WorldWideScience

Sample records for current system observed

  1. West Coast Observing System (WCOS) ADCP Currents Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  2. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  3. Current systematic carbon cycle observations and needs for implementing a policy-relevant carbon observing system

    Directory of Open Access Journals (Sweden)

    P. Ciais

    2013-07-01

    Full Text Available A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial

  4. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  5. Water Current Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tidal, river and ocean current observations collected by the U.S. Coast and Geodetic Survey. Period of record is late 1800s to mid-1980s.

  6. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Science.gov (United States)

    Ciais, P.; Dolman, A. J.; Bombelli, A.; Duren, R.; Peregon, A.; Rayner, P. J.; Miller, C.; Gobron, N.; Kinderman, G.; Marland, G.; Gruber, N.; Chevallier, F.; Andres, R. J.; Balsamo, G.; Bopp, L.; Bréon, F.-M.; Broquet, G.; Dargaville, R.; Battin, T. J.; Borges, A.; Bovensmann, H.; Buchwitz, M.; Butler, J.; Canadell, J. G.; Cook, R. B.; DeFries, R.; Engelen, R.; Gurney, K. R.; Heinze, C.; Heimann, M.; Held, A.; Henry, M.; Law, B.; Luyssaert, S.; Miller, J.; Moriyama, T.; Moulin, C.; Myneni, R. B.; Nussli, C.; Obersteiner, M.; Ojima, D.; Pan, Y.; Paris, J.-D.; Piao, S. L.; Poulter, B.; Plummer, S.; Quegan, S.; Raymond, P.; Reichstein, M.; Rivier, L.; Sabine, C.; Schimel, D.; Tarasova, O.; Valentini, R.; Wang, R.; van der Werf, G.; Wickland, D.; Williams, M.; Zehner, C.

    2014-07-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher

  7. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    Science.gov (United States)

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-05-11

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  8. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    Directory of Open Access Journals (Sweden)

    Gang Huang

    2015-05-01

    Full Text Available This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  9. Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    Science.gov (United States)

    Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng

    2003-01-01

    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.

  10. Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations

    CERN Document Server

    Deng, Xue-Mei

    2015-01-01

    As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of \\textit{Cassini} to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun.

  11. Improved upper bounds on Kaluza-Klein gravity with current Solar System experiments and observations

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xue-Mei [Chinese Academy of Sciences, Purple Mountain Observatory, Nanjing (China); Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Shanghai Key Laboratory of Space Navigation and Position Techniques, Shanghai (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2015-11-15

    As an extension of previous works on classical tests of Kaluza-Klein (KK) gravity and as an attempt to find more stringent constraints on this theory, its effects on physical experiments and astronomical observations conducted in the Solar System are studied. We investigate the gravitational time delay at inferior conjunction caused by KK gravity, and use new Solar System ephemerides and the observation of Cassini to strengthen constraints on KK gravity by up to two orders of magnitude. These improved upper bounds mean that the fifth-dimensional space in the soliton case is a very flat extra dimension in the Solar System, even in the vicinity of the Sun. (orig.)

  12. Measuring parent-child mutuality: a review of current observational coding systems.

    Science.gov (United States)

    Funamoto, Allyson; Rinaldi, Christina M

    2015-01-01

    Mutuality is defined as a smooth, back-and-forth positive interaction consisting of mutual enjoyment, cooperation, and responsiveness. The bidirectional nature of mutuality is an essential component to the parent-child relationship since a high quality parent-child mutual relationship is crucial to encouraging children's positive socialization and development (S. Lollis & L. Kuczynski, 1997; E.E. Maccoby, 2007). Several coding systems have been developed in recent years to assess this distinct and crucial aspect of the parent-child relationship. The present article reviews the following four mutuality coding schemes: the Parent-Child Interaction System (K. Deater-Deckard, M.V. Pylas, & S. Petrill, 1997), the Mutually Responsive Orientation Scale (N. Aksan, G. Kochanska, & M.R. Ortmann, 2006), the Caregiver-Child Affect, Responsiveness, and Engagement Scale (C.S. Tamis-LeMonda, P. Ahuja, B. Hannibal, J.D. Shannon, & M. Spellmann, 2002), and the Synchrony and Control Coding Scheme (J. Mize & G.S. Pettit, 1997). The review will focus on observational coding schemes available to researchers interested a central element of quality parent-child relationships in the early years.

  13. Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations

    Science.gov (United States)

    Nishimura, Yukitoshi; Kikuchi, Takashi; Ebihara, Yusuke; Yoshikawa, Akimasa; Imajo, Shun; Li, Wen; Utada, Hisashi

    2016-08-01

    We investigated evolution of ionospheric currents during sudden commencements using a ground magnetometer network in conjunction with an all-sky imager, which has the advantage of locating field-aligned currents much more accurately than ground magnetometers. Preliminary (PI) and main (MI) impulse currents showed two-cell patterns propagating antisunward, particularly during a southward interplanetary magnetic field (IMF). Although this overall pattern is consistent with the Araki (solar wind sources of magnetospheric ultra-low-frequency waves. Geophysical monograph series, vol 81. AGU, Washington, DC, pp 183-200, 1994. doi: 10.1029/GM081p0183) model, we found several interesting features. The PI and MI currents in some events were highly asymmetric with respect to the noon-midnight meridian; the post-noon sector did not show any notable PI signal, but only had an MI starting earlier than the pre-noon MI. Not only equivalent currents but also aurora and equatorial magnetometer data supported the much weaker PI response. We suggest that interplanetary shocks impacting away from the subsolar point caused the asymmetric current pattern. Additionally, even when PI currents form in both pre- and post-noon sectors, they can initiate and disappear at different timings. The PI currents did not immediately disappear but coexisted with the MI currents for the first few minutes of the MI. During a southward IMF, the MI currents formed equatorward of a preexisting DP-2, indicating that the MI currents are a separate structure from a preexisting DP-2. In contrast, the MI currents under a northward IMF were essentially an intensification of a preexisting DP-2. The magnetometer and imager combination has been shown to be a powerful means for tracing evolution of ionospheric currents, and we showed various types of ionospheric responses under different upstream conditions.

  14. The impact of the ocean observing system on estimates of the California current circulation spanning three decades

    Science.gov (United States)

    Moore, Andrew M.; Jacox, Michael G.; Crawford, William J.; Laughlin, Bruce; Edwards, Christopher A.; Fiechter, Jérôme

    2017-08-01

    Data assimilation is now used routinely in oceanography on both regional and global scales for computing ocean circulation estimates and for making ocean forecasts. Regional ocean observing systems are also expanding rapidly, and observations from a wide array of different platforms and sensor types are now available. Evaluation of the impact of the observing system on ocean circulation estimates (and forecasts) is therefore of considerable interest to the oceanographic community. In this paper, we quantify the impact of different observing platforms on estimates of the California Current System (CCS) spanning a three decade period (1980-2010). Specifically, we focus attention on several dynamically related aspects of the circulation (coastal upwelling, the transport of the California Current and the California Undercurrent, thermocline depth and eddy kinetic energy) which in many ways describe defining characteristics of the CCS. The circulation estimates were computed using a 4-dimensional variational (4D-Var) data assimilation system, and our analyses also focus on the impact of the different elements of the control vector (i.e. the initial conditions, surface forcing, and open boundary conditions) on the circulation. While the influence of each component of the control vector varies between different metrics of the circulation, the impact of each observing system across metrics is very robust. In addition, the mean amplitude of the circulation increments (i.e. the difference between the analysis and background) remains relatively stable throughout the three decade period despite the addition of new observing platforms whose impact is redistributed according to the relative uncertainty of observations from each platform. We also consider the impact of each observing platform on CCS circulation variability associated with low-frequency climate variability. The low-frequency nature of the dominant climate modes in this region allows us to track through time the

  15. Simultaneous prenoon and postnoon observations of three field-aligned current systems from Viking and DMSP-F7

    Science.gov (United States)

    Ohtani, S.; Potemra, T. A.; Newell, P. T.; Zanetti, L. J.; Iijima, T.; Watanabe, M.; Yamauchi, M.; Elphinstone, R. D.; De La Beauijardie, O.; Blomberg, L. G.

    1995-01-01

    The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.

  16. Evaluating Current and Future Rangeland Health in the Great Basin Ecoregion Using NASA Earth Observing Systems

    Science.gov (United States)

    Essoudry, E.; Wilson, K.; Ely, J.; Patadia, N.; Zajic, B.; Torres-Perez, J. L.; Schmidt, C.

    2014-12-01

    The Great Basin ecoregion in the western United States represents one of the last large expanses of wild lands in the nation and is currently facing significant challenges due to human impacts, drought, invasive species encroachment such as cheatgrass, and climate change. Rangelands in the Great Basin are of important ecological and economic significance for the United States; however, 40% of public rangelands fail to meet required health standards set by the Bureau of Land Management (BLM). This project provided a set of assessment tools for researchers and land managers that integrate remotely-sensed and in situ datasets to quantify and mitigate threats to public lands in the Great Basin ecoregion. The study area, which accounts for 20% of the total Great Basin ecoregion, was analyzed using 30 m resolution data from Landsat 8. Present conditions were evaluated from vegetation indices, landscape features, hydrological processes, and atmospheric conditions derived from the remotely-sensed data and validated with available in situ ground survey data, provided by the BLM. Rangeland health metrics were developed and landscape change drivers were identified. Subsequently, projected climate conditions derived from the Coupled Model Intercomparison Project (CMIP5) were used to forecast the impact of changing climatic conditions within the study area according to the RCP4.5 and RCP8.5 projections. These forecasted conditions were used in the Maximum Entropy Model (MaxEnt) to predict areas at risk for rangeland degradation on 30 year intervals for 2040, 2070, and 2100. Finally, vegetation health risk maps were provided to the project partners to aid in future land management decisions in the Great Basin ecoregion. These tools provide a low cost solution to assess landscape conditions, provide partners with a metric to identify potential problematic areas, and mitigate serious threats to the ecosystems.

  17. Lagrangian Observations of Rip Currents

    Science.gov (United States)

    2007-09-01

    me with her faith that I could do it and her positive attitude despite the challenges she has faced as a new sixth-grade teacher. xiv THIS PAGE...turned off for the day. Throughout the deployment period drifters were deployed in similar-sized groups composed of new drifters and/or those that... Techonology , 20, 1069-1075, 2003. Schmidt, W.E., R.T. Guza, and D.N. Slinn, Surf zone currents over irregular bathymetry: Drifter observations and numerical

  18. Observable currents in lattice field theories

    CERN Document Server

    Zapata, José A

    2016-01-01

    Observable currents are spacetime local objects that induce physical observables when integrated on an auxiliary codimension one surface. Since the resulting observables are independent of local deformations of the integration surface, the currents themselves carry most of the information about the induced physical observables. I study observable currents in a multisymplectic framework for Lagrangian field theory over discrete spacetime. A weak version of observable currents preserves many of their properties, while inducing a family of observables capable of separating points in the space of physically distinct solutions. A Poisson bracket gives the space of observable currents the structure of a Lie algebra. Peierls bracket for bulk observables gives an algebra homomorphism mapping equivalence classes of bulk observables to weak observable currents. The study covers scalar fields, nonlinear sigma models and gauge theories (including gauge theory formulations of general relativity) on the lattice. Even when ...

  19. Auroral current systems in Saturn's magnetosphere: comparison of theoretical models with Cassini and HST observations

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-09-01

    Full Text Available The first simultaneous observations of fields and plasmas in Saturn's high-latitude magnetosphere and UV images of the conjugate auroral oval were obtained by the Cassini spacecraft and the Hubble Space Telescope (HST in January 2007. These data have shown that the southern auroral oval near noon maps to the dayside cusp boundary between open and closed field lines, associated with a major layer of upward-directed field-aligned current (Bunce et al., 2008. The results thus support earlier theoretical discussion and quantitative modelling of magnetosphere-ionosphere coupling at Saturn (Cowley et al., 2004, that suggests the oval is produced by electron acceleration in the field-aligned current layer required by rotational flow shear between strongly sub-corotating flow on open field lines and near-corotating flow on closed field lines. Here we quantitatively compare these modelling results (the "CBO" model with the Cassini-HST data set. The comparison shows good qualitative agreement between model and data, the principal difference being that the model currents are too small by factors of about five, as determined from the magnetic perturbations observed by Cassini. This is suggested to be principally indicative of a more highly conducting summer southern ionosphere than was assumed in the CBO model. A revised model is therefore proposed in which the height-integrated ionospheric Pedersen conductivity is increased by a factor of four from 1 to 4 mho, together with more minor adjustments to the co-latitude of the boundary, the flow shear across it, the width of the current layer, and the properties of the source electrons. It is shown that the revised model agrees well with the combined Cassini-HST data, requiring downward acceleration of outer magnetosphere electrons through a ~10 kV potential in the current layer at the open-closed field line boundary to produce an auroral oval of ~1° width with UV emission intensities of a few tens of kR.

  20. Observer Manual and Current Data Collection Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observer Program web page that lists the observer field manual and all current data collection forms that observers are required to take out to sea.

  1. Observer Manual and Current Data Collection Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observer Program web page that lists the observer field manual and all current data collection forms that observers are required to take out to sea.

  2. Data assimilation of physical and chlorophyll a observations in the California Current System using two biogeochemical models

    Science.gov (United States)

    Mattern, Jann Paul; Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2017-01-01

    Biogeochemical numerical models coupled to physical ocean circulation models are commonly combined with data assimilation in order to improve the models' state or parameter estimates. Yet much still needs to be learned about important aspects of biogeochemical data assimilation, such as the effect of model complexity and the importance of more realistic model formulations on assimilation results. In this study, 4D-Var-based state estimation is applied to two biogeochemical ocean models: a simple NPZD model with 4 biogeochemical variables (including 1 phytoplankton, 1 zooplankton) and the more complex NEMURO model, containing 11 biogeochemical variables (including 2 phytoplankton, 3 zooplankton). Both models are coupled to a 3-dimensional physical ocean circulation model of the U.S. west coast based on the Regional Ocean Modelling System (ROMS). Chlorophyll satellite observations and physical observations are assimilated into the model, yielding substantial improvements in state estimates for the observed physical and biogeochemical variables in both model formulations. In comparison to the simpler NPZD model, NEMURO shows a better overall fit to the observations. The assimilation also results in small improvements for simulated nitrate concentrations in both models and no apparent degradation of the output for other unobserved variables. The forecasting skill of the biogeochemical models is strongly linked to model performance without data assimilation: for both models, the improved fit obtained through assimilation degrades at similar relative rates, but drops to different absolute levels. Despite the better performance of NEMURO in our experiments, the choice of model and desired level of complexity should depend on the model application and the data available for assimilation.

  3. Nitration of Norcorrolatonickel(II): First Observation of a Diatropic Current in a System Comprising a Norcorrole Ring.

    Science.gov (United States)

    Deng, Zhihong; Li, Xiaofang; Stępień, Marcin; Chmielewski, Piotr J

    2016-03-14

    A one-pot reaction of 5,14-bis(mesityl)-norcorrolatonickel(II) with isoamyl nitrite under mild reaction conditions resulted in the consecutive formation of 3-nitro-, 3,12-dinitro- and 3,16-dinitro-, 3,7,12-trinitro-, and 3,7,12,16-tetranitro-norcorrolatonickel(II) in 50-80% yield. The substituted macrocycles retained their antiaromatic character. The observed regioselectivity of the substitution was analyzed by comparing the relative energies of the DFT energy-optimized models of the radical or arenium cationic intermediates that can be formed upon reaction with NO2. The nitrated systems were characterized by high-resolution mass spectrometry, NMR and UV/Vis spectroscopy, X-ray diffraction analysis, cyclic voltammetry, and DFT calculations. A significant and systematic cathodic shift of the redox couples was observed to correlate with an increasing number of the NO2 group. A decrease of the LUMO energies in the tri- and tetra-nitrated products stabilizes mono- and bis-reduced complexes of these ligands. The reduction takes place on the macrocycle rather than on the metal ion leading to the consecutive formation of stable paramagnetic monoanion radicals and water-soluble diamagnetic dianions with an aromatic character, which were revealed by ESR and (1)H NMR measurements, respectively. The electronic structures of the reduced forms were analyzed by extensive TD-DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Analytical Model and Characteristics of Current-Observer-Based Induction Motor Speed-Sensorless Vector Control System Taking into Account Iron Loss

    Science.gov (United States)

    Tsuji, Mineo; Xu, Fujin; Tsuruda, Yasutaka; Hamasaki, Shin-Ichi

    We have proposed a current-observer-based speed-sensorless vector control system that is in a rotating reference frame and takes into account iron loss. By deriving a linear model and by computing the trajectories of poles and zeros, the system stability on various parameters such as operating points, observer gain, controller gain and stator resistance has been investigated. Furthermore, an exact analytical model including PWM control, dead time and non-ideal features of power devices is developed. The characteristic improvement and stability limit of the proposed system are discussed by simulation and experiment.

  5. Associating ground magnetometer observations with current or voltage generators

    DEFF Research Database (Denmark)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.

    2017-01-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for driversof ionospheric currents: ionospheric elec tric fields/voltages constant while current/conductivity vary—the“voltage generator”—and current constant while electric field/conductivity vary—the “current generator.......”Statistical studies of ground magnetometer observations associated with dayside Transient High LatitudeCurrent Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm:some studies associate THLCS with voltage generators, others with current generators. We argue that mostof...... these two assumptions substantially alter expectations for magnetic perturbations associatedwith either a current or a voltage generator. Our results demonstrate that before interpreting groundmagnetometer observations of THLCS in the context of current/voltage generators, the location...

  6. The current status of observational cosmology

    Indian Academy of Sciences (India)

    Jeremiah P Ostriker; Tarun Souradeep

    2004-10-01

    Observational cosmology has indeed made very rapid progress in recent years. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spearheaded by measurements of the anisotropy in the cosmic microwave background (CMB) over the past decade. Observations of the large scale structure in the distribution of galaxies, high red-shift supernova, have provided the required complementary information. We review the current status of cosmological parameter estimates from joint analysis of CMB anisotropy and large scale structure (LSS) data. We also sound a note of caution on overstating the successes achieved thus far.

  7. Jupiter System Observer

    Science.gov (United States)

    Senske, Dave; Kwok, Johnny

    2008-01-01

    This slide presentation reviews the proposed mission for the Jupiter System Observer. The presentation also includes overviews of the mission timeline, science goals, and spacecraftspecifications for the satellite.

  8. Aerosol Observation System

    Data.gov (United States)

    Oak Ridge National Laboratory — The aerosol observation system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal...

  9. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  10. Forest biomass observation: current state and prospective

    Directory of Open Access Journals (Sweden)

    D. G. Schepaschenko

    2017-08-01

    Full Text Available With this article, we provide an overview of the methods, instruments and initiatives for forest biomass observation at global scale. We focus on the freely available information, provided by both remote and in-situ observations. The advantages and limitation of various space borne methods, including optical, radar (C, L and P band and LiDAR, as well as respective instruments available on the orbit (MODIS, Proba-V, Landsat, Sentinel-1, Sentinel-2 , ALOS PALSAR, Envisat ASAR or expecting (BIOMASS, GEDI, NISAR, SAOCOM-CS are discussed. We emphasize the role of in-situ methods in the development of a biomass models, providing calibration and validation of remote sensing data. We focus on freely available forest biomass maps, databases and empirical models. We describe the functionality of Biomass.Geo-Wiki.org portal, which provides access to a collection of global and regional biomass maps in full resolution with unified legend and units overplayed with high-resolution imagery. The Forest-Observation-System.net is announced as an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. Prospects of unmanned aerial vehicles in the forest inventory are briefly discussed. The work was partly supported by ESA IFBN project (contract 4000114425/15/NL/FF/gp.

  11. Longline Observer Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LODS, the Hawaii Longline Observer Data System, is a complete suite of tools designed to collect, process, and manage quality fisheries data and information. Guided...

  12. Observing farming systems

    DEFF Research Database (Denmark)

    Noe, Egon; Alrøe, Hugo Fjelsted

    2012-01-01

    In Denmark, agriculture is becoming increasingly specialised, and more and more actors are becoming involved in farm decision making. These trends are more or less pronounced in other European countries as well. We therefore find that to understand modern farming systems, we have to shift the focus...... of analysis from individual farmers to communication and social relations. This is where Luhmann’s social systems theory can offer new insights. Firstly, it can help observe and understand the operational closure and system logic of a farming system and how this closure is produced and reproduced. Secondly...

  13. Defining and resolving current systems in geospace

    Science.gov (United States)

    Ganushkina, N. Y.; Liemohn, M. W.; Dubyagin, S.; Daglis, I. A.; Dandouras, I.; De Zeeuw, D. L.; Ebihara, Y.; Ilie, R.; Katus, R.; Kubyshkina, M.; Milan, S. E.; Ohtani, S.; Ostgaard, N.; Reistad, J. P.; Tenfjord, P.; Toffoletto, F.; Zaharia, S.; Amariutei, O.

    2015-11-01

    Electric currents flowing through near-Earth space (R ≤ 12 RE) can support a highly distorted magnetic field topology, changing particle drift paths and therefore having a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly defined as (1) the dayside magnetopause Chapman-Ferraro currents, (2) the Birkeland field-aligned currents with high-latitude "region 1" and lower-latitude "region 2" currents connected to the partial ring current, (3) the magnetotail currents, and (4) the symmetric ring current. In the near-Earth nightside region, however, several of these current systems flow in close proximity to each other. Moreover, the existence of other temporal current systems, such as the substorm current wedge or "banana" current, has been reported. It is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed.

  14. Observed eddy dissipation in the Agulhas Current

    Science.gov (United States)

    Braby, Laura; Backeberg, Björn C.; Ansorge, Isabelle; Roberts, Michael J.; Krug, Marjolaine; Reason, Chris J. C.

    2016-08-01

    Analyzing eddy characteristics from a global data set of automatically tracked eddies for the Agulhas Current in combination with surface drifters as well as geostrophic currents from satellite altimeters, it is shown that eddies from the Mozambique Channel and south of Madagascar dissipate as they approach the Agulhas Current. By tracking the offshore position of the current core and its velocity at 30°S in relation to eddies, it is demonstrated that eddy dissipation occurs through a transfer of momentum, where anticyclones consistently induce positive velocity anomalies, and cyclones reduce the velocities and cause offshore meanders. Composite analyses of the anticyclonic (cyclonic) eddy-current interaction events demonstrate that the positive (negative) velocity anomalies propagate downstream in the Agulhas Current at 44 km/d (23 km/d). Many models are unable to represent these eddy dissipation processes, affecting our understanding of the Agulhas Current.

  15. HLS bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  16. Real-time current, wave, temperature, salinity, and meteorological data from Gulf of Maine Ocean Observing System (GoMOOS) buoys, 11/30/2003 - 12/7/2003 (NODC Accession 0001259)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gulf of Maine Ocean Observing System (GoMOOS) collected real-time data with buoy-mounted instruments (e.g., accelerometers and Acoustic Doppler Current...

  17. Some observational results of sea storm current

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ INTRODUCTION Dr. Hollister, a marine geologist of the Woods Hole Oceanographic Institution, first pointed out that there was ocean storm current in the ocean. He found out the wavy texture in the seabed core samples, and suggested that this wavy texture was caused by the high speed sea current in remote antiquity. He then suggested a bold hypothesis that there existed a benthic storm current near the ocean bottom, and presented this hypothesis at the IUGG conference held at San Francisco in 1963. Unfortunately, the attention was not drawn to the hypothesis at the conference, and the hypothesis was criticized as a sheer nonsense.

  18. System design for distributed adaptive observation systems

    NARCIS (Netherlands)

    Ditzel, M.; Kester, L.J.H.M.; Broek, S.P. van den

    2011-01-01

    Currently, there is no clear-cut approach or design methodology available for designing distributed adaptive observation systems, partly due to the necessity to combine elements and approaches from several technological and scientific communities. Recently, an effort was made addressing this issue

  19. Morphology of the ring current derived from magnetic field observations

    Directory of Open Access Journals (Sweden)

    G. Le

    2004-04-01

    Full Text Available Our examination of the 20 years of magnetospheric magnetic field data from ISEE, AMPTE/CCE and Polar missions has allowed us to quantify how the ring current flows and closes in the magnetosphere at a variety of disturbance levels. Using intercalibrated magnetic field data from the three spacecraft, we are able to construct the statistical magnetic field maps and derive 3-dimensional current density by the simple device of taking the curl of the statistically determined magnetic field. The results show that there are two ring currents, an inner one that flows eastward at ~3 RE and a main westward ring current at ~4–7 RE for all levels of geomagnetic disturbances. In general, the in-situ observations show that the ring current varies as the Dst index decreases, as we would expect it to change. An unexpected result is how asymmetric it is in local time. Some current clearly circles the magnetosphere but much of the energetic plasma stays in the night hemisphere. These energetic particles appear not to be able to readily convect into the dayside magnetosphere. During quiet times, the symmetric and partial ring currents are similar in strength (~0.5MA and the peak of the westward ring current is close to local midnight. It is the partial ring current that exhibits most drastic intensification as the level of disturbances increases. Under the condition of moderate magnetic storms, the total partial ring current reaches ~3MA, whereas the total symmetric ring current is ~1MA. Thus, the partial ring current contributes dominantly to the decrease in the Dst index. As the ring current strengthens the peak of the partial ring current shifts duskward to the pre-midnight sector. The partial ring current is closed by a meridional current system through the ionosphere, mainly the field-aligned current, which maximizes at local times near the dawn and dusk. The closure currents flow in

  20. Solar System Observations with JWST

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  1. After Action Reviews: Current Observations and Recommendations

    Science.gov (United States)

    2007-01-01

    without a verbatim quotation from the first paragraph of the 1993 Training Circular (TC 25-20), A Leader’s Guide to After-Action Reviews. It states...Viet Nam Wars. Marshall spoke with Soldiers in theatre , immediately after combat actions, and although sometimes disparaged because of limited numbers...1). The current EXROE has expanded from 15 to 22 chapters to reflect changes in training offered, but the AAR bottom line is repeated 8 verbatim in

  2. Currents in the Dead Sea: Lagrangian and Eulerian observations

    Science.gov (United States)

    Ozer, Tal; Gertman, Isaac; Katsenelson, Boris; Bodzin, Raanan; Lensly, Nadav

    2015-04-01

    The Dead Sea is a terminal hypersaline lake located in the lowest surface on Earth (currently -429 m bsl). The physical properties of the brine are significantly different than in common marine systems: the DS brine density is ~1.24 gr/cc and its viscosity ~3 times higher than marine systems. We present observational data on wind and currents in the Dead Sea. The observation setup includes a few fixed (Eulerian) stations which are equipped with wind meter and current meter profiler that covers the entire water column (ADCP). Thermal stratification is continuously measured in some of the stations using a thermistor chain. Lagrangian drifters that record the shallow water currents were released in liner array of single drifters between the fixed stations, and also in triplets (15 m triangle). The results include the measured time series data of wind (atmospheric forcing) and the measured current profiles from the fixed stations. Data of the Lagrangian drifters is presented as trajectories along with vector time series. Quality control check included comparison of drifter data and ADCP data whenever the drifters passed by the fixed stations; a very good agreement was found between the different measuring approaches. We discuss the following issues : (i) the relation between the wind and current data, (ii) the Lagrangian trajectories and transport aspects.

  3. Observed eddy dissipation in the Agulhas Current

    CSIR Research Space (South Africa)

    Braby, L

    2016-08-01

    Full Text Available Ruijter et al., 1999; Schouten et al., 2002; Tsugawa andHasumi, 2010]. These pulses have been shown to propagate poleward along the offshore edge of the Agulhas Current [van Leeuwen et al., 2000; Backeberg et al., 2008], occasionally affecting the...), Mesoscale activity in the Comoros Basin from satellite altimetry and a high resolution ocean circulation model, J. Geophys. Res. Oceans, 119, 4570–4760, doi:10.1002/2014JC010008. de Ruijter, W. P. M., P. J. van Leeuwen, and J. R. E. Lutjeharms (1999...

  4. Current Observational Constraints on Cosmic Doomsday

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yun

    2004-09-14

    In a broad class of dark energy models, the universe may collapse within a finite time t{sub c}. Here we study a representative model of dark energy with a linear potential, V({phi})=V{sub 0}(1 + {alpha}{phi}). This model is the simplest doomsday model, in which the universe collapses rather quickly after it stops expanding. Observational data from type Ia supernovae (SNe Ia), cosmic microwave background anisotropy (CMB), and large scale structure (LSS) are complementary in constraining dark energy models. Using the new SN Ia data (Riess sample), the CMB data from WMAP, and the LSS data from 2dF, we find that the collapse time of the universe is t{sub c} {approx}> 42 (24) gigayears from today at 68% (95%) confidence.

  5. OBSCAN Observer Scanning System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program deployed on commercial fishing vessels. After the data...

  6. Port Operational Marine Observing System

    Science.gov (United States)

    Palazov, A.; Stefanov, A.; Slabakova, V.; Marinova, V.

    2009-04-01

    The Port Operational Marine Observing System (POMOS) is a network of distributed sensors and centralized data collecting, processing and distributing unit. The system is designed to allow for the real-time assessment of weather and marine conditions throughout the major Bulgarian ports: Varna, Burgas and Balchik, supporting thereby Maritime administration to secure safety navigation in bays, canals and ports. Real-time information within harbors is obtained using various sensors placed at thirteen strategic locations to monitor the current state of the environment. The most important for navigation weather and sea-state parameters are measured: wind speed and direction, air temperature, relative humidity, atmospheric pressure, visibility, solar radiation, water temperature and salinity, sea level, currents speed and direction, mean wave's parameters. The system consist of: 11 weather stations (3 with extra solar radiation and 4 with extra visibility measurement), 9 water temperature and salinity sensors, 9 sea-level stations, two sea currents and waves stations and two canal currents stations. All sensors are connected to communication system which provides direct intranet access to the instruments. Every 15 minutes measured data is transmitted in real-time to the central collecting system, where data is collected, processed and stored in database. Database is triple secured to prevent data losses. Data collection system is double secured. Measuring system is secured against short power failure and instability. Special software is designed to collect, store, process and present environmental data and information on different user-friendly screens. Access to data and information is through internet/intranet with the help of browsers. Actual data from all measurements or from separate measuring place can be displayed on the computer screens as well as data for the last 24 hours. Historical data are available using report server for extracting data for selectable

  7. West Coast Observing System (WCOS) Temperature Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  8. The global Earth observation system of systems

    Science.gov (United States)

    Achache, José

    2010-05-01

    Recognizing the growing need for improved Earth observations, 140 governments and leading international organizations have established the Group on Earth Observations, or GEO, to collaborate and implement a Global Earth Observation System of Systems (GEOSS) by the year 2015. Countries and organizations are contributing their respective Earth monitoring systems, from satellites in space and in situ instruments on land, in the oceans and in the atmosphere. They are interlinking these systems so that, together, they provide a more complete picture of Earth's systems dynamics. GEO is developing common technical standards to pool observations and ensure their cross calibration and validation. It is building a web-based infrastructure to ensure easy access to the wealth of data and services contributed to, or generated by, GEOSS. GEO has been promoting the free and open sharing and dissemination of Earth observation data which has already driven significant changes in data distribution policies of several key Earth observing satellites: Landsat, Cbers and the future Sentinels of GMES. GEO is also reflecting on solutions to transition research systems into operational observing systems and ensure their long-term sustainability. First, the current status of GEOSS implementation and these core activities of GEO will be presented. Then, examples of global data sets and information systems or services developed through GEOSS will be presented: - a high-resolution global digital elevation model (DEM) based on Aster data was released by Japan and the USA. In situ measurements are now being used to improve the model as well as the stacking procedure used to develop it; - the Supersites initiative ensures coordinated access to data and information on natural hazards in geologically active regions. In light of the recent tragedy in Haiti, this project created a dedicated web site regularly updated with maps of seismicity, tectonics, Coulomb stress changes, topography, real and

  9. Observation of burst frequency in extracted ECR ion current

    NARCIS (Netherlands)

    Taki, G. S.; Sarma, P. R.; Drentje, A. G.; Nakagawa, T.; Ray, P. K.; Bhandari, R. K.

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC, Kolkata. In a recent experiment with neon ions, we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz r

  10. An optimal current observer for predictive current controlled buck DC-DC converters.

    Science.gov (United States)

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-05-19

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally.

  11. VLBI Observing System for VSOP

    Science.gov (United States)

    Ulvestad, J. S.; Murphy, D. W.

    1996-01-01

    The very long baseline interferometry (VLBI) Space Observatory Program (VSOP) satellite is scheduled for launch in September 1996. This paper describes the VLBI observing system for VSOP and its differences from ground radio telescope VLBI systems.

  12. Dynamics of the earth's ring current - Theory and observation

    Science.gov (United States)

    Williams, D. J.

    1985-01-01

    The development of currents within an arbitrary distribution of particles trapped in the geomagnetic field is described. These currents combine to form the earth's ring current and thus are responsible for the worldwide depressions of surface magnetic field strength during periods of magnetic activity known as magnetic storms. Following a brief review of trapped particle motion in magnetic fields, ring current development is described and presented in terms of basic field and particle distribution parameters. Experimental observations then are presented and discussed within the theoretical framework developed earlier. New results are presented which, in the area of composition and charge state observations, hold high promise in solving many long standing ring current problems. Finally, available experimental results will be used to assess the present understanding as to ring current sources, generation, and dissipation.

  13. Satellite observations of the northeast monsoon coastal current

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.; Rao, L.V.G.

    Satellite Infrared observations, from Advanced Very High Resolution Radiometer (AVHRR), during November 1987-February 1988 and hydrographic data from the eastern Arabian Sea are used to describe the poleward flowing coastal current in the eastern...

  14. Observability of Inertial Navigation System

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To improve the observability of strapdown inertial navigation system and the effectiveness of Kalman filter in the navigation system, the method of estimating the observability is analyzed based on eigenvalues and eigenvectors which are proved to be availabe, on this basis two-position alignment technigue is applied. The simulation shows that two-position alignment really makes the system's observability change from being incomplete to being complete, and the test method based on eigenvalues and eigenvectors is available to determine the observability of every state vector.

  15. Integrating Observations of the Boundary Current Flow around Sri Lanka

    Science.gov (United States)

    2015-09-30

    GOALS The long-term goal is to investigate the boundary-current and inter -basin ocean circulation which governs the conditions and variability in Bay...observations, and NASCar in general has a focus on the inter -basin exchange to which our observations are expected to provide important insight

  16. Field aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1973-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F-region which are interpreted as being caused by the payload's passage through a structured field aligned current system. The field aligned currents have a characteristic horizontal scale size of one kilometer. Analysis of one large field fluctuation gives a current density of 0.0001 amp/m sq.

  17. Field-aligned current observations in the polar cusp ionosphere

    Science.gov (United States)

    Ledley, B. G.; Farthing, W. H.

    1974-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F region that are interpreted as being caused by the passage of the payload through a structured field-aligned current system. The field-aligned currents have a characteristic horizontal scale size of about 1 km. Analysis of one large field fluctuation gives a current density of .001 A/sq m.

