room-temperature ferromagnetism was observed in the films. The highest saturation moment along the out-of-plane direction was about 110 emu/cm{sup 3}. Experimental and theoretical results suggested that the oxygen vacancies and the unique porous structure of the films are responsible for the large ferromagnetism. There are two modes of coupling between oxygen vacancies in the porous ZnO films: (i) exchange interactions directly between the oxygen vacancies and (ii) with the mediation of conduction electrons. In addition, it was found that the magnetic moment of ZnO films can be changed by tuning the concentration of oxygen vacancies. These observations may be useful in the development of ZnO-based spintronics devices.

  20. A mechanistic basis for the coordinated regulation of pharyngeal morphogenesis in Caenorhabditis elegans by LIN-35/Rb and UBC-18-ARI-1.

    Directory of Open Access Journals (Sweden)

    Kumaran Mani

    2009-06-01

    Full Text Available Genetic redundancy, whereby two genes carry out seemingly overlapping functions, may in large part be attributable to the intricacy and robustness of genetic networks that control many developmental processes. We have previously described a complex set of genetic interactions underlying foregut development in the nematode Caenorhabditis elegans. Specifically, LIN-35/Rb, a tumor suppressor ortholog, in conjunction with UBC-18-ARI-1, a conserved E2/E3 complex, and PHA-1, a novel protein, coordinately regulates an early step of pharyngeal morphogenesis involving cellular re-orientation. Functional redundancy is indicated by the observation that lin-35; ubc-18 double mutants, as well as certain allelic combinations of pha-1 with either lin-35 or ubc-18, display defects in pharyngeal development, whereas single mutants do not. Using a combination of genetic and molecular analyses, we show that sup-35, a strong recessive suppressor of pha-1-associated lethality, also reverts the synthetic lethality of lin-35; ubc-18, lin-35; pha-1, and ubc-18 pha-1 double mutants. SUP-35, which contains C2H2-type Zn-finger domains as well as a conserved RMD-like motif, showed a dynamic pattern of subcellular localization during embryogenesis. We find that mutations in sup-35 specifically suppress hypomorphic alleles of pha-1 and that SUP-35, acting genetically upstream of SUP-36 and SUP-37, negatively regulates pha-1 transcription. We further demonstrate that LIN-35, a transcriptional repressor, and UBC-18-ARI-1, a complex involved in ubiquitin-mediated proteolysis, negatively regulate SUP-35 abundance through distinct mechanisms. We also show that HCF-1, a C. elegans homolog of host cell factor 1, functionally antagonizes LIN-35 in the regulation of sup-35. Our cumulative findings piece together the components of a novel regulatory network that includes LIN-35/Rb, which functions to control organ morphogenesis. Our results also shed light on general mechanisms that

  1. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes.

    Science.gov (United States)

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J; Liu, Yi; Burlingame, A L; Correia, Maria Almira

    2015-02-06

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  2. First-principles Study on Infrared Absorptions of Transition Metal-doped ZnO with Oxygen Vacancy

    Institute of Scientific and Technical Information of China (English)

    Yinhua YAO; Quanxi CAO

    2013-01-01

    Using first-principle theory,the infrared absorptions of transition metal (Mn,Fe,Co,Ni)-doped ZnO were investigated.The results indicate that the absorptions of Mn-and Co-incorporated ZnO without oxygen vacancy are reduced,while those of Fe-and Ni-doped ZnO are raised.This is consistent with the previous experimental results.The effects of oxygen vacancy on the absorptions of the doped systems were predicted.When a neutral oxygen vacancy is introduced,all doping elements decrease the absorptions.On the contrary,the absorptions of the doped systems are enhanced if the vacancies are charged.Degraded absorptions can be obtained by increasing the permeability.However,the appearance of anti-bonding states may cause enhanced absorptions.In the current study,Mn-doped ZnO is the most suitable for use as low infrared absorption materials.

  3. Vacancy Duration, Wage Offers, and Job Requirements

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Chen, Long-Hwa

    is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate......Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper adds some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... logistic discrete hazard models with a rich set of job and firm characteristics as explanatory variables. The results show that vacancies associated with higher wage offers take, ceteris paribus, longer to be filled. The impact of firms' wage offers and credential requirements does not vary over...

  4. Skills and Vacancy Analysis with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Izabela A. Wowczko

    2015-11-01

    Full Text Available Through recognizing the importance of a qualified workforce, skills research has become one of the focal points in economics, sociology, and education. Great effort is dedicated to analyzing labor demand and supply, and actions are taken at many levels to match one with the other. In this work we concentrate on skills needs, a dynamic variable dependent on many aspects such as geography, time, or the type of industry. Historically, skills in demand were easy to evaluate since transitions in that area were fairly slow, gradual, and easy to adjust to. In contrast, current changes are occurring rapidly and might take an unexpected turn. Therefore, we introduce a relatively simple yet effective method of monitoring skills needs straight from the source—as expressed by potential employers in their job advertisements. We employ open source tools such as RapidMiner and R as well as easily accessible online vacancy data. We demonstrate selected techniques, namely classification with k-NN and information extraction from a textual dataset, to determine effective ways of discovering knowledge from a given collection of vacancies.

  5. Help-wanted advertising and job vacancies

    OpenAIRE

    Valletta, Robert G.

    2005-01-01

    Due to its reliance on newspaper advertising, the help-wanted index is an indirect measure of job vacancies. However, the level of job advertisements appearing in newspapers may change for reasons that are unrelated to overall labor demand. For example, equal employment opportunity laws raised the level of newspaper job advertising in the 1960s and 1970s, while internet job advertising has served as an increasingly effective substitute for newspaper advertising in recent years. In this Econom...

  6. Vacancy-indium clusters in implanted germanium

    KAUST Repository

    Chroneos, Alexander I.

    2010-04-01

    Secondary ion mass spectroscopy measurements of heavily indium doped germanium samples revealed that a significant proportion of the indium dose is immobile. Using electronic structure calculations we address the possibility of indium clustering with point defects by predicting the stability of indium-vacancy clusters, InnVm. We find that the formation of large clusters is energetically favorable, which can explain the immobility of the indium ions. © 2010 Elsevier B.V. All rights reserved.

  7. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  8. Vacancy rearrangement processes in multiply ionized atoms

    Energy Technology Data Exchange (ETDEWEB)

    Czarnota, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Pajek, M [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Banas, D [Institute of Physics, Swietokrzyska Academy, 25-406 Kielce (Poland); Dousse, J-Cl [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Maillard, Y-P [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Mauron, O [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Raboud, P A [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Berset, M [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Hoszowska, J [European Synchrotron Radiation Facility (ESRF), F-38043 Grenoble (France); Slabkowska, K [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Polasik, M [Faculty of Chemistry, Nicholas Copernicus University, 87-100 Torun (Poland); Chmielewska, D [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Rzadkiewicz, J [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland); Sujkowski, Z [Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk (Poland)

    2007-03-01

    We demonstrate that in order to interpret the x-ray satellite structure of Pd L{alpha}{sub 1,2}(L{sub 3}M{sub 4,5}) transitions excited by fast O ions, which was measured using a high-resolution von Hamos crystal spectrometer, the vacancy rearrangement processes, taking place prior to the x-ray emission, have to be taken into account. The measured spectra were compared with the predictions of the multi-con.guration Dirac-Fock (MCDF) calculations using the fluorescence and Coster-Kronig yields which were modiffed due to a reduced number of electrons available for relaxation processes and the effect of closing the Coster-Kronig transitions. We demonstrate that the vacancy rearrangement processes can be described in terms of the rearrangement factor, which can be calculated by solving the system of rate equations modelling the flow of vacancies in the multiply ionized atom. By using this factor, the ionization probability at the moment of collision can be extracted from the measured intensity distribution of x-ray satellites. The present results support the independent electron picture of multiple ionization and indicate the importance of use of Dirac-Hartree-Fock wave functions to calculate the ionization probabilities.

  9. Job Vacancy Rates in the Firm: An Empirical Analysis

    OpenAIRE

    Harry J. Holzer

    1990-01-01

    In this paper I present some evidence on the magnitudes and determinants of job vacancy rates at the firm level. The data are from a survey of firms in 1980 and 1982, as well as from 1980 Census data on industry and local area characteristics. The results show that overall job vacancy rates are low but there is substantial variation across firms, occupations, industries, and local areas. Unemployment rates, either local or aggregate, have negative effects on vacancy rates while average indust...

  10. The nitrogen-vacancy colour centre in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Marcus W., E-mail: marcus.doherty@anu.edu.au [School of Physics, University of Melbourne, VIC 3010 (Australia); Laser Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Manson, Neil B. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Delaney, Paul [School of Mathematics and Physics, Queens University Belfast, Northern Ireland BT7 1NN (United Kingdom); Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Jelezko, Fedor [Institut für Quantenoptik, Universität Ulm, Ulm D-89073 (Germany); Wrachtrup, Jörg [3rd Institute of Physics and Research Center SCOPE, University Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Hollenberg, Lloyd C.L. [School of Physics, University of Melbourne, VIC 3010 (Australia)

    2013-07-01

    The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies, such as biological and sub-diffraction limit imaging, and for tests of entanglement in quantum mechanics. Given this array of existing and potential applications and the almost 50 years of NV research, one would expect that the physics of the centre is well understood, however, the study of the NV centre has proved challenging, with many early assertions now believed false and many remaining issues yet to be resolved. This review represents the first time that the key empirical and ab initio results have been extracted from the extensive NV literature and assembled into one consistent picture of the current understanding of the centre. As a result, the key unresolved issues concerning the NV centre are identified and the possible avenues for their resolution are examined.

  11. Effects of oxygen vacancies on polarization stability of barium titanate

    Science.gov (United States)

    Wang, Jun; Shen, YaoGen; Song, Fan; Ke, FuJiu; Bai, YiLong; Lu, ChunSheng

    2016-03-01

    Oxygen vacancy, a kind of native point defects in ferroelectric ceramics, usually causes an increase of the dielectric loss. Based on experimental observations, it is believed that all of the oxygen vacancies are an unfavorable factor for energy saving. By using molecular dynamics simulations, we show that the increase of coercive and saturated electric fields is due to the difficulty to switch local polarization near an oxygen vacancy, and so that a ferroelectric device has to sustain the rising consumption of energy. The simulation results also uncover how oxygen vacancies influence ferroelectric properties.

  12. Vacancy rearrangement processes in multiply ionized atoms

    OpenAIRE

    Czarnota, M.; Pajek, M.; Banas, D.; Dousse, Jean-Claude; Maillard, Yves-Patrick; Mauron, Olivier; Raboud, Pierre-Alexandre; Berset, Michel; Hoszowska, J.; Slabkowska, K.; Polasik, M.; Chmielewska, D; Rzadkiewicz, J.; Sujkowski, Z.

    2007-01-01

    We demonstrate that in order to interpret the x-ray satellite structure of Pd Lα1,2(L₃M4,5) transitions excited by fast O ions, which was measured using a high-resolution von Hamos crystal spectrometer, the vacancy rearrangement processes, taking place prior to the x-ray emission, have to be taken into account. The measured spectra were compared with the predictions of the multi-con.guration Dirac-Fock (MCDF) calculations using the fluorescence and Coster-Kronig yields which were modiffed due...

  13. Dislocations and vacancies in two-dimensional mixed crystals of spheres and dimers

    KAUST Repository

    Gerbode, Sharon J.

    2010-10-15

    In colloidal crystals of spheres, dislocation motion is unrestricted. On the other hand, recent studies of relaxation in crystals of colloidal dimer particles have demonstrated that the dislocation dynamics in such crystals are reminiscent of glassy systems. The observed glassy dynamics arise as a result of dislocation cages formed by certain dimer orientations. In the current study, we use experiments and simulations to investigate the transition that arises when a pure sphere crystal is doped with an increasing concentration of dimers. Specifically, we focus on both dislocation caging and vacancy motion. Interestingly, we find that any nonzero fraction of dimers introduces finite dislocation cages, suggesting that glassy dynamics are present for any mixed crystal. However, we have also identified a vacancy-mediated uncaging mechanism for releasing dislocations from their cages. This mechanism is dependent on vacancy diffusion, which slows by orders of magnitude as the dimer concentration is increased. We propose that in mixed crystals with low dimer concentrations vacancy diffusion is fast enough to uncage dislocations and delay the onset of glassy dislocation dynamics. © 2010 The American Physical Society.

  14. N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts

    Science.gov (United States)

    Xu, Lei; Wang, Zhimin; Wang, Jialu; Xiao, Zhaohui; Huang, Xiaobing; Liu, Zhigang; Wang, Shuangyin

    2017-04-01

    Developing highly active electrocatalysts for the oxygen evolution reaction (OER) with a high surface area, high catalytic activity, low cost and high conductivity is a big challenge for various energy technologies. Herein, for the first time, we realized the simultaneous nitrogen doping and etching of Co3O4 nanosheets to produce N-doped nanoporous Co3O4 nanosheets with oxygen vacancies by N2 plasma. The increase in active sites in N-doped Co3O4 nanosheets and improved electronic conductivity with N doping and oxygen vacancies results in excellent electrocatalytic activity for the OER. Compared with pristine Co3O4 nanosheets, the N-doped Co3O4 nanosheets with oxygen vacancies have a much lower required potential of 1.54 V versus a reversible hydrogen electrode than the pristine Co3O4 nanosheets (1.79 V) to reach the current density of 10 mA cm‑2. The N-doped and etched Co3O4 nanosheets have a much lower Tafel slope of 59 mV dec‑1 than pristine Co3O4 nanosheets (234 mV dec‑1). The enhanced electrocatalytic activity for the OER is caused by the increased surface area, N doping and the produced oxygen vacancies.

  15. GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance.

    Directory of Open Access Journals (Sweden)

    Ulla Kampmann

    Full Text Available AIMS: Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance. METHODS: Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques. RESULTS: GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9 expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls. CONCLUSIONS: Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance.

  16. Interaction of oxygen vacancies in yttrium germanates

    KAUST Repository

    Wang, Hao

    2012-01-01

    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  17. Land Policy and Vacancies in the Metropolitan Amsterdam Office Market

    NARCIS (Netherlands)

    Brouwer, Henk J.; Nozeman, Ed F.; van der Vlist, Arno J.

    2014-01-01

    In this chapter, we focus on office vacancy. In the past decade, there has been a considerable increase of the availability of offices in the Amsterdam region. In 1999, the actual vacancy was close to zero. By now, supply of offices is approaching 20 % of total stock. In many areas, it is already ov

  18. Environmental Quality Assessment of Built Areas with High Vacancy

    Science.gov (United States)

    Jiang, Y.; Yuan, Y.; Neale, A. C.

    2015-12-01

    Around the world, many urban areas are challenged by vacant and abandoned residential and business property. High vacancy areas have often been associated with increasing public safety problems and declining property values and subsequent tax base. High vacancy can lead to visible signs of city decline and significant barriers to the revitalization of cities. Addressing the problem of vacancy requires knowledge of vacancy patterns and their possible contributing factors. In this study, we evaluated the ten year (2005-2015) urban environmental changes for some high vacancy areas. Social and economic variables derived from U.S. census data such as non-white population, employment rate, housing price, and environmental variables derived from National Land Cover Data such as land cover and impervious area, were used as the basis for analysis. Correlation analysis and principle components analysis were performed at the Census Block Group level. Three components were identified and interpreted as economic status, urbanness, and greenness. A synthetic Urban Environmental Quality (UEQ) index was developed by integrating the three principle components according to their weights. Comparisons of the UEQ indices between the 2005 and 2015 in the increasingly high vacancy area provided useful information for investigating the possible associations between social, economic, and environmental factors, and the vacancy status. This study could provide useful information for understanding the complex issues leading to vacancy and facilitating future rehabilitation of vacant urban area.

  19. 29 CFR 511.5 - Vacancies and dissolution of committees.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Vacancies and dissolution of committees. 511.5 Section 511.5 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS WAGE ORDER PROCEDURE FOR AMERICAN SAMOA § 511.5 Vacancies and dissolution of committees. The...

  20. Culture Vacancy in Translation of Chinese and English Idioms

    Institute of Scientific and Technical Information of China (English)

    王佳莹

    2014-01-01

    Idioms always carry strong cultural characteristics of their own nations, so in idiom translation, culture vacancy is a common problem for translators and the way we deal with this problem may probably decide the quality of our translations. This thesis mainly discusses the definition and three main resources for culture vacancy.

  1. Statistical distribution of thermal vacancies close to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    José Pozo, María, E-mail: mariaj.pozom@gmail.com [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Davis, Sergio, E-mail: sdavis@gnm.cl [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Peralta, Joaquín, E-mail: joaquin.peralta@unab.cl [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago (Chile)

    2015-01-15

    A detailed description of the statistical distribution of thermal vacancies in an homogeneous crystal near its melting point is presented, using the embedded atom model for copper as an example. As the temperature increase, the average number of thermal vacancies generated by atoms migrating to neighboring sites increases according to Arrhenius’ law. We present for the first time a model for the statistical distribution of thermal vacancies, which according to our atomistic computer simulations follow a Gamma distribution. All the simulations are carried out by classical molecular dynamics and the recognition of vacancies is achieved via a recently developed algorithm. Our results could be useful in the further development of a theory explaining the mechanism of homogeneous melting, which seems to be mediated by the accumulation of thermal vacancies near the melting point.

  2. First Principles Study of Aluminium Vacancy in Wurtzite Aluminium Nitride

    Institute of Scientific and Technical Information of China (English)

    GAO Ting-Ge; YI Jue-Min; ZHOU Zi-Yao; HU Xiao-Dong

    2008-01-01

    @@ We report that the aluminium vacancy in wurtzite AIN brings about two impurity levels e and a2 in the band gap, not just one single t2 level The aluminium vacancy carries a magnetic moment of 1 μB in the ground state. The molecule orbit of the aluminium vacancy becomes e↑↑ a2↑ rather than e↑↑ a2↑. The calculation is carried out by using the CASTEP code. The intrinsic symmetry of wurtzite A1N is the driving force for this spin splitting. Finally the symmetry of wurtzite AlN results in an anti-ferromagnetic coupling between the aluminium vacancies, as is predicted. Our findings are helpful to gain a more through understanding of the structural and spin property of aluminium vacancy in wurtzite AIN.

  3. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory

    Science.gov (United States)

    Hu, Cong; Wang, Qi; Bai, Shuai; Xu, Min; He, Deyan; Lyu, Deyuan; Qi, Jing

    2017-02-01

    Oxygen vacancy (Vo) is believed to control the switching mechanism of metal oxide resistive switching memory. However, an accurate and quantitative theory to prove this point of view remains absent. In this letter, we propose a model combining the Poole-Frenkel effect, space charge limited current, and the modification of Vo density to simulate the current-voltage curves. The calculated results show reasonable agreements with the experimental data, which indicates that resistive switching between high resistance state and low resistance state in the devices of Al/ZnO/p+-Si is led by the density change of Vo. Furthermore, the essence of this leading effect of Vo density is explained by electrons capture and emission via oxygen vacancies. This research demonstrates the significance of Vo in theory and gives an insight into the switching mechanism.

  4. Thermal vacancies in random alloys in the single-site mean-field approximation

    CERN Document Server

    Ruban, Andrei V

    2015-01-01

    A formalism for the vacancy formation energies in random alloys is outlined within the single-site mean-filed approximation where vacancy-vacancy interaction is neglected. It is shown that alloy entropy (without vacancies) can substantially reduce the concentration of vacancies at high temperatures. The energetics of vacancies in random Cu_0.5Ni_0.5 alloy is considered as a numerical example illustrating the developed formalism. It is shown that the effective formation energy is increases with temperature, however, in this particular system it is still below the mean value of the vacancy formation energy due to a large dispersion of the local vacancy formation energies.

  5. Recombination Cross Section for Interstitials and Vacancies as a Function of Vacancy Concentration

    DEFF Research Database (Denmark)

    Leffers, Torben; Singh, Bachu Narain

    1981-01-01

    the actual recombination event. This makes it possible to cover the range of vacancy concentrations from very high values down to 10−6 and to include the case where interstitials and vacancies are equally mobile. We are therefore in a position to establish the dependence of Ziv, on the various relevant......In a previous work it was shown by computer simulation of point-defect migration that the recombination cross section Ziv, is substantially smaller than normally quoted in literature. In the present work we use a different type of computer program that, unlike the former program, includes...... parameters. The relation between the present atomistic approach and the alternative continuum approach is discussed....

  6. Electronic Properties of the Zirconium Crystal with Vacancies and Dynamics of Vacancies: ab-initio Calculations and Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    V.O. Kharchenko

    2015-06-01

    Full Text Available Within this paper we have the studied structural and electronic properties of zirconium crystal with vacancies from the first principles. We have defined the optimal values for the lattice constants. The corresponding densities of states and energetic spectrum were calculated. These results gave a possibility to define the Fermi structure of the zirconium crystal with vacancies. In the framework of the molecular dynamics simulations we have studied the dynamics of the ensemble of periodically located vacancies in the zirconium crystal with an increase in temperature. We have analyzed the reconstruction of atomic structure and change in the total volume of the crystal with the temperature growth. The dependencies of the volume expansion coefficient for the pure zirconium without vacancies end zirconium crystal with different vacancies concentration on the temperature were studied.

  7. The effect of oxygen vacancies on the electrical properties of TiO2-x Re-RAM switching devices

    Science.gov (United States)

    Benkraouda, Maamar

    2014-03-01

    The main goal of this work is to contribute toward an accurate determination of the electronic properties of Resistance random access memory (Re-RAM) using the density functional theory, which is the current state of the art method that employs high accuracy, it can treat a few hundred atoms on medium sized PC. All the fundamental properties are studied as a function of the mole fraction. The density of states arising from vacancy distribution, the electron transport and formation energy are analyzed. Using controllable mole fraction, various intermediate resistance states are induced. Oxygen vacancy has a considerable effect on the electrical properties of most transition metal oxides such as TiOx Re-RAM devices. The presence of oxygen vacancies is linked to the on-state conduction and resistance switching mechanism. Hydrogen is a ubiquitous impurity in most semiconductors, insertion of hydrogen atoms will remove some of defect states which were induced by oxygen vacancies; this will obviously have an effect on the conductive path, because hydrogen in the vacancy site results in the rupture of conductive channel by localizing electrons, the conductivity may decrease in this case.

  8. Persistence of strong and switchable ferroelectricity despite vacancies

    Science.gov (United States)

    Raeliarijaona, Aldo; Fu, Huaxiang

    2017-01-01

    Vacancies play a pivotal role in affecting ferroelectric polarization and switching properties, and there is a possibility that ferroelectricity may be utterly eliminated when defects render the system metallic. However, sufficient quantitative understandings of the subject have been lacking for decades due to the fact that vacancies in ferroelectrics are often charged and polarization in charged systems is not translationally invariant. Here we perform first-principles studies to investigate the influence of vacancies on ferroelectric polarization and polarization switching in prototypical BaTiO3 of tetragonal symmetry. We demonstrate using the modern theory of polarization that, in contrast to common wisdom, defective BaTiO3 with a large concentration of vacancies (or , or ) possesses a strong nonzero electric polarization. Breaking of Ti-O bonds is found to have little effect on the magnitude of polarization, which is striking. Furthermore, a previously unrecognized microscopic mechanism, which is particularly important when vacancies are present, is proposed for polarization switching. The mechanism immediately reveals that (i) the switching barrier in the presence of is small with ΔE = 8.3 meV per bulk formula cell, and the polarization is thus switchable even when vacancies exist; (ii) The local environment of vacancy is surprisingly insignificant in polarization switching. These results provide profound new knowledge and will stimulate more theoretical and experimental interest on defect physics in FEs. PMID:28120941

  9. Persistence of strong and switchable ferroelectricity despite vacancies

    Science.gov (United States)

    Raeliarijaona, Aldo; Fu, Huaxiang

    2017-01-01

    Vacancies play a pivotal role in affecting ferroelectric polarization and switching properties, and there is a possibility that ferroelectricity may be utterly eliminated when defects render the system metallic. However, sufficient quantitative understandings of the subject have been lacking for decades due to the fact that vacancies in ferroelectrics are often charged and polarization in charged systems is not translationally invariant. Here we perform first-principles studies to investigate the influence of vacancies on ferroelectric polarization and polarization switching in prototypical BaTiO3 of tetragonal symmetry. We demonstrate using the modern theory of polarization that, in contrast to common wisdom, defective BaTiO3 with a large concentration of vacancies (or , or ) possesses a strong nonzero electric polarization. Breaking of Ti-O bonds is found to have little effect on the magnitude of polarization, which is striking. Furthermore, a previously unrecognized microscopic mechanism, which is particularly important when vacancies are present, is proposed for polarization switching. The mechanism immediately reveals that (i) the switching barrier in the presence of is small with ΔE = 8.3 meV per bulk formula cell, and the polarization is thus switchable even when vacancies exist; (ii) The local environment of vacancy is surprisingly insignificant in polarization switching. These results provide profound new knowledge and will stimulate more theoretical and experimental interest on defect physics in FEs.

  10. Coulomb charging energy of vacancy-induced states in graphene

    Science.gov (United States)

    Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.

    2016-08-01

    Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.

  11. Efficacy of DNA double-strand breaks repair in breast cancer is decreased in carriers of the variant allele of the UBC9 gene c.73G>A polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Synowiec, Ewelina [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Krupa, Renata [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland); Morawiec, Zbigniew; Wasylecka, Maja [Department of Surgical Oncology, N. Copernicus Hospital, Lodz (Poland); Dziki, Lukasz; Morawiec, Jan [Department of General and Colorectal Surgery, Medical University of Lodz, Lodz (Poland); Blasiak, Janusz [Department of Molecular Genetics, University of Lodz, Lodz (Poland); Wozniak, Katarzyna, E-mail: wozniak@biol.uni.lodz.pl [Laboratory of DNA Repair, Department of Molecular Genetics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2010-12-10

    UBC9 (E2) SUMO conjugating enzyme plays an important role in the maintenance of genome stability and integrity. In the present work we examined the association between the c.73G>A (Val25Met) polymorphism of the UBC9 gene (rs11553473) and efficacy of DNA double-strand breaks (DSBs) repair (DRE) in breast cancer patients. We determined the level of endogenous (basal) and exogenous (induced by {gamma}-irradiation) DSBs and efficacy of their repair in peripheral blood lymphocytes of 57 breast cancer patients and 70 healthy individuals. DNA damage and repair were studied by neutral comet assay. Genotypes were determined in DNA from peripheral blood lymphocytes by allele-specific PCR (ASO-PCR). We also correlated genotypes with the clinical characteristics of breast cancer patients. We observed a strong association between breast cancer occurrence and the variant allele carried genotypes in patients with elevated level of basal as well as induced DNA damage (OR 6.74, 95% CI 2.27-20.0 and OR 5.33, 95% CI 1.81-15.7, respectively). We also found statistically significant (p < 0.05) difference in DRE related to the c.73G>A polymorphism of the UBC9 gene in breast cancer patients. Carriers of variant allele have decreased DNA DRE as compared to wild type genotype carriers. We did not find any association with the UBC9 gene polymorphism and estrogen and progesterone receptor status. The variant allele of the UBC9 gene polymorphism was strongly inversely related to HER negative breast cancer patients (OR 0.03, 95% CI 0.00-0.23). Our results suggest that the c.73G>A polymorphism of the UBC9 gene may affect DNA DSBs repair efficacy in breast cancer patients.

  12. Insights into the photosensitivity of BiOCl nanoplates with exposing {001} facets: The role of oxygen vacancy

    Science.gov (United States)

    Chen, Menglu; Yu, Shan; Zhang, Xiaojing; Wang, Fang; Lin, Yuanhua; Zhou, Ying

    2016-01-01

    BiOCl nanoplates with exposed {001} facets exhibited ˜3 times higher efficiency (k = 0.034 min-1) towards photodegradation of Rhodamine B under visible light (183 mW/cm2) than that (k = 0.012 min-1) under UV-visible light (196 mW/cm2) irradiation. It is found that oxygen vacancy could be easily in situ formed in the {001} facets of BiOCl under UV-visible or UV light irradiation. Hence, the acceptor level under the conduction band (CB) of BiOCl formed by oxygen vacancy could trap the energetic electrons and inhibit the creation of O2 - · due to its weaker reductive ability. Our current work reveals oxygen vacancy does not always play a positive role for photodegradation of organic dyes.

  13. The Defective Nuclear Lamina in Hutchinson-Gilford Progeria Syndrome Disrupts the Nucleocytoplasmic Ran Gradient and Inhibits Nuclear Localization of Ubc9▿

    Science.gov (United States)

    Kelley, Joshua B.; Datta, Sutirtha; Snow, Chelsi J.; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J.; Paschal, Bryce M.

    2011-01-01

    The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways. PMID:21670151

  14. The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9.

    Science.gov (United States)

    Kelley, Joshua B; Datta, Sutirtha; Snow, Chelsi J; Chatterjee, Mandovi; Ni, Li; Spencer, Adam; Yang, Chun-Song; Cubeñas-Potts, Caelin; Matunis, Michael J; Paschal, Bryce M

    2011-08-01

    The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.

  15. On features ov vacancies generation at low temperature

    CERN Document Server

    Magomedov, M N

    2001-01-01

    The expressions for calculating the thermodynamic potential, enthalpy, entropy (s subnu) and vacancies generation volume in the simple matter crystal at the temperatures close to 0 K are obtained. It is established that the vacancies concentration (PHI) as the temperature function (T) has the minimum by the certain T sub 0 value. The PHI(T) function by T < T sub 0 increases with decrease in T, therefore by T sub 0 the s subnu(T) function changes its sign, and by T < T sub 0 the s subnu-value becomes negative. It is shown that availability of the zero vacancies does not violate the third principle of thermodynamics

  16. Anisotropic behavior and inhomogeneity of atomic local densities of states in graphene with vacancy groups

    Directory of Open Access Journals (Sweden)

    V.V. Eremenko

    2016-06-01

    Full Text Available The electron local density of states (LDOS are calculated for graphene with isolated vacancies, divacancies and vacancy group of four nearest-neighbor vacancies. A strong anisotropy of behavior of LDOS near Fermi level is demonstrated for atoms near defect. Effect of next-to-nearest neighbor interaction on the properties of graphene with vacancies is established.

  17. 78 FR 42945 - Health Information Technology Policy Committee Vacancy

    Science.gov (United States)

    2013-07-18

    ... From the Federal Register Online via the Government Publishing Office GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Vacancy AGENCY: Government Accountability Office... Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy Committee (Health...

  18. 77 FR 27774 - Health Information Technology Policy Committee Vacancy

    Science.gov (United States)

    2012-05-11

    ... From the Federal Register Online via the Government Publishing Office GOVERNMENT ACCOUNTABILITY OFFICE Health Information Technology Policy Committee Vacancy AGENCY: Government Accountability Office... Reinvestment Act of 2009 (ARRA) established the Health Information Technology Policy Committee (Health...

  19. 77 FR 31631 - Towing Safety Advisory Committee; Vacancies

    Science.gov (United States)

    2012-05-29

    ... SECURITY Coast Guard Towing Safety Advisory Committee; Vacancies AGENCY: Coast Guard, DHS. ACTION: Request... licensed or unlicensed towing vessel engineers with formal training and experience. Two members... possible reimbursement of travel and per diem expenses depending on fiscal budgetary...

  20. Enzymatically Controlled Vacancies in Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barnaby, Stacey N.; Ross, Michael B.; Thaner, Ryan V.; Lee, Byeongdu; Schatz, George C.; Mirkin, Chad A.

    2016-08-01

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable “bonds” that link nanoparticle “atoms” into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale “bond” affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.

  1. Thermal vacancy formation energies of random solid solutions

    OpenAIRE

    Luo, H. B.; Hu, Q. M.; Du, J.; Yan, A. R.; Liu, J. P.

    2017-01-01

    Vacancy mechanism plays a dominant role in the atomic migration when a close-packed disordered alloy undergoes ordering transition. However, the calculation of thermal vacancy formation energies (VFEs) of random solid solutions is usually cumbersome due to the difficulty in considering various local atomic environments. Here, we propose a transparent way that combines coherent potential approximation and supercell-local cluster expansion to investigate VFEs of random solid solutions. This met...

  2. Surface effects on nitrogen vacancy centers neutralization in diamond

    OpenAIRE

    Newell, Arthur N.; Dowdell, Dontray A.; Santamore, D. H.

    2016-01-01

    The performance of nitrogen vacancy (NV$^{-}$) based magnetic sensors strongly depends on the stability of nitrogen vacancy centers near the diamond surface. The sensitivity of magnetic field detection is diminished as the NV$^{-}$ turns into the neutralized charge state NV$^{0}$. We investigate the neutralization of NV$^{-}$ and calculate the ratio of NV$^{0}$ to total NV (NV$^{-}$+NV$^{0}$) caused by a hydrogen terminated diamond with a surface water layer. We find that NV$^{-}$ neutralizat...

  3. Average life of oxygen vacancies of quartz in sediments

    Institute of Scientific and Technical Information of China (English)

    DIAO; Shaobo(刁少波); YE; Yuguang(业渝光)

    2002-01-01

    Average life of oxygen vacancies of quartz in sediments is estimated by using the ESR (electron spin resonance) signals of E( centers from the thermal activation technique. The experimental results show that the second-order kinetics equation is more applicable to the life estimation compared with the first order equation. The average life of oxygen vacancies of quartz from 4895 to 4908 deep sediments in the Tarim Basin is about 1018 a at 27℃.

  4. Effect of vacancy defects on generalized stacking fault energy of fcc metals.

    Science.gov (United States)

    Asadi, Ebrahim; Zaeem, Mohsen Asle; Moitra, Amitava; Tschopp, Mark A

    2014-03-19

    Molecular dynamics (MD) and density functional theory (DFT) studies were performed to investigate the influence of vacancy defects on generalized stacking fault (GSF) energy of fcc metals. MEAM and EAM potentials were used for MD simulations, and DFT calculations were performed to test the accuracy of different common parameter sets for MEAM and EAM potentials in predicting GSF with different fractions of vacancy defects. Vacancy defects were placed at the stacking fault plane or at nearby atomic layers. The effect of vacancy defects at the stacking fault plane and the plane directly underneath of it was dominant compared to the effect of vacancies at other adjacent planes. The effects of vacancy fraction, the distance between vacancies, and lateral relaxation of atoms on the GSF curves with vacancy defects were investigated. A very similar variation of normalized SFEs with respect to vacancy fractions were observed for Ni and Cu. MEAM potentials qualitatively captured the effect of vacancies on GSF.

  5. Stability and mobility of vacancy-H complexes in Al

    Science.gov (United States)

    Benediktsson, Magnús Þ.; Mýrdal, Kjartan K. G.; Maurya, Pramod; Pedersen, Andreas

    2013-09-01

    The effect of hydrogen loading on the stability and mobility of vacancy-H complexes in aluminum is determined by applying DFT and the minimum-mode-following method. The binding energy per H-atom within a complex is found to range from -0.36 eV/atom to -0.34 eV/atom for an occupancy of, respectively, a single and eight H-atoms. When eight H-atoms are neighboring the vacancy the total binding energy becomes -2.72 eV. However, already at a load level of two H-atoms the total binding energy reaches -0.70 eV, which fully compensates the vacancy creation energy. It is observed that for complexes with four or more H-atoms the vacancy gets pinned, as the diffusion barrier increases by a factor of two, reaching a value of 1.03 eV or more. The explanation for the increased energy barrier is that at the higher hydrogen load levels the system must traverse an energetically unfavorable configuration where two or more H-atoms are separated from the vacancy. As a possible consequence of the decreased mobility and increased stability, highly loaded vacancy-H complexes are likely to act as nucleation sites for extended defects.

  6. Hydrogen-vacancy-dislocation interactions in α-Fe

    Science.gov (United States)

    Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.

    2017-02-01

    Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.

  7. Gallium vacancies in β-Ga2O3 crystals

    Science.gov (United States)

    Kananen, B. E.; Halliburton, L. E.; Stevens, K. T.; Foundos, G. K.; Giles, N. C.

    2017-05-01

    The gallium vacancy, an intrinsic acceptor, is identified in β-Ga2O3 using electron paramagnetic resonance (EPR). Spectra from doubly ionized ( VG a 2 - ) and singly ionized ( VG a - ) gallium vacancies are observed at room temperature, without photoexcitation, after an irradiation with high-energy neutrons. The VG a 2 - centers (with S = 1/2) have a slight angular variation due to a small anisotropy in the g matrix (principal values are 2.0034, 2.0097, and 2.0322). The VG a 2 - centers also exhibit a resolved hyperfine structure due to equal and nearly isotropic interactions with the 69,71Ga nuclei at two Ga sites (the hyperfine parameters are 1.28 and 1.63 mT for the 69Ga and 71Ga nuclei, respectively, when the field is along the a direction). Based on these g-matrix and hyperfine results, the model for the ground state of the doubly ionized vacancy ( VG a 2 - ) has a hole localized on one threefold-coordinated oxygen ion. The vacancy is located at one of the three neighboring gallium sites, and the remaining two gallium neighbors are responsible for the equal hyperfine interactions. The singly ionized ( VG a - ) gallium vacancies are also paramagnetic. In this latter acceptor, the two holes are localized on separate oxygen ions adjacent to one gallium vacancy. Their spins align parallel to give a triplet S = 1 EPR spectrum with resolved hyperfine structure from interactions with gallium neighbors.

  8. First-principles study of fully relaxed vacancies in GaAs

    OpenAIRE

    Laasonen, K; Nieminen, Risto M.; Puska, Martti J.

    1992-01-01

    The structural and electronic properties of vacancies in GaAs have been studied using ab initio molecular dynamics. The atomic structures of vacancies in different charge states have been optimized by using a simulated-annealing procedure. The neighbor-atom relaxations are modest for neutral, singly negative, and doubly negative Ga vacancies as well as for the neutral As vacancy. In the case of singly and doubly negative As vacancies, very strong inward relaxations are found. These inward rel...

  9. Photon induced L3 vacancy alignment at tuned photon energies

    Science.gov (United States)

    Bansal, Himani; Kaur, Gurpreet; Tiwari, Manoj K.; Mittal, Raj

    2016-04-01

    Photon induced L3 X-ray measurements for Lα/Lℓ cross-section ratios in elements, 66 ⩽ Z ⩽ 83, at tuned photon energies on synchrotron Beamline-16 at Indus-2, India have been used to study the effect of Coster-Kronig (CK) transitions and photon energies on alignment of L3 vacancies. Certainty and reliability of the measurements were checked from comparison of measured Lα and Lℓ fluorescence cross-sections at E1 excitation with available theoretical/empirical/experimental values that required additional measurements for source, geometry and efficiency factor S0GɛLα/ℓ in the used set-up. Fall/rise trend of the ratios with energy for different Z's was found to resemble the off/on-set pattern of CK transitions as pointed out by Bambynek et al. and Campbell. Evaluated alignment parameter A2 values are very much within the limits, 0.05 Kronig corrected A2) variation with energy for Dy, W, Pt, Hg and Bi resembles our previously reported theoretical patterns that lends mutual support for both current measurements and earlier theoretical results.

  10. High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation

    CERN Document Server

    Yang, W L; Hu, Y; Feng, M; Du, J F

    2011-01-01

    We study a hybrid quantum computing system using nitrogen-vacancy center ensemble (NVE) as quantum memory, current-biased Josephson junction (CBJJ) superconducting qubit fabricated in a transmission line resonator (TLR) as quantum computing processor and the microwave photons in TLR as quantum data bus. The storage process is seriously treated by considering all kinds of decoherence mechanisms. Such a hybrid quantum device can also be used to create multi-qubit W states of NVEs through a common CBJJ. The experimental feasibility and challenge are justified using currently available technology.

  11. Influences of vacancy defects on tensile failure of open-tip carbon nanocones

    Directory of Open Access Journals (Sweden)

    Ming-Liang Liao

    2017-01-01

    Full Text Available This paper studied influences of vacancy defects on tensile failure of open-tip carbon nanocones (CNCs by molecular dynamics simulations. Carbon nanocones, perfect and containing mono-vacancy defects (including CNCs with the upper-vacancy, the middle-vacancy, and the lower-vacancy, were simulated in order to understand the influence of the presence and location of the vacancy defects on the CNCs tensile behavior. Some findings were obtained. It was found that the upper-vacancy CNC has the greatest degradation in the failure strain and the failure load among the three vacancy-defect CNCs, and the lower-vacancy CNC has the smallest degradation in the failure strain and the failure load. Degradation in the failure load is larger than degradation in the failure strain. Moreover, no apparent yielding (large elongation was observed before failure of the studied CNCs. All the vacancy-defect CNCs were broken near the top end rather than near the vacancy location of the CNCs. The behaviors of the vacancy-location-dependent degradation and the vacancy-location-independent failure (namely, the near top-end failure of the vacancy-defect CNCs are quite different from those of vacancy-defect CNTs (carbon nanotubes. These particular behaviors are ascribed to non-uniform diameters along the cone axes of the CNCs.

  12. Theoretical investigations of the effect of vacancies on the geometric and electronic structures of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jinhuan, E-mail: yaojinhuan@126.com [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Li Yanwei, E-mail: lywhit@glite.edu.cn [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); GuangXi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin, Guangxi 541004 (China); Li Ning [College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangi 541004 (China); Le Shiru [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    The effects of S-vacancy and Zn-vacancy on the geometric and electronic structures of zinc blende ZnS are investigated by the first-principles calculation of the plane wave ultrasoft pseudopotential method based on the density functional theory. The results demonstrate that both S-vacancy and Zn-vacancy decrease the cell volume and induce slight deformation of the perfect ZnS. Furthermore, this change of geometric structure caused by Zn-vacancy is more obvious than the one due to the S-vacancy. The formation energy of S-vacancy is higher than that of Zn-vacancy, indicating that Zn-vacancy is easier to form than S-vacancy in ZnS crystal. Electronic structure analysis shows that Zn-vacancy increases the band-gap of ZnS from 2.03 eV to 2.15 eV, while the S-vacancy has almost no effect on the band-gap of ZnS. Bond population analysis shows that Zn-vacancy increases covalence character of the Zn-S bonds around Zn-vacancy, while S-vacancy shows a relatively weak effect on the covalence character of Zn-S bonds.

  13. Elastic Softening of Surface Acoustic Wave Caused by Vacancy Orbital in Silicon Wafer

    Science.gov (United States)

    Mitsumoto, Keisuke; Akatsu, Mitsuhiro; Baba, Shotaro; Takasu, Rie; Nemoto, Yuichi; Goto, Terutaka; Yamada-Kaneta, Hiroshi; Furumura, Yuji; Saito, Hiroyuki; Kashima, Kazuhiko; Saito, Yoshihiko

    2014-03-01

    We have performed surface acoustic wave (SAW) measurements to examine vacancies in a surface layer of a boron-doped silicon wafer currently used in semiconductor industry. A SAW with a frequency of fs = 517 MHz was optimally generated by an interdigital transducer with a comb gap of w=2.5 µm on a piezoelectric ZnO film deposited on the (001) silicon surface. The SAW propagating along the [100] axis with a velocity of vs=4.967 km/s is in agreement with the Rayleigh wave, which shows an ellipsoidal trajectory motion in the displacement components ux and uz within a penetration depth of λp = 3.5 µm. The elastic constant Cs of the SAW revealed the softening of ΔCs/Cs = 1.9 × 10-4 below 2 K down to 23 mK. Applied magnetic fields of up to 2 T completely suppress the softening. The quadrupole susceptibilities based on the coupling between the electric quadrupoles Ou, Ov, and Ozx of the vacancy orbital consisting of Γ8-Γ7 states and the symmetry strains ɛu, ɛv, and ɛzx associated with the SAW account for the softening and its field dependence on Cs. We deduced a low vacancy concentration N = 3.1 × 1012/cm3 in the surface layer within λp = 3.5 µm of the silicon wafer. This result promises an innovative technology for vacancy evaluation in the fabrication of high-density semiconductor devices in industry.