  18. Local structure of the magnetotail current sheet: 2001 Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Runov

    2006-03-01

    Full Text Available Thirty rapid crossings of the magnetotail current sheet by the Cluster spacecraft during July-October 2001 at a geocentric distance of 19 RE are examined in detail to address the structure of the current sheet. We use four-point magnetic field measurements to estimate electric current density; the current sheet spatial scale is estimated by integration of the translation velocity calculated from the magnetic field temporal and spatial derivatives. The local normal-related coordinate system for each case is defined by the combining Minimum Variance Analysis (MVA and the curlometer technique. Numerical parameters characterizing the plasma sheet conditions for these crossings are provided to facilitate future comparisons with theoretical models. Three types of current sheet distributions are distinguished: center-peaked (type I, bifurcated (type II and asymmetric (type III sheets. Comparison to plasma parameter distributions show that practically all cases display non-Harris-type behavior, i.e. interior current peaks are embedded into a thicker plasma sheet. The asymmetric sheets with an off-equatorial current density peak most likely have a transient nature. The ion contribution to the electric current rarely agrees with the current computed using the curlometer technique, indicating that either the electron contribution to the current is strong and variable, or the current density is spatially or temporally structured.

  19. ASTRO-G Observing Systems

    Science.gov (United States)

    Doi, A.; Tsuboi, M.; Kono, Y.; Takeuchi, H.; Mochizuki, N.; Murata, Y.; ASTRO-G Group

    2009-08-01

    ASTRO-G for the VSOP-2 project is a radio telescope satellite for a next-generation space very-long-baseline interferometry (VLBI) following HALCA for the VSOP project. It will be launched in 2012. We present the overview of ASTRO-G observing systems and available observing modes.

  20. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  1. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  2. Window observers for linear systems

    Directory of Open Access Journals (Sweden)

    Utkin Vadim

    2000-01-01

    Full Text Available Given a linear system x ˙ = A x + B u with output y = C x and a window function ω ( t , i.e., ∀ t , ω ( t ∈ {0,1 }, and assuming that the window function is Lebesgue measurable, we refer to the following observer, x ˆ = A x + B u + ω ( t L C ( x − x ˆ as a window observer. The stability issue is treated in this paper. It is proven that for linear time-invariant systems, the window observer can be stabilized by an appropriate design under a very mild condition on the window functions, albeit for linear time-varying system, some regularity of the window functions is required to achieve observer designs with the asymptotic stability. The corresponding design methods are developed. An example is included to illustrate the possible applications

  3. Observing System Evaluations Using GODAE Systems

    Science.gov (United States)

    2009-09-01

    Journal of Marine Systems 35...dimensional temperature fields: A first approach based on simulated observations. Journal of Marine Systems 46:85-98. Langland, R.H., and N.L. Baker...capabilities of multisatellite altimeter missions: First results with real data in the Mediterranean Sea. Journal of Marine Systems 65:190-211.

  4. Observed currents at Bombay High during a winter

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A.; Chandramohan, P.; Nayak, B.U.

    and diurnal tides were oriented roughly perpendicular to the shelf-break while the mean currents were northwestwards along the shelf-break. During the observation period, the mixed layer (-50 m) remained isothermal while a steady rise in temperature (~2˚C...

  5. Data assimilation in a coupled physical-biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: Part 3-Assimilation in a realistic context using satellite and in situ observations

    Science.gov (United States)

    Song, Hajoon; Edwards, Christopher A.; Moore, Andrew M.; Fiechter, Jerome

    2016-10-01

    A fully coupled physical and biogeochemical ocean data assimilation system is tested in a realistic configuration of the California Current System using the Regional Ocean Modeling System. In situ measurements for sea surface temperature and salinity as well as satellite observations for temperature, sea level and chlorophyll are used for the year 2000. Initial conditions of the combined physical and biogeochemical state are adjusted at the start of each 3-day assimilation cycle. Data assimilation results in substantial reduction of root-mean-square error (RMSE) over unconstrained model output. RMSE for physical variables is slightly lower when assimilating only physical variables than when assimilating both physical variables and surface chlorophyll. Surface chlorophyll RMSE is lowest when assimilating both physical variables and surface chlorophyll. Estimates of subsurface, nitrate and chlorophyll show modest improvements over the unconstrained model run relative to independent, unassimilated in situ data. Assimilation adjustments to the biogeochemical initial conditions are investigated within different regions of the California Current System. The incremental, lognormal 4-dimensional data assimilation method tested here represents a viable approach to coupled physical biogeochemical state estimation at practical computational cost.

  6. Observer Use of Standardized Observation Protocols in Consequential Observation Systems

    Science.gov (United States)

    Bell, Courtney A.; Yi, Qi; Jones, Nathan D.; Lewis, Jennifer M.; McLeod, Monica; Liu, Shuangshuang

    2014-01-01

    Evidence from a handful of large-scale studies suggests that although observers can be trained to score reliably using observation protocols, there are concerns related to initial training and calibration activities designed to keep observers scoring accurately over time (e.g., Bell, et al, 2012; BMGF, 2012). Studies offer little insight into how…

  7. Nephrogenic systemic fibrosis: Current concepts

    Directory of Open Access Journals (Sweden)

    Prasanta Basak

    2011-01-01

    Full Text Available Nephrogenic systemic fibrosis (NSF was first described in 2000 as a scleromyxedema-like illness in patients on chronic hemodialysis. The relationship between NSF and gadolinium contrast during magnetic resonance imaging was postulated in 2006, and subsequently, virtually all published cases of NSF have had documented prior exposure to gadolinium-containing contrast agents. NSF has been reported in patients from a variety of ethnic backgrounds from America, Europe, Asia and Australia. Skin lesions may evolve into poorly demarcated thickened plaques that range from erythematous to hyperpigmented. With time, the skin becomes markedly indurated and tethered to the underlying fascia. Extracutaneous manifestations also occur. The diagnosis of NSF is based on the presence of characteristic clinical features in the setting of chronic kidney disease, and substantiated by skin histology. Differential diagnosis is with scleroderma, scleredema, scleromyxedema, graft-versus-host disease, etc. NSF has a relentlessly progressive course. While there is no consistently successful treatment for NSF, improving renal function seems to slow or arrest the progression of this condition. Because essentially all cases of NSF have developed following exposure to a gadolinium-containing contrast agent, prevention of this devastating condition involves the careful avoidance of administering these agents to individuals at risk.

  8. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  9. Current and Future Flight Operating Systems

    Science.gov (United States)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  10. Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current

    Science.gov (United States)

    Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu

    2017-07-01

    The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.

  11. Developing a Carbon Observing System

    Science.gov (United States)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  12. Spanish Earth Observation Satellite System

    Science.gov (United States)

    Borges, A.; Cerezo, F.; Fernandez, M.; Lomba, J.; Lopez, M.; Moreno, J.; Neira, A.; Quintana, C.; Torres, J.; Trigo, R.; Urena, J.; Vega, E.; Vez, E.

    2010-12-01

    The Spanish Ministry of Industry, Tourism and Trade (MITyC) and the Ministry of Defense (MoD) signed an agreement in 2007 for the development of a "Spanish Earth Observation Satellite System" based, in first instance, on two satellites: a high resolution optical satellite, called SEOSAT/Ingenio, and a radar satellite based on SAR technology, called SEOSAR/Paz. SEOSAT/Ingenio is managed by MITyC through the Centre for the Development of Industrial Technology (CDTI), with technical and contractual support from the European Space Agency (ESA). HISDESA T together with the Spanish Instituto Nacional de Técnica Aeroespacial (INTA, National Institute for Aerospace Technology) will be responsible for the in-orbit operation and the commercial operation of both satellites, and for the technical management of SEOSAR/Paz on behalf of the MoD. In both cases EADS CASA Espacio (ECE) is the prime contractor leading the industrial consortia. The ground segment development will be assigned to a Spanish consortium. This system is the most important contribution of Spain to the European Programme Global Monitoring for Environment and Security, GMES. This paper presents the Spanish Earth Observation Satellite System focusing on SEOSA T/Ingenio Programme and with special emphasis in the potential contribution to the ESA Third Party Missions Programme and to the Global Monitoring for Environment and Security initiative (GMES) Data Access.

  13. Synthesis and Assimilation Systems - Essential Adjuncts to the Observing System

    Science.gov (United States)

    Rienecker, Michele M.; Lee, Tong

    2009-01-01

    Assimilation systems synthesize diverse in-situ and satellite data streams into full four-dimensional state estimates by combining the strengths of each data set and also of the model. The resulting analysis provides an integrated view of the information in the various observations as well as derived estimates of unobserved quantities. Assimilation systems are particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Increasingly, models and assimilation systems are being used to provide information about the current observing system and to help in the design plans for new observations. Whether it is as a user of observations or a contributor to evaluation of the observing system, ocean synthesis and assimilation systems are now an integral part of the global ocean observing and information system. Major advances have been made over the last decade under the auspices of WCRP's Climate Variability and Predictability Project (CLIVAR) and the Global Ocean Data Assimilation Experiment (GODAE). In addition to advances in the assimilation systems, there have been major developments in the observing system, with satellite altimetry, the tropical moored buoy arrays in the Pacific and Atlantic, and more recently Argo. These developments have led to significant advances in our understanding and prediction of ocean variations at both mesoscale and climate scales. Many challenges remain. Some of these challenges lie in the observations themselves, some in the assimilation systems that, even in the more recent era of unprecedented observations from satellite altimetry and Argo, provide different views of climate variations. Yet there are many examples of successful applications from ocean assimilation products. Use of these systems for assessing the observing system helps identify the strengths of each observation type

  14. Tide and tidal current observation in the Karimata Strait

    Science.gov (United States)

    Wei, Zexun; Fang, Guohong; Sulistiyo, Budi; Dwi Susanto, R.; Setiawan, Agus; Rameyo Adi, Tukul; Qiao, Fangli; Fan, Bin; Li, Shujiang

    2013-04-01

    B2 and B3 are in the Karimata Strait between Belitung Island and Kalimantan. All stations have the sea level and current profile observation data longer than 1 month. Based on the observation, we analyzed the harmonic constants of the tide and tidal current, and calculated the tidal current ellipse and the horizontal tidal energy flux. The results show that, (1) The type of tide in Karimata Strait is regular diurnal. (2)The amplitude of K1 is bigger than 60 cm at all stations, and the phase lag is about 150°. For semi-diurnal tides, the amplitude is smaller than 5cm. (3) All stations show reciprocating tidal current. The major axis of tidal current ellipse is about 10 cm/s for diurnal tides, and smaller than 5cm/s for semi-diurnal tides. (4) The tidal energy propagates from the South China Sea to Indonesian Seas through the Karimata Strait. For Section A, K1 energy flux density is 2.85 KW/m at A1 and 6.97 KW/m at A2. The K1 energy propagation cross section A is about 1.8 GW. For section B, the K1 energy flux density is 11.55 KW/m at B1, 6.42 KW/m at B2, and 7.49 KW/m at B3.

  15. Thermal currents in highly correlated systems

    OpenAIRE

    MORENO, J; Coleman, P.

    1996-01-01

    Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.

  16. Multiple Currents in the Gulf Stream System

    OpenAIRE

    Fuglister, F. C.

    2011-01-01

    A new interpretation of the accumulated temperature and salinity data from the Gulf Stream Area indicates that the System is made up of a series of overlapping currents. These currents are separated by relatively weak countercurrents. Data from a recent survey are presented as supporting this hypothesis.DOI: 10.1111/j.2153-3490.1951.tb00804.x

  17. Current frontiers in systemic sclerosis pathogenesis

    NARCIS (Netherlands)

    Ciechomska, Marzena; van Laar, Jacob; O'Reilly, Steven

    2015-01-01

    Systemic sclerosis is an autoimmune disease characterised by vascular dysfunction, impaired angiogenesis, inflammation and fibrosis. There is no currently accepted disease-modifying treatment with only autologous stem cell transplant showing clinically meaningful benefit. The lack of treatment optio

  18. Superpersistent Currents in Dirac Fermion Systems

    Science.gov (United States)

    2017-03-06

    TITLE AND SUBTITLE Superpersistent Currents in Dirac Fermion Systems 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0151 5c.   PROGRAM ELEMENT...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic...anomalous optical transitions, and spin control in topological insulator quantum dots, (4) the discovery of nonlinear dynamics induced anomalous Hall

  19. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  20. Dynamics of the southern California current system

    Science.gov (United States)

    di Lorenzo, Emanuele

    The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local

  1. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Beasley, Ryan A.

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  2. The CAWSES Global Observing Campaign on Tides: Current Status

    Science.gov (United States)

    Ward, W. E.; Gerding, M.; Goncharenko, L.; Keckhut, P.; Marsh, D.; Oberheide, J.; Rao, D. N.; Scheer, .; Singer, W.

    2007-05-01

    The CAWSES Global Tidal Campaign was initiated to encourage collaboration between satellite and ground based observations and to identify features in various observation types consistent with specific components. This project is one of several sponsored under Theme 3, Atmospheric Coupling Processes, of the international Climate and Weather of the Sun Earth System program (CAWSES, a SCOSTEP sponsored program). The overall goal of the campaign is to provide global data sets for several concentrated time periods over the next few years which includes coordinated ground-based and satellite measurements and modeling efforts. To unambiguously resolve the tidal components present in the Earth's atmosphere requires spatial and temporal sampling sufficient to resolve wavenumbers up to at least 5 and periods down to 4.8 hours every two to three days. Neither satellite or ground based observations on their own are capable of achieving these goals. Interpretation of tidal signatures in different observables (for example wind and temperature) is complicated by the fact the the associated latitudinal structures are typically different. A global network is required to allow these structures to be examined. Three campaign periods have been sceduled to date. The first tidal campaign took place from September 1 to October 31, 2005 and this year two campaigns, March 1 to April 31, and June 1 to August 15 are planned. The first of these latter campaigns will concentrate on the global tidal structures during equinox and their evolution and variability during this time period. The second of these campaigns will address the tidal structures during solstice conditions. Strong hemispheric asymmetries are know to develop in the structure of the migrating diurnal tide and it is of interest to determine the form of other components. These campaigns will allow the characterization of the heating sources, tidal components (migrating and nonmigrating), and tidal effects from the surface of the

  3. OBPRELIM Observer Preliminary Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Paper logs are the primary data collection tool used by observers of the Northeast Fisheries Observer Program and Industry Funded Scallop Program deployed on...

  4. The Future of Southern Ocean Observing Systems

    Science.gov (United States)

    Talley, L. D.

    2015-12-01

    Knowledge of the Southern Ocean's role in global climate from seasonal to millennial timescales is evolving, with rapidly increasing recognition of the centrality of the Southern Ocean to Earth's heat, carbon, nutrient, and freshwater budgets, and of the impact of interactions between the ocean and the major ice shelves and grounded ice sheets of Antarctica, which have been decreasing in mass. Observations in this data-sparse and logistically remote region have never been so important, and many nations are rising to the challenge of supporting both experiments and long-term sustained observations. As illustrated in the figure from Meredith et al. (Current Op. Env. Sustain. 2013), autonomous in situ technologies are at the fore because of the difficulty and expense of sending ships year-round and because the crucial satellite remote sensing must be accompanied by in situ observations, including beneath sea ice and ice shelves. The Southern Ocean Observing System (SOOS) has grown out of this recognized need for coordinated observations from the Antarctic coastline northward to the subtropics, from the bottom water production regions in coastal polynyas over the continental shelves, to the regions of interaction of warm ocean waters with Antarctic ice shelves, beneath the vast seasonal sea ice region, and in the hot spots of air-sea fluxes and cross-Antarctic Circumpolar Current (ACC) mixing where the ACC interacts with topography and continental boundaries. The future includes international coordination and collaboration and strengthening of new and existing technologies, which include satellite observing, ice-enabled profiling floats, profiling from marine mammals, moored measurements in many strategic locations, glider and other autonomous operations in all regions, and drilling through floating ice shelves to measure the ocean waters below. Improved and consistent weather observations around the Antarctic coastlines will improve forecasting and reanalysis. Ice

  5. Automatic system for ionization chamber current measurements.

    Science.gov (United States)

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  6. Experimental observation of direct current voltage-induced phase synchronization

    Indian Academy of Sciences (India)

    Haihong Li; Weiqing Liu; Qiongling Dai; Jinghua Xiao

    2006-09-01

    The dynamics of two uncoupled distinct Chua circuits driven by a common direct current voltage is explored experimentally. It was found that, with increasing current intensity, the dominant frequencies of these two Chua circuits will first vary at different speeds, approach an identical value for a certain current intensity and then separate. Techniques such as synchronization index and phase difference distribution were employed to analyze the phase coherence between these two Chua circuits.

  7. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  8. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. R. Tajane et al.

    2012-01-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  9. System Identification with Quantized Observations

    CERN Document Server

    Wang, Le Yi; Zhang, Jifeng; Zhao, Yanlong

    2010-01-01

    This book presents recently developed methodologies that utilize quantized information in system identification and explores their potential in extending control capabilities for systems with limited sensor information or networked systems. The results of these methodologies can be applied to signal processing and control design of communication and computer networks, sensor networks, mobile agents, coordinated data fusion, remote sensing, telemedicine, and other fields in which noise-corrupted quantized data need to be processed. Providing a comprehensive coverage of quantized identification,

  10. The Australian Geodetic Observing Program. Current Status and Future Plans

    Science.gov (United States)

    Johnston, G.; Dawson, J. H.

    2015-12-01

    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  11. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  12. Review of Current Nuclear Vacuum System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  13. Exponential Observers for Lotka-Volterra Systems

    Directory of Open Access Journals (Sweden)

    Dr. V. Sundarapandian

    2011-03-01

    Full Text Available This paper solves the exponential observer design problem for Lotka-Volterra systems. Explicitly, Sundarapandian’s theorem (2002 for observer design for exponential observer design is used to solve the nonlinear observer design problem for 2-species, 3-species and 4-species Lotka-Volterra systems. Numerical examples are provided to illustrate the effectiveness of the proposed exponential observer design for the Lotka-Volterra systems.

  14. Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation

    Science.gov (United States)

    Benassai, Guido; Aucelli, Pietro; Budillon, Giorgio; De Stefano, Massimo; Di Luccio, Diana; Di Paola, Gianluigi; Montella, Raffaele; Mucerino, Luigi; Sica, Mario; Pennetta, Micla

    2017-09-01

    The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (remotely piloted aircraft systems) observations, allowed us to detect the presence of rip currents and rip channels at the mouth of Sele River, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed us to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations.

  15. Symbiotic systems: observations and theory

    Science.gov (United States)

    Luna, Gerardo

    2016-07-01

    Although there is wide concensus about the binary nature of symbiotic stars, the nature of their central engine, the structure of the accretion flow and the accretion rate are poorly known. Modern observatories are now providing, for the first time, direct information about the central source of power and how it is fueled. The detection of hard (E > 20 keV) X-ray emission from a handful of symbiotics indicates that some symbiotics accrete at a low enough rate for a ˜10^{8} K accretion-disk boundary layer to remain optically thin and generate hard X-rays. Such high temperature is possible if the white dwarf is massive; symbiotics could thus be SNIa progenitors, the pilars of the current cosmological paradigm.

  16. Observers for a Class of Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ping

    2006-01-01

    The design of observers for a class of practical physical chaotic systems is discussed.By using only one state variable and its time derivatives,a control law is constructed to achieve the synchronization between the investigated chaotic systems and their observers,and the results are proved theoretically.Several observers of chaotic systems are designed by using this method.

  17. Current therapy of systemic sclerosis (scleroderma).

    Science.gov (United States)

    Müller-Ladner, U; Benning, K; Lang, B

    1993-04-01

    Treatment of systemic sclerosis (scleroderma) presents a challenge to both the patient and the physician. Established approaches include long-term physiotherapy, disease-modifying agents such as D-penicillamine, and treatment of organ involvement. These efforts are often unsatisfactory since the results are poor. However, recent advances include treatment of Raynaud's phenomenon (plasmapheresis, stanozolol, and prostacyclin analogues), scleroderma renal crisis (angiotensin-converting enzyme inhibitors), and gastric hypomotility (cisapride). This article covers the current approaches to the disease-modifying therapy including those related to the function of collagen-producing fibroblasts, vascular alterations, and the cellular and humoral immune system, as well as treatment of involved organs.

  18. West Coast Observing System (WCOS) ADCP Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  19. Climate-induced boreal forest change: Predictions versus current observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart; Stackhouse, Paul W.

    2007-04-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  20. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  1. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  2. The Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.

    2008-12-01

    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  3. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope

    Indian Academy of Sciences (India)

    P Amol; D Shankar; V Fernando; A Mukherjee; S G Aparna; R Fernandes; G S Michael; S T Khalap; N P Satelkar; Y Agarvadekar; M G Gaonkar; A P Tari; A Kankonkar; S P Vernekar

    2014-07-01

    We present current data from acoustic Doppler current profilers (ADCPs) moored on the continental slope off the west coast of India. The data were collected at four locations (roughly at Kanyakumari, Kollam, Goa, and Mumbai) extending from ∼7° to ∼20° N during 2008–2012. The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter. The alongshore decorrelation of theWICC is much stronger at intraseasonal periods, which are evident during the winter monsoon all along the coast. This intraseasonal variability is stronger in the south. A striking feature of the WICC is upward phase propagation, which implies an undercurrent whose depth becomes shallower as the season progresses. There are also instances when the phase propagates downward. At the two southern mooring locations off Kollam and Kanyakumari, the cross-shore current, which is usually associated with eddy-like circulations, is comparable to the alongshore current on occasions. A comparison with data from the OSCAR (Ocean Surface Currents Analyses Real-time) data product shows not only similarities, but also significant differences, particularly in the phase. One possible reason for this phase mismatch between the ADCP current at 48 m and the OSCAR current, which represents the current in the 0–30 m depth range, is the vertical phase propagation. Current products based on Ocean General Circulation Models like ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and GODAS (Global Ocean Data Assimilation System) show a weaker correlation with the ADCP current, and ECCO2 does capture some of the observed variability.

  4. Observed intraseasonal and seasonal variability of the West India Coastal Current on the continental slope

    Science.gov (United States)

    Amol, P.; Shankar, D.; Fernando, V.; Mukherjee, A.; Aparna, S. G.; Fernandes, R.; Michael, G. S.; Khalap, S. T.; Satelkar, N. P.; Agarvadekar, Y.; Gaonkar, M. G.; Tari, A. P.; Kankonkar, A.; Vernekar, S. P.

    2014-06-01

    We present current data from acoustic Doppler current profilers (ADCPs) moored on the continental slope off the west coast of India. The data were collected at four locations (roughly at Kanyakumari, Kollam, Goa, and Mumbai) extending from ˜ 7° to ˜ 20°N during 2008-2012. The observations show that a seasonal cycle, including an annual cycle, is present in the West India Coastal Current (WICC); this seasonal cycle, which strengthens northward, shows considerable interannual variability and is not as strongly correlated along the coast as in climatologies based on ship drifts or the altimeter. The alongshore decorrelation of the WICC is much stronger at intraseasonal periods, which are evident during the winter monsoon all along the coast. This intraseasonal variability is stronger in the south. A striking feature of the WICC is upward phase propagation, which implies an undercurrent whose depth becomes shallower as the season progresses. There are also instances when the phase propagates downward. At the two southern mooring locations off Kollam and Kanyakumari, the cross-shore current, which is usually associated with eddy-like circulations, is comparable to the alongshore current on occasions. A comparison with data from the OSCAR (Ocean Surface Currents Analyses Real-time) data product shows not only similarities, but also significant differences, particularly in the phase. One possible reason for this phase mismatch between the ADCP current at 48 m and the OSCAR current, which represents the current in the 0-30 m depth range, is the vertical phase propagation. Current products based on Ocean General Circulation Models like ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) and GODAS (Global Ocean Data Assimilation System) show a weaker correlation with the ADCP current, and ECCO2 does capture some of the observed variability.

  5. Satellite observations of an annual cycle in the Agulhas Current

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2012-08-01

    Full Text Available years of along-track altimetry and merged altimetry and close to 7 years of high frequency Sea Surface Temperature (SST) observations. While the position and width of the Agulhas Current’s dynamical core do not display an annual cycle, the geostrophic...

  6. Observability and Controllability for Smooth Nonlinear Systems

    OpenAIRE

    Schaft, A.J. van der

    1982-01-01

    The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

  7. Ocean Observing System Demonstrated in Alaska

    Science.gov (United States)

    Schoch, G. Carl; Chao, Yi

    2010-05-01

    To demonstrate the utility of an ocean observing and forecasting system with diverse practical applications—such as search and rescue, oil spill response (perhaps relevent to the current Gulf of Mexico oil spill), fisheries, and risk management—a unique field experiment was conducted in Prince William Sound, Alaska, in July and August 2009. The objective was to quantitatively evaluate the performance of numerical models developed for the sound with an array of fixed and mobile observation platforms (Figure 1). Prince William Sound was chosen for the demonstration because of historical efforts to monitor ocean circulation following the 1989 oil spill from the Exxon Valdez tanker. The sound, a highly crenulated embayment of about 10,000 square kilometers at approximately 60°N latitude along the northern coast of the Gulf of Alaska, includes about 6900 kilometers of shoreline, numerous islands and fjords, and an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. Hinchinbrook Entrance and Montague Strait are the two main deep water connections with the Gulf of Alaska. The economic base of communities in the region is almost entirely resource-dependent. For example, Cordova's economy is based on commercial fishing and Valdez's economy is supported primarily by the trans-Alaska oil pipeline terminal.

  8. Observability conditions of switched linear singular systems

    Institute of Scientific and Technical Information of China (English)

    Bin MENG; Jifeng ZHANG

    2007-01-01

    The observability problem of switched linear singular(SLS) systems is studied in this paper. Based on the observability definition, the unobservable subspaces of given switching laws are investigated under the condition that all subsystems are regular. A necessary condition and a sufficient condition for observability of SLS systems are given. It is shown that the observability and controllability are dual for some special SLS systems with circulatory switching laws. The method developed here is applicable to the observability analysis of normal switched linear systems.

  9. Designing a System for Observation of Teaching

    Science.gov (United States)

    Washer, Peter

    2006-01-01

    Purpose: The purpose of this paper is to review the literature on observation of teaching in a Higher Education (HE) context with a view to proposing some guidelines for the design and practice of institutional systems to observe teaching. Design/methodology/approach: A literature review and a proposed model for a system of observation of teaching…

  10. 3-dimensional current collection model. [of Tethered Satellite System 1

    Science.gov (United States)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  11. Maximising effectiveness of distributed mobile observation systems in dynamic situations

    NARCIS (Netherlands)

    Kester, L.J.H.M.; Ditzel, M.

    2014-01-01

    The trend in modern day observation systems is towards distributed (often mobile) systems that are able to automatically adapt themselves in dynamic situations. They have to make most of their resources to maximise the system's effectiveness, all at reasonable cost. Currently, there is no formal fra

  12. Development of the Counselor Response Observation System

    Science.gov (United States)

    Rantanen, Antti P.; Soini, Hannu S.

    2013-01-01

    The purpose of this study was to validate the measures included in the Counselor Response Observation System. The Counselor Response Observation System consists of the Counselor Response Coding System and the Skilled Verbal Responding Scale. Detailed results of their validity and reliability are presented.

  13. DMSP F7 observations of a substorm field-aligned current

    Science.gov (United States)

    Lopez, R. E.; Spence, H. E.; Meng, C.-I.

    1991-01-01

    Observations are described of a substorm field-aligned current (FAC) system traversed by the DMSP F7 spacecraft just after 0300 UT on April 25, 1985. It is shown that the substorm FAC portion of the current system was located equatorward of the boundary between open and closed field lines. The equatorward boundary of the substorm FAC into the magnetotail was mapped using the Tsyganenko (1987) model, showing that the boundary corresponds to 6.9 earth radii. The result is consistent with the suggestion of Akasofu (1972) and Lopez and Lui (1990) that the region of substorm initiation lies relatively close to the earth and the concept that an essential feature of substorms is the disruption and diversion of the near-earth current sheet.

  14. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...... gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...

  15. Catapult current sheet relaxation model confirmed by THEMIS observations

    Science.gov (United States)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  16. The Group on Earth Observations and the Global Earth Observation System of Systems

    Science.gov (United States)

    Achache, J.

    2006-05-01

    The Group on Earth Observations (GEO) is leading a worldwide effort to build a Global Earth Observation System of Systems (GEOSS) over the next 10 years. The GEOSS vision, articulated in its 10-Year Implementation Plan, represents the consolidation of a global scientific and political consensus: the assessment of the state of the Earth requires continuous and coordinated observation of our planet at all scales. GEOSS aims to achieve comprehensive, coordinated and sustained observations of the Earth system in order to improve monitoring of the state of the Earth; increase understanding of Earth processes; and enhance prediction of the behaviour of the Earth system. After the World Summit on Sustainable Development in 2002 highlighted the urgent need for coordinated observations relating to the state of the Earth, GEO was established at the Third Earth Observation Summit in February 2005 and the GEOSS 10-Year Implementation Plan was endorsed. GEO currently involves 60 countries; the European Commission; and 43 international organizations and has begun implementation of the GEOSS 10-Year Implementation Plan. GEO programme activities cover nine societal benefit areas (Disasters; Health; Energy; Climate; Water; Weather; Ecosystems; Agriculture; Biodiversity) and five transverse or crosscutting elements (User Engagement; Architecture; Data Management; Capacity Building; Outreach). All these activities have as their final goal the establishment of the "system of systems" which will yield a broad range of basic societal benefits, including the reduction of loss of life and property from tsunamis, hurricanes, and other natural disasters; improved water resource and energy management; and improved understanding of environmental factors significant to public health. As a "system of systems", GEOSS will work with and build upon existing national, regional, and international systems to provide comprehensive, coordinated Earth observations from thousands of instruments worldwide

  17. Catalytic currents in dithiophosphate-iodide systems

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.G.; Garifzyanov, A.R.; Toropova, V.F.

    1986-01-01

    Catalytic currents of oxidizing agents are used to determinerate constants of simultaneous chemical reactions. In the present paper, the authors investigated electrochemical oxidation of iodide ions in the presence of a series of dithiophosphates (RO)/sub 2/PSS/sup -/ at a glassy carbon electrode n that (R=CH/sub 3/, C/sub 2/H/sub 5/, n-C/sub 3/H/sub 7/, n-C/sub 4/H/sub 9/, iso-C/sub 4/H/sub 9/, and sec-C/sub 4/H/sub 9/). It is know n that dithiophosphates (DTP) are strong reducing agents and are oxidized by iodine. At the same time, as shown previously, electrochemical oxidation of DTP occurs at more positive potentials in comparision with the oxidation potential of iodide ions. This suggested that it is possible for a catalytic effect to be manifested in DTP-I/sup -/ systems. Current-voltage curves are shown for solutions of I/sup -/ in the absence and in the presence of DTP. All data indicate a catalytic nature of the electrode process. The obtained data show that the rates of reactions of DTP with iodine decrease with increasing volume and branching of the substituents at the phosphorus atom.

  18. Data assimilation in the low noise, accurate observation regime with application to the Kuroshio current

    CERN Document Server

    Vanden-Eijnden, Eric

    2012-01-01

    On-line data assimilation techniques such as ensemble Kalman filters and particle filters tend to loose accuracy dramatically when presented with an unlikely observation. Such an observation may be caused by an unusually large measurement error or reflect a rare fluctuation in the dynamics of the system. Over a long enough span of time it becomes likely that one or several of these events will occur. In some cases they are signatures of the most interesting features of the underlying system and their prediction becomes the primary focus of the data assimilation procedure. The Kuroshio current that runs along the eastern coast of Japan is an example of just such a system. It undergoes infrequent but dramatic changes of state between a small meander during which the current remains close to the coast of Japan, and a large meander during which the current bulges away from the coast. Because of the important role that the Kuroshio plays in distributing heat and salinity in the surrounding region, prediction of th...

  19. Development of BSCCO persistent current system

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jin Ho; Nah, Wan Soo; Kang, Hyung Koo; Yoo, Jung Hoon [Sungkyunkwan University, Seoul (Korea)

    1998-05-01

    We have developed temperature-variable critical current measurement device for high Tc superconducting wires. For this end, vacuum shroud was designed and fabricated, and that both signal lines and power lines into the vacuum shroud were installed on it. Secondly, the design procedures for the PCS were established for the high Tc superconducting wires based on the electrical circuit analyses during energizations. We have also evaluated mechanical properties such as hardness, strength and elongation of sheath alloys made by addition of Cu, Mg, Ti, Zr and Ni to Ag matrix using induction melting furnace. It was observed that hardness and strength were improved by increasing additive contents from 0.05 to 0.2 at.%. Specifically, the increment of strength was relatively higher for alloys made by addition of Mg, Cu and Zr elements than that made by Ni and Ti addition. On the other hand, elongation was measured to be significantly reduced for former sheath alloy materials. (author). 12 refs., 13 figs., 4 tabs.

  20. The Allen Telescope Array Commensal Observing System

    CERN Document Server

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  1. Current-potential characteristics of electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, V.S.

    1993-07-01

    This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

  2. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  3. Local Observability of Systems on Time Scales

    Directory of Open Access Journals (Sweden)

    Zbigniew Bartosiewicz

    2013-01-01

    unified way using the language of real analytic geometry, ideals of germs of analytic functions, and their real radicals. It is shown that some properties related to observability are preserved under various discretizations of continuous-time systems.

  4. Comparative radiopacity of six current adhesive systems.

    Science.gov (United States)

    de Moraes Porto, Isabel Cristina Celerino; Honório, Naira Cândido; Amorim, Dayse Annie Nicácio; de Melo Franco, Aurea Valéria; Penteado, Luiz Alexandre Moura; Parolia, Abhishek

    2014-01-01

    The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images. This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin. To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software. The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05). Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel. This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.

  5. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  6. Superconducting Current Leads for Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...

  7. Observed residual currents off the Changjiang (Yangtze) River mouth in summertime of 1959 and 1982

    Institute of Scientific and Technical Information of China (English)

    朱建荣; 戚定满; 肖成猷

    2004-01-01

    Data taken in two large scale ocean observations in China in summer 1959 and 1982 were used to analyze the residual current off the Changjiang (Yangtze) River mouth. The currents at surface off the mouth in July 1959 and 1982 flow northeastward and eastward due to the river discharge, the current speed was larger in1982 than in 1959. All the bottom currents flow landward due to baroclinic effect. The surface current was controlled by the river runoff and the Taiwan Warm Current (TWC). A return current at surface off the mouth was observed in September 1959. In general, the bottom currents were controlled by the TWC in most study area in addition to the runoff near the mouth. Although driven by 3-D model with the monthly averaged forces (river discharge, wind stress, baroclinic effect, open boundary water volume flux and tidal mixing) in August, the simulated circulations were basically consistent with the observed ones with episodic time manner.

  8. Current trends in health insurance systems: OECD countries vs. Japan.

    Science.gov (United States)

    Sasaki, Toshiyuki; Izawa, Masahiro; Okada, Yoshikazu

    2015-01-01

    Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients' visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing.

  9. Current Trends in Health Insurance Systems: OECD Countries vs. Japan

    Science.gov (United States)

    SASAKI, Toshiyuki; IZAWA, Masahiro; OKADA, Yoshikazu

    2015-01-01

    Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients’ visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing. PMID:25797778

  10. ST5 Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents and Its Implication to the Cross-Polar Cap Pedersen Currents

    Science.gov (United States)

    Le, Guan; Slavin, J. A.; Strangeway, Robert

    2011-01-01

    In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total R1 currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  11. Classification framework for partially observed dynamical systems

    Science.gov (United States)

    Shen, Yuan; Tino, Peter; Tsaneva-Atanasova, Krasimira

    2017-04-01

    We present a general framework for classifying partially observed dynamical systems based on the idea of learning in the model space. In contrast to the existing approaches using point estimates of model parameters to represent individual data items, we employ posterior distributions over model parameters, thus taking into account in a principled manner the uncertainty due to both the generative (observational and/or dynamic noise) and observation (sampling in time) processes. We evaluate the framework on two test beds: a biological pathway model and a stochastic double-well system. Crucially, we show that the classification performance is not impaired when the model structure used for inferring posterior distributions is much more simple than the observation-generating model structure, provided the reduced-complexity inferential model structure captures the essential characteristics needed for the given classification task.

  12. The Burst Observer and Optical Transient Exploring System (BOOTES)

    Science.gov (United States)

    Castro-Tirado, A. J.; Soldán, J.; Bernas, M.; Páta, P.; Rezek, T.; Hudec, R.; Mateo Sanguino, T. J.; de La Morena, B.; Berná, J. A.; Rodríguez, J.; Peña, A.; Gorosabel, J.; Más-Hesse, J. M.; Giménez, A.

    1999-09-01

    The Burst Observer and Optical Transient Exploring System (BOOTES) is considered as a part of the preparations for the ESA's satellite INTEGRAL, and is currently being developed in Spain, in collaboration with two Czech institutions. It makes use of two sets of wide-field cameras 240 kms apart, and two robotic 0.3-m telescopes. The first observing station (BOOTES-1) is located in Huelva (Spain) and the first light was obtained in July 1998. During the test phase, it has provided rapid follow-up observations for 5 GRBs detected by the BATSE aboard the CGRO. The system will fully operate in late 1999.

  13. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods to...

  14. DAQ System of Current Based on MNSR

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The flux or power should be acquired using the detector in the operation of MNSR. As usual, the signal of detector is current, and it is very width range with 10-11-10-6 A. It is hard to satisfy the linearity to amplify this signal by using fix gain

  15. Observational evidence for remote forcing of the west India coastal current

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Suresh, I.; Shankar, D.; Sundar, D.; Jayakumar, S.; Mehra, P.; Desai, R.G.P.; Pednekar, P.S.

    remote and local forcing in observations. Using field measurements (current, sea level, and wind) for a month during March-April 2003 off Goa in the near-coast regime of the West India Coastal Current (WICC), we show that the current was driven by local...

  16. Using the Nordic Geodetic Observing System for land uplift studies

    Science.gov (United States)

    Nordman, M.; Poutanen, M.; Kairus, A.; Virtanen, J.

    2014-07-01

    Geodetic observing systems have been planned and developed during the last decade. An ideal observing system consists of a network of geodetic observing stations with several techniques at the same site, publicly accessible databases, and as a product delivers data time series, combination of techniques or some other results obtained from the data sets. Globally, there is the International Association of Geodesy (IAG) Global Geodetic Observing System (GGOS), and there are ongoing attempts to create also regional observing systems. In this paper we introduce one regional system, the Nordic Geodetic Observing System (NGOS) hosted by the Nordic Geodetic Commission (NKG). Data availability and accessibility are one of the major issues today. We discuss in general data-related topics, and introduce a pilot database project of NGOS. As a demonstration of the use of such a database, we apply it for postglacial rebound studies in the Fennoscandian area. We compare land uplift values from three techniques, GNSS, tide gauges and absolute gravity, with the Nordic Geodetic Commission NKG2005LU land uplift model for Fennoscandia. The purpose is to evaluate the data obtained from different techniques and different sources and get the most reliable values for the uplift using publicly available data. The primary aim of observing systems will be to produce data and other products needed by multidisciplinary projects, such as Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas (DynaQlim) or the European Plate Observing System (EPOS), but their needs may currently exceed the scope of an existing observing system. We discuss what requirements the projects pose to observing systems and their development. To make comparisons between different studies possible and reliable, the researcher should document what they have in detail, either in appendixes, supplementary material or some other available format.

  17. Information Systems: Current Developments and Future Expansion.

    Science.gov (United States)

    1970

    On May 20, 1970, a one-day seminar was held for Congressional members and staff. The papers given at this seminar and included in the proceedings are: (1) "Understanding Information Systems" by J. D. Aron, (2) "Computer Applications in Political Science" by Kenneth Janda, (3) "Who's the Master of Your Information System?" by Marvin Kornbluh, (4)…

  18. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Feridoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2010-07-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Feridoon-kenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year. This system performs the forcing in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, dominates the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  19. Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope

    Indian Academy of Sciences (India)

    A Mukherjee; D Shankar; V Fernando; P Amol; S G Aparna; R Fernandes; G S Michael; S T Khalap; N P Satelkar; Y Agarvadekar; M G Gaonkar; A P Tari; A Kankonkar; S Vernekar

    2014-08-01

    cross-shore flows are seen during spring and the summer monsoon (June–August) and these flows are seen to be associated with eddy-like circulations in the altimeter data. We use the ADCP data to validate popular current data products like OSCAR (Ocean Surface Currents Analyses Real-time), ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II), and GODAS (Global Ocean Data Assimilation System). The OSCAR currents at Paradip match the observed currents well, but the correlation is much weaker at the other three locations. Both ECCO2 and GODAS fair poorly, particularly the latter because its variability in this boundary-current regime is extremely weak. Though it performs badly at Paradip, ECCO2 does capture the observed variability on occasions at the other locations.

  20. Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope

    Science.gov (United States)

    Mukherjee, A.; Shankar, D.; Fernando, V.; Amol, P.; Aparna, S. G.; Fernandes, R.; Michael, G. S.; Khalap, S. T.; Satelkar, N. P.; Agarvadekar, Y.; Gaonkar, M. G.; Tari, A. P.; Kankonkar, A.; Vernekar, S.

    2014-08-01

    cross-shore flows are seen during spring and the summer monsoon (June-August) and these flows are seen to be associated with eddy-like circulations in the altimeter data. We use the ADCP data to validate popular current data products like OSCAR (Ocean Surface Currents Analyses Real-time), ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II), and GODAS (Global Ocean Data Assimilation System). The OSCAR currents at Paradip match the observed currents well, but the correlation is much weaker at the other three locations. Both ECCO2 and GODAS fair poorly, particularly the latter because its variability in this boundary-current regime is extremely weak. Though it performs badly at Paradip, ECCO2 does capture the observed variability on occasions at the other locations.

  1. Introduction to Observing System Simulation Experiments (OSSEs)

    Science.gov (United States)

    Prive, Nikki C.

    2014-01-01

    This presentation gives a brief overview of Observing System Simulation Experiments (OSSEs), including what OSSEs are, and how and why they are performed. The intent is to educate the audience in light of the OSSE-related sections of the Forecast Improvement Act (H.R. 2413).

  2. TRICLOBS portable triband color lowlight observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2009-01-01

    We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an uncooled longwave infrared microbolo

  3. Development of China Digital Seismological Observational Systems

    Institute of Scientific and Technical Information of China (English)

    刘瑞丰; 吴忠良; 阴朝民; 陈运泰; 庄灿涛

    2003-01-01

    Development of China Digital Seismological Observational Systems during 1996~2000 and the Capital Circle Area Seismograph Network during 1999~2001 are introduced, and the station distributions, instruments used, main tasks of National Digital Seismograph Network, Regional Digital Seismograph Network and Portable Digital Seismograph Network are introduced chiefly.

  4. TRICLOBS portable triband color lowlight observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2009-01-01

    We present the design and first test results of the TRICLOBS (TRI-band Color Low-light OBServation) system The TRICLOBS is an all-day all-weather surveillance and navigation tool. Its sensor suite consists of two digital image intensifiers (Photonis ICU's) and an uncooled longwave infrared

  5. Analysis of Sqp current systems by using corrected geomagneticcoordinates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Spq equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field-aligned current. Spq is unsymmetrical in both polar regions. In this paper, the Spq current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the Spq current indifferent systems are compared. Then the causes of Spq asymmetry in the GM coordinates are discussed; the effects of each component in Spq are determined.

  6. Remote forcing of subsurface currents and temperatures near the northern limit of the California Current System

    Science.gov (United States)

    Engida, Zelalem; Monahan, Adam; Ianson, Debby; Thomson, Richard E.

    2016-10-01

    Local and remote wind forcing of upwelling along continental shelves of coastal upwelling regions play key roles in driving biogeochemical fluxes, including vertical net fluxes of carbon and nutrients. These fluxes are responsible for high primary productivity, which in turn supports a lucrative fishery in these regions. However, the relative contributions of local versus remote wind forcing are not well quantified or understood. We present results of coherence analyses between currents at a single mooring site (48.5°N, 126°W) in the northern portion of the California Current System (CalCS) from 1989 to 2008 and coincident time series of North America Regional Reanalysis (NARR) 10 m wind stress within the CalCS (36-54°N, 120-132°W). The two-decade-long current records from the three shallowest depths (35, 100, and 175 m) show a remote response to winds from south as far as 36°N. In contrast, only temperatures at the deepest depth (400 m) show strong coherences with remote winds. Weaker local wind influence is observed in both the currents and 400 m temperatures but is mostly due to the large spatial coherence within the wind field itself. Lack of coherence between distal winds and the 400 m currents suggests that the temperature variations at that depth are driven by vertical motion resulting from poleward travelling coastal trapped waves (CTWs). Understanding the effects of remote forcing in coastal upwelling regions is necessary for determining the occurrence and timing of extreme conditions in coastal oceans, and their subsequent impact on marine ecosystems.

  7. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    Science.gov (United States)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  8. High latitude currents in the 0600 to 0900 MLT sector - Observations from Viking and DMSP-F7

    Science.gov (United States)

    Bythrow, P. F.; Potemra, T. A.; Zanetti, L. J.; Erlandson, R. A.; Hardy, D. A.; Rich, F. J.; Acuna, M. H.

    1987-01-01

    High-resolution magnetic field and charged-particle data acquired on March 25, 1986 by the Viking and DMSP-F7 satellites, as they traversed the dawn sector auroral zone on nearly antiparallel trajectories within 40 min of each oher, are analyzed. Magnetic field measurements by Viking at 0850 MLT and by DMSP at 0630 MLT indicate the presence of a large-scale earthward-directed region 1 Birkeland current and an upward-flowing region 2 current. Both satellites also observed a third Birkeland current adjacent to and poleward of the region 1 system with opposite flow. This poleward system is about 0.5 deg invariant latitude wide and has a current density comparable to the region 1 and 2 systems. The highest-latitude current is identified as region 0. Its charged-particle signatures were used to infer field line mapping to the equatorial plane.

  9. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  10. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, Andrew E.; Behnke, Jeanne; Lowe, Dawn; Ramapriyan, H. K.

    2009-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA s Earth science data and services. Users can search, manage, and access the contents of ECHO s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for determining

  11. Current trends on knowledge-based systems

    CERN Document Server

    Valencia-García, Rafael

    2017-01-01

    This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used...

  12. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  13. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  14. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple

  15. Acoustic Doppler Current Profiler observations in the southern Caspian Sea: shelf currents and flow field off Freidoonkenar Bay, Iran

    Directory of Open Access Journals (Sweden)

    P. Ghaffari

    2009-12-01

    Full Text Available The results of offshore bottom-mounted ADCP measurements and wind records carried out from August to September 2003 in the coastal waters off Freidoonkenar Bay (FB in the south Caspian Sea (CS are examined in order to characterize the shelf motion, the steady current field and to determine the main driving forces of currents on the study area. Owing to closed basin and absence of the astronomical tide, the atmospheric forcing plays an important role in the flow field of the CS. The lasting regular sea breeze system is present almost throughout the year that performs motive force in diurnal and semi-diurnal bands similar to tides in other regions. In general, current field in the continental shelf could be separated into two distinguishable schemes, which in cross-shelf direction is dominated by high frequencies (1 cpd and higher frequencies, and in along-shelf orientation mostly proportional to lower frequencies in synoptic weather bands. Long-period wave currents, whose velocities are much greater than those of direct wind-induced currents, are dominating the current field in the continental shelf off FB. The propagation of the latter could be described in terms of shore-controlled waves that are remotely generated and travel across the shelf in the southern CS. It has also been shown that long term displacements in this area follow the classic cyclonic, circulation pattern in the southern CS.

  16. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  17. GENERAL EARTHQUAKE-OBSERVATION SYSTEM (GEOS).

    Science.gov (United States)

    Borcherdt, R.D.; Fletcher, Joe B.; Jensen, E.G.; Maxwell, G.L.; VanSchaack, J.R.; Warrick, R.E.; Cranswick, E.; Johnston, M.J.S.; McClearn, R.

    1985-01-01

    Microprocessor technology has permitted the development of a General Earthquake-Observation System (GEOS) useful for most seismic applications. Central-processing-unit control via robust software of system functions that are isolated on hardware modules permits field adaptability of the system to a wide variety of active and passive seismic experiments and straightforward modification for incorporation of improvements in technology. Various laboratory tests and numerous deployments of a set of the systems in the field have confirmed design goals, including: wide linear dynamic range (16 bit/96 dB); broad bandwidth (36 hr to 600 Hz; greater than 36 hr available); selectable sensor-type (accelerometer, seismometer, dilatometer); selectable channels (1 to 6); selectable record mode (continuous, preset, trigger); large data capacity (1. 4 to 60 Mbytes); selectable time standard (WWVB, master, manual); automatic self-calibration; simple field operation; full capability to adapt system in the field to a wide variety of experiments; low power; portability; and modest costs. System design goals for a microcomputer-controlled system with modular software and hardware components as implemented on the GEOS are presented. The systems have been deployed for 15 experiments, including: studies of near-source strong motion; high-frequency microearthquakes; crustal structure; down-hole wave propagation; teleseismicity; and earth-tidal strains.

  18. Current problems of dynamics of moons of planets and binary asteroids based on observations

    Science.gov (United States)

    Emel'yanov, N. V.

    2017-01-01

    The general approach to studying the dynamics of moons of planets and asteroids consists in developing more and more accurate models of motion based on observational data. Not only the necessary ephemerides, but also some physical parameters of planets and moons are obtained this way. It is demonstrated in the present study that progress in this field is driven not only by the increase in accuracy of observations. The accuracy of ephemerides may be increased by expanding the observation time interval. Several problems arise on the way toward this goal. Some of them become apparent only when the procedure of observational data processing and use is examined in detail. The method used to derive astrometric data by processing the results of photometric observations of mutual occultations and eclipses of planetary moons is explained below. The primary contribution to the error of astrometric results is produced by the unaccounted noise level in photometric readings and the inaccuracy of received values of the albedo of moons. It is demonstrated that the current methods do not allow one to eliminate the noise completely. Extensive additional photometric measurements should be performed at different angles of rotation of moons and in different spectral bands of the visible wavelength range in order to obtain correct values of the albedo of moons. Many new distant moons of the major planets have been discovered in the early 21st century. However, the observations of these moons are scarce and were performed over short time intervals; as a result, some of the moons were lost. The necessity of further observations of these Solar System bodies is pointed out in the present study. Insufficient knowledge of asteroid masses is an obstacle to improving the accuracy of the ephemerides of Mars. The basic method for determining the masses of large asteroids consists in analyzing their influence on the motion of Mars, the Earth, and spacecraft. The masses of more than 100 large

  19. Adaptive current compensation with nonlinear disturbance observer for single-sided linear induction motor considering dynamic eddy-effect

    Institute of Scientific and Technical Information of China (English)

    DENG Jiang-ming; CHEN Te-fang; CHEN Chun-yang

    2015-01-01

    An adaptive current compensation control for a single-sided linear induction motor (SLIM) with nonlinear disturbance observer was developed. First, to maintaint-axis secondary component flux constant with consideration of the specially dynamic eddy-effect (DEE) of the SLIM, a instantaneously tracing compensation ofm-axis current component was analyzed. Second, adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer (NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.

  20. Current status of dentin adhesive systems.

    Science.gov (United States)

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  1. NADIR: A Flexible Archiving System Current Development

    Science.gov (United States)

    Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.

    2014-05-01

    The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.

  2. Observations of an extreme planetary system

    Science.gov (United States)

    Raetz, Stefanie; Schmidt, Tobias O. B.; Briceno, Cesar; Neuhäuser, Ralph

    2015-12-01

    Almost 500 planet host stars are already known to be surrounded by more than one planet. Most of them (except HR8799) are old and all planets were found with the same or similar detection method.We present an unique planetary system. For the first time, a close in transiting and a wide directly imaged planet are found to orbit a common host star which is a low mass member of a young open cluster. The inner candidate is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star and was detected in our international monitoring campaign of young stellar clusters. The transit shape is changing between different observations and the transit even disappears and reappears. This unusual transit behaviour can be explained by a precessing planet transiting a gravity-darkened star.The outer candidate was discovered in the course of our direct imaging survey with NACO at ESO/VLT. Both objects are consistent with a relation to protoplanetary disc lifetimes. Furthermore, this system with two planets on such extreme orbits gives us the opportunity to study the possible outcome of planet-planet scattering theories for the first time by observations.I will report on our monitoring and photometric follow-up observations as well as on the direct detection and the integral field spectroscopy of this extreme planetary system.

  3. Global Mercury Observation System (GMOS) surface observation data.

    Data.gov (United States)

    U.S. Environmental Protection Agency — GMOS global surface elemental mercury (Hg0) observations from 2013 & 2014. This dataset is associated with the following publication: Sprovieri, F., N. Pirrone,...

  4. CURRENT VIEWS OF THE GLEASON GRADING SYSTEM

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-07-01

    Full Text Available The authors provide the proceedings of the 2005 First International Society of Urological Pathology Consensus Conference and the basic provisions that differ the modified Gleason grading system from its original interpretation. In particular, we should do away with Gleason grade 1 (or 1 + 1 = 2 while assessing the needle biopsy specimens. Contrary to the recommendations by Gleason himself, the conference decided to apply stringent criteria for using Gleason grades 3 and 4. This is due to the fact that these grades are of special prognostic value so it is important to have clear criteria in defining each Gleason grade. Notions, such as secondary and tertiary Gleason patterns, are considered; detailed recommendations are given on the lesion extent sufficient to diagnose these components.

  5. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  6. NASA's Earth Observing Data and Information System

    Science.gov (United States)

    Mitchell, A. E.; Behnke, J.; Lowe, D.; Ramapriyan, H. K.

    2009-12-01

    NASA’s Earth Observing System Data and Information System (EOSDIS) has been a central component of NASA Earth observation program for over 10 years. It is one of the largest civilian science information system in the US, performing ingest, archive and distribution of over 3 terabytes of data per day much of which is from NASA’s flagship missions Terra, Aqua and Aura. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. The EOSDIS data centers, collocated with centers of science discipline expertise, archive and distribute standard data products produced by science investigator-led processing systems. Key to the success of EOSDIS is the concept of core versus community requirements. EOSDIS supports a core set of services to meet specific NASA needs and relies on community-developed services to meet specific user needs. EOSDIS offers a metadata registry, ECHO (Earth Observing System Clearinghouse), through which the scientific community can easily discover and exchange NASA’s Earth science data and services. Users can search, manage, and access the contents of ECHO’s registries (data and services) through user-developed and community-tailored interfaces or clients. The ECHO framework has become the primary access point for cross-Data Center search-and-order of EOSDIS and other Earth Science data holdings archived at the EOSDIS data centers. ECHO’s Warehouse Inventory Search Tool (WIST) is the primary web-based client for discovering and ordering cross-discipline data from the EOSDIS data centers. The architecture of the EOSDIS provides a platform for the publication, discovery, understanding and access to NASA’s Earth Observation resources and allows for easy integration of new datasets. The EOSDIS also has developed several methods for incorporating socioeconomic data into its data collection. Over the years, we have developed several methods for

  7. Virtual smile design systems: a current review.

    Science.gov (United States)

    Zimmermann, Moritz; Mehl, Albert

    2015-01-01

    In the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. Thanks to new technological advances in the computer- assisted design and computer-assisted manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using the backward planning approach appears useful and feasible. Today, a virtual smile design can be used as the basis for creating an esthetic virtual setup of the desired final result. The virtual setup, in turn, is used to plan further treatment steps in an interdisciplinary team approach, and communicate the results to the patient. The smile design concept and the esthetic analyses required for it are described in this article. We include not only a step-by-step description of the virtual smile design workflow, but also describe and compare the several available smile design options and systems. Subsequently, a brief discussion of the advantages and limitations of virtual smile design is followed by a section on different ways to integrate a two-dimensional (2D) smile design into the digital three-dimensional (3D) workflow. New technological developments are also described, such as the integration of smile designs in digital face scans, and 3D diagnostic follow-up using intraoral scanners.

  8. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  9. Multiple planetary systems: Properties of the current sample

    Science.gov (United States)

    Hobson, Melissa J.; Gomez, Mercedes

    2017-08-01

    We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.

  10. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2016-08-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  11. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  12. Design of BEPC Ⅱ bunch current monitor system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MA Hui-Zhou; YUE Jun-Hui; LEI Ge; CAO Jian-She; MA Li

    2008-01-01

    BEPC Ⅱ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM)system is built on BEPC Ⅱ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC Ⅱ timing system can also use the bunch current database to decide which bucket needs to refill to implement "top-off" injection.

  13. Development of KIAPS Observation Processing Package for Data Assimilation System

    Science.gov (United States)

    Kang, Jeon-Ho; Chun, Hyoung-Wook; Lee, Sihye; Han, Hyun-Jun; Ha, Su-Jin

    2015-04-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. Data assimilation team at KIAPS has been developing the observation processing system (KIAPS Package for Observation Processing: KPOP) to provide optimal observations to the data assimilation system for the KIAPS Global Model (KIAPS Integrated Model - Spectral Element method based on HOMME: KIM-SH). Currently, the KPOP is capable of processing the satellite radiance data (AMSU-A, IASI), GPS Radio Occultation (GPS-RO), AIRCRAFT (AMDAR, AIREP, and etc…), and synoptic observation (SONDE and SURFACE). KPOP adopted Radiative Transfer for TOVS version 10 (RTTOV_v10) to get brightness temperature (TB) for each channel at top of the atmosphere (TOA), and Radio Occultation Processing Package (ROPP) 1-dimensional forward module to get bending angle (BA) at each tangent point. The observation data are obtained from the KMA which has been composited with BUFR format to be converted with ODB that are used for operational data assimilation and monitoring at the KMA. The Unified Model (UM), Community Atmosphere - Spectral Element (CAM-SE) and KIM-SH model outputs are used for the bias correction (BC) and quality control (QC) of the observations, respectively. KPOP provides radiance and RO data for Local Ensemble Transform Kalman Filter (LETKF) and also provides SONDE, SURFACE and AIRCRAFT data for Three-Dimensional Variational Assimilation (3DVAR). We are expecting all of the observation type which processed in KPOP could be combined with both of the data assimilation method as soon as possible. The preliminary results from each observation type will be introduced with the current development status of the KPOP.

  14. Current views on etiopathogenesis of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Agnieszka Klonowska-Szymczyk

    2011-11-01

    Full Text Available The article is a review of information concerning etiopathogenesis of systemic lupus erythematosus (SLE. Due to the risk of serious complications, including death, the clarification of etiology could result in substantial improvement or even complete cure of the disease. Progress in scientific research of observed disorder mechanisms together with implementation of appropriate therapies contributed to a higher detection rate, improved course and decreased mortality in SLE. However, there are still many doubts, which legitimate the need of further research. A significant role in development of the disease and further exacerbations is played by environmental factors. Therefore, decreased exposure to UV light, female sex hormone and microbial antigens is associated with improved course and decreased frequency of exacerbations. Less is known about the genetic basis of SLE, which results from a multigene disease background and complex hereditary mechanisms. It is estimated that the disease may be conditioned by around 100 genes, that only in part are functionally determined. Only part of them is already functionally characterized. The role played by most of them is still unknown. Research currently being conducted is aimed at detecting genetic polymorphism in large and genetically diverse populations. It will allow evaluation of the role of a particular gene in protein biosynthesis, which is responsible for development of regulatory process disturbances, commonly observed in the course of SLE. The article presents current directions of research and the latest advances in epidemiology as well as environmental and genetic risk factors of SLE.

  15. Space Technology 5 (ST-5) Observations of the Imbalance of Region 1 and 2 Field-Aligned Currents

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this study, we use the in-situ magnetic field observations from Space Technology 5 mission to quantify the imbalance of Region 1 (R1) and Region 2 (R2) currents. During the three-month duration of the ST5 mission, geomagnetic conditions range from quiet to moderately active. We find that the R1 current intensity is consistently stronger than the R2 current intensity both for the dawnside and the duskside large-scale field-aligned current system. The net currents flowing into (out of) the ionosphere in the dawnside (duskside) are in the order of 5% of the total RI currents. We also find that the net currents flowing into or out of the ionosphere are controlled by the solar wind-magnetosphere interaction in the same way as the field-aligned currents themselves are. Since the net currents due to the imbalance of the R1 and R2 currents require that their closure currents flow across the polar cap from dawn to dusk as Pedersen currents, our results indicate that the total amount of the cross-polar cap Pedersen currents is in the order of approx. 0.1 MA. This study, although with a very limited dataset, is one of the first attempts to quantify the cross-polar cap Pedersen currents. Given the importance of the Joule heating due to Pedersen currents to the high-latitude ionospheric electrodynamics, quantifying the cross-polar cap Pedersen currents and associated Joule heating is needed for developing models of the magnetosphere-ionosphere coupling.

  16. Neptunian Satellites observed with Keck AO system

    Science.gov (United States)

    Marchis, F.; Urata, R.; de Pater, I.; Gibbard, S.; Hammel, H. B.; Berthier, J.

    2004-05-01

    The Neptunian system was observed on 9 different nights between July 2002 and October 2003 with the 10-m Keck telescope on Mauna Kea, Hawaii, and its facility instrument NIRC2 coupled with the Adaptive Optics system. Data were recorded in J (1.2μ m), and H (2.2μ m) bands. The angular resolution achieved on a one-minute integration time image is 0.50 arcsec, corresponding to a spatial resolution of 1100 km. The images display small structures such as the rings (de Pater et al. 2004), clouds in the atmosphere (Gibbard et al. 2003), and inner satellites, mainly Proteus, Larissa, Galatea, Despina, and Thalassa. On the 40 images, the positions and intensities of the satellites detected were accurately measured fitting the signal with a gaussian profile. The center of Neptune was obtained by fitting the disk position with an ellipse. After correcting for the detector distortion, we compared the satellite positions with the predicted ones delivered by several ephemerides. We used the JPL (NEP016 + NEP022 + DE405) and two IMCCE ephemerides, an old version (VSOP87+Owen et al., 1991) and a more recent one (DE405+Le Guyader et al., 1993). All cases, we confirmed the presence of an apparent shift between the predicted and the observed positions. Table 1 (see http://astron.berkeley.edu/ fmarchis/Science/Neptune/Satellites/) summarizes the mean distance of the shift for satellites most frequently observed and the various ephemerides. In this presentation, we will report the positions of the satellites, and present their color and possible photometric variations derived from the observations. This work has been partially supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 9876783.

  17. The Integrated Ocean Observing System Data Assembly Center

    Science.gov (United States)

    Bouchard, R. H.; Henderson, D.; Burnett, W.; Hervey, R. V.; Crout, R.

    2008-05-01

    The Integrated Ocean Observing System (IOOS) is the U.S. contribution to the Global Ocean Observing System and the Global Earth Observing System of Systems (GEOSS). As the Integrated Ocean Observing System Data Assembly Center (IOOS DAC), the National Oceanic and Atmospheric Administration`s (NOAA) National Data Buoy Center (NDBC) collects data from ocean observing systems and performs quality control on the data. Once the IOOS DAC performs the quality control, it distributes them in real-time: (1) in World Meteorological Organization alphanumeric data formats via the Global Telecommunications System (GTS) that provides instant availability to national and international users (2) in text files via its website (http://www.ndbc.noaa.gov) that provide easy access and use, and (3) in netCDF format via its OPeNDAP/DODS Server (http://dods.ndbc.noaa.gov) that provides higher resolution data than available in WMO alphanumeric or text file formats. The IOOS DAC routinely checks and distributes data from about 200 NDBC stations that include meteorological and oceanographic observations from buoys and coastal stations, water-level estimations from tsunameters (DART), and climate monitoring from buoys (Tropical Atmosphere Ocean array (TAO)). The IOOS DAC operates continuously - 24 hours per day, 7 days per week. In addition to data from NDBC`s platforms, the IOOS DAC applies its scientific expertise and data management and communications capabilities to facilitate partnerships for the exchange and application of data and to coordinate and leverage regional assets and resources from about 350 IOOS Partner stations. The IOOS DAC through its quality control process provides feedback to its partners on the quality of their observation that can lead to improved quality of the observations. The NDBC-IOOS Data Partnerships span the Western Hemisphere with data collection from the Beaufort Sea to the Peru Current, from the International Date Line to the central Atlantic Ocean, and

  18. Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2009-02-01

    Full Text Available The eigenmodes of low frequency perturbations of thin anisotropic current sheets with a finite value of the normal magnetic field, are investigated in this paper. It is shown that two possible polarizations of symmetric and asymmetric modes (sausage and kink exist where the growth rate of instabilities is positive. In addition, we demonstrate that a tearing instability might have a positive growth rate in thin anisotropic current sheets. The class of relatively fast wavy flapping oscillations observed by Cluster is described. The main direction of wave motion coincides with the direction of the current and the typical velocity of this motion is comparable with the plasma drift velocity in the current sheet. The comparison of these characteristics with theoretical predictions of the model of anisotropic thin current sheets, demonstrates that, in principle, the theory adequately describes the observations.

  19. Observability and Information Structure of Nonlinear Systems,

    Science.gov (United States)

    1985-10-01

    defined by Shannon and used as a measure of mut.:al infor-mation between event x. and y4. If p(x.l IY.) I I(x., y.) xil -in (1/p(x.)) =- JInp (x.) (2...entropy H(x,y) in a similar way as H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY, = -E[ JInp (x,y)]. (3-13) With the above definitions, mutual information between x...Observabiity of Nonlinear Systems, Eng. Cybernetics, Volume 1, pp 338-345, 1972. 18. Sen , P., Chidambara, M.R., Observability of a Class of Nonli-.ear

  20. Solar System Observations with the James Webb Space Telescope

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; hide

    2016-01-01

    The James Webb Space Telescope (JWST) will enable a wealth of new scientific investigations in the near- and mid-infrared, with sensitivity and spatial/spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010. It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV, in 2012.

  1. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  2. Status of the NASA GMAO Observing System Simulation Experiment

    Science.gov (United States)

    Prive, Nikki C.; Errico, Ronald M.

    2014-01-01

    correlated error. The forecast model used by the GMAO OSSE is the Goddard Earth Observing System Model, Version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) DAS. The model version has been updated to v. 5.13.3, corresponding to the current operational model. Forecasts are run on a cube-sphere grid with 180 points along each edge of the cube (approximately 0.5 degree horizontal resolution) with 72 vertical levels. The DAS is cycled at 6-hour intervals, with 240 hour forecasts launched daily at 0000 UTC. Evaluation of the forecasting skill for July and August is currently underway. Prior versions of the GMAO OSSE have been found to have greater forecasting skill than real world forecasts. It is anticipated that similar forecast skill will be found in the updated OSSE.

  3. Arctic Observing Network Data Management: Current Capabilities and Their Promise for the Future

    Science.gov (United States)

    Collins, J.; Fetterer, F.; Moore, J. A.

    2008-12-01

    CADIS (the Cooperative Arctic Data and Information Service) serves as the data management, discovery and delivery component of the Arctic Observing Network (AON). As an International Polar Year (IPY) initiative, AON comprises 34 land, atmosphere and ocean observation sites, and will acquire much of the data coming from the interagency Study of Environmental Arctic Change (SEARCH). CADIS is tasked with ensuring that these observational data are managed for long term use by members of the entire Earth System Science community. Portions of CADIS are either in use by the community or available for testing. We now have an opportunity to evaluate the feedback received from our users, to identify any design shortcomings, and to identify those elements which serve their purpose well and will support future development. This presentation will focus on the nuts-and-bolts of the CADIS development to date, with an eye towards presenting lessons learned and best practices based on our experiences so far. The topics include: - How did we assess our users' needs, and how are those contributions reflected in the end product and its capabilities? - Why did we develop a CADIS metadata profile, and how does it allow CADIS to support preservation and scientific interoperability? - How can we shield the user from metadata complexities (especially those associated with various standards) while still obtaining the metadata needed to support an effective data management system? - How can we bridge the gap between the data storage formats considered convenient by researchers in the field, and those which are necessary to provide data interoperability? - What challenges have been encountered in our efforts to provide access to federated data (data stored outside of the CADIS system)? - What are the data browsing and visualization needs of the AON community, and which tools and technologies are most promising in terms of supporting those needs? A live demonstration of the current

  4. Atmospheric Profiling Snthetic observation System(APSOS) - a system for whole atmosphere, purpose and preliminary observation

    Science.gov (United States)

    Lu, Daren; Pan, Weilin; Wang, Yinan

    2016-07-01

    To understand the vertical coupling processes between the troposphere, stratosphere, mesosphere and lower thermosphere with high vertical resolution and temporal resolution, an observation system consisted of multi-lidars, a W-band Doppler radar, and a THz spectrometer has been developing starting from 2012. This system is developed to observer the multiple atmospheric parameters, include high clouds, aerosols, CO2, SO2, NO2, water vapor, ozone, atmospheric temperature and wind, sodium atomic layer, in different height ranges, with vertical resolution of tens to hundreds meters and temporal resolution of several to tens minutes. In addition, the simultaneous observation with high cloud radar will enhance the ability of quantitative retrieval of middle and upper atmospheric observation with combined retrieval of cloud micro-physical characteristics and other atmospheric parameters above the cloud layer. As the cirrus cloud occupied about 50% of earth coverage, this ability will increase the whole atmosphere observation ability obviously. During last 5 years. We have finished each unit of the system and have revealed their targets separately. Temperature profile has been observed from 30 to 110 km, ozone up to 50 km, etc. In spring of 2016, we will have preliminary integrated observation in Eastern China, the Huainan Observatory of the Institute of Atmospheric Physics, CAS. In the end of 2016, the system will be implemented at Yangbajing Cosmic Ray Observatory, CAS, near Lasa, Tibetan Plateau. Some preliminary results from Huainan observation will be presented in this presentation. This project is founded by NSFC.

  5. The NOAA Satellite Observing System Architecture Study

    Science.gov (United States)

    Volz, Stephen; Maier, Mark; Di Pietro, David

    2016-01-01

    NOAA is beginning a study, the NOAA Satellite Observing System Architecture (NSOSA) study, to plan for the future operational environmental satellite system that will follow GOES and JPSS, beginning about 2030. This is an opportunity to design a modern architecture with no pre-conceived notions regarding instruments, platforms, orbits, etc. The NSOSA study will develop and evaluate architecture alternatives to include partner and commercial alternatives that are likely to become available. The objectives will include both functional needs and strategic characteristics (e.g., flexibility, responsiveness, sustainability). Part of this study is the Space Platform Requirements Working Group (SPRWG), which is being commissioned by NESDIS. The SPRWG is charged to assess new or existing user needs and to provide relative priorities for observational needs in the context of the future architecture. SPRWG results will serve as input to the process for new foundational (Level 0 and Level 1) requirements for the next generation of NOAA satellites that follow the GOES-R, JPSS, DSCOVR, Jason-3, and COSMIC-2 missions.

  6. Promoting discovery and access to real time observations produced by regional coastal ocean observing systems

    Science.gov (United States)

    Anderson, D. M.; Snowden, D. P.; Bochenek, R.; Bickel, A.