  14. Changes in turnover and vacancy rates of care workers in England from 2008 to 2010: panel analysis of national workforce data.

    Science.gov (United States)

    Hussein, Shereen; Ismail, Mohamed; Manthorpe, Jill

    2016-09-01

    The combination of growing demand for long-term care and higher expectations of care staff needs to be set in the context of long-standing concerns about the sustainability of recruitment and retention of front-line staff in the United Kingdom. Organisational and work environment factors are associated with vacancy levels and turnover rates. The aim of the current analysis was to investigate changes in turnover and vacancy rates over time experienced by a sample of social care employers in England. Taking a follow-up approach offers potentially more accurate estimates of changes in turnover and vacancy rates, and enables the identification of any different organisational characteristics which may be linked to reductions in these elements over time. The study constructed a panel of 2964 care providers (employers) using 18 separate data sets from the National Minimum Data Set for Social Care during 2008-2010. The findings indicate slight reductions in vacancy rates but the presence of enduring, high turnover rates among direct care workers over the study period. However, the experience of individual employers varied, with home-care providers experiencing significantly higher turnover rates than other parts of the sector. These findings raise questions around the quality and motivations of new recruits and methods of reducing specific vacancy levels. At a time of increased emphasis on care at home, it is worthwhile examining why care homes appear to have greater stability of staff and fewer vacancies than home-care agencies.

  15. Detecting neighborhood vacancy level in Detroit city using remote sensing

    Science.gov (United States)

    Li, X.; Wang, R.; Yang, A.; Vojnovic, I.

    2015-12-01

    With the decline of manufacturing industries, many Rust Belt cities, which enjoyed prosperity in the past, are now suffering from financial stress, population decrease and urban poverty. As a consequence, urban neighborhoods deteriorate. Houses are abandoned and left to decay. Neighborhood vacancy brings on many problems. Governments and agencies try to survey the vacancy level by going through neighborhoods and record the condition of each structure, or by buying information of active mailing addresses to get approximate neighborhood vacancy rate. But these methods are expensive and time consuming. Remote sensing provides a quick and comparatively cost-efficient way to access spatial information on social and demographical attributes of urban area. In our study, we use remote sensing to detect a major aspect of neighborhood deterioration, the vacancy levels of neighborhoods in Detroit city. We compared different neighborhoods using Landsat 8 images in 2013. We calculated NDVI that indicates the greenness of neighborhoods with the image in July 2013. Then we used thermal infrared information from image in February to detect human activities. In winter, abandoned houses will not consume so much energy and therefore neighborhoods with more abandoned houses will have smaller urban heat island effect. Controlling for the differences in terms of the greenness obtained from summer time image, we used thermal infrared from winter image to determine the temperatures of urban surface. We find that hotter areas are better maintained and have lower house vacancy rates. We also compared the changes over time for neighborhoods using Landsat 7 images from 2003 to 2013. The results show that deteriorated neighborhoods have increased NDVI in summer and get colder in winter due to abandonment of houses. Our results show the potential application of remote sensing as an easily accessed and efficient way to obtain data about social conditions in cities. We used the neighborhood

  16. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    Energy Technology Data Exchange (ETDEWEB)

    Heriyanto, Heri [Chemical Engineering of University Sultan AgengTirtayasa, Indonesia Email: herfais@yahoo.com (Indonesia); Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  17. Inhibition of proliferation and survival of diffuse large B-cell lymphoma cells by a small-molecule inhibitor of the ubiquitin-conjugating enzyme Ubc13-Uev1A.

    Science.gov (United States)

    Pulvino, Mary; Liang, Yue; Oleksyn, David; DeRan, Michael; Van Pelt, Elise; Shapiro, Joel; Sanz, Ignacio; Chen, Luojing; Zhao, Jiyong

    2012-08-23

    Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma, remains a partially curable disease. Genetic alterations affecting components of NF-κB signaling pathways occur frequently in DLBCL. Almost all activated B cell-like (ABC) DLBCL, which is the least curable group among the 3 major subtypes of this malignancy, and a substantial fraction of germinal center B cell-like (GCB) DLBCL exhibit constitutive NF-κB pathway activity. It has been demonstrated that ABC-DLBCL cells require such activity for proliferation and survival. Therefore, inhibition of NF-κB activation in DLBCL may provide an efficient and targeted therapy. In screening for small-molecule compounds that may inhibit NF-κB activation in DLBCL cells, we identified a compound, NSC697923, which inhibits the activity of the ubiquitin-conjugating (E2) enzyme Ubc13-Uev1A. NSC697923 impedes the formation of the Ubc13 and ubiquitin thioester conjugate and suppresses constitutive NF-κB activity in ABC-DLBCL cells. Importantly, NSC697923 inhibits the proliferation and survival of ABC-DLBCL cells and GCB-DLBCL cells, suggesting the Ubc13-Uev1A may be crucial for DLBCL growth. Consistently, knockdown of Ubc13 expression also inhibited DLBCL cell survival. The results of the present study indicate that Ubc13-Uev1A may represent a potential therapeutic target in DLBCL. In addition, compound NSC697923 may be exploited for the development of DLBCL therapeutic agents.

  18. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  19. Vacancies and defect levels in III–V semiconductors

    KAUST Repository

    Tahini, H. A.

    2013-08-13

    Using electronic structure calculations, we systematically investigate the formation of vacancies in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb), for a range of charges ( −3≤q≤3 ) as a function of the Fermi level and under different growth conditions. The formation energies were corrected using the scheme due to Freysoldt et al. [Phys. Rev. Lett. 102, 016402 (2009)] to account for finite size effects. Vacancy formation energies were found to decrease as the size of the group V atom increased. This trend was maintained for Al-V, Ga-V, and In-V compounds. The negative-U effect was only observed for the arsenic vacancy in GaAs, which makes a charge state transition from +1 to –1. It is also found that even under group III rich conditions, group III vacancies dominate in AlSb and GaSb. For InSb, group V vacancies are favoured even under group V rich conditions.

  20. Atomic vacancies significantly degrade the mechanical properties of phosphorene

    Science.gov (United States)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Zhang, Ying-Yan; Zhang, Yong-Wei

    2016-08-01

    Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.

  1. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  2. B{sub 27}{sup −}: Appearance of the smallest planar boron cluster containing a hexagonal vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei-Li; Piazza, Zachary A.; Wang, Lai-Sheng, E-mail: xzeng1@unl.edu [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Pal, Rhitankar; Zeng, Xiao Cheng, E-mail: xzeng1@unl.edu [Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2015-05-28

    Photoelectron spectroscopy and ab initio calculations have been carried out to probe the structures and chemical bonding of the B{sub 27}{sup −} cluster. Comparison between the experimental spectrum and the theoretical results reveals a two-dimensional (2D) global minimum with a triangular lattice containing a tetragonal defect (I) and two low-lying 2D isomers (II and III), each with a hexagonal vacancy. All three 2D isomers have 16 peripheral boron atoms and 11 inner boron atoms. Isomer I is shown to be mainly responsible for the observed photoelectron spectrum with isomers II and III as minor contributors. Chemical bonding analyses of these three isomers show that they all feature 16 localized peripheral B–B σ-bonds. Additionally, isomer I possesses 16 delocalized σ bonds and nine delocalized π bonds, while isomers II and III each contain 17 delocalized σ bonds and eight delocalized π bonds. It is found that the hexagonal vacancy is associated generally with an increase of delocalized σ bonds at the expense of delocalized π bonds in 2D boron clusters. The hexagonal vacancy, characteristic of borophenes, is found to be a general structural feature for mid-sized boron clusters. The current study shows that B{sub 27}{sup −} is the first boron cluster, where a hexagonal vacancy appears among the low-lying isomers accessible experimentally.

  3. Vacancy Migration and Void Formation in gamma-irradiated Ice

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard

    1976-01-01

    are ascribed to Ps inhibition and conversion by radiation created OH radicals. Heating above −165°C makes both effects disappear in agreement with radiation chemistry results on OH. Heating also increases the longest lifetime up to 11 nsec at −130°C. This is explained as vacancy migration leading to void......Positron annihilation techniques (PAT) have been used to study the effects in ice of γ irradiation at −196°C and of subsequent heating, both in poly‐ and monocrystalline samples. The main effects of irradiation are (1) the appearance in positron lifetime spectra of two long‐lived components (1...... formation. A vacancy migration energy is obtained, Em=0.34±0.07 eV, around three times higher than the previously assumed value. The advantage in this kind of study of using PAT, which are specifically sensitive to vacancy type defects, is pointed out....

  4. Thermal formation of atomic vacancies in {gamma} Cu-Zn

    Energy Technology Data Exchange (ETDEWEB)

    Macchi, Carlos [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Romero, Ricardo [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina); Somoza, Alberto [Instituto de Fisica de Materiales Tandil, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina) and Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Pinto 399, B7000GHG Tandil (Argentina)]. E-mail: asomoza@exa.unicen.edu.ar

    2006-02-15

    g positron annihilation lifetime spectroscopy, the temperature dependence of the formation of thermal vacancies in the {gamma} phase of the Cu-Zn alloy was studied. Thermal equilibrium measurements were made in situ between 135K and about 950K. The experimental data were interpreted in terms of the well-established positron two-state trapping model. From the evolution of the lifetime parameters between {approx}400K and {approx}800K, an Arrhenius plot for trapping rate, directly linked to the vacancy concentration, exhibits the usual linear behavior. As a result, a value for the vacancy formation enthalpy for the complex cubic structure studied was estimated at H{sub v}{sup f}=0.46+/-0.03eV.

  5. The sputter cross section of a surface-vacancy island

    Energy Technology Data Exchange (ETDEWEB)

    Rosandi, Yudi, E-mail: rosandi@physik.uni-kl.de [Department of Physics, Universitas Padjadjaran, Jatinangor, Sumedang 45363 (Indonesia); Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany); Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de [Fachbereich Physik und Forschungszentrum OPTIMAS, Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2011-07-15

    Using molecular-dynamics simulation we investigate the effect of surface-vacancy islands on ion-induced sputtering. As an exemplary case, the sputtering of a Pt(1 1 1) surface by 5 keV Ar{sup +} ions incident at 83{sup o} towards the surface normal is investigated. We find that only the ascending step of the island induces sputtering. Wide vacancy islands exhibit the direct-hit, indirect-hit and channeling zones previously identified for surface steps and adatom islands. A special role is played by the descending step edge. Even though it is not sputtered itself, it deflects ion trajectories and may direct them to the ascending step edge thus enhancing sputtering. We derive a simple criterion based on the shadow cone of the descending step to decide whether a vacancy island contributes to sputtering or not.

  6. Probing superheavy quasimolecular collisions with incoming inner shell vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany) and JMI University, New Delhi (India) and Vaish College, Rohtak (India)]. E-mail: P.Verma@gsi.de; Mokler, P.H. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J. Liebig University, Giessen (Germany); Braeuning-Demian, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Braeuning, H. [J. Liebig University, Giessen (Germany); Kozhuharov, C. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Bosch, F. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Liesen, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Hagmann, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); J.W. Goethe University, Frankfurt (Germany); Stoehlker, Th. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, Cracow (Poland); Banas, D. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Swietokrzyska Academy, Kielce (Poland); Orsic-Muthig, A. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Schoeffler, M. [J.W. Goethe University, Frankfurt (Germany); Sierpowski, D. [Jagellonian University, Cracow (Poland); Spillmann, U. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Tashenov, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Toleikis, S. [Atomphysik, GSI, Planckstrasse 1, D-64291 Darmstadt (Germany); Wahab, M.A. [JMI University, New Delhi (India)

    2006-04-15

    With the advanced accelerator technologies used at the SIS/ESR heavy ion facility at GSI, the highest charge states (bare, H-like, etc.) even for the heaviest ions can be provided for experiments at moderate collision velocities (v {sub ion} < v {sub K}). Hence, inner shell vacancies can be provided prior to collisions for the innermost shells of transiently formed superheavy quasimolecules. However, projectile K-vacancies may be destroyed while penetrating solids. The goal of the present investigation is to establish how far at relatively low collision velocities, high incoming ionic charge states do survive in thin solid targets and hence, how far thin solid targets can be utilized for studying superheavy quasimolecules with well-defined, open, incoming, inner shell vacancy channels. The dependence of quasimolecular collisions on projectile charge state (q) and target thickness (t) is studied in very thin Au solid targets for 69 MeV/u U {sup q+} ions (73 {<=} q {<=} 91)

  7. One-step Entanglement Generation Between Separated Nitrogen-vacancy Centers Embedded in Photonic Crystal Cavities

    Science.gov (United States)

    Santos, A. F.; Khanna, Faqir C.

    2016-09-01

    We propose a one-step scheme for creating entanglement between two distant nitrogen-vacancy (NV) centers, which are placed in separate single-mode nanocavities in a planar photonic crystal (PC). With a laser-driven, the decoherence from the excited states of the NV centers can be effectively suppressed by virtue of the Raman transition in the dispersive regime. With the assistant of a strong classical field, fast operation can be achieved. The experimental feasibility of the scheme is discussed based on currently available technology.

  8. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    Science.gov (United States)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  9. Job Vacancy Chains and Local Employment Creation; the Case of Supply-Side Restrictions

    OpenAIRE

    Felsenstein, Daniel; Persky, Joseph

    2006-01-01

    The job-chains model of local labor market change is a demand-driven analytic device for estimating the effects of new job creation. This paper explores the effects of restricting supply, i.e. limiting job access, on the model’s primary outcomes: vacancy chain multipliers, welfare effects and distributional impacts. Major sources of labor supply are the local unemployed, out of the labor force and in-migrants. Three simulations are reported relating to 1) restricting new jobs to current loc...

  10. Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Weber, William J.; Xiao, H. Y.; Zu, Xiaotao T.

    2009-09-11

    Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the most stable configuration of a di-vacancy cluster consists of two C vacancies located at second nearest neighbor sites, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and n C vacancies (VSi-nVC) are much smaller than those with a C vacancy and n Si vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.

  11. Formation and properties of defects and small vacancy clusters in SiC: Ab initio calculations

    Science.gov (United States)

    Gao, F.; Weber, W. J.; Xiao, H. Y.; Zu, X. T.

    2009-09-01

    Large-scale ab initio simulation methods have been employed to investigate the configurations and properties of defects in SiC. Atomic structures, formation energies and binding energies of small vacancy clusters have also been studied as a function of cluster size, and their relative stabilities are determined. The calculated formation energies of point defects are in good agreement with previously theoretical calculations. The results show that the di-vacancy cluster consists of two C vacancies located at the second nearest neighbor sites is stable up to 1300 K, while a di-vacancy with two Si vacancies is not stable and may dissociate at room temperature. In general, the formation energies of small vacancy clusters increase with size, but the formation energies for clusters with a Si vacancy and nC vacancies (VSi-nVC) are much smaller than those with a C vacancy and nSi vacancies (VC-nVSi). These results demonstrate that the VSi-nVC clusters are more stable than the VC-nVSi clusters in SiC, and provide possible nucleation sites for larger vacancy clusters or voids to grow. For these small vacancy clusters, the binding energy decreases with increasing cluster size, and ranges from 2.5 to 4.6 eV. These results indicate that the small vacancy clusters in SiC are stable at temperatures up to 1900 K, which is consistent with experimental observations.

  12. Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyian, Md Nasir Uddin, E-mail: mnb3@njit.edu; Misra, D. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102 (United States); Poddar, S. [Department of Electronics and Communication Engineering, Heritage Institute of Technology, Kolkata (India); Tapily, K.; Clark, R. D.; Consiglio, S.; Wajda, C. S.; Nakamura, G.; Leusink, G. J. [TEL Technology Center, America, LLC, NanoFab 300 South 255 Fuller Road, Suite 244, Albany, New York 12203 (United States)

    2015-05-11

    This work evaluates the defects in HfZrO as a function of Zr addition into HfO{sub 2} and when the dielectric was subjected to a slot-plane-antenna (SPA) plasma treatment in a cyclic process to form TiN/HfZrO/SiON/Si gate stacks. The defect energy levels, estimated by temperature-dependent current-voltage measurements, suggest that Zr addition in HfO{sub 2} modifies the charge state of the oxygen vacancy formation, V{sup +}. The influence of electron affinity variation of Hf and Zr ions on the charged oxygen vacancy levels seems to have contributed to the increase in defect activation energy, E{sub a}, from 0.32 eV to 0.4 eV. The cyclic SPA plasma exposure further reduces the oxygen vacancy formation because of the film densification. When the dielectric was subjected to a constant voltage stress, the charge state oxygen vacancy formation changes to V{sup 2+} and improvement was eliminated. The trap assisted tunneling behavior, as observed by the stress induced leakage current characteristics, further supports the oxygen vacancy formation model.

  13. A contribution to the identification of the E5 defect level as tri-vacancy (V{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra, E-mail: alexandra.junkes@desy.de [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Fretwurst, Eckhart; Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)

    2012-08-01

    Silicon particle detectors in tracking devices for the high luminosity Large Hadron Collider will suffer from an extremely intense radiation field of mainly hadronic particles. The main radiation induced deep defect centres in silicon, responsible for the increase of the dark current and corresponding noise, are the cluster related defect levels E5 and E205a. This work confirms the identification of the E5 level as tri-vacancy (V{sub 3}). This defect transforms into the tri-vacancy-oxygen complex (V{sub 3}O) at temperatures above 200 Degree-Sign C. The defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current technique (TSC) performed on float zone (FZ), epitaxially grown (Epi) and Magnetic Czochralski (MCz) silicon diodes, irradiated with 1 MeV neutrons and 23 GeV protons.

  14. Interaction mechanism of biomolecules on vacancy defected 2D materials

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-02-01

    In this work, we present a first principles study of the adsorption of Adenine which is a nucleobases, Histide and Leucine molecules, which are the amino acids, on vacancy defected single layer materials such as graphene and phosphorene. Among these materials, graphene, which is a single layer honeycomb structure of carbon. Also, phosphorene is recently synthesized by mechanical exfoliation of the black phosphorus. Phosphorene forming a puckered honeycomb structure similar to silicene. However, unlike zero-bandgap graphene and silicene, phosphorene is a direct band gap semiconductor, which makes it very attractive for the nanoelectronic devices. According to the studies, local defects can always exist at any temperature. The most probable defect type is the single vacancy in the single layer honeycomb structures. Vacancy defects can be emerged during growth process and they change the properties of materials significantly. In this study, we show that how to manipulate interaction and binding mechanisms of biomolecules with 2D materials with increased chemical activity by vacancy defects.

  15. 78 FR 60890 - Towing Safety Advisory Committee; Vacancies

    Science.gov (United States)

    2013-10-02

    ... SECURITY Coast Guard Towing Safety Advisory Committee; Vacancies AGENCY: Coast Guard. ACTION: Request for...- docking or harbor towing vessel; One member representing licensed or unlicensed towing vessel engineers... the Federal Government; however, upon request, members may receive travel reimbursement and per...

  16. 75 FR 25872 - National Boating Safety Advisory Committee; Vacancies

    Science.gov (United States)

    2010-05-10

    ... Regulations. In support of the policy of the Coast Guard on gender and ethnic nondiscrimination, we encourage..., 2009, (74 FR 22174) will be considered for the 2011 vacancies and do not need to submit another... compensation from the Federal Government. The exception to this policy is when attending NBSAC...

  17. Correlation effects in double-K-vacancy production

    Energy Technology Data Exchange (ETDEWEB)

    Briand, J.P.; Chevallier, P.; Chetioui, A.; Rozet, J.P.; Tavernier, M.; Touati, A.

    1981-01-01

    The probability of double-K-vacancy production accompanying internal conversion in three different atoms. In (Z=49), Ba (Z=56), and Tl (Z=81) has been measured in coincidence experiments. The comparison of our experimental results with various theoretical approaches exhibits the importance of correlation effects between the two K electrons.

  18. Virtual-photon-induced entanglement with two nitrogen-vacancy centers coupled to a high- Q silica microsphere cavity

    Science.gov (United States)

    Liu, YiMin

    2013-11-01

    We propose a potentially practical scheme for efficient generation of entanglement with two nitrogen-vacancy centers (NVC) coupled to a whispering-gallery mode cavity. By virtue of the virtual-photon-excitation, the entanglement with two separate NVC can be produced in a deterministic way. The required operations are very close to the capabilities of current experimental techniques. The effects of decoherence induced by the cavity decay and the atomic spontaneous decay are also investigated.

  19. 77 FR 71478 - Notice of Rail Energy Transportation Advisory Committee Vacancies

    Science.gov (United States)

    2012-11-30

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Vacancies AGENCY... vacancies on the Board's Rail Energy Transportation Advisory Committee for (1) a representative from a state... those vacancies. DATES: Suggestions of candidates for membership on RETAC are due December 27,...

  20. The role of vacancy, impurity, impurity-vacancy complex in the kinetics of LiNH2 complex hydrides:a first-principles study

    Institute of Scientific and Technical Information of China (English)

    Liu Gui-Li; Zhang Guo-Ying; Zhang Hui; Zhu Sheng-Long

    2011-01-01

    This paper studies first-principles plane-wave pseudopotential based on density functional theory of hydrogen vacancy, metal impurity, impurity-vacancy complex in LiNH2, a promising material for hydrogen storage. It finds easy formation of H vacancy in the form of impurity-vacancy complex, and the rate-limiting step to the H diffusion. Based on the analysis of the density of states, it finds that the improvement of the dehydrogenating kinetics of LiNH2 by Ti catalysts and Mg substitution is due to the weak bonding of N-H and the new system metal-like, which makes H atom diffuse easily. The mulliken overlap population analysis shows that H vacancy leads to the H local diffusion, whereas impurity-vacancy complexes result from H nonlocal diffusion, which plays a dominant role in the process of dehydrogenation reaction of LiNH2.

  1. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex.

    Science.gov (United States)

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.

  2. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

    Institute of Scientific and Technical Information of China (English)

    Weng Zhen-Zhen; Zhang Jian-Min; Huang Zhi-Gao; Lin Wen-Xiong

    2011-01-01

    The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.

  3. Compensating vacancy defects in Sn- and Mg-doped In2O3

    Science.gov (United States)

    Korhonen, E.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; Galazka, Z.

    2014-12-01

    MBE-grown Sn- and Mg-doped epitaxial In2O3 thin-film samples with varying doping concentrations have been measured using positron Doppler spectroscopy and compared to a bulk crystal reference. Samples were subjected to oxygen or vacuum annealing and the effect on vacancy type defects was studied. Results indicate that after oxygen annealing the samples are dominated by cation vacancies, the concentration of which changes with the amount of doping. In highly Sn-doped In2O3 , however, these vacancies are not the main compensating acceptor. Vacuum annealing increases the size of vacancies in all samples, possibly by clustering them with oxygen vacancies.

  4. Thermal vacancies in random alloys in the single-site mean-field approximation

    Science.gov (United States)

    Ruban, A. V.

    2016-04-01

    A formalism for the vacancy formation energies in random alloys within the single-site mean-filed approximation, where vacancy-vacancy interaction is neglected, is outlined. It is shown that the alloy configurational entropy can substantially reduce the concentration of vacancies at high temperatures. The energetics of vacancies in random Cu0.5Ni0.5 alloy is considered as a numerical example illustrating the developed formalism. It is shown that the effective formation energy increases with temperature, however, in this particular system it is still below the mean value of the vacancy formation energy, which would correspond to the vacancy formation energy in a homogeneous model of a random alloy, such as given by the coherent potential approximation.

  5. The effects of vacancy on melting of Cu under hydrostatic and shock wave loading

    Science.gov (United States)

    Li, H.; Ni, S.

    2009-12-01

    Defects, ubiquitous in real solids, are relevant to high pressure melting under static and shock loading conditions as in the Earth’s interior and during planetary impact. A simplest type of defects is vacancy, and we investigate melt- ing of a representative metal (Cu) with pre-existing vacan- cies under hydrostatic and shock wave loading using molec- ular dynamics simulations. The equilibrium melting curve is established with the superheating-supercooling hysteresis method. During hydrostatic compression, the vacancy con- centration is reduced from its initial value and the vacancy effect on melting is minimized at high pressures. Shock wave loading is conducted along h100i at different initial vacancy concentrations. Considerable superheating occurs for initial vacancy concentration5%. Dur- ing shock loading, preexistent vacancies facilitate plasticity and other defect formation, and thus reduce melting temper- ature. Our results indicate that vacancy effect on melting should be considered for shock loading and for low hydro- static pressures. 1

  6. The role of vacancies in the mobility of dislocations and grain boundaries in magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Lambri, O.A.; Lucioni, E.J. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Instituto de Fisica Rosario, Universidad Nacional de Rosario - CONICET, Escuela de Ingenieria Electrica, Laboratorio de Materiales, Avda. Pellegrini 250, 2000 Rosario (Argentina); Massot, M.; Plazaola, F. [Elektrika eta Elektronika Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, P.K. 644, 48080 Bilbao (Spain); Riehemann, W. [Institute of Materials Science and Technology, Clausthal University of Technology, Agricolastrasse 6, 38678 Clausthal-Zellerfeld (Germany); Garcia, J.A. [Departamento de Fisica Aplicada II, Facultad de Ciencias y Tecnologia, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2007-04-15

    Vacancy flux or supersaturation enhances grain-boundary mobility, but experimental evidence is not large and in many cases the role of vacancies is only inferred indirectly. We will show effectively in the present work the importance of the vacancy role in grain-boundary mobility in commercial pure and high-purity magnesium using mechanical spectroscopy, electrical resistivity and positron annihilation spectroscopy. It has been found that the mobility decrease of grain boundaries and dislocations is related to vacancy concentration reduction attained after the homogenisation treatment. Indeed, the largest vacancy concentration reduction is observed between 420 and 500 K. Unlocking grain boundaries and dislocations requires new vacancies, generated at temperatures above 500 K. In addition, a new damping peak related to vacancies was discovered at 490 K for an oscillating frequency of 1 Hz. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Vacancy complexes induce long-range ferromagnetism in GaN

    KAUST Repository

    Zhang, Zhenkui

    2014-11-14

    By means of density functional theory, we argue that ferromagnetism in GaN can be induced by vacancy complexes. Spin polarization originates from the charge compensation between neutral N and Ga vacancies. Defect formation energy calculations predict that a vacancy complex of two positively charged N vacancies and one doubly negative Ga vacancy is likely to form. This defect complex induces a net moment of 1 μB, which is localized around the negative Ga center and exhibits pronounced in-plane ferromagnetic coupling. In contrast to simple Ga vacancy induced ferromagnetism, the proposed picture is in line with the fact that N vacancies have a low formation energy. Formation energies indicate mutual stabilization of the intrinsic defects in GaN.

  8. Molecular-dynamics calculation of the vacancy heat of transport

    Energy Technology Data Exchange (ETDEWEB)

    Schelling, Patrick K.; Ernotte, Jacques; Shokeen, Lalit; Tucker, William C. [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Woods Halley, J. [Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 555455 (United States)

    2014-07-14

    We apply the recently developed constrained-dynamics method to elucidate the thermodiffusion of vacancies in a single-component material. The derivation and assumptions used in the method are clearly explained. Next, the method is applied to compute the reduced heat of transport Q{sub v}{sup *}−h{sub fv} for vacancies in a single-component material. Results from simulations using three different Morse potentials, with one providing an approximate description of Au, and an embedded-atom model potential for Ni are presented. It is found that the reduced heat of transport Q{sub v}{sup *}−h{sub fv} may take either positive or negative values depending on the potential parameters and exhibits some dependence on temperature. It is also found that Q{sub v}{sup *}−h{sub fv} may be correlated with the activation entropy. The results are discussed in comparison with experimental and previous simulation results.

  9. Vacancy induced half-metallicity in half-Heusler semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-09-28

    First-principles calculations are performed to investigate the effect of vacancies on the electronic structure and magnetic properties of the two prototypical half-Heusler semiconductors NiTiSn and CoTiSb. The spin degeneracy of the host materials is broken for all types of isolated vacancies under consideration, except for Ni-deficient NiTiSn. A half-metallic character is identified in Sn-deficient NiTiSn and Co/Ti/Sb-deficient CoTiSb. We can explain our findings by introducing an extending Slater-Pauling rule for systems with defects. A ferromagnetic ordering of the local moments due to double exchange appears to be likely.

  10. A Hydrogen - Vacancy Defect In Single-Crystal Silicon

    Science.gov (United States)

    Melnikov, V. V.

    2016-09-01

    Results of a theoretical study of the interaction of interstitial molecular hydrogen with vacancies and the effect of generated defects on the structural and energy characteristics of the H2-Si system are considered. Within the framework of a 5D model it has been demonstrated that the decrease of system symmetry under transition to the crystal defect structure and the increase of the rotational barrier due to the strong interaction of the molecule with a vacancy lead to the significant restructuring of H2 energy spectrum. However, when the molecule is stable its rotational degrees of freedom remain active and H2 low-lying energy levels correspond to the definite values of the angular momentum.

  11. Evidence for Vacancy Injection during the Oxidation of Iron

    Institute of Scientific and Technical Information of China (English)

    D.G.LEES; R.FRANCIS

    2009-01-01

    Iron discs have been oxidised at 890 ℃ on one side only, with the other side protected by an inert gas. The scale-metal adhesion was very good. Initially, scale-metal adhesion was maintained by the scale relaxing towards the metal but after a time which depended upon the initial metal thickness, oxide relaxation ceased and the inert face moved towards the scale-metal interface. When the face which was normally inert was covered with a non-growing oxide layer, the scale-metal adhesion deteriorated. The results show that vacancies which were produced by oxidation were annihilated within the metal, that the inert face played a part and that the scale-metal interface is not a good sink for vacancies.

  12. MIGRATION ENTHALPY OF THERMAL VACANCIES BY POSITRON SPECTROSCOPY

    OpenAIRE

    2005-01-01

    The trapping of positrons at vacancy site in some materials provide a new and sensitive method for the equilibrium determination of point defect migration enthalpy. Data are presented for commercial Al–Mg alloys and fitted to a model allowing presentation in the form of Arrhenius plots, hence the migration enthalpy $H_{iv}^m$ can be determined by positron annihilation lifetime technique (PALT). The results show that as the concentration of Mg increases the value of $H_{iv}^m$ increases too.

  13. Migration Enthalpy of Thermal Vacancies by Positron Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Emad A. Badawi

    2005-01-01

    @@ The trapping of positrons at vacancy site in some materials provide a new and sensitive method for the equilibrium determination of point defect migration enthalpy. Data are presented for commercial Al-Mg alloys and fitted to a model allowing presentation in the form of Arrhenius plots, hence the migration enthalpy H m iv can bedetermined by the positron annihilation lifetime technique. The results show that the value of Hm iv increases as the concentration of Mg increases.

  14. Kinetic processes in solid helium involving impurities and vacancies (Review)

    Science.gov (United States)

    Maidanov, V. A.; Rudavskii, E. Ya.; Sokolov, S. S.

    2017-01-01

    A brief review is given of the kinetic behavior of impurities and vacancies in solid helium, which Andreev and Lifshitz predicted should be delocalized and converted into unique quasiparticles. Primary attention is devoted to the unusual diffusion processes in solid 3He-4He solutions as they undergo phase separation. Because mechanical stresses develop in the crystal during separation, the diffusive flow is substantially reduced and the effective diffusion coefficient becomes smaller than the coherent quantum diffusion coefficient. During the inverse transition from a separated mixture into the homogeneous state, anomalously rapid mass transfer is observed which can be explained qualitatively in terms of a model in which 3He inclusions are dissolved in three stages. Experimental data on the kinetics of phase separation are compared with a diffusive description of the process that takes into account the difference between diffusion processes outside and inside a nucleus of the new phase. Good agreement is obtained between a theoretical calculation and the experimental data. A homogeneous nucleation model is used to estimate the concentration of nuclei. For the first time, the coefficient of mass diffusion is estimated over the entire range of the concentration of the solutions. The behavior of delocalized vacancies in 4He and 3He solid solutions is studied near the separation temperature. The observed features of the pressure in this kind of system during repeated temperature cycling are explained by the formation of pure 4He vacancy clusters. Although the crystal itself has no strict periodicity owing to the random separation of 3He and 4He atoms at the lattice sites, a periodic structure is realized within a cluster and vacancies become delocalized.

  15. Te vacancy-driven superconductivity in orthorhombic molybdenum ditelluride

    Science.gov (United States)

    Cho, Suyeon; Kang, Se Hwang; Yu, Ho Sung; Kim, Hyo Won; Ko, Wonhee; Hwang, Sung Woo; Han, Woo Hyun; Choe, Duk-Hyun; Jung, Young Hwa; Chang, Kee Joo; Lee, Young Hee; Yang, Heejun; Wng Kim, Sung

    2017-06-01

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attentions because of diverse quantum electronic states such as topological insulating (TI), Weyl semimetallic (WSM) and superconducting states. Recently, the superconducting states emerged in pressurized semimetallic TMDs such as MoTe2 and WTe2 have become one of the central issues due to their predicted WSM states. However, the difficulty in synthetic control of chalcogen vacancies and the ambiguous magneto transport properties have hindered the rigorous study on superconducting and WSM states. Here, we report the emergence of superconductivity at 2.1 K in Te-deficient orthorhombic T d-MoTe2-x with an intrinsic electron-doping, while stoichiometric monoclinic 1T‧-MoTe2 shows no superconducting state down to 10 mK, but exhibits a large magnetoresistance of 32 000% at 2 K in a magnetic field of 14 T originating from nearly perfect compensation of electron and hole carriers. Scanning tunnelling spectroscopy and synchrotron x-ray diffraction combined with theoretical calculations clarify that Te vacancies trigger superconductivity via intrinsic electron doping and the evolution of the T d phase from the 1T‧ phase below 200 K. Unlike the pressure-induced superconducting state of monoclinic MoTe2, this Te vacancy-induced superconductivity is emerged in orthorhombic MoTe2, which is predicted as Weyl semimetal, via electron-doping. This chalcogen vacancy induced-superconductivity provides a new route for cultivating superconducting state together with WSM state in 2D van der Waals materials.

  16. Vacancy defects in cadmium mercury telluride investigated with slow positrons

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Rice-Evans, P.; Smith, D.L. (Royal Holloway and Bedford New College, London (United Kingdom). Dept. of Physics); Shaw, N. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1993-03-01

    The II-VI semiconductor cadmium mercury telluride has been studied with a low-energy positron beam. Differences in the variation of the Doppler line-shape parameter as a function of positron implantation energy have been observed for annealed and as-grown samples. A diffusion model analysis of the results indicates large changes in the defect concentration in the bulk due to the annealing. This change is attributed to the difference in mercury vacancy concentration in the samples. (author).

  17. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    Science.gov (United States)

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  18. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang

    2015-01-01

    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  19. Role of nitrogen vacancies in cerium doped aluminum nitride

    Energy Technology Data Exchange (ETDEWEB)

    Majid, Abdul, E-mail: abdulmajid40@yahoo.com [Department of Physics, University of Gujrat, Gujrat (Pakistan); Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Asghar, Farzana [Department of Physics, University of Gujrat, Gujrat (Pakistan); Rana, Usman Ali; Ud-Din Khan, Salah [Sustainable Energy Technologies Center, College of Engineering, King Saud University, PO-Box 800, Riyadh 11421 (Saudi Arabia); Yoshiya, Masato [Department of Adaptive Machine Systems, Osaka University, Osaka (Japan); Hussain, Fayyaz [Physics Department, Bahauddin Zakarya University, Multan (Pakistan); Ahmad, Iftikhar [Department of Mathematics, University of Gujrat, Gujrat (Pakistan)

    2016-08-15

    In this report, a systematic density functional theory based investigation to explain the character of nitrogen vacancies in structural, electronic and magnetic properties of Ce doped wurtzite AlN is presented. The work demonstrates the modification in the properties of the material upon doping thereby addressing dopant concentration and inter-dopant distance. The presence of anionic vacancy reveals spin polarization and introduction of magnetic character in the structure. The doping produced the magnetic character in the material which was of ferromagnetic nature in most cases except the situation when dopants separated by largest distance of 5.873 Å. The calculated values of total energy and exchange energy suggested the configuration including Ce{sub Al}–V{sub N} complex is more favorable and exhibits ferromagnetic ordering. - Highlights: • Ce doped AlN with and without nitrogen vacancy. • Dopant at nearest neighbor site introduce ferromagnetism. • Ce{sub Al}–V{sub N} complex is favorable in Ce:AlN.

  20. Characterisation and modelling of vacancy dynamics in Ni–Mn–Ga ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Merida, D., E-mail: david.merida@ehu.es [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); García, J.A. [Fisika Aplikatua II Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain); BC Materials (Basque Centre for Materials, Application and Nanostructures), 48040 Leioa (Spain); Sánchez-Alarcos, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Pérez-Landazábal, J.I.; Recarte, V. [Departamento de Física, Universidad Pública de Navarra, Campus de Arrosadia, 31006 Pamplona (Spain); Institute for Advanced Materials (INAMAT), Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona (Spain); Plazaola, F. [Elektrizitate eta Elektronika Saila, Euskal Herriko Unibertsitatea UPV/EHU, p.k. 644, 48080 Bilbao (Spain)

    2015-08-05

    Highlights: • We study the dynamics of vacancies for three different Ni–Mn–Ga alloy samples. • The formation and migration energies have been obtained experimentally. • The entropic factor and the distance a vacancy has to reach a sink are measured. • We present a theoretical model to explain the dynamics of vacancies. • Results are applicable for any thermal treatment and extensible to other alloys. - Abstract: The dynamics of vacancies in Ni–Mn–Ga shape memory alloys has been studied by positron annihilation lifetime spectroscopy. The temperature evolution of the vacancy concentration for three different Ni–Mn–Ga samples, two polycrystalline and one monocrystalline, have been determined. The formation and migration energies and the entropic factors are quite similar in all cases, but vary slightly according to composition. However, the number of jumps a vacancy has to overtake to reach a sink is five times higher in the single crystal. This is an expected result, due to the role that surfaces and grain boundaries should play in balancing the vacancy concentration. In all cases, the initial vacancy concentration for the samples quenched from 1173 K lies between 1000 ppm and 2000 ppm. A phenomenological model able to explain the dynamics of vacancies has been developed in terms of the previous parameters. The model can reproduce the vacancy dynamics for any different kind of thermal history and can be easily extended to other alloys.

  1. Vacancy behavior in Cu(In{sub 1−x}Ga{sub x})Se{sub 2} layers grown by a three-stage coevaporation process probed by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Islam, Muhammad M.; Sakurai, Takeaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Hugenschmidt, Christoph [Physics Department E21 and Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, 85748 Garching (Germany); Egger, Werner [Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik, 85577 Neubiberg (Germany); Scheer, Roland; Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle, 06099 Halle (Germany); Akimoto, Katsuhiro [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-03-31

    Vacancy-type defects in Cu(In{sub 1−x}Ga{sub x})Se{sub 2} (x ≅ 0.45 and 1) grown by a three-stage coevaporation process were probed using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and positron lifetime spectra showed that two different defect species coexist in the Cu(In{sub 1−x}Ga{sub x})Se{sub 2} layers, and these were identified as mono/divacancy-type defects and vacancy clusters, respectively. The vacancy clusters were mainly introduced during the third growth stage, and were located in the subsurface region. The concentration of the defects affected the short-circuit current density and the conversion efficiency of the solar cells. The defect concentration and their depth distributions varied depending on Se beam equivalent pressure, growth time, and post-growth annealing time. The behavior of the vacancy-type defects is discussed also with respect to results obtained using an electron probe micro-analyzer. - Highlights: • We applied positron annihilation to characterize Cu(In{sub 1−x}Ga{sub x})Se{sub 2}. • Defect species were identified as mono/divacancy-type defects and vacancy clusters. • The conversion efficiency increased with a decreasing vacancy concentration.

  2. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection.

    Science.gov (United States)

    Li, Guowei; Blake, Graeme R; Palstra, Thomas T M

    2017-03-21

    Vacancies exist throughout nature and determine the physical properties of materials. By manipulating the density and distribution of vacancies, it is possible to influence their physical properties such as band-gap, conductivity, magnetism, etc. This can generate exciting applications in the fields of water treatment, energy storage, and physical devices such as resistance-change memories. In this review, we focus on recent progress in vacancy engineering for the design of materials for energy harvesting applications. A brief discription of the concept of vacancies, the way to create and control them, as well as their fundamental properties, is first provided. Then, emphasis is placed on the strategies used to tailor vacancies for metal-insulator transitions, electronic structures, and introducing magnetism in non-magnetic materials. Finally, we present representative applications of different structures with vacancies as active electrode materials of lithium or sodium ion batteries, catalysts for water splitting, and hydrogen evolution.

  3. Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

    Science.gov (United States)

    Sugiyama, Atsushi; Morimoto, Ryoichi; Osaka, Tetsuya; Mogi, Iwao; Asanuma, Miki; Miura, Makoto; Oshikiri, Yoshinobu; Yamauchi, Yusuke; Aogaki, Ryoichi

    2016-01-01

    The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms. PMID:26791269

  4. Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study

    Science.gov (United States)

    Korir, K. K.; Catellani, A.; Cicero, G.

    2016-09-01

    Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.

  5. The role of vacancies and local distortions in the design of new phase-change materials.

    Science.gov (United States)

    Wuttig, Matthias; Lüsebrink, Daniel; Wamwangi, Daniel; Wełnic, Wojciech; Gillessen, Michael; Dronskowski, Richard

    2007-02-01

    Phase-change materials are of tremendous technological importance ranging from optical data storage to electronic memories. Despite this interest, many fundamental properties of phase-change materials, such as the role of vacancies, remain poorly understood. 'GeSbTe'-based phase-change materials contain vacancy concentrations around 10% in their metastable crystalline structure. By using density-functional theory, the origin of these vacancies has been clarified and we show that the most stable crystalline phases with rocksalt-like structures are characterized by large vacancy concentrations and local distortions. The ease by which vacancies are formed is explained by the need to annihilate energetically unfavourable antibonding Ge-Te and Sb-Te interactions in the highest occupied bands. Understanding how the interplay between vacancies and local distortions lowers the total energy helps to design novel phase-change materials as evidenced by new experimental data.

  6. Electronic structures and optical properties of a SiC nanotube with vacancy defects

    Institute of Scientific and Technical Information of China (English)

    Song Jiuxu; Yang Yintang; Wang Ping; Guo Lixin; Zhang Zhiyong

    2013-01-01

    Based on first-principle calculations,the electronic structures and optical properties of a single-walled (7,0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated.In the three silicon atoms around the carbon vacancy,two atoms form a stable bond and the other is a dangling bond.A similar structure is found in the nanotube with a silicon vacancy.A carbon vacancy results in a defect level near the top of the valence band,while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube.Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.

  7. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    Science.gov (United States)

    Biderman, N. J.; Sundaramoorthy, R.; Haldar, Pradeep; Lloyd, J. R.

    2016-05-01

    Two sets of diffusion-reaction numerical simulations using a finite difference method (FDM) were conducted to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,Ga)Se2 (CIGS) and Cu2ZnSn(S, Se)4 (CZTSSe or CZTS) via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases the equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick's second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. According to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.