    2015-12-01

    In the U.S. coastal waters, a network of eleven regional coastal ocean observing systems support real-time coastal and ocean observing. The platforms supported and variables acquired are diverse, ranging from current sensing high frequency (HF) radar to autonomous gliders. The system incorporates data produced by other networks and experimental systems, further increasing the breadth of the collection. Strategies promoted by the U.S. Integrated Ocean Observing System (IOOS) ensure these data are not lost at sea. Every data set deserves a description. ISO and FGDC compliant metadata enables catalog interoperability and record-sharing. Extensive use of netCDF with the Climate and Forecast convention (identifying both metadata and a structured format) is shown to be a powerful strategy to promote discovery, interoperability, and re-use of the data. To integrate specialized data which are often obscure, quality control protocols are being developed to homogenize the QC and make these data more integrate-able. Data Assembly Centers have been established to integrate some specialized streams including gliders, animal telemetry, and HF radar. Subsets of data that are ingested into the National Data Buoy Center are also routed to the Global Telecommunications System (GTS) of the World Meteorological Organization to assure wide international distribution. From the GTS, data are assimilated into now-cast and forecast models, fed to other observing systems, and used to support observation-based decision making such as forecasts, warnings, and alerts. For a few years apps were a popular way to deliver these real-time data streams to phones and tablets. Responsive and adaptive web sites are an emerging flexible strategy to provide access to the regional coastal ocean observations.

  7. NASA's Earth Observing System Data and Information System - EOSDIS

    Science.gov (United States)

    Ramapriyan, Hampapuram K.

    2011-01-01

    This slide presentation reviews the work of NASA's Earth Observing System Data and Information System (EOSDIS), a petabyte-scale archive of environmental data that supports global climate change research. The Earth Science Data Systems provide end-to-end capabilities to deliver data and information products to users in support of understanding the Earth system. The presentation contains photographs from space of recent events, (i.e., the effects of the tsunami in Japan, and the wildfires in Australia.) It also includes details of the Data Centers that provide the data to EOSDIS and Science Investigator-led Processing Systems. Information about the Land, Atmosphere Near-real-time Capability for EOS (LANCE) and some of the uses that the system has made possible are reviewed. Also included is information about how to access the data, and evolutionary plans for the future of the system.

  8. A microcomputer based system for current-meter data acquisition

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.

    1979-01-01

    The U.S. Geological Survey is conducting current measurements as part of an interdisciplinary study of the San Francisco Bay estuarine system. The current meters used in the study record current speed, direction, temperature, and conductivity in digital codes on magnetic tape cartridges. Upon recovery of the current meters, the data tapes are translated by a tape reader into computer codes for further analyses. Quite often the importance of the data processing phase of a current-measurement program is underestimated and downplayed. In this paper a data-processing system which performs the complete data processing and analyses is described. The system, which is configured around an LSI-11 microcomputer, has been assembled to provide the capabilities of data translation, reduction, and tabulation and graphical display immediately following recovery of current meters. The flexibility inherent in a microcomputer has made it available to perform many other research functions which would normally be done on an institutional computer.

  9. Observation of the Earth system from space

    CERN Document Server

    Flury, Jakob; Reigber, Christoph; Rothacher, Markus; Boedecker, Gerd

    2006-01-01

    In the recent years, space-based observation methods have led to a subst- tially improved understanding of Earth system. Geodesy and geophysics are contributing to this development by measuring the temporal and spatial va- ations of the Earth's shape, gravity ?eld, and magnetic ?eld, as well as at- sphere density. In the frame of the GermanR&D programmeGEOTECHNO- LOGIEN,researchprojectshavebeen launchedin2002relatedto the satellite missions CHAMP, GRACE and ESA's planned mission GOCE, to comp- mentary terrestrial and airborne sensor systems and to consistent and stable high-precision global reference systems for satellite and other techniques. In the initial 3-year phase of the research programme (2002-2004), new gravity ?eld models have been computed from CHAMP and GRACE data which outperform previous models in accuracy by up to two orders of m- nitude for the long and medium wavelengths. A special highlight is the - termination of seasonal gravity variations caused by changes in continental water masses...

  10. Conference on Earth Observation and Information Systems

    CERN Document Server

    Morley, Lawrence

    1977-01-01

    The NATO Science Committee and its subsidiary Programme Panels provide support for Advanced Research Institutes (ARI) in various fields. The idea is to bring together scientists of a chosen field with the hope that they will achieve a consensus on research direc­ tions for the future, and make recommendations for the benefit of a wider scientific community. Attendance is therefore limited to those whose experience and expertise make the conclusions significant and acceptable to the wider community. Participants are selected on the basis of substantial track records in research or in the synthesis of research results to serve mankind. The proposal for a one-week ARIon Earth Observation and In­ formation Systems was initiated by the NATO Special Programme Panel on Systems Science (SPPOSS). In approving the ARI, the senior NATO Science Committee identified the subject as one of universal impor­ tance, requiring a broad perspective on the development of opera­ tional systems based on successful experimental s...

  11. SHIELD: Observations of Three Candidate Interacting Systems

    Science.gov (United States)

    Ruvolo, Elizabeth; Miazzo, Masao; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    Abstract:The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. In a companion poster, we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. Three galaxies in that study have been discovered to lie in close angular proximity to more massive galaxies. Here we present VLA HI imaging of these candidate interacting systems. We compare the neutral gas morphology and kinematics with optical images from SDSS. We discuss the frequency of low-mass galaxies undergoing tidal interaction in the complete SHIELD sample.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  12. Rational Observational Systems of Educational Accountability and Reform

    Directory of Open Access Journals (Sweden)

    Audrey Amrein-Beardsley

    2015-08-01

    Full Text Available There is something incalculable about teacher expertise and whether it can be observed, detected, quantified, and as per current educational policies, used as an accountability tool to hold America's public school teachers accountable for that which they do (or do not do well. In this commentary, authors (all of whom are former public school teachers argue that rubric-based teacher observational systems, developed to assess the extent to which teachers adapt and follow sets of rubric-based rules, might actually constrain teacher expertise. Moreover, authors frame their comments using the Dreyfus Model (1980, 1986 to illustrate how observational systems and the rational conceptions on which they are based might be stifling educational progress and reform.

  13. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  14. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    , extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...

  15. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  16. Solar system planets observed with Suzaku

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Miyoshi, Yoshizumi; Terada, Naoki; Uchiyama, Yasunobu; Futaana, Yoshifumi

    2011-02-01

    Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1-5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ˜1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.

  17. In situ Observation of Dark Current Emission in a High Gradient RF Photocathode Gun

    CERN Document Server

    Shao, Jiahang; Baryshev, Sergey V; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Shi, Jiaru; Wang, Faya; Wisniewski, Eric

    2016-01-01

    Undesirable electron field emission (a.k.a. dark current) in high gradient RF photocathode guns deteriorates the quality of photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 um) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Dark current from the cathode has been observed to be dominated by several separated strong emitters. The field enhancement factor, beta, of selected regions on the cathode has been measured. The post scanning electron microscopy (SEM) and white light interferometer (WLI) surface examinations reveal the origins of ~75% strong emitters overlap with the spots where rf breakdown have occurred.

  18. In Situ Observation of Dark Current Emission in a High Gradient rf Photocathode Gun

    Science.gov (United States)

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; Baryshev, Sergey V.; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Wang, Faya; Wisniewski, Eric

    2016-08-01

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (˜100 μ m ) dark current imaging experiment has been performed in an L -band photocathode gun operating at ˜100 MV /m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ˜75 % strong emission areas overlap with the spots where rf breakdown has occurred.

  19. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  20. Earth Observation System Flight Dynamics System Covariance Realism

    Science.gov (United States)

    Zaidi, Waqar H.; Tracewell, David

    2016-01-01

    This presentation applies a covariance realism technique to the National Aeronautics and Space Administration (NASA) Earth Observation System (EOS) Aqua and Aura spacecraft based on inferential statistics. The technique consists of three parts: collection calculation of definitive state estimates through orbit determination, calculation of covariance realism test statistics at each covariance propagation point, and proper assessment of those test statistics.

  1. Entanglement between Two Distant Observables of Quantum Current as the Mechanism of Radiation

    CERN Document Server

    Park, Jeong-Wan

    2016-01-01

    In this paper, it will be demonstrated that entanglement between two distant observables of quantum electron current enables electromagnetic radiation of free-electron lasers even though the amplified quadrature and the radiated quadrature are out of phase. This is supported by the previously observed sub-Poisson photon intensity fluctuations in the coherent spontaneous harmonic radiation generated by an infrared free-electron laser.

  2. Diffusion current in a system of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Rahmonov, I. R.

    2012-08-01

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  3. Diffusion current in a system of coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)

    2012-08-15

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  4. Spin currents and magnetization dynamics in multilayer systems

    NARCIS (Netherlands)

    van der Bijl, E.

    2014-01-01

    In this Thesis the interplay between spin currents and magnetization dynamics is investigated theoretically. With the help of a simple model the relevant physical phenomena are introduced. From this model it can be deduced that in systems with small spin-orbit coupling, current-induced torques on

  5. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  6. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  7. Satellite Observations of the Brazil and Falkland Currents - 1975 to 1976 and 1978

    Science.gov (United States)

    1982-01-01

    suggesting a wave phase speed of 25 km day"’ with the waves travelling in the same direction as the Brazil Current. To a stationary observer, the...cruise 16 XBT and CTD data were obtained by D. GEORGI and S. JACOBS. REFERENCES BALECH E. (1949) Estudio critico de las corrientes marines del Litoral

  8. Seasonal and interannual variability in the Mozambique Channel from moored current observations

    NARCIS (Netherlands)

    Ridderinkhof, H.|info:eu-repo/dai/nl/075005700; van der Werf, P.M.|info:eu-repo/dai/nl/30483193X; Ullgren, J.E.; van Aken, H.M.; van Leeuwen, P.J.|info:eu-repo/dai/nl/102655758; de Ruijter, W.P.M.|info:eu-repo/dai/nl/068476760

    2010-01-01

    Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal

  9. Model and performance of current sensor observers for a doubly fed induction generator

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    a MATLAB/Simulink software platform under the conditions of active power change of doubly fed induction generators and grid voltage dip fault. Furthermore, the robustness of the proposed current observer is investigated when the doubly fed induction generator rotor resistance is changed. Results show...

  10. The Study of the Geomagnetic Variation for Sq current System

    Science.gov (United States)

    Zhao, X.; Du, A.

    2012-04-01

    The solar quiet variation (Sq) with a period of 24 hrs is a typical one of the quiet variations. Sq is generally caused by atmospheric tide-dynamo in ionosphere and it is controlled by the electric field, electric conductivity in ionosphere and neutral wind in middle-high altitude atmosphere. In our work, the geomagnetic field data observed by 90 ground-based observatories is used to analyze the local time variation of Sq. Sq is derived from five quiet-day geomagnetic data in every month by the FFT method. According to the pattern of geomagnetic X component in Sq, there is a prenoon-postnoon (before noon and after noon) asymmetry. This asymmetry is obvious in spring, summer and winter. The X component at 12:00-13:00 LT is about 5 nT larger than it at 11:00-12:00 LT. The ratio between the X component of daily variable amplitude and Y component of daily variable amplitude in middle and low (high) latitude regions in summer is greater (smaller) than that in winter. Used the sphere harmonic analysis method, the Sq equivalent current system is obtained. From the pattern of Sq current system, the prenoon-postnoon asymmetry may be caused by the electric field in the high latitude region. This electric field has two effects: the one is that the electric field from high latitude maps to the low latitude region; the other is this electric field penetrate to the middle latitude region directly. The combined action of these two effects makes the prenoon-postnoon asymmetry of Sq. The asymmetry also has an obvious seasonal effect. It may relate to the polar Sq and DP2 in the high latitude region.

  11. Observer and observer-based H∞ control of generalized Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    WANG Yuzhen; GE S. S.; CHENG Daizhan

    2005-01-01

    This paper deals with observer design for generalized Hamiltonian systems and its applications. First, by using the systems' structural properties, a new observer design method called Augment Plus Feedback is provided and two kinds of observers are obtained: non-adaptive and adaptive ones. Then, based on the obtained observer, H∞ control design is investigated for generalized Hamiltonian systems, and an observer-based control design is proposed. Finally, as an application to power systems, an observer and an observer-based H∞ control law are designed for single-machine infinite-bus systems.Simulations show that both the observer and controller obtained in this paper work very well.

  12. An observational study of a shallow gravity current triggered by katabatic flow

    Directory of Open Access Journals (Sweden)

    A. Adachi

    2004-11-01

    Full Text Available Observations from a wind profiler and a meteorological tower are utilized to study the evolution of a gravity current that passed over the Meteorological Research Institute's (MRI field site in Tsukuba, Japan. The gravity current was created by katabatic flow originating on the mountainous slopes west of the field site. The passage of the shallow current was marked by a pronounced pressure disturbance and was accompanied by vertical circulations seen in the tower and profiler data. Direct vertical-beam measurements are difficult, especially at low heights during high-gradient events like density currents. In this study vertical velocities from the profiler are derived from the four oblique beams by use of the Minimizing the Variance of the Differences (MVD method. The vertical velocities derived from the MVD method agree well with in situ vertical velocities measured by a sonic anemometer on the tower.

    The gravity current is analyzed with surface observations, the wind profiler/RASS and tower-mounted instruments. Observations from the profiler/RASS and the tower-mounted instruments illustrate the structure of the gravity current in both wind and temperature fields. The profiler data reveal that there were three regions of waves in the vertical velocity field: lee-type waves, a solitary wave and Kelvin-Helmholtz waves. The lee-type waves in the head region of the gravity current seem to have been generated by the gravity current acting as an obstacle to prefrontal flow. The solitary wave was formed from the elevated head of the gravity current that separated from the feeder flow. Profiler vertical-motion observations resolve this wave and enable us to classify it as a Benjamin-Davis-Ono (BDO type solitary wave. The ducting mechanism that enabled the solitary wave to propagate is also revealed from the wind profiler/RASS measurements. The combination of high-resolution instruments at the MRI site allow us to

  13. Direct observation of current-induced conductive path in colossal-electroresistance manganite thin films

    Science.gov (United States)

    Wei, Wengang; Zhu, Yinyan; Bai, Yu; Liu, Hao; Du, Kai; Zhang, Kai; Kou, Yunfang; Shao, Jian; Wang, Wenbin; Hou, Denglu; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2016-01-01

    Manganites are known to often show colossal electroresistance (CER) in addition to colossal magnetoresistance. The (La1-yP ry) 1 -xC axMn O3 (LPCMO) system has a peculiar CER behavior in that little change of magnetization occurs. We use a magnetic force microscope to uncover the CER mechanism in the LPCMO system. In contrast to the previous belief that current reshapes the ferromagnetic metallic (FMM) domains, we show that the shape of the FMM domains remain virtually unchanged after passing electric current. Instead, it is the appearance of a tiny fraction of FMM "bridges" that is responsible for the CER behavior.

  14. Statistical research on the motion properties of the magnetotail current sheet:Cluster observations

    Institute of Scientific and Technical Information of China (English)

    H.REME; E.LUCEK

    2010-01-01

    The origin of the flapping motion of the earth’s magnetotail current sheet is one of the most important problems in the magnetotail dynamics.Using Cluster data,we make a statistical research on the motion properties of the magnetotail current sheet of 2001 and 2003.We calculate the velocities of the magnetotail current sheet using new methods and obtain the distribution of the magnetotail current sheet velocities in the X-Y plane in GSE coordinate system.Our results show that although most of the current sheets were propagating toward the tail flanks and those of the exceptions lay in dusk side,which is consistent with previous studies,the proportions of the current sheet which were propagating toward midnight (where |YGSE|=0) were higher than those in previous studies.Motions of the current sheet in the middle area (|YGSE|<8 Re) of the magnetotail are investigated.Relatively high value of the Z component of the velocity further confirms that the middle area of the magnetotail might be a source region for the motion of the current sheets which were propagating towards the tail flanks.According to our case studies,the way the current sheets propagated toward midnight area differs significantly from that toward dusk and dawn side,from which we infer that there might be two different kinds of current sheet motions originated from different sources.The statistical results of this paper may give some clues for further studies on the origin of the flapping motion of the magnetotail current sheet.

  15. Structure and evolution of the current sheet by multi-spacecraft observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.Y. [Chinese Academy of Sciences, Beijing (China). Inst. of Geophysics; Russell, C.T. [Univ. of California, Los Angeles, CA (United States). Inst. of Geophysics and Planetary Physics; Gosling, J. [Los Alamos National Lab., NM (United States)

    1997-12-31

    On April 22, 1979, from 0840 to 1018 UT, ISEE 1, ISEE 2 and IMP 8 were all in or near the magnetotail current sheet at 17 Re, 16 Re and 35 Re respectively while ISEE 3 monitored the solar wind 206 Re upstream of the Earth. A global perspective of the four spacecraft observations and of the ground magnetic records is presented in this paper. The hyperbolic tangent current sheet model of Harris has been used to calculate the current sheet thickness and to analyze the plasma distribution in the vertical direction. It is found that during this event the current sheet thickness varied from 2.5 Re to 1.5 Re for northward IMF but thinned abruptly to 0.5 Re when the IMF turned southward.

  16. Wave glider observations of surface winds and currents in the core of Typhoon Danas

    Science.gov (United States)

    Mitarai, S.; McWilliams, J. C.

    2016-11-01

    Simultaneous monitoring of surface winds and currents is essential to understand oceanic responses to tropical cyclones. We used a new platform, a Wave Glider (Liquid Robotics) to observe air-sea processes during a typhoon, equivalent to a category 4-hurricane, at peak strength, near Okinawa, Japan. Surface winds showed strong asymmetry in both speed and direction, faster fore than aft. Rotations of surface winds and currents were not coupled; currents rotated clockwise in the wake of the typhoon eye after passage of rapid wind rotations. Wind work was mostly done ahead of the eye, amplifying prior inertial motions with a phase shift. Wind-induced energy was nearly balanced with an increase in estimated kinetic energy of the upper ocean current, relative to prior inertial oscillations. This study provides a newer, more complete view of actual atmosphere-ocean interactions in a typhoon.

  17. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-02-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  18. Observational Study on Current Sheet of Magnetic Reconnection in Two Solar Eruptions

    Science.gov (United States)

    Qiang-wei, Cai; Ning, Wu; Jun, Lin

    2016-07-01

    The coronal magnetic configuration behind coronal mass ejections (CMEs) can commonly be stretched severely, thus to push the magnetic fields with opposite polarities to approach each other, and to form a current sheet of magnetic reconnection. The current sheet in solar eruptions is not only an important region to convert the magnetic free energy into thermal energy, plasma kinetic energy, and energetic particle beams, but also plays a role to connect CMEs and flares. In the CME events of 2003 January 3 and 2003 November 4, the development of current sheet has been observed in both cases. We have investigated the dynamic features and physical properties of current sheet in the two events, based on the data of LASCO (Large Angle and Spectrometric Coronagraph) and UVCS (Ultraviolet Coronagraph Spectrometer) on board of SOHO (Solar and Heliospheric Observatory), and the Hα data from BBSO (Big Bear Solar Observatory) and YNAO (Yunnan Astronomical Observatory). The existence of ions with a high degree of ionization, such as Fe+17 and Si+11, indicates a high temperature up to 3×106 ∼5×106 K in the region of current sheet. A direct measurement shows that the thickness of current sheet varies between 1.3×104 and 1.1×105 km, which increases first and then decreases with time. Using the CHIANTI code (v.7.1), we have further calculated the average values of electron temperature and corresponding emission measure (EM) respectively to be 3.86×106 K and 6.1×1024 cm-5 in the current sheet of the 2003 January 3 event. We also find that the current sheet twisted forth and back quasi-periodically during the eruption event on 2003 November 4 by analyzing the observational data from SOHO/UVCS.

  19. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    Science.gov (United States)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  20. Large fluctuations of the macroscopic current in diffusive systems: A numerical test of the additivity principle

    Science.gov (United States)

    Hurtado, Pablo I.; Garrido, Pedro L.

    2010-04-01

    Most systems, when pushed out of equilibrium, respond by building up currents of locally conserved observables. Understanding how microscopic dynamics determines the averages and fluctuations of these currents is one of the main open problems in nonequilibrium statistical physics. The additivity principle is a theoretical proposal that allows to compute the current distribution in many one-dimensional nonequilibrium systems. Using simulations, we validate this conjecture in a simple and general model of energy transport, both in the presence of a temperature gradient and in canonical equilibrium. In particular, we show that the current distribution displays a Gaussian regime for small current fluctuations, as prescribed by the central limit theorem, and non-Gaussian (exponential) tails for large current deviations, obeying in all cases the Gallavotti-Cohen fluctuation theorem. In order to facilitate a given current fluctuation, the system adopts a well-defined temperature profile different from that of the steady state and in accordance with the additivity hypothesis predictions. System statistics during a large current fluctuation is independent of the sign of the current, which implies that the optimal profile (as well as higher-order profiles and spatial correlations) are invariant upon current inversion. We also demonstrate that finite-time joint fluctuations of the current and the profile are well described by the additivity functional. These results suggest the additivity hypothesis as a general and powerful tool to compute current distributions in many nonequilibrium systems.

  1. Monitoring tidal currents with a towed ADCP system

    Science.gov (United States)

    Sentchev, Alexei; Yaremchuk, Max

    2016-01-01

    The tidal circulation in the semi-enclosed Boulogne harbour (eastern English Channel) is measured during the various stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler (ADCP) system for the first time. The system is equipped with an interpolation algorithm which allows reconstructing space-time evolution of the velocity field for surveys whose duration is comparable or larger than the typical time of tidal variation (1-2 h). The method employs space-time velocity covariances derived from a numerical simulation of the surveyed area by a high-resolution relocatable model "Model for Applications on Regional Scale" (MARS). The covariances are utilized by the optimal interpolation algorithm to obtain the most likely evolution of the velocity field under the constraints provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evolution of the velocity field in the surveyed area which is then corrected by the data in a statistically consistent manner as it explicitly takes into the account both observational and modeling errors. The quality of the velocity reconstruction was validated against independent bottom-mounted ADCP data, the background model evolution, and against the results of spatial interpolation by Kriging technique. All tests demonstrated significant (30 to 60 %) reduction of the model-data misfit for the velocity field obtained as a result of space-time optimal interpolation. Although the method was applied to recover surface circulation, it can be extended for assessment of the full 4D tidal flow dynamics using the data recorded throughout the entire water column.

  2. Ocean Observing using SMART subsea telecommunications cable systems

    Science.gov (United States)

    Howe, B. M.

    2015-12-01

    Planning is underway to integrate ocean sensors into SMART subsea cable systems providing basin and ultimately global array coverage within the next decades (SMART: Scientific Monitoring And Reliable Telecommunications). SMART cables will: contribute to the understanding of ocean dynamics and climate; improve knowledge of earthquakes and forecasting of tsunamis; and complement and enhance existing satellite and in-situ observing systems. SMART cables will be a first order addition to the ocean observing system, with unique contributions, strengthening and complementing satellite and in situ systems. Cables spanning the ocean basins with repeaters every ~50 km will host sensors/mini-observatories, providing power and real-time communications. The current global infrastructure of commercial submarine telecommunications cable systems consists of 1 Gm of cable with ~20,000 repeaters (to boost optical signals); the overall system is refreshed and expanded on time scales of 10 - 20 years and individual systems have lifetimes in excess of 25 years. Initial instrumentation of the cables with bottom temperature, pressure and acceleration sensors will provide unique information for monitoring and studying climate change and for improved tsunami and earthquake warning. These systems will be a new highly reliable, long-lived component of the ocean observing system, complementing satellite, float and other in situ platforms and measurements. Several UN agencies, the International Telecommunication Union, the World Meteorological Organization, and the UNESCO Intergovernmental Oceanographic Commission have formed a Joint Task Force to move this concept to fruition (ITU/WMO/IOC JTF; http://www.itu.int/en/ITU-T/climatechange/task-force-sc). A review of the overall planning effort and two NASA-funded workshops focusing on the ocean circulation and climate is presented. [Funding provided by NASA.

  3. Observer's Interface for Solar System Target Specification

    Science.gov (United States)

    Roman, Anthony; Link, Miranda; Moriarty, Christopher; Stansberry, John A.

    2016-10-01

    When observing an asteroid or comet with HST, it has been necessary for the observer to manually enter the target's orbital elements into the Astronomer's Proposal Tool (APT). This allowed possible copy/paste transcription errors from the observer's source of orbital elements data. In order to address this issue, APT has now been improved with the capability to identify targets in and then download orbital elements from JPL Horizons. The observer will first use a target name resolver to choose the intended target from the Horizons database, and then download the orbital elements from Horizons directly into APT. A manual entry option is also still retained if the observer does not wish to use elements from Horizons. This new capability is available for HST observing, and it will also be supported for JWST observing. The poster shows examples of this new interface.

  4. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2016-10-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity-temperature-depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5-8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  5. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-02-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity-temperature-depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5-8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  6. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    Science.gov (United States)

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  7. Field-aligned current observed on ISEE-2 in the innermagnetosphere

    Institute of Scientific and Technical Information of China (English)

    徐荣栏; 王左丁; 谢榴香; 杨龙

    1995-01-01

    Field-aligned currents in the inner magnetosphere arc studied by using ISEE-2 magnetometer da-la, A method is proposed to calculate ×B with single-satellite data. From the morphology of ×B in time (or L). a lot of large fluctuations are found in ×B near L = 5.5RE corresponding to the field-aligned currents. Statistical study shows that the field-aligned current in the inner magnetosphere is a function of B, L, MLT and AL. The region of the projections of ×B along the magnetic field line onto the ionosphere is not symmetrical for the geomagnetic pole. The inner boundary is independent of the geomagnetic disturbance, but during substorms the outer boundary shifts equatorward. The spatial distribution of the in- and out-flowing currents is complicated. The region-1-and-2 system is hardly distinguishable.

  8. An Integrated Global Atmospheric Composition Observing System: Progress and Impediments

    Science.gov (United States)

    Keating, T. J.

    2016-12-01

    In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.

  9. IMF By-Related Cusp Currents Observed from the Ørsted Satellite and from Ground

    DEFF Research Database (Denmark)

    Stauning, P.; Primdahl, Fritz; Watermann, J.

    2001-01-01

    from ground-based magnetic observations to define the structure and location of cusp currents and their dependencies on interplanetary magnetic field (IMF) conditions. Example cases illustrate the close relation between IMF B-gamma-related FAC and horizontal ionospheric currents in the cusp region. Our...... statistical analysis defines for the noon region the variations in FAC latitude with IMF B-Z. Comparisons with the statistical cusp location indicate that the more equatorward region of IMF B-gamma-while the more B related FAC is located on field lines closing at the dayside poleward FAC are on "open" field...

  10. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... data, showing significant improvement in the Earth albedo induced current estimates. Additionally an algorithm for utilizing the Earth albedo model in obtaining a vector observation pair which is superior to the solar line of sight vector pair. It is concluded that the Earth albedo model is valid...

  11. Current Awareness Services--Observations of the Past and Present, and Implications for the Future

    Science.gov (United States)

    Brandli, Michael J.

    1976-01-01

    A brief history of the College of Medicine and Dentistry of New Jersey Library's current awareness service shows the progression from manual participation, to an on-line system, and finally to access of the State University of New York's Automatic MEDLARS service. (Author)

  12. Development of a Peltier Current Lead for the 200-m-Class Superconducting Direct Current Transmission and Distribution System

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2013-07-01

    Reducing cryogenic heat leaks is critical for superconducting applications. Reduction of heat leak at the terminals is essential for uses with short-length applications, where cryogenic losses at the terminals dominate. We are developing a 200-m-class superconducting direct current (DC) transmission and distribution system (CASER-2), and have used a Peltier current lead (PCL) for heat insulation at the terminals. The PCL consists of thermoelectric elements and copper leads, which enhance the performance of superconducting systems. As DC flows through the current lead, thermoelectric elements on opposite terminations of a superconducting line can be used to decrease the heat ingress to the cryogenic environment ( n-type on one end, p-type on the opposite end). During the current feeding and cooling test, a large temperature difference was observed across thermoelectric elements in the PCL. This demonstrates that we have successfully insulated the heat leak at the current lead. During the fourth cooling test, we established a new PCL design with p-type elements at terminal B, and then compared the performance of the terminals. Several improvements were implemented, including balancing the resistances of the PCL to enhance the stability of the superconducting systems.

  13. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  14. Modeling and strain gauging of eddy current repulsion deicing systems

    Science.gov (United States)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  15. Electric current in flares ribbons: from the standard model in 3D to observations

    CERN Document Server

    Janvier, Miho; Bommier, V; Schmieder, B; Démoulin, P; Pariat, E

    2014-01-01

    The paper presents for the first time a quantification of the photospheric electric current ribbon evolutions during an eruptive flare, accurately predicted by the standard 3D flare model. The standard flare model in 3D has been developed with the MHD code OHM, which models the evolution of an unstable flux rope. Through a series of paper, the model has been successful in explaining observational characteristics of eruptive flares, as well as the intrinsic 3D reconnection mechanism. Such a model also explains the increase of the photospheric currents as a consequence of the evolution of the coronal current layer where reconnection takes place. The photospheric footprints of the 3D current layer reveal a ribbon shape structure. In the present paper, the evolution of the current density is analyzed for the X-class flare that occurred on 15/02/2011 in AR 11158. We first describe the structural evolution of the high vertical current density regions derived with the UNNOFIT inversion code from magnetograms (HMI, e...

  16. Near-Infrared Observations of Compact Binary Systems

    Science.gov (United States)

    Khargharia, Juthika

    Low mass X-ray binaries (LMXBs) are a subset of compact binary systems in which a main-sequence or slightly evolved star fills its Roche lobe and donates mass to a neutron star or a black hole (BH) via an accretion disk. Robust estimates of compact object masses in these systems are required to enhance our current understanding of the physics of compact object formation, accretion disks and jets. Compact object masses are typically determined at near-infrared (NIR) wavelengths when the system is in quiescence and the donor star is the dominant source of flux. Previous studies have assumed that any non-stellar contribution at these wavelengths is minimal. However, this assumption is rarely true. By performing NIR spectroscopy, we determined the fractional donor star contribution to the NIR flux and the compact object masses in two LMXBs: V404 Cyg and Cen X-4. In our analysis, it was assumed that the light curve morphology remains consistent throughout quiescence. It has now been shown in several systems that veiling measurements from non-stellar sources are meaningful only if acquired contemporaneously with light curve measurements. We accounted for this in the measurement of the BH mass in the LMXB, XTE J1118+480. LMXBs are also considered to be the most likely candidates responsible for the formation of milli-second pulsars (MSP). Here, I present the unique case of PSR J1903+0327 that challenges this currently accepted theory of MSP formation and is a potential candidate for testing General Relativity. Observations in the NIR come with their own set of challenges. NIR detector arrays used in these observations generally have high dark current and readout noise. In an effort to lower the read noise in NICFPS at APO, we present a study done on the Hawaii-1RG engineering grade chip that served as a test bed for reducing the read noise in NICFPS.

  17. NOAA Observing System Integrated Analysis (NOSIA): development and support to the NOAA Satellite Observing System Architecture

    Science.gov (United States)

    Reining, R. C.; Cantrell, L. E., Jr.; Helms, D.; LaJoie, M.; Pratt, A. S.; Ries, V.; Taylor, J.; Yuen-Murphy, M. A.

    2016-12-01

    There is a deep relationship between NOSIA-II and the Federal Earth Observation Assessment (EOA) efforts (EOA 2012 and 2016) chartered under the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, co-chaired by the White House Office of Science and Technology Policy, NASA, NOAA, and USGS. NOSIA-1, which was conducted with a limited scope internal to NOAA in 2010, developed the methodology and toolset that was adopted for EOA 2012, and NOAA staffed the team that conducted the data collection, modeling, and analysis effort for EOA 2012. EOA 2012 was the first-ever integrated analysis of the relative impact of 379 observing systems and data sources contributing to the key objectives identified for 13 Societal Benefit Areas (SBA) including Weather, Climate, Disasters, Oceans and Coastal Resources, and Water Resources. This effort culminated in the first National Plan for Civil Earth Observations. NOAA conducted NOSIA-II starting in 2012 to extend the NOSIA methodology across all of NOAA's Mission Service Areas, covering a representative sample (over 1000) of NOAA's products and services. The detailed information from NOSIA-II is being integrated into EOA 2016 to underpin a broad array of Key Products, Services, and (science) Objectives (KPSO) identified by the inter-agency SBA teams. EOA 2016 is expected to provide substantially greater insight into the cross-agency impacts of observing systems contributing to a wide array of KPSOs, and by extension, to societal benefits flowing from these public-facing products. NOSIA-II is being adopted by NOAA as a corporate decision-analysis and support capability to inform leadership decisions on its integrated observing systems portfolio. Application examples include assessing the agency-wide impacts of planned decommissioning of ships and aircraft in NOAA's fleet, and the relative cost-effectiveness of alternative space-based architectures in the post-GOES-R and JPSS era

  18. Observed features of temperature, salinity and current in central Chukchi Sea during the summer of 2012

    Institute of Scientific and Technical Information of China (English)

    HE Yan; LIU Na; CHEN Hongxia; TENG Fei; LIN Lina; WANG Huiwu

    2015-01-01

    During the summer of 2012, the fifth CHINARE Arctic Expedition was carried out, and a submersible mooring system was deployed in M5 station located at (69°30.155'N,169°00.654'W) and recovered 50d later. A set of temperature, salinity and current profile records was acquired. The characteristics of these observations are analyzed in this paper. Some main results are achieved as below. (1) Temperature generally decreases while salinity generally increases with increasing depth. The average values of all records are 2.98℃ and 32.21 psu. (2) Salinity and temperature are well negatively correlated, and the correlation coefficient between them is –0.84. However, they did not always vary synchronously. Their co-variation featured different characters during different significant periods. (3) The average velocity for the whole water column is 141 mm/s with directional angle of 347.1°. The statistical distribution curve of velocity record number gets narrower with increasing depth. More than 85% of the recorded velocities are northward, and the mean magnitudes of dominated northward velocities are 100–150 mm/s. (4) Rotary spectrum analysis shows that motions with low frequency take a majority of energy in all layers. The most significant energy peaks for all layers are around 0.012 cph (about 3.5 d period), while the tidal motion in mooring area is nonsignificant. (5) Velocities in all layers feature similar and synchronous temporal variations, except for the slight decrease in magnitude and leftward twist from top to bottom. The directions of velocity correspond well to those of surface wind. The average northward volume transport per square meter is 0.1–0.2 m3/s under southerly wind, but about –0.2 m3/s during northerly wind burst.

  19. Drifter Observations Of Wave-Current Evolution Through The San Francisco Bight

    Science.gov (United States)

    Pearman, D. W.; Herbers, T. H.; Janssen, T. T.; McIntyre, S.; Jessen, P.

    2012-12-01

    Ocean waves approaching the Golden Gate, the narrow strait connecting the San Francisco Bay to the Pacific Ocean, are affected by refraction over the San Francisco Bar and the strong tidal currents in the area. During ebb tides, when currents through the Golden Gate can exceed 2.5 m/s, the approach to San Francisco Bay is characterized by focusing and steepening of the incident wave field on the opposing current jet. These dynamics are not uncommon in coastal inlets and are known to present hazardous navigation conditions. The strong inhomogeneity and enhanced nonlinearity of the waves can result in deviations from non-Gaussian statistics and changes in the likelihood of extreme waves. However, since observations of wave-current dynamics are so difficult to make with conventional instruments, these dynamics remain still poorly understood. In this work we present the development and testing of a compact, low-cost, Wave-Resolving Drifter (WRD), designed to resolve the wave orbital surface motions and surface drifts in high-energy areas. The WRDs consist of a 30cm buoy equipped with an off-the-shelf GPS receiver and a three-axis accelerometer. The combined GPS-accelerometer package is functionally equivalent to a conventional pitch-roll (or PUV) wave height and direction instrument, but at a fraction of the price. In our presentation we will discuss results from several WRD array deployments in the San Francisco Bight during high-energy conditions with strong ebb currents. The buoys are shown to resolve the surface waves and surface drift with remarkable accuracy and allow the analysis of the evolution of the wave group structure over the opposing current. To obtain statistical results for currents and waves, WRDs were released in clusters (ensemble) from which shoaling effects over the bar and wave-current interaction can be identified.

  20. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    CERN Document Server

    Seaton, Daniel B; Darnel, Jonathan M

    2016-01-01

    We present AIA observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014~February~25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand km thick for much of the duration of the event and that its temperature generally ranged between $8-10\\,\\mathrm{MK}$. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was $M_{A} \\approx 0.004-0.007$, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  1. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    Science.gov (United States)

    Seaton, Daniel B.; Bartz, Allison E.; Darnel, Jonathan M.

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was MA ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  2. Ukrainian Virtual Observatory: Current Status and Perspectives of Development of Joint Archives of Observations

    Science.gov (United States)

    Vavilova, I. B.; Pakuliak, L. K.; Protsyuk, Yu. I.; Virun, N. V.; Kashuba, S. G.; Pikhun, A. I.; Andrievsky, S. M.; Mazhaev, A. E.; Kazantseva, L. V.; Shlyapnikov, A. A.; Shulga, A. V.; Zolotukhina, A. V.; Sergeeva, T. P.; Miroshnichenko, A. P.; Andronov, I. L.; Breus, V. V; Virnina, N. A.

    2011-07-01

    The current state of the observational data archives of seven observatories of Ukraine which were created from 1898 to 2010 is considered in respect to their suitability for including into the Ukrainian Virtual Observatory (UkrVO) database. In accordance with a current UkrVO conception approved by the Ukrainian Astronomical Association, the database of astro negatives is the main scientific component of the UkrVO. The database will include all the photo plates accumulated in Ukraine and combine them into the Joint Digitized Archive (JDA). This will provide for a user an easy access to textual data and images using web interface and a corresponding search engine. The data archives obtained from CCD and radio observations in Ukraine are also discussed as scientific components of the UkrVO. Some prospects of the JDA development are formulated.

  3. The primacy of residential quality in urban creation. A current observation of a recurring notion

    OpenAIRE

    2013-01-01

    As a current observation this contribution intends to situate origins of the notion of the primacy of residential quality in urban creation in a historical context before May ’68 and to show the relevance and actuality of this concept in emerging contemporary projective urban architectural practices. This is done through a retrospective re–reading of a major research contribution of architectural residential sociology elaborated by Henri Raymond and his team of ISU directed by Henri Lefebvre....

  4. Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea

    Science.gov (United States)

    Li, Ruixiang; Chen, Changsheng; Xia, Huayong; Beardsley, Robert C.; Shi, Maochong; Lai, Zhigang; Lin, Huichan; Feng, Yanqing; Liu, Changjian; Xu, Qichun; Ding, Yang; Zhang, Yu

    2014-08-01

    Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006-2007 and 2009-2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of >50 cm/s and a vertical scale of ˜400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.

  5. Long-term observations of Alaska Coastal Current in the northern Gulf of Alaska

    Science.gov (United States)

    Stabeno, Phyllis J.; Bell, Shaun; Cheng, Wei; Danielson, Seth; Kachel, Nancy B.; Mordy, Calvin W.

    2016-10-01

    The Alaska Coastal Current is a continuous, well-defined system extending for ~1700 km along the coast of Alaska from Seward, Alaska to Samalga Pass in the Aleutian Islands. The currents in this region are examined using data collected at >20 mooring sites and from >400 satellite-tracked drifters. While not continuous, the mooring data span a 30 year period (1984-2014). Using current meter data collected at a dozen mooring sites spread over four lines (Seward, Gore Point, Kennedy and Stevenson Entrances, and the exit to Shelikof Strait) total transport was calculated. Transport was significantly correlated with alongshore winds, although the correlation at the Seward Line was weak. The largest mean transport in the Alaska Coastal Current occurred at Gore Point (1.4×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer), with the transport at the exit to Shelikof Strait (1.3×106 m3 s-1 in winter and 0.6×106 m3 s-1 in summer) only slightly less. The transport was modified at the Seward Line in late summer and fall by frontal undulations associated with strong river discharge that enters onto the shelf at that time of year. The interaction of the Alaska Coastal Current and tidal currents with shallow banks in the vicinity of Kodiak Archipeligo and in Kennedy-Stevenson Entrance results in mixing and prolonged primary production throughout the summer.

  6. Analysis of Equatorial Currents Observed by Eastern Indian Ocean Cruises in 2010 and 2011

    Institute of Scientific and Technical Information of China (English)

    ZENG Xue-Zhi; LI Yi-Neng; PENG Shi-Qiu

    2012-01-01

    Hydrographic and direct current measurements were made in the Eastern Equatorial Indian Ocean in May 2010 and April 2011 as part of the Eastern Indian Ocean Cruises (EIOC) organized by the South China Sea Institute of Oceanology (SCSIO). Analyses of the shipdrift Acoustic Doppler Current Profiler (ADCP) data in- dicate that the equatorial currents observed in May 2010 are characterized by a strongly eastward surface current (Wyrtki Jets, WJs) with a maximum velocity of 0.9 m s-1, while that observed in April 2011 is weak and without a consistent direction. The strongly eastward WJ transports the surface water eastward, resulting in a deeper upper mixed layer, as shown in the temperature and salinity pro- files. However, it was found that the Equatorial Undercurrent (EUC) in the Eastern Indian Ocean is strong in April 2011 and weak in May 2010. The EUC was located approximately at the position of the thermocline, and it had higher salinity (up to approximately 35.5 psu) than the upper and lower waters.

  7. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  8. Anesthesia information management systems marketplace and current vendors.

    Science.gov (United States)

    Stonemetz, Jerry

    2011-09-01

    This article addresses the brief history of anesthesia information management systems (AIMS) and discusses the vendors that currently market AIMS. The current market penetration based on the information provided by these vendors is presented and the rationale for the purchase of AIMS is discussed. The considerations to be evaluated when making a vendor selection are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION

    Institute of Scientific and Technical Information of China (English)

    Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie

    2005-01-01

    A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.

  10. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  11. Output Current Ripple Reduction Algorithms for Home Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Park

    2013-10-01

    Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.

  12. Three-dimensional model-observation comparison in the Loop Current region

    Science.gov (United States)

    Rosburg, K. C.; Donohue, K. A.; Chassignet, E. P.

    2016-12-01

    Accurate high-resolution ocean models are required for hurricane and oil spill pathway predictions, and to enhance the dynamical understanding of circulation dynamics. Output from the 1/25° data-assimilating Gulf of Mexico HYbrid Coordinate Ocean Model (HYCOM31.0) is compared to daily full water column observations from a moored array, with a focus on Loop Current path variability and upper-deep layer coupling during eddy separation. Array-mean correlation was 0.93 for sea surface height, and 0.93, 0.63, and 0.75 in the thermocline for temperature, zonal, and meridional velocity, respectively. Peaks in modeled eddy kinetic energy were consistent with observations during Loop Current eddy separation, but with modeled deep eddy kinetic energy at half the observed amplitude. Modeled and observed LC meander phase speeds agreed within 8% and 2% of each other within the 100 - 40 and 40 - 20 day bands, respectively. The model reproduced observed patterns indicative of baroclinic instability, that is, a vertical offset with deep stream function leading upper stream function in the along-stream direction. While modeled deep eddies differed slightly spatially and temporally, the joint development of an upper-ocean meander along the eastern side of the LC and the successive propagation of upper-deep cyclone/anticylone pairs that preceded separation were contained within the model solution. Overall, model-observation comparison indicated that HYCOM31.0 could provide insight into processes within the 100 - 20 day band, offering a larger spatial and temporal window than observational arrays.

  13. AFSC/FMA/Observer Logistics System (OLS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Alaska groundfish fisheries observers have been monitoring domestic groundfish fishing activities in the U.S. Exclusive Economic Zone (EEZ) off Alaska for over...

  14. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...... systems in industry companies and partly to assess if the objectives suggested are appropriate for describing the impact of product configuration systems and identifying other possible objectives. The empirical study of the com-panies also gives an indication of more overall performance indicators being...

  15. Laboratory observations of saline and turbidity currents flowing in U-shaped flume

    Science.gov (United States)

    Stagnaro, M.; Bolla Pittaluga, M.

    2013-12-01

    Saline and turbidity currents belong to the large family of gravity currents. Due to the difficulties to predict and observe these kinds of phenomena, especially turbidity currents, we developed an experimental apparatus able to reproduce these currents in our Marchi Environmental Laboratory (Genova, Italy). The experiments were performed in a large U-shaped flume, 30 m long, characterized by a constant curvature bend (radius of 2.5 m) joining two straight reaches approximately 12 m long. The flume has a rectangular cross section 0.6 m wide and 0.5 m deep. Inside the flume we made a uniform concrete bottom slope (0.005), which proceeds from the inlet section along the first straight track and finishes 3 m after the bend exit. For each experiment we have been able to measure density distribution and velocity profiles along the vertical in different cross section. Density measurements were obtained using two ranks of siphons that sample the currents at different heights. Velocity was acquired with the DOP2000 ultrasound velocimeter; we measured longitudinal component in the straight reach of the flume, and both longitudinal and transversal velocity in the curved reach. We performed 30 experiments by changing the inlet conditions: primary defining the nature of the currents, saline or sediment laden, then varying two of the main parameters governing the currents: the density of the mixture and the flow discharge. The former covered a range between 1003 and 1023 kg/m^3 and the flow discharge ranged between 0.5 to 4.0 l/s. Both of these parameters influence the densimetric Froude Number, and allowed us to reproduce both subcritical and supercritical flow. In each experiment water entrainment from above was negligible hence the current was able to attain a quasi-uniform configuration in the first straight reach, whereby the longitudinal velocity and the thickness of the current were approximately constant. By varying the inlet conditions, it was possible to observe the

  16. An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter

    Directory of Open Access Journals (Sweden)

    Xiaobo Dou

    2015-07-01

    Full Text Available Inverter voltage control is an important task in the operation of a DC/AC microgrid system. To improve the inverter voltage control dynamics, traditional approaches attempt to measure and feedforward the load current, which, however, needs remote measurement with communications in a microgrid system with distributed loads. In this paper, a load current observer (LCO based control strategy, which does not need remote measurement, is proposed for sinusoidal signals tracking control of a three-phase inverter of the microgrid. With LCO, the load current is estimated precisely, acting as the feedforward of the dual-loop control, which can effectively enlarge the stability margin of the control system and improve the dynamic response to load disturbance. Furthermore, multiple PR regulators are applied in this strategy conducted in a stationary  frame to suppress the transient fluctuations and the total harmonic distortion (THD of the output voltage and achieve faster transient performance compared with traditional dual-loop control in a rotating dq0 frame under instantaneous change of various types of load (i.e., balanced load, unbalanced load, and nonlinear load. The parameters of multiple PR regulators are analyzed and selected through the root locus method and the stability of the whole control system is evaluated and analyzed. Finally, the validity of the proposed approach is verified through simulations and a three-phase prototype test system with a TMS320F28335 DSP.

  17. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  18. Stability of Cascaded Fuzzy Systems and Observers

    NARCIS (Netherlands)

    Lendek, Z.; Babuska, R.; De Schutter, B.

    2009-01-01

    A large class of nonlinear systems can be well approximated by Takagi-Sugeno (TS) fuzzy models with linear or affine consequents. It is well known that the stability of these consequent models does not ensure the stability of the overall fuzzy system. Therefore, several stability conditions have bee

  19. Observed benefits from product configuration systems

    DEFF Research Database (Denmark)

    Hvam, Lars; Haug, Anders; Mortensen, Niels Henrik

    2013-01-01

    This article presents a study of the benefits obtained from applying product configuration systems based on a case study in four industry companies. The impacts are described according to main objectives in literature for imple-menting product configuration systems: lead time in the specification...

  20. Verifying timestamps of occultation observation systems

    CERN Document Server

    A., M; Gault, Dave; Bolt, Greg; McEwan, Alistair; Filipovic, Miroslav D; White, Graeme L

    2015-01-01

    We describe an image timestamp verification system to determine the exposure timing characteristics and continuity of images made by an imaging camera and recorder, with reference to Coordinated Universal Time (UTC). The original use was to verify the timestamps of stellar occultation recording systems, but the system is applicable to lunar flashes, planetary transits, sprite recording, or any area where reliable timestamps are required. The system offers good temporal resolution (down to 2 msec, referred to UTC) and provides exposure duration and interframe dead time information. The system uses inexpensive, off-the- shelf components, requires minimal assembly and requires no high-voltage components or connections. We also describe an application to load FITS (and other format) image files, which can decode the verification image timestamp. Source code, wiring diagrams and built applications are provided to aid the construction and use of the device.

  1. Terra - the Earth Observing System flagship observatory

    Science.gov (United States)

    Thome, K. J.

    2013-12-01

    The Terra platform enters its teenage years with an array of accomplishments but also with the potential to do much more. Efforts continue to extend the Terra data record to build upon its array of accomplishments and make its data more valuable by creating a record length that allows examination of inter annual variability, observe trends on the decadal scale, and gather statistics relevant to the define climate metrics. Continued data from Terra's complementary instruments will play a key role in creating the data record needed for scientists to develop an understanding of our climate system. Terra's suite of instruments: ASTER (contributed by the Japanese Ministry of Economy and Trade and Industry with a JPL-led US Science Team), CERES (NASA LaRC - PI), MISR (JPL - PI), MODIS (NASA GSFC), and MOPITT (sponsored by Canadian Space Agency with NCAR-led Science Team) are providing an unprecedented 81 core data products. The annual demand for Terra data remains with >120 million files distributed in 2011 and >157 million in 2012. More than 1,100 peer-reviewed publications appeared in 2012 using Terra data bringing the lifetime total >7,600. Citation numbers of 21,000 for 2012 and over 100,000 for the mission's lifetime. The broad range of products enable the community to provide answers to the overarching question, 'How is the Earth changing and what are the consequences for life on Earth?' Terra continues to provide data that: (1) Extend the baseline of morning-orbit collections; (2) Enable comparison of measurements acquired from past high-impact events; (3) Add value to recently-launched and soon-to-be launched missions, and upcoming field programs. Terra data continue to support monitoring and relief efforts for natural and man-made disasters that involve U.S. interests. Terra also contributes to Applications Focus Areas supporting the U.S. National Objectives for agriculture, air quality, climate, disaster management, ecological forecasting, public health, water

  2. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    Science.gov (United States)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  3. An Observing System Simulation Experiment Approach to Meteorological Network Assessment

    Science.gov (United States)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.; Boluwade, A.

    2016-12-01

    A proper knowledge of the spatiotemporal distribution of rainfall is important in order to conduct a mindful investigation of water movement and storage throughout a catchment. Currently, the most accurate precipitation information available for the remote Boreal ecozones of northern Manitoba is coming from the Canadian Precipitation Analysis (CaPA) data assimilation system. Throughout the Churchill River Basin (CRB), CaPA still does not have the proper skill due to the limited number of weather stations. A new approach to experimental network design was investigated based on the concept of Observing System Simulation Experiment (OSSE). The OSSE-based network assessment procedure which simulates the CaPA system provides a scientific and hydrologically significant tool to assess the sensitivity of CaPA precipitation analysis to observation network density throughout the CRB. To simulate CaPA system, synthetic background and station data were simulated, respectively, by adding spatially uncorrelated and correlated Gaussian noises to an assumingly true daily weather field synthesized by a gridded precipitation generator which simulates CaPA data. Given the true reference field on one hand, and a set of pseudo-CaPA analyses associated with different network realizations on the other hand, a WATFLOOD hydrological model was employed to compare the modeled runoff. The simulations showed that as network density increases, the accuracy of CaPA precipitation products improves up to a certain limit beyond which adding more stations to the network does not result in further accuracy.

  4. Observability analysis of nonlinear systems using pseudo-linear transformation

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2013-01-01

    In the linear control theory, the observability Popov-Belevitch-Hautus (PBH) test plays an important role in studying observability along with the observability rank condition and observability Gramian. The observability rank condition and observability Gramian have been extended to nonlinear system

  5. Pacific Islands Region Observer Program System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This system integrates the longline debriefing steps and procedures for Hawaii and American Samoa into one tool to standardize and streamline the debriefing process....

  6. Alternating Current All-electrical Gun Control System in Tanks

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-07-01

    Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.

  7. Autonomic nervous system correlates in movement observation and motor imagery

    Directory of Open Access Journals (Sweden)

    Christian eCollet

    2013-07-01

    Full Text Available The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding on the autonomic nervous system (ANS correlates in motor imagery (MI and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system. We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes.

  8. Observations of Thin Current Sheets in the Solar Wind and Their Role in Magnetic Energy Dissipation

    Science.gov (United States)

    Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.; Gurgiolo, C. A.; Karimabadi, H.; Mozer, F.; Wendel, D. E.; TenBarge, J.; Roytershteyn, V.

    2013-12-01

    A recent analysis of 450 vec/s resolution data from the STAFF search-coil magnetometer on board Cluster has revealed, for the first time, the presence of thin current sheets and discontinuities from the proton Larmor scale down to the electron Larmor scale in the solar wind. This is in the range of scales where a cascade of energy consistent with highly oblique kinetic Alfvénic fluctuations (KAW), eventually dissipated by electron Landau damping, has been detected. The current sheets have been found to have a size between 20-200 km, indicating that they are very localized. We will compare the observations with results coming from 2D Hall MHD, Gyrokinetic, and full Particle-in-Cell turbulence simulations. Preliminary work has highlighted promising qualitative agreement between the properties of the structures observed in the Cluster data and the current sheets generated in the simulations. With the aim of investigating the role played by those structures in dissipating the magnetic energy in the solar wind, E●J has been computed within each magnetic discontinuity. This has been made possible via a combined analysis of both STAFF-SC magnetic field data and the electric field data from the Electric Fields and Wave instrument (EFW). We describe procedures used to reduce the noise in the EFW data. The results obtained represent an effort to clarify the processes involved in the dissipation of magnetic energy in the solar wind.

  9. Current fluctuations in stochastic systems with long-range memory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R J; Touchette, H [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)], E-mail: rosemary.harris@qmul.ac.uk, E-mail: h.touchette@qmul.ac.uk

    2009-08-28

    We propose a method to calculate the large deviations of current fluctuations in a class of stochastic particle systems with history-dependent rates. Long-range temporal correlations are seen to alter the speed of the large deviation function in analogy with long-range spatial correlations in equilibrium systems. We give some illuminating examples and discuss the applicability of the Gallavotti-Cohen fluctuation theorem. (fast track communication)

  10. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  11. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    Science.gov (United States)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  12. Distribution of current in nonequilibrium diffusive systems and phase transitions

    Science.gov (United States)

    Bodineau, T.; Derrida, B.

    2005-12-01

    We consider diffusive lattice gases on a ring and analyze the stability of their density profiles conditionally to a current deviation. Depending on the current, one observes a phase transition between a regime where the density remains constant and another regime where the density becomes time dependent. Numerical data confirm this phase transition. This time dependent profile persists in the large drift limit and allows one to understand on physical grounds the results obtained earlier for the totally asymmetric exclusion process on a ring.

  13. LLNL current meter array--concept and system description

    Energy Technology Data Exchange (ETDEWEB)

    Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  14. Current Strategic Business Plan for the Implementation of Digital Systems.

    Science.gov (United States)

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…

  15. Further development of the EUMETNET Composite Observing System (EUCOS)

    Science.gov (United States)

    Klink, S.; Dibbern, J.

    2009-09-01

    EUCOS, which stands for EUMETNET Composite Observing System, is a EUMETNET programme whose main objective is a central management of surface based operational observations on a European-wide scale serving the needs of regional scale NWP. EUMETNET is a consortium of currently 26 national meteorological services in Europe that provides a framework for different operational and developmental co-operative programmes between the services. The work content of the EUCOS Programme includes the management of the operational observing networks, through the E-AMDAR, E-ASAP, E-SURFMAR and E-WINPROF programmes. The coordination of NMSs owned territorial networks (e.g. radiosonde stations and synoptic stations), data quality monitoring, fault reporting and recovery, a studies programme for the evolution of the observing networks and liaison with other organisations like WMO are among the tasks of the programme. The current period of the EUCOS programme has a five year duration (2007-2011) and a two stage approach was proposed in the programme definition. During the transition phase 2007-2008 no new programmatic objectives had been set because amongst others the Space-Terrestrial (S-T) study which investigated the relative contributions of selected space based and ground based observing systems to the forecast skill of global and regional NWP models had to be finalised first. Based on the findings of this study EUCOS currently prepares a redesign of its upper-air network. The original EUCOS upper-air network design was prepared in 2000 in order to define a set of stations serving the common general NWP requirement. Additional considerations were to make it possible to supply a common set of performance standards across the territory of EUMETNET Members and to ensure that the radiosonde network interleaved with AMDAR airports. The EUCOS upper-air network now requires a redesign because of several reasons. There is a need to take into account the significant evolution of the AMDAR

  16. Current models of the observable consequences of cosmic reionization and their detectability

    CERN Document Server

    Iliev, Ilian T; Pen, Ue-Li; Bond, J Richard; Shapiro, Paul R

    2007-01-01

    A number of large current experiments aim to detect the signatures of the Cosmic Reionization at redshifts z>6. Their success depends crucially on understanding the character of the reionization process and its observable consequences and designing the best strategies to use. We use large-scale simulations of cosmic reionization to evaluate the reionization signatures at redshifted 21-cm and small-scale CMB anisotropies in the best current model for the background universe, with fundamental cosmological parameters given by WMAP 3-year results (WMAP3). We find that the optimal frequency range for observing the ``global step'' of the 21-cm emission is 120-150 MHz, while statistical studies should aim at 140-160 MHz, observable by GMRT. Some strongly-nongaussian brightness features should be detectable at frequencies up to ~190 MHz. In terms of sensitivity-signal trade-off relatively low resolutions, corresponding to beams of at least a few arcminutes, are preferable. The CMB anisotropy signal from the kinetic S...

  17. Observing the reconnection region in a transequatorial loop system

    Institute of Scientific and Technical Information of China (English)

    Rui Liu; Tong-Jiang Wang; Jeongwoo Lee; Guillermo Stenborg; Chang Liu; Sung-Hong Park; Hai-Min Wang

    2011-01-01

    A vertical current sheet is a crucial element in many flare/coronal mass ejection (CME) models.For the first time,Liu et al.reported a vertical current sheet directly imaged during the flare rising phase with the EUV Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO).As a follow-up study,here we present the comprehensive analysis and detailed physical interpretation of the observation.The current sheet formed due to the gradual rise of a transequatorial loop system.As the loop legs approached each other,plasma flew at ~6 km s-1 into a local area where a cusp-shaped flare loop subsequently formed and the current sheet was seen as a bright,collimated structure of global length (≥ 0.25 R(@)) and macroscopic width ((5-10)× 103 km),extending from 50 Mm above the flaring loop to the border of the EIT field of view (FOV).The reconnection rate in terms of the Alfvén Mach number is estimated to be only 0.005-0.009,albeit a halo CME was accelerated from ~ 400 km s- 1 to ~ 1300 km s- 1 within the coronagraph FOV.Drifting pulsating structures at metric frequencies were recorded during the impulsive phase,implying tearing of the current sheet in the high corona.A radio Type Ⅲ burst occurred when the current sheet was clearly seen in EUV,indicative of accelerated electrons beaming upward from the upper tip of the current sheet.A cusp-shaped dimming region was observed to be located above the post-flare arcade during the decay phase in EIT;both the arcade and the dimming expanded with time.With the Coronal Diagnostic Spectrometer (CDS) aboard SOHO,a clear signature of chromospheric evaporation was seen during the decay phase,i.e.,the cusp-shaped dimming region was associated with plasma upflows detected with EUV hot emission lines,while the post-flare loop was associated with downflows detected with cold lines.This event provides a comprehensive view of the reconnection geometry and dynamics in the solar corona.

  18. Dissipative systems: uncontrollability, observability and RLC realizability

    CERN Document Server

    Karikalan, Selvaraj; Abdulrazak, Rihab

    2011-01-01

    The theory of dissipativity has been primarily developed for controllable systems/behaviors. For various reasons, in the context of uncontrollable systems/behaviors, a more appropriate definition of dissipativity is in terms of the dissipation inequality, namely the {\\em existence} of a storage function. A storage function is a function such that along every system trajectory, the rate of increase of the storage function is at most the power supplied. While the power supplied is always expressed in terms of only the external variables, whether or not the storage function should be allowed to depend on unobservable/hidden variables also has various consequences on the notion of dissipativity: this paper thoroughly investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. We first assume that the storage function can be expressed in terms of the external variables and their derivatives only and prove our first main result that, assuming the uncontrollable poles...

  19. Project Copernicus: An Earth observing system

    Science.gov (United States)

    1991-01-01

    Hunsaker Aerospace Corporation is presenting this proposal for Project Copernicus to fulfill the need for space-based remote sensing of Earth. Concentration is on data acquisition. Copernicus is designed to be a flexible system of spacecraft in a low near-polar orbit. The goal is to acquire data so that the scientists may begin to understand many Earth processes and interactions. The mission objective of Copernicus is to provide a space-based, remote-sensing measurement data acquisition and transfer system for 15 years. A description of the design project is presented.

  20. Mid-latitude solar eclipses and their influence on ionospheric current systems

    Directory of Open Access Journals (Sweden)

    A. T. Tomás

    2009-12-01

    Full Text Available Using CHAMP magnetic field data we study the behaviour of the geomagnetic field during two mid latitude eclipses on 21 June 2001 and 22 September 2006. The possible influence of the eclipses on different ionospheric current systems, as seen in the magnetic field measured by CHAMP, is discussed. It is expected that the blocking of solar radiation during an eclipse causes a reduction of the ionospheric conductivity and therefore has an effect on the different current systems. We address in particular the effects of the eclipses on the inter-hemispheric field-aligned currents and on the Sq current system. The two events studied occur under different seasonal conditions, e.g. June solstice and September equinox, therefore quite different aspects can be investigated. We find that the eclipses might affect the direction and intensity of the inter-hemispheric currents and possibly influence the direction of zonal winds, therefore changing the direction of the prevailing F-region dynamo currents. The eclipse in the Southern Hemisphere during September equinox caused inter-hemispheric currents similar to those observed in northern summer. Reverse inter-hemispheric currents were recorded after the end of the eclipse. A large variety of atypical currents was observed during the June event. Most of them might be related to a reversed F-region dynamo in the morning sector and an enhanced conductivity difference between the hemispheres. The eclipse in the south seems to enhance the June solstice conditions considerably.

  1. Trials for better precision of seafloor geodetic observation system

    Science.gov (United States)

    Mochizuki, M.; Sato, M.; Fujita, M.; Yoshida, Z.; Yabuki, T.; Asada, A.

    2002-12-01

    Institute of Industrial Science, University of Tokyo, and Hydrographic Department, Japan, have been developing seafloor geodetic observation system and conducting observations using the system. Precise acoustic ranging and kinematic GPS positioning techniques are combined into the system. Seafloor reference station which consists of four mirror type transponders is deployed on the seafloor and measures its position in reference to GPS stations on land and ship. Fourteen seafloor geodetic reference stations have been distributed on the forearc areas of Japan island arc. Subsea crustal deformation due to subducting two oceanic plates of the Pacific and the Philippine sea can be monitored by using the seafloor reference stations. Although we obtained satisfactory results with the already existing system, we come up with possible improvements of the system as we accumulate the experience of the observations using the system. Trials to improve the system are always done. In this poster, we will present two of such trials. 1. To improve the stability of the rigid pole connecting the GPS antenna and the ship-board transducer. The bending of the GPS pole was found by examining the offsets in the acoustic ranging residuals. Acoustic ranging is made with condition that the ship drifts over sea surface. Drag force generated between surface current and the pole makes the pole itself bend. The pole was replaced by new, more rigid pole to overcome the problem. Also, we monitor amount of bending of the pole, that is, the offset between the GPS antenna and the transducer, using tiltmeter through the observation. 2. To reduce the acoustic ranging error due to shape of the transducer. Coded sinusoidal acoustic wave with 15cm wave length is used as the ranging signal. This wave length is comparable to the dimension of the cylindrical transducers employed both on the ship-board system and on the seafloor transponder. Transducer can not be regarded as a point considering the wave

  2. Observer Based Compensators for Nonlinear Systems

    Science.gov (United States)

    1989-03-31

    coordinate change that achieves exact linearization could as well be calculated using the Hunt-Su linearization method. However, in our approach, we...the above, we obtain the exact linearization (implying that the development by the authors. system (52) satisfies the Hunt--Su condition): The multi

  3. LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs

    Science.gov (United States)

    Webb, David F.; Vourlidas, Angelos

    2016-12-01

    Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984 - 1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, ˜130 CME-rays, than during SMM. Important results include: The occurrence rate of the rays is ˜11 % of all CMEs during solar minimum, but decreases to ˜7 % at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3 - 4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is ˜12 R_{⊙}, with the longest current sheet of 18.5 R_{⊙}. The mean CS growth rates are 188 km s^{-1} at minimum and 324 km s^{-1} at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of ˜350 km s^{-1} with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within ˜1 day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic

  4. The Angola Current and its seasonal variability as observed at 11°S

    Science.gov (United States)

    Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.

    2016-04-01

    The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the

  5. Observability and controllability for linear neutral type systems

    OpenAIRE

    Rabah, Rabah; Sklyar, Grigory,

    2014-01-01

    International audience; For a large class of linear neutral type systems which include distributed delays we give the duality relation between exact controllability and exact observability. This duality is based on the representation of the abstract adjoint system as a special neutral type system. As a consequence of this duality relation, a characterization of exact observability is obtained. The time of observability is precised.

  6. Observation of Thermoelectric Currents in High-Field Superconductor-Ferromagnet Tunnel Junctions.

    Science.gov (United States)

    Kolenda, S; Wolf, M J; Beckmann, D

    2016-03-01

    We report on the experimental observation of spin-dependent thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of the particle-hole symmetry, and are found to be in excellent agreement with recent theoretical predictions. The maximum Seebeck coefficient inferred from the data is about -100  μV/K, much larger than commonly found in metallic structures. Our results directly prove the coupling of spin and heat transport in high-field superconductors.

  7. Observed intraseasonal and seasonal variability of the West India coastal current on the continental slope.

    Digital Repository Service at National Institute of Oceanography (India)

    Amol, P.; Shankar, D.; Fernando, V.; Mukherjee, A.; Aparna, S.G.; Fernandes, R.; Michael, G.S.; Khalap, S.T.; Satelkar, N.P.; Agarvadekar, Y.; Gaonkar, M.G.; Tari, A.P.; Kankonkar, A.; Vernekar, S.

    between the Arabian Sea, a concentration basin, and the Bay of Bengal, a dilution basin (Jensen 2001; Han et al. 2001) and plays a major role in the region’s climate (see, for example, the reviews by Schott and McCreary 2001; Schott et al. 2009). The WICC... to the regional climate and marine living resources imply that it is important to be able to describe its variability and understand what causes the observed variability. In the rest of this introduction, we review our current state of knowledge of the WICC. We...

  8. Numerical simulation of the observed near-surface East India Coastal Current on the continental slope

    Science.gov (United States)

    Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.

    2017-08-01

    We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25° ) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.

  9. Self-Organizing Maps-based ocean currents forecasting system

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  10. USGEO National Earth Observation Assessment Methods for Evaluating the Relative Contributions of Earth Observing Systems to Societal Benefit

    Science.gov (United States)

    Gallo, J.; Stryker, T.

    2015-12-01

    The second National Civil Earth Observation Assessment identifies the inputs and relative contributions of the portfolio of observing systems currently relied upon by Federal agencies to meet key Earth observing objectives. The Assessment employs a hierarchical value-tree framework that traces the pathways through which Earth observing systems contribute value across 13 societal benefit areas, utilizing multiple levels to provide logical traceability. This presentation describes the methods used to construct societal benefit area value-trees that include key objectives and the information products, services, and research derived from Earth observations that help satisfy them. It describes the methods for weighting nodes at multiple levels of each value-tree and the expert elicitation process for assessing the relative contributions of Earth observing systems to the development of information products, services, and research. The methodology employed in the Assessment is especially useful at assessing the interdependence and relative contributions of multiple Earth observing systems on the development of blended information products and tracing information pathways from direct observations through intermediate products, such as models, to end-products used to improve decision-making. This presentation will highlight case study examples from the 13 societal benefit areas (agriculture and forestry, biodiversity, climate, disasters, ecosystems, energy and mineral resources, human health, ocean and costal resources, space weather, transportation, water resources weather, and reference measurements) to demonstrate tractability from Earth observing systems, through information products and research that satisfy key objectives, to societal benefit.

  11. Observing Natural Hazards: Tsunami, Hurricane, and El Niño Observations from the NDBC Ocean Observing System of Systems

    Science.gov (United States)

    O'Neil, K.; Bouchard, R.; Burnett, W. H.; Aldrich, C.

    2009-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Data Buoy Center (NDBC) operates and maintains the NDBC Ocean Observing Systems of Systems (NOOSS), comprised of 3 networks that provide critical information before and during and after extreme hazards events, such as tsunamis, hurricanes, and El Niños. While each system has its own mission, they have in common the requirement to remain on station in remote areas of the ocean to provide reliable and accurate observations. After the 2004 Sumatran Tsunami, NOAA expanded its network of tsunameters from six in the Pacific Ocean to a vast network of 39 stations providing information to Tsunami Warning Centers to enable faster and more accurate tsunami warnings for coastal communities in the Pacific, Atlantic, Caribbean and the Gulf of Mexico. The tsunameter measurements are used to detect the amplitude and period of the tsunamis, and the data can be assimilated into models for the prediction and impact of the tsunamis to coastal communities. The network has been used for the detection of tsunamis generated by earthquakes, including the 2006 and 2007 Kuril Islands, 2007 Peru, and Solomon Islands, and most recently for the 2009 Dusky Sound, New Zealand earthquake. In August 2009, the NOAA adjusted its 2009 Atlantic Hurricane Seasonal Outlooks from above normal to near or below normal activity, primarily due to a strengthening El Niño. A key component in the detection of that El Niño was the Tropical Atmosphere Ocean Array (TAO) operated by NDBC. TAO provides real-time data for improved detection, understanding, and prediction of El Niño and La Niña. The 55-buoy TAO array spans the central and eastern equatorial Pacific providing real-time and post-deployment recovery data to support climate analysis and forecasts. Although, in this case, the El Niño benefits the tropical Atlantic, the alternate manifestation, La Niña typically enhances hurricane activity in the Atlantic. The various phases of

  12. Spectroscopic observations of evolving flare ribbon substructure suggesting origin in current sheet waves

    Science.gov (United States)

    Brannon, Sean R.; Longcope, Dana; Qiu, Jiong

    2015-04-01

    A flare ribbon is the chromospheric image of reconnection at a coronal current sheet. The dynamics and structure of the ribbon can thus reveal properties of the current sheet, including motion of the reconnecting flare loops. We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph (IRIS) of the evolution of a flare ribbon at high spatial resolution and time cadence. These reveal small-scale substructure in the ribbon, which manifest as oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these we find the best support for some form of elliptical wave localized to the coronal current sheet, such as a tearing mode or Kelvin-Helmholtz instability.IRIS is a NASA Small Explorer mission developed and operated by Lockheed Martin Solar and Astrophysics Laboratory. This work is supported by contract 8100002702 from Lockheed Martin to Montana State University, a Montana Space Grant Consortium fellowship, and by NASA through HSR.