  8. Dissociative diffusion mechanism in vacancy-rich materials according to mass action kinetics

    Directory of Open Access Journals (Sweden)

    N. J. Biderman

    2016-05-01

    Full Text Available Two sets of diffusion-reaction numerical simulations using a finite difference method (FDM were conducted to investigate fast impurity diffusion via interstitial sites in vacancy-rich materials such as Cu(In,GaSe2 (CIGS and Cu2ZnSn(S, Se4 (CZTSSe or CZTS via the dissociative diffusion mechanism where the interstitial diffuser ultimately reacts with a vacancy to produce a substitutional. The first set of simulations extends the standard interstitial-limited dissociative diffusion theory to vacancy-rich material conditions where vacancies are annihilated in large amounts, introducing non-equilibrium vacancy concentration profiles. The second simulation set explores the vacancy-limited dissociative diffusion where impurity incorporation increases the equilibrium vacancy concentration. In addition to diffusion profiles of varying concentrations and shapes that were obtained in all simulations, some of the profiles can be fitted with the constant- and limited-source solutions of Fick’s second law despite the non-equilibrium condition induced by the interstitial-vacancy reaction. The first set of simulations reveals that the dissociative diffusion coefficient in vacancy-rich materials is inversely proportional to the initial vacancy concentration. In the second set of numerical simulations, impurity-induced changes in the vacancy concentration lead to distinctive diffusion profile shapes. The simulation results are also compared with published data of impurity diffusion in CIGS. According to the characteristic properties of diffusion profiles from the two set of simulations, experimental detection of the dissociative diffusion mechanism in vacancy-rich materials may be possible.

  9. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    OpenAIRE

    Li, Shen; Chen, Xiang-Dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diam...

  10. A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction

    CERN Document Server

    Lazariev, Andrii

    2015-01-01

    Methods and techniques to measure and image beyond the state-of-the-art have always been influential in propelling basic science and technology. Because current technologies are venturing into nanoscopic and molecular-scale fabrication, atomic-scale measurement techniques are inevitable. One such emerging sensing method uses the spins associated with nitrogen-vacancy (NV) defects in diamond. The uniqueness of this NV sensor is its atomic size and ability to perform precision sensing under ambient conditions conveniently using light and microwaves (MW). These advantages have unique applications in nanoscale sensing and imaging of magnetic fields from nuclear spins in single biomolecules. During the last few years, several encouraging results have emerged towards the realization of an NV spin-based molecular structure microscope. Here, we present a projection-reconstruction method that retrieves the three-dimensional structure of a single molecule from the nuclear spin noise signatures. We validate this method ...

  11. Optical determination and magnetic manipulation of single nitrogen-vacancy color center in diamond nanocrystal

    CERN Document Server

    Lai, Ngoc Diep; Treussart, François; Roch, Jean-François

    2010-01-01

    The controlled and coherent manipulation of individual quantum systems is a fundamental key for the development of quantum information processing. The nitrogen-vacancy (NV) color center in diamond is a promising system since its photoluminescence is perfectly stable at room temperature and its electron spin can be optically read-out at the individual level. We review here the experiments currently realized in our laboratory, concerning the use of single NV color center as single photon source and the coherent magnetic manipulation of the electron spin associated to a single NV color center. Furthermore, we demonstrate a nanoscopy experiment based on saturation absorption e?ect, which allows to optically pin-point single NV color center at a sub-? resolution. This opens a possibility to independently address two or multiple magnetically-coupled single NV color centers, which is a necessary step toward the realization of a diamond-based quantum computer.

  12. Annealing behaviors of vacancy in varied neutron irradiated Czochralski silicon

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-feng; LI Yang-xian; LIU Li-li; NIU Ping-juan; NIU Sheng-li; CHEN Dong-feng

    2006-01-01

    The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect,oxygen atom shares a vacancy,it is bonded to two silicon neighbors. Annealed at 200 ℃,divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2),834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1,825 cm-1 and 889 cm-1 (VO2),in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO,etc,in high dose neutron irradiated CZ-Si (S2),the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose,the annealing behavior of A-center is changed.

  13. Electronic properties and STM images of vacancy clusters and chains in functionalized silicene and germanene

    Science.gov (United States)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2017-01-01

    Electronic properties and STM topographical images of X (=F, H, O) functionalized silicene and germanene have been investigated by introducing various kind of vacancy clusters and chain patterns in monolayers within density functional theory (DFT) framework. The relative ease of formation of vacancy clusters and chain patterns is found to be energetically most favorable in hydrogenated silicene and germanene. F- and H-functionalized silicene and germanene are direct bandgap semiconducting with bandgap ranging between 0.1-1.9 eV, while O-functionalized monolayers are metallic in nature. By introducing various vacancy clusters and chain patterns in both silicene and germanene, the electronic and magnetic properties get modified in significant manner e.g. F- and H-functionalized silicene and germanene with hexagonal and rectangle vacancy clusters are non-magnetic semiconductors with modified bandgap values while pentagonal and triangle vacancy clusters induce metallicity and magnetic character in monolayers; hexagonal vacancy chain patterns induce direct-to-indirect gap transition while zigzag vacancy chain patterns retain direct bandgap nature of monolayers. Calculated STM topographical images show distinctly different characteristics for various type of vacancy clusters and chain patterns which may be used as electronic fingerprints to identify various vacancy patterns in silicene and germanene created during the process of functionalization.

  14. Knight shifts around vacancies in the 2D Heisenberg model.

    Science.gov (United States)

    Anfuso, Fabrizio; Eggert, Sebastian

    2006-01-13

    The local response to a uniform field around vacancies in the two-dimensional spin-1/2 Heisenberg antiferromagnet is determined by numerical quantum Monte Carlo simulations as a function of temperature. It is possible to separate the Knight shifts into uniform and staggered contributions on the lattice which are analyzed and understood in detail. The contributions show interesting long- and short-range behavior that may be of relevance in NMR and susceptibility measurements. For more than one impurity, remarkable nonlinear enhancement and cancellation effects take place. We predict that the Curie impurity susceptibility will be observable for a random impurity concentration even in the thermodynamic limit.

  15. Coherent optical transitions in implanted nitrogen vacancy centers.

    Science.gov (United States)

    Chu, Y; de Leon, N P; Shields, B J; Hausmann, B; Evans, R; Togan, E; Burek, M J; Markham, M; Stacey, A; Zibrov, A S; Yacoby, A; Twitchen, D J; Loncar, M; Park, H; Maletinsky, P; Lukin, M D

    2014-01-01

    We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

  16. Effects of vacancies on overshooting in nonequilibrium ordering processes

    DEFF Research Database (Denmark)

    Gilhøj, Henriette; Jeppesen, Claus; Mouritsen, Ole G.

    1996-01-01

    The effects of annealed site dilution on the nonequilibrium ordering process in the two-dimensional Ising model with a nonconserved order parameter have been studied using Monte Carlo simulation. It is found that the transient development of a local order that is larger than the equilibrium order...... (overshooting), as recently reported in the pure Ising model [H. Gilhoj, C. Jeppesen, and O. G; Mouritsen, Phys. Rev. Lett. 75, 3305 (1995)], persists in the dilute model and is accompanied by a depletion of the vacancies within the ordered domains....

  17. Diamond particles as nanoantennas for nitrogen-vacancy color centers

    CERN Document Server

    Greffet, J -J; Besbes, M; Lai, N D; Treussart, F; Roch, J -F

    2011-01-01

    The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been reported. It has also been observed that for nanocrystals much smaller than the mean luminescence wavelength, the particle size sets a lower threshold for resolution in Stimulated Emission Depletion (STED) microscopy. We show that all these features can be quantitatively understood by realizing that the absorption-emission of light by the NV center is mediated by the diamond nanoparticle which behaves as a dielectric nanoantenna.

  18. Nanoscale NMR and NQR with Nitrogen Vacancy Centers

    Science.gov (United States)

    Urbach, Elana; Lovchinsky, Igor; Sanchez-Yamagishi, Javier; Choi, Soonwon; Bylinskii, Alexei; Dwyer, Bo; Andersen, Trond; Sushkov, Alex; Park, Hongkun; Lukin, Mikhail

    2016-05-01

    Nuclear quadrupole resonance (NQR) is a powerful tool which is used to detect quadrupolar interaction in nuclear spins with I > 1/2. Conventional NQR and NMR technology, however, rely on measuring magnetic fields from a macroscopic number of spins. Extending NMR and NQR techniques to the nanoscale could allow us to learn structural information about interesting materials and biomolecules. We present recent progress on using Nitrogen-Vacancy (NV) centers in diamond to perform room temperature nanoscale NMR and NQR spectroscopy on small numbers of nuclear spins in hexagonal boron nitride.

  19. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond

    CERN Document Server

    Neukirch, Levi P; Quidant, Romain; Novotny, Lukas; Vamivakas, A Nick

    2013-01-01

    We present the first evidence of nitrogen vacancy (NV) photoluminescence from a nanodiamond suspended in a free-space optical dipole trap at atmospheric pressure. The photoluminescence rates are shown to decrease with increasing trap laser power, but are inconsistent with a thermal quenching process. For a continuous-wave trap, the neutral charge state (NV$^0$) appears to be suppressed. Chopping the trap laser yields higher total count rates and results in a mixture of both NV$^0$ and the negative charge state (NV$^-$).

  20. Method for providing oxygen ion vacancies in lanthanide oxides

    Science.gov (United States)

    Kay, D. Alan R.; Wilson, William G.

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  1. Vacancy or not: An insight on the intrinsic vacancies in rocksalt-structured GeSbTe alloys from ab initio calculations

    Science.gov (United States)

    Zhou, J.; Sun, Z.; Pan, Y.; Song, Z.; Ahuja, R.

    2011-07-01

    Rocksalt-structured GeSbTe (GST) phase-change materials contain significant amounts of intrinsic vacancies at one sublattice. On the basis of ab initio total energy calculations, we have shown that the so-called intrinsic vacancies result from geometrical voids that originate from packing spaces for lone pairs of electrons tightly bound to specific Te layers where a weak bonding exists. The existence of such geometrical voids is concomitant with a narrow band gap. The present results will shed new insights on the intrinsic vacancies in rocksalt-structured GST.

  2. Surface effects on nitrogen vacancy centers neutralization in diamond

    Science.gov (United States)

    Newell, Arthur N.; Dowdell, Dontray A.; Santamore, D. H.

    2016-11-01

    The performance of nitrogen vacancy (NV-) based magnetic sensors strongly depends on the stability of nitrogen vacancy centers near the diamond surface. The sensitivity of magnetic field detection is diminished as the NV- turns into the neutralized charge state NV0. We investigate the neutralization of NV- and calculate the ratio of NV0 to total NV (NV-+NV0) caused by a hydrogen terminated diamond with a surface water layer. We find that NV- neutralization exhibits two distinct regions: near the surface, where the NV- is completely neutralized, and in the bulk, where the neutralization ratio is inversely proportional to depth following the electrostatic force law. In addition, small changes in concentration can lead to large differences in neutralization behavior. This phenomenon allows one to carefully control the concentration to decrease the NV- neutralization. The presence of nitrogen dopant greatly reduces NV- neutralization as the nitrogen ionizes in preference to NV- neutralization at the same depth. The water layer pH also affects neutralization. If the pH is very low due to cleaning agent residue, then we see a change in the band bending and the reduction of the two-dimensional hole gas region. Finally, we find that dissolved carbon dioxide resulting from direct contact with the atmosphere at room temperature hardly affects the NV- neutralization.

  3. Oxygen-vacancy driven tunnelling spintronics across MgO

    Science.gov (United States)

    Halisdemir, U.; Schleicher, F.; Kim, D. J.; Taudul, B.; Lacour, D.; Choi, W. S.; Gallart, M.; Boukari, S.; Schmerber, G.; Davesne, V.; Panissod, P.; Halley, D.; Majjad, H.; Henry, Y.; Leconte, B.; Boulard, A.; Spor, D.; Beyer, N.; Kieber, C.; Sternitzky, E.; Cregut, O.; Ziegler, M.; Montaigne, F.; Arabski, J.; Beaurepaire, E.; Jo, W.; Alouani, M.; Gilliot, P.; Hehn, M.; Bowen, M.

    2016-10-01

    The conservation of an electron's spin and symmetry as it undergoes solid-state tunnelling within magnetic tunnel junctions (MTJs) is thought to be best understood using MgO-based MTJs1. Yet the very large experimental values of tunnelling magnetoresistance (TMR) that justify this perception are often associated with tunnelling barrier heights well below those suggested by the MgO optical band gap. This combination of high TMR and low RA-product, while spawning spin-transfer/spin-orbit torque experiments and considerable industrial interest, cannot be explained by standard theory. Noting the impact of a tunnel barrier's altered stoichiometry on TMR2, we reconcile this 10+year-old contradiction between theory and experiment by considering the impact of the MgO barrier's structural defects3-5. We find that the ground and excited states of oxygen vacancies can promote localized states within the band gap with differing electronic character. By setting symmetry- and temperature-dependent tunnelling barrier heights, they alter symmetry-polarized tunnelling and thus TMR. We will examine how annealing, depending on MgO growth conditions, can alter the nature of these localized states. This oxygen vacancy paradigm of inorganic tunnelling spintronics opens interesting perspectives into endowing the MTJ with additional functionalities, such as optically manipulating the MTJ's spintronic response.

  4. Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs

    Science.gov (United States)

    Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2017-01-01

    In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.

  5. New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations

    NARCIS (Netherlands)

    Dubinko, [No Value

    2005-01-01

    A new mechanism of irradiation creep is proposed, which is based on the radiation and stress induced difference in emission ( RSIDE) of vacancies from dislocations of different orientations with respect to the external stress. This phenomenon is due to the difference in vacancy formation energies, w

  6. Resonant valence bond states in zinc vacancies induce the ferromagnetism of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw

    2016-05-06

    A theoretical model was proposed to investigate the mechanism of ferromagnetism in ZnO as well as to simulate the experimental result that the ferromagnetism can be enhanced by UV irradiation as UV photon energy is equivalent to the band gap. In the model, the spin moments arise from the trapped electrons in oxygen vacancy states and coexist with the itinerant electrons which reside in zinc vacancy states and fall into resonant valence bond states. Charge exchange between the conduction band of ZnO and both vacancy states makes electrons on both vacancy states delocalized and results in a decrease of the ferromagnetism as well. - Highlights: • The spin moments of ZnO arise from the electrons trapped in oxygen vacancies. • The itinerant electrons residing in zinc vacancies fall into resonant valence bond states. • The ferromagnetism of ZnO is present as both oxygen and zinc vacancies are coexisting. • The couplings between the conduction band and both vacancy states both make the ferromagnetism decrease.

  7. Interaction of carbon-vacancy complex with minor alloying elements of ferritic steels

    Science.gov (United States)

    Bakaev, A.; Terentyev, D.; He, X.; Zhurkin, E. E.; Van Neck, D.

    2014-08-01

    Interstitial carbon, dissolved in bcc matrix of ferritic steels, plays an important role in the evolution of radiation-induced microstructure since it exhibits strong interaction with vacancies. Frequent formation and break-up of carbon-vacancy pairs, occurring in the course of irradiation, affect both kinetics of the accumulation of point defect clusters and carbon spatial distribution. The interaction of typical alloying elements (Mn, Ni, Cu, Si, Cr and P) in ferritic steels used as structural materials in nuclear reactors with a carbon-vacancy complex is analyzed using ab initio techniques. It is found that all the considered solutes form stable triple clusters resulting in the increase of the total binding energy by 0.2-0.3 eV. As a result of the formation of energetically favourable solute-carbon-vacancy triplets, the dissociation energy for vacancy/carbon emission is also increased by ∼0.2-0.3 eV, suggesting that the solutes enhance thermal stability of carbon-vacancy complex. Association of carbon-vacancy pairs with multiple solute clusters is found to be favorable for Ni, Cu and P. The energetic stability of solute(s)-carbon-vacancy complexes was rationalized on the basis of pairwise interaction data and by analyzing the variation of local magnetic moments on atoms constituting the clusters.

  8. Living on the edge : STM studies of the creation, diffusion and annihilation of surface vacancies

    NARCIS (Netherlands)

    Schoots, Koen

    2007-01-01

    This thesis describes an STM study of the creation, diffusion and annihilation of missing atoms, so-called surface vacancies, in the Cu(100) surface. Because of the extremely high mobility of surface vacancies in combination with their extremely low density, we have been forced to use tracer

  9. Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Brian P. Somerday; M. I. Baskes

    1998-12-01

    The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.

  10. Dopant-vacancy binding effects in Li-doped magnesium hydride

    Science.gov (United States)

    Smith, Kyle C.; Fisher, Timothy S.; Waghmare, Umesh V.; Grau-Crespo, Ricardo

    2010-10-01

    We use a combination of ab initio calculations and statistical mechanics to investigate the substitution of Li+ for Mg2+ in magnesium hydride (MgH2) accompanied by the formation of hydrogen vacancies with positive charge (with respect to the original ion at the site). We show that the binding energy between dopants and vacancy defects leads to a significant fraction of trapped vacancies and therefore a dramatic reduction in the number of free vacancies available for diffusion. The concentration of free vacancies initially increases with dopant concentration but reaches a maximum at around 1mol% Li doping and slowly decreases with further doping. At the optimal level of doping, the corresponding concentration of free vacancies is much higher than the equilibrium concentrations of charged and neutral vacancies in pure MgH2 at typical hydrogen storage conditions. We also show that Li-doped MgH2 is thermodynamically metastable with respect to phase separation into pure magnesium and lithium hydrides at any significant Li concentration, even after considering the stabilization provided by dopant-vacancy interactions and configurational entropic effects. Our results suggest that lithium doping may enhance hydrogen diffusion hydride but only to a limited extent determined by an optimal dopant concentration and conditioned to the stability of the doped phase.

  11. Vacancies in a 3D-Kitaev model on hyper-honeycomb lattice

    Science.gov (United States)

    Sreejith, G. J.; Bhattacharjee, Subhro; Moessner, Roderich

    We study the properties of isolated single and pairs of vacancies in an exactly solvable Kitaev model on a three dimensional hyper-honeycomb lattice. We show that each vacancy in the lattice is associated with a low energy spin like degree of freedom, similar to the case of previously studied honeycomb model. We calculate the contribution from these vacancy spin-moments to the low field magnetization response to a z-directed field. Isolated vacancies in the gapped phase act as free spins. In the gapless phase, these spins interact with the surrounding spin-liquid suppressing the low-field magnetization to 1/√{ ln [ 1 /hz ] }. Pair of vacancies have a sublattice-dependent, anisotropic, spin-liquid mediated interaction with each other. In the gapless phase, interaction between vacancies in the same (opposite) sublattice enhances (suppresses) the low-field magnetization, indicating a ferromagnetic (anti-ferromagnetic) nature. We also show that, unlike vacancies in the honeycomb lattice, the vacancies here do not bind a flux at low-energies.

  12. Thermodynamics, structure, and charge state of hydrogen-vacancy complexes in δ-plutonium

    Science.gov (United States)

    Taylor, Christopher D.; Francis, Michael F.; Schwartz, Daniel S.

    2014-06-01

    Hydrogen-vacancy complexes can form in a material due to the exothermic binding of hydrogen atoms to vacancy sites. We explore the structure and electronic properties of hydrogen-vacancy complexes in δ-Pu using a density functional theory supercell approach, with up to eight hydrogen atoms stored in the vacancy site. We find that the hydrogen atoms bind to the inner edge of the vacancy site, preferring pseudo-octahedral configurations that optimize the Pu-H bond length. Hydrogen binding to the vacancy site remains exothermic, with binding energies around -0.4 eV/H atom. A statistical mechanics analysis is derived and applied to reveal the range of hydrogen chemical potentials that would lead to hydrogen-vacancy complex formation. We find that these chemical potentials are higher than those required to form the hydride phase, indicating that hydriding should occur before any appreciable concentration of vacancy-hydrogen complexes is realized. Some remarks are made comparing this theoretical finding to the experimental work on this topic, with suggestions given for future work that may help reconcile some apparent contradictions.

  13. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  14. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  15. Internal positron source production with a cyclotron and vacancy study in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kawasuso, Atsuo; Masuno, Shin-ichi; Okada, Sohei [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hasegawa, Masayuki; Suezawa, Masashi

    1997-03-01

    In order to detect thermal vacancies in Si, in situ positron annihilation measurement has been performed using an internal source method. An increase (decrease) in S-parameter (W-parameter) was observed above 1200degC. It was explained in terms of the formation of thermal vacancies. (author)

  16. Vacancy trapping mechanism for multiple hydrogen and helium in beryllium: a first-principles study.

    Science.gov (United States)

    Zhang, Pengbo; Zhao, Jijun; Wen, Bin

    2012-03-01

    The microscopic mechanism for H and He trapping by vacancy defects and bubble formation in a Be host lattice is investigated using first-principles calculations. A single He atom prefers to occupy a vacancy centre while H does not. He can segregate towards the vacancy from the interstitial site much more easily than H. Both H and He exhibit lower diffusion barriers from a remote interstitial to a vacancy with regard to their diffusion barriers inside a perfect Be solid. Up to five H or 12 He atoms can be accommodated into the monovacancy space, and the Be-He interaction is much weaker than Be-H. The physical origin for aggregation of multiple H or He atoms in a vacancy is further discussed. The strong tendency of H and He trapping at vacancies provides an explanation for why H and He bubbles were experimentally observed at vacancy defects in materials. We therefore argue that vacancies provide a primary nucleation site for bubbles of H and He gases inside Be materials.

  17. Atomic-scale Modeling of Interactions of Helium, Vacancies and Helium-vacancy Clusters with Screw Dislocations in Alpha-Iron

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, Howard L.; Gao, Fei; Kurtz, Richard J.

    2010-05-01

    The interactions of He and vacancy defects with <111> screw dislocations in alpha-Fe are modeled using molecular statics, molecular dynamics and transition state energy determinations. The formation energies and binding energies of interstitial He atoms, vacancies and He-vacancy clusters near and within dislocations in alpha-Fe are determined at various locations relative to the dislocation core. Using the dimer transition state method the migration energies and trajectories of the He and vacancy defects near and within the screw dislocation are also determined. Both interstitial He atoms and single vacancies are attracted to and trapped in the dislocation core region, and they both migrate along the dislocation line with a migration energy of about 0.4 eV, which is about half the migration energy of vacancies in the perfect crystal and about five times the migration energy for interstitial He in the perfect crystal. Divacancies and He-divacancy complexes have migration properties within the dislocation core that are similar to those in the perfect crystal, although the stability of these defects within the dislocation may be somewhat less than in the perfect crystal.

  18. Behaviors of helium in vanadium:Stability, diffusion, vacancy trapping and ideal tensile strength

    Institute of Scientific and Technical Information of China (English)

    Lijiang Gui; Yuelin Liu; Weitian Wang; Yinan Liu; Kameel Arshad; Ying Zhang; Guanghong Lu; Junen Yao

    2013-01-01

    The behaviors of helium in vanadium including stability, diffusion, and its interaction with vacancy as well as its effects on the ideal tensile strength was investigated by a first-principles method. The activation energy barrier of helium was calculated to be 0.09 eV, which is consistent with the experimental result. The results indicated that the vacancy can lead to a directed helium segregation into the vacancy to form a helium cluster since the vacancy provides a “lower atomic and electron density region”as a large driving force for helium binding. It is easy for a mono-vacancy to trap helium and form a HenV complex. The first-principles computational tensile test demonstrates that helium obviously decreased the tensile strength of vanadium.

  19. Electronic excitation and relaxation processes of oxygen vacancies in YSZ and their involvement in photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Takaaki; Kuroda, Yasuhiro [Waseda University, Department of Electrical Engineering and Bioscience, Shinjuku, Tokyo (Japan); Ohki, Yoshimichi [Waseda University, Department of Electrical Engineering and Bioscience, Shinjuku, Tokyo (Japan); Waseda University, Research Institute for Materials Science and Technology, Shinjuku, Tokyo (Japan)

    2016-09-15

    Yttria-stabilized zirconia (YSZ) consists of zirconia and yttria and oxygen vacancies appear in accordance with the ratio of yttria. The oxygen vacancy would sometimes give annoyance, but it would be beneficial on other occasions, depending on its applications. Photoluminescence (PL) due to oxygen vacancies induced by photons with energies around 5.5 eV exhibits two decay time constants. As a possible reason for this, an oxygen vacancy changes its charging state from neutral to positive monovalent by losing an electron when YSZ is irradiated by ultraviolet photons. The PL decays either in a ms range or in a ns range, depending on whether the oxygen vacancies are neutral or positive monovalent. (orig.)

  20. Distortion-induced scattering due to vacancies in NbC/sub 0. 72/

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, K.; Harada, J.; Morinaga, M.; Georgopoulos, P.; Cohen, J.B.

    1988-03-01

    The diffuse X-ray (and electron) scattering from NbC/sub 0.72/, previously thought to be due to vacancy octahedra, is shown to be dominated by the scattering due to mean-square atomic displacements with wave vectors near the Brillouin-zone boundary. The atomic displacements are similar to those produced by an optical phonon. On the basis of the sign and amplitude of the displacement parameters a model for the environment around a carbon vacancy is proposed. The Nb nearest neighbors to a vacancy move away from it, whereas the C neighbors move toward it, and this appears to be due to an enhancement of the strength of the Nb-C bond arising from the presence of vacancies on the C sublattice. There is evidence that these vacancies tend to be correlated along 211 vectors.

  1. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S. [Azerbaijan National Academy of Sciences, Institute of Radiation Problems (Azerbaijan)

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

  2. Electronic and optical properties of vacancy-doped WS2 monolayers

    Directory of Open Access Journals (Sweden)

    Jian-wei Wei

    2012-12-01

    Full Text Available Monolayers of tungsten disulfide doped with atomic vacancies have been investigated for the first time by density functional theory calculations. The results reveal that the atomic vacancy defects affect the electronic and optical properties of the tungsten disulfide monolayers. The strongly ionic character of the W-S bonds and the non-bonding electrons of the vacancy defects result in spin polarization near the defects. Moreover, the spin polarization of single W atomic vacancies has a larger range than for one or two S atomic vacancies. In particular, increased intensity of absorption and red shift of optical absorption are universally observed in the presence of these atomic defects, which are shown to be a fundamental factor in determining the spin transport and optical absorption of tungsten disulfide monolayers.

  3. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  4. Live-cell thermometry with nitrogen vacancy centers in nanodiamonds

    Science.gov (United States)

    Jayakumar, Harishankar; Fedder, Helmut; Chen, Andrew; Yang, Liudi; Li, Chenghai; Wrachtrup, Joerg; Wang, Sihong; Meriles, Carlos

    The ability to measure temperature is typically affected by a tradeoff between sensitivity and spatial resolution. Good thermometers tend to be bulky systems and hence are ill-suited for thermal sensing with high spatial localization. Conversely, the signal resulting from nanoscale temperature probes is often impacted by noise to a level where the measurement precision becomes poor. Adding to the microscopist toolbox, the nitrogen vacancy (NV) center in diamond has recently emerged as a promising platform for high-sensitivity nanoscale thermometry. Of particular interest are applications in living cells because diamond nanocrystals are biocompatible and can be chemically functionalized to target specific organelles. Here we report progress on the ability to probe and compare temperature within and between living cells using nanodiamond-hosted NV thermometry. We focus our study on cancerous cells, where atypical metabolic pathways arguably lead to changes in the way a cell generates heat, and thus on its temperature profile.

  5. Towards a spin radar with Nitrogen Vacancy centers in diamond

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for nanoscale magnetic resonance imaging. The NV spin can be used to sense the presence of external nuclear spins, and through them biomolecule structure, by exploiting anisotropic hyperfine interactions. The NV center thus effectively acts as a dipole ``antenna'', detecting and identifying spins at different spatial locations. The antenna dipole is typically set by the diamond and target sample geometry, and nuclear spins are often found in the NV's dipole blind spot. In this work, we demonstrate an experimental technique by which one can controllably turn and manipulate the direction of this effective NV antenna over a wide range of approximately +-40 degrees. In combination with filtered back projection techniques, this method allows reconstructing with high resolution the real space position of spins in the NV center environment.

  6. Hydroxyl vacancies in single-walled aluminosilicate and aluminogermanate nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Teobaldi, Gilberto; Hofer, Werner A [Surface Science Research Centre, Department of Chemistry, University of Liverpool, Liverpool L69 3BX (United Kingdom); Beglitis, Nikolaos S; Fisher, Andrew J [London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AK (United Kingdom); Zerbetto, Francesco [Dipartimento di Chimica ' G Ciamician' , Universita degli Studi di Bologna, via Selmi 2, 40126 Bologna (Italy)

    2009-05-13

    We report a theoretical study of hydroxyl vacancies in aluminosilicate and aluminogermanate single-walled metal-oxide nanotubes. Defects are introduced on both sides of the tube walls and lead to occupied and empty states in the band gap which are highly localized both in energy and in real space. Different magnetization states are found depending on both the chemical composition and the specific side with respect to the tube cavity. The defect-induced perturbations to the pristine electronic structure are related to the electrostatic polarization across the tube walls and the ensuing change in Lewis acid-base reactivity. A general approach towards a quantitative evaluation of both the polarization across the tube walls and the tube excluded volume is also proposed and discussed on an electrostatic basis.

  7. Images d’un camp de vacances en pays socialiste

    Directory of Open Access Journals (Sweden)

    Ania Szczepanska

    2009-12-01

    Full Text Available En 1976, Marcel Lozinski choisit d’aller filmer un camp de vacances organisé par le mouvement de la jeunesse socialiste dans la région des lacs de Mazurie en Pologne. Le cinéaste décide de filmer le quotidien de ces jeunes familles en vacances, entre quiz politiques, leçons de savoir vivre et concours de la famille modèle. Pour cela, il élabore un protocole de travail singulier : aux vacanciers s’ajoutent des personnes complices du cinéaste dont le rôle sera pour certains de participer activement à la vie collective, pour d’autres de s’y opposer.Tourné en 1976, le documentaire Comment vivre attendra cinq années avant d’être diffusé en salle, en tant que fiction. Pourquoi cette diffusion retardée et surtout, que penser de cette requalification a posteriori ? Outre l’analyse du film lui-même, un entretien mené avec Marcel Lozinski ainsi que des archives consultées à la filmothèque de Varsovie apporteront des éléments d’analyse sur la réception de l’œuvre par les autorités cinématographiques de l’époque, mais également sur le sens produit par les dispositifs mis en place par le cinéaste au cours de ce tournage.

  8. Vacancy-induced mechanical stabilization of cubic tungsten nitride

    Science.gov (United States)

    Balasubramanian, Karthik; Khare, Sanjay; Gall, Daniel

    2016-11-01

    First-principles methods are employed to determine the structural, mechanical, and thermodynamic reasons for the experimentally reported cubic WN phase. The defect-free rocksalt phase is both mechanically and thermodynamically unstable, with a negative single crystal shear modulus C44=-86 GPa and a positive enthalpy of formation per formula unit Hf=0.623 eV with respect to molecular nitrogen and metallic W. In contrast, WN in the NbO phase is stable, with C44=175 GPa and Hf=-0.839 eV . A charge distribution analysis reveals that the application of shear strain along [100] in rocksalt WN results in an increased overlap of the t2 g orbitals which causes electron migration from the expanded to the shortened W-W bond axes, yielding a negative shear modulus due to an energy reduction associated with new bonding states 8.1-8.7 eV below the Fermi level. A corresponding shear strain in WN in the NbO phase results in an energy increase and a positive shear modulus. The mechanical stability transition from the NaCl to the NbO phase is explored using supercell calculations of the NaCl structure containing Cv=0 %-25 % cation and anion vacancies, while keeping the N-to-W ratio constant at unity. The structure is mechanically unstable for Cvconcentration, the isotropic elastic modulus E of cubic WN is zero, but increases steeply to E =445 GPa for Cv=10 % , and then less steeply to E =561 GPa for Cv=25 % . Correspondingly, the hardness estimated using Tian's model increases from 0 to 15 to 26 GPa as Cv increases from 5% to 10% to 25%, indicating that a relatively small vacancy concentration stabilizes the cubic WN phase and that the large variations in reported mechanical properties of WN can be attributed to relatively small changes in Cv.

  9. Transition metal complexes coupled to vacancies in oxides: origin of different properties of Cr3+ in MgO bounded to a or Mg2+ vacancy.

    Science.gov (United States)

    Aramburu, J A; García-Fernández, P; Barriuso, M T; Moreno, M

    2013-11-27

    Despite the importance of vacancies over the properties of insulating oxides its influence on neighboring transition metal ions is far from being understood. This work is devoted to find the origin of various up to now unexplained properties of chromium bounded either to a or a Mg(2+) vacancy in MgO. In these model systems particular attention is paid to understand, by means of ab initio calculations, why the cubic field splitting parameter, 10Dq, is surprisingly 1600 cm(-1) higher for a than for a vacancy, a fact behind the suppression of the sharp (2)E → (4)A2 luminescence in the latter case. Our calculations, which reproduce the main experimental facts, prove that the average Cr(3+)-O(2-) distance is the same within 0.8% for both systems, and thus, the low 10Dq value for a vacancy is shown to be due mainly to the electrostatic potential from the missing Mg(2+) ion, which increases the energy of antibonding t(2g) (∼xy, xz, yz) levels. By contrast, for a Mg(2+) vacancy that potential provides a supplementary increase of the e(g) (∼x(2) - y(2), 3z(2 )- r(2)) level energy and thus of 10Dq. The existence of the (2)E → (4)A2 luminescence for Cr(3+)-doped MgO under perfect cubic symmetry or with a vacancy is shown to be greatly helped by the internal electric field created by the rest of the lattice ions on the CrO6(9-) unit, whose importance is usually ignored. The present results underline the role of ab initio calculations for unveiling the subtle effects induced by a close vacancy on the properties of transition metal ions in oxides. At the same time they stress the failure of the empirical superposition model for deriving the equilibrium geometry of C4v and C2v centers in MgO:Cr(3+).

  10. Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe

    Science.gov (United States)

    Iota, V.; Weinstein, B. A.

    1997-03-01

    We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. vih>(figures)

  11. Phase transitions via selective elemental vacancy engineering in complex oxide thin films

    Science.gov (United States)

    Lee, Sang A.; Jeong, Hoidong; Woo, Sungmin; Hwang, Jae-Yeol; Choi, Si-Young; Kim, Sung-Dae; Choi, Minseok; Roh, Seulki; Yu, Hosung; Hwang, Jungseek; Kim, Sung Wng; Choi, Woo Seok

    2016-04-01

    Defect engineering has brought about a unique level of control for Si-based semiconductors, leading to the optimization of various opto-electronic properties and devices. With regard to perovskite transition metal oxides, O vacancies have been a key ingredient in defect engineering, as they play a central role in determining the crystal field and consequent electronic structure, leading to important electronic and magnetic phase transitions. Therefore, experimental approaches toward understanding the role of defects in complex oxides have been largely limited to controlling O vacancies. In this study, we report on the selective formation of different types of elemental vacancies and their individual roles in determining the atomic and electronic structures of perovskite SrTiO3 (STO) homoepitaxial thin films fabricated by pulsed laser epitaxy. Structural and electronic transitions have been achieved via selective control of the Sr and O vacancy concentrations, respectively, indicating a decoupling between the two phase transitions. In particular, O vacancies were responsible for metal-insulator transitions, but did not influence the Sr vacancy induced cubic-to-tetragonal structural transition in epitaxial STO thin film. The independent control of multiple phase transitions in complex oxides by exploiting selective vacancy engineering opens up an unprecedented opportunity toward understanding and customizing complex oxide thin films.

  12. Weak d 0 ferromagnetism: Zn vacancy condensation in ZnS nanocrystals

    Science.gov (United States)

    Proshchenko, Vitaly; Dahnovsky, Yuri

    2017-01-01

    We provide the explanation of the large discrepancy of three orders of magnitude between the experimentally measured and theoretically calculated magnetic moments in ZnS nanocrystals. We assume that the condensation of Zn vacancies into a single droplet takes place. The energy calculations reveal that the droplet phase is more favorable than the uniformly distributed vacancy configuration. The other assumption made is that a small magnetic moment could arise at the interface between the ZnS crystal and vacancy cluster. The calculations however dismiss this hypothesis because the magnetization of the layered system also vanishes. Thus we suggest that the experimentally low magnetization values could be explained from one of the two following pictures: (a) there are two phases where the vacancy cluster with the zero magnetic moment coexists along with the other phase, in which there are uniformly distributed Zn vacancies with low concentrations or (b) there is only a single vacancy phase—a vacancy droplet being in the metastable state with a weak nonvanishing magnetic moment.

  13. The interaction between light impurities and vacancies in titanium and aluminum metals: A DFT study

    Directory of Open Access Journals (Sweden)

    Andrey I. Kartamyshev

    2016-06-01

    Full Text Available In this paper, we present binding energies between hydrogen (H, carbon (C, nitrogen (N and oxygen (O atoms and a vacancy in the hexagonal closed-packed (HCP lattice of titanium (Ti and the face centered cubic (FCC lattice of aluminum (Al, calculated using the density functional theory (DFT. We have also investigated the trapping of up to five hydrogen atoms by a vacancy and the reduction of the vacancy formation energy, due to the formation of a hydrogen–vacancy complex. We used the molecular-dynamics modeling with consecutive relaxation at 0K to obtain an atomic configuration of the vacancy–impurity complex, corresponding to the global energy minimum. According to our calculations, C–V, H–V, C– (H–V, N–(H–V complexes are stable in the Al lattice with only H–V complex being stable in Ti. The formation of C–(H–V and N–(H–V complexes in the Al lattice results in the negative vacancy formation energy. The formation of H–V complex decreases the vacancy formation energy by 0.26eV in the Ti lattice. A vacancy in the Ti lattice can trap up to four hydrogen atoms.

  14. Strategies to Suppress Cation Vacancies in Metal Oxide Alloys: Consequences for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Toroker, Maytal; Carter, Emily A.

    2015-09-01

    First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

  15. Dynamics of the artificially created vacancies in the monomolecular C60 layers

    Science.gov (United States)

    Olyanich, D. A.; Utas, T. V.; Zotov, A. V.; Saranin, A. A.

    2015-07-01

    Dynamics of single and double vacancies within the monomolecular C60 layer on the In-modified Au/Si(111) √{ 3} ×√{ 3} surface have been studied by means of variable temperature scanning tunneling microscopy (STM). The vacancies were deliberately created in the layer using STM tip impact in the regimes below decomposition threshold. Single vacancy motion has been found to be a thermally activated process characterized by the activation energy of 1.5 ± 0.3 eV. This is an effective activation energy which agrees with the net value consisted of the term responsible for vacancy migration within the free-standing C60 layer, 0.88 eV and that for individual C60 migration on (Au, In)/Si(111) surface, 0.4 eV. Mobility of C60 vacancies has been found to be affected by In adatoms. It can be slowed down by more than an order of magnitude by deposition of only 0.2 monolayer of additional In. The double vacancies have been found to be more mobile than single vacancies in which its effect is provided by a specific rotational mechanism of their motion.

  16. Oxygen vacancies in amorphous-Ta2O5 from first-principles calculations

    Science.gov (United States)

    Lee, Jihang; Kioupakis, Emmanouil; Lu, Wei

    Oxygen vacancies are thought to play a crucial role in the electrical and optical properties of tantalum pentoxide (Ta2O5) devices. Even though numerous experimental studies on oxygen vacancies in Ta2O5 exist, experimentally detected defects are ambiguously identified due to the absence of an accurate and conclusive theoretical analysis. We investigate oxygen vacancies in amorphous Ta2O5 with first-principles calculations based on hybrid density functional theory. The calculated thermodynamic and optical transition levels of stable oxygen vacancies are in good agreement with measured values from a variety of experimental methods, providing conclusive clues for the identification of the defect states observed in experiments. We determine the concentration of oxygen vacancies and their dominant oxidation state as a function of growth conditions. We analyze the characteristics of extra electrons introduced by donor-like oxygen vacancies, which include the formation of polarons. Our results provide insight into the fundamental properties of oxygen vacancies in Ta2O5, which is essential to controlling the properties of films and optimize the performance of devices. This research was supported by the AFOSR through MURI grant FA9550-12-1-0038 and the National Science Foundation CAREER award through Grant No. DMR-1254314. Computational resources were provided by the DOE NERSC facility.

  17. Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO(3): LDA + U study.

    Science.gov (United States)

    Cuong, Do Duc; Lee, Bora; Choi, Kyeong Mi; Ahn, Hyo-Shin; Han, Seungwu; Lee, Jaichan

    2007-03-16

    We find, using a local density approximation +Hubbard U method, that oxygen vacancies tend to cluster in a linear way in SrTiO(3), a prototypical perovskite oxide, accompanied by strong electron localization at the 3d state of the nearby Ti transition metal ion. The vacancy clustering and the associated electron localization lead to a profound impact on materials properties, e.g., the reduction in free-carrier densities, the appearance of characteristic optical spectra, and the decrease in vacancy mobility. The high stability against the vacancy migration also suggests the physical reality of the vacancy cluster.

  18. Influence of Oxygen Vacancy on Transport Property in Perovskite Oxide Heterostructures

    Institute of Scientific and Technical Information of China (English)

    HAN Peng; JIN Kui-Juan; Lü Hui-Bin; JIA Jin-Feng; QIU Jie; HU Chun-Lian; YANG Guo-Zhen

    2009-01-01

    Effect of oxygen vacancy on transport property of perovskite microstructures is studied theoretically. Compared with calculated and measured I-V curves, it is revealed that electron conduction plays an important role in the oxygen nonstoichiometry perovskite heterostructures even with hole-doped or un-doped material due to the oxygen vacancies. In addition, a detailed understanding of the influence of oxygen vacancy concentration and temperature on the conduction characteristics of oxide heterojunction with both forward and reverse biases is obtained by calculation.

  19. A DFT study of methane activation on graphite surfaces with vacancy defects

    Institute of Scientific and Technical Information of China (English)

    Fengsi Liu; Wei Chu; Wenjing Sun; Ying Xue; Qian Jiang

    2012-01-01

    The activation of methane on graphite surfaces with monovacancies and 5-8-5 vacancies have been investigated using density functional theory.Sixteen different initial adsorption configurations were investigated to identify the most favorable activation site.It is found that methane tends to be activated on the defective graphite surfaces,and the most stable configuration is that methane activation happened in the center hole of the monovacancy site,with a reaction energy of 1.13 eV.Electron transfer and weaker electrostatic potential of the vacancy region indicate that carbon atom of methane tends to fill the vacancy and makes the system more stable.

  20. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds.

    Science.gov (United States)

    Bradac, C; Gaebel, T; Naidoo, N; Sellars, M J; Twamley, J; Brown, L J; Barnard, A S; Plakhotnik, T; Zvyagin, A V; Rabeau, J R

    2010-05-01

    Nitrogen-vacancy colour centres in diamond can undergo strong, spin-sensitive optical transitions under ambient conditions, which makes them attractive for applications in quantum optics, nanoscale magnetometry and biolabelling. Although nitrogen-vacancy centres have been observed in aggregated detonation nanodiamonds and milled nanodiamonds, they have not been observed in very small isolated nanodiamonds. Here, we report the first direct observation of nitrogen-vacancy centres in discrete 5-nm nanodiamonds at room temperature, including evidence for intermittency in the luminescence (blinking) from the nanodiamonds. We also show that it is possible to control this blinking by modifying the surface of the nanodiamonds.

  1. Generation of Nitrogen-Vacancy Centers in Diamond with Ion Implantation

    Institute of Scientific and Technical Information of China (English)

    CUI Jin-Ming; CHEN Xiang-Dong; FAN Le-Le; GONG Zhao-Jun; ZOU Chong-Wen; SUN Fang-Wen; HAN Zheng-Fu; GUO Guang-Can

    2012-01-01

    Nitrogen-vacancy defect color centers are created in a high purity single crystal diamond by nitrogen-ion implantation.Both optical spectrum and optically detected magnetic resonance are measured for these artificial quantum emitters.Moreover,with a suitable mask,a lattice composed of nitrogen-vacancy centers is fabricated.Rabi oscillation driven by micro-waves is carried out to show the quality of the ion implantation and potential in quantum manipulation.Along with compatible standard lithography,such an implantation technique shows high potential in future to make structures with nitrogen-vacancy centers for diamond photonics and integrated photonic quantum chip.

  2. Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond

    CERN Document Server

    Faraon, Andrei; Huang, Zhihong; Acosta, Victor M; Beausoleil, Raymond G

    2012-01-01

    The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ~70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy.

  3. Double K-shell vacancy production in the electron capture decay of 125I

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.

    1992-03-01

    We have measured the probability of double K-shell vacancy production in the electron capture decay of 125I to the 35-keV level of 125Te. The probability was deduced from the number of triple coincidences between the Te hypersatellite and satellite x rays produced in filling the double vacancy, and the subsequent normal x ray accompanying the K internal conversion of the 35-keV level. The probability of double K-shell vacancy production per K-shell electron capture (PKK) was found to be (1.35+/-0.15)×10-5.

  4. Interplay of oxygen vacancies and electronic correlations in SrVO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Backes, Steffen; Kim, Aaram J.; Jeschke, Harald O.; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany); Lechermann, Frank [Institut fuer Theoretische Physik, Universitaet Hamburg (Germany); Rozenberg, Marcelo J. [Laboratoire de Physique des Solides, Universite Paris-Sud, Orsay (France); Santander Syro, Andres F. [CSNSM, Universite Paris-Sud and CNRS/IN2P3, Orsay (France)

    2016-07-01

    We investigate the role of oxygen vacancies in SrVO{sub 3} within LDA+DMFT (density functional theory combined with dynamical mean-field theory). We show that, in addition to the usual t{sub 2g} lower Hubbard band, oxygen vacancies are responsible for an additional peak around -1 eV of V 3d{sub z}{sup 2} orbital character, which is not present in the bulk system without vacancies. We discuss our results in the light of recent angle-resolved photoemission (ARPES) experiments.

  5. Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments

    KAUST Repository

    Salawu, Omotayo Akande

    2016-09-29

    Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.

  6. Magnetic moment formation due to arsenic vacancies in LaFeAsO-derived superconductors.

    Science.gov (United States)

    Kikoin, Konstantin; Drechsler, Stefan-Ludwig; Koepernik, Klaus; Málek, Jiři; van den Brink, Jeroen

    2015-07-14

    Arsenic vacancies in LaFeAsO-derived superconductors are nominally non-magnetic defects. However, we find from a microscopic theory in terms of an appropriately modified Anderson-Wolff model that in their vicinity local magnetic moments form. They can arise because removing an arsenic atom breaks four strong, covalent bonds with the neighboring iron atoms. The moments emerging around an arsenic vacancy orient ferromagnetically and cause a substantial enhancement of the paramagnetic susceptibility in both the normal and superconducting state. The qualitative model description is supported by first principles band structure calculations of the As-vacancy related defect spectrum within a larger supercell.

  7. Vacancy diffusion in the Cu( 0 0 1 ) surface II: Random walk theory

    Science.gov (United States)

    Somfai, E.; van Gastel, R.; van Albada, S. B.; van Saarloos, W.; Frenken, J. W. M.

    2002-12-01

    We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(0 0 1) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.

  8. Mechanical Properties of Single-Walled (5,5) Carbon Nanotubes with Vacancy Defects

    Institute of Scientific and Technical Information of China (English)

    YUAN Shi-Jun; KONG Yong; LI Fa-Shen

    2007-01-01

    First-principles simulation is used to investigate the structural and mechanical properties of vacancy defective single-walled (5,5) carbon nanotubes. The relations of the defect concentration, distribution and characteristic of defects to Young's modulus of nanotubes are quantitatively studied. It is found that each dangling-bond structure (per supercell) decreases Young's modulus of nanotube by 6.1% for symmetrical distribution cases. However the concentrative vacancy structure with saturated atoms has less influence on carbon nanotubes. It is suggested that the mechanical properties of carbon nanotubes depend strongly upon the structure and relative position of vacancies in a certain defect concentration.

  9. Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering

    Energy Technology Data Exchange (ETDEWEB)

    Salafranca Laforga, Juan I [ORNL; Salafranca, Juan [Universidad Complutense de Madrid, Spain; Biskup, Nevenko [ORNL; Mehta, Virat [University of California, Berkeley; Oxley, Mark P [ORNL; Suzuki, Yuri [Stanford University; Pennycook, Stephen J [University of Tennessee, Knoxville (UTK); Pantelides, Sokrates T. [Vanderbilt University, Nashville; Varela del Arco, Maria [ORNL

    2014-01-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  10. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Schaub, R.; Thostrup, P.; Lopez, Nuria

    2001-01-01

    Through an interplay between scanning tunneling microscopy experiments and density functional theory calculations, we determine unambiguously the active surface site responsible for the dissociation of water molecules adsorbed on rutile TiO2(110). Oxygen vacancies in the surface layer are shown...... to dissociate H2O through the transfer of one proton to a nearby oxygen atom, forming two hydroxyl groups for every vacancy. The amount of water dissociation is limited by the density of oxygen vacancies present on the clean surface exclusively. The dissociation process sets in as soon as molecular water...

  11. Diffusion dynamics of vacancy on Re(0 0 0 1), compared with adatom

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Liu Yanhui [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-05-01

    Using molecular dynamics (MD) simulations along with our recently constructed modified analytic embedded-atom method, the diffusion dynamics of single vacancy and adatom on Re(0 0 0 1) surface are studied. The diffusion coefficients of Re adatom and vacancy are calculated, and are found to present Arrhenius diagram. The diffusion migration energies (E{sub m}) and prefactors (D{sub 0}) are obtained from the Arrhenius relation. The calculated E{sub m} for adatom is in agreement with the recent low-temperature field ion microscope experimental data. The E{sub m} and D{sub 0} show that the vacancy has very low diffusive rate.

  12. Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms

    Directory of Open Access Journals (Sweden)

    Bi-Ru Wu

    2012-03-01

    Full Text Available We investigate the electronic structure of graphane with hydrogen vacancies, which are supposed to occur in the process of hydrogenation of graphene. A variety of configurations is considered and defect states are derived by density functional calculation. We find that a continuous chain-like distribution of hydrogen vacancies will result in conduction of linear dispersion, much like the transport on a superhighway cutting through the jungle of hydrogen. The same conduction also occurs for chain-like vacancies in an otherwise fully fluorine-adsorbed graphene. These results should be very useful in the design of graphene-based electronic circuits.

  13. Enhancement of band-to-band tunneling in mono-layer transition metal dichalcogenides two-dimensional materials by vacancy defects

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Gong, Jian [School of Physics Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Xu, Nuo [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Zhang, Jinfeng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-01-13

    The band-to-band tunneling of monolayer transition metal dichalcogenides nano-junction is investigated using atomistic ab initio quantum transport simulations. From the simulation, it is found that the transition metal vacancy defect in the two-dimensional MX{sub 2} (M = Mo,W; X = S,Se) band-to-band tunneling diode can dramatically boost the on-state current up to 10 times while maintaining the device sub-threshold swing. The performance enhancement mechanism is discussed in detail by examining partial density of states of the system. It is found that the transition metal vacancy induces band-gap states, which reduce the effective length of the tunneling transition region.

  14. Production and Decay of Atomic K-Shell Vacancy States

    Science.gov (United States)

    Gorczyca, Tom; Hasoglu, M. F.; Nikolic, D.; McLaughlin, B. M.; Chen, M. H.; Manson, S. T.; Badnell, N. R.

    2008-05-01

    K-shell photoabsorption calculations are important for a variety of astrophysical processes, in particular, determining the elemental abundances of the interstellar medium from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen and neon ions that were used to determine elemental abundances from observed X-ray binary emissions. Here, we have executed detailed R-matrix calculations for carbon ions, where we have included both Auger broadening and relaxation effects by using an optical potential and pseudoorbitals with the necessary pseudoresonance elimination respectively. Also of astrophysical importance, especially for determining the charge-state distribution following K-shell excitation and/or ionization, is the competition between fluorescence (ejection of a photon, no charge change) and Auger decay (ejection of an electron, ionic charge change of +1). Our recent investigations on the accuracy of the existing 1s-vacancy fluorescence and Auger data base have revealed numerous deficiencies in that compilation. Those data were determined from configuration average, non-relativistic, singly-charged atomic physics calculations and were then scaled up through Z=30 for all isoelectronic sequences through the iron peak elements. We demonstrate the significance of including properly such physical effects as correct configuration averaging, semi-relativistic (i.e., spin-orbit) effects, and configuration interaction. Most recently, we have performed calculations that revealed anomalous behavior of the radiative and Auger rates, and the associated fluorescence yields, of the six electron K-shell vacancy isoelectronic sequence, exhibited as non-monotonic behavior as a function of Z. This behavior is explained in terms of an accidental degeneracy, an avoided-crossing of two nearly-degenerate spin-orbit coupled states. Consequently, we have demonstrated that, in general, even interpolation of rates and yields

  15. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-01-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ∼100 ns timescales. PMID:27296550

  16. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Science.gov (United States)

    Zhou, Qingxiao; Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang; Zhang, Hong

    2014-08-01

    The adsorption of formaldehyde (H2CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H2CO molecule compared with the pristine one. Furthermore, the H2CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  17. Mechanism of dopant-vacancy association in α-quartz GeO2

    KAUST Repository

    Wang, Hao

    2013-02-28

    Improving the electron mobility of devices such as Ge metal oxide semiconductor field effect transistors requires good Ge/dielectric interfaces. GeO2 thus is reconsidered as a passivation layer for Ge. However, O-vacancies need to be controlled as they have a deleterious impact on the properties. We employ electronic structure calculations to investigate the introduction of trivalent ions (Al, Y, and La) in α-quartz GeO2. The binding energies of the dopant-vacancy pairs reveal that dopants can be used to control the O-vacancies and reduce the induced dangling bonds. It is proposed that the introduction of Al will limit the concentration of O-vacancies at low Fermi energy.

  18. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    Science.gov (United States)

    Li, Shen; Chen, Xiang-dong; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-09-01

    We demonstrate optical far-field super-resolution microscopy using an array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of the nitrogen vacancy center. Locating the nitrogen vacancy center with a spatial resolution of 6.1 nm is realized with charge state depletion nanoscopy. The nanostructures on the surface of a diamond are then imaged with a resolution below the optical diffraction limit. The results offer an approach to build a general-purpose optical super-resolution microscopy technique and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy centers.

  19. Structure and physical properties of silicon clusters and of vacancy clusters in bulk silicon

    CERN Document Server

    Sieck, A

    2000-01-01

    different from the solid. The calculated stabilities and positron-lifetimes of vacancy clusters in bulk silicon indicate the positron-lifetimes of about 435 ps detected in irradiated silicon to be related to clusters of 9 or 10 vacancies. The vacancies in these clusters form neighboring hexa-rings and, therefore, minimize the number of dangling bonds. In this thesis the growth-pattern of free silicon clusters and vacancy clusters in bulk silicon is investigated. The aim is to describe and to better understand the cluster to bulk transition. Silicon structures in between clusters and solids feature new interesting physical properties. The structure and physical properties of silicon clusters can be revealed by a combination of theory and experiment, only. Low-energy clusters are determined with different optimization techniques and a density-functional based tight-binding method. Additionally, infrared and Raman spectra, and polarizabilities calculated within self-consistent field density-functional theory are...

  20. Theoretical study of multiatomic vacancies in single-layer hexagonal boron nitride

    Science.gov (United States)

    Urasaki, Syu; Kageshima, Hiroyuki

    2017-02-01

    The physical properties of multiatomic vacancies are investigated by first-principles total-energy calculations. The formation energies of various vacancies as functions of chemical potential and charge states are calculated. The relationship between optimized atomic structures and charge states is analyzed. On the basis of the results, it is confirmed that the variations of formation energies and atomic structures are closely related to the changes in electronic states. In addition, the stabilities of generally large multiatomic vacancies are estimated on the basis of edges and corner energies. It is found that larger vacancies are not stable and have lower densities than smaller ones. The results are also compared with previous theoretical and experimental results.

  1. Control of carbon vacancy in SiC toward ultrahigh-voltage power devices

    Science.gov (United States)

    Kimoto, T.; Kawahara, K.; Zippelius, B.; Saito, E.; Suda, J.

    2016-11-01

    A carbon vacancy defect is one of the most abundant point defects in SiC (as-grown, irradiated, annealed) and of technological importance because the acceptor-like level of a carbon monovacancy (Z1/2 center: EC - 0.63 eV) works as the primary carrier-lifetime killer in 4H-SiC. The carbon vacancy defects can be preferentially generated by either low-energy electron irradiation or high-temperature treatment in an inert gas ambient. On the other hand, the carbon vacancy defects can be almost eliminated by either a carbon-ion implantation process or thermal oxidation. By combination of these techniques, the density of carbon vacancy defects can be controlled in the wide range from 1011 cm-3 to 1015 cm-3 or even higher.

  2. First-principles calculations of the vacancy formation energy in transition and noble metals

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Abrikosov, Igor A.; Johansson, Börje

    1999-01-01

    Abstract: The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble metals have been calculated within the local-density approximation. The calculations employ the order-N locally self-consistent Green's-function method in conjunction with a supercell...... energy through a transition-metal series and the effects of crystal and magnetic structure are investigated and discussed. [S0163-1829(99)07717-6]....... approach and include electrostatic multipole corrections to the atomic sphere approximation. The results are in excellent agreement with available full-potential calculations and with the vacancy formation energies obtained in positron annihilation measurements. The variation of the vacancy formation...

  3. Calculated Grain Size-Dependent Vacancy Supersaturation and its Effect on Void Formation

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Foreman, A. J. E.

    1974-01-01

    In order to study the effect of grain size on void formation during high-energy electron irradiations, the steady-state point defect concentration and vacancy supersaturation profiles have been calculated for three-dimensional spherical grains up to three microns in size. In the calculations...... of vacancy supersaturation as a function of grain size, the effects of internal sink density and the dislocation preference for interstitial attraction have been included. The computations show that the level of vacancy supersaturation achieved in a grain decreases with decreasing grain size. The grain size...... dependence of the maximum vacancy supersaturation in the centre of the grains is found to be very similar to the grain size dependence of the maximum void number density and void volume swelling measured in the central regions of austenitic stainless steel grains. This agreement reinforces the interpretation...

  4. Vacancy ordering effects on the conductivity of yttria- and scandia-doped zirconia

    CERN Document Server

    Marrocchelli, Dario; Norberg, Stefan T; Hull, Stephen

    2010-01-01

    Polarizable interaction potentials, parametrized using ab initio electronic structure calculations, have been used in molecular dynamics simulations to study the conduction mechanism in Y2 O3 - and Sc2 O3 -doped zirconias. The influence of vacancy-vacancy and vacancy-cation interactions on the conductivity of these materials has been characterised. While the latter can be avoided by using dopant cations with radii which match those of Zr4+ (as is the case of Sc3+), the former is an intrinsic characteristic of the fluorite lattice which cannot be avoided and which is shown to be responsible for the occurrence of a maximum in the conductivity at dopant concentrations between 8 and 13 %. The weakness of the Sc-vacancy interactions in Sc2 O3 -doped zirconia suggests that this material is likely to present the highest conductivity achievable in zirconias.

  5. Optical far-field super-resolution microscopy using nitrogen vacancy center ensemble in bulk diamond

    CERN Document Server

    Li, Shen; Zhao, Bo-Wen; Dong, Yang; Zou, Chong-Wen; Guo, Guang-Can; Sun, Fang-Wen

    2016-01-01

    We demonstrate an optical far-field super-resolution microscopy using array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of nitrogen vacancy center. And the locating of nitrogen vacancy center with spatial resolution of 6.1 nm is realized with the charge state depletion nanoscopy. The nanostructures on the surface of diamond are then imaged with resolution below optical diffraction limit. The results offer an approach to built a general-purpose optical super-resolution microscopy and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy center.

  6. 75 FR 14609 - Commercial Fishing Industry Vessel Safety Advisory Committee; Vacancies

    Science.gov (United States)

    2010-03-26

    .... In support of the Coast Guard policy on gender and ethic nondiscrimination, we encourage qualified... SECURITY Coast Guard Commercial Fishing Industry Vessel Safety Advisory Committee; Vacancies AGENCY: Coast... on the Commercial Fishing Industry Vessel Safety Advisory Committee (CFIVSAC). The CFIVSAC...

  7. Native cation vacancies in Si-doped AlGaN studied by monoenergetic positron beams

    Science.gov (United States)

    Uedono, A.; Tenjinbayashi, K.; Tsutsui, T.; Shimahara, Y.; Miyake, H.; Hiramatsu, K.; Oshima, N.; Suzuki, R.; Ishibashi, S.

    2012-01-01

    Native defects in Si-doped AlGaN grown by metalorganic vapor phase epitaxy were probed by monoenergetic positron beams. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured, and these were compared with results obtained using first-principles calculation. For Si-doped AlxGa1-xN (4 × 1017 Si/cm3), the vacancy-type defects were introduced at above x = 0.54, and this was attributed to the transition of the growth mode to the Stranski-Krastanov mechanism from the Frank-van der Merwe mechanism. For Si-doped Al0.6Ga0.4N, the vacancy concentration increased with increasing Si concentration, and the major defect species was identified as Al vacancies. A clear correlation between the suppression of cathodoluminescence and the defect concentration was obtained, suggesting the cation vacancies act as nonradiative centers in AlGaN.

  8. Oxygen vacancies in strained SrTiO3 thin films: Formation enthalpy and manipulation

    Science.gov (United States)

    Iglesias, L.; Sarantopoulos, Alexandros; Magén, C.; Rivadulla, F.

    2017-04-01

    We report the enthalpy of oxygen vacancy formation in thin films of electron-doped SrTiO3, under different degrees of epitaxial stress. We demonstrate that both compressive and tensile strain decrease this energy at a very similar rate and promote the formation of stable doubly ionized oxygen vacancies. Moreover, we also show that unintentional cationic vacancies introduced under typical growth conditions, produce a characteristic rotation pattern of TiO6 octahedra. The local concentration of oxygen vacancies can be modulated by an electric field with an AFM tip, changing not only the local electrical potential but also producing a nonvolatile mechanical response whose sign (up/down) can be reversed by the electric field.

  9. Magnetic ordering of nitrogen-vacancy centers in diamond via resonator-mediated coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Bo-Bo [The Chinese University of Hong Kong, Department of Physics, Hong Kong (China); The Chinese University of Hong Kong, Centre for Quantum Coherence, Hong Kong (China); Burk, Christian; Wrachtrup, Joerg [University Stuttgart, 3rd Institute of Physics and Research Center SCOPE, Stuttgart (Germany); Liu, Ren-Bao [The Chinese University of Hong Kong, Department of Physics, Hong Kong (China); The Chinese University of Hong Kong, Centre for Quantum Coherence, Hong Kong (China); The Chinese University of Hong Kong, Institute of Theoretical Physics, Hong Kong (China); The Chinese University of Hong Kong, Shenzhen Research Insitute, Shenzhen, Guangdong (China)

    2015-12-15

    Nitrogen-vacancy centers in diamond, being a promising candidate for quantum information processing, may also be an ideal platform for simulating many-body physics. However, it is difficult to realize interactions between nitrogen-vacancy centers strong enough to form a macroscopically ordered phase under realistic temperatures. Here we propose a scheme to realize long-range ferromagnetic Ising interactions between distant nitrogen-vacancy centers by using a mechanical resonator as a medium. Since the critical temperature in the long-range Ising model is proportional to the number of spins, a ferromagnetic order can be formed at a temperature of tens of millikelvin for a sample with ∝10{sup 4} nitrogen-vacancy centers. This method may provide a new platform for studying many-body physics using qubit systems. (orig.)

  10. Vacancy-induced transmission in three-dimensional photonic crystal slabs.

    Science.gov (United States)

    Keilman, J; Caruso, K; Citrin, D S

    2015-07-01

    The transmission spectra of finite-thickness slabs of three-dimensional (3D) diamond-lattice photonic crystals of air spheres in a dielectric background in which various concentrations of randomly located vacancies are present are studied. We find that resonant modes associated with isolated defects couple to form an extended defect band, leading to a significant increase in transmission for frequencies inside the 3D photonic bandgap. Outside the 3D gap, vacancies induce scattering from evanescent to propagating modes, leading to an increase in transmission near the pseudo-gap edges within the gap. The local defect density of states for several concentrations of vacancies is computed; thus, it is shown that the total number of defect states and the range of supported frequencies increase due to increasing vacancy density.

  11. Magnetic behavior in LiNbO{sub 3} nanocrystallites caused by oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Moreno, C.A. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Farías-Mancilla, R. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Ave. del Charro #450, Cd. Juarez C.P., 32310 Chihuahua (Mexico); Matutes-Aquino, J.A. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Elizalde-Galindo, J. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Ave. del Charro #450, Cd. Juarez C.P., 32310 Chihuahua (Mexico); Espinosa-Magaña, F.; González-Hernández, J. [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico); Hurtado-Macías, A., E-mail: abel.hurtado@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Apdo. Postal 31109, México (Mexico)

    2014-04-01

    Ferromagnetism is observed in LiNiO{sub 3} nanocrystals exposed to a reducing atmosphere intended to create oxygen vacancies. The existence of vacancies is confirmed by measuring the oxygen depletion across the selected nanoparticles by TEM. The magnetism shows no temperature dependence in the range of 4–300 K. The density functional theory was used to perform spin polarized electronic structure calculations for LiNiO{sub 3} with and without oxygen vacancies. The calculated magnetic data qualitatively support the observed magnetic behavior. - Highlights: • Oxygen vacancies were formed at the surface of LiNiO{sub 3} nanocrystals by a temperature programmed reduction process. • The observed ferromagnetism in LiNbO{sub 3} nanocrystals after a treatment in a reducing atmosphere shows no temperature dependence in the range of 4–300 K. • Magnetization based on density functional theory calculations was compared with the experimental data.

  12. Quenching nitrogen-vacancy center photoluminescence with infrared pulsed laser

    CERN Document Server

    Lai, N D; Zheng, D; Jacques, V; Chang, H -C; Roch, J -F; Treussart, F

    2013-01-01

    Diamond nanocrystals containing Nitrogen-Vacancy (NV) color centers have been used in recent years as fluorescent probes for near-field and cellular imaging. In this work we report that an infrared (IR) pulsed excitation beam can quench the photoluminescence of NV color center in a diamond nanocrystal (size < 50 nm) with an extinction ratio as high as ~90%. We attribute this effect to the heating of the nanocrystal consecutive to multi-photon absorption by the diamond matrix. This quenching is reversible: the photoluminescence intensity goes back to its original value when the IR laser beam is turned off, with a typical response time of hundred picoseconds, allowing for a fast control of NV color center photoluminescence. We used this effect to achieve sub-diffraction limited imaging of fluorescent diamond nanocrystals on a coverglass. For that, as in Ground State Depletion super-resolution technique, we combined the green excitation laser beam with the control IR depleting one after shaping its intensity ...

  13. Dynamics of single Fe atoms in graphene vacancies.

    Science.gov (United States)

    Robertson, Alex W; Montanari, Barbara; He, Kuang; Kim, Judy; Allen, Christopher S; Wu, Yimin A; Olivier, Jaco; Neethling, Jan; Harrison, Nicholas; Kirkland, Angus I; Warner, Jamie H

    2013-04-10

    Focused electron beam irradiation has been used to create mono and divacancies in graphene within a defined area, which then act as trap sites for mobile Fe atoms initially resident on the graphene surface. Aberration-corrected transmission electron microscopy at 80 kV has been used to study the real time dynamics of Fe atoms filling the vacancy sites in graphene with atomic resolution. We find that the incorporation of a dopant atom results in pronounced displacements of the surrounding carbon atoms of up to 0.5 Å, which is in good agreement with density functional theory calculations. Once incorporated into the graphene lattice, Fe atoms can transition to adjacent lattice positions and reversibly switch their bonding between four and three nearest neighbors. The C atoms adjacent to the Fe atoms are found to be more susceptible to Stone-Wales type bond rotations with these bond rotations associated with changes in the dopant bonding configuration. These results demonstrate the use of controlled electron beam irradiation to incorporate dopants into the graphene lattice with nanoscale spatial control.

  14. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    Science.gov (United States)

    2006-12-01

    H. A.; Wilkes, J. O. Applied Numerical Methods ; Wiley: New York, 1969. Chapra , S. C.; Canale, R. P. Numerical Methods for Engineers with... Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids by John D. Clayton, Peter W. Chung, Michael A. Greenfield...Proving Ground, MD 21005-5066 ARL-TR-4002 December 2006 Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

  15. Spatial location engineering of oxygen vacancies for optimized photocatalytic H2 evolution activity.

    Science.gov (United States)

    Bi, Wentuan; Ye, Chunmiao; Xiao, Chong; Tong, Wei; Zhang, Xiaodong; Shao, Wei; Xie, Yi

    2014-07-23

    Enhanced H2 evolution efficiency is achieved via manipulating the spatial location of oxygen vacancies in niobates. The ultrathin K4 Nb6O17 nanosheets which are rich in surface oxygen vacancies show enhanced optical absorption and band gap narrowing. Meanwhile, the fast charge separation effectively reduces the probability of hole-electron recombination, enabling 20 times hydrogen evolution rate compared with the defect-free bulk counterpart.

  16. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Lopez, Nuria; schaub, R.; Thostrup, P.

    2003-01-01

    Through an interplay between scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we show that bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2(110) surface. We find that a direct correlation exists between a decrease...... model for the TiO2(110) system involving vacancy-cluster complex diffusion is presented....

  17. Towards understanding the carbon trapping mechanism in copper by investigating the carbon-vacancy interaction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hong-Bo; Jin Shuo

    2013-01-01

    We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction.Vacancy reduces charge density in its vicinity to induce C nucleation.A monovacancy is capable of trapping as many as four C atoms to form CnV (n =1,2,3,4)complexes.A single C atom prefers to interact with neighboring Cu at a vacancy with a trapping energy of-0.21 eV.With multiple C atoms added,they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment.For the CnV complexes,C2V is the major one due to its lowest average trapping energy (1.31 eV).Kinetically,the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.

  18. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Mizushima, Yoriko [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Youngsuk [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Disco Corporation, Ota, Tokyo 143-8580 (Japan); Nakamura, Tomoji [Devices and Materials Labs Fujitsu Laboratories Ltd., Atsugi, Kanagawa 243-0197 (Japan); Ohba, Takayuki [ICE Cube Center, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Oshima, Nagayasu; Suzuki, Ryoichi [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  19. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics.

    Science.gov (United States)

    Liu, Jianqiao; Gao, Yinglin; Wu, Xu; Jin, Guohua; Zhai, Zhaoxia; Liu, Huan

    2017-08-10

    The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  20. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.

    Science.gov (United States)

    Yang, Haiying; Tang, Yunqing; Gong, Jie; Liu, Yu; Wang, Xiaoliang; Zhao, Yanfang; Yang, Ping; Wang, Shuting

    2013-11-01

    A systematic investigation of the thermal conductivity of zigzag graphene nanoribbons (ZGNRs) doped with nitrogen and containing a vacancy defect was performed using reverse nonequilibrium molecular dynamics (RNEMD). The investigation showed that the thermal conductivity of the ZGNRs was significantly reduced by nitrogen doping. The thermal conductivity dropped rapidly when the nitrogen doping concentration was low. Also, the presence of a vacancy defect was found to significantly decrease the thermal conductivity. Initially, as the vacancy moved from the heat sink to the heat source, the phonon frequency and the phonon energy increased, and the thermal conductivity decreased. When the distance between the vacancy in the ZGNR and the edge of the heat sink reached 2.214 nm, tunneling began to occur, allowing high-frequency phonons to pass through the vacancies and transfer some energy. The curve of the thermal conductivity of the ZGNRs versus the vacancy position was found to be pan-shaped, with the thermal conductivity of the ZGNRs controlled by the phonon. These findings could be useful when attempting to control heat transfer on the nanoscale using GNR-based thermal devices.

  1. Vacancies in Kitaev quantum spin liquids on the three-dimensional hyperhoneycomb lattice

    Science.gov (United States)

    Sreejith, G. J.; Bhattacharjee, Subhro; Moessner, R.

    2016-02-01

    We study the effect of adding disorder to the Kitaev model on the hyperhoneycomb lattice, which hosts both gapped and gapless spin liquid phases with an emergent Z2 gauge field. The latter has an unusual gapless spectrum of Majorana fermion excitations, with a co-dimension-two Fermi ring. We thus address the question of the interplay of topological physics and disorder by considering the properties of isolated single and pairs of vacancies. We show that near the vacancies, the local magnetic response to a field hz is parametrically enhanced in comparison to the pristine bulk. Unlike the previously studied case of the 2D honeycomb Kitaev model, the vacancies do not bind a flux of the Z2 gauge field. In the gapped phase, an isolated vacancy gives rise to effectively free spin-half moments with a nonuniversal coupling to an external field. In the gapless phase, the low-field magnetization is suppressed parametrically to (-lnhz) -1 /2 because of interactions with the surrounding spin liquid. We also show that a pair of vacancies is subject to a sublattice-dependent interaction on account of coupling through the bulk spin liquid, which is spatially anisotropic even when all Kitaev couplings have equal strength. This coupling is thus exponentially suppressed with distance in the gapped phase. In the gapless phase, two vacancies on the same (opposite) sublattice exhibit an enhanced (suppressed) low-field response, amounting to an effectively (anti-)ferromagnetic interaction.

  2. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  3. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT)

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-01-01

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067

  4. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2017-08-01

    Full Text Available The density of oxygen vacancies in semiconductor gas sensors was often assumed to be identical throughout the grain in the numerical discussion of the gas-sensing mechanism of the devices. In contrast, the actual devices had grains with inhomogeneous distribution of oxygen vacancy under non-ideal conditions. This conflict between reality and discussion drove us to study the formation and migration of the oxygen defects in semiconductor grains. A model of the gradient-distributed oxygen vacancy was proposed based on the effects of cooling rate and re-annealing on semiconductive thin films. The model established the diffusion equations of oxygen vacancy according to the defect kinetics of diffusion and exclusion. We described that the steady-state and transient-state oxygen vacancy distributions, which were used to calculate the gas-sensing characteristics of the sensor resistance and response to reducing gases under two different conditions. The gradient-distributed oxygen vacancy model had the applications in simulating the sensor performances, such as the power law, the grain size effect and the effect of depletion layer width.

  5. A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction

    Science.gov (United States)

    Lazariev, Andrii; Balasubramanian, Gopalakrishnan

    2015-01-01

    Methods and techniques to measure and image beyond the state-of-the-art have always been influential in propelling basic science and technology. Because current technologies are venturing into nanoscopic and molecular-scale fabrication, atomic-scale measurement techniques are inevitable. One such emerging sensing method uses the spins associated with nitrogen-vacancy (NV) defects in diamond. The uniqueness of this NV sensor is its atomic size and ability to perform precision sensing under ambient conditions conveniently using light and microwaves (MW). These advantages have unique applications in nanoscale sensing and imaging of magnetic fields from nuclear spins in single biomolecules. During the last few years, several encouraging results have emerged towards the realization of an NV spin-based molecular structure microscope. Here, we present a projection-reconstruction method that retrieves the three-dimensional structure of a single molecule from the nuclear spin noise signatures. We validate this method using numerical simulations and reconstruct the structure of a molecular phantom β-cyclodextrin, revealing the characteristic toroidal shape. PMID:26370514

  6. Measurement-device-independent quantum key distribution with nitrogen vacancy centers in diamond

    Science.gov (United States)

    Lo Piparo, Nicoló; Razavi, Mohsen; Munro, William J.

    2017-02-01

    Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a possible intermediate step towards the realization of quantum repeaters. Despite its relaxing some of the requirements on quantum memories, the choice of memory in relation to the layout of the setup and the protocol has a stark effect on our ability to beat existing no-memory systems. Here, we investigate the suitability of nitrogen vacancy (NV) centers, as quantum memories, in MA-MDI-QKD. We particularly show that moderate cavity enhancement is required for NV centers if we want to outperform no-memory QKD systems. Using system parameters mostly achievable by today's state of the art, we then anticipate some total key rate advantage in the distance range between 300 and 500 km for cavity-enhanced NV centers. Our analysis accounts for major sources of error including the dark current, the channel loss, and the decoherence of the quantum memories.

  7. A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction

    Science.gov (United States)

    Lazariev, Andrii; Balasubramanian, Gopalakrishnan

    2015-09-01

    Methods and techniques to measure and image beyond the state-of-the-art have always been influential in propelling basic science and technology. Because current technologies are venturing into nanoscopic and molecular-scale fabrication, atomic-scale measurement techniques are inevitable. One such emerging sensing method uses the spins associated with nitrogen-vacancy (NV) defects in diamond. The uniqueness of this NV sensor is its atomic size and ability to perform precision sensing under ambient conditions conveniently using light and microwaves (MW). These advantages have unique applications in nanoscale sensing and imaging of magnetic fields from nuclear spins in single biomolecules. During the last few years, several encouraging results have emerged towards the realization of an NV spin-based molecular structure microscope. Here, we present a projection-reconstruction method that retrieves the three-dimensional structure of a single molecule from the nuclear spin noise signatures. We validate this method using numerical simulations and reconstruct the structure of a molecular phantom β-cyclodextrin, revealing the characteristic toroidal shape.

  8. GaAs/AlGaAs photonic integrated circuits fabricated using impurity-free vacancy disordering

    Science.gov (United States)

    Marsh, John H.; Cusumano, P.; Bryce, A. Catrina; Ooi, Boon Siew; Ayling, Stephen G.

    1995-03-01

    Impurity free vacancy disordering (IFVD) using dielectric caps to induce intermixing in the GaAs/AlGaAs system is described. Silica is used to promote intermixing whilst strontium fluoride is used as a mask against intermixing. Selective bandgap-widening of GaAs/AlGaAs double quantum well laser material has been used to fabricate monolithic extended cavity strip- loaded waveguide lasers. With a differential shift of 21 nm in the wavelength of the photoluminescence peak, overall losses in the extended cavities were less than 6 cm-1 and a red-shift of the lasing spectrum with increasing passive section length is reported. Electroabsorption optical modulators integrated with passive waveguides have been fabricated using an epitaxial structure identical to that of the laser. At a wavelength of 861.6 nm, devices with a 400 micrometers long modulator section showed ON/OFF ratios greater than 35 dB for a reverse bias voltage of 3 V. A variation of the IFVD technique uses partial area coverage by a strontium fluoride mask under a silica cap to determine the amount of quantum well intermixing. The bandgap can then be varied at will across a wafer. Bandgap tuned lasers were fabricated using this technique. Five distinguishable lasing wavelengths were observed from five selected intermixed regions on a single chip. These lasers showed no significant change in transparency current, internal quantum efficiency or internal propagation loss, which indicates that the material quality was not degraded after intermixing.

  9. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator.

    Science.gov (United States)

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-23

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  10. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys

    Science.gov (United States)

    Wróbel, J. S.; Nguyen-Manh, D.; Kurzydłowski, K. J.; Dudarev, S. L.

    2017-04-01

    The occurrence of segregation in dilute alloys under irradiation is a highly unusual phenomenon that has recently attracted attention, stimulated by the interest in the fundamental properties of alloys as well as by their applications. The fact that solute atoms segregate in alloys that, according to equilibrium thermodynamics, should exhibit full solubility, has significant practical implications, as the formation of precipitates strongly affects physical and mechanical properties of alloys. A lattice Hamiltonian, generalizing the so-called ‘ABV’ Ising model and including collective many-body inter-atomic interactions, has been developed to treat rhenium solute atoms and vacancies in tungsten as components of a ternary alloy. The phase stability of W–Re-vacancy alloys is assessed using a combination of density functional theory (DFT) calculations and cluster expansion (CE) simulations. The accuracy of CE parametrization is evaluated against the DFT data, and the cross-validation error is found to be less than 4.2 meV/atom. The free energy of W–Re-vacancy ternary alloys is computed as a function of temperature using quasi-canonical Monte Carlo simulations, using effective two, three and four-body interactions. In the low rhenium concentration range (<5 at. % Re), solute segregation is found to occur in the form of voids decorated by Re atoms. These vacancy-rhenium clusters remain stable over a broad temperature range from 800 K to 1600 K. At lower temperatures, simulations predict the formation of Re-rich rhenium–vacancy clusters taking the form of sponge-like configurations that contain from 30 to 50 at. % Re. The anomalous vacancy-mediated segregation of Re atoms in W can be rationalized by analyzing binding energy dependence as a function of Re to vacancy ratio as well as chemical Re–W and Re-vacancy interactions and short-range order parameters. DFT calculations show that rhenium–vacancy binding energies can be as high as 1.5 eV if the

  11. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, S.P. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)], E-mail: spbeckman@gmail.com; Chelikowsky, James R. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States)

    2007-12-15

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm.

  12. First-principles study for vacancy-induced magnetism in nonmagnetic ferroelectric BaTiO3.

    Science.gov (United States)

    Cao, D; Cai, M Q; Zheng, Yue; Hu, W Y

    2009-12-14

    The possibilities of vacancy-induced magnetism in perovskite BaTiO(3) are investigated by first-principles calculations. Calculated results show that both titanium and oxygen vacancies could induce magnetism, but the barium vacancy did not induce magnetism. New and interesting magnetic properties of half-metallic magnetism are found in BaTiO(3) induced by the Ti-vacancy. Based on the density of states and the spin charge density distribution of BaTiO(3), we discuss the different origins of magnetism induced by the partial spin-polarized O 2p states around Ti vacancies and the partially filled d-states Ti around the oxygen vacancies. The discrepancy between the magnetic moments in the cubic phase and the tetragonal phase is due to anisotropic spin polarization induced by structure distortions. Our calculations would enable exploring magneto-electric coupling in nonmagnetic ferroelectric oxides.

  13. Vacancy Induced Energy Band Gap Changes of Semiconducting Zigzag Single Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    DERELI, G.

    2017-08-01

    Full Text Available In this work, we have examined how the multi-vacancy defects induced in the horizontal direction change the energetics and the electronic structure of semiconducting Single-Walled Carbon Nanotubes (SWCNTs. The electronic structure of SWCNTs is computed for each deformed configuration by means of real space, Order(N Tight Binding Molecular Dynamic (O(N TBMD simulations. Energy band gap is obtained in real space through the behavior of electronic density of states (eDOS near the Fermi level. Vacancies can effectively change the energetics and hence the electronic structure of SWCNTs. In this study, we choose three different kinds of semiconducting zigzag SWCNTs and determine the band gap modifications. We have selected (12,0, (13,0 and (14,0 zigzag SWCNTs according to n (mod 3 = 0, n (mod 3 = 1 and n (mod 3 = 2 classification. (12,0 SWCNT is metallic in its pristine state. The application of vacancies opens the electronic band gap and it goes up to 0.13 eV for a di-vacancy defected tube. On the other hand (13,0 and (14,0 SWCNTs are semiconductors with energy band gap values of 0.44 eV and 0.55 eV in their pristine state, respectively. Their energy band gap values decrease to 0.07 eV and 0.09 eV when mono-vacancy defects are induced in their horizontal directions. Then the di-vacancy defects open the band gap again. So in both cases, the semiconducting-metallic ¬- semiconducting transitions occur. It is also shown that the band gap modification exhibits irreversible characteristics, which means that band gap values of the nanotubes do not reach their pristine values with increasing number of vacancies.

  14. Formation and Migration of Oxygen Vacancies in SrCoO3 and their effect on Oxygen Evolution Reactions

    KAUST Repository

    Tahini, Hassan A.

    2016-07-18

    Perovskite SrCoO3 is a potentially useful material for promoting the electrocatalytic oxygen evolution reaction, with high activities predicted theoretically and observed experimentally for closely related doped perovskite materials. However, complete stoichiometric oxidation is very difficult to realize experimentally – in almost all cases there are significant fractions of oxygen vacancies present. Here, using first principles calculations we study oxygen vacancies in perovskite SrCoO3 from thermodynamic, electronic and kinetic points of view. We find that an oxygen vacancy donates two electrons to neighboring Co sites in the form of localized charge. The formation energy of a single vacancy is very low and estimated to be 1.26 eV in the dilute limit. We find that a vacancy is quite mobile with a migration energy of ~0.5 eV. Moreover, we predict that oxygen vacancies exhibit a tendency towards clustering which is in accordance with the material’s ability to form a variety of oxygen-deficient structures. These vacancies have a profound effect on the material’s ability to facilitate OER, increasing the overpotential from ~0.3 V for the perfect material to ~0.7 for defective surfaces. A moderate compressive biaxial strain (2%) is predicted here to increase the surface oxygen vacancy formation energy by ca. 30%, thus reducing the concentration of surface vacancies and thereby preserving the OER activity of the material.

  15. Origins of non-stoichiometry in compounds: vacancy-ordering in ScS

    Science.gov (United States)

    Hart, Gus L. W.; Zunger, Alex

    2001-03-01

    While most stable compounds have fixed Daltonian ratios of their constituents (e.g., 1:1 ratio in ZnS, NaCl, GaAs), some materials exhibit significant nonstoichiometry even at low temperatures. Examples include some NaCl-structure transition-metal monochalcogenides such as HfS, ZrSe, and YS. The prototype system ScS exhibits this peculiar property of preferring the presence of vacancies (up to 30%) over a purely stoichiometric structure. Moreover, these vacancies order spatially in unusual structures. We consider Sc_1-xBox _xS as a binary alloy (where Box denotes a vacancy) and express the energy E_MBCE(σ) of any of the 2^N configurations σ in a ``mixed-basis cluster expansion'' (MBCE) obtained from ab initio calculations of ~ 30 ordered structures. A ground state search of all possible configurations reveals that indeed an ordered array of vacancies has the lowest energy. We show systematic features in the electronic structure that help explain the preference for vacancies.

  16. Vacancy-induced in-gap states in sodium tungsten bronzes: Density functional investigations

    Science.gov (United States)

    Paul, S.; Kumari, S.; Raj, S.

    2016-05-01

    We have performed extensive ab-initio self-consistent electronic-structure calculations on WO3 and NaWO3 with single- and double-oxygen-vacancy defects within the framework of density functional theory. Our calculated density of states reveals that the in-gap states in WO3 and NaWO3 are the consequence of oxygen vacancies in the system. The evolution of the induced states occurs from the unpaired electrons donated by the oxygen vacancy. We found that the energy positions of the in-gap states are sensitive to the oxygen vacancy concentrations. The in-gap states in NaWO3 are formed close to the valence band, which are pushed towards the conduction band with the increase in oxygen vacancies, whereas the states are formed mostly in the mid-gap region in the WO3 system. Our finding can now well explain the discrepancy in experimental band dispersion measurements from ARPES with that of WO3 and NaWO3 band calculations.

  17. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    Science.gov (United States)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  18. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  19. DFT study of formaldehyde adsorption on vacancy defected graphene doped with B, N, and S

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiao [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yuan, Lei; Yang, Xi; Fu, Zhibing; Tang, Yongjian; Wang, Chaoyang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Hong, E-mail: hongzhang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China)

    2014-08-31

    Highlights: • The existence of vacancy in graphene enhanced the adsorption of H{sub 2}CO molecule. • There was chemical bond forming between H{sub 2}CO molecule and dopants (B, N, and S) in modified graphene. • The adsorption of H{sub 2}CO molecule changed the conductivity of B and S doped defected graphene. - Abstract: The adsorption of formaldehyde (H{sub 2}CO) on modified graphene sheets, combining vacancy and dopants (B, N, and S), was investigated by employing the density functional theory (DFT). It was found that the vacancy-defected graphene was more sensitive to absorb H{sub 2}CO molecule compared with the pristine one. Furthermore, the H{sub 2}CO molecule tended to be chemisorbed on vacancy-defected graphene with dopants, which exhibited larger adsorption energy and net charge transfer than that of one without dopants. The results of partial electronic density of states (PDOS) indicated that the defect-dopant combination effect on the adsorption process was mainly owing to the contribution of the hybridization between dopants and C atoms around the vacancy. We hope our results will be useful for the application of graphene for chemical sensors to detect formaldehyde gas.