  13. A microbeam slit system for high beam currents

    Science.gov (United States)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  14. Current Efforts in European Projects to Facilitate the Sharing of Scientific Observation Data

    Science.gov (United States)

    Bredel, Henning; Rieke, Matthes; Maso, Joan; Jirka, Simon; Stasch, Christoph

    2017-04-01

    This presentation is intended to provide an overview of currently ongoing efforts in European projects to facilitate and promote the interoperable sharing of scientific observation data. This will be illustrated through two examples: a prototypical portal developed in the ConnectinGEO project for matching available (in-situ) data sources to the needs of users and a joint activity of several research projects to harmonise the usage of the OGC Sensor Web Enablement standards for providing access to marine observation data. ENEON is an activity initiated by the European ConnectinGEO project to coordinate in-situ Earth observation networks with the aim to harmonise the access to observations, improve discoverability, and identify/close gaps in European earth observation data resources. In this context, ENEON commons has been developed as a supporting Web portal for facilitating discovery, access, re-use and creation of knowledge about observations, networks, and related activities (e.g. projects). The portal is based on developments resulting from the European WaterInnEU project and has been extended to cover the requirements for handling knowledge about in-situ earth observation networks. A first prototype of the portal was completed in January 2017 which offers functionality for interactive discussion, information exchange and querying information about data delivered by different observation networks. Within this presentation, we will introduce the presented prototype and initiate a discussion about potential future work directions. The second example concerns the harmonisation of data exchange in the marine domain. There are many organisation who operate ocean observatories or data archives. In recent years, the application of the OGC Sensor Web Enablement (SWE) technology has become more and more popular to increase the interoperability between marine observation networks. However, as the SWE standards were intentionally designed in a domain independent manner

  15. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  16. Exact temporal eddy current compensation in magnetic resonance imaging systems.

    Science.gov (United States)

    Morich, M A; Lampman, D A; Dannels, W R; Goldie, F D

    1988-01-01

    A step-response method has been developed to extract the properties (amplitudes and decay time constants) of intrinsic-eddy-current-sourced magnetic fields generated in whole-body magnetic resonance imaging systems when pulsed field gradients are applied. Exact compensation for the eddy-current effect is achieved through a polynomial rooting procedure and matrix inversion once the 2 N properties of the N-term decay process are known. The output of the inversion procedure yields the required characteristics of the filter for spectrum magnitude and phase equalization. The method is described for the general case along with experimental results for one-, two-, and three-term inversions. The method's usefulness is demonstrated for the usually difficult case of long-term (200-1000-ms) eddy-current compensation. Field-gradient spectral flatness measurements over 30 mHz-100 Hz are given to validate the method.

  17. Observing the carbon-climate system

    CERN Document Server

    Schimel, David; Moore, Berrien; Chatterjee, Abhishek; Baker, David; Berry, Joe; Bowman, Kevin; Crisp, Phillipe Ciais David; Crowell, Sean; Denning, Scott; Duren, Riley; Friedlingstein, Pierre; Gierach, Michelle; Gurney, Kevin; Hibbard, Kathy; Houghton, Richard A; Huntzinger, Deborah; Hurtt, George; Jucks, Ken; Kawa, Randy; Koster, Randy; Koven, Charles; Luo, Yiqi; Masek, Jeff; McKinley, Galen; Miller, Charles; Miller, John; Moorcroft, Paul; Nassar, Ray; ODell, Chris; Ott, Leslie; Pawson, Steven; Puma, Michael; Quaife, Tristan; Riris, Haris; Romanou, Anastasia; Rousseaux, Cecile; Schuh, Andrew; Shevliakova, Elena; Tucker, Compton; Wang, Ying Ping; Williams, Christopher; Xiao, Xiangming; Yokota, Tatsuya

    2016-01-01

    Increases in atmospheric CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that reduce or amplify the effects of those emissions on atmospheric concentrations. Despite decades of research carbon-climate feedbacks remain poorly quantified. The impact of these uncertainties on future climate are of increasing concern, especially in the wake of recent climate negotiations. Emissions, long concentrated in the developed world, are now shifting to developing countries, where the emissions inventories have larger uncertainties. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 50 years. Will this change in the future as the climate evolves? Concentrations of CH4, the 2nd most important greenhouse gas, which had apparently stabilized, have recently resumed their increase, but the exact cause for this is unknown. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably he...

  18. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    Science.gov (United States)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  19. The determination of the reference system of a single observer observed quantities

    Energy Technology Data Exchange (ETDEWEB)

    Epikhin, E.N.

    1979-01-01

    The paper examines various methods for constructing single-observer reference systems in general relativity. The procedure involves the determination on Riemann space of: (1) the world line of the observer, (2) the lines of transfer, and (3) a method for transferring quantities to the world line of the observer. Particular attention is given to the gauge transformation of synchronized single-observer reference systems. The examination is performed in a monad-field framework.

  20. Proposed hybrid superconducting fault current limiter for distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)

    2009-11-15

    In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)

  1. Symmetry and the thermodynamics of currents in open quantum systems

    Science.gov (United States)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  2. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    Science.gov (United States)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  3. Period-doubling bifurcation cascade observed in a ferromagnetic nanoparticle under the action of a spin-polarized current

    Energy Technology Data Exchange (ETDEWEB)

    Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Kushnir, Mykola Ya. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine); Morales-Meza, Mishel [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico); Sukhov, Alexander [Institut für Physik, Martin-Luther Universität Halle-Wittenberg, 06120 Halle (Saale) (Germany); Rusyn, Volodymyr [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky str., 58012 Chernivtsi (Ukraine)

    2016-04-01

    We report on complex magnetization dynamics in a forced spin valve oscillator subjected to a varying magnetic field and a constant spin-polarized current. The transition from periodic to chaotic magnetic motion was illustrated with bifurcation diagrams and Hausdorff dimension – the methods developed for dissipative self-organizing systems. It was shown that bifurcation cascades can be obtained either by tuning the injected spin-polarized current or by changing the magnitude of applied magnetic field. The order–chaos transition in magnetization dynamics can be also directly observed from the hysteresis curves. The resulting complex oscillations are useful for development of spin-valve devices operating in harmonic and chaotic modes.

  4. Detecting Triple Systems with Gravitational Wave Observations

    Science.gov (United States)

    Meiron, Yohai; Kocsis, Bence; Loeb, Abraham

    2017-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the “light”-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 {R}ȯ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.

  5. The Optimal Taxation and the Current Tax System

    OpenAIRE

    Ioannis N. Kallianiotis

    2015-01-01

    Purpose:The paper discusses the current U.S. tax system, which reduces the disposable income and makes savings negative (dissaving or borrowing). This has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. Methodology:People are borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit...

  6. Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle

    Science.gov (United States)

    Bodineau, T.; Derrida, B.

    2004-05-01

    We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.

  7. Observation of self-magnetic field relaxations in Bi2223 and Y123 HTS tapes after over-current pulse and DC current operation

    Science.gov (United States)

    Tallouli, M.; Sun, J.; Chikumoto, N.; Otabe, E. S.; Shyshkin, O.; Charfi-Kaddour, S.; Yamaguchi, S.

    2016-07-01

    The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.

  8. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  9. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  10. Fast isolation of faults in transmission systems using current transients

    Energy Technology Data Exchange (ETDEWEB)

    Perera, N.; Rajapakse, A.D. [University of Manitoba, Department of Electrical and Computer Engineering, Engineering Building, 15 Gillson Street, Winnipeg, Manitoba (Canada)

    2008-09-15

    This paper presents a protection scheme that is capable of very fast isolation of faults in high voltage transmission systems. Proposed scheme comprises set of relays connected through a telecommunication network, located at different nodes of the system. Relays use wavelet coefficients of current signals to identify the fault directions relative to their location. Fault directions identified at different locations in the system can be combined to determine the faulted line (or busbar) and isolate it. A robust single ended traveling wave based fault distance estimation approach is proposed as a backup in case of communication failure. Investigations were carried out using time domain simulations in PSCAD/EMTDC for a high voltage transmission system. (author)

  11. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  12. Research on Low Power Marine Current Power Generation System

    Directory of Open Access Journals (Sweden)

    Dongkai Peng

    2013-09-01

    Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.

  13. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The ocean current response to a hurricane on the shelf-break is examined. The study area is the DeSoto Canyon in the northeast Gulf of Mexico, and the event is the passage of 1998 Hurricane Georges with a maximum wind speed of 49 m/s. The data sets used for analysis consist of the mooring data taken by the Field Program of the DeSoto Canyon Eddy Intrusion Study, and simultaneous winds observed by NOAA (National Oceanic and Atmospheric Administration) Moored Buoy 42040. Time-depth ocean current energy density images derived from the observed data show that the ocean currents respond almost immediately to the hurricane with important differences on and offthe shelf. On the shelf, in the shallow water of 100 m, the disturbance penetrates rapidly downward to the bottom and forms two energy peaks, the major peak is located in the mixed layer and the secondary one in the lower layer. The response dissipates quickly after external forcing disappears. Off the shelf, in the deep water, the major disturbance energy seems to be trapped in the mixed layer with a trailing oscillation; although the disturbance signals may still be observed at the depths of 500 and 1 290 m. Vertical dispersion analysis reveals that the near-initial wave packet generated off the shelf consists of two modes. One is a barotropic wave mode characterized by a fast decay rate of velocity amplitude of 0.020 s-1, and the other is baroclinic wave mode characterized by a slow decay rate of 0.006 9 s-1. The band-pass-filtering and empirical function techniques are employed to the frequency analysis. The results indicate that all frequencies shift above the local inertial frequency. On the shelf, the average frequency is 1.04fin the mixed layer, close to the diagnosed frequency of the first baroclinic mode, and the average frequency increases to 1.07fin the thermocline.Off the shelf, all frequencies are a little smaller than the diagnosed frequency of the first mode. The average frequency decreases from 1

  14. Orbits in the T Tauri triple system observed with SPHERE

    CERN Document Server

    Köhler, R; Herbst, T M; Ratzka, T; Bertrang, G H -M

    2015-01-01

    We present new astrometric measurements of the components in the T Tauri system, and derive new orbits and masses. T Tauri was observed during the science verification time of the new extreme adaptive optics facility SPHERE at the VLT. We combine the new positions with recalibrated NACO-measurements and data from the literature. Model fits for the orbits of T Tau Sa and Sb around each other and around T Tau N yield orbital elements and individual masses of the stars Sa and Sb. Our new orbit for T Tau Sa/Sb is in good agreement with other recent results, which indicates that enough of the orbit has been observed for a reliable fit. The total mass of T Tau S is 2.65+/-0.11 Msun. The mass ratio M_Sb:M_Sa is 0.25+/-0.03, which yields individual masses of M_Sa = 2.12+/-0.10 Msun and M_Sb = 0.53+/-0.06 Msun. If our current knowledge of the orbital motions is used to compute the position of the southern radio source in the T Tauri system, then we find no evidence for the proposed dramatic change in its path.

  15. Observability at an initial state for polynomial systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2013-01-01

    We consider observability at an initial state for polynomial systems. When testing for local observability for nonlinear systems, the observability rank condition based on the inverse function theorem is commonly used. However, the rank condition is a sufficient condition, and we cannot test for glo

  16. A regional climatology of the Humboldt Current System

    Science.gov (United States)

    Grados Quispe, M.; Chaigneau, A.; Blanco, J.; Vasquez, L.; Dominguez, N.

    2009-12-01

    A 3-dimensional, high-resolution, regional climatology of the Humboldt Current System (HCS) north of 25°S is presented. The methodology is based on a four-dimensional ocean interpolation scheme using locally weighted least square fitting, as developed by Dunn and Ridgway [2001] and Ridgway et al. [2002] in the Australian Seas. The method is applied to all the available historical profiles from the National Oceanographic Data Center [WOD05, Boyer et al., 2006], ARGO buoy profiles [http://www.argo.ucsd.edu] for 2000-2007 and historical in situ long-term information from the Peruvian Marine Research Institute (IMARPE) and Fisheries Development Institute (IFOP) for the period 1960-2008. The regional climatology, which extends from the equator to 25°S and from the coast to 8° offshore with a resolution of 0.1°x0.1°, is thus constructed from more than 70 000 temperature profiles, 38 000 salinity profiles and 43 000 oxygen profiles to form a seasonal climatology of temperature and salinity along Peru and northern Chile. The resulting maps depict interesting small-scales coastal properties such as clear distinct upwelling centers and frontal zones. Geostrophic currents relative to 500 m depth are also computed from the density field, highlighting new circulation features. This study provides a contemporaneous view of the circulation and the water masses characteristics in the Humboldt Current System at seasonal scales. This regional climatology represents coastal boundary features (upwelling cells, frontal regions) better than other climatologies. In view of on-going international research efforts to understand the coastal upwelling and coastal currents in the southern ocean off Peru, the main characteristics of the upwelling cell, currents and coastal winds variability of the Pisco (13°S)-San Juan (15°S) region are presented. This improved gridded product is expected to be used for initializing and validating high resolution regional numerical models.

  17. Modeling Earth Albedo Currents on Sun Sensors for Improved Vector Observations

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    2006-01-01

    Earth albedo influences vector measurements of the solar line of sight vector, due to the induced current on in the photo voltaics of Sun sensors. Although advanced digital Sun sensors exist, these are typically expensive and may not be suited for satellites in the nano or pico-class. Previously...... for modeling Sun sensor output by incorporating the Earth albedo model is presented. This model utilizes the directional information of in the Earth albedo model, which is achieved by Earth surface partitioning. This allows accurate simulation of the Sun sensor output and the results are consistent with Ørsted...... and useful for space environment simulations, and may be utilized to improve attitude estimation algorithms applying Sun sensor vector observations....

  18. Current sedation and monitoring practice for colonoscopy: an International Observational Study (EPAGE)

    DEFF Research Database (Denmark)

    Froehlich, F; Harris, JK; Wietlisbach, V;

    2006-01-01

    in endoscopy centers internationally. PATIENTS AND METHODS: This observational study included consecutive patients referred for colonoscopy at 21 centers in 11 countries. Endoscopists reported sedation and monitoring practice, using a standard questionnaire for each patient. RESULTS: 6004 patients were......BACKGROUND AND STUDY AIMS: Sedation and monitoring practice during colonoscopy varies between centers and over time. Knowledge of current practice is needed to ensure quality of care and help focus future research. The objective of this study was to examine sedation and monitoring practice...... included in this study, of whom 53 % received conscious/moderate sedation during colonoscopy, 30 % received deep sedation, and 17 % received no sedation. Sedation agents most commonly used were midazolam (47 %) and opioids (33 %). Pulse oximetry was done during colonoscopy in 77 % of patients, blood...

  19. Direct observation of chiral currents and magnetic reflection in atomic flux lattices

    CERN Document Server

    An, Fangzhao Alex; Gadway, Bryce

    2016-01-01

    The prospect of studying topologically nontrivial phases with the precision and control of atomic physics has driven the development of many techniques for engineering artificial magnetic fields and spin-orbit interactions in atomic gases. Recently, the idea of engineering nontrivial topology through the use of discrete internal (or external) atomic states as effective "artificial dimensions" has garnered attraction for its versatility and promise of immunity from sources of heating. Here, we directly engineer tunable artificial gauge fields through the local control of tunneling phases in an effectively two-dimensional manifold of discrete atomic momentum states. We demonstrate the ability to engineer homogeneous artificial gauge fields of arbitrary value, directly imaging the site-resolved dynamics of induced chiral currents. We furthermore engineer the first inhomogeneous artificial gauge fields for cold atoms, enabling the observation of magnetic reflection of atoms incident upon a step-like variation of ...

  20. A Design of Observers for a Discrete Chaotic System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is very easy to design an observer for a discrete chaotic system which possesses one non-linear scalar quantity, and one can realize the synchronization between the investigated chaotic system and its observer easily. This method is applied to two chaotic systems.

  1. Impulse Observability and Impulse Controllability of Regular Degenerate Evolution Systems

    Institute of Scientific and Technical Information of China (English)

    GE Zhaoqiang

    2016-01-01

    Impulse observability and impulse controllability of regular degenerate evolution systems are discussed by using functional analysis and operator theory in Banach space.Necessary and sufficient conditions for the impulse observability and impulse controllability of the system are obtained.This research is theoretically important for studying the design of the degenerate evolution system.

  2. The inconsistency between proton charge exchange and the observed ring current decay

    Science.gov (United States)

    Lyons, L. R.; Evans, D. S.

    1976-01-01

    The equatorial pitch-angle distributions of ring-current ions observed during a storm recovery phase at L values between 3 and 4 are compared with the pitch-angle distributions predicted by proton charge exchange with neutral hydrogen. Large disagreements are found, and three alternative explanations are explored. (1) A strong proton source acts to mask the effects of charge exchange. It is believed that the required strong continual source with a unique pitch-angle and energy dependence is unrealistic at these low L values. (2) Presently accepted neutral hydrogen density models have densities well over an order of magnitude too large for a storm recovery phase. No evidence is known to support the required large errors in the densities. (3) The ring current at particle energies not exceeding 50 keV was dominated by some ion species other than protons during the storm recovery phase. Such ions must have much longer lifetimes for charge exchange with hydrogen than do protons. This alternative is strongly favored, with He(+) being an attractive candidate.

  3. CRISPR system in filamentous fungi: Current achievements and future directions.

    Science.gov (United States)

    Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2017-09-05

    As eukaryotes, filamentous fungi share many features with humans, and they produce numerous active metabolites, some of which are toxic. Traditional genetic approaches are generally inefficient, but the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system that has been widely used for basic research on bacteria, mammals and plants offers a simple, fast, versatile technology for systemic research on filamentous fungi. In this review, we summarized the current knowledge on Cas9 and its variants, various selective markers used to screen positive clones, different ways used to detect off-target mutations, and different approaches used to express and transform the CRISPR complex. We also highlight several methods that improve the nuclease specificity and efficiency, and discuss current and potential applications of CRISPR/Cas9 system in filamentous fungi for pathogenesis decoding, confirmation of the gene and pathway, bioenergy process, drug discovery, and chromatin dynamics. We also describe how the synthetic gene circuit of CRISPR/Cas9 systems has been used in the response to various complex environmental signals to redirect metabolite flux and ensure continuous metabolite biosynthesis. Copyright © 2017. Published by Elsevier B.V.

  4. The current situation of treatment systems for alcoholism in Korea.

    Science.gov (United States)

    Kim, Jee Wook; Lee, Boung Chul; Kang, Tae-Cheon; Choi, Ihn-Geun

    2013-02-01

    Alcoholism is becoming one of the most serious issues in Korea. The purpose of this review article was to understand the present status of the treatment system for alcoholism in Korea compared to the United States and to suggest its developmental direction in Korea. Current modalities of alcoholism treatment in Korea including withdrawal treatment, pharmacotherapy, and psychosocial treatment are available according to Korean evidence-based treatment guidelines. Benzodiazepines and supportive care including vitamin and nutritional support are mainly used to treat alcohol withdrawal in Korea. Naltrexone and acamprosate are the drugs of first choice to treat chronic alcoholism. Psychosocial treatment methods such as individual psychotherapy, group psychotherapy, family therapy, cognitive behavior therapy, cue exposure therapy, 12-step facilitation therapy, self-help group therapy, and community-based treatment have been carried out to treat chronic alcoholism in Korea. However, current alcohol treatment system in Korea is not integrative compared to that in the United States. To establish the treatment system, it is important to set up an independent governmental administration on alcohol abuse, to secure experts on alcoholism, and to conduct outpatient alcoholism treatment programs and facilities in an open system including some form of continuing care.

  5. DSP-Based Sensorless Speed Control of a Permanent Magnet Synchronous Motor using Sliding Mode Current Observer

    Directory of Open Access Journals (Sweden)

    Rachid Askour

    2014-05-01

    Full Text Available In this paper, experimental results of 3-phase permanent magnet synchronous motor (PMSM sensorless speed control are presented. To estimate the rotor position, a sliding mode current observer (SMCO was implemented. This observer estimates the back emfs of the motor in the stationary reference frame using only the measured voltages and currents of the motor. These emfs were utilized to obtain the rotor position. The speed of the motor was calculated by differentiating the rotor position angle. The stability of the proposed SMCO was verified using Lyapunov method to determine the observer gain. The saturation function was adopted in order to reduce the chattering phenomenon caused by the SMCO. A vector control method was employed to achieve the sensorless drive system. The control application was developed in C/C++ language and implemented using the Texas Instruments TMS320LF2812 digital signal processor (DSP. This new processor enables intelligent control for motors. We used to test the drive the MCK2812 which is a professional development kit available from Technosoft Company. The theoretical finding is validated with experimental results that show the effectiveness of the real-time implementation.

  6. EKOSAT/DIAMANT - The Earth Observation Programme at OHB- System

    Science.gov (United States)

    Penne, B.; Tobehn, C.; Kassebom, M.; Luebberstedt

    This paper covers the EKOSAT / DIAMANT programme heading for superspectral geo-information products. The EKOSAT / DIAMANT programme is based on a commercial strategy just before the realization of the first step - the EKOSAT launch in 2004. Further, we give an overview on OHB-System earth observation prime activities especially for infrared and radar. The EKOSAT/ DIAMANT is based on the MSRS sensor featuring 12 user dedicated spectral bands in the VIS/NIR with 5m spatial resolution and 26 km swath at an orbit of 670 km. The operational demonstrator mission EKOSAT is a Korean-Israelean-German-Russian initiative that aims in utilizing the existing proto-flight model of the KOMPSAT-1 spacecraft for the MSRS sensor, which development is finished. The EKOSAT pointing capability will allow a revisit time of 3 days. DIAMANT stands for the future full operational system based on dedicated small satellites. The basic constellation relying on 2-3 satellites with about one day revisit is extendend on market demand. EKOSAT/ DIAMANT is designed to fill the gap between modern high spatial resolution multispectral (MS) systems and hyperspectral systems with moderate spatial resolution. On European level, there is currently no remote sensing system operational with comparable features and capabilities concerning applications especially in the field of environmental issues, vegetation, agriculture and water bodies. The Space Segment has been designed to satisfy the user requirements based on a balance between commercial aspects and scientific approaches. For example eight spectral bands have been identified to cover almost the entire product range for the current market. Additional four bands have been implemented to be prepared for future applications as for example the improved red edge detection, which give better results regarding environmental conditions. The spacecraft design and its subsystems are still reasonable small in order to keep the mass below 200 kg. This is an

  7. The current medical education system in the world.

    Science.gov (United States)

    Nara, Nobuo; Suzuki, Toshiya; Tohda, Shuji

    2011-07-04

    To contribute to the innovation of the medical education system in Japan, we visited 35 medical schools and 5 institutes in 12 countries of North America, Europe, Australia and Asia in 2008-2010 and observed the education system. We met the deans, medical education committee and administration affairs and discussed about the desirable education system. We also observed the facilities of medical schools.Medical education system shows marked diversity in the world. There are three types of education course; non-graduate-entry program(non-GEP), graduate-entry program(GEP) and mixed program of non-GEP and GEP. Even in the same country, several types of medical schools coexist. Although the education methods are also various among medical schools, most of the medical schools have introduced tutorial system based on PBL or TBL and simulation-based learning to create excellent medical physicians. The medical education system is variable among countries depending on the social environment. Although the change in education program may not be necessary in Japan, we have to innovate education methods; clinical training by clinical clerkship must be made more developed to foster the training of the excellent clinical physicians, and tutorial education by PBL or TBL and simulation-based learning should be introduced more actively.

  8. Patterns and processes in the California Current System

    Science.gov (United States)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  9. Towards An Oceanographic Component Of A Global Earth Observation System Of Systems: Progress And Challenges

    Science.gov (United States)

    Ackleson, S. G.

    2012-12-01

    Ocean observatories (systems of coordinated sensors and platforms providing real-time in situ observations across multiple temporal and spatial scales) have advanced rapidly during the past several decades with the integration of novel hardware, development of advanced cyber-infrastructures and data management software, and the formation of researcher networks employing fixed, drifting, and mobile assets. These advances have provided persistent, real-time, multi-disciplinary observations representing even the most extreme environmental conditions, enabled unique and informative views of complicated ocean processes, and aided in the development of more accurate and higher fidelity ocean models. Combined with traditional ship-based and remotely sensed observations, ocean observatories have yielded new knowledge across a broad spectrum of earth-ocean scales that would likely not exist otherwise. These developments come at a critical time in human history when the demands of global population growth are creating unprecedented societal challenges associated with rapid climatic change and unsustainable consumption of key ocean resources. Successfully meeting and overcoming these challenges and avoiding the ultimate tragedy of the commons will require greater knowledge of environmental processes than currently exists, including interactions between the ocean, the overlying atmosphere, and the adjacent land and synthesizing new knowledge into effective policy and management structures. To achieve this, researchers must have free and ready access to comprehensive data streams (oceanic, atmospheric, and terrestrial), regardless of location and collection system. While the precedent for the concept of free and open access to environmental data is not new (it traces back to the International Geophysical Year, 1957), implementing procedures and standards on a global scale is proving to be difficult, both logistically and politically. Observatories have been implemented in many

  10. The Current State and Perspectives of Systems Biology

    Institute of Scientific and Technical Information of China (English)

    Tielui Shi; Yixue Li

    2006-01-01

    Emerging as a new field in biology recently, Systems Biology provides a branch new way to study the biological activities in organisms. In order to decode the complexity of life systematically,systems biology integrates the "-omics" and uses the high throughput methods from transcriptomics,protomics and metabonomics to detect the dynamic activities in cell; and then, it incorporates bioinformatics methods to integrate and analyze those data, and simulate the biological processes based on the model built from those integrated data. In this paper, the current state, the research field and the methods for the Systems Biology are introduced briefly, and then, several ideas about future development in this field are also proposed.

  11. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  12. Simple Augmented Current Controller with OHC Technique for grid current compensation in the Distribution System

    Directory of Open Access Journals (Sweden)

    S. Rajalingam

    2014-05-01

    Full Text Available This paper presents a novel control technique on four leg inverter with which the distribution grid is interconnected with the domestic houses. Most of the houses in the distribution side possess inverter for the usage of Electricity. With the advancement in Solar & wind, it will become easy to see houses, often with solar & a small Wind power system. The excess power generated can be exchanged with the Electricity Board for providing uninterruptible power supply. During this exchange there may be a deterioration in the quality of power, most often the grid current gets affected with a large harmonic distortion, and also there exists unbalanced grid currents. Thus, it is necessary to provide uninterruptible power supply with good quality of power. In spite of several controllers, the proposed augmented controller has its own reliability & quick response with Overall Harmonic Compensation (OHC technique which relies on DSP based filter. This Augmented based control technique with OHC is demonstrated extensively with MATLAB/Simulink simulation.

  13. Observer Design for (max,plus) Linear System

    OpenAIRE

    Hardouin, L.; Maia,C.A.; Cottenceau, B.; Lhommeau, M.

    2013-01-01

    This paper deals with the state estimation for max-plus linear systems. This estimation is carried out following the ideas of the observer method for classical linear systems. The system matrices are assumed to be known, and the observation of the input and of the output is used to compute the estimated state. The observer design is based on the residuation theory which is suitable to deal with linear mapping inversion in idempotent semiring.

  14. Comparing current cluster, massively parallel, and accelerated systems

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Kevin J [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Hoisie, Adolfy [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  15. Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation

    Directory of Open Access Journals (Sweden)

    Olivia Morgan Lapenta

    2013-06-01

    Full Text Available Motor system neural networks are activated during movement imagery, observation and execution, with a neural signature characterized by suppression of the Mu rhythm. In order to investigate the origin of this neurophysiological marker, we tested whether transcranial direct current stimulation (tDCS modifies Mu rhythm oscillations during tasks involving observation and imagery of biological and non-biological movements. We applied tDCS (anodal, cathodal and sham in 21 male participants (mean age 23.8+3.06, over the left M1 with a current of 2mA for 20 minutes. Following this, we recorded the EEG at C3, C4 and Cz and surrounding C3 and C4 electrodes. Analyses of C3 and C4 showed significant effects for biological vs. non-biological movement (p=0.005, and differential hemisphere effects according to the type of stimulation (p=0.04 and type of movement (p=0.02. Analyses of surrounding electrodes revealed significant interaction effects considering type of stimulation and imagery or observation of biological or non-biological movement (p=0.03. The main findings of this study were (i Mu desynchronization during biological movement of the hand region in the contralateral hemisphere after sham tDCS; (ii polarity-dependent modulation effects of tDCS on the Mu rhythm, i.e. anodal tDCS led to Mu synchronization while cathodal tDCS led to Mu desynchronization during movement observation and imagery (iii specific focal and opposite inter-hemispheric effects, i.e. contrary effects for the surrounding electrodes during imagery condition and also for inter-hemispheric electrodes (C3 vs. C4. These findings provide insights into the cortical oscillations during movement observation and imagery. Furthermore it shows that tDCS can be highly focal when guided by a behavioral task.

  16. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2017-02-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  17. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2016-11-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  18. Fuzzy Controller based Neutral Current Harmonic Suppression in Distribution System

    Directory of Open Access Journals (Sweden)

    T.Guna Sekar

    2013-10-01

    Full Text Available Recent surveys of three-phase four-wire electric systems, buildings and industrial plants with computers and non-linear loads shows the excessive currents in the neutral conductor. This is mainly due to unbalancing system and non-linear loads. Third order harmonics are much dominant in the neutral conductor due to the presence of zero sequence components. In response to this concern, this paper presents a concept of series active filter scheme to suppress the neutral current harmonics to reduce the burden of the secondary of the distribution transformer. In this scheme, the series active filteris connected in series with the neutral conductor to eliminate the zero sequence components in the neutral conductor. In this paper, Fuzzy based controller is used to extract the harmonic component in the neutral conductor. The proposed method improves the overall performance of the system and eliminates the burden of the neutral conductor. To validate the proposed simulation results, a scale-down prototype experimental model is developed.

  19. NASA's Earth Observing System Data and Information System (EOSDIS)

    Science.gov (United States)

    Behnke, Jeanne

    2017-01-01

    EOSDIS is a data system created by NASA to manage its collection of Earth Science data. This presentation is a brief description of the data system provided to the general user community. The presentation reviews the data types, management and software development techniques in use to organize the system.

  20. Interpolating sliding mode observer for a ball and beam system

    Science.gov (United States)

    Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor

    2016-09-01

    A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.

  1. ALMA 1.3 mm observations of the Fomalhaut System

    Science.gov (United States)

    White, Jacob; Boley, Aaron C.; Ford, Eric B.; Payne, Matthew John; Dent, William; Corder, Stuartt

    2016-10-01

    We present ALMA Band 6 (1.3 mm) observations of Fomalhaut and its debris disk. Since the system is relatively close at 7.7 pc, it has been the target of numerous studies at multiple wavelengths, and can serve as a testbed for debris disk evolution models and planet-disk interactions. Outstanding issues that need to be resolved to properly characterize the debris include tightening constraints on the spectral index in the submm/mm regime and determining whether there is indeed excess over the stellar emission, indicating the presence of an inner debris disk or ring.These ALMA 1.3 mm observations provide the highest resolution observations to date of the mm grains the outer ring. Tight constraints are placed on the geometry of the disk and on the mm-wavelength spectral index. We explore fitting the debris disk model in the image plane in addition to the standard method of fitting the visibilities. The results are compared and potential advantages/disadvantages of each approach are discussed.The central emission detected is indistinguishable from a point source, with 0.89 mJy being the best fit flux of the host star for Fomalhaut itself. This implies that any inner debris component must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a blackbody from the constrained photosphere temperature and just over 70% of the flux if extrapolating from the far infrared. This behavior is similar to that seen in the Sun for submm/mm wavelengths, but even more pronounced. Currently, insufficient data exists to properly constrain the degree to which stellar atmospheres affect the observed flux in the submm/mm regime. This result is part of an ongoing larger project focused on measuring the emission from stellar atmospheres at submm/mm wavelengths, which directly impacts inferred excesses for debris disk studies.

  2. Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions—An Overview

    Science.gov (United States)

    Olsen, Nils; Stolle, Claudia

    2016-09-01

    High-precision magnetic measurements taken by LEO satellites (flying at altitudes between 300 and 800 km) allow for studying the ionospheric and magnetospheric processes and electric currents that causes only weak magnetic signature of a few nanotesla during geomagnetic quiet conditions. Of particular importance for this endeavour are multipoint observations in space, such as provided by the Swarm satellite constellation mission, in order to better characterize the space-time-structure of the current systems. Focusing on geomagnetic quiet conditions, we provide an overview of ionospheric and magnetospheric sources and illustrate their magnetic signatures with Swarm satellite observations.

  3. A new reduced-order observer design for the synchronization of Lorenz systems

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico)] e-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, J.C. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Gonzalez-Galan, R. [Departamento de Control Automatico, CINVESTAV-IPN, AP 14-740, CP 07360, Mexico, DF (Mexico); Aguilar-Lopez, R. [Departamento de Energia, UAM-Azcapotzalco, 02200 (Mexico)

    2006-04-01

    In this paper we tackle the synchronization of Lorenz system problem using a new proportional reduced-order observer design in the algebraic and differential setting. We prove the asymptotic stability of the resulting error system and by means of algebraic manipulations we obtain the estimates of the current states (master system), the construction of a proportional reduced-order observer is the main ingredient in our approach. Finally, we present a simulation to illustrate the effectiveness of the suggested approach.

  4. Current approach for urinary system stone disease in pregnant women

    Directory of Open Access Journals (Sweden)

    Orcun Celik

    2016-01-01

    Full Text Available Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  5. Eddy current system for inspection of train hollow axles

    Energy Technology Data Exchange (ETDEWEB)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  6. Current approach for urinary system stone disease in pregnant women.

    Science.gov (United States)

    Celik, Orcun; Türk, Hakan; Cakmak, Ozgur; Budak, Salih; Ekin, Rahmi Gokhan; Keskin, Mehmet Zeynel; Yildiz, Guner; Ilbey, Yusuf Ozlem

    2016-01-14

    Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  7. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    Science.gov (United States)

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7−δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile. PMID:28067331

  8. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping.

    Science.gov (United States)

    Wells, Frederick S; Pan, Alexey V; Golovchanskiy, Igor A; Fedoseev, Sergey A; Rozenfeld, Anatoly

    2017-01-09

    The dynamics of transient current distributions in superconducting YBa2Cu3O7-δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  9. Observation of Transient Overcritical Currents in YBCO Thin Films using High-Speed Magneto-Optical Imaging and Dynamic Current Mapping

    Science.gov (United States)

    Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly

    2017-01-01

    The dynamics of transient current distributions in superconducting YBa2Cu3O7‑δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.

  10. Variability of the currents in the Luzon Strait during spring of 2002 obtained from observations and satellite geostrophic currents and spectral analyses

    Institute of Scientific and Technical Information of China (English)

    YUAN YaoChu; LIAO GuangHong; WANG HuiQun; LOU RuYun; CHEN Hong

    2009-01-01

    The structure and variability of the currents in the Luzon Strait during spring of 2002 are studied, based on the current measurements at the average position of the mooring station (20°49'57"N, 120°48'12"E) from 03 17 to 04 15, 2002, satellite geostrophic currents in the Luzon Strait, and the spectral analyses, using the maximum entropy method. The subtidal currents at the mooring station show de-creased amplitudes downward with an anti-cyclonic rotation, suggesting that the currents enter and exit the South China Sea in the upper and intermediate layers, respectively. The vertical structure of the currents in the Luzon Strait suggests strongly the sandwiched structure of the LST, even though the bottom part of the profile is not resolved by the observational grid. The spectral analyses show the following periods of significant spectral peaks: (1) the tidal currents variability in the vertical direction; (2) the period about 4-6 d for the two cases of frequency f>0 and f0 and f<0 at the 200, 500 and 800 m levels, namely the Luzon Strait currents exhibit significant synoptical variability throughout the water column up to 800 m deep. Both direct current measurements and in situ hydrographic and satellite survey suggest no Kuroshio loop current in the Luzon Strait during the spring of 2002.