  20. Correlation between vacancies and magnetoresistance changes in FM manganites using the Monte Carlo method

    Science.gov (United States)

    Agudelo-Giraldo, J. D.; Restrepo-Parra, E.; Restrepo, J.

    2015-10-01

    The Metropolis algorithm and the classical Heisenberg approximation were implemented by the Monte Carlo method to design a computational approach to the magnetization and resistivity of La2/3Ca1/3MnO3, which depends on the Mn ion vacancies as the external magnetic field increases. This compound is ferromagnetic, and it exhibits the colossal magnetoresistance (CMR) effect. The monolayer was built with L×L×d dimensions, and it had L=30 umc (units of magnetic cells) for its dimension in the x-y plane and was d=12 umc in thickness. The Hamiltonian that was used contains interactions between first neighbors, the magnetocrystalline anisotropy effect and the external applied magnetic field response. The system that was considered contains mixed-valence bonds: Mn3+eg'-O-Mn3+eg, Mn3+eg-O-Mn4+d3 and Mn3+eg'-O-Mn4+d3. The vacancies were placed randomly in the sample, replacing any type of Mn ion. The main result shows that without vacancies, the transitions TC (Curie temperature) and TMI (metal-insulator temperature) are similar, whereas with the increase in the vacancy percentage, TMI presented lower values than TC. This situation is caused by the competition between the external magnetic field, the vacancy percentage and the magnetocrystalline anisotropy, which favors the magnetoresistive effect at temperatures below TMI. Resistivity loops were also observed, which shows a direct correlation with the hysteresis loops of magnetization at temperatures below TC.

  1. Role of vacancies in tuning the electronic properties of Au-MoS{sub 2} contact

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jie, E-mail: sujie0105@mail.nwpu.edu.cn, E-mail: lpfeng@nwpu.edu.cn; Li, Ning; Zhang, Yingying; Feng, Liping, E-mail: sujie0105@mail.nwpu.edu.cn, E-mail: lpfeng@nwpu.edu.cn; Liu, Zhengtang [State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072 (China)

    2015-07-15

    Understanding the electronic properties between molybdenum disulfide (MoS{sub 2}) and metal electrodes is vital for the designing and realization of nanoelectronic devices. In this work, influence of intrinsic vacancies in monolayer MoS{sub 2} on the electronic structure and electron properties of Au-MoS{sub 2} contacts is investigated using first-principles calculations. Upon formation of vacancies in monolayer MoS{sub 2}, both tunnel barriers and Schottky Barriers between metal Au and monolayer MoS{sub 2} are decreased. Perfect Au-MoS{sub 2} top contact exhibits physisorption interface with rectifying character, whereas Au-MoS{sub 2} contact with Mo-vacancy shows chemisorption interface with Ohmic character. Partial density of states and electron density of defective Au-MoS{sub 2} top contacts are much higher than those of perfect one, indicating the lower contact resistance and higher electron injection efficiency of defective Au-MoS{sub 2} top contacts. Notably, Mo-vacancy in monolayer MoS{sub 2} is beneficial to get high quality p-type Au-MoS{sub 2} top contact, whereas S-vacancy in monolayer MoS{sub 2} is favorable to achieve high quality n-type Au-MoS{sub 2} top contact. Our results provide guidelines for designing and fabrication of novel 2D nanoelectronic devices.

  2. Interlayer vacancy defects in AA-stacked bilayer graphene: density functional theory predictions

    Science.gov (United States)

    Vuong, A.; Trevethan, T.; Latham, C. D.; Ewels, C. P.; Erbahar, D.; Briddon, P. R.; Rayson, M. J.; Heggie, M. I.

    2017-04-01

    AA-stacked graphite and closely related structures, where carbon atoms are located in registry in adjacent graphene layers, are a feature of graphitic systems including twisted and folded bilayer graphene, and turbostratic graphite. We present the results of ab initio density functional theory calculations performed to investigate the complexes that are formed from the binding of vacancy defects across neighbouring layers in AA-stacked bilayers. As with AB stacking, the carbon atoms surrounding lattice vacancies can form interlayer structures with sp 2 bonding that are lower in energy than in-plane reconstructions. The sp 2 interlayer bonding of adjacent multivacancy defects in registry creates a type of stable sp 2 bonded ‘wormhole’ or tunnel defect between the layers. We also identify a new class of ‘mezzanine’ structure characterised by sp 3 interlayer bonding, resembling a prismatic vacancy loop. The V 6 hexavacancy variant, where six sp 3 carbon atoms sit midway between two carbon layers and bond to both, is substantially more stable than any other vacancy aggregate in AA-stacked layers. Our focus is on vacancy generation and aggregation in the absence of extreme temperatures or intense beams.

  3. Effect of random vacancies on the electronic properties of graphene and T graphene: a theoretical approach

    Science.gov (United States)

    Sadhukhan, B.; Nayak, A.; Mookerjee, A.

    2017-07-01

    In this communication we present together four distinct techniques for the study of electronic structure of solids: the tight-binding linear muffin-tin orbitals, the real space and augmented space recursions and the modified exchange-correlation. Using this we investigate the effect of random vacancies on the electronic properties of the carbon hexagonal allotrope, graphene, and the non-hexagonal allotrope, planar T graphene. We have inserted random vacancies at different concentrations, to simulate disorder in pristine graphene and planar T graphene sheets. The resulting disorder, both on-site (diagonal disorder) as well as in the hopping integrals (off-diagonal disorder), introduces sharp peaks in the vicinity of the Dirac point built up from localized states for both hexagonal and non-hexagonal structures. These peaks become resonances with increasing vacancy concentration. We find that in presence of vacancies, graphene-like linear dispersion appears in planar T graphene and the cross points form a loop in the first Brillouin zone similar to buckled T graphene that originates from π and π * bands without regular hexagonal symmetry. We also calculate the single-particle relaxation time, τ (ěc {q}) of ěc {q} labeled quantum electronic states which originates from scattering due to presence of vacancies, causing quantum level broadening.

  4. Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films

    Science.gov (United States)

    Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria

    2013-03-01

    Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.

  5. Role of vacancies in tuning the electronic properties of Au-MoS2 contact

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-07-01

    Full Text Available Understanding the electronic properties between molybdenum disulfide (MoS2 and metal electrodes is vital for the designing and realization of nanoelectronic devices. In this work, influence of intrinsic vacancies in monolayer MoS2 on the electronic structure and electron properties of Au-MoS2 contacts is investigated using first-principles calculations. Upon formation of vacancies in monolayer MoS2, both tunnel barriers and Schottky Barriers between metal Au and monolayer MoS2 are decreased. Perfect Au-MoS2 top contact exhibits physisorption interface with rectifying character, whereas Au-MoS2 contact with Mo-vacancy shows chemisorption interface with Ohmic character. Partial density of states and electron density of defective Au-MoS2 top contacts are much higher than those of perfect one, indicating the lower contact resistance and higher electron injection efficiency of defective Au-MoS2 top contacts. Notably, Mo-vacancy in monolayer MoS2 is beneficial to get high quality p-type Au-MoS2 top contact, whereas S-vacancy in monolayer MoS2 is favorable to achieve high quality n-type Au-MoS2 top contact. Our results provide guidelines for designing and fabrication of novel 2D nanoelectronic devices.

  6. molecular dynamics study of the gallium vacancy diffusion in GaAs

    Science.gov (United States)

    Bockstedte, Michel; Scheffler, Matthias

    1996-03-01

    Experimentally(T. Y. Tan et al.), Rev. Solid State Mater. Sci. 17, 47 (1991). it is well established that cation self-diffusion in GaAs proceeds by gallium vacancies. An analysis(J-L. Rouviere et al.), Phys. Rev. Lett. 68, 2798 (1992). of diffusion experiments yielded an exceptionally high value for the formation entropy of 32.9 kB and a migration energy barrier of 1.7 eV. The physics underlying this result is quite puzzling. Even the question whether the diffusion involves only the gallium sublattice or whether it proceeds by nearest neighbor hops is unanswered. Employing ab initio molecular dynamics simulations we analyze the motion of atoms and evaluate the free energy of vacancy formation and the diffusion constant. For the Ga vacancy we obtain a value for the formation entropy of 8 kB - comparable to that of the vacancy in silicon - but significantly lower than that extracted from experimentfootnotemark[2]. Based on our studies we therefore dare to question the experimental analysis. The calculated motion of a gallium vacancy close to the melting temperature of GaAs and the analysis of the different diffusion events exclude a diffusion mechanism by nearest neighbor hops. We discuss the microscopic picture of the second nearest neighbor hop, and determine its rate constant.

  7. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals

    Science.gov (United States)

    Swinburne, Thomas D.; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L.

    2016-08-01

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2 () dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  8. Fast, vacancy-free climb of prismatic dislocation loops in bcc metals.

    Science.gov (United States)

    Swinburne, Thomas D; Arakawa, Kazuto; Mori, Hirotaro; Yasuda, Hidehiro; Isshiki, Minoru; Mimura, Kouji; Uchikoshi, Masahito; Dudarev, Sergei L

    2016-08-23

    Vacancy-mediated climb models cannot account for the fast, direct coalescence of dislocation loops seen experimentally. An alternative mechanism, self climb, allows prismatic dislocation loops to move away from their glide surface via pipe diffusion around the loop perimeter, independent of any vacancy atmosphere. Despite the known importance of self climb, theoretical models require a typically unknown activation energy, hindering implementation in materials modeling. Here, extensive molecular statics calculations of pipe diffusion processes around irregular prismatic loops are used to map the energy landscape for self climb in iron and tungsten, finding a simple, material independent energy model after normalizing by the vacancy migration barrier. Kinetic Monte Carlo simulations yield a self climb activation energy of 2 (2.5) times the vacancy migration barrier for 1/2〈111〉 (〈100〉) dislocation loops. Dislocation dynamics simulations allowing self climb and glide show quantitative agreement with transmission electron microscopy observations of climbing prismatic loops in iron and tungsten, confirming that this novel form of vacancy-free climb is many orders of magnitude faster than what is predicted by traditional climb models. Self climb significantly influences the coarsening rate of defect networks, with important implications for post-irradiation annealing.

  9. Vacancy segregation in the initial oxidation stages of the TiN(100) surface.

    Science.gov (United States)

    Zimmermann, Janina; Finnis, Mike W; Ciacchi, Lucio Colombi

    2009-04-07

    The well-known corrosion resistance and biocompatibility of TiN depend on the structural and chemical properties of the stable oxide film that forms spontaneously on its surface after exposure to air. In the present work, we focus on the atomistic structure and stability of the TiN(100) surface in contact with an oxidizing atmosphere. The early oxidation stages of TiN(100) are investigated by means of first-principles molecular dynamics (FPMD). We observe selective oxidation of Ti atoms and formation of an ultrathin Ti oxide layer, while Ti vacancies are left behind at the metal/oxide interface. Within the formalism of ab initio thermodynamics we compute the segregation energies of vacancies and vacancy clusters at the metal/oxide interface, comparing the stability of the system obtained by FPMD simulations with ideally reconstructed models. We find that the localization of Ti vacancies in the thin oxide layer and at the TiN/oxide interface is thermodynamically stable and may account for the early removal of N atoms from the interface by segregation of N vacancies from the bulk reservoir. We suggest that superficial oxidation may proceed along two distinct possible pathways: a thermodynamically stable path along the potential energy minimum surface and a metastable, kinetically driven path that results from the high heat release during the dissociation of O(2).

  10. Formation and function of vacancies in Si/Ge Clathrates: The importance of broken symmetries

    Science.gov (United States)

    Bhattacharya, Amrita; Carbogno, Christian; Scheffler, Matthias; Dr. Matthias Scheffler Team, Prof.

    2015-03-01

    One promising material class for improved thermoelectrics are the clathrates, i.e., semiconducting host lattices encapsulating guest atom. Even in simple clathrates, such as, Si46 and Ge46, the introduction of guests can result in important but not yet understood effects: In Si hosts, the addition of K (or Ba) results in defect-free K8Si46 (Ba8Si46) phases. In spite of their structural and electronic similitude, Ge hosts behave fundamentally different upon filling, where, the spontaneously formed framework vacancies completely (or partially) balance the electron donated by K (or Ba) guests leading to K8Ge44(orBa8Ge43) clathrates. In this work, we use density-functional theory, carefully validating the exchange correlation functional, to compute the formation energies of vacancies and vacancy complexes in Si- and Ge-hosts as function of the filling of guests. By taking into account of the structural disorder, geometric relaxations, and vibrational entropies, we verify the experimentally found vacancy concentration and the thermodynamic stabilities of these compounds. We can trace back the contrasting behaviour of Si/Ge clathrates upon filling to a curious, charged vacancy induced break in symmetry that occurs in Si but not in Ge hosts.

  11. Magnetic properties of ZnO nanowires with Li dopants and Zn vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Xinhong; Cai, Ningning [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China); Yang, Chuanghua [School of Physics and Telecommunication Engineering, Shanxi University of Technology (SNUT), Hanzhong 723001, Shanxi (China); Chen, Jun [Beijing Applied Physics and Computational Mathematics, Beijing 100088 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, P.O. Box 72, Beijing 100876 (China)

    2016-04-30

    The electronic and magnetic properties of ZnO nanowire with Li dopants and vacancies have been investigated using first-principles density functional theory. It is found that the Zn vacancy can induce magnetism while increasing the formation energy of the system. However, the calculated results indicate that the introduction of Li-dopants will reduce the formation energy of system. We also have studied the magnetic couplings with vacancies as well as their corresponding configurations with Li-dopants for four configurations of ZnO nanowires. The results show that ferromagnetic properties can be improved/reversed after the introduction of Li-dopants. Ferromagnetic mechanism is originated from the fierce p–p hybridization of O near the Fermi level. We find that ferromagnetism of Li-doped ZnO nanowires with Zn vacancies can be realized at room temperature and they are promising spintronic materials. - Highlights: • Li-dopants will reduce the formation energy of ZnO nanowires with Zn vacancy. • The fierce p–p hybridization of O near Fermi level is responsible for FM properties. • Li-doped ZnO–V{sub Zn} nanowire is a promising FM semiconductor material.

  12. Ab initio study of oxygen-vacancy LaAlO3(001) surface

    Institute of Scientific and Technical Information of China (English)

    Tang Jin-Long; Zhu Jun; Qin Wen-Feng; Xiong Jie; Li Yan-Rong

    2008-01-01

    Density functional theory is used to investigate the surface structures and the energies of two possible terminated LaA1O3 (001) surfaces with oxygen vacancies,i.e.LaO- and A1O2-terminated surfaces.The large displacements of ions,deviated from their crystalline sites,can lead to the formation of the surface rumpling.From thermodynamics analysis,the AIO2-terminated surface with oxygen-vacancies is less stable than the LaO-terminated one.Some states in the gap lie under the Fermi level by about-leV in the LaO-terminated surface with oxygen vacancies.For the A1O2-terminated oxygen-vacancy surface,some O 2p states move into the mid-gap region and become partially unoccupied.The two types of termination surfaces exhibit conduction related to oxygen vacancies.Our results can contribute to the application of LAO films to high dielectric constant materials.

  13. Quasi-linear vacancy dynamics modeling and circuit analysis of the bipolar memristor.

    Science.gov (United States)

    Abraham, Isaac

    2014-01-01

    The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis.

  14. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping

    KAUST Repository

    Sarath Kumar, S. R.

    2013-08-14

    We report the evolution of high temperature thermoelectric properties of SrTiO3 thin films doped with Nb and oxygen vacancies. Structure-property relations in this important thermoelectric oxide are elucidated and the variation of transport properties with dopant concentrations is discussed. Oxygen vacancies are incorporated during growth or annealing in Ar/H2 above 800 K. An increase in lattice constant due to the inclusion of Nb and oxygen vacancies is found to result in an increase in carrier density and electrical conductivity with simultaneous decrease in carrier effective mass and Seebeck coefficient. The lattice thermal conductivity at 300 K is found to be 2.22 W m-1 K-1, and the estimated figure of merit is 0.29 at 1000 K. © 2013 American Chemical Society.

  15. Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2001-01-01

    dislocation densities in the foils after deformation. This was interpreted as evidence for a new dislocation-free deformation mechanism, resulting in a very high vacancy production rate. In this paper we investigate this proposition using large-scale computer simulations of bulk and thin films of copper......Recently, a dislocation-free deformation mechanism was proposed by Kiritani et al. on the basis of a series of experiments where thin foils of fee metals were deformed at very high strain rates. In the experimental study, they observed a large density of stacking fault tetrahedra but very low....... The dislocations are nucleated as single Shockley partials. The large stresses required before dislocations are nucleated result in a very high dislocation density, and therefore in many inelastic interactions between the dislocations. These interactions create vacancies and a very large vacancy concentration...

  16. Démocratie et vacances, éléments de débat

    Directory of Open Access Journals (Sweden)

    Christophe Terrier

    2002-04-01

    Full Text Available Et si la démocratie avait achoppé sur les vacances ? ou plutôt sur la non-prise en compte des vacances par le politique ? Il y a quelques mois, quand les professionnels du tourisme, inquiets de l'impact négatif prévisible pour leurs entreprises de la coïncidence éventuelle des dates d'élection avec les vacances scolaires, pressaient le gouvernement de questions sur la fixation de ces dates, ils s'étaient entendu répondre –avec suffisance ?- que les dates d'élection n'étaient pas la préoccupa...

  17. Direct observation of vacancy in silicon using sub-Kelvin ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Terutaka [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan)]. E-mail: goto@phys.sc.niigata-u.ac.jp; Yamada-Kaneta, Hiroshi [Fujitsu Laboratories Ltd., Morinisato-Wakamiya, Atsugi 243-0197 (Japan); Saito, Yasuhiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Nemoto, Yuichi [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Sato, Koji [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Nakamura, Shintaro [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-10-15

    We carried out sub-Kelvin ultrasonic measurements for observation of vacancies in crystalline silicon. The longitudinal elastic constants of non-doped and B-doped floating zone (FZ) silicon crystals in commercial base revealed low-temperature elastic softening below 20 K. The applied magnetic fields turns the softening of the B-doped FZ silicon to a temperature-independent behavior, while the fields up to 16 T at base temperature 20 mK make no effect on the softening of the non-doped FZ silicon. This result means that the vacancy accompanying the non-magnetic charge state V{sup 0} in the non-doped silicon and the magnetic V{sup +} in the B-doped silicon is responsible for the low-temperature softening through the Jahn-Teller effect. The direct observation of the vacancy using the sub-Kelvin ultrasonic measurements advances point defects controlling in silicon wafers and semiconductor devices.

  18. Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds

    CERN Document Server

    Maclaurin, D; Martin, A M; Hollenberg, L C L

    2012-01-01

    The confluence of quantum physics and biology is driving a new generation of quantum-based sensing and imaging technology capable of harnessing the power of quantum effects to provide tools to understand the fundamental processes of life. One of the most promising systems in this area is the nitrogen-vacancy centre in diamond - a natural spin qubit which remarkably has all the right attributes for nanoscale sensing in ambient biological conditions. Typically the nitrogen-vacancy qubits are fixed in tightly controlled/isolated experimental conditions. In this work quantum control principles of nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond nanocrystal. We find that the accumulation of geometric phases, due to the rotation of the nanodiamond plays a crucial role in the application of a diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show that a freely diffusing nanodiamond can offer real-time information about local magnetic fields and its own rotational beh...

  19. Double K-shell vacancy production in the electron capture decay of 139Ce

    Science.gov (United States)

    Hindi, M. M.; Kozub, R. L.

    1991-02-01

    The probability of double K-shell vacancy production in the electron capture decay of 139Ce to the 166-keV level of 139La has been investigated. Triple coincidences between the 166-keV gamma ray, the La satellite Kα x ray, and the La hypersatellite Kα x ray were measured using two intrinsic Ge detectors. We looked for the sum of two of the three radiations in one detector in coincidence with the third radiation in the other detector. The probability of double K-shell vacancy production per K-shell electron capture (PKK) was found to be (2.0+/-1.6)×10-6. From this and the known PKK for 131Cs we estimate a probability for zero K-shell vacancy production (shakedown) per K-shell electron capture of <~2.4×10-5 for 139Ce.

  20. Room-temperature vacancy migration in crystalline Si from an ion-implanted surface layer

    DEFF Research Database (Denmark)

    Larsen, Arne Nylandsted; Christensen, Carsten; Petersen, Jon Wulff

    1999-01-01

    examined, the vacancies migrate to a maximum depth of about 1 µm and at least one vacancy per implanted Ge ion migrates into the silicon crystal. The annealing of the E centers is accompanied, in an almost one-to-one fashion, by the appearance of a new DLTS line corresponding to a level at EC......–Et[approximate]0.15 eV that has donor character. It is argued that the center associated with this line is most probably the P2–V complex; it anneals at about 550 K. A lower limit of the RT-diffusion coefficient of the doubly charged, negative vacancy is estimated to be 4×10–11 cm2/s. ©1999 American Institute...

  1. Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load

    Science.gov (United States)

    Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.

    2017-03-01

    The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.

  2. Mn vacancy defects, grain boundaries, and A-phase stability of helimagnet MnSi.

    Science.gov (United States)

    Ou-Yang, T Y; Shu, G J; Lin, J-Y; Hu, C D; Chou, F C

    2016-01-20

    Mn vacancy defect and grain size are shown to modify the magnetic phase diagram of MnSi significantly, especially near the critical regime of A-phase (skyrmion lattice) formation and the helimagnetic phase transition. Crystals grown using controlled nonstoichiometric initial precursors creates both grain boundaries and intrinsic Mn vacancy defect of various levels in MnSi. The results of combined transport, specific heat, and AC spin susceptibility measurements are compared for MnSi single crystal samples of various manganese deficiency levels and grain sizes. The finite-size effect and Mn vacancy level dependent helical phase transition temperature T(c) have been identified and verified. The stability of A-phase in H-T phase space has been examined through AC spin susceptibility data analysis.

  3. Mn vacancy defects, grain boundaries, and A-phase stability of helimagnet MnSi

    Science.gov (United States)

    Ou-Yang, T. Y.; Shu, G. J.; Lin, J.-Y.; Hu, C. D.; Chou, F. C.

    2016-01-01

    Mn vacancy defect and grain size are shown to modify the magnetic phase diagram of MnSi significantly, especially near the critical regime of A-phase (skyrmion lattice) formation and the helimagnetic phase transition. Crystals grown using controlled nonstoichiometric initial precursors creates both grain boundaries and intrinsic Mn vacancy defect of various levels in MnSi. The results of combined transport, specific heat, and AC spin susceptibility measurements are compared for MnSi single crystal samples of various manganese deficiency levels and grain sizes. The finite-size effect and Mn vacancy level dependent helical phase transition temperature {{T}\\text{c}} have been identified and verified. The stability of A-phase in H-T phase space has been examined through AC spin susceptibility data analysis.

  4. Formation energy of vacancies in FeCr alloys: Dependence on Cr concentration

    Energy Technology Data Exchange (ETDEWEB)

    Rio, Emma del, E-mail: emma.delrio@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Sampedro, Jesus M. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Dogo, Harun [Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, POB 1663, Los Alamos, NM (United States); Caturla, Maria J., E-mail: MJ.Caturla@ua.e [Dept. de Fisica Aplicada, Facultad de Ciencias, Fase II, Universidad de Alicante, Alicante E-03690 (Spain); Caro, Magdalena [Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, POB 1663, Los Alamos, NM (United States); Caro, Alfredo, E-mail: caro@lanl.go [Materials Science and Technology Division, MST-8, Los Alamos National Laboratory, POB 1663, Los Alamos, NM (United States); Perlado, J. Manuel [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2011-01-01

    A modified version of the concentration-dependent model (CDM) potential (A. Caro et al., Phys. Rev. Lett. 95 (2005) 075702) has been developed to study defects in Fe-Cr for different Cr concentrations. A comparison between this new potential and DFT results for a variety of point defect configurations is performed in order to test its reliability for radiation damage studies. The effect of Cr concentration on the vacancy formation energy in Fe-Cr alloys is analyzed in detail. This study shows a linear dependence of the vacancy formation energy on Cr concentration for values above 6% of Cr. However, the formation energy deviates from the linear interpolation in the region below 6% Cr concentration. In order to understand this behavior, the influence of the relative positions between Cr atoms and vacant sites on the vacancy formation energy has been studied.

  5. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene.

    Science.gov (United States)

    Ukpong, A M; Chetty, N

    2012-07-04

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  6. Translation Strategies for Dealing with Cultural Vacancy from the Perspective of Cultural Schemata

    Institute of Scientific and Technical Information of China (English)

    章放维

    2008-01-01

    This paper demonstrates the role of cultural schemata in the proce ss of dealing with cultural vacancy in translation,and then,it points out the criterion for the translation of cultural vacancy is to see whether the correspo nding cultural schema is fully transformed. On the basis of the ideas discussed,the paper proposed six translating methods to deal with cultural vacancy in tra nslation: transliteration,literal translation or transliteration with notes,li teral translation or transliteration plus proper explanation,compensation,borr owing and free translation. It is proposed that all this translating methods sho uld proceed from the perspective of cultural schemata so as to excavate the cult ural meaning from a deeper level

  7. First-Principles Study of Electronic Properties in PbS((1)OO) with Vacancy Defect

    Institute of Scientific and Technical Information of China (English)

    DING Zong-Ling; XING Huai-Zhong; XU Sheng-Lan; HUANG Yan; CHEN Xiao-Shuang

    2007-01-01

    Electronic properties of both Pb and S vacancy defects in PbS(100) have been studied using the first-principles density functional theory (DFT) calculations with the plane-wave pseudopotentials. It is found that the density of states (DOS) near the top of the valence band and the bottom of the conduction band is significantly modified by these defects. Our calculation indicates that in the case of S vacancy defects the Fermi energy shifts to the conduction band making it as an n-type PbS (donor). However, in the case of Pb vacancy, because of the appreciable change of the DOS, the system acts as a p-type PbS (accepter). In addition, the structural relaxation shows that the defect leads to outward relaxation of the nearest-neighbouring atoms and inward relaxation of the next-nearest neighbouring atoms.

  8. Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO{sub 2} film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ka; Chang, Yongqin, E-mail: chang@ustb.edu.cn; Lv, Liang; Long, Yi

    2015-10-01

    Highlights: • Nanocrystalline CeO{sub 2} films were prepared by a facile sol–gel spin coating method. • Oxygen vacancy concentrations can be controlled by annealing temperatures. • The films show perfect thermal stability at various annealing temperatures. • PL, XPS and Raman spectra are obviously affected by oxygen vacancy concentrations. - Abstract: Nanocrystalline CeO{sub 2} films with around 250 nm thickness were deposited on Si (0 0 1) substrates by a facile sol–gel process with spin coating method. The films are of cubic fluorite structure, and some lattice distortions exist in the film. The phase stability and small change in lattice parameter at different annealing temperatures indicate the good thermal stability of the nanocrystalline CeO{sub 2} films. The average grain-size and surface roughness of the films increase with the increase of annealing temperature. The content of Ce{sup 3+} and oxygen vacancy is very high in the nanocrystalline CeO{sub 2} films, while, the films still remain cubic phase regardless of its high level non-stoichiometric composition. All the annealed samples show two emission bands, and the defect peak centered at ∼500 nm shows a red-shift. The intensity of the green-emission band increases with the increasing annealing temperature, which might result from the increasing concentration of oxygen vacancies caused by the valence transition from Ce{sup 4+} to Ce{sup 3+}, and it has also been confirmed by the X-ray photoelectron spectroscopy results. This work demonstrates that oxygen vacancy plays an important role on the properties of the nanocrystalline CeO{sub 2} film, and it also provides a possible way to control the concentration of oxygen vacancies.

  9. The Role of Cation Vacancies in Forming Minerals in the Atmosphere

    Science.gov (United States)

    Mashukov, Anatoly; Onufrienok, Victor; Mashukova, Alla

    2010-05-01

    There were studied the mechanisms of forming new compounds in the synthesized FexS samples after their synthesizing and keeping in the atmosphere for 29 years. Some of these samples were kept in soldered ampoules. In the soldered ampoules, the pyrrotines having excessive sulphur, as compared with Fe7S8, passed into the stable state. As a result, there was formed the pyrrotine having the composition of Fe7S8 , and pyrite. In the atmosphere, there was formed Fe7S8 and goethite. The increase in the stable Fe7S8 , leads to increasing the Cation vacancies concentration. Some iron ions close to there vacancies will be in the nonequilibrium state. The calculations done on the basis of iron ions, which are in the noneguilibrium state, and also on the basis of contents which are observed on the x-ray photograph during the experiment, are both in good correspondence. Salmonokite is formed from pyrrotine, and it is not the result of the transformation of the other phases. It is established that on the basis of the thermodynamic potentials, using the Pauli quantum statistics, the most important role in this transformation is played by the cation vacancies in the pyrrotine structure. The theoretical analysis was carried out taking into account the interaction of the vacancies as well as without considering them. The noneguilibrium iron ions and the absorbed water formed goethite. Its percentage correlates with the vacancies contents. The contents of salmonokite directly depend on the pyrrotine contents. The conducted research shows that in the presence of the atmosphere, the forming jf new minerals is carried out owning to the cation vacancies of the mother plate.

  10. Efficient single-photon-assisted entanglement concentration for an arbitrary entangled photon pair with the diamond nitrogen-vacancy center insides cavity

    Science.gov (United States)

    Fan, Lin-Lin; Xia, Yan

    2015-03-01

    In this paper, a protocol for single-photon-assisted entanglement concentration is proposed. Resorting to the nonlinear optics of a nitrogen-vacancy (NV) center in a diamond embedded in a photonic crystal cavity coupled to a waveguide, remote parties can share the maximally entangled photon pair with a certain probability. Compared with other entanglement concentration protocols (ECPs), the current one does not need to know the accurate coefficients of the initial state and can be repeated to get a higher success probability. Meanwhile, this protocol is more suitable for multiphoton system concentration. All these advantages make the protocol useful in long-distance quantum communication.

  11. Nanodiamonds with silicon vacancy defects for non-toxic photostable fluorescent labeling of neural precursor cells

    CERN Document Server

    Merson, Tobias D; Aharonovich, Igor; Turbic, Alisa; Kilpatrick, Trevor J; Turnley, Ann M

    2013-01-01

    Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy (NV) centers. NPCs labeled with NDs exhibited normal cell viability and proliferative properties consistent with biocompatibility. We conclude that SiVcontaining NDs are a promising biomedical research tool for cellular labeling and optical imaging in stem cell research.

  12. Observing the rotational diffusion of nanodiamonds with arbitrary nitrogen vacancy center configurations

    Science.gov (United States)

    Yoshinari, Yohsuke; Kalay, Ziya; Harada, Yoshie

    2013-12-01

    We present theoretical results on the relationship between the rotational diffusion coefficient of a nanodiamond undergoing Brownian motion and the configuration of nitrogen vacancy centers (NVCs) contained in the particle. Through exact calculations and simulations, we obtain the fluorescence intensity autocorrelation function that is measured in optically detected magnetic resonance experiments conducted at single-particle level. We relate the autocorrelation function to the rotational diffusion coefficient and discuss the influence of different NVC configurations on the outcome of measurements. We believe that our results can be useful in interpreting observations on nanodiamonds that contain multiple nitrogen vacancy centers.

  13. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths

    DEFF Research Database (Denmark)

    Jantzen, Uwe; Kurz, Andrea B.; Rudnicki, Daniel S.;

    2016-01-01

    Colour centres in nanodiamonds are an important resource for applications in quantum sensing, biological imaging, and quantum optics. Here we report unprecedented narrow optical transitions for individual colour centres in nanodiamonds smaller than 200 nm. This demonstration has been achieved using......, and advance the applicability of nanodiamond-hosted colour centres for quantum optics applications....... the negatively charged silicon vacancy centre, which has recently received considerable attention due to its superb optical properties in bulk diamond. We have measured an ensemble of silicon-vacancy centres across numerous nanodiamonds to have an inhomogeneous distribution of 1.05 nmat 5 K. Individual spectral...

  14. Measurement of vacancy transfer probability from K to L shell using K-shell fluorescence yields

    Indian Academy of Sciences (India)

    Ö Söğüt; E Büyükkasap; A Küçükönder; T Tarakçioğlu

    2009-10-01

    The vacancy transfer probabilities from K to L shell through radiative decay, KL , have been deduced for the elements in the range 19 ≤ ≤ 58 using K-shell fluorescence yields. The targets were irradiated with photons at 59.5 keV from a 75mCi 241Am annular source. The K X-rays from different targets were detected with a high resolution Si(Li) detector. The measurement of vacancy transfer probabilities are least-squared fitted to second-order polynomials to obtain analytical relations that represent these probabilities as a function of atomic number. The obtained results agree with theoretical and fitted values.

  15. Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film

    Energy Technology Data Exchange (ETDEWEB)

    Su Kim, Yong, E-mail: ysukim@phya.snu.ac.kr; Jee Yoon, Moon; Hee Sohn, Chang; Buhm Lee, Shin; Lee, Daesu; Chul Jeon, Byung; Keun Yoo, Hyang; Won Noh, Tae [CFI-CES, IBS and Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Jiyeon; Yu, Jaejun [CSCMR, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Bostwick, Aaron; Rotenberg, Eli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Don Bu, Sang [Department of Physics, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Simon Mun, Bongjin [Department of Physics and Photon Science, School of Physics and Chemistry, Ertl Center for Electrochemistry and Catalyst, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-01-06

    In practical applications to bipolar resistance switching (BRS) memory devices with enhanced performance and high-scalability, oxide materials are commonly fabricated to highly nonstoichiometric and nanometer scale films. In this study, we fabricated ultrathin strontium titanate film, which shows two types of BRS behavior. By using micro-beam X-ray photoemission spectroscopy, the changes of core-level spectra depending on the resistance states are spatially resolved. Experimental and calculated results demonstrated that the fundamental switching mechanism in the two types of BRS is originated from the migration of anion and cation vacancies and the formation of insulating vacancy clusters near vicinity of the interface.

  16. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).

    Science.gov (United States)

    Weaver, Jason F; Zhang, Feng; Pan, Li; Li, Tao; Asthagiri, Aravind

    2015-05-19

    Metal oxide films can form on late transition-metal catalysts under sufficiently oxygen-rich conditions, and typically cause significant changes in the catalytic performance of these materials. Several investigations using sensitive in situ surface characterization techniques reveal that the CO oxidation activity of Pd and other late transition-metal catalysts increases abruptly under conditions at which metal oxide structures begin to develop. Findings such as these provide strong motivation for developing atomic-scale descriptions of oxidation catalysis over oxide films of the late transition-metals. Surface oxygen vacancies can play a central role in mediating oxidation catalysis promoted by metal oxides. In general, adsorbed reactants abstract oxygen atoms from the lattice of the oxide surface, thereby creating oxygen vacancies, while gaseous O2 replenishes the reactive surface oxygen atoms and eliminates oxygen vacancies. Oxygen vacancies also represent a distinct type of surface site on which the binding and reactivity of adsorbed species can differ compared with sites on the pristine oxide surface. Detailed characterization of vacancy-mediated rate processes is thus essential for developing reliable mechanistic descriptions of oxidation catalysis over reducible metal oxide films. Careful measurements performed in ultrahigh vacuum (UHV) using well-defined oxide surfaces in combination with molecular simulations afford the capability to isolate and characterize such reaction steps, and thus provide information that is needed for developing mechanistic models of oxidation catalysis over metal oxides. In this Account, we discuss vacancy-mediated processes that are involved in the oxidation of CO on the PdO(101) surface as determined from UHV surface science experiments and density functional theory (DFT) calculations. These studies show that CO binds strongly on Pd atoms that are located next to surface oxygen vacancies, and diffuses rapidly to these sites

  17. Effect of edge vacancies on localized states in semi-infinite zigzag graphene sheet

    Science.gov (United States)

    Glebov, A. A.; Katkov, V. L.; Osipov, V. A.

    2016-12-01

    The effect of vacancies on the robustness of zero-energy edge electronic states in zigzag-type graphene layer is studied at different concentrations and distributions of defects. All calculations are performed by using the Green's function method and the tight-binding approximation. It is found that the arrangement of defects plays a crucial role in the destruction of the edge states. We have specified a critical distance between edge vacancies when their mutual influence becomes significant and affects markedly the density of electronic states at graphene edge.

  18. Electron spin contrast of Purcell-enhanced nitrogen-vacancy ensembles in nanodiamonds

    Science.gov (United States)

    Bogdanov, S.; Shalaginov, M. Y.; Akimov, A.; Lagutchev, A. S.; Kapitanova, P.; Liu, J.; Woods, D.; Ferrera, M.; Belov, P.; Irudayaraj, J.; Boltasseva, A.; Shalaev, V. M.

    2017-07-01

    Nitrogen-vacancy centers in diamond allow for coherent spin-state manipulation at room temperature, which could bring dramatic advances to nanoscale sensing and quantum information technology. We introduce a method for the optical measurement of the spin contrast in dense nitrogen-vacancy (NV) ensembles. This method brings insight into the interplay between the spin contrast and fluorescence lifetime. We show that for improving the spin readout sensitivity in NV ensembles, one should aim at modifying the far-field radiation pattern rather than enhancing the emission rate.

  19. Vacancy induced metallicity at the CaHfO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-31

    Density functional theory is used to study the electronic properties of the oxide heterointerfaceCaHfO3/SrTiO3. Structural relaxation is carried out with and without O vacancies. As compared to related interfaces, strongly reduced octahedral distortions are found. Stoichiometric interfaces between the wide band gap insulatorsCaHfO3 and SrTiO3 turn out to exhibit an insulating state. However, interface metallicity is introduced by O vacancies, in agreement with experiment. The reduced octahedral distortions and necessity of O deficiency indicate a less complicated mechanism for the creation of the interfacial electron gas.

  20. Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies

    Institute of Scientific and Technical Information of China (English)

    He Xiao-Bo; Yang Tian-Zhong; Cai Jin-Ming; Zhang Chen-Dong; Guo Hai-Ming; Shi Dong-Xia; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    A single ZnO nanowire with intrinsic oxygen vacancies is utilized to fabricate four-contact device with focus ion beam lithography technique.Cathodoluminescent spectra indicate strong near-UV and green emission at both room temperature and low temperatures.Experimented measurement shows the temperature-dependent conductivity of the ZnO nanowire at low temperatures(below 100 K).The further theoretical analysis confirms that weak localization plays an important role in the electrical transport,which is attributed to the surface states induced by plenty of oxygen vacancies in ZnO nanowire.

  1. Formation Enthalpy Calculation of Oxygen Vacancy Defect in Doped Lithium Niobate Crystals

    Institute of Scientific and Technical Information of China (English)

    QIANG Liang-sheng; LI Yao; TANG Dong-yan; XU Chong-quan; WEI Yong-de

    2004-01-01

    The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals have been calculated. It was found that the formation enthalpy of oxygen vacancies can be decreased evidently by doping valence-changeable ions. The experimental results were discussed and a new reduction process of the photorefractive LN crystal at a relatively low temperature was proposed, and the reduced crystals showed a good effect in practical use.

  2. Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials

    Indian Academy of Sciences (India)

    Vandana Gairola; P D Semalty; P N Ram

    2013-06-01

    The embedded atom method (EAM) potentials, with the universal form of the embedding function along with the Morse form of pair potential, have been employed to determine the potential parameters for three bcc transition metals: Fe, Mo, and W, by fitting to Cauchy pressure $(C_{12} − C_{44})/2$, shear constants $G_{v} = (C_{11} − C_{12} + 3C_{44})/5$ and 44, cohesive energy and the vacancy formation energy. The obtained potential parameters are used to calculate the phonon dispersion spectra of these metals. Large discrepancies are found between the calculated results of phonon dispersion using the EAM and the experimental phonon dispersion results. Therefore, to overcome this inadequacy of the EAM model, we employ the modified embedded atom method (MEAM) in which a modified term along with the pair potential and embedding function is added in the total energy. The phonon dispersions calculated using potential parameters obtained from the MEAM show good agreement with experimental results compared to those obtained from the EAM. Using the calculated phonons, we evaluate the local density of states of the neighbours of vacancy using the Green’s function method. The local frequency spectrum of first neighbours of vacancy in Mo shows an increase at higher frequencies and a shift towards the lower frequencies whereas in Fe and W, the frequency spectrum shows a small decrease towards higher frequency and small shift towards lower frequency. For the second neighbours of vacancy in all the three metals, the local frequency spectrum is not much different from that of the host atom. The local density of states of the neighbours of the vacancy has been used to calculate the mean square displacements and the formation entropy of vacancy. The calculated mean square displacements of the first neighbours of vacancy are found to be higher than that of the host atom, whereas it is lower for the second neighbours. The calculated results of the formation entropy of the vacancy

  3. Diamond Radio Receiver: Nitrogen-Vacancy Centers as Fluorescent Transducers of Microwave Signals

    Science.gov (United States)

    Shao, Linbo; Zhang, Mian; Markham, Matthew; Edmonds, Andrew M.; Lončar, Marko

    2016-12-01

    We demonstrate a robust frequency-modulated radio receiver using electron-spin-dependent photoluminescence of nitrogen-vacancy centers in diamond. The carrier frequency of the frequency-modulated signal is in the 2.8-GHz range, determined by the zero-field splitting in the nitrogen-vacancy electronic ground state. The radio can be tuned over 300 MHz by applying an external dc magnetic field. We show the transmission of high-fidelity audio signals over a bandwidth of 91 kHz using the diamond radio. We demonstrate operating temperature of the radio as high as 350 ° C .

  4. Phase stability and the arsenic vacancy defect in InxGa1−xAs

    KAUST Repository

    Murphy, S. T.

    2011-11-18

    The introduction of defects, such as vacancies, into InxGa1−xAs can have a dramatic impact on the physical and electronic properties of the material. Here we employ ab initio simulations of quasirandom supercells to investigate the structure of InxGa1−xAs and then examine the energy and volume changes associated with the introduction of an arsenic vacancy defect. We predict that both defect energies and volumes for intermediate compositions of InxGa1−xAs differ significantly from what would be expected by assuming a simple linear interpolation of the end member defect energies/volumes.

  5. Impact of Vacancies on Diffusive and Pseudodiffusive ElectronicTransport in Graphene

    Directory of Open Access Journals (Sweden)

    Paweł Lenarczyk

    2013-04-01

    Full Text Available We present a survey of the effect of vacancies on quantum transport in graphene,exploring conduction regimes ranging from tunnelling to intrinsic transport phenomena.Vacancies, with density up to 2%, are distributed at random either in a balanced mannerbetween the two sublattices or in a totally unbalanced configuration where only atomssitting on a given sublattice are randomly removed. Quantum transmission shows avariety of different behaviours, which depend on the specific system geometry and disorderdistribution. The investigation of the scaling laws of the most significant quantities allowsa deep physical insight and the accurate prediction of their trend over a large energy regionaround the Dirac point.

  6. Role of vacancies in tuning the electronic properties of Au-MoS2 contact

    OpenAIRE

    Jie Su; Ning Li; Yingying Zhang; Liping Feng; Zhengtang Liu

    2015-01-01

    Understanding the electronic properties between molybdenum disulfide (MoS2) and metal electrodes is vital for the designing and realization of nanoelectronic devices. In this work, influence of intrinsic vacancies in monolayer MoS2 on the electronic structure and electron properties of Au-MoS2 contacts is investigated using first-principles calculations. Upon formation of vacancies in monolayer MoS2, both tunnel barriers and Schottky Barriers between metal Au and monolayer MoS2 are decreased....