  11. Observability of Airborne Passive Location System with Phase Difference Measurements

    Institute of Scientific and Technical Information of China (English)

    Deng Xinpu; Wang Qiang; Zhong Danxing

    2008-01-01

    With a pair of antennas spaced apart, an airborne passive location system measures phase differences of emitting signals. Regarded as cyclic ambiguities, the moduli of the measurements traditionally are resolved by adding more antenna elements. This paper models the cyclic ambiguity as a component of the system state, of which the observability is analyzed and compared to that of the bear- ings-only passive location system. It is shown that the necessary and sufficient observability condition for the bearings-only passive location system is only the necessary observability condition for the passive location system with phase difference measurements, and that when the system state is observable, the cyclic ambiguities can be estimated by accumulating the phase difference measurements, thereby making the observer able to locate the emitter with high-precision.

  12. Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts

    Directory of Open Access Journals (Sweden)

    Raphael Hernando Parrado

    2015-01-01

    Full Text Available Introduction. Gastric antral vascular ectasia (GAVE is a rare entity with unique endoscopic appearance described as “watermelon stomach.” It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were “Gastric antral vascular ectasia,” “Watermelon Stomach,” “GAVE,” “Scleroderma,” and “Systemic Sclerosis.” Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.

  13. Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts.

    Science.gov (United States)

    Parrado, Raphael Hernando; Lemus, Hernan Nicolas; Coral-Alvarado, Paola Ximena; Quintana López, Gerardo

    2015-01-01

    Introduction. Gastric antral vascular ectasia (GAVE) is a rare entity with unique endoscopic appearance described as "watermelon stomach." It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were "Gastric antral vascular ectasia," "Watermelon Stomach," "GAVE," "Scleroderma," and "Systemic Sclerosis." Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.

  14. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  15. Narrow-K-Band Observations of the GJ 1214 System

    CERN Document Server

    Colon, Knicole D

    2013-01-01

    GJ 1214 is a nearby M dwarf star that hosts a transiting super-Earth-size planet, making this system an excellent target for atmospheric studies. Most studies find that the transmission spectrum of GJ 1214b is flat, which favors either a high mean molecular weight or cloudy/hazy hydrogen (H) rich atmosphere model. Photometry at short wavelengths (< 0.7 micron) and in the K-band can discriminate the most between these different atmosphere models for GJ 1214b, but current observations do not have sufficiently high precision. We present photometry of seven transits of GJ 1214b through a narrow K-band (2.141 micron) filter with the Wide Field Camera on the 3.8 m United Kingdom Infrared Telescope. Our photometric precision is typically 1.7x10^-3 (for a single transit), comparable with other ground-based observations of GJ 1214b. We measure a planet-star radius ratio of 0.1158+/-0.0013, which, along with other studies, also supports a flat transmission spectrum for GJ 1214b. Since this does not exclude a scenari...

  16. IRAS observations of the Pluto-Charon system

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, H.H.; Walker, R.G.

    1987-10-01

    High-signal-to-noise-ratio observations of the Pluto-Charon system at 25, 60, and 100 microns using IRAS are combined with visual-magnitude and mutual-eclipse constraints to evaluate thermal models of Pluto and Charon. These models are consistent with eclipse observation by Dunbar and Tedesco (1986) but not with Reinsch and Pakull (1987). The most likely model for Charon is the standard asteroid model, typical for the icy Galilean and Saturnian satellites. Charon models with a significant atmosphere can be ruled out. Based on currently available radius and albedo constraints, no significant numerical distinction is possible between Pluto models ranging from isothermal spheres with surface emissivity between 0.4 and 0.9. Concerns regarding the viability of an emissivity as low as 0.4 favor the higher-emissivity models. The globally uniform surface temperature of Pluto may thus at present be as low as 45 K, with a methane column abundance of 6.7 cm atm. The most likely models are centered on radii of 1180 and 747 km and albedos of 0.47 and 0.26 for Pluto and Charon, respectively. 21 references.

  17. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  18. Efficient Estimation of the Impact of Observing Systems using EFSO

    Science.gov (United States)

    Kalnay, E.; Chen, T. C.; Jung, J.; Hotta, D.

    2016-12-01

    Massive amounts of observations are being assimilated every day into modern Numerical Weather Prediction (NWP) systems. This makes difficult to estimate the impact of a new observing system with Observing System Experiments (OSEs) because there is already so much information provided by existing observations. In addition, the large volume of data also prevents monitoring the impact of each assimilated observation with OSEs. We demonstrate in this study how effectively the use of Ensemble Forecast Sensitivity to Observations (EFSO) can help to monitor and improve the impact of observations on the analyses and forecasts. In the first part, we show how to identify detrimental observations within each observing system using EFSO, which has been termed as Proactive Quality Control (PQC). The withdrawal of these detrimental observations leads to improved analyses and subsequent 5-day forecasts, which also serves as a verification of EFSO. We display the feasibility of PQC towards operational implementation. In the second part, it is found that in the estimated impact of MODIS polar winds, one of the contributors of detrimental observations, a positive u-component of the innovation, is associated with detrimental observations, whereas negative u-innovations are generally associated with beneficial impacts. Other biases associated with height, and other variables when the net impact is detrimental were also found. By contrast, such biases do not appear in systems using similar cloud drift wind algorithm, such as GOES satellite winds. The finding provides guidance towards improving the system and gives a clear example of efficient monitoring observations and testing new observing systems using EFSO. The potential of using EFSO to efficiently improve both observations and analyses is clearly shown in this study.

  19. Overview of the Cassini In-Situ Observations of Auroral Field-Aligned Currents During the 2013 Saturn Aurora Campaign

    Science.gov (United States)

    Bunce, E. J.; Badman, S. V.; Cowley, S. W.; Dougherty, M. K.; Gurnett, D. A.; Jinks, S.; Kurth, W. S.; Mitchell, D. G.; Nichols, J. D.; Provan, G.; Pryor, W. R.

    2013-12-01

    The Saturn Aurora Campaign 2013 is a coordinated effort to provide a clearer understanding of Saturn's auroral emissions at multiple wavelengths in the upper atmosphere, and their associated magnetospheric signatures and dynamics. Structures such as Corotating Interaction Regions (CIRs) are known to play a significant role in the modulation of Saturn's auroral emissions via abrupt changes in the dynamic pressure associated with forward shocks at the start of the CIR compression regions. Recent observations from the Cassini spacecraft at Saturn have also taught us that the 'magnetosphere oscillations' observed in magnetic field perturbations in the northern and southern hemispheres, which are associated with the SKR modulations in each hemisphere, also significantly modulate the magnetosphere and auroral emissions. Here we present an overview of the in situ magnetosphere measurements during the campaign, along with an overview of the solar wind conditions upstream of Saturn inferred from the Saturn Kilometric Radiation (SKR) emissions. We will discuss evidence of the high-latitude field-aligned currents and plasma boundaries (e.g. the open-closed field line (or related) boundary) from the magnetic field data, plasma signatures and/or auroral hiss observations (using the Cassini magnetometer-MAG, the Magnetospheric Imaging Instrument-MIMI, and the Radio Plasma Wave Science-RPWS instruments respectively). We will attempt to characterise the morphology and variability (e.g. co-latitude, intensity) of the current system(s) from both the knowledge of the northern or southern magnetosphere oscillation phase (according to the location of the spacecraft) and the inferred solar wind conditions. We will compare these results with available IR/UV auroral images from the campaign.

  20. Biogeochemical properties of eddies in the California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  1. A compact analytical formalism for current transients in electrochemical systems

    CERN Document Server

    Nair, Pradeep R

    2011-01-01

    Micro and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecule detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained to the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the response of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detai...

  2. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  3. Spin-current Seebeck effect in quantum dot systems.

    Science.gov (United States)

    Yang, Zhi-Cheng; Sun, Qing-Feng; Xie, X C

    2014-01-29

    We first bring up the concept of the spin-current Seebeck effect based on a recent experiment (Vera-Marun et al 2012 Nature Phys. 8 313), and investigate the spin-current Seebeck effect in quantum dot (QD) systems. Our results show that the spin-current Seebeck coefficient S is sensitive to different polarization states of the QD, and therefore can be used to detect the polarization state of the QD and monitor the transitions between different polarization states of the QD. The intradot Coulomb interaction can greatly enhance S due to the stronger polarization of the QD. By using the parameters for a typical QD whose intradot Coulomb interaction U is one order of magnitude larger than the linewidth Γ, we demonstrate that the maximum value of S can be enhanced by a factor of 80. On the other hand, for a QD whose Coulomb interaction is negligible, we show that one can still obtain a large S by applying an external magnetic field.

  4. Probing other solar systems with current and future adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  5. Probing other solar systems with current and future adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  6. [Magnetoreception systems in birds: a review of current research].

    Science.gov (United States)

    Kishkinev, D A; Chernetsov, N S

    2014-01-01

    Currently at least two independent systems of magnetoreception are believed to exist in birds, based on different biophysical principles, located in different parts of their bodies, and having different innervation. One magnetoreceptory system is located in the retina and may be based on photo-induced biradical chemical reactions on the basis of cryptochrome. Information from these receptors is processed in a specialized part of visual Wulst, the so-called Cluster N. There are good reasons to believe that this visual magnetoreceptor processes compass magnetic information which is necessary for migratory orientation. The second magnetoreceptory system is probably iron-based (biogenic magnetite), is located somewhere in the upper beak (its exact location and ultrastructure of receptors remain unknown), and is innervated by the ophthalmic branch of trigeminal nerve. It cannot be ruled out that this system participates in spatial representation and helps forming either a kind of map or more primitive signposts, based on regular spatial variation of the geomagnetic field. The magnetic map probably governs navigation of migrating birds across hundreds and thousands of kilometers. Apart from these two systems whose existence may be considered to be convincingly shown (even if their details are not yet fully clear), there are data on the existence of magnetoreceptors based on the vestibular system. It cannot be ruled out that iron-based magnetoreception takes place in lagena (a structure homologous to cochlea of marsupials and eutherians), and the information perceived is processes in vestibular nuclei. The very existence of this magnetoreception system needs verification, and its function remains completely open.

  7. Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)

    Science.gov (United States)

    O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

    2010-12-01

    Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

  8. Controller Based Observer in Switched System with Norm Bounded Uncertainty

    Directory of Open Access Journals (Sweden)

    Mongi Besbes

    2012-01-01

    Full Text Available Problem statement: This study discusses the robust stabilization of norm bounded discrete switched systems. Approach: The proposed method is using the second Lyapunov approach and the poly-quadratic function concept. The stabilization conditions are written through linear matrix inequality relations. The control law is based on a static output feedback with the use of a switched observer. The synthesis conditions of the controller are written in the form of linear matrix inequalities difficult to resolve by current numerical solvers. That’s why relaxations are proposed to mitigate the pessimism of LMI conditions obtained. Results: The poly-quadratic Lyapunov approach provides a constructive way to tackle uncertainty in the switched framework. The feasibility is illustrated by the example of discrete uncertain switched systems. Conclusion: With these results, the study of stability can be achieved for arbitrary switching laws, state-dependent, time dependent or generated by a controller. However, the implementation of the control law is possible only if the switching status is well known in real time.

  9. Method and system for a gas tube-based current source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  10. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  11. MOOSES: Multiple Option Observation System for Experimental Studies.

    Science.gov (United States)

    Tapp, Jon; Wehby, Joseph

    The Multiple Option Observation System for Experimental Studies (MOOSES) is a flexible data collection and analysis package for applied behavioral research that addresses the needs of researchers interested in live coding of observational data. MOOSES allows the researcher to design a coding system for a particular research question. General types…

  12. A Comparative Study of Dark Energy Constraints from Current Observational Data

    CERN Document Server

    Wang, Yun; Mukherjee, Pia

    2012-01-01

    We examine how dark energy constraints from current observational data depend on the analysis methods used: the analysis of Type Ia supernovae (SNe Ia), and that of galaxy clustering data. We generalize the flux-averaging analysis method of SNe Ia to allow correlated errors of SNe Ia, in order to reduce the systematic bias due to weak lensing of SNe Ia. We find that flux-averaging leads to larger errors on dark energy and cosmological parameters if only SN Ia data are used. When SN Ia data (the latest compilation by the SNLS team) are combined with WMAP 7 year results (in terms of our Gaussian fits to the probability distributions of the CMB shift parameters), the latest Hubble constant (H_0) measurement using the Hubble Space Telescope (HST), and gamma ray burst (GRB) data, flux-averaging of SNe Ia increases the concordance with other data, and leads to significantly tighter constraints on the dark energy density at z=1, and the cosmic curvature \\Omega_k. The galaxy clustering measurements of H(z=0.35)r_s(z_...

  13. Learning from Teacher Observations: Challenges and Opportunities Posed by New Teacher Evaluation Systems

    Science.gov (United States)

    Hill, Heather C.; Grossman, Pam

    2013-01-01

    In this article, Heather C. Hill and Pam Grossman discuss the current focus on using teacher observation instruments as part of new teacher evaluation systems being considered and implemented by states and districts. They argue that if these teacher observation instruments are to achieve the goal of supporting teachers in improving instructional…

  14. Two Globally Convergent Adaptive Speed Observers for Mechanical Systems

    OpenAIRE

    2015-01-01

    A globally exponentially stable speed observer for mechanical systems was recently reported in the literature, under the assumptions of known (or no) Coulomb friction and no disturbances. In this note we propose and adaptive version of this observer, which is robust vis--a--vis constant disturbances. Moreover, we propose a new globally convergent speed observer that, besides rejecting the disturbances, estimates some unknown friction coefficients for a class of mechanical systems that contain...

  15. Integrated Arctic Observation System Development Under Horizon 2020

    Science.gov (United States)

    Sandven, S.

    2016-12-01

    The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fishing), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.

  16. Use of spherical elementary currents to map the polar current systems associated with the geomagnetic sudden commencements on 2013 and 2015 St. Patrick's Day storms

    Science.gov (United States)

    Marsal, S.; Torta, J. M.; Segarra, A.; Araki, T.

    2017-01-01

    Araki's model of geomagnetic sudden commencements (SCs) establishes that the ground magnetic signatures globally observed after the onset produced by an increased solar wind dynamic pressure impacting on the Earth's magnetosphere are caused by the setting up of a system of electric currents in the coupled magnetosphere-ionosphere. This current system consists of a particular evolving set of magnetopause currents closing in the ionosphere through geomagnetic field-aligned currents (FACs) and their induced counterpart. The present paper confirms the starting assumptions of the referred model by use of spherical elementary current systems (SECS), namely, the existence of FACs reversing polarity during the first couple of minutes of the SC. It is the first time that SECS have been applied to the study of SCs. The method has been fed with data from more than 100 stations of the global network of geomagnetic observatories and variometer sites in the northern hemisphere so as to provide a reliable pattern of the equivalent current system flowing at ionospheric heights on the occasion of the SCs associated with the 2013 and 2015 St. Patrick's Day storms. The combined analysis of solar wind data and the synoptic view of the SC current patterns provided by SECS allows it to explain some of the differences observed between both events.

  17. Evaluation of the Earth Systems Research Laboratory's global Observing System Simulation Experiment system

    Directory of Open Access Journals (Sweden)

    Nikki C. Privé

    2013-03-01

    Full Text Available An Observing System Simulation Experiment (OSSE system has been implemented at the National Oceanographic and Atmospheric Administration Earth Systems Research Laboratory in the US as part of an international Joint OSSE effort. The setup of the OSSE consists of a Nature Run from a 13-month free run of the European Center for Medium-Range Weather Forecasts operational model, synthetic observations developed at the National Centers for Environmental Prediction (NCEP and the National Aeronautics and Space Administration Global Modelling and Assimilation Office, and an operational version of the NCEP Gridpoint Statistical Interpolation data assimilation and Global Forecast System numerical weather prediction model. Synthetic observations included both conventional observations and the following radiance observations: AIRS, AMSU-A, AMSU-B, HIRS2, HIRS3, MSU, GOES radiance and OSBUV. Calibration was performed by modifying the error added to the conventional synthetic observations to achieve a match between data denial impacts on the analysis state in the OSSE system and in the real data system. Following calibration, the performance of the OSSE system was evaluated in terms of forecast skill scores and impact of observations on forecast fields.

  18. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    Science.gov (United States)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error less than 1 km). Retrievals of atmospheric soundings, surface properties, and cloud microphysical properties with the AIRS and IASI observations are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed? Interferometer (NAST I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the AIRS and IASI are investigated. These advanced satellite ultraspectral infrared instruments are now playing an important role in satellite meteorological observation for numerical weather prediction.

  19. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  20. Systemic Sclerosis and Malignancy: A Review of Current Data

    Science.gov (United States)

    Zeineddine, Nabil; Khoury, Lara El; Mosak, Joseph

    2016-01-01

    Systemic sclerosis (SSc) is associated with increased risk of malignancy. The organ systems most commonly affected are the lungs, the breasts and the hematological system. Risk factors predisposing a SSc patient for development of malignancy are not well defined, and the pathogenic basis of the association is yet to be explained. The incidence of malignancies in SSc patients is variable from one report to another, but most importantly, questions regarding the role of immunosuppressive therapies and the effect of autoantibodies have weak or sometimes contradictory answers in most of the currently available literature and physicians have no available guidelines to screen their SSc patients for malignancies. The lack of a concretely defined high-risk profile and the absence of malignancy screening guidelines tailored for SSc patients raise the importance of the need for more studies on the association of SSc and cancer and should incite rheumatology colleges to develop specific recommendations for the clinician to follow while approaching patients with SSc. PMID:27540435

  1. Review on the current trends in tongue diagnosis systems

    Directory of Open Access Journals (Sweden)

    Chang Jin Jung

    2012-12-01

    Full Text Available Tongue diagnosis is an essential process to noninvasively assess the condition of a patient's internal organs in traditional medicine. To obtain quantitative and objective diagnostic results, image acquisition and analysis devices called tongue diagnosis systems (TDSs are required. These systems consist of hardware including cameras, light sources, and a ColorChecker, and software for color correction, segmentation of tongue region, and tongue classification. To improve the performance of TDSs, various types TDSs have been developed. Hyperspectral imaging TDSs have been suggested to acquire more information than a two-dimensional (2D image with visible light waves, as it allows collection of data from multiple bands. Three-dimensional (3D imaging TDSs have been suggested to provide 3D geometry. In the near future, mobile devices like the smart phone will offer applications for assessment of health condition using tongue images. Various technologies for the TDS have respective unique advantages and specificities according to the application and diagnostic environment, but this variation may cause inconsistent diagnoses in practical clinical applications. In this manuscript, we reviewed the current trends in TDSs for the standardization of systems. In conclusion, the standardization of TDSs can supply the general public and oriental medical doctors with convenient, prompt, and accurate information with diagnostic results for assessing the health condition.

  2. Observing System Simulations for ASCENDS: Synthesizing Science Measurement Requirements (Invited)

    Science.gov (United States)

    Kawa, S. R.; Baker, D. F.; Schuh, A. E.; Crowell, S.; Rayner, P. J.; Hammerling, D.; Michalak, A. M.; Wang, J. S.; Eluszkiewicz, J.; Ott, L.; Zaccheo, T.; Abshire, J. B.; Browell, E. V.; Moore, B.; Crisp, D.

    2013-12-01

    The measurement of atmospheric CO2 from space using active (lidar) sensing techniques has several potentially significant advantages in comparison to current and planned passive CO2 instruments. Application of this new technology aims to advance CO2 measurement capability and carbon cycle science into the next decade. The NASA Active Sensing of Carbon Emissions, Nights, Days, and Seasons (ASCENDS) mission has been recommended by the US National Academy of Sciences Decadal Survey for the next generation of space-based CO2 observing systems. ASCENDS is currently planned for launch in 2022. Several possible lidar instrument approaches have been demonstrated in airborne campaigns and the results indicate that such sensors are quite feasible. Studies are now underway to evaluate performance requirements for space mission implementation. Satellite CO2 observations must be highly precise and unbiased in order to accurately infer global carbon source/sink fluxes. Measurement demands are likely to further increase in the wake of GOSAT, OCO-2, and enhanced ground-based in situ and remote sensing CO2 data. The objective of our work is to quantitatively and consistently evaluate the measurement capabilities and requirements for ASCENDS in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. Considerations include requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we attempt to synthesize the results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, into a coherent set of mission performance guidelines. A variety of forward and inverse model frameworks are employed to reduce the potential dependence of the results on model

  3. CURRENT VIEW ON SYSTEMIC GLUCOCORTICOSTEROID THERAPY IN JUVENILE RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    N N Kuzmina

    2000-01-01

    Full Text Available Aim: To present modern approaches to the systemic therapy by glucocorticosteroids (GCS basing on own experience and literature data. Methods and material: Long-term observation of 350 patients with juvenile rheumatoid arthritis (JRA taking peroral GCS in different dosage. Results: Good therapeutical efficacy and sufficient tolerability of low starting doses (lower than 0.5 mg/ kg a day of GCS allow to inhibit inflammatory activity in the majority of patients. Alternative method (doses alternation is recommended in the period of long-term supporting GCS-therapv of JR.4. Conclusion: Basic strategy of treatment of systemic and polyarticular JRA j'orms is rational GCS application in combination with basic drugs which ensures control of pathologic process and modifies the disease.

  4. Generalized PID observer design for descriptor linear systems.

    Science.gov (United States)

    Wu, Ai-Guo; Duan, Guang-Ren; Fu, Yan-Ming

    2007-10-01

    A type of generalized proportional-integral-derivative observers is proposed for descriptor linear systems. Based on a general parametric solution to a type of generalized Sylvester matrix equations, a parametric design approach for such observers is established. The proposed approach provides parameterizations for all the observer gain matrices, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes the elimination of impulsive behaviors, and guarantees the regularity of the observer system. The design method can offer all the degrees of design freedom, which can be utilized to achieve various desired system specifications and performances. In addition, a numerical example is employed to show the design procedure and illustrate the effect of the presented approach.

  5. Observational evidence of seasonality in the timing of loop current eddy separation

    Science.gov (United States)

    Hall, Cody A.; Leben, Robert R.

    2016-12-01

    Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated

  6. A Graph Approach to Observability in Physical Sparse Linear Systems

    Directory of Open Access Journals (Sweden)

    Santiago Vazquez-Rodriguez

    2012-01-01

    Full Text Available A sparse linear system constitutes a valid model for a broad range of physical systems, such as electric power networks, industrial processes, control systems or traffic models. The physical magnitudes in those systems may be directly measured by means of sensor networks that, in conjunction with data obtained from contextual and boundary constraints, allow the estimation of the state of the systems. The term observability refers to the capability of estimating the state variables of a system based on the available information. In the case of linear systems, diffierent graphical approaches were developed to address this issue. In this paper a new unified graph based technique is proposed in order to determine the observability of a sparse linear physical system or, at least, a system that can be linearized after a first order derivative, using a given sensor set. A network associated to a linear equation system is introduced, which allows addressing and solving three related problems: the characterization of those cases for which algebraic and topological observability analysis return contradictory results; the characterization of a necessary and sufficient condition for topological observability; the determination of the maximum observable subsystem in case of unobservability. Two examples illustrate the developed techniques.

  7. The Measuring and Protection Method for the Abnormal Rise of Magnetizing Inrush Current in a Divided Type 3 CTs System

    Science.gov (United States)

    Iwasaki, Fumio; Ibe, Masayuki; Ninohei, Koichiro; Okamura, Seichiro

    This paper describes the measuring and protection method for the abnormal rise of magnetizing inrush current in a divided type 3 CTs system. By divided type 3 CTs system, it is possible to measure the primary phase current and zero phase current at the same time. In this reason, the divided type 3 CTs system is widely used for the measurement of high voltage distribution line by simply clamping the each phase lines with 3CTs. For the accurate measurement of the phase current and zero phase current, the internal residual current in CT should be small as possible. It is reported that the abnormal rise of the residual current is generated in the practical field use and several ten ampere (converted to the primary current value) is observed in some case. The abnormal rise of the residual current is caused by the primary magnetizing inrush current or by the sum of the influence by electromagnetic field of the nearby conductors. The magnetizing inrush current is caused by the magnetic saturation of the core of CT. It is difficult to eliminate the abnormal residual current by using the bigger size of core. In our test, we used the active elements and independent feed back coils around the right and left core of CT. By using the feed back current from these coils it was observed that the magnetic saturation of the core is improved and the magnetizing inrush current can be controlled.

  8. Current Source Converter Based Wind Energy Conversion Systems

    Institute of Scientific and Technical Information of China (English)

    Samir Kouro; Jing-ya DAI; Bin WU

    2011-01-01

    The increase in the installed capacity of wind energy conversion systems (WECS) has triggered the development of more demanding grid codes and additional requirements on performance.In order to meet these requirements the industry trend has shifted to full-scale power converter interfaces in modern multi-megawatt WECS.As consequence,a wide variety of new power converter topologies and WECS configurations have been introduced in recent years.Among them,current source converter(CSC) based configurations have attracted attention due to a series of advantages like:simple structure,grid friendly waveforms,controllable power factor,and reliable grid short-circuit protection.This paper presents the latest developments in CSC interfaces for WECS and related technologies such as modulation methods,control schemes and grid code compatibility.

  9. Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations

    OpenAIRE

    İnan, Umran Savaş; Said, R. K.; Cohen, M. B

    2013-01-01

    We present the ?rst global distribution of the average estimated peak currents in negative lightning ?ashes using 1 year of continuous data from the Vaisala global lightning data set GLD360. The data set, composed of 353 million ?ashes, was compared with the National Lightning Detection NetworkTM for peak current accuracy, location accuracy, and detection ef?ciency. The validation results demonstrated a mean (geometric mean) peak current magnitude error of 21% (6%), a median lo...

  10. THEMIS multispacecraft observations of a reconnecting magnetosheath current sheet with symmetric boundary conditions and a large guide field

    Science.gov (United States)

    Øieroset, M.; Phan, T. D.; Shay, M. A.; Haggerty, C. C.; Fujimoto, M.; Angelopoulos, V.; Eastwood, J. P.; Mozer, F. S.

    2017-08-01

    We report three spacecraft observations of a reconnecting magnetosheath current sheet with a guide field of unity, with THEMIS D (THD) and THEMIS E (THE)/THEMIS A (THA) observing oppositely directed reconnection exhausts, indicating the presence of an X line between the spacecraft. The near-constant convective speed of the magnetosheath current sheet allowed the direct translation of the observed time series into spatial profiles. THD observed asymmetries in the plasma density and temperature profiles across the exhaust, characteristics of symmetric reconnection with a guide field. The exhausts at THE and THA, on the other hand, were not the expected mirror image of the THD exhaust in terms of the plasma and field profiles. They consisted of a main outflow at the center of the current sheet, flanked by oppositely directed flows at the two edges of the current sheet, suggesting the presence of a second X line, whose outflow wraps around the outflow from the first X line.

  11. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    Science.gov (United States)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  12. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    Science.gov (United States)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  13. Current Directions in Adding Value to Earth Observation Products for Decision Support

    Science.gov (United States)

    Ryker, S. J.

    2015-12-01

    Natural resource managers and infrastructure planners face increasingly complex challenges, given competing demands for resources and changing conditions due to climate and land use change. These pressures create demand for high-quality, timely data; for both one-time decision support and long-term monitoring; and for techniques to articulate the value of resources in monetary and nonmonetary terms. To meet the need for data, the U.S. government invests several billion dollars per year in Earth observations collected from satellite, airborne, terrestrial, and ocean-based systems. Earth observation-based decision support is coming of age; user surveys show that these data are used in an increasing variety of analyses. For example, since the U.S. Department of the Interior/U.S. Geological Survey's (USGS) 2008 free and open data policy for the Landsat satellites, downloads from the USGS archive have increased from 20,000 Landsat scenes per year to 10 million per year and climbing, with strong growth in both research and decision support fields. However, Earth observation-based decision support still poses users a number of challenges. Many of those Landsat downloads support a specialized community of remote sensing scientists, though new technologies promise to increase the usability of remotely sensed data for the larger GIS community supporting planning and resource management. Serving this larger community also requires supporting the development of increasingly interpretive products, and of new approaches to host and update products. For example, automating updates will add value to new essential climate variable products such as surface water extent and wildfire burned area extent. Projections of future urbanization in the southeastern U.S. are most useful when long-term land cover trends are integrated with street-level community data and planning tools. The USGS assessment of biological carbon sequestration in vegetation and shallow soils required a significant

  14. Field current tracing control of a BSG based on sliding mode current observer%BSG电机励磁电流观测器跟踪控制

    Institute of Scientific and Technical Information of China (English)

    余腾伟; 王旭东

    2011-01-01

    Aiming at the nonlinearities of belt driven starter generator' s (BSG) excitation winding driving circuit and a variety of interference outside the engine compartment, making it difficult for conventional PWM strategy to achieve the optimal output current. According to the sliding mode control theory, a sliding mode observer approach is proposed, and the mathematical module of BSG field windings' driven system is established, utilizing advantages that including good control robustness to conduct online setting. Simulation and experimental results show that the step response time is about 10 ms, and the maximum overshoot is less than 5% . What' s more, the method enhances the systems self adaptive capacity, improves the startup performance of BSG-hybrid cars, and has good current tracking performance, and low costing.%针对弱混合动力汽车中带式驱动启动发电机(BSG)的励磁绕组驱动电路存在的非线性问题,以及发动机舱各种外部干扰导致传统的PWM技术难以使控制电流输出达到最优的问题,依据滑模变结构控制理论,采用电流观测器的方法,建立BSG电机励磁绕组驱动系统的数学模型,给出电流观测器的控制算法,利用滑模变结构控制鲁棒性好的优势对BSG电机励磁电流进行在线整定.仿真和试验结果表明,该方法的阶跃响应时间为10 ms,跟踪电流最大超调小于5%,增强了系统的自适应能力,提高了BSG混合动力轿车启动性能,并且具有较好的电流跟踪效果,降低了成本.

  15. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    Science.gov (United States)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant

  16. Design of bilinear observer for singular bilinear systems

    Institute of Scientific and Technical Information of China (English)

    Zhanshan WANG; Huaguang ZHANG

    2006-01-01

    A bilinear observer is proposed for a class of singular bilinear system subject to unknown input disturbance.Based on singular value decomposition technique, the existence of the solution to the decomposed system is presented.Then a bilinear observer is proposed for the decomposed system based on an algebraic Riccati equation, and the domain of attraction of the state estimation error is derived. Finally, a detailed design procedure is given to design a bilinear observer for a model of flexible joint robot, which demonstrates the effectiveness of the proposed method.

  17. Inference systems for observation equivalences in the π-calculus

    Institute of Scientific and Technical Information of China (English)

    林惠民

    1999-01-01

    Inference systems for observation equivalences in the pi-calculus with recursion are proposed, and their completeness over the finite-control fragment with guarded recursions are proven. The inference systems consist of inference rules and equational axioms. The judgments are conditional equations which characterise symbolic bisimulations between process terms. This result on the one hand generalises Milner’s complete axiomatisation of observation equivalence for regular CCS to the pi-calculus, and on the other hand extends the proof systems of strong bisimulations for guarded regular pi-calculus to observation equivalences.

  18. AOOS\\: Implementing an Ocean Observing System in Alaska

    Science.gov (United States)

    McCammon, M.; Schoch, C.; Johnson, M.

    2006-12-01

    The Alaska Ocean Observing System (AOOS) is the regional association developing a regional integrated coastal and ocean observing system - as part of the national Integrated Ocean Observing System - for the large marine ecosystems of Alaska. These span the Gulf of Alaska, the Bering Sea and Aleutian Island regions, and the Arctic Ocean, Beaufort and Chukchi seas. Planning and implementation efforts have been underway for three years. Challenges include Alaska's remoteness, harsh weather, lack of infrastructure including transportation, power, and communications, and most especially, its length of coastline. Two key efforts will be highlighted: the Prince William Sound pilot project and the Data, Modeling and Analysis Group, and their scientific and management contributions.

  19. [The management of atrial fibrillation and characteristics of its current care in outpatients. AFABE observational study].

    Science.gov (United States)

    Giménez-García, Emmanuel; Clua-Espuny, Josep Lluís; Bosch-Príncep, Ramón; López-Pablo, Carlos; Lechuga-Durán, Iñigo; Gallofré-López, Miquel; Panisello-Tafalla, Anna; Lucas-Noll, Jorgina; Queralt-Tomas, Maria Lluisa

    2014-02-01

    To provide insights into the characteristics and management of outpatients when their atrial fibrillation (AF) was first detected: diagnosis, treatment and follow-up in the context of the public health system. AFABE is an observational, multicentre descriptive study with retrospective data collection relating to the practice patterns, management and initial strategies of treatment of patients with diagnosed AF in the context of primary care, emergency and cardiologists of the public health system. Primary and Specialist care. Baix Ebre region. Tarragona. Spain. A representative sample of 182 subjects > 60-year-old with AF who have been randomized, recruited among the registered patients with AF in 22 primary care centres in the area of the study. Demographic data, comorbidities (AF), CHA2DS2-VASc and HAS_BLED scores, and practice patterns results between Primary Care and referral services. A total of 182 patients were included (mean age 78.5 SD:7.3 years; 50% women). Most patients (68.3% 95%CI; 60.3-76.3) had the first contact in Primary Care, of which 56.3% (95%CI; 45.2-66.0) were sent to Hospital Emergency Department where 72.7% (95%CI: 63.5-79.0) of the oral anticoagulation and 58.4% (95%CI: 49.4-66.9) of antiarrhytmic treatments were started. More than half (55.9%:95%CI; 47.2-64.7, of patients with permanent AF were followed-up by the Cardiology department. Most patients with newly diagnosed AF made a first contact with Primary Care, but around half were sent to Hospital Emergency departments, where they were treated with an antiarrhythmic and/or oral anticoagulation. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  20. Variability of the currents in the Luzon Strait during spring of 2002 obtained from observations and satellite geostrophic currents and spectral analyses

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structure and variability of the currents in the Luzon Strait during spring of 2002 are studied, based on the current measurements at the average position of the mooring station (20°49′57"N, 120°48′12"E) from March 17 to April 15, 2002, satellite geostrophic currents in the Luzon Strait, and the spectral analyses, using the maximum entropy method. The subtidal currents at the mooring station show de-creased amplitudes downward with an anti-cyclonic rotation, suggesting that the currents enter and exit the South China Sea in the upper and intermediate layers, respectively. The vertical structure of the currents in the Luzon Strait suggests strongly the sandwiched structure of the LST, even though the bottom part of the profile is not resolved by the observational grid. The spectral analyses show the following periods of significant spectral peaks: (1) the tidal currents variability in the vertical direction; (2) the period about 4-6 d for the two cases of frequency f >0 and f<0 at the 200 and 500 m levels, but at the 800 m level only for the case of f >0; (3) The fluctuation in the period range is about 2-3 days for the two cases of f >0 and f<0 at the 200, 500 and 800 m levels, namely the Luzon Strait currents exhibit significant synoptical variability throughout the water column up to 800 m deep. Both direct current measurements and in situ hydrographic and satellite survey suggest no Kuroshio loop current in the Luzon Strait during the spring of 2002.

  1. Satellite-tracked drifting buoy observations in the south equatorial current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Michael, G.S.

    Three satellite-tracked drifting buoys released in the south equatorial current in the Indian Ocean followed the path of the current moving westward approximately zonally in the vicinity of 10 degrees S latitude. On nearing the east coast of Africa...

  2. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  3. A compact analytical formalism for current transients in electrochemical systems.

    Science.gov (United States)

    Nair, Pradeep R; Alam, Muhammad A

    2013-01-21

    Micro- and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecular detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed-form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained into the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the responses of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detailed numerical simulations and experimental data from the literature, have broad implications in the design and optimization of nanostructured electrodes for healthcare and energy storage applications.

  4. Current systemic treatment of hepatocellular carcinoma: Areview of the literature

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth mostcommon form of human cancer worldwide and the thirdmost common cause of cancer-related deaths. Thestrategies of various treatments for HCC depend onthe stage of tumor, the status of patient's performanceand the reserved hepatic function. The Barcelona ClinicLiver Cancer (BCLC) staging system is currently usedmost for patients with HCC. For example, for patientswith BCLC stage 0 (very early stage) and stage A (earlystage) HCC, the curable treatment modalities, includingresection, transplantation and radiofrequency ablation,are taken into consideration. If the patients are in BCLCstage B (intermediate stage) and stage C (advancedstage) HCC, they may need the palliative transarterialchemoembolization and even the target medicationof sorafenib. In addition, symptomatic treatment isalways recommended for patients with BCLC stage D(end stage) HCC. In this review, we will attempt tosummarize the historical perspective and the currentdevelopments of systemic therapies in BCLC stage Band C in HCC.

  5. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    CERN Document Server

    Yamaguchi, T; Nakamura, K; Yamaguchi, S; Hasegawa, Y

    2002-01-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/pi time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  6. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takayuki; Ohtaki, Naohiro; Nakamura, Keiji; Yamaguchi, Satarou [Chubu Univ., Kasugai, Aichi (Japan); Hasegawa, Yasuhiro [Saitama Univ., Saitama (Japan)

    2002-09-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/{pi} time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  7. Small spatial scale field aligned currents in middle and low latitudes as observed by the CHAMP satellite and verification of their current circuit model

    Science.gov (United States)

    Nakanishi, K.; Iyemori, T.; Luhr, H.

    2013-12-01

    The magnetic field observation by the CHAMP satellite shows the global and frequent appearance of small scale (1-5 nT) magnetic fluctuations with period around a few tens seconds along the satellites. They have the following characteristics. 1. The signal is perpendicular to the geomagnetic main field, and the amplitude of the zonal component is larger than that of the meridional component. 2. Around the dip equator, as the latitude becomes lower, the period and amplitudes of the two components perpendicular to the main field respectively tend to become longer and smaller (to nearly zero on the dip equator). 3. The amplitude of the magnetic fluctuations on the dayside is larger than that on the night side by around one order in magnitude, which highly correlates to the electric conductivity of the ionospheric dynamo layer. 4. The amplitude shows symmetry about the magnetic dip equator which indicates a magnetic conjugacy to a certain extent. 5. The amplitude shows almost no dependence on the solar wind parameters such as the IMF cone angle nor the solar wind speed, which strongly suggests no association with the Pc3 micro pulsation. 6. The amplitude also shows almost no dependence on the geomagnetic activity. 7. The amplitude has a clear seasonal dependence with topographical characteristics. They can be interpreted as the spatial structure of small scale field-aligned currents generated by the ionospheric dynamo driven by atmospheric gravity waves propagating from the lower atmosphere. The mechanism is the following; first, the gravity waves generated by the lower atmospheric disturbance propagate to the ionosphere; the neutral winds oscillate, cause ionospheric dynamo and Pedersen and Hall currents flow; because the dynamo region is finite, the currents cause polarized electric fields; and the polarized electric fields propagate along the geomagnetic filed as Alfven waves accompanied by field-aligned currents, at the same time, the ionospheric currents divert to

  8. Virtual estimator for piecewise linear systems based on observability analysis.

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés, Luis G; Beltrán, Carlos Daniel García

    2013-02-27

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results.

  9. Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis

    Science.gov (United States)

    Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel

    2013-01-01

    This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007

  10. Airglow Observation with IMAP/ VISI on the International Space Station: Current status and simulation

    Science.gov (United States)

    Perwitasari, S.; Sakanoi, T.; Yamazaki, A.; Otsuka, Y.; Akiya, Y.; Saito, A.

    2012-12-01

    The Visible and near-Infrared Spectral Imager (VISI) of the IMAP mission was launched successfully by H-IIB/HTV3 on July 21 2012. At this moment HTV3 is docked onto the International Space Station (ISS), and VISI is scheduled to be installed on the exposed facility within a week. VISI will be operated in the nightside hemisphere in the range of +/- 51 deg. GLAT, and measure the airglow emissions of OI at 630 nm, the OH Meinel band at 730 nm and the O2 atmospheric band (0-0) at 762 nm at an altitude of ~400 km with typical spatial resolution of 16 - 50 km. Since the influence of cloud reflections of moonlight is overlapped with the airglow pattern in the visible wavelength range, the precise subtraction of the cloud influence is a key issue of this mission. Therefore, a simulation work to study on how much the surface albedo on the cloud top will affect the data is critically important. The height profiles of volume emission rates were estimated for O2 and OH airglows with the MSIS models, and then the airglow intensities were integrated along the line-of-sight direction. The cloud pattern was estimated based on the realistic data measured with a geostationary climate satellite. The simulation result shows that for OH Meinel at 730 nm, the moonlight reflection during the first/last quarter will increase the brightness of the airglow by factor of 1.5-2 and ~5 for full moon phase. Meanwhile, for O2 atmospheric band (0-0) at 762 nm, the simulation result shows that there's no significant (structured) background, even during the full moon phase. We will report the quantitative effect of cloud albedo on the airglow pattern, and discuss the physical parameters those expected to be derived from the VISI data. Concerning on the operation of VISI, we will carry out the initial function check by the middle of August, and start nominal observation within a few months. Thus, we will also report the current status and initial result of VISI.

  11. Development and validation of the multidimensional motivational climate observation system.

    Science.gov (United States)

    Smith, Nathan; Tessier, Damien; Tzioumakis, Yannis; Quested, Eleanor; Appleton, Paul; Sarrazin, Philippe; Papaioannou, Athanasios; Duda, Joan L

    2015-02-01

    This article outlines the development and validation of the Multidimensional Motivational Climate Observation System (MMCOS). Drawing from an integration of the dimensions of the social environment emphasized within achievement goal theory and self-determination theory (as assumed within Duda's [2013] conceptualization of "empowering" and "disempowering" climates), the MMCOS was developed to enable an objective assessment of the coach-created motivational environment in sport. Study 1 supported the initial validity and reliability of the newly developed observation system. Study 2 further examined the interobserver reliability and factorial structure of the MMCOS. Study 3 explored the predictive validity of the observational system in relation to athletes' reported basic psychological need satisfaction. Overall, the results of these studies provide preliminary support for the inter- and intraobserver reliability, as well as factorial and predictive validity of the MMCOS. Suggestions for the use of this observational system in future research in sport are provided.

  12. Identification of linear systems by an asymptotically stable observer

    Science.gov (United States)

    Phan, Minh Q.; Horta, Lucas G.; Juang, Jer-Nan; Longman, Richard W.

    1992-01-01

    A formulation is presented for the identification of a linear multivariable system from single or multiple sets of input-output data. The system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded eigenvalue assignment procedure. The prescribed eigenvalues for the observer may be real, complex, mixed real and complex, or zero. In this formulation, the Markov parameters of the observer are identified from input-output data. The Markov parameters of the actual system are then recovered from those of the observer and used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and extensive numerical examples using simulated noise-free data are presented to illustrate the proposed method.

  13. Northeast Fisheries Observer Program Internal Management System (NEFOP_IMS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northeast Fisheries Observer Program Internal Management System contains data and information that are used internally by FSB staff to administer and manage...

  14. Intelligent Architecture for Enhanced Observability for Active Distribution System

    DEFF Research Database (Denmark)

    Pokhrel, Basanta Raj; Nainar, Karthikeyan; Bak-Jensen, Birgitte

    2017-01-01

    to utilize advanced solutions by observing the system state in real time. Existing distribution automation and control system have to be upgraded to meet this technological challenge. This necessitates the use of real time system states of the grid which is a crucial factor for system operation in higher...... for active distribution network which satisfies the need for higher observability reach with less field observation. Improved state estimation with composite load forecasting model is aimed for enhanced observability. This paper also summarizes the application of intelligent architecture in the operation......There is a rapid increase of renewable energy resources (RE) and demand response resources (DRR) in the distribution networks. This is challenging for the reliable and stable operation of the grid. So, to ensure secure, optimized and economical operation in such active distribution grids they need...

  15. An exponential polynomial observer for synchronization of chaotic systems

    Science.gov (United States)

    Mata-Machuca, J. L.; Martínez-Guerra, R.; Aguilar-López, R.

    2010-12-01

    In this paper, we consider the synchronization problem via nonlinear observer design. A new exponential polynomial observer for a class of nonlinear oscillators is proposed, which is robust against output noises. A sufficient condition for synchronization is derived analytically with the help of Lyapunov stability theory. The proposed technique has been applied to synchronize chaotic systems (Rikitake and Rössler systems) by means of numerical simulation.

  16. Observing and understanding the Earth system variations from space geodesy

    OpenAIRE

    Jin, Shuanggen; van Dam, Tonie; Wdowinski, Shimon

    2013-01-01

    The interaction and coupling of the Earth system components that include the atmosphere, hydrosphere, cryosphere, lithosphere, and other fluids in Earth's interior, influence the Earth's shape, gravity field and its rotation (the three pillars of geodesy). The effects of global climate change, such as sea level rise, glacier melting, and geoharzards, also affect these observables. However, observations and models of Earth's system change have large uncertainties due to the lack of direct high...

  17. The Optimal Interest Rates and the Current Interest Rate System

    Directory of Open Access Journals (Sweden)

    Ioannis N. Kallianiotis

    2014-12-01

    Full Text Available The paper discusses the current target interest rate, which is closed to zero with the new experiment of quantitative easing since 2009 and has reduced the rate of return and the income and has made the real savings rate negative. This target rate has not reduced unemployment and has not improved growth (it is not optimal, but has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. People were borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit cards. The current monetary system needs to be changed and an interest rate floor on deposits (savings and an interest rate ceiling on individuals‟ loans (borrowings is necessary to improve social welfare, fairness, and justice in our society and not to support only disintermediation (financial markets. The middle class cannot work only to pay taxes and interest on its debt (redistribution of their wealth to government and banks or worse to be in chronic unemployment. Many home owners defaulted on their loans payments and their homes are foreclosed. They will end up without property (real assets. The unconcern towards the middle class will affect negatively the entire socio-economic structure of the nation and after losing its productive power, it will start declining, as history has shown to us with so many empires that do not exist anymore. We hope the leaders (the democratic governments to improve public policies, to regulate the financial market and institutions, and to satisfy their policy ultimate objective, which is citizens‟ perfection and the nation‟s highest point of prosperity.

  18. On Controllability and Observability of Fuzzy Dynamical Matrix Lyapunov Systems

    Directory of Open Access Journals (Sweden)

    M. S. N. Murty

    2008-04-01

    Full Text Available We provide a way to combine matrix Lyapunov systems with fuzzy rules to form a new fuzzy system called fuzzy dynamical matrix Lyapunov system, which can be regarded as a new approach to intelligent control. First, we study the controllability property of the fuzzy dynamical matrix Lyapunov system and provide a sufficient condition for its controllability with the use of fuzzy rule base. The significance of our result is that given a deterministic system and a fuzzy state with rule base, we can determine the rule base for the control. Further, we discuss the concept of observability and give a sufficient condition for the system to be observable. The advantage of our result is that we can determine the rule base for the initial value without solving the system.

  19. An adaptive tracking observer for failure-detection systems

    Science.gov (United States)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  20. Magnetic signatures of ionospheric and magnetospheric current systems during geomagnetic quiet conditions - An overview

    DEFF Research Database (Denmark)

    Olsen, Nils; Stolle, Claudia

    2016-01-01

    High-precision magnetic measurements taken by LEO satellites (flying at altitudes between 300 and 800 km) allow for studying the ionosphericand magnetospheric processes and electric currents that causes only weak magnetic signature of a few nanotesla during geomagnetic quiet conditions....... Of particular importance for this endeavour are multipoint observationsin space, such as provided by the Swarm satellite constellation mission, inorder to better characterize the space-time-structure of the current systems. Focusing on geomagnetic quiet conditions, we provide an overview of ionospheric...... and magnetospheric sources and illustrate their magnetic signatureswith Swarm satellite observations....

  1. Frequency Performance of the Extended State Observer for General Systems

    Directory of Open Access Journals (Sweden)

    Chunzhe Zhao

    2013-01-01

    Full Text Available The observing capability of the Active Disturbance Rejection Control (ADRC for the general systems is discussed in this study. The frequency performance of the Linear Extended State Observer (LESO is analyzed. And the theoretical result is verified by simulations. It is shown that ESO can estimate the required states at the designed speed, in spite of the different total uncertainties.

  2. Observability and Controllability Analysis for Sandwich Systems with Backlash

    Directory of Open Access Journals (Sweden)

    Luo Na

    2015-12-01

    Full Text Available In this paper, an approach to analyze the observability and controllability of sandwich systems with backlash is proposed. In this method, a non-smooth state-space function is used to describe the sandwich systems with backlash which are also non-smooth non-linear systems. Then, a linearization method based on non-smooth optimization is proposed to derive a linearized state-space function to approximate the non-smooth sandwich systems within a bounded region around the equilibrium point that we are interested in. Afterwards, both observability and controllability matrices are constructed and the methods to analyze the observability as well as controllability of sandwich system with backlash are derived. Finally, numerical examples are presented to validate the proposed method.

  3. A digital video system for observing and recording occultations

    CERN Document Server

    Barry, M A; Pavlov, Hristo; Hanna, William; McEwan, Alistair; Filipovic, Miroslav

    2015-01-01

    Stellar occultations by asteroids and outer solar system bodies can offer ground based observers with modest telescopes and camera equipment the opportunity to probe the shape, size, atmosphere and attendant moons or rings of these distant objects. The essential requirements of the camera and recording equipment are: good quantum efficiency and low noise, minimal dead time between images, good horological faithfulness of the image time stamps, robustness of the recording to unexpected failure, and low cost. We describe the Astronomical Digital Video occultation observing and recording System (ADVS) which attempts to fulfil these requirements and compare the system with other reported camera and recorder systems. Five systems have been built, deployed and tested over the past three years, and we report on three representative occultation observations: one being a 9 +/-1.5 second occultation of the trans-Neptunian object 28978 Ixion (mv=15.2) at 3 seconds per frame, one being a 1.51 +/-0.017 second occultation ...

  4. Twisted Savonius turbine based marine current energy conversion system

    Science.gov (United States)

    Hassan, Md. Imtiaj

    The Ocean Network Seafloor Instrumentation (ONSFI) Project is a multidisciplinary research and development project that aims to design, fabricate and validate a proof-of-concept seafloor array of wireless marine sensors for use in monitoring seabed processes. The sensor pods, known as Seaformatics, will be powered by ocean bottom currents and will be able to communicate with each other and to the Internet through surface master units to facilitate observation of the ocean floor from the shore. This thesis explores the use of the twisted Savonius turbine as a means of converting the kinetic energy of the free flowing water into electrical energy for the pods. This will eliminate the need for battery replacement. A physical model of the turbine was constructed and tested in the Water Flume at the Marine Institute of Memorial University and in the Wind Tunnel in the Engineering Building at Memorial University. A mathematical model of the turbine was constructed in SolidWorks. This was tested in the Computational Fluid Dynamics or CFD software FLOW-3D. Experimental results were compared with CFD results and the agreement was reasonable. A twisted Savonius turbine emulator was developed to test a dc-dc boost converter. A low cost microcontroller based MPPT algorithm was developed to obtain maximum power from the turbine. Overall the thesis shows that the twisted Savonius turbine can provide the power needed by the sensor pods. It also shows that CFD is a viable way to study the performance of the Savonius type of turbine.

  5. Observation of Current Structures at Type-III ELM Onset on EAST

    DEFF Research Database (Denmark)

    Yan, Ning; Naulin, Volker; Xu, G.

    In far scrape-o layer (SOL), alternating negative and positive burst structures in ion saturation current were detected at the onset of each type-III edge localized mode (ELM) on EAST. Different from the fast streaming phenomenon reported previously, one subsequent positive burst structure appears...... led generated by scrape-off layer current can ultimately trigger the ELM through the coupling with MHD modes inside the separatrix....

  6. An Integrated Management System of Multipoint Space Weather Observation

    Directory of Open Access Journals (Sweden)

    H Watanabe

    2013-03-01

    Full Text Available An outline of a planned system for the global space-weather monitoring network of NICT (National Institute of Information and Communications Technology is given. This system can manage data collection much more easily than our current system by installations of autonomous recovery, periodical state monitoring, and dynamic warning procedures. According to a provisional experiment using a network simulator, the new system will work under limited network conditions, e.g., a 160 msec delay, a 10 % packet loss rate, and a 500 Kbps bandwidth.

  7. The GBT Dynamic Scheduling System: The Observers' Perspective

    Science.gov (United States)

    Braatz, J.; Balser, D. A.; Bignell, C.; Clark, M.; Harnett, J.; McCarty, M.; Marganian, P.; O'Neil, K.; Shelton, A.

    2009-09-01

    To make the most efficient use of telescope time, the NRAO is implementing a Dynamic Scheduling System (DSS) for the Robert C. Byrd Green Bank Telescope (GBT). The DSS aims to match observing projects to the weather and other observing conditions, without sacrificing observers' interactive control of their experiments. To meet this goal, the DSS schedules people, not observing scripts. Each observer can then attend to the observation, control the telescope, and modify the observing program, if necessary, in real time. Observing under the DSS is often done remotely, by necessity. Every day, the DSS generates a new schedule for the 24-hour period beginning one day hence. Observers therefore must be prepared to run observations with 24 to 48 hours notice. Being available and ready to observe on short notice requires that observers adopt a new mindset, unlike their experiences with other telescopes. While it may be an inconvenience for some, the benefits of the DSS are substantial, the primary one being that astronomers are almost assured of observing in appropriate weather and getting high quality data. The DSS gives observers the opportunity to black out time ranges to avoid for scheduling, so the telescope schedule can fit around other demands. In addition to the scheduling algorithms, the DSS team has developed a set of software tools to help observers manage their projects, to notify observers of scheduling news, and to help observers anticipate when their projects will get scheduled. In this contribution we will report observers' experiences from the first tests of the GBT DSS, which took place from June 1 to September 30, 2008.

  8. First observation of neutral current proton electron scattering at the square root of s = 300 GeV

    Science.gov (United States)

    Hasegawa, Takuya

    1993-02-01

    Neutral current proton electron scattering at center of mass energy 295 GeV was observed for the first time, using the newly built proton electron collider HERA (Hadron Elektron Ring Anlage) and the general purpose detector ZEUS. The distributions of Q(sup 2), Bjorken-x(x), and Bjorken-y(y) were compared with the expectation based on the standard electroweak theory and QCD. Regarding the investigation of high-Q(sup 2) region, an event of Q(sup 2) approximately 1000 GeV(exp 2) was observed for the first time. From the x-distribution of the events, a limit on the mass and the coupling of an exotic s-channel resonance of a quark-lepton system (leptoquark) was obtained. The mass limit is 72 GeV (97 GeV) at 95% confidence level for a scalar type leptoquark with a left-handed (right-handed) electromagnetic coupling to ordinary leptons. The leptoquark is assumed to be weak-isoscalar. To realize this experiment, a uranium scintillator sandwich type calorimeter was developed. Equal response to electrons and hadrons (e/h = 1), which is essential for the good energy resolution for hadrons, has been achieved. One of the main characteristics of this calorimeter is a possibility of calibration utilizing its own uranium radioactivity. The grain variation of each channel can be detected with an accuracy of plus or minus one percent.

  9. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  10. Maintenance Effectiveness and Target Observation System and its ERP Interface

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Han Seong; Kim, Gi Yong; Seo, Mi Ro [Atomic Creative Technology, Taejon (Korea, Republic of); Jeong, Hun Jong; Choi, Kwang Hee; Hong, Sung Yull [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Maintenance effectiveness and target observation system (MENTOS) is a maintenance rule (MR) implementation software for plant personnel to collect, edit, store, and analyze all information required for the MR implementation. Potential users and the developers of MENTOS have decided that MENTOS is implemented in the ERP system of KHNP. This article describes MENTOS briefly and introduces the ERP interface of MENTOS.

  11. Neuropsychiatric involvement in systemic lupus erythematosus: current therapeutic approach.

    Science.gov (United States)

    Sanna, Giovanni; Bertolaccini, Maria Laura; Khamashta, Munther A

    2008-01-01

    The involvement of the central nervous system (CNS) is one of the major causes of morbidity and mortality in systemic lupus erythematosus (SLE) patients and the less understood aspect of the disease. Its recognition and treatment continue to represent a major diagnostic and therapeutic challenge. Due to the lack of controlled randomized trials, current therapeutic approach is still empirical and based on clinical experience. The therapeutic choice depends on accurate diagnosis, identification of underlying pathogenic mechanism, severity of the presenting neuropsychiatric symptoms, and on prompt identification and management of contributing causes of CNS disease. Mild neuropsychiatric manifestations may need symptomatic treatment only. In more severe CNS disease it is important to distinguish between thrombotic and non-thrombotic mechanisms. Focal CNS manifestations, particularly TIA and stroke, are associated with the presence of antiphospholipid antibodies (aPL). Anticoagulation is warranted in patients with thrombotic disease, particularly in those with the antiphospholipid (Hughes) syndrome (APS). Other CNS manifestations, such as demyelinating syndrome, transverse myelitis, chorea, seizures, migraine and/or cognitive dysfunction, when associated with persistent positivity for aPL, may also benefit from anticoagulation in selected patients. Severe diffuse CNS manifestations, such as acute confusional state, generalised seizures, mood disorders and psychosis, generally require corticosteroids in the first instance. Pulse intravenous cyclophosphamide therapy may help when more severe manifestations are refractory to corticosteroids and other immunosuppressive agents, generally when response is not seen in 3-5 days. Plasmapheresis may also be added in severe cases of symptoms refractory to conventional treatment. Intravenous immunoglobulins, mycophenolate mofetil, rituximab, intratecal methotrexate and dexametasone deserve further studies to confirm their

  12. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  13. Systemic Immunotherapy for Urothelial Cancer: Current Trends and Future Directions.

    Science.gov (United States)

    Gupta, Shilpa; Gill, David; Poole, Austin; Agarwal, Neeraj

    2017-01-27

    Urothelial cancer of the bladder, renal pelvis, ureter, and other urinary organs is the fifth most common cancer in the United States, and systemic platinum-based chemotherapy remains the standard of care for first-line treatment of advanced/metastatic urothelial carcinoma (UC). Until recently, there were very limited options for patients who are refractory to chemotherapy, or do not tolerate chemotherapy due to toxicities and overall outcomes have remained very poor. While the role of immunotherapy was first established in non-muscle invasive bladder cancer in the 1970s, no systemic immunotherapy was approved for advanced disease until the recent approval of a programmed death ligand-1 (PD-L1) inhibitor, atezolizumab, in patients with advanced/metastatic UC who have progressed on platinum-containing regimens. This represents a significant milestone in this disease after a void of over 30 years. In addition to atezolizumab, a variety of checkpoint inhibitors have shown a significant activity in advanced/metastatic urothelial carcinoma and are expected to gain Food and Drug Administration (FDA) approval in the near future. The introduction of novel immunotherapy agents has led to rapid changes in the field of urothelial carcinoma. Numerous checkpoint inhibitors are being tested alone or in combination in the first and subsequent-line therapies of metastatic disease, as well as neoadjuvant and adjuvant settings. They are also being studied in combination with radiation therapy and for non-muscle invasive bladder cancer refractory to BCG. Furthermore, immunotherapy is being utilized for those ineligible for firstline platinum-based chemotherapy. This review outlines the novel immunotherapy agents which have either been approved, or are currently being investigated in clinical trials in UC.

  14. Systemic Immunotherapy for Urothelial Cancer: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Shilpa Gupta

    2017-01-01

    Full Text Available Urothelial cancer of the bladder, renal pelvis, ureter, and other urinary organs is the fifth most common cancer in the United States, and systemic platinum-based chemotherapy remains the standard of care for first-line treatment of advanced/metastatic urothelial carcinoma (UC. Until recently, there were very limited options for patients who are refractory to chemotherapy, or do not tolerate chemotherapy due to toxicities and overall outcomes have remained very poor. While the role of immunotherapy was first established in non-muscle invasive bladder cancer in the 1970s, no systemic immunotherapy was approved for advanced disease until the recent approval of a programmed death ligand-1 (PD-L1 inhibitor, atezolizumab, in patients with advanced/metastatic UC who have progressed on platinum-containing regimens. This represents a significant milestone in this disease after a void of over 30 years. In addition to atezolizumab, a variety of checkpoint inhibitors have shown a significant activity in advanced/metastatic urothelial carcinoma and are expected to gain Food and Drug Administration (FDA approval in the near future. The introduction of novel immunotherapy agents has led to rapid changes in the field of urothelial carcinoma. Numerous checkpoint inhibitors are being tested alone or in combination in the first and subsequent-line therapies of metastatic disease, as well as neoadjuvant and adjuvant settings. They are also being studied in combination with radiation therapy and for non-muscle invasive bladder cancer refractory to BCG. Furthermore, immunotherapy is being utilized for those ineligible for firstline platinum-based chemotherapy. This review outlines the novel immunotherapy agents which have either been approved, or are currently being investigated in clinical trials in UC.

  15. An adaptive load torque observer using hyperstability for PMSM servo system

    Institute of Scientific and Technical Information of China (English)

    Gao Yang; Xu Dianguo

    2005-01-01

    An adaptive load torque observer is presented to compensate the torque ripple in PMSM servo system. A simple adaptive scheme is derived using Popov's hyperstability theory. The torque ripple detected by the observer is compensated by a feed forwarding equivalent current which gives fast response. The noisy current information is exempt from the observer to avoid its deterioration to the quality of the observer. The speed measurement delay is considered by using observed speed since the instantaneous velocity can't be estimated precisely at low speed because of too few position pulses from the absolute encoder during one time interval. Simulation and experimental results demonstrate that the proposed method can improve the dynamic performance of PMSM servo system satisfyingly.

  16. Current operators in relativistic few-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Coester, F.; Klink, W.H.; Polyzou, W.N.

    1995-08-01

    The interpretation of experiments that explore hadron structure with electromagnetic probes requires both a nonperturbative representation of the hadron states and a compatible representation of the current-density operator. Intuitive interpretations depend strongly on the {open_quotes}impulse approximation{close_quotes}, that is, the use of one-body currents. One-body currents, however, cannot satisfy essentially the constraints imposed by the dynamics. In nonrelativistic quantum mechanics the problem of constructing dynamically required interaction currents is well understood and has been solved. Since Galilei transformations are kinematic, only time-translation covariance and current conservation impose dynamical constraints on current operators. These constraints can be satisfied by the well-known construction of so-called {open_quotes}minimal{close_quotes} or {open_quotes}model-independent{close_quotes} currents. Descriptions of hadron structure and of nuclear effects probed at high energies require a relativistic description. In relativistic few-body dynamics, one-body currents are covariant only under the kinematic subgroup of the Poincare group. Full Poincare covariance and current conservation implies dynamically determined interaction currents. The separation of the current operator into impulse current and interaction current depends on the {open_quotes}form of dynamics{close_quotes}, that is on the choice of the kinematic subgroup. The choice of the light-front kinematics has unique advantages not available with other forms of dynamics: (1) a relevant subgroup of the translations is kinematic, (2) initial and final states are related by kinematic Lorentz transformations, (3) the contributions of the individual constituents are related kinematically to the total current. These features were exploited successfully in calculations of deuteron form factors and quark-model form factors of hadrons.

  17. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  18. A geomagnetically induced current warning system: model development and validation

    Science.gov (United States)

    McKay, A.; Clarke, E.; Reay, S.; Thomson, A.

    Geomagnetically Induced Currents (GIC), which can flow in technological systems at the Earth's surface, are a consequence of magnetic storms and Space Weather. A well-documented practical problem for the power transmission industry is that GIC can affect the lifetime and performance of transformers within the power grid. Operational mitigation is widely considered to be one of the best strategies to manage the Space Weather and GIC risk. Therefore in the UK a magnetic storm warning and GIC monitoring and analysis programme has been under development by the British Geological Survey and Scottish Power plc (the power grid operator for Central Scotland) since 1999. Under the auspices of the European Space Agency's service development activities BGS is developing the capability to meet two key user needs that have been identified. These needs are, firstly, the development of a near real-time solar wind shock/ geomagnetic storm warning, based on L1 solar wind data and, secondly, the development of an integrated surface geo-electric field and power grid network model that should allow prediction of GIC throughout the power grid in near real time. While the final goal is a `seamless package', the components of the package utilise diverse scientific techniques. We review progress to date with particular regard to the validation of the individual components of the package. The Scottish power grid response to the October 2003 magnetic storms is also discussed and model and validation data are presented.

  19. Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays.

    Science.gov (United States)

    Ostojić, Ljerka; Legg, Edward W; Brecht, Katharina F; Lange, Florian; Deininger, Chantal; Mendl, Michael; Clayton, Nicola S

    2017-01-23

    Many corvid species accurately remember the locations where they have seen others cache food, allowing them to pilfer these caches efficiently once the cachers have left the scene [1]. To protect their caches, corvids employ a suite of different cache-protection strategies that limit the observers' visual or acoustic access to the cache site [2,3]. In cases where an observer's sensory access cannot be reduced it has been suggested that cachers might be able to minimise the risk of pilfering if they avoid caching food the observer is most motivated to pilfer [4]. In the wild, corvids have been reported to pilfer others' caches as soon as possible after the caching event [5], such that the cacher might benefit from adjusting its caching behaviour according to the observer's current desire. In the current study, observers pilfered according to their current desire: they preferentially pilfered food that they were not sated on. Cachers adjusted their caching behaviour accordingly: they protected their caches by selectively caching food that observers were not motivated to pilfer. The same cache-protection behaviour was found when cachers could not see on which food the observers were sated. Thus, the cachers' ability to respond to the observer's desire might have been driven by the observer's behaviour at the time of caching.

  20. Dynamical algebra of observables in dissipative quantum systems

    Science.gov (United States)

    Alipour, Sahar; Chruściński, Dariusz; Facchi, Paolo; Marmo, Giuseppe; Pascazio, Saverio; Rezakhani, Ali T.

    2017-02-01

    Dynamics and features of quantum systems can be drastically different from classical systems. Dissipation is understood as a general mechanism through which quantum systems may lose part or all of their quantum aspects. Here we discuss a method to analyze behaviors of dissipative quantum systems in an algebraic sense. This method employs a time-dependent product between system’s observables which is induced by the underlying dissipative dynamics. We argue that the long-time limit of the algebra of observables defined with this product yields a contractive algebra which reflects the loss of some quantum features of the dissipative system, and it bears relevant information about irreversibility. We illustrate this result through several examples of dissipation in various Markovian and non-Markovian systems.

  1. A cooperative control algorithm for camera based observational systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.

    2012-01-01

    Over the last several years, there has been considerable growth in camera based observation systems for a variety of safety, scientific, and recreational applications. In order to improve the effectiveness of these systems, we frequently desire the ability to increase the number of observed objects, but solving this problem is not as simple as adding more cameras. Quite often, there are economic or physical restrictions that prevent us from adding additional cameras to the system. As a result, we require methods that coordinate the tracking of objects between multiple cameras in an optimal way. In order to accomplish this goal, we present a new cooperative control algorithm for a camera based observational system. Specifically, we present a receding horizon control where we model the underlying optimal control problem as a mixed integer linear program. The benefit of this design is that we can coordinate the actions between each camera while simultaneously respecting its kinematics. In addition, we further improve the quality of our solution by coupling our algorithm with a Kalman filter. Through this integration, we not only add a predictive component to our control, but we use the uncertainty estimates provided by the filter to encourage the system to periodically observe any outliers in the observed area. This combined approach allows us to intelligently observe the entire region of interest in an effective and thorough manner.

  2. Summertime coastal current reversal opposing offshore forcing and local wind near the middle east coast of Korea: Observation and dynamics

    Science.gov (United States)

    Park, Jae-Hyoung; Chang, Kyung-Il; Nam, SungHyun

    2016-07-01

    A 6 year long current measurement at a buoy station off the middle east coast of Korea reveals an equatorward reversal of coastal current in summer opposing poleward local wind stress and offshore boundary current. The current reversal extends about 40 km offshore from the coast and is concurrent with warming and freshening of water column. Estimates of the depth-averaged alongshore momentum balance suggest a major balance between the alongshore pressure gradient and the lateral friction. Sources of the pressure gradient for the summertime current reversal are identified as the alongshore buoyancy gradient driven by the wind curl gradient and the prevalence of warmer and lower salinity water in the north. Alongshore pressure gradient and velocity induced by the wind curl gradient are quantified, which yields the observed seasonal current reversal.

  3. Adaptive Observer-Based Fault Estimate for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    ZONG Qun; LIU Wenjing; LIU Li

    2006-01-01

    An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer,from which both system state and fault can be estimated.It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms,which confirms the effectiveness of the method.

  4. A study of pickup and signal processing for HLS-Ⅱ bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Liang; MA Tian-Ji; SUN Bao-Gen; WANG Ji-Gang; ZOU Jun-Ying; CHENG Chao-Cai; LU Ping

    2013-01-01

    For the HLS-Ⅱ bunch current measurement system,in order to obtain the absolute value of bunch current,the calibration factor should be determined by using DCCT.At the HLS storage ring,the stretch effect of bunch length is observed and the change rate is about 19% when the bunch current decays over time and this will affect the performance of bunch current detection.To overcome the bunch stretch influence in the HLS-Ⅱ bunch current measurement,an evaluation about pickup type and signal processing is carried out.Strip-line pickup and button pickup are selectable,and the theoretical analysis and demonstration experiment are performed to find out an acceptable solution for the bunch current measurement system at HLS-Ⅱ.The experimental data analysis shows that the normalized calibration factor will change by about 27% when the bunch length changes by about 19% if using the button pickup and processing by peak value of bunch signal; the influence will be reduced to 2% less if adopting the strip-line pickup and integral.

  5. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2011-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...... as the idea of the naïve observer becomes a void. Not recognizing and observing oneself as observer and co-producer of empirical data simply leaves the process of observation as the major unobserved absorber of contingency in data production based on participating observation....

  6. Observing participating observation

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2010-01-01

    Current methodology concerning participating observation in general leaves the act of observation unobserved. Approaching participating observation from systems theory offers fundamental new insights into the topic. Observation is always participation. There is no way to escape becoming...... as the idea of the naïve observer becomes a void. Not recognizing and observing oneself as observer and co-producer of empirical data simply leaves the process of observation as the major unobserved absorber of contingency in data production based on participating observation....

  7. A network communication and recording system for digital seismic observation

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-ti; ZHUANG Can-tao; XUE Bing; LI Jiang; CHEN Yang; ZHU Xiao-yi; LOU Wen-yu; LIU Ming-hui

    2006-01-01

    A network communication and recording system based on China-made ARCA SOC and embedded Linux operating system is introduced in this paper. It supports TCP/IP network communication protocol and mass storage medium. It has strong points of self-monitor, low power consumption, high timing accuracy, high reliability of operation, etc. It can serve up to 20 centers real-time waveform data at the same time. It meets not only the requirements of physical networking observation, but also virtual networking observation based on Intemet in which real-time data transmission is required. Its ability of field recording also meets the requirements of portable seismic observation, strong motion observation and seismic exploration observation, etc.

  8. Team