  7. Interference effects in K vacancy transfer of hydrogen-like S ions colliding with Ar

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.; Justiniano, E.; Schulz, M.; Ziegler, F.; Ingwersen, H.; Schmidt-Boecking, H.

    1984-06-14

    The impact-parameter-dependent K-shell to K-shell vacancy transfer probability has been investigated for 4.7, 7.9, 16, 32 and 90 MeV S/sup 15 +/-Ar collisions by measuring S and Ar K x-ray particle coincidences. With low-energy H-like S beams, oscillating Ar K vacancy probabilities as a function of impact parameter were measured. The interference maxima and minima could be related to values of the phase integral over the 2psigma-1ssigma energy difference from which information about this energy difference could be obtained.

  8. Superconductivity Tuned by the Iron Vacancy Order in KxFe2-ySe2

    Science.gov (United States)

    Bao, Wei; Li, Guan-Nan; Huang, Qing-Zhen; Chen, Gen-Fu; He, Jun-Bao; Wang, Du-Ming; A. Green, M.; Qiu, Yi-Ming; Luo, Jian-Lin; Wu, Mei-Mei

    2013-02-01

    Combining in-depth neutron diffraction and systematic bulk studies, we discover that the √5 × √5 Fe vacancy order, with its associated block antiferromagnetic order, is the ground state with varying occupancy ratios of the iron 16i and vacancy 4d sites across the phase-diagram of KxFe2-ySe2. The orthorhombic order, with one of the four Fe sites vacant, appears only at intermediate temperatures as a competing phase. The material experiences an insulator to metal crossover when the √5 × √5 order is highly developed. Superconductivity occurs in such a metallic phase.

  9. Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique

    Science.gov (United States)

    Kononenko, Vitali V.; Vlasov, Igor I.; Gololobov, Viktor M.; Kononenko, Taras V.; Semenov, Timur A.; Khomich, Andrej A.; Shershulin, Vladimir A.; Krivobok, Vladimir S.; Konov, Vitaly I.

    2017-08-01

    A strategy for nitrogen-vacancy (NV) center production in diamond under its irradiation by 266-nm femtosecond laser pulses is suggested: NV centers can be effectively and controllably created in the regime of nanoablation of a diamond surface. The NV concentration was found to increase logarithmically with the laser pulse number in the nanoablation regime, which is realized at a laser fluence of tool to produce the requisite number of vacancies near the diamond surface and, hence, to manage the formation of NV complexes.

  10. Mössbauer and DLTS Investigations of Impurity-Vacancy Complexes in Semiconductors

    CERN Multimedia

    Nylandsted larsen, A

    2002-01-01

    % IS321 \\\\ \\\\ The structure and electronic states of impurity-vacancy complexes formed in silicon-based semiconductors are proposed to be studied by Mössbauer and DLTS techniques utilizing implanted radioactive $^{119}$Sb isotopes. Impurity-vacancy complexes are created thermally at high temperatures, but can also be produced by electron and ion irradiation at low temperatures. By comparing complexes created by both methods we expect to be able to understand the newly discovered, extremely fast diffusion of dopants in n-type extrinsic silicon.

  11. Positron annihilation spectroscopy of vacancy-type defects hierarchy in submicrocrystalline nickel during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Pavel V., E-mail: kpv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Mironov, Yuri P., E-mail: myp@ispms.tsc.ru, E-mail: tolmach@ispms.tsc.ru, E-mail: rakhmatulina.tanya@gmail.com; Tolmachev, Aleksey I., E-mail: myp@ispms.tsc.ru, E-mail: tolmach@ispms.tsc.ru, E-mail: rakhmatulina.tanya@gmail.com; Rakhmatulina, Tanzilya V., E-mail: myp@ispms.tsc.ru, E-mail: tolmach@ispms.tsc.ru, E-mail: rakhmatulina.tanya@gmail.com [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Bordulev, Yuri S., E-mail: bordulev@gmail.com, E-mail: laptev.roman@gmail.com, E-mail: lider@tpu.ru; Laptev, Roman S., E-mail: bordulev@gmail.com, E-mail: laptev.roman@gmail.com, E-mail: lider@tpu.ru; Lider, Andrey M., E-mail: bordulev@gmail.com, E-mail: laptev.roman@gmail.com, E-mail: lider@tpu.ru; Mikhailov, Andrey A., E-mail: bordulev@gmail.com, E-mail: laptev.roman@gmail.com, E-mail: lider@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Korznikov, Alexander V., E-mail: korznikov@imsp.ru [Institute for Metals Superplasticity Problems RAS, Ufa, 450001 (Russian Federation)

    2014-11-14

    Positron annihilation and X-ray diffraction analysis have been used to study submicrocrystalline nickel samples prepared by equal channel angular pressing. In the as-prepared samples the positrons are trapped at dislocation-type defects and in vacancy clusters that can include up to 5 vacancies. The study has revealed that the main positron trap centers at the annealing temperature of ΔT= 20°C-180°C are low-angle boundaries enriched by impurities. At ΔT = 180°C-360°C, the trap centers are low-angle boundaries providing the grain growth due to recrystallization in-situ.

  12. Polarity-induced oxygen vacancies at LaAlO3∕SrTiO3 interfaces

    NARCIS (Netherlands)

    Zhong, ZhiCheng; Xu, P.X.; Kelly, Paul J.

    2010-01-01

    Using first-principles density-functional-theory calculations, we find a strong position and thickness dependence of the formation energy of oxygen vacancies in LaAlO3∣SrTiO3 (LAO∣STO) multilayers and interpret this with an analytical capacitor model. Oxygen vacancies are preferentially formed at p-

  13. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals.

    Science.gov (United States)

    Gao, Yuxian; Li, Rongtan; Chen, Shilong; Luo, Liangfeng; Cao, Tian; Huang, Weixin

    2015-12-21

    Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

  14. Resistance to sulfur poisoning of the gold doped nickel/yttria-stabilized zirconia with interface oxygen vacancy

    Science.gov (United States)

    Zhang, Yanxing; Yang, Zongxian

    2014-12-01

    The effects of IB metal (Gold, Silver, and Copper) dopants at the triple phase boundary (TPB) on the resistance to sulfur poisoning of the Nickel/Yttria-Stabilized Zirconia (YSZ) with interface oxygen vacancy (denoted as Ni/YSZ-Ov) are studied using the first-principles method based on density functional theory. Models with Au, Ag, Cu dopants at the TPB of Ni/YSZ-Ov are proposed. It is found that the Au dopant prefers to be at the neighbor of the oxygen vacancy site (denoted as NiAu-d/YSZ-Ov) while the Ag, Cu dopants tend to be located at the top Ni layer, which have little effects on the sulfur adsorption at the interface oxygen vacancy site. Compared with Ni/YSZ-Ov, the NiAu-d/YSZ-Ov can not only weaken the sulfur adsorption at the interface oxygen vacancy site, but also restrain the diffusion of sulfur to the interface oxygen vacancy. Instead, the adsorbed S at the oxygen vacancy is more easily to diffuse out of the interface oxygen vacancy site. So we propose that doping Au in Ni at the neighbor of the interface oxygen vacancy site would be good way to increase the resistance to sulfur poisoning of the Ni/YSZ-Ov anode.

  15. Origin of unbalanced reaction of vacancies and interstitials during irradiation with cascades and influence on microstructural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kiritani, M. (Dept. of Nuclear Engineering, School of Engineering, Nagoya Univ. (Japan)); Yoshiie, T. (Dept. of Precision Engineering, Faculty of Engineering, Hokkaido Univ., Sapporo (Japan)); Kojima, S. (Dept. of Nuclear Engineering, School of Engineering, Nagoya Univ. (Japan)); Satoh, Y. (Dept. of Nuclear Engineering, School of Engineering, Nagoya Univ. (Japan))

    1993-10-01

    Based upon the underlying premise that all the microstructure evolution during irradiation results from the asymetrical reaction between vacancies and interstitials, the origin of the asymetry is sought and categorized, and the mechanism of defect structure evolution for each source of asymetry is investigated. The role of neutral sinks and the influence of dislocations are examined for the cases of irradiation with and without cascade damage. Vacancy cluster formation directly from cascades is found to favor the generation of freely migrating interstitials. Stochastic fluctuations of the point defect reactions under the balanced condition of vacancy and interstitial is experimentally detected, and the important role of the fluctuations is found in the determination of the fate of small interstitial cluster embryos produced by cascade damage. The influence of the unbalanced point defect reaction starting from difference in spacial distribution between vacancies and interstitials formed by cascade collisions is discussed as one of the important origins of vacancy dominant reactions. (orig.)

  16. Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory.

    Science.gov (United States)

    Cao, Dan; Cai, Meng-Qiu; Hu, Wang-Yu; Yu, Ping; Huang, Hai-Tao

    2011-03-14

    The origin of magnetism induced by vacancies on BaTiO(3)(001) surfaces is investigated systematically by first-principles calculations within density-functional theory. The calculated results show that O vacancy is responsible for the magnetism of the BaO-terminated surface and the magnetism of the TiO(2)-terminated surface is induced by Ti vacancy. For the BaO-terminated surface, the magnetism mainly arises from the unpaired electrons that are localized in the O vacancy basin. In contrast, for the TiO(2)-terminated surface, the magnetism mainly originates from the partially occupied O-2p states of the first nearest neighbor O atoms surrounding the Ti vacancy. These results suggest the possibility of implementing magneto-electric coupling in conventional ferroelectric materials.

  17. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO.

    Science.gov (United States)

    Wang, Junpeng; Wang, Zeyan; Huang, Baibiao; Ma, Yandong; Liu, Yuanyuan; Qin, Xiaoyan; Zhang, Xiaoyang; Dai, Ying

    2012-08-01

    Oxygen vacancies in crystal have important impacts on the electronic properties of ZnO. With ZnO(2) as precursors, we introduce a high concentration of oxygen vacancies into ZnO successfully. The obtained ZnO exhibits a yellow color, and the absorption edge shifts to longer wavelength. Raman and XPS spectra reveal that the concentration of oxygen vacancies in the ZnO decreased when the samples are annealed at higher temperature in air. It is consistent with the theory calculation. The increasing of oxygen vacancies results in a narrowing bandgap and increases the visible light absorption of the ZnO. The narrowing bandgap can be confirmed by the enhancement of the photocurrent response when the ZnO was irradiated with visible light. The ZnO with oxygen vacancies are found to be efficient for photodecomposition of 2,4-dichlorophenol under visible light irradiation.

  18. Origin of unbalanced reaction of vacancies and interstitials during irradiation with cascades and influence on microstructural evolution

    Science.gov (United States)

    Kiritani, M.; Yoshiie, T.; Kojima, S.; Satoh, Y.

    1993-10-01

    Based upon the underlying premise that all the microstructure evolution during irradiation results from the assymetrical reaction between vacancies and interstitials, the origin of the assymetry is sought and categorized, and the mechanism of defect structure evolution for each source of assymetry is investigated. The role of neutral sinks and the influence of dislocations are examined for the cases of irradiation with and without cascade damage. Vacancy cluster formation directly from cascades is found to favor the generation of freely migrating interstitials. Stochastic fluctuations of the point defect reactions under the balanced condition of vacancy and interstitial is experimentally detected, and the important role of the fluctuations is found in the determination of the fate of small interstitial cluster embryos produced by cascade damage. The influence of the unbalanced point defect reaction starting from difference in spacial distribution between vacancies and interstitials formed by cascade collisions is discussed as one of the important origins of vacancy dominant reactions.

  19. Frenkel-Kontorova Model of the Dimerized Overlayer System with Vacancies

    Institute of Scientific and Technical Information of China (English)

    XU Hai-Bo; WANG Guang-Rui; CHEN Shi-Gang

    2000-01-01

    The reconstruction of the dimerized overlayer system with vacancies is studied via a diatomic chain Frenkel Kontorova model. We present the details of the exactly solvable model and the analytical solution of the atomic displacements in the ground state. Our calculations explain the 2 × N reconstruction observed in Ge/Si(100) and Ga/Si(112).

  20. Role of vacancy-type defects in magnetism of GaMnN

    Science.gov (United States)

    Hai-Ying, Xing; Yu, Chen; Chen, Ji; Sheng-Xiang, Jiang; Meng-Yao, Yuan; Zhi-Ying, Guo; Kun, Li; Ming-Qi, Cui; Guo-Yi, Zhang

    2016-06-01

    Role of vacancy-type (N vacancy (VN) and Ga vacancy (VGa)) defects in magnetism of GaMnN is investigated by first-principle calculation. Theoretical results show that both the VN and VGa influence the ferromagnetic state of a system. The VN can induce antiferromagnetic state and the VGa indirectly modify the stability of the ferromagnetic state by depopulating the Mn levels in GaMnN. The transfer of electrons between the vacancy defects and Mn ions results in converting Mn3+ (d4) into Mn2+ (d5). The introduced VN and the ferromagnetism become stronger and then gradually weaker with Mn concentration increasing, as well as the coexistence of Mn3+ (d4) and Mn2+ (d5) are found in GaMnN films grown by metal-organic chemical vapor deposition. The analysis suggests that a big proportion of Mn3+ changing into Mn2+ will reduce the exchange interaction and magnetic correlation of Mn atoms and lead to the reduction of ferromagnetism of material. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204008, 11075176, and 11505211) and the National Key Basic Research Special Foundation of China (Grant No. 2013CB328705).

  1. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum- information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are e...

  2. Silicon-Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Marker in the Near Infrared

    OpenAIRE

    Zhang, Huiliang; Aharonovich, Igor; Glenn, David R.; Schalek, R.; Magyar, Andrew P.; Lichtman, Jeff W.; Hu, Evelyn L.; Walsworth, Ronald L.

    2013-01-01

    We demonstrate that nanodiamonds fabricated to incorporate silicon-vacancy (Si-V) color centers provide bright, spectrally narrow, and stable cathodoluminescence (CL) in the near-infrared. Si-V color centers containing nanodiamonds are promising as non-bleaching optical markers for correlated CL and secondary electron microscopy, including applications to nanoscale bioimaging.

  3. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Larsen Lausen, Jens; García Ortíz, César Eduardo;

    2016-01-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs...

  4. Contribution of the entropy on the thermodynamic equilibrium of vacancies in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Metsue, Arnaud, E-mail: arnaud.metsue@univ-lr.fr; Oudriss, Abdelali; Bouhattate, Jamaa; Feaugas, Xavier [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2014-03-14

    The equilibrium vacancy concentration in nickel was determined from ab initio calculations performed with both generalized gradient approximation and local density approximation up to the melting point. We focus the study on the vacancy formation entropy expressed as a sum of a vibration and an electronic contribution, which were determined from the vibration modes and the electronic densities of states. Applying a method based on the quasi-harmonic approximation, the temperature dependence of the defect formation energy and entropy were calculated. We show that the vibrations of the first shell of atoms around the defect are predominant to the vibration formation entropy. On the other hand, the electronic formation entropy is very sensitive to the exchange-correlation potential used for the calculations. Finally, the vacancy concentration is computed at finite temperature with the calculated values for the defect formation energy and entropy. In order to reconcile point-defects concentration obtained with our calculations and experimental data, we conducted complementary calorimetric measurements of the vacancy concentration in the 1073–1273 K temperature range. Close agreement between theory and experiments at high temperature is achieved if the calculations are performed with the generalized gradient approximation and both vibration and electronic contributions to the formation entropy are taken into account.

  5. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    Science.gov (United States)

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  6. Positive effect of hydrogen-induced vacancies on mechanical alloying of Fe and Al

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Lukáč, F.; Procházka, I.; Vlček, M. [Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, Prague 8 CZ-18000 (Czech Republic); Jirásková, Y. [Institute of Physics of Materials, AS CR, Žižkova 22, CZ-616 62 Brno (Czech Republic); Švec, P.; Janičkovič, D. [Institute of Physics, Slovak Academy of Science, Dúbravská cesta 9, 84511 Bratislava (Slovakia)

    2015-04-25

    Highlights: • Fe{sub 82}Al{sub 18} nano-powders were prepared by ball milling and mechanical alloying. • Full mechanical alloying of Fe–Al was achieved using hydrogen atmosphere. • Hydrogen segregating at vacancies enhances vacancy concentration in Fe–Al. • Hydrogen-induced vacancies facilitate diffusion of Al atoms into Fe grains. • Nitrogen inhibits Fe–Al alloying by formation of a nitride layer on Fe grains. - Abstract: Nanocrystalline Fe{sub 82}Al{sub 18} powders were prepared by high energy ball milling in various atmospheres. Two preparation techniques were compared: (i) mechanical milling of pre-alloyed Fe{sub 82}Al{sub 18} pieces and (ii) mechanical alloying of pure Fe and Al powders. Single phase Fe{sub 82}Al{sub 18} nano-powder was formed by mechanical alloying in H{sub 2} atmosphere while milling in N{sub 2} or air environment suppressed mechanical alloying due to passivation of Fe surfaces. Positron annihilation spectroscopy revealed that mechanical alloying of Fe and Al in H{sub 2} atmosphere is mediated by hydrogen-induced vacancies.

  7. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Elimelech, Orian [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel; Liu, Jing [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Plonka, Anna M. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Frenkel, Anatoly I. [Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook NY 11794 USA; Banin, Uri [The Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904 Israel

    2017-07-19

    Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sized NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.

  8. Effects of epitaxial strain on oxygen vacancy ordering in LaCoO3 films

    Science.gov (United States)

    Biskup, Neven; Mehta, Virat; Pennycook, Steven; Suzuki, Yuri; Varela, Maria; Ornl Collaboration; Ucb Collaboration; Ucm Collaboration

    2013-03-01

    We report on atomically-resolved Z-contrast imaging and electron-energy-loss spectroscopy of epitaxial LaCoO3 thin films grown on SrTiO3, LaAlO3 and (LaAlO3)(SrTaO3) substrates. Regardless of the sign and magnitude of the epitaxial strain imposed by substrate, the LaCoO3 thin films contain oxygen vacancies to varying degrees. These oxygen vacancies tend to order parallel to the film/substrate interface in LCO films under tensile strain and perpendicular under compressive strain. Oxygen vacancy ordering results in charge ordering (CO) among the Co ions as observed by EELS through analysis of the Co L2,3 intensity ratio. We will discuss the amount of oxygen vacancies, the resulting superstructures and CO in the context of the ferromagnetismobserved in these films. Research at ORNL supported by the U.S. DOE-BES, MSED, and also by ORNL's ShaRE User Program (sponsored by DOE-BES), at UCM supported by the ERC Starting Investigator Award and at UC Berkeley and LBNL was supported by the Director, Office of Science, BES -

  9. Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul

    2011-01-01

    We report on the controlled coupling of a single nitrogen-vacancy (NV) center to a surface plasmon mode propagating along a chemically grown silver nanowire (NW). We locate and optically characterize a single NV center in a uniform dielectric environment before we controllably position this emitter...

  10. Phonons in quantum solids with defects. [lattice vacancies and interstitials in solid helium and metallic hydrogen

    Science.gov (United States)

    Jacobi, N.; Zmuidzinas, J. S.

    1974-01-01

    A formalism was developed for temperature-dependent, self-consistent phonons in quantum solids with defects. Lattice vacancies and interstitials in solid helium and metallic hydrogen, as well as electronic excitations in solid helium, were treated as defects that modify properties of these systems. The information to be gained from the modified phonon spectrum is discussed.

  11. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.;

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma...

  12. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  13. Effect of oxygen vacancy on magnetism of ZnO:Co single-crystalline nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Che, Ping, E-mail: cheping@ustb.edu.cn [Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Shixiang; Sun, Changyan; Zhou, Hualei; Li, Weijun [Department of Chemistry and Chemical Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States)

    2013-02-15

    Co-doped ZnO single-crystalline nanorods were prepared by the modified microemulsion route. The crystalline structure, morphology, oxygen vacancy emission, and hysteresis loop at low temperature and room temperature of as-prepared materials were characterized by XRD, TEM, PL spectra, and magnetic measurement respectively. The nanorods are 60-90 nm in diameter and about 2 {mu}m in length. X-ray diffraction data, TEM images and selected area electron diffraction patterns confirm that the materials synthesized in optimal conditions are ZnO:Co single crystalline solid solution without any impurities related to Co. Magnetic measurements show that different surfactants as template in synthesis process result in ferromagnetism and paramagnetism in Zn{sub 0.95}Co{sub 0.05}O nanorods. The PL spectra show that the ferromagnetic samples exhibit strong oxygen vacancy emission whereas in the paramagnetic samples the oxygen vacancy emission is absent, indicating that the defects may stabilize ferromagnetic order in diluted magnetic semiconductors, resulting in high-temperature ferromagnetism. - Highlights: Black-Right-Pointing-Pointer Co-doped ZnO nanorods were prepared by the modified microemulsion route. Black-Right-Pointing-Pointer Different magnetic properties were observed in samples with different surfactants. Black-Right-Pointing-Pointer Oxygen vacancy may stabilize ferromagnetic order in obtained materials.

  14. 78 FR 64291 - Notice of Rail Energy Transportation Advisory Committee Vacancy

    Science.gov (United States)

    2013-10-28

    ... Surface Transportation Board Notice of Rail Energy Transportation Advisory Committee Vacancy AGENCY... Energy Transportation Advisory Committee (RETAC) for a representative of an electric utility. The Board... for a candidate for membership on RETAC are due November 27, 2013. ADDRESSES: Suggestions may...

  15. Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe

    Science.gov (United States)

    Zhang, Bin; Wang, Xue-Peng; Shen, Zhen-Ju; Li, Xian-Bin; Wang, Chuan-Shou; Chen, Yong-Jin; Li, Ji-Xue; Zhang, Jin-Xing; Zhang, Ze; Zhang, Sheng-Bai; Han, Xiao-Dong

    2016-05-01

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) at an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Moreover, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.

  16. 78 FR 7393 - Proposed Information Collection; Comment Request; 2014 New York City Housing and Vacancy Survey

    Science.gov (United States)

    2013-02-01

    ... Vacancy Survey (NYCHVS) under contract for the City of New York. The primary purpose of the survey is to... format based on specifications of the survey sponsor, as well as non-identifiable microdata. Both types... invited on: (a) Whether the proposed collection of information is necessary for the proper performance...

  17. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten

    Science.gov (United States)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-01

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  18. A hybrid density functional view of native vacancies in gallium nitride.

    Science.gov (United States)

    Gillen, Roland; Robertson, John

    2013-10-09

    We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

  19. Complexes of silicon, vacancy, and hydrogen in diamond: A density functional study

    Science.gov (United States)

    Thiering, Gergő; Gali, Adam

    2015-10-01

    Paramagnetic luminescent point defects in diamond are increasingly important candidates for quantum information processing applications. Recently, the coherent manipulation of single silicon-vacancy defect spins has been demonstrated in chemical vapor deposited diamond samples where silicon may be introduced as a contamination in the growth process. Hydrogen impurity may simultaneously enter diamond too and form complexes with silicon-vacancy defects. However, relatively little is known about these complexes in diamond. Here we report plane-wave supercell density functional theory results on various complexes of silicon vacancy and hydrogen in diamond. We found a family of complexes of silicon, vacancies, and hydrogen atoms that are thermally stable in diamond with relatively low formation energies that might form yet unobserved or unidentified silicon-related defects. These complexes often show infrared optical transitions and are paramagnetic. We tentatively assign one of these complexes to a recently reported but yet unidentified infrared absorber center. We show that this center has a metastable triplet state and might exhibit a spin-selective decay to the ground state, thus it is an interesting candidate for quantum information processing applications. We also discuss here methodology aspects of calculating hyperfine parameters and intradefect level excitations in systems with notoriously complex electron states within hybrid density functional approach. We also demonstrate that a simplified approach using ab initio data can be very powerful to predict the relative intensities of the phonon replica associated with quasilocal vibration modes in the photoexcitation spectrum.

  20. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene

    Science.gov (United States)

    Zhang, Yajun; Sahoo, MPK; Wang, Jie

    2016-10-01

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  1. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.

    Science.gov (United States)

    Chen, Nanjun; Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Zhou, Hong-Bo; Jin, Shuo; Ran, Guang; Lu, Guang-Hong; Gao, Fei

    2016-11-22

    The harsh irradiation environment poses serious threat to the structural integrity of leading candidate for plasma-facing materials, tungsten (W), in future nuclear fusion reactors. It is thus essential to understand the radiation-induced segregation of native defects and impurities to defect sinks, such as grain boundaries (GBs), by quantifying the segregation energetics. In this work, molecular statics simulations of a range of equilibrium and metastable [100] symmetric tilt GBs are carried out to explore the energetics of vacancy segregation. We show that the low-angle GBs have larger absorption length scales over their high-angle counterparts. Vacancy sites that are energetically unfavorable for segregation are found in all GBs. The magnitudes of minimum segregation energies for the equilibrium GBs vary from -2.61 eV to -0.76 eV depending on the GB character, while those for the metastable GB states tend to be much lower. The significance of vacancy delocalization in decreasing the vacancy segregation energies and facilitating GB migration has been discussed. Metrics such as GB energy and local stress are used to interpret the simulation results, and correlations between them have been established. This study contributes to the possible application of polycrystalline W under irradiation in advanced nuclear fusion reactors.

  2. A computational modelling study of oxygen vacancies at LaCoO3 perovskite surfaces.

    Science.gov (United States)

    Khan, S; Oldman, R J; Corà, F; Catlow, C R A; French, S A; Axon, S A

    2006-11-28

    Atomistic computational modelling of the surface structure of the catalytically-active perovskite LaCoO(3) has been undertaken in order to develop better models of the processes involved during catalytic oxidation processes. In particular, the energetics of creating oxygen ion vacancies at the surface have been investigated for the three low index faces (100), (110) and (111). Two mechanisms for vacancy creation have been considered involving dopant Sr(2+) cations at the La(3+) site and reduction of Co(3+) to Co(2+). For both mechanisms, there is a general tendency that the smaller the cation defect separation, the lower the energy of the cluster, as would be expected from simple electrostatic considerations. In addition, there are clear indications that oxygen vacancies are more easily created at the surface than in the bulk. The results also confirm that the presence of defects strongly influences crystal morphology and surface chemistry. The importance of individual crystal surfaces in catalysis is discussed in terms of the energetics for the creation of oxygen vacancies.

  3. International nurse recruitment and NHS vacancies: a cross-sectional analysis.

    Science.gov (United States)

    Batata, Amber S

    2005-04-22

    BACKGROUND: Foreign-trained nurse recruits exceeded the number of new British-trained recruits on the UK nurse register for the first time in 2001. As the nursing shortage continues, health care service providers rely increasingly on overseas nurses to fill the void. Which areas benefit the most? And where would the NHS be without them? METHODS: Using cross-sectional data from the 2004 Nursing and Midwifery Council register, nurse resident postcodes are mapped to Strategic Health Authorities to see where foreign recruits locate and how they affect nurse shortages throughout the UK. RESULTS: Areas with the highest vacancy rates also have the highest representation of foreign recruits, with 24% of foreign-trained nurses in the UK residing in the London area and another 16% in the SouthEast (comparable numbers for British-trained nurses are 11% and 13%, respectively). Without foreign recruitment, vacancy rates could be up to five times higher (three times higher if only Filipino recruits remained). CONCLUSION: The UK heavily relies on foreign recruitment to fill vacancies, without which the staffing crisis would be far worse, particularly in high vacancy areas.

  4. Influence of dopant ion on localized relaxation of an oxygen vacancy in stabilized zirconia

    Science.gov (United States)

    Ohta, M.; Wigmore, J. K.; Nobugai, K.; Miyasato, T.

    2002-05-01

    It is well known that stabilized zirconia exhibits long-range transport of oxygen ions which gives rise to diffusion relaxation of oxygen vacancies. The internal friction and the change in sound velocity in single-crystal calcia-stabilized zirconia (CSZ) doped with 12 mol % CaO were measured for longitudinal sound waves in the frequency range from 20 Hz to 700 Hz using a vibrating reed technique. In the temperature range from 300 K to 700 K, the relaxation strength exhibits strong anisotropy with respect to the directions of the k vectors. As the frequency increases the internal friction peak and the change in sound velocity shift toward high temperature, and the relaxation strength remains constant. The results show that a smaller number of oxygen vacancies contribute to diffusion relaxation than to localized relaxation, which is attributed to hopping of bound oxygen vacancies within the local structure. Comparison of the results with those reported previously for yttria-stabilized zirconia (YSZ) doped with 9.5 mol % Y2O3, suggests that oxygen vacancies are more strongly bound by the local structure in CSZ than in YSZ.

  5. Turnover and vacancy rates for registered nurses: do local labor market factors matter?

    Science.gov (United States)

    Rondeau, Kent V; Williams, Eric S; Wagar, Terry H

    2008-01-01

    Turnover of nursing staff is a significant issue affecting health care cost, quality, and access. In recent years, a worldwide shortage of skilled nurses has resulted in sharply higher vacancy rates for registered nurses in many health care organizations. Much research has focused on the individual, group, and organizational determinants of turnover. Labor market factors have also been suggested as important contributors to turnover and vacancy rates but have received limited attention by scholars. This study proposes and tests a conceptual model showing the relationships of organization-market fit and three local labor market factors with organizational turnover and vacancy rates. The model is tested using ordinary least squares regression with data collected from 713 Canadian hospitals and nursing homes. Results suggest that, although modest in their impact, labor market and the organization-market fit factors do make significant yet differential contributions to turnover and vacancy rates for registered nurses. Knowledge of labor market factors can substantially shape an effective campaign to recruit and retain nurses. This is particularly true for employers who are perceived to be "employers-of-choice."

  6. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics

    Science.gov (United States)

    Chen, Zhiwei; Ge, Binghui; Li, Wen; Lin, Siqi; Shen, Jiawen; Chang, Yunjie; Hanus, Riley; Snyder, G. Jeffrey; Pei, Yanzhong

    2017-01-01

    To minimize the lattice thermal conductivity in thermoelectrics, strategies typically focus on the scattering of low-frequency phonons by interfaces and high-frequency phonons by point defects. In addition, scattering of mid-frequency phonons by dense dislocations, localized at the grain boundaries, has been shown to reduce the lattice thermal conductivity and improve the thermoelectric performance. Here we propose a vacancy engineering strategy to create dense dislocations in the grains. In Pb1-xSb2x/3Se solid solutions, cation vacancies are intentionally introduced, where after thermal annealing the vacancies can annihilate through a number of mechanisms creating the desired dislocations homogeneously distributed within the grains. This leads to a lattice thermal conductivity as low as 0.4 Wm-1 K-1 and a high thermoelectric figure of merit, which can be explained by a dislocation scattering model. The vacancy engineering strategy used here should be equally applicable for solid solution thermoelectrics and provides a strategy for improving zT.

  7. First-principles calculations of vacancy formation in In-free photovoltaic semiconductor Cu{sub 2}ZnSnSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Tsuyoshi, E-mail: tmaeda@ad.ryukoku.ac.jp; Nakamura, Satoshi; Wada, Takahiro

    2011-08-31

    To quantitatively evaluate the formation energies of Cu, Zn, Sn, and Se vacancies in kesterite-type Cu{sub 2}ZnSnSe{sub 4} (CZTSe), first-principles pseudopotential calculations using plane-wave basis functions were performed. The formation energies of neutral Cu, Zn, Sn and Se vacancies were calculated as a function of the atomic chemical potentials of constituent elements. The obtained results were as follows: (1) the formation energy of Cu vacancy was generally smaller than those of the other Zn, Sn and Se vacancies, (2) under the Cu-poor and Zn-rich condition, the formation energy of Cu vacancy was particularly low, (3) the formation energy of Zn vacancy greatly depended on the chemical potentials of the constituent elements and under the Zn-poor and Se-rich condition, the formation energy of Zn vacancy was smaller than that of Cu vacancy, and (4) the formation energy of Sn vacancy did not greatly depend on the chemical potentials of the constituent elements and was much larger than those of Cu, Zn, and Se vacancies. These results indicate that Cu vacancy is easily formed under Cu-poor and Zn-rich conditions, but Zn vacancy is easily formed under the Zn-poor and Se-rich conditions.

  8. Hydrogen and carbon interaction in a FeNi alloy with a vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Estela; Jasen, Paula; Juan, Alfredo [Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Gonzalez, Gabriel [Departamento de Ingenieria Mecanica, Facultad Regional Bahia Blanca, Universidad Tecnologica Nacional, Bahia Blanca (Argentina); Moro, Lilian [Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Departamento de Ingenieria Mecanica, Facultad Regional Bahia Blanca, Universidad Tecnologica Nacional, Bahia Blanca (Argentina)

    2009-06-15

    The bonding of hydrogen and carbon to Fe and Ni in a 50:50 alloy is analysed using density functional calculations. The changes in the electronic structure of a L1{sub 0} alloy upon C and H introduction at a vacancy region are addressed and a comparison with H or C in pure metals is drawn. H in bulk FeNi alloy with a vacancy locates at a tetrahedral site shifted towards the vacancy. Instead, C prefers an octahedral site (Fe based). The vacancy acts as strong traps of both C and H. Fe-Ni atoms are initially more strongly bonded to each other due to the vacancy formation. Consequently, the Fe-Fe, Fe-Ni and Ni-Ni bond strengths are diminished as new metal-C or metal-H bonds are formed. The most affected bond is the Fe-Ni, whose overlap population decreases by 72%. An analysis of the orbital interaction reveals that the Fe-H bonding involves mainly the Fe 4s, H 1s and Ni 4s orbitals. In the case of the sequential absorption, the C-H interaction is almost zero at a distance of 2.72A. The main interactions of these interstitials are developed with either Fe or Ni. We also consider the absorption sequence (H first or C first) and its influence on the electronic structure. Our results could be relevant to understand some steps of the carburization process during thermal cracking operations where hydrogen atoms are present. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Vacancies driven magnetic ordering in ZnO nanoparticles due to low concentrated Co ions

    Science.gov (United States)

    Verma, Kuldeep Chand; Bhatia, Ravi; Kumar, Sanjeev; Kotnala, R. K.

    2016-07-01

    The lattice defects due to oxygen vacancies in ZnO nanoparticles with low doping of Co ions are investigated. The low concentrated Co ions in ZnO are responsible to the free charge carriers and oxygen vacancies to induce long-range ferromagnetic ordering. We have synthesized Zn1-x Co x O [x = 0.002, 0.004, 0.006 and 0.008] nanoparticles by a sol-gel process. X-ray fluorescence analysis detects the chemical composition of Zn, Co and O atoms. Rietveld refinement of x-ray diffraction pattern could confirm the wurtzite ZnO structure and the lattice constants with Co doping. The nanoparticles dimensions as well lattice spacing of ZnO are enhanced with Co substitution. Fourier transform infrared vibrational modes involve some organic groups to induce lattice defects and the ionic coordination among Zn, Co and O atoms. The room temperature Raman active mode E2 indicates frequency shifting with Co to induce stress in the wurtzite lattice. Photoluminescence spectra have a strong near-band-edge emission due to band gap energy and defects related to oxygen vacancies. X-ray photoelectron spectra confirm that the low dopant Co ions in ZnO lattice occupied Zn atoms by introducing oxygen vacancies and the valance states Zn2+, Co2,3+. The zero-field and field cooling magnetic measurement at 500 Oe in Co:ZnO samples indicate long-range ferromagnetism that is enhanced at 10 K due to antiferromagnetic-ferromagnetic ordering. The lattice defects/vacancies due to oxygen act as the medium of magnetic interactions which is explained by the bound magnetic polaron model.

  10. Spectroscopic properties of oxygen vacancies in LaAlO3

    Energy Technology Data Exchange (ETDEWEB)

    Dicks, Oliver A.; Shluger, Alexander L.; Sushko, Peter V.; Littlewood, Peter B.; Clegg, Richard Donald

    2016-04-25

    Oxygen vacancies in LaAlO3 (LAO) play an important role in the formation of the two-dimensional electron gas observed at the LaAlO3/SrTiO3 interface and affect the performance of MOSFETs using LAO as a gate dielectric. However, their spectroscopic properties are still poorly understood, which hampers their experimental identification. Here we predict the absorption spectra and ESR parameters of oxygen vacancies in LAO using periodic and embedded cluster methods and density functional theory (DFT). The structure, charge distribution, and spectroscopic properties of the neutral (V 0 O) and charged (V + O and V 2+ O ) oxygen vacancies in cubic and rhombohedral LaAlO3 are investigated. The highest intensity optical transitions [calculated using time-dependent DFT (TDDFT)], from the oxygen vacancy states to the conduction-band states have onsets at 3.5 and 4.2 eV for V 0 O and 3.6 eV for V + O in rhombohedral LAO and 3.3 and 4.0 eV for V 0 O and 3.4 eV for V + O in cubic LAO, respectively. Also reported are the isotropic g value (2.004026) and hyperfine coupling constants of V + O , which are compared to the experimental data obtained using electron spin resonance (ESR) spectroscopy, and accurately predict both the position and the width (3 mT) of its ESR signature. These results may further facilitate the experimental identification of oxygen vacancies in LAO and help to establish their role at the LAO/STO interfaces and in nanodevices using LAO.

  11. Optimal Fare, Vacancy Rate, and Subsidies under Log-Linear Demand with the Consideration of Externalities for a Cruising Taxi Market

    Directory of Open Access Journals (Sweden)

    Chun-Hsiao Chu

    2017-01-01

    Full Text Available Externality is an important issue for formulating the regulation policy of a taxi market. However, this issue is rarely taken into account in the current policy-making process, and it has not been adequately explored in prior research. This study extends the model proposed by Chang and Chu in 2009 with the aim of exploring the effect of externality on the optimization of the regulation policy of a cruising taxi market. A closed-form solution for optimizing the fare, vacancy rate, and subsidy of the market is derived. The results show that when the externality of taxi trips is taken into consideration, the optimal vacancy rate should be lower and the subsidy should be higher than they are under current conditions where externality is not considered. The results of the sensitivity analysis on the occupied and vacant distance indicate that the relation of the vacant distance to the marginal external cost is more sensitive than the occupied distance. The result of the sensitivity analysis on the subsidy shows the existence of a negative relationship between the marginal external cost and the optimal subsidy.

  12. The effect of vacancy created by ion irradiation on the ordering of FePt: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Shu, X.L. [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: shuxlin@buaa.edu.cn; Chen, Z.Y.; Chen, Q. [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Hu, W.Y. [Department of Applied Physics, Hunan University, Changsha, Hunan 410082 (China)

    2009-09-15

    Ion irradiation has been used to promote ordering processes and to modify the magnetic properties of magnetic thin films. The major reason for ion irradiation reducing the ordering temperature is the introduction of a number of vacancies. The vacancy and its influence on the ordering temperature and magnetic properties in L1{sub 0} ordered FePt are investigated by first-principle simulation. The vacancy formation energy for Fe and Pt in FePt alloy are 1.45 and 2.25 eV respectively. The calculated order-disorder transition temperature of Fe{sub 50}Pt{sub 50} is 1680 K. The order-disorder transition temperatures for Fe vacancy and Pt vacancy models are about 50 K and 200 K lower than that of the stoichiometric Fe{sub 50}Pt{sub 50} alloy respectively. The results suggested that the vacancy in FePt alloy favors the ordering process. The saturation magnetization of stoichiometric L1{sub 0} FePt is 1070 emu/cc and these of Fe and Pt vacancy are 1027 and 1075 emu/cc, respectively.

  13. The effect of vacancy created by ion irradiation on the ordering of FePt: A first-principle study

    Science.gov (United States)

    Shu, X. L.; Chen, Z. Y.; Chen, Q.; Hu, W. Y.

    2009-09-01

    Ion irradiation has been used to promote ordering processes and to modify the magnetic properties of magnetic thin films. The major reason for ion irradiation reducing the ordering temperature is the introduction of a number of vacancies. The vacancy and its influence on the ordering temperature and magnetic properties in L10 ordered FePt are investigated by first-principle simulation. The vacancy formation energy for Fe and Pt in FePt alloy are 1.45 and 2.25 eV respectively. The calculated order-disorder transition temperature of Fe50Pt50 is 1680 K. The order-disorder transition temperatures for Fe vacancy and Pt vacancy models are about 50 K and 200 K lower than that of the stoichiometric Fe50Pt50 alloy respectively. The results suggested that the vacancy in FePt alloy favors the ordering process. The saturation magnetization of stoichiometric L10 FePt is 1070 emu/cc and these of Fe and Pt vacancy are 1027 and 1075 emu/cc, respectively.

  14. An Anomalous Formation Pathway for Dislocation-Sulfur Vacancy Complexes in Polycrystalline Monolayer MoS2.

    Science.gov (United States)

    Yu, Zhi Gen; Zhang, Yong-Wei; Yakobson, Boris I

    2015-10-14

    Two-dimensional (2D) molybdenum disulfide (MoS2) has attracted significant attention recently due to its direct bandgap semiconducting characteristics. Experimental studies on monolayer MoS2 show that S vacancy concentration varies greatly; while recent theoretical studies show that the formation energy of S vacancy is high and thus its concentration should be low. We perform density functional theory calculations to study the structures and energetics of vacancy and interstitial in both grain boundary (GB) and grain interior (GI) in monolayer MoS2 and uncover an anomalous formation pathway for dislocation-double S vacancy (V2S) complexes in MoS2. In this pathway, a (5|7) defect in an S-polar GB energetically favorably converts to a (4|6) defect, which possesses a duality: dislocation and double S vacancy. Its dislocation character allows it to glide into GI through thermal activation at high temperatures, bringing the double vacancy with it. Our findings here not only explain why VS is predominant in exfoliated 2D MoS2 and V2S is predominant in chemical vapor deposition (CVD)-grown 2D MoS2 but also reproduce GB patterns in CVD-grown MoS2. The new pathway for sulfur vacancy formation revealed here provides important insights and guidelines for controlling the quality of monolayer MoS2.

  15. Study on the oxygen vacancy redistribution and the mechanism of electrical manipulation of ferromagnetism in diluted magnetic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shuxia [Key Laboratory of Advanced Films of Hebei Province, College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); School of Material Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Dong, Jingyu; Chen, Wei, E-mail: chen07308@mail.hebtu.edu.cn; Zhang, Liyong; Guo, Jiajun; Zhang, Li; Zhao, Jing; Zhao, Xu [Key Laboratory of Advanced Films of Hebei Province, College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-12-21

    Electrical manipulation of room temperature ferromagnetism (RTFM) has been observed in several kinds of transition metal doped diluted magnetic oxide films. We demonstrate using X-ray photoelectron spectroscopy that the redistribution of the oxygen vacancies in a film under an electric field plays a crucial role in the enhancement of the RTFM. Based on a detailed analysis of the X-ray photoelectron spectroscopy data for the oxygen vacancy distribution in different resistive states, a unified mechanism has been proposed. This work points out a new direction for improving the magnetic properties of these materials by controlling oxygen vacancies in the interior of the films.

  16. Unusual Fe-H bonding associated with oxygen vacancies at the (001) surface of Fe3O4

    Science.gov (United States)

    Liu, Fangyang; Chen, Chen; Guo, Hangwen; Saghayezhian, Mohammad; Wang, Gaomin; Chen, Lina; Chen, Wei; Zhang, Jiandi; Plummer, E. W.

    2017-01-01

    An unusual Fe-H bonding rather than conventional OH bonding is identified at Fe3O4 (001) surface. This abnormal behavior is associated with the oxygen vacancies which exist on the surface region but also penetrate deep into the bulk Fe3O4. In contrast, OH bonding becomes preferential as generally expected on an ozone processed surface, which has appreciably less oxygen vacancies. Such bonding site selective behavior, depending on oxygen vacancy concentrations, is further confirmed with DFT calculations. The results demonstrate an opportunity for tuning the chemical properties of oxide surfaces or oxide clusters.

  17. Polarity-induced oxygen vacancies at LaAlO3|SrTiO3 interfaces

    OpenAIRE

    Zhong, Zhicheng; Xu, P. X.; Kelly, Paul J.

    2010-01-01

    Using first-principles density-functional-theory calculations, we find a strong position and thickness dependence of the formation energy of oxygen vacancies in LaAlO3 vertical bar SrTiO3 (LAO vertical bar STO) multilayers and interpret this with an analytical capacitor model. Oxygen vacancies are preferentially formed at p-type SrO vertical bar AlO2 rather than at n-type LaO vertical bar TiO2 interfaces; the excess electrons introduced by the oxygen vacancies reduce their energy by moving to...

  18. Trapping of oxygen vacancies on twin walls of CaTiO sub 3 : a computer simulation study

    CERN Document Server

    Calleja, M; Salje, E K H

    2003-01-01

    We have studied the atomic structure of [001] 90 deg. rotation twin walls in orthorhombic CaTiO sub 3 (symmetry Pbnm) at low temperature (10 K) and their effects on oxygen vacancies. The wall thickness was found to be 2.3 nm at T || T sub c and it was found that it is energetically favourable for such vacancies to reside in the wall, particularly when bridging titania ions in the (001) plane. The binding energy of an oxygen vacancy in the wall with respect to the bulk is calculated to be <= 1.2 eV.

  19. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC

    OpenAIRE

    Soltamov, Victor A.; Soltamova, Alexandra A.; Proskuryakov, Ivan I.; Baranov, Pavel G.

    2012-01-01

    We report the realization of the optically induced inverse population of the ground-state spin sublevels of the silicon vacancies ($V_{\\mathrm{Si}}$) in silicon carbide (SiC) at room temperature. The data show that the probed silicon vacancy spin ensemble can be prepared in a coherent superposition of the spin states. Rabi nutations persist for more than 80 $\\mu$s. Two opposite schemes of the optical alignment of the populations between the ground-state spin sublevels of the silicon vacancy u...

  20. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies

    Science.gov (United States)

    Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria

    2014-02-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  1. Trapping of oxygen vacancies on twin walls of CaTiO{sub 3}: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, Mark; Dove, Martin T; Salje, Ekhard K H [Mineral Physics Group, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom)

    2003-04-16

    We have studied the atomic structure of [001] 90 deg. rotation twin walls in orthorhombic CaTiO{sub 3} (symmetry Pbnm) at low temperature (10 K) and their effects on oxygen vacancies. The wall thickness was found to be 2.3 nm at T || T{sub c} and it was found that it is energetically favourable for such vacancies to reside in the wall, particularly when bridging titania ions in the (001) plane. The binding energy of an oxygen vacancy in the wall with respect to the bulk is calculated to be {<=} 1.2 eV.

  2. Correlation between vacancies and magnetoresistance changes in FM manganites using the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Agudelo-Giraldo, J.D. [PCM Computational Applications, Universidad Nacional de Colombia-Sede Manizales, Km. 9 vía al aeropuerto, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM Computational Applications, Universidad Nacional de Colombia-Sede Manizales, Km. 9 vía al aeropuerto, Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulación, Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia)

    2015-10-01

    The Metropolis algorithm and the classical Heisenberg approximation were implemented by the Monte Carlo method to design a computational approach to the magnetization and resistivity of La{sub 2/3}Ca{sub 1/3}MnO{sub 3}, which depends on the Mn ion vacancies as the external magnetic field increases. This compound is ferromagnetic, and it exhibits the colossal magnetoresistance (CMR) effect. The monolayer was built with L×L×d dimensions, and it had L=30 umc (units of magnetic cells) for its dimension in the x–y plane and was d=12 umc in thickness. The Hamiltonian that was used contains interactions between first neighbors, the magnetocrystalline anisotropy effect and the external applied magnetic field response. The system that was considered contains mixed-valence bonds: Mn{sup 3+eg’}–O–Mn{sup 3+eg}, Mn{sup 3+eg}–O–Mn{sup 4+d3} and Mn{sup 3+eg’}–O–Mn{sup 4+d3}. The vacancies were placed randomly in the sample, replacing any type of Mn ion. The main result shows that without vacancies, the transitions T{sub C} (Curie temperature) and T{sub MI} (metal–insulator temperature) are similar, whereas with the increase in the vacancy percentage, T{sub MI} presented lower values than T{sub C}. This situation is caused by the competition between the external magnetic field, the vacancy percentage and the magnetocrystalline anisotropy, which favors the magnetoresistive effect at temperatures below T{sub MI}. Resistivity loops were also observed, which shows a direct correlation with the hysteresis loops of magnetization at temperatures below T{sub C}. - Highlights: • Changes in the resistivity of FM materials as a function of the temperature and external magnetic field can be obtained by the Monte Carlo method, Metropolis algorithm, classical Heisenberg and Kronig–Penney approximation for magnetic clusters. • Increases in the magnetoresistive effect were observed at temperatures below T{sub MI} by the vacancies effect. • The resistive hysteresis

  3. Correlation of adsorption isotherms of hydrogen isotopes on mordenite adsorbents using reactive vacancy solution theory

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, K.; Nakamura, A. [Faculty of Engineering and Ressource Science, Akita University, Akita-shi, Akita (Japan); Kawamura, Y. [Japan Atomic Energy Agency -JAEA, Tokai, Ibaraki (Japan)

    2015-03-15

    The authors have applied the isotherm equations derived from the reactive vacancy solution theory (RVST) to correlation of experimental and highly non-ideal adsorption isotherms of hydrogen and deuterium on a mordenite adsorbent, and have examined the ability of the isotherm equations to match this correlation. Several isotherm equations such as Langmuir, Freundlich, Toth, Vacancy Solution Theory and so forth were also tested, but they did not work. For the Langmuir-Freundlich equation tests have indicated that its 'ability to correlate' of the adsorption isotherms is not satisfactory. For the multi-site Langmuir-Freundlich (MSLF) equation the correlation of the isotherms appears to be somewhat improved but remains unsatisfactory. The results show that the isotherm equations derived from RVST can better correlate the experimental isotherms.

  4. Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M.; Rugar, D., E-mail: rugar@us.ibm.com [IBM Research Division, Almaden Research Center, San Jose, California 95120 (United States); Center for Probing the Nanoscale, Stanford University, Stanford, California 94305 (United States); Mamin, H. J.; Sherwood, M. H.; Rettner, C. T.; Frommer, J. [IBM Research Division, Almaden Research Center, San Jose, California 95120 (United States)

    2014-07-28

    We investigate the effect of two different surface treatments on shallow nitrogen-vacancy (NV) centers in diamond. Short duration oxygen plasma exposure is found to damage near-surface NV centers, resulting in their disappearance in fluorescence images. Subsequent annealing creates large numbers of new NV centers, attributed to plasma-induced vacancy creation. By tracking individual NV centers during thermal oxidation, we show that oxidation at 550 °C results in modest improvement of spin coherence. Higher temperature oxidations correlate with gradual decline in spin coherence and eventual instability of NV centers before ultimate disappearance. This is indicative of a reduction of the NV-to-surface distance due to oxidative etching. Thermal oxidation can offer controlled access to near-surface NV spins at the nanometer scale, an important requirement for many applications of NV-based nanomagnetometry.

  5. Vector Magnetometry Using Silicon Vacancies in 4 H -SiC Under Ambient Conditions

    Science.gov (United States)

    Niethammer, Matthias; Widmann, Matthias; Lee, Sang-Yun; Stenberg, Pontus; Kordina, Olof; Ohshima, Takeshi; Son, Nguyen Tien; Janzén, Erik; Wrachtrup, Jörg

    2016-09-01

    Point defects in solids promise precise measurements of various quantities. Especially magnetic field sensing using the spin of point defects has been of great interest recently. When optical readout of spin states is used, point defects achieve optical magnetic imaging with high spatial resolution at ambient conditions. Here, we demonstrate that genuine optical vector magnetometry can be realized using the silicon vacancy in SiC, which has an uncommon S =3 /2 spin. To this end, we develop and experimentally test sensing protocols based on a reference field approach combined with multifrequency spin excitation. Our work suggests that the silicon vacancy in an industry-friendly platform, SiC, has the potential for various magnetometry applications under ambient conditions.

  6. Vacancy Duration, Wage Offers, and Job Requirements - Pre-Match Data Evidence

    DEFF Research Database (Denmark)

    Chen, Long Hwa; Eriksson, Tor Viking

    is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate......Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper contributes some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... logistic discrete hazard models with a rich set of job and firm characteristics as explanatory variables. The results show that vacancies associated with higher wage offers take, ceteris paribus, longer to be filled. The impact of firms' wage offers and credential requirements does not vary over...

  7. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths

    Science.gov (United States)

    Jantzen, Uwe; Kurz, Andrea B.; Rudnicki, Daniel S.; Schäfermeier, Clemens; Jahnke, Kay D.; Andersen, Ulrik L.; Davydov, Valery A.; Agafonov, Viatcheslav N.; Kubanek, Alexander; Rogers, Lachlan J.; Jelezko, Fedor

    2016-07-01

    Colour centres in nanodiamonds are an important resource for applications in quantum sensing, biological imaging, and quantum optics. Here we report unprecedented narrow optical transitions for individual colour centres in nanodiamonds smaller than 200 nm. This demonstration has been achieved using the negatively charged silicon vacancy centre, which has recently received considerable attention due to its superb optical properties in bulk diamond. We have measured an ensemble of silicon-vacancy centres across numerous nanodiamonds to have an inhomogeneous distribution of 1.05 nm at 5 K. Individual spectral lines as narrower than 360 MHz were measured in photoluminescence excitation, and correcting for apparent spectral diffusion yielded an homogeneous linewidth of about 200 MHz which is close to the lifetime limit. These results indicate the high crystalline quality achieved in these nanodiamond samples, and advance the applicability of nanodiamond-hosted colour centres for quantum optics applications.

  8. Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond.

    Science.gov (United States)

    Santori, C; Barclay, P E; Fu, K-M C; Beausoleil, R G; Spillane, S; Fisch, M

    2010-07-09

    Optical microcavities and waveguides coupled to diamond are needed to enable efficient communication between quantum systems such as nitrogen-vacancy centers which are known already to have long electron spin coherence lifetimes. This paper describes recent progress in realizing microcavities with low loss and small mode volume in two hybrid systems: silica microdisks coupled to diamond nanoparticles, and gallium phosphide microdisks coupled to single-crystal diamond. A theoretical proposal for a gallium phosphide nanowire photonic crystal cavity coupled to diamond is also discussed. Comparing the two material systems, silica microdisks are easier to fabricate and test. However, at low temperature, nitrogen-vacancy centers in bulk diamond are spectrally more stable, and we expect that in the long term the bulk diamond approach will be better suited for on-chip integration of a photonic network.

  9. Metal - Insulator Transition Driven by Vacancy Ordering in GeSbTe Phase Change Materials

    Science.gov (United States)

    Bragaglia, Valeria; Arciprete, Fabrizio; Zhang, Wei; Mio, Antonio Massimiliano; Zallo, Eugenio; Perumal, Karthick; Giussani, Alessandro; Cecchi, Stefano; Boschker, Jos Emiel; Riechert, Henning; Privitera, Stefania; Rimini, Emanuele; Mazzarello, Riccardo; Calarco, Raffaella

    2016-04-01

    Phase Change Materials (PCMs) are unique compounds employed in non-volatile random access memory thanks to the rapid and reversible transformation between the amorphous and crystalline state that display large differences in electrical and optical properties. In addition to the amorphous-to-crystalline transition, experimental results on polycrystalline GeSbTe alloys (GST) films evidenced a Metal-Insulator Transition (MIT) attributed to disorder in the crystalline phase. Here we report on a fundamental advance in the fabrication of GST with out-of-plane stacking of ordered vacancy layers by means of three distinct methods: Molecular Beam Epitaxy, thermal annealing and application of femtosecond laser pulses. We assess the degree of vacancy ordering and explicitly correlate it with the MIT. We further tune the ordering in a controlled fashion attaining a large range of resistivity. Employing ordered GST might allow the realization of cells with larger programming windows.

  10. Oxygen vacancy in N-doped Cu2O crystals:A density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Li Min; Zhang Jun-Ying; Zhang Yue; Wang Tian-Min

    2012-01-01

    The N-doping effects on the electronic properties of Cu2O crystals are investigated using density functional theory.The calculated results show that N-doped Cu2O with or without oxygen vacancy exhibits different modifications of electronic band structure.In N anion-doped Cu2O,some N 2p states overlap and mix with the O 2p valence band,leading to a slight narrowing of band gap compared with the undoped Cu2O.However,it is found that the coexistence of both N impurity and oxygen vacancy contributes to band gap widening which may account for the experimentally observed optical band gap widening by N doping.

  11. Identification and inspection of the vacancy site in Li doped BPO 4 ceramic electrolyte by NMR

    Science.gov (United States)

    Dodd, A. J.; van Eck, E. R. H.

    2002-10-01

    A study of the properties of the high temperature ceramic electrolyte Li xB 1- x/3 PO 4 (lithium boron phosphate) is reported. XRD and NMR are used to investigate changes of the material as a function of heat treatment. It was found that after synthesis at 450 °C the material contains a phase of Li 4P 2O 7 in addition to the BPO 4 phase. This second phase is removed by heat treatment at temperatures higher than 600 °C. Boron vacancies are present, REDOR and CPMAS techniques are used to investigate this defect site and show that for the heat treated material Li ions are present at the vacancy site.

  12. Efficient signal processing for time-resolved fluorescence detection of nitrogen-vacancy spins in diamond

    Science.gov (United States)

    Gupta, A.; Hacquebard, L.; Childress, L.

    2016-03-01

    Room-temperature fluorescence detection of the nitrogen-vacancy center electronic spin typically has low signal to noise, requiring long experiments to reveal an averaged signal. Here, we present a simple approach to analysis of time-resolved fluorescence data that permits an improvement in measurement precision through signal processing alone. Applying our technique to experimental data reveals an improvement in signal to noise equivalent to a 14% increase in photon collection efficiency. We further explore the dependence of the signal to noise ratio on excitation power, and analyze our results using a rate equation model. Our results provide a rubric for optimizing fluorescence spin detection, which has direct implications for improving precision of nitrogen-vacancy-based sensors.

  13. Diffusion of a probe nanoparticle in a quantum crystal with narrow vacancy band

    CERN Document Server

    Levchenko, A A; Trusov, A B

    2003-01-01

    The vacancy-assisted diffusion of a probe nanoparticle with a diameter d sub p of a few nm drifting through a quantum crystal with a narrow vacancy band Q sub v Tmelt is considered qualitatively. Below the melting point Tmelt the temperature dependence of the diffusion coefficient of the nanoprobe, D sub p (T), changes significantly at temperatures near T sub t r (T sub m elt> d sub p , the diffusion coefficient D sub p falls almost near exponentially, proportionally with x sub v , if the cross-section of inelastic vacancion-probe particle scattering is weakly dependent on temperature. We believe that our model could be applied for the description of the diffusion of positive charges in hcp sup 4 He crystals grown at pressures higher than the minimal pressure of helium solidification and the diffusion of negative charges in hcp crystals grown from pure parahydrogen.

  14. Handbook of theoretical atomic physics data for photon absorption, electron scattering, and vacancies decay

    CERN Document Server

    Amusia, Miron Ya; Yarzhemsky, Victor

    2012-01-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...

  15. Anisotropic O vacancy formation and diffusion in LaMnO3

    KAUST Repository

    Gan, Liyong

    2014-01-01

    Anisotropy effects in solid oxide fuel cells are typically not considered because of high operating temperatures. Focusing on the prototypical perovskite LaMnO3, we apply first-principles calculations to demonstrate that this approximation is no longer valid when the operating temperature is reduced and discuss the consequences for the material properties. In addition, we show that strain and Sr doping can be used to further increase the anisotropy. Tensile strain promotes both the O vacancy formation and diffusion in pristine and Sr doped LaMnO3, while Sr doping enhances the O vacancy formation. Both in LaMnO3 and La0.75Sr0.25MnO3 the O diffusion is found to be favorable in the [011] and [011] directions.

  16. Adsorption behavior of SO2 on vacancy-defected graphene: A DFT study

    Science.gov (United States)

    Zhou, Qingxiao; Ju, Weiwei; Su, Xiangying; Yong, Yongliang; Li, Xiaohong

    2017-10-01

    The adsorption of an SO2 molecule on the perfect and point-defective graphene surfaces were investigated using density functional theory (DFT). The geometric structure, adsorption energy, charge transfer, and electronic properties were calculated and analyzed to characterize the effect of vacancy on the adsorption process of SO2 on the graphene. The result indicated that the presence of vacancy enhanced the adsorption stability with the larger adsorption energy and net charge transfer compared to that of perfect graphene. Moreover, the SO2 molecule on different adsorption sites exhibited dissimilar states because of the adsorption. Furthermore, the results of the electronic properties revealed that the adsorption of SO2 induced an opening of the band gap.

  17. Vacancy Ordering In Co3AlCx Alloys: A First Principles Study

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chao [Los Alamos National Laboratory

    2008-01-01

    Ordering of structural vacancies in non-stoichiometric Co{sub 3}AlC{sub x} alloys has been studied using a combination of first-principles total energy calculations, a cluster expansion technique, and Monte-Carlo simulations. In the proximity of the experimental1y observed composition of x {approx} 0.59, our exhaustive ground state search yields two stable vacancy-ordered structures: a cubic Co{sub 3}AlC{sub 0.5} phase and a trigonal Co{sub 3}AlC{sub 0.667} phase. By performing finite-temperature Monte-Carlo simulations, the order-disorder transition temperatures of Co{sub 3}AlC{sub 0.5} and CO{sub 3}AlC{sub 0.667} are predicted to be {approx}1925K and {approx}1630K, respectively.

  18. Effects of mobile vacancies on the dynamics of ordering and phase separation in nonconserved multicomponent systems

    DEFF Research Database (Denmark)

    Gilhøj, Henriette; Jeppesen, Claus; Mouritsen, Ole G.

    1995-01-01

    The effects of mobile vacancies on the dynamics of ordering processes and phase separation in multicomponent systems are studied via Monte Carlo simulations of a two-dimensional seven-state ferromagnetic Potts model with varying degrees of site dilution. The model displays phase equilibria...... corresponding to a dilute Potts-disordered (fluid) phase and a dilute Potts-ordered phase (solid), as well as a broad region of coexistence between the fluid and the solid phase. Temperature quenches into the dilute Potts-ordered phase as well as into the phase-separated region are considered under...... the condition of conserved vacancy density and nonconserved Potts order. The dynamics of ordering and phase separation is found to follow algebraic growth laws with exponent values that depend on the phase to which the quench is performed. Strong transient effects are observed in the dilute Potts-ordered phase...

  19. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  20. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  1. Effect of mono-vacancy on transport properties of zigzag carbon- and boron-nitride-nanotube heterostructures

    Science.gov (United States)

    Zhao, P.; Liu, D. S.; Chen, G.

    2013-04-01

    On the basis of first-principles density functional theory and non-equilibrium Green's function technique, we have investigated the effects of a mono-vacancy on the electronic transport properties of the carbon nanotube/boron nitride nanotube heterostructures. The results show that the electronic transport properties are strongly dependent on the position of the mono-vacancy, and the negative differential resistance and rectifying performances can be strengthened or weakened alternately with the position change of the mono-vacancy. Moreover, the performance change is more significant when the mono-vacancy occurs on the carbon nanotube part. These interesting phenomena are explained in terms of the evolution of the transmission spectrum with applied bias combined with molecular projected self-consistent Hamiltonian states analysis.

  2. Vacancies in defect-free zone of point-defect-controlled CZ silicon observed by low-temperature ultrasonic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yamada-Kaneta, Hiroshi [Atsugi Laboratories, Fujitsu Ltd., Morinosato-Wakamiya, Atsugi 243-0197 (Japan)]. E-mail: kaneta.hiroshi@jp.fujitsu.com; Goto, Terutaka [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Saito, Yasuhiro [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Nemoto, Yuichi [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Sato, Koji [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Fukuoka 816-8580 (Japan); Nakamura, Shintaro [Center for Low-Temperature Science, Tohoku University, Sendai 980-8577 (Japan)

    2006-10-15

    The low-temperature ultrasonic measurements are performed for the direct observation of the vacancies in Czochralski-grown (CZ-grown) silicon crystal. The elastic softening similar to that we recently found for the floating-zone-grown (FZ-grown) silicon crystals is observed also for the vacancy-rich region of the defect-free zone (DFZ) in the CZ silicon crystal. We further uncover that both of the interstitial-rich region in the DFZ and the region of the ring-like oxidation-induced stacking faults of the same crystal ingot exhibit no such elastic softening of detectable magnitude, confirming our previous conclusion that the defects responsible for the low-temperature softening are the vacancies. We observe how the vacancy concentration in the DFZ varies along the pulling direction.

  3. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

    Science.gov (United States)

    Chegeni, Mahdieh; Beiranvand, Razieh; Valedbagi, Shahoo

    2017-04-01

    Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

  4. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Directory of Open Access Journals (Sweden)

    G. C. Lv

    2016-04-01

    Full Text Available In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110 plane into fcc (111 plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  5. Vacancy enhanced formation and phase transition of Cu-rich precipitates in α - iron under neutron irradiation

    Science.gov (United States)

    Lv, G. C.; Zhang, H.; He, X. F.; Yang, W.; Su, Y. J.

    2016-04-01

    In this paper, we employed both molecular statics and molecular dynamics simulation methods to investigate the role of vacancies in the formation and phase transition of Cu-rich precipitates in α-iron. The results indicated that vacancies promoted the diffusion of Cu atoms to form Cu-rich precipitates. After Cu-rich precipitates formed, they further trapped vacancies. The supersaturated vacancy concentration in the Cu-rich precipitate induced a shear strain, which triggered the phase transition from bcc to fcc structure by transforming the initial bcc (110) plane into fcc (111) plane. In addition, the formation of the fcc-twin structure and the stacking fault structure in the Cu-rich precipitates was observed in dynamics simulations.

  6. Induced ferromagnetic and gas sensing properties in ZnO-nanostructures by altering defect concentration of oxygen and zinc vacancies

    CSIR Research Space (South Africa)

    Motaung, DE

    2015-01-01

    Full Text Available O ) and zinc vacancies(VZn) are the main defects and that their relative concentration decreases within creasing particlesizes, resulting in decreased ferromagnet- ism (FM). Moreover, the sensing performance decreased with an increase in nanostructures...

  7. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC.

    Science.gov (United States)

    Soltamov, Victor A; Soltamova, Alexandra A; Baranov, Pavel G; Proskuryakov, Ivan I

    2012-06-01

    We report the realization of the optically induced inverse population of the ground-state spin sublevels of the silicon vacancies (V(Si)) in silicon carbide (SiC) at room temperature. The data show that the probed silicon vacancy spin ensemble can be prepared in a coherent superposition of the spin states. Rabi nutations persist for more than 80 μs. Two opposite schemes of the optical alignment of the populations between the ground-state spin sublevels of the silicon vacancy upon illumination with unpolarized light are realized in 4H- and 6H-SiC at room temperature. These altogether make the silicon vacancy in SiC a very favorable defect for spintronics, quantum information processing, and magnetometry.

  8. The electronic structure and bonding of a H-H pair in the vicinity of a BCC Fe bulk vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Juan, A.; Pistonesi, C.; Brizuela, G. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Fisica; Garcia, A.J. [Universidad Nacional del Sur, Bahia Blanca (Argentina). Departamento de Ciencias de la Computacion

    2003-09-01

    The H-Fe interaction near a bcc Fe vacancy is analysed using a semi-empirical theoretical method. Calculations were performed using a Fe{sub 86} cluster with a vacancy. Hydrogen atoms are positioned in their local energy minima configurations. Changes in the electronic structure of Fe atoms near a vacancy were analysed for the system without H, with one H and with two H atoms. Fe atoms surrounding the vacancy weaken their bond when hydrogen is present. This is due to the formation of H-Fe bonds. Hydrogen influences only its nearest-neighbour Fe atoms. The H-H interaction was also analysed. For H-H distance of 0.82 Angstrom an H-H association is formed, while H-Fe interaction and Fe-Fe weakening is markedly reduced, when compared with other H-H interactions. (author)

  9. Enhancement of transition temperature in FexSe0.5Te0.5 film via iron vacancies

    Science.gov (United States)

    Zhuang, J. C.; Yeoh, W. K.; Cui, X. Y.; Kim, J. H.; Shi, D. Q.; Shi, Z. X.; Ringer, S. P.; Wang, X. L.; Dou, S. X.

    2014-06-01

    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8 ≤ x ≤ 1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21 K was observed in the most Fe deficient film (x = 0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.

  10. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation

    National Research Council Canada - National Science Library

    Jeong, Jaewoo; Aetukuri, Nagaphani; Graf, Tanja; Schladt, Thomas D; Samant, Mahesh G; Parkin, Stuart S P

    2013-01-01

    .... We found that electrolyte gating of VO(2) leads not to electrostatically induced carriers but instead to the electric field-induced creation of oxygen vacancies, with consequent migration of oxygen from the oxide film into the ionic liquid...

  11. Generating Tunable Magnetism in AlN Nanoribbons Using Anion/Cation Vacancies:a First-Principles Prediction

    Science.gov (United States)

    Chegeni, Mahdieh; Beiranvand, Razieh; Valedbagi, Shahoo

    2017-01-01

    Using first-principles approach, we theoretically study the effect of anion/cation vacancies on structural and electro-magnetic properties of zigzag AlN nanoribbons (ZAlNNRs). Calculations were performed using a full spin-polarized method within the density functional theory (DFT). Our findings shed light on how the edge states combined with vacancy engineering can affect electro-magnetic properties of ZAlNNRs. We found that depending on the nature and number of vacancies, ZAlNNRs can design as half-metal or semiconductor. Our results reveal a significant amount of spin magnetic moment for ZAlNNR with Al vacancies (VAl). These results may open new applications of AlN nano-materials in spintronics.

  12. Effect of Vacancy Defects on the Young's Modulus and Fracture Strength of Graphene: A Molecular Dynamics Study

    Institute of Scientific and Technical Information of China (English)

    朱剑; 贺明; 邱枫

    2012-01-01

    The Young's modulus of graphene with various rectangular and circular vacancy defects is investigated by molecular dynamics simulation. By comparing with the results calculated from an effective spring model, it is demonstrated that the Young's modulus of graphene is largely correlated to the size of vacancy defects perpendicular to the stretching direction. And a linear reduction of Young's modulus with the increasing concentration of monoatomic-vacancy defects (Le., the slope of =0.03) is also observed. The fracture behavior of graphene, including the fracture strength, crack initiation and propagation are then studied by the molecular dynamics simulation, the effective spring model, and the quantized fracture mechanics. The blunting effect of vacancy edges is demonstrated, and the characterized crack tip radius of 4.44 A is observed.

  13. Forecasting the Senate vote on the Supreme Court vacancy

    Directory of Open Access Journals (Sweden)

    Scott J. Basinger

    2016-07-01

    Full Text Available This paper forecasts current senators’ votes on Merrick Garland’s nomination to the U.S. Supreme Court, in the unlikely case that a vote actually takes place. The forecasts are necessarily conditional, awaiting measurement of the nominee’s characteristics. Nonetheless, a model that combines parameters estimated from existing data with values of some measurable characteristics of senators—particularly their party affiliations, party loyalty levels, and ideological positions—is sufficient to identify potential swing voters in the Senate. By accounting for a more nuanced and refined understanding of the confirmation process, our model reveals that if President Obama were to nominate almost any nominee (conservative or liberal today, that nominee would be rejected if a vote was allowed to take place. So why nominate anyone at all? Obama’s hope for a successful confirmation must come from the stochastic component, that is, from outside the traditional decision-making calculus.

  14. Controlling the Coupling of a Single Nitrogen Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul;

    2011-01-01

    -linear interaction at the level of a few photons. In our contribution we demonstrate the controlled coupling of a single nitrogen vacancy (NV) center in a diamond nano crystal to a nanowire made of silver. This is in contrast to previous realizations, where the nanowire dipole system was assembled randomly. Ultimate...... control over the relative nanowire diamond nano-crystal position is achieved by using an atomic force microscope (AFM) in contact mode operation....

  15. Efficient generation of nanoscale arrays of nitrogen-vacancy centers with long coherence time in diamond

    Science.gov (United States)

    Feng, Fupan; Wang, Junfeng; Zhang, Wenlong; Zhang, Jian; Lou, Liren; Zhu, Wei; Wang, Guanzhong

    2016-11-01

    Utilizing PMMA mask, nanoscale arrays of nitrogen-vacancy (NV) centers in diamond have been fabricated by ion beam implantation (IBM). Long coherence time of the spin of NV centers, comparable with that of the native NV centers in CVD grown diamond, has been achieved by high-temperature annealing. With dynamic decoupling technology, coherence time was extended to 1.4 millisecond, which enable an ac magnetic field detection with a sensitivity of 80 nT\\cdot Hz^{-1/2}.

  16. Deterministic fabrication of dielectric loaded waveguides coupled to single nitrogen vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    We report on the fabrication of dielectric-loaded-waveguides which are excited by single-nitrogen-vacancy (NV) centers in nanodiamonds. The waveguides are deterministically written onto the pre-characterized nanodiamonds by using electron beam lithography of hydrogen silsesquioxane (HSQ) resist...... on silver-coated silicon substrate. Change in lifetime for NV-centers is observed after fabrication of waveguides and an antibunching in correlation measurement confirms that nanodiamonds contain single NV-centers....

  17. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

    OpenAIRE

    Arroyo Camejo, S.; Adam, M; Besbes, M.; Hugonin, J.; Jaques, V.; Greffet, J.; Roch, J.; Hell, S.; Treussart, F.

    2013-01-01

    Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted ...

  18. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths

    OpenAIRE

    Jantzen, Uwe; Kurz, Andrea B.; Rudnicki, Daniel S.; Schäfermeier, Clemens; Jahnke, Kay D.; Andersen, Ulrik Lund; Davydov, Valery A.; Agafonov, Viatcheslav N.; Kubanek, Alexander; Rogers, Lachlan J.; Jelezko, Fedor

    2016-01-01

    Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical trans...

  19. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks

    OpenAIRE

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-01-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and biolabeling. In this work we demonstrate a robust approach to surface functionalize individual nanodiamonds with metal-phenolic networks that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation suppr...

  20. First principle simulations on the effects of oxygen vacancy in HfO2-based RRAM

    Directory of Open Access Journals (Sweden)

    Yuehua Dai

    2015-01-01

    Full Text Available HfO2-based resistive random access memory (RRAM takes advantage of oxygen vacancy (V o defects in its principle of operation. Since the change in resistivity of the material is controlled by the level of oxygen deficiency in the material, it is significantly important to study the performance of oxygen vacancies in formation of conductive filament. Excluding effects of the applied voltage, the Vienna ab initio simulation package (VASP is used to investigate the orientation and concentration mechanism of the oxygen vacancies based on the first principle. The optimal value of crystal orientation [010] is identified by means of the calculated isosurface plots of partial charge density, formation energy, highest isosurface value, migration barrier, and energy band of oxygen vacancy in ten established orientation systems. It will effectively influence the SET voltage, forming voltage, and the ON/OFF ratio of the device. Based on the results of orientation dependence, different concentration models are established along crystal orientation [010]. The performance of proposed concentration models is evaluated and analyzed in this paper. The film is weakly conductive for the samples deposited in a mixture with less than 4.167at.% of V o contents, and the resistive switching (RS phenomenon cannot be observed in this case. The RS behavior improves with an increase in the V o contents from 4.167at.% to 6.25at.%; nonetheless, it is found difficult to switch to a stable state. However, a higher V o concentration shows a more favorable uniformity and stability for HfO2-based RRAM.

  1. Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond

    DEFF Research Database (Denmark)

    Radko, Ilya; Boll, Mads; Israelsen, Niels Møller

    2016-01-01

    It is generally accepted that nitrogen-vacancy (NV) defects in bulk diamond are bright sources of luminescence. However, the exact value of their internal quantum efficiency (IQE) has not been measured so far. Here we use an implementation of Drexhage's scheme to quantify the IQE of shallow...... the quantum efficiency to be 0.70 ± 0.07 and 0.82 ± 0.08, respectively....

  2. Experimental and theoretical investigations of cadmium diffusion in vacancy-rich Cu(In, Ga)Se2 material

    Science.gov (United States)

    Biderman, Norbert J.

    Copper indium gallium selenide (Cu(In,Ga)Se2 or CIGS) has become a significant topic of research and development for photovoltaic application. CIGS photovoltaic devices have demonstrated record conversion efficiencies however are still below the maximum solar conversion efficiency. Losses in performance have been attributed structural defects including vacancies, doping, grain boundaries, and compositional non-uniformity that are poorly understood and controlled. The cadmium sulfide (CdS) buffer layer plays a critical role in high-performance CIGS photovoltaic devices, serving as the n-type component of the p-n junction formed with the p-type CIGS absorber layer. Cadmium diffusion into the CIGS surface during CdS deposition creates a buried p-n homojunction in addition to the CIGS/CdS p-n heterojunction. CdS is believed to assist in reducing carrier recombination at the CIGS/CdS interface, an important attribute of high-efficiency solar cells. In the present work, cadmium diffusion mechanisms in CIGS are experimentally investigated via secondary ion mass spectroscopy (SIMS) and Auger electron spectroscopy (AES). Two cadmium diffusion profiles with distinct Arrhenius diffusion kinetics within a single depth profile of the CIGS thin film are observed with SIMS and AES: an intense first-stage diffusion profile directly below the CIGS/CdS interface and a long-range, second-stage diffusion profile that extends deep into the thin film. Cadmium grain boundary diffusion is also detected in fine-grain CIGS samples. These multiple diffusion processes are quantified in the present work, and the two-stage cadmium diffusion profiles suggest distinctive lattice diffusion mechanisms. Calculations and modeling of general impurity diffusion via interstitial sites in CIGS are also conducted via numerical including cadmium, iron, and zinc. In the numerical simulations, the standard diffusion-reaction kinetics theory is extended to vacancy-rich materials like CIGS that contain 1 at

  3. Localized states induced by an oxygen vacancy in rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei; Shin, Donghan; Demkov, Alexander A., E-mail: demkov@physics.utexas.edu [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-06-14

    Using density functional theory and model Hamiltonian analysis, we investigate the localized states induced by an oxygen vacancy in rutile TiO{sub 2}. We identify two classes of localized states—the hybrid and the polaron. The hybrid state is caused by the orbital overlap between three Ti atoms next to a vacancy and is mainly derived from the Ti e{sub g} orbitals. The polaron state is caused by the local lattice distortion and is mainly composed of one particular t{sub 2g} orbital from a single Ti atom. The first principles calculation shows that the polaron state is energetically favored, and the tight-binding analysis reveals the underlying connection between the bulk band structure and the orbital character of the polaron. The magnetic coupling between two nearby polaron states is found to be ferromagnetic. Using this picture, we analyze the results of recent theoretical calculations and experiments and discuss the connection to vacancies in SrTiO{sub 3}.

  4. Impurity-induced host-lattice vacancies in metals and interstitial alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, V.M.; Tatarenko, V.A.; Tsynman, C.L.; Yanchitskii, B.Z. [G.V. Kurdyumov Institute for Metal Physics, Kyyiv (Ukraine). Dept. of Solid State Theory; Maksimchuk, I.M.; Tkachenko, V.G. [I.M. Frantsevich Institute for Problems in Materials Science, Kyyiv (Ukraine)

    1999-02-01

    The concentration of site vacancies ({nu}) is analysed as a function of the concentration of interstitial nonmetallic (X) atoms inside cubic-metal (Me) crystals. Its increasing dependence is established. The {nu} concentration may exceed the concentration of thermally activated vacancies in the `pure` F.C.C.-Me at the same temperature and over a wide interval of X-concentration. Factors assisting the formation of such X-induced {nu} are the following: (1) a strong repulsion of interstitial X-atoms and site Me-cations (2) a sufficient solubility of X-atoms (or clustering that leads to their local accumulation in interstices). On the contrary, an application of the pressure decreases the content of the impurity-induced {nu}. An influence of such {nu} on instability of alloys, that may lead to their polymorphic transformations, is considered. A monotonously increasing dependence is established for the {nu} concentration as a function of H concentration in F.C.C.-Fe. The {gamma}*-phase of F.C.C.-Fe--H is expected to be enriched with vacancies at high H-doping levels. For instance, that is important as a precursor effect of spontaneous deformation (`quasi-liquid state`) near the F.C.C. to B.C.C.-Fe transformation in H atmosphere. (author)

  5. Effects of nitrogen-doping configurations with vacancies on conductivity in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, T.M., E-mail: tarad@imp.kiev.ua [Department of Solid State Theory, G.V. Kurdyumov Institute for Metal Physics of NASU, 36 Acad. Vernadsky Blvd., Kyiv (Ukraine); Tatarenko, V.A. [Department of Solid State Theory, G.V. Kurdyumov Institute for Metal Physics of NASU, 36 Acad. Vernadsky Blvd., Kyiv (Ukraine); Sagalianov, I.Yu.; Prylutskyy, Yu.I. [Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., Kyiv (Ukraine)

    2014-06-13

    Highlights: • We investigate electronic transport in graphene with complex N-related defects. • Configurations of N dopants affect the conductivity quantitatively and qualitatively. • Conductivity vs. charge-carrier density can be linear, sublinear, or superlinear. • Vacancies and N-impurity ordering suppress electron–hole asymmetry in conductivity. • Correlation and ordering of N dopants appreciably enhance the transport properties. - Abstract: We investigate electronic transport in the nitrogen-doped graphene containing different configurations of point defects: singly or doubly substituting N atoms and nitrogen–vacancy complexes. The results are numerically obtained using the quantum-mechanical Kubo–Greenwood formalism. Nitrogen substitutions in graphene lattice are modelled by the scattering potential adopted from the independent self-consistent ab initio calculations. Variety of quantitative and qualitative changes in the conductivity behaviour are revealed for both graphite- and pyridine-type N defects in graphene. For the most common graphite-like configurations in the N-doped graphene, we also consider cases of correlation and ordering of substitutional N atoms. The conductivity is found to be enhanced up to several times for correlated N dopants and tens times for ordered ones as compared to the cases of their random distributions. The presence of vacancies in the complex defects as well as ordering of N dopants suppresses the electron–hole asymmetry of the conductivity in graphene.

  6. Luminescence lifetimes of neutral nitrogen-vacancy centres in synthetic diamond containing nitrogen.

    Science.gov (United States)

    Liaugaudas, G; Davies, G; Suhling, K; Khan, R U A; Evans, D J F

    2012-10-31

    The decay time of luminescence from neutral nitrogen-vacancy (NV(0)) centres in synthetic diamond is reported. The intrinsic luminescence lifetime of NV (0) is measured as τ(r) = 19 ± 2 ns. Neutral substitutional nitrogen atoms (N(S)(0)) are shown to quench luminescence from NV(0) by dipole-dipole resonant energy transfer at a rate such that the transfer time would equal τ(r) if one (N(S)(0)) atom was ~3 nm from the NV(0). In chemical-vapour-deposited diamonds grown with a small nitrogen content, that are brown as a result of vacancy-cluster defects, the decay time of NV(0) equals τ(r) in the as-grown material. However, after annealing at ≥1700 °C to remove the brown colour, luminescence from the NV(0) centres is severely quenched. This effect is suggested to be a result of the destruction of NV(0) centres and the creation of new NV(0) centres localized in vacancy-rich regions of the crystals.

  7. Oxygen vacancies at the surface of SrTiO3 thin films

    Science.gov (United States)

    Silva, Alexandre R.; Dalpian, Gustavo M.

    2013-03-01

    The 2-D electron gas at the interface between LaAlO3 (LAO) and SrTiO3 (STO), two band insulators, has been the subject of intense research owing to the fact that this interface can show metallic, superconducting, and magnetic effects, properties that are absent in the bulk counterparts. The metallic behavior has also been observed at the STO surface, without the need of the oxides' interface. Although the reason of this behavior is not well defined, there are three hypotheses for this: the polar catastrophe; the oxygen vacancies produced in the experiment, and cations intermixing. In this work, first principles calculations based on the density functional theory and using hybrid functionals were performed to reveal the atomic and the electronic structure of vacancies at the (001) surface of STO films. We have analyzed both the TiO2 and SrO-terminated surfaces. For pure surfaces, we observed atomic relaxations up to the 5th atomic layer. The surface band structure of ideal STO slabs shows that the STO thin films are insulating in both terminations, but insert surface levels in the gap of bulk STO. Defective STO slabs are observed to be metallic, and we observe a strong tendency for the oxygen vacancies to migrate into the surface. We thank financial support from brazilian agencies CAPES, CNPq and FAPESP.

  8. The effects of organizational flexibility on nurse utilization and vacancy statistics in Ontario hospitals.

    Science.gov (United States)

    Fisher, Anita; Baumann, Andrea; Blythe, Jennifer

    2007-01-01

    Social and economic changes in industrial societies during the past quarter-century encouraged organizations to develop greater flexibility in their employment systems in order to adapt to organizational restructuring and labour market shifts (Kallenberg 2003). During the 1990s this trend became evident in healthcare organizations. Before healthcare restructuring, employment in the acute hospital sector was more stable, with higher levels of full-time staff. However, in the downsizing era, employers favoured more flexible, contingent workforces (Zeytinoglu 1999). As healthcare systems evolved, staffing patterns became more chaotic and predicting staffing requirements more complex. Increased use of casual and part-time staff, overtime and agency nurses, as well as alterations in skills mix, masked vacancy counts and thus rendered this measurement of nursing demand increasingly difficult. This study explores flexible nurse staffing practices and demonstrates how data such as nurse vacancy statistics, considered in isolation from nurse utilization information, are inaccurate indicators of nursing demand and nurse shortage. It develops an algorithm that provides a standard methodology for improved monitoring and management of nurse utilization data and better quantification of vacancy statistics. Use of standard methodology promotes more accurate measurement of nurse utilization and shortage. Furthermore, it provides a solid base for improved nursing workforce planning, production and management.

  9. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.

    Science.gov (United States)

    Ansari, Sajid Ali; Khan, Mohammad Mansoob; Kalathil, Shafeer; Nisar, Ambreen; Lee, Jintae; Cho, Moo Hwan

    2013-10-07

    Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports a simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the oxygen vacancy and band gap narrowing of m-ZnO. m-ZnO enhanced the visible light catalytic activity for the degradation of different classes of dyes and 4-nitrophenol compared to p-ZnO, which confirmed the band gap narrowing because of oxygen defects. This study shed light on the modification of metal oxide nanostructures by EAB with a controlled band structure.

  10. Symmetry-protected coherent transport for diluted vacancies and adatoms in graphene

    Science.gov (United States)

    Ruiz-Tijerina, David A.; da Silva, Luis G. G. V. Dias

    2016-08-01

    We study the effects of a low concentration of adatoms or single vacancies in the linear-response transport properties of otherwise clean graphene. These impurities were treated as localized orbitals, and for each type two cases with distinct coupling symmetries were studied. For adatoms, we considered top- and hollow-site adsorbates (TOP and HS). For vacancies, we studied impurity formation by soft bond reconstruction (REC), as well as the more symmetric case of charge accumulation in unreconstructed vacancies (VAC). Our results indicate that the transport is determined by usual impurity scattering when the graphene-impurity coupling does not possess C3 v symmetry (TOP and REC). In contrast, VAC impurities decouple from the electronic states at the Dirac points, and yield no contribution to the resistivity for a sample in charge neutrality. Furthermore, the inversion-symmetry-conserving HS impurities also decouple from entire sets of momenta throughout the Brillouin zone, and do not contribute to the resistivity within a broad range of parameters. These behaviors are protected by C3 v and inversion symmetry, respectively, and persist for more general impurity models.

  11. Electronic and bonding properties of MgH{sub 2}-Nb containing vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Luna, C.R. [IFIMAT, UNCentro and ANPCYT, Pinto 399, B7000GHG Tandil (Argentina); Macchi, C.E. [IFIMAT, UNCentro and CONICET, Pinto 399, B7000GHG Tandil (Argentina); Juan, A. [Dpto. Fisica, Universidad Nacional del Sur, Av. Alem 1253, Bahia Blanca (Argentina); Somoza, A. [IFIMAT, UNCentro and CICPBA, Pinto 399, B7000GHG Tandil (Argentina)

    2010-11-15

    The magnesium hydride stability and bonding have been studied using density functional theory (DFT). To this aim, calculations on the electronic structure were performed. We also modeled the bulk hydride with a Nb atom as a substitutional impurity. Furthermore, both systems were modeled containing different types of vacancies (Mg, H or H-Mg complex). The crystal orbital overlap population for both the metal-metal and metal-hydrogen bonds was also computed. The influence of vacancy-like defects was studied through the calculation of the positron lifetimes in defected MgH{sub 2} and defected MgH{sub 2}-Nb. For the pure hydride, the results show an increment in the atom bonds in correlation with an increase of the positron localization reflected in a rise of the positron lifetimes. On the other hand, in all considered cases for Mg or/and H vacancies, the presence of Nb reduces the hydride bond about 36%. This decrease in the hydride stability was associated with a decrease in the probability of the positron localization and a consequently reduction of the positron lifetimes. (author)

  12. Self-assembly of Carbon Vacancies in Sub-stoichiometric ZrC1-x

    Science.gov (United States)

    Zhang, Yanhui; Liu, Bin; Wang, Jingyang

    2015-12-01

    Sub-stoichiometric interstitial compounds, including binary transition metal carbides (MC1-x), maintain structural stability even if they accommodate abundant anion vacancies. This unique character endows them with variable-composition, diverse-configuration and controllable-performance through composition and structure design. Herein, the evolution of carbon vacancy (VC) configuration in sub-stoichiometric ZrC1-x is investigated by combining the cluster expansion method and first-principles calculations. We report the interesting self-assembly of VCs and the fingerprint VC configuration (VC triplet constructed by 3rd nearest neighboring vacancies) in all the low energy structures of ZrC1-x. When VC concentration is higher than the critical value of 0.5 (x > 0.5), the 2nd nearest neighboring VC configurations with strongly repulsive interaction inevitably appear, and meanwhile, the system energy (or formation enthalpy) of ZrC1-x increases sharply which suggests the material may lose phase stability. The present results clarify why ZrC1-x bears a huge amount of VCs, tends towards VC ordering, and retains stability up to a stoichiometry of x = 0.5.

  13. All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond

    Science.gov (United States)

    Pingault, Benjamin; Becker, Jonas N.; Schulte, Carsten H. H.; Arend, Carsten; Hepp, Christian; Godde, Tillmann; Tartakovskii, Alexander I.; Markham, Matthew; Becher, Christoph; Atatüre, Mete

    2014-12-01

    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2* , exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

  14. Dynamics of fragmentation and multiple vacancy generation in irradiated single-walled carbon nanotubes

    CERN Document Server

    Javeed, Sumera; Ahmad, Shoaib

    2016-01-01

    The results from mass spectrometry of clusters sputtered from Cs+ irradiated single-walled carbon nano-tubes (SWCNTs) as a function of energy and dose identify the nature of the resulting damage in the form of multiple vacancy generation. For pristine SWCNTs at all Cs+ energies, C2 is the most dominant species, followed by C3, C4 and C1. The experiments were performed in three stages: in the first stage, Cs+ energy E(Cs+) was varied. During the second stage, the nanotubes were irradiated continuously at E(Cs+) = 5 keV for 1,800 s. Afterwards, the entire sequence of irradiation energies was repeated to differentiate between the fragmentation patterns of the pristine and of heavily irradiated SWCNTs. The sputtering and normalized yields identify the quantitative and relative extent of the ion-induced damage by creating double, triple and quadruple vacancies; the single vacancies are least favored. Sputtering from the heavily irradiated SWCNTs occurs not only from the damaged and fragmented nanotubes, but also f...

  15. Ab initio study of gallium stabilized δ-plutonium alloys and hydrogen-vacancy complexes.

    Science.gov (United States)

    Hernandez, Sarah C; Schwartz, Daniel S; Taylor, Christopher D; Ray, Asok K

    2014-06-11

    All-electron density functional theory was used to investigate δ-plutonium (δ-Pu) alloyed with gallium (Ga) impurities at 3.125, 6.25, 9.375 atomic (at)% Ga concentrations. The results indicated that the lowest energy structure is anti-ferromagnetic, independent of the Ga concentration. At higher Ga concentrations (>3.125 at%), the position of the Ga atoms are separated by four nearest neighbor Pu-Pu shells. The results also showed that the lattice constant contracts with increasing Ga concentration, which is in agreement with experimental data. Furthermore with increasing Ga concentration, the face-centered-cubic structure becomes more stably coupled with increasing short-range disorder. The formation energies show that the alloying process is exothermic, with an energy range of -0.028 to -0.099 eV/atom. The analyses of the partial density of states indicated that the Pu-Ga interactions are dominated by Pu 6d and Ga 4p hybridizations, as well as Ga 4s-4p hybridizations. Finally, the computed formation energies for vacancy and hydrogen-vacancy complexes within the 3.125 at% Ga cell were 1.12 eV (endothermic) and -3.88 eV (exothermic), respectively. In addition, the hydrogen atom prefers to interact much more strongly to the Pu atom than the Ga atom in the hydrogen-vacancy complex.

  16. A variational formulation of constrained dislocation dynamics coupled with heat and vacancy diffusion

    Science.gov (United States)

    Po, Giacomo; Ghoniem, Nasr

    2014-05-01

    We present a formulation of the discrete Dislocation Dynamics (DD) method based on Onsager's variational principle. The motion of discrete dislocations is treated as a generalized irreversible flux associated with conjugate thermodynamic forces causing internal production of entropy. Intrinsic in the variational principle is the role of physical constraints that limit the choice of generalized fluxes. We leverage the concept of constrained maximization to introduce the requirement that dislocation climb must be sustained by the flux of vacancies into the dislocation core. The constrained variational approach results naturally in the coupling between plastic deformation induced by discrete dislocations, vacancy diffusion, and heat propagation in solid crystals. In particular, this coupling requires that dislocation velocity and chemical potential of vacancies at the dislocation core be found simultaneously. A new numerical formulation of DD that accounts for generalized constraints imposed on dislocations is presented, based on a network discretization of the dislocation configuration. Applications illustrate the significance of constrained motion of dislocations confined in channels and pillars, and the attainment of heterogeneous dislocation structures.

  17. Out of Office: A Study on the Cause of Office Vacancy and Transformation as a Means to Cope and Prevent

    OpenAIRE

    Remøy, H.

    2010-01-01

    Office building vacancy is becoming an increasingly visible part of the cityscape. Billboards shout “for rent” and office locations look abandoned even in the middle of the day. Still, new office buildings and locations are being developed, adding up to the built environment. As hardly any office buildings are demolished, adapted or transformed, the vacancy increases. Office buildings are developed though there is no demand for new office buildings. Or…is there? New office buildings seem to b...

  18. Control of oxygen vacancies and Ce{sup +3} concentrations in doped ceria nanoparticles via the selection of lanthanide element

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, N., E-mail: nader83@vt.edu; Meehan, K.; Hudait, M.; Jain, N. [Virginia Tech, Bradley Department of Electrical and Computer Engineering (United States)

    2012-10-15

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce{sup +4} into Ce{sup +3} and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  19. Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis

    Science.gov (United States)

    Zhu, Wenshuai; Wu, Zili; Foo, Guo Shiou; Gao, Xiang; Zhou, Mingxia; Liu, Bin; Veith, Gabriel M.; Wu, Peiwen; Browning, Katie L.; Lee, Ho Nyung; Li, Huaming; Dai, Sheng; Zhu, Huiyuan

    2017-06-01

    Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, when Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O2, alleviating CO poisoning and promoting the catalysis.

  20. Effects of solute atoms on evolution of vacancy defects in electron-irradiated Fe-Cr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Druzhkov, A.P., E-mail: druzhkov@imp.uran.r [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation); Nikolaev, A.L. [Institute of Metal Physics, Ural Branch RAS, 18 Kovalevskaya St., 620041 Ekaterinburg (Russian Federation)

    2011-01-15

    The evolution of vacancy-type defects in Fe-Cr alloys (13-16 at.% Cr) undoped and doped with C, N, Au, or Sb and in conventional ferritic-martensitic steel ({approx}13% Cr) has been investigated using positron annihilation spectroscopy under electron irradiation at room temperature and subsequent stepwise annealing. Small vacancy clusters are formed in the undoped Fe-16Cr alloy, which anneal out between 320 and 550 K. It is shown that oversized substitutional solute atoms (Sb, Au) in the Fe-Cr alloy interact with vacancies and form complexes, which are stable up to 600 and 420 K, respectively. It is found that the accumulation of vacancy defects considerably increases in the alloys and the steel with an enhanced content of interstitial impurities. It is shown that this effect is related to the formation of vacancy-carbon complexes. It is known that chromium in iron decreases the diffusion mobility of carbon. Therefore, the structure of vacancy-carbon complexes and the kinetics of their annealing in Fe-Cr alloys differ from those in the Fe-C system.

  1. The effect of oxygen vacancies on the hyperfine properties of metal-doped SnO2

    Science.gov (United States)

    Aragón, F. H.; Villegas-Lelovsky, L.; Martins, J. B. L.; Coaquira, J. A. H.; Cohen, R.; Nagamine, L. C. C. M.; Morais, P. C.

    2017-03-01

    We have performed a Mössbauer investigation of oxygen-vacancy formation on a doped substitutional solution of Sn1‑y M y O2 (M  =  Al, Fe, Ce and Er) nanoparticles. Experimental results were assessed from Mössbauer spectroscopy data, which suggest the rise of the oxygen-vacancy population while increasing the content of dopant ions (M). Likewise, we have analyzed the dependence of the structural, electronic and hyperfine properties on the oxygen-vacancy concentration through first-principles calculations of the SnO2‑x (where x varies from 0 to 0.25) system. The results obtained from the isomer shift and quadrupole splitting indicate a significant dependence of the hyperfine properties on the number of oxygen vacancies. Moreover, after structural optimization of the Sn16O32-Vo supercell (where Vo is the number of oxygen vacancies) we found an increase of the unit-cell volume with the increase of Vo, while the bulk modulus showed a linear decrease with Vo. Indeed, our results corroborate the experimental findings for pure and transition-metal-doped SnO2 systems for which the presence of the oxygen vacancy plays a key role.

  2. The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene

    Science.gov (United States)

    Kistanov, Andrey A.; Cai, Yongqing; Zhou, Kun; Dmitriev, Sergey V.; Zhang, Yong-Wei

    2017-03-01

    The poor structural stability of phosphorene in air was commonly ascribed to humidity and oxygen molecules. Recent exfoliation of phosphorene in deoxygenated water promotes the need to re-examine the role of H2O and O2 molecules. Considering the presence of high population of vacancies in phosphorene, we investigate the interaction of H2O and O2 molecules with vacancy-contained phosphorene using first-principles calculations. In contrast to the common notion that physisorbed molecules tend to have a stronger adsorption at vacancy sites, we show that H2O has nearly the same adsorption energy at the vacancy site as that at the perfect one. Charge transfer analysis shows that O2 is a strong electron scavenger, which transfers the lone-pair electrons of the phosphorus atoms to the 2π * antibonding orbital of O2. As a result, the barrier for the O-O bond splitting to form O-P bonds is reduced from 0.81 eV at the perfect site to 0.59 eV at the defect site, leading to an about 5000 faster oxidizing rate at the defect site than at the perfect site at room temperature. Hence, our work reveals that the vacancy in phosphorene shows a stronger oxygen affinity than the perfect phosphorene lattice site. Structural degradation of phosphorene due to oxidization may occur rapidly at edges and grain boundaries where vacancies tend to agglomerate.

  3. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    Science.gov (United States)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  4. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160 014 (India); Kotnala, R.K., E-mail: rkkotnala@gmail.com [CSIR-National Physical Laboratory, New Delhi 110012 (India)

    2016-05-15

    We reported long-range ferromagnetic interactions in La doped Zn{sub 0.95}Fe{sub 0.05}O nanoparticles that mediated through lattice defects or vacancies. Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O (ZFLaO53) nanoparticles were synthesized by a sol–gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn{sub 0.95}Fe{sub 0.05}O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn{sub 0.95}Fe{sub 0.05}O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described. - Graphical abstract: The long-range ferromagnetic order in Zn{sub 0.92}Fe{sub 0.05}La{sub 0.03}O nanoparticles at low temperature measurements involves oxygen vacancy as the medium of magnetic

  5. Lowering the effective work function via oxygen vacancy formation on the GeO2/Ge interface

    Science.gov (United States)

    Lee, Tae In; Seo, Yujin; Moon, Jungmin; Ahn, Hyun Jun; Yu, Hyun-Young; Hwang, Wan Sik; Cho, Byung Jin

    2017-04-01

    The use of a GeO2 interfacial layer (IL) between a high-k dielectric and a Ge substrate helps to reduce the interface state density in Ge MOS devices. We report that the presence of the GeO2 IL changes the effective work function (eWF) of the gate stack when annealed after high-k dielectric deposition. The eWF is reduced from 4.31 eV to 3.98 eV for TaN and from 5.00 eV to 4.44 eV for Ni. Consequently, the threshold voltage (Vth) decreases from 0.69 V to 0.21 V for Ni after post deposition annealing. Our investigation confirms that the generation of oxygen vacancies in the GeO2 IL near the Ge substrate is the main cause of the eWF modulation. In addition, the reliability of the GeO2 IL is investigated via the conductance method and a constant-current stress test.

  6. Unrelated Umbilical Cord Blood (UBC)Transplantation

    Science.gov (United States)

    2017-02-09

    Chronic Myelogenous Leukemia (CML); Acute Myelogenous Leukemia (AML); Myelodysplastic Syndrome; Multiple Myeloma; Hodgkin Lymphoma; Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia (CLL); Acute Lymphocytic Leukemia (ALL); Severe Aplastic Anemia

  7. Annealing behaviors of vacancy-type defects near interfaces between metal contacts and GaN probed using a monoenergetic positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira, E-mail: uedono.akira.gb@u.tsukuba.ac.jp; Yoshihara, Nakaaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Fujishima, Tatsuya; Piedra, Daniel; Palacios, Tomás [Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Ishibashi, Shoji [Nanosystem Research Institute “RICS,” National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Sumiya, Masatomo [Wide Bandgap Material Group, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Laboutin, Oleg; Johnson, Wayne [IQE, 200 John Hancock Road, Taunton, Massachusetts 01581 (United States)

    2014-08-04

    Vacancy-type defects near interfaces between metal contacts and GaN grown on Si substrates by metal organic chemical vapor deposition have been studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation for Ti-deposited GaN showed that optically active vacancy-type defects were introduced below the Ti/GaN interface after annealing at 800 °C. Charge transition of those defects due to electron capture was observed and was found to correlate with a yellow band in the photoluminescence spectrum. The major defect species was identified as vacancy clusters such as three to five Ga-vacancies coupled with multiple nitrogen-vacancies. The annealing behaviors of vacancy-type defects in Ti-, Ni-, and Pt-deposited GaN were also examined.

  8. Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, A., E-mail: yabuuchi.atsushi@21c.osakafu-u.ac.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Maekawa, M.; Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-11-15

    To reveal the influence of oversized elements on the thermal stability of vacancies in type 316L stainless steels, vacancy recovery processes were investigated by means of positron annihilation spectroscopy. Although vacancies in additive-free 316L stainless steels were mobile at 300 Degree-Sign C, which is a typical nuclear reactor operating temperature, vacancies in oversized elements doped 316L were stable up to 300-350 Degree-Sign C. This result indicates that oversized elements stabilize vacancies in stainless steels. Stability of vacancies inhibits the radiation-induced grain boundary segregation and may also lead to suppression of high-temperature water stress corrosion cracking that is observed in nuclear materials.

  9. Schottky barrier engineering via adsorbing gases at the sulfur vacancies in the metal-MoS2 interface.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2017-03-10

    Sulfur vacancies (S-vacancies) are common in monolayer MoS2 (mMoS2). Finding an effective way to control rather than abolish the effect of S-vacancies on contact properties is vital for the application of mMoS2. Here, we propose the adsorption of gases to passivate the S-vacancies in Pt-mMoS2 interfaces. Results demonstrate that gases are stably and preferentially adsorbed at S-vacancies. The n-type Schottky barriers of Pt-mMoS2 interfaces are reduced significantly upon the adsorption electron-donor gases, especially Cl2. The n-type transport character of the Pt-mMoS2 interface can be changed to p-type by the adsorption of electron-acceptor gases. As the adsorption concentration increases, both n- and p-type Schottky barriers are further reduced, and the lowest n- and p-type Schottky barriers are 0.36 and 0 eV, respectively. Note that the variations in Schottky barriers are independent of the oxidizing ability of gases but relative to the average number of valence electrons per gas atom. Analysis demonstrates that although gases at S-vacancies cannot cause gap states to vanish, and can even enhance Fermi level pinning, they modulate charge redistribution and the potential step at the interface region. Moreover, with increasing adsorption concentration, the valence band maximum of mMoS2 shows the opposite variation tendency to that of the potential step. Our results suggest that adsorption of gases is an effective way to passivate S-vacancies to modulate the transport properties of Pt-mMoS2 interfaces.

  10. Sulfur vacancies in photorefractive Sn{sub 2}P{sub 2}S{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Golden, E. M.; Giles, N. C. [Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433 (United States); Basun, S. A. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Azimuth Corporation, 4134 Linden Avenue, Suite 300, Dayton, Ohio 45431 (United States); Grabar, A. A.; Stoika, I. M. [Institute of Solid State Physics and Chemistry, Uzhgorod National University, 88 000 Uzhgorod (Ukraine); Evans, D. R. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Halliburton, L. E. [Azimuth Corporation, 4134 Linden Avenue, Suite 300, Dayton, Ohio 45431 (United States); Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2014-12-28

    A photoinduced electron paramagnetic resonance (EPR) spectrum in single crystals of Sn{sub 2}P{sub 2}S{sub 6} (SPS) is assigned to an electron trapped at a sulfur vacancy. These vacancies are unintentionally present in undoped SPS crystals and are expected to play an important role in the photorefractive behavior of the material. Nonparamagnetic sulfur vacancies are formed during the initial growth of the crystal. Subsequent illumination below 100 K with 442 nm laser light easily converts these vacancies to EPR-active defects. The resulting S = 1/2 spectrum shows well-resolved and nearly isotropic hyperfine interactions with two P ions and two Sn ions. Partially resolved interactions with four additional neighboring Sn ions are also observed. Principal values of the g matrix are 1.9700, 1.8946, and 1.9006, with the corresponding principal axes along the a, b, and c directions in the crystal. The isotropic parts of the two primary {sup 31}P hyperfine interactions are 19.5 and 32.6 MHz and the isotropic parts of the two primary Sn hyperfine interactions are 860 and 1320 MHz (the latter values are each an average for {sup 117}Sn and {sup 119}Sn). These hyperfine results suggest that singly ionized sulfur vacancies have a diffuse wave function in SPS crystals, and thus are shallow donors. Before illumination, sulfur vacancies are in the doubly ionized charge state because of compensation by unidentified acceptors. They then trap an electron during illumination. The EPR spectrum from the sulfur vacancy is destroyed when a crystal is heated above 120 K in the dark and reappears when the crystal is illuminated again at low temperature.

  11. Schottky barrier engineering via adsorbing gases at the sulfur vacancies in the metal–MoS2 interface

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2017-03-01

    Sulfur vacancies (S-vacancies) are common in monolayer MoS2 (mMoS2). Finding an effective way to control rather than abolish the effect of S-vacancies on contact properties is vital for the application of mMoS2. Here, we propose the adsorption of gases to passivate the S-vacancies in Pt–mMoS2 interfaces. Results demonstrate that gases are stably and preferentially adsorbed at S-vacancies. The n-type Schottky barriers of Pt–mMoS2 interfaces are reduced significantly upon the adsorption electron-donor gases, especially Cl2. The n-type transport character of the Pt–mMoS2 interface can be changed to p-type by the adsorption of electron-acceptor gases. As the adsorption concentration increases, both n- and p-type Schottky barriers are further reduced, and the lowest n- and p-type Schottky barriers are 0.36 and 0 eV, respectively. Note that the variations in Schottky barriers are independent of the oxidizing ability of gases but relative to the average number of valence electrons per gas atom. Analysis demonstrates that although gases at S-vacancies cannot cause gap states to vanish, and can even enhance Fermi level pinning, they modulate charge redistribution and the potential step at the interface region. Moreover, with increasing adsorption concentration, the valence band maximum of mMoS2 shows the opposite variation tendency to that of the potential step. Our results suggest that adsorption of gases is an effective way to passivate S-vacancies to modulate the transport properties of Pt–mMoS2 interfaces.

  12. CO Oxidation on the Au15Cu15 Cluster and the Role of Vacancies in the MgO(100) Support

    DEFF Research Database (Denmark)

    Ma, Li; Melander, Marko; Weckman, Timo

    2016-01-01

    ) and Eley−Rideal (ER) mechanisms have been explored by tuning the location of vacancies in MgO(100). The charge states of the Au15Cu15 cluster are negative on all supports, defect-free, O-vacancy (F-center), and Mg-vacancy (V-center), and the effect is significantly amplified on the F-center. In each case...

  13. Impact of isovalent doping on the trapping of vacancy and interstitial related defects in Si

    Energy Technology Data Exchange (ETDEWEB)

    Sgourou, E. N.; Londos, C. A.; Aliprantis, D. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Timerkaeva, D. [Laboratoire de Simulation Atomistique (L-Sim), SP2M, INAC, CEA-UJF, 38054 Grenoble Cedex 9 (France); Kazan Federal University, 18 Kremlevskaya St., Kazan, 420018 (Russian Federation); Chroneos, A. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); Materials Engineering, Open University, Milton Keynes MK7 6AA (United Kingdom); Caliste, D.; Pochet, P. [Laboratoire de Simulation Atomistique (L-Sim), SP2M, INAC, CEA-UJF, 38054 Grenoble Cedex 9 (France)

    2013-03-21

    We investigate the impact of isovalent (in particular lead (Pb)) doping on the production and thermal stability of the vacancy-related (VO) and the interstitial-related (C{sub i}O{sub i} and C{sub i}C{sub s}) pairs in 2 MeV electron irradiated Si samples. We compare the Cz-Si samples with high and low carbon concentration, as well as with Pb-C and Ge-C codoped samples. Using Fourier Transform Infrared Spectroscopy (FTIR), we first determine that under the examined conditions the production of VO decreases with the increase of the covalent radius of the prevalent dopant. Moreover, the production of the VO, C{sub i}O{sub i}, and C{sub i}C{sub s} pairs is quite suppressed in Pb-doped Si. In addition, we conclude to an enhanced trapping of both C{sub i} and C{sub s} by Pb impurity under irradiation. The results are further discussed in view of density functional theory calculations. The relative thermodynamic stability of carbon and interstitial related complexes was estimated through the calculations of binding energies of possible defect pairs. This allows to investigate the preferred trapping of vacancies in Pb-doped samples and interstitials in the Ge-doped samples. The different behavior is revealed by considering the analysis of the ratio of vacancy-related to interstitial-related clusters derived from the FTIR measurements. The presence of PbV complexes is confirmed due to the mentioned analysis.

  14. Oxygen vacancy induced by La and Fe into ZnO nanoparticles to modify ferromagnetic ordering

    Science.gov (United States)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    We reported long-range ferromagnetic interactions in La doped Zn0.95Fe0.05O nanoparticles that mediated through lattice defects or vacancies. Zn0.92Fe0.05La0.03O (ZFLaO53) nanoparticles were synthesized by a sol-gel process. X-ray fluorescence spectrum of ZFLaO53 detects the weight percentage of Zn, Fe, La and O. X-ray diffraction shows the hexagonal Wurtzite ZnO phase. The Rietveld refinement has been used to calculate the lattice parameters and the position of Zn, Fe, La and O atoms in the Wurtzite unit cell. The average size of ZFLaO53 nanoparticles is 99 nm. The agglomeration type product due to OH ions with La results into ZnO nanoparticles than nanorods that found in pure ZnO and Zn0.95Fe0.05O sample. The effect of doping concentration to induce Wurtzite ZnO structure and lattice defects has been analyzed by Raman active vibrational modes. Photoluminescence spectra show an abnormal emission in both UV and visible region, and a blue shift at near band edge is formed with doping. The room temperature magnetic measurement result into weak ferromagnetism but pure ZnO is diamagnetic. However, the temperature dependent magnetic measurement using zero-field and field cooling at dc magnetizing field 500 Oe induces long-range ferromagnetic ordering. It results into antiferromagnetic Neel temperature of ZFLaO53 at around 42 K. The magnetic hysteresis is also measured at 200, 100, 50 and 10 K measurement that indicate enhancement in ferromagnetism at low temperature. Overall, the La doping into Zn0.95Fe0.05O results into enhanced antiferromagnetic interaction as well as lattice defects/vacancies. The role of the oxygen vacancy as the dominant defects in doped ZnO must form Bound magnetic polarons has been described.

  15. Role of vacancies in the relaxation of Pd-5.3 at % In-0.5 at % Ru alloy foil after hydrogen desorption

    Science.gov (United States)

    Akimova, O. V.; Avdyukhina, V. M.; Shchetinin, I. V.

    2016-02-01

    The Pd-5.3 at % In-0.5 at % Ru foil subjected to electrolytic hydrogenation and subsequent prolonged relaxation (for 55 000 h) has been studied by X-ray diffraction analysis. Diffraction reflections belonging to phases with different indium concentrations and palladium phases enriched in vacancies were found. Phase transformations observed in the absence of hydrogen occur mainly due to the vacancy migration; the vacancies formed during hydrogenation and remained in vacancy complexes and alloy matrix up to the moment of the study.

  16. Enhanced negative thermal expansion and optical absorption of In0.6(HfMg)0.7Mo3O12 with oxygen vacancies

    Science.gov (United States)

    Cheng, Yongguang; Mao, Yanchao; Yuan, Baohe; Ge, Xianghong; Guo, Juan; Chao, Mingju; Liang, Erjun

    2017-07-01

    A negative thermal expansion (NTE) material In0.6(HfMg)0.7Mo3O12 with oxygen vacancies was successfully synthesized through He atmosphere annealing. It was found that the introduction of oxygen vacancies enhanced the coefficient of NTE by about an order of magnitude larger. It can be attributed to the increased flexibility of the polyhedra in the framework structure. The introduction of oxygen vacancies also weakened the Mdbnd O bonds and obviously enhanced the optical absorption in the visible light region. This work provides a promising strategy to effectively improve the NTE and optical properties of traditional NTE materials by introducing oxygen vacancies.

  17. Effects of single O vacancy on the magnetism and electronic structure of Ti doped CoO: A first principle study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J. [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300191 (China); Wang, X.C., E-mail: wangxccn@126.com [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300191 (China); Chen, G.F. [School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Yang, B.H. [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300191 (China)

    2015-12-15

    The electronic structure and magnetism of Co{sub 14}Ti{sub 2}O{sub 15} systems are investigated by first-principles calculations. CoO is an antiferromagnetic insulator. The Ti doped CoO at positions 9 and 11 shows a half-metallic character. The O vacancy near Ti has a great effect on Ti magnetic moment due to the electron transfer. When the O vacancy at position 6 or 9, the Ti magnetic moment is very small and the systems are magnetic insulator. As the O vacancy locates at position 1, the Ti magnetic moment is smaller than that in Co{sub 14}Ti{sub 2}O{sub 16} system, showing a metallic character that makes its conductivity enhanced. The system with O vacancy at position 2 shows a half-metallic character due to the strong hybridization between Ti and Co atoms. The system with O vacancy at position 5 shows a metallic character; the system with O vacancy at position 13 or 14 shows a half-metallic character. - Highlights: • When the O vacancies at 6 position and 9, the systems are magnetic insulator. • The system with O vacancy at position 5 shows the metallic characteristic. • The system with O vacancy at position 2, 13 or 14 shows a half-metallic character.

  18. Study of photon-induced L3 vacancy alignment for elements La to U

    Indian Academy of Sciences (India)

    Ajay Sharma; Meenu Singh; Raj Mittal

    2006-06-01

    Alignment of photon-induced L3 vacancies is studied in rare earth and high elements at energies of experimental interest, near thresholds to 60 keV, under non-relativistic dipole approximation. Numerical calculations of the matrix element are undertaken to produce theoretical data for comparison with the experimental findings. The 2 values being > 0.1 at photoelectron energies <20 keV are certainly higher than 5–8% uncertainties quoted in experimental results. Present findings are from a very basic model, hydrogen-like and can further be treated as reference to observe the impact of screening, relativistic, multipole and retardation corrections to the model.

  19. Quantum information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator

    CERN Document Server

    Li, Pengbo

    2010-01-01

    We propose an efficient scheme for the realization of quantum information transfer and entanglement with nitrogen-vacancy (NV) centers coupled to a high-Q microspherical resonator. We show that, based on the effective dipole-dipole interaction between the NV centers mediated by the whispering-gallery mode (WGM), quantum information can be transferred between the NV centers through Raman transitions combined with laser fields. This protocol may open up promising possibilities for quantum communications with the solid state cavity QED system.

  20. Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects.

    Science.gov (United States)

    Borisevich, A Y; Morozovska, A N; Kim, Young-Min; Leonard, D; Oxley, M P; Biegalski, M D; Eliseev, E A; Kalinin, S V

    2012-08-10

    Vacancy-ordered transition metal oxides have multiple similarities to classical ferroic systems including ferroelectrics and ferroelastics. The expansion coefficients for corresponding Ginzburg-Landau-type free energies are readily accessible from bulk phase diagrams. Here, we demonstrate that the gradient and interfacial terms can quantitatively be determined from the atomically resolved scanning transmission electron microscopy data of the topological defects and interfaces in model lanthanum-strontium cobaltite. With this knowledge, the interplay between ordering, chemical composition, and mechanical effects at domain walls, interfaces and structural defects can be analyzed.

  1. Vacancy formation and strain in low-temperature Cu/Cu(100) growth

    Energy Technology Data Exchange (ETDEWEB)

    Voter, Arthur F [Los Alamos National Laboratory; Uberuaga, Blas P [Los Alamos National Laboratory; Shim, Yunsic [UNIV. OF TOLEDO; Borovikov, Valery [UNIV. OF TOLEDO

    2008-01-01

    The development of compressive strain in metal thin films grown at low temperature has recently been revealed via X-ray diffraction and explained by the assumption that a large number of vacancies were incorporated into the growing films. The results of the molecular dynamics and parallel temperature-accelerated dynamics simulations suggest that the key factor responsible for the experimentally observed strain is an increased nanoscale surface roughness due to the suppression of thermally activated events combined with the effects of shadowing due to off-normal deposition conditions.

  2. Atom-Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres

    Science.gov (United States)

    Ruan, Yinlan; Gibson, Brant C.; Lau, Desmond W. M.; Greentree, Andrew D.; Ji, Hong; Ebendorff-Heidepriem, Heike; Johnson, Brett C.; Ohshima, Takeshi; Monro, Tanya M.

    2015-06-01

    We have developed a technique for creating high quality tellurite microspheres with embedded nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum and sensing applications.

  3. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    Science.gov (United States)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  4. Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Riedrich-Möller, Janine; Becher, Christoph, E-mail: christoph.becher@physik.uni-saarland.de [Universität des Saarlandes, Fachrichtung 7.2 (Experimentalphysik), Campus E 2.6, 66123 Saarbrücken (Germany); Pezzagna, Sébastien; Meijer, Jan [Universität Leipzig, Institut für Experimentalphysik II, Linnéstraße 5, 04103 Leipzig (Germany); Pauly, Christoph; Mücklich, Frank [Universität des Saarlandes, Fachrichtung 8.4 (Materialwissenschaft und Werkstofftechnik), Campus D 3.3, 66123 Saarbrücken (Germany); Markham, Matthew; Edmonds, Andrew M. [Element Six Ltd., Global Innovation Centre, Fermi Avenue, Harwell Oxford, Didcot OX11 0QR (United Kingdom)

    2015-06-01

    We present the controlled creation of single nitrogen-vacancy (NV) centers via ion implantation at the center of a photonic crystal cavity which is fabricated in an ultrapure, single crystal diamond membrane. High-resolution placement of NV centers is achieved using collimation of a 5 keV-nitrogen ion beam through a pierced tip of an atomic force microscope. We demonstrate coupling of the implanted NV centers' broad band fluorescence to a cavity mode and observe Purcell enhancement of the spontaneous emission. The results are in good agreement with a master equation model for the cavity coupling.

  5. Initialization and measurement of nitrogen-vacancy centers in diamond with plasmonic Purcell enhancement

    Science.gov (United States)

    Wolf, Sigal A.; Rosenberg, Itamar; Rapaport, Ronen; Bar-Gill, Nir

    2016-04-01

    Nitrogen-Vacancy (NV) color centers in diamond have emerged as promising quantum solid-state systems, with applications ranging from quantum information processing to magnetic sensing. One of the most useful properties of NVs is the ability to read their ground-state spin projection optically at room temperature. In this work we consider the effect of the Purcell enhancement on the ability to initialize the NV state and analyze the effect to imperfect initialization on the measurement SNR. We demonstrate that even with feasible initial conditions the combined increase in spontaneous emission (through Purcell enhancement) and in optical excitation could significantly increase the readout SNR.

  6. Trapping of Oxygen Vacancies at Crystallographic Shear Planes in Acceptor-Doped Pb-Based Ferroelectrics.

    Science.gov (United States)

    Batuk, Dmitry; Batuk, Maria; Tsirlin, Alexander A; Hadermann, Joke; Abakumov, Artem M

    2015-12-01

    The defect chemistry of the ferroelectric material PbTiO3 after doping with Fe(III) acceptor ions is reported. Using advanced transmission electron microscopy and powder X-ray and neutron diffraction, we demonstrate that even at concentrations as low as circa 1.7% (material composition approximately ABO2.95), the oxygen vacancies are trapped into extended planar defects, specifically crystallographic shear planes. We investigate the evolution of these defects upon doping and unravel their detailed atomic structure using the formalism of superspace crystallography, thus unveiling their role in nonstoichiometry in the Pb-based perovskites.

  7. Dynamic stabilization of the optical resonances of single nitrogen-vacancy centers in diamond

    CERN Document Server

    Acosta, V M; Faraon, A; Huang, Z; Fu, K -M C; Stacey, A; Simpson, D A; Tomljenovic-Hanic, S; Greentree, A D; Prawer, S; Beausoleil, R G

    2011-01-01

    We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located less than ~100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency, nearly eliminating spectral diffusion on timescales greater than ~50 ms.

  8. The role of exchange interaction in nitrogen vacancy centre-based magnetometry

    OpenAIRE

    2016-01-01

    We propose a multilayer device comprising of a thin-film-based ferromagnetic hetero-structure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC's). We find that when the NVC's are in close proximity (1-2 nm) with the FMH, the exchange energy is comparable to, and may even surpass the magnetostatic interaction energy. This calls for the need to consider and utilize both effects in magnetometry based on NVC's in diamond. As the distance between the FMH and NVC is decre...

  9. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with metal-phenolic networks

    CERN Document Server

    Bray, Kerem; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-01-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and biolabeling. In this work we demonstrate a robust approach to surface functionalize individual nanodiamonds with metal-phenolic networks that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation suppresses the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications

  10. High-performance gas sensing achieved by mesoporous tungsten oxide mesocrystals with increased oxygen vacancies

    KAUST Repository

    Wang, Dong

    2013-01-01

    The inner structure of W18O49 mesocrystals was observed by electron microscopy with the help of ultramicrotomy and focused ion beam techniques. The results showed that these mesocrystals contain irregular mesopores formed through partial fusion of self-assembled nanowires, and consequently have long-range structural ordering in one dimension and short-range ordering in the other two dimensions. The W18O 49 mesocrystals exhibit superior performance in gas sensing applications, which is considered to be associated with the presence of more oxygen vacancy sites in the unique mesoporous structure. © 2013 The Royal Society of Chemistry.

  11. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits.

    Science.gov (United States)

    Marcos, D; Wubs, M; Taylor, J M; Aguado, R; Lukin, M D; Sørensen, A S

    2010-11-19

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light.

  12. Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers.

    Science.gov (United States)

    Bermudez, A; Jelezko, F; Plenio, M B; Retzker, A

    2011-10-07

    We propose a scheme enabling controlled quantum coherent interactions between separated nitrogen-vacancy centers in diamond in the presence of strong magnetic fluctuations. The proposed scheme couples nuclear qubits employing the magnetic dipole-dipole interaction between the electron spins and, crucially, benefits from the suppression of the effect of environmental magnetic field fluctuations thanks to a strong microwave driving. This scheme provides a basic building block for a full-scale quantum-information processor or quantum simulator based on solid-state technology.

  13. Local excitation of surface plasmon polaritons using nitrogen-vacancy centers

    CERN Document Server

    Garcia-Ortiz, Cesar E; Bozhevolnyi, Sergey I

    2016-01-01

    Surface plasmon polaritons (SPPs) are locally excited at silver surfaces using (~100) nm-sized nanodiamonds (NDs) with multiple nitrogen-vacancy (NV) centers (~400). The fluorescence from an externally illuminated (at 532 nm) ND and from nearby NDs, which are not illuminated but produce out-of-plane scattering of SPPs excited by the illuminated ND, exhibit distinctly different wavelength spectra, showing short-wavelength filtering due to the SPP propagation loss. The results indicate that NDs with multiple NV centers can be used as efficient sub-wavelength SPP sources in planar integrated plasmonics for various applications.

  14. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore, the ma......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  15. Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe

    OpenAIRE

    Bin Zhang; Xue-Peng Wang; Zhen-Ju Shen; Xian-Bin Li; Chuan-Shou Wang; Yong-Jin Chen; Ji-Xue Li; Jin-Xing Zhang; Ze Zhang; Sheng-Bai Zhang; Xiao-Dong Han

    2016-01-01

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological...

  16. Defect volume for Schottky defect formation and cation vacancy migration in LiH

    Energy Technology Data Exchange (ETDEWEB)

    Symeonides, Chrysoleon I. [Solid State Section, Physics Department, University of Athens, Panepistimiopolis Zografos, 15784 Athens (Greece)], E-mail: jzardas@phys.uoa.gr

    2009-06-10

    The defect volumes in LiH for the formation of a Schottky defect as well as for the cation vacancy migration are estimated for the first time. Their values are found to be larger and smaller, respectively, than the molecular volume. The calculation is based on the equation of state obtained from single-crystal synchrotron X-ray diffraction measurements on solid {sup 7}LiH up to 36 GPa, by relying on an interconnection between defect Gibbs energy and bulk elastic data.

  17. Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample

    Energy Technology Data Exchange (ETDEWEB)

    Lesik, M.; Roch, J.-F. [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and Ecole Normale Supérieure de Cachan, 91405 Orsay (France); Tetienne, J.-P.; Jacques, V., E-mail: vjacques@ens-cachan.fr [Laboratoire Aimé Cotton, CNRS, Université Paris-Sud and Ecole Normale Supérieure de Cachan, 91405 Orsay (France); Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan and CNRS UMR 8537, 94235 Cachan (France); Tallaire, A., E-mail: alexandre.tallaire@lspm.cnrs.fr; Achard, J.; Mille, V.; Gicquel, A. [Laboratoire des Sciences des Procédés et des Matériaux, CNRS and Université Paris 13, 93340 Villetaneuse (France)

    2014-03-17

    We show that the orientation of nitrogen-vacancy (NV) defects in diamond can be efficiently controlled through chemical vapor deposition growth on a (111)-oriented diamond substrate. More precisely, we demonstrate that spontaneously generated NV defects are oriented with a ∼97% probability along the [111] axis, corresponding to the most appealing orientation among the four possible crystallographic axes. Such a nearly perfect preferential orientation is explained by analyzing the diamond growth mechanism on a (111)-oriented substrate and could be extended to other types of defects. This work is a significant step towards the design of optimized diamond samples for quantum information and sensing applications.

  18. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity

    CERN Document Server

    Englund, Dirk; Rivoire, Kelley; Hatami, Fariba; Vuckovic, Jelena; Park, Hongkun; Lukin, Mikhail D

    2010-01-01

    We describe and experimentally demonstrate a technique for deterministic coupling between a photonic crystal (PC) nanocavity and single emitters. The technique is based on in-situ scanning of a PC cavity over a sample and allows the positioning of the cavity over a desired emitter with nanoscale resolution. The power of the technique, which we term a Scanning Cavity Microscope (SCM), is demonstrated by coupling the PC nanocavity to a single nitrogen vacancy (NV) center in diamond, an emitter system that provides optically accessible electron and nuclear spin qubits.

  19. Origins of non-stoichiometry and vacancy-ordering in TiC_1-xBox_x

    Science.gov (United States)

    Klein, Barry M.; Hart, Gus L. W.

    2002-03-01

    While most stable compounds have fixed Daltonian ratios of their constituents (e.g., 1:1 ratio in ZnS, NaCl, GaAs), some materials exhibit significant nonstoichiometry, even at low temperatures. Perhaps the best known examples are NaCl-structure early transition-metal nitrides and carbides. One such example, TiC, exhibits this peculiar property of preferring the presence of vacancies (up to 50%) over a purely stoichiometric structure. Moreover, these vacancies order spatially in unusual structures. We consider TiC_1-xBox x as a binary alloy (where Box denotes a vacancy) and express the energy E_MBCE(σ) of any of the 2^N configurations σ in a ``mixed-basis cluster expansion'' (MBCE) obtained from ab initio calculations of ~30 ordered structures. A ground state search of all possible configurations reveals that indeed an ordered array of vacancies has the lowest energy. We show systematic features in the electronic structure that help explain the preference for vacancies.

  20. Nucleation and mobility model of Agn clusters adsorbed on perfect and oxygen vacancy MgO surfaces.

    Science.gov (United States)

    Liu, Yongfei; Wang, Yan; Chen, Guangju

    2011-05-01

    The structures and energy properties for Ag(n) (n = 1-8) metal clusters adsorbed on the perfect and oxygen vacancy MgO surfaces have been studied by using the DFT/UB3LYP method with an embedded cluster model. The nucleation and mobility model for the Ag(n) (n = 1-8) clusters on the perfect and oxygen vacancy MgO(100) surfaces was investigated. The results show that the Ag atoms locate initially at the surface oxygen vacancy sites; then, with the growth of Ag cluster sizes, the large Ag clusters move possibly out of the vacancy sites by a rolling model, and diffuse on the MgO surface under a certain temperature condition. The relative energies needed for moving out of the oxygen vacancy region for the adsorbed Ag(n) clusters with the rolling model have been predicted. The even-odd oscillation behaviors for the cohesive energies, nucleation energies, first ionization potentials and HOMO-LUMO gaps of the adsorbed Ag(n) clusters with the variation of cluster sizes have also been discussed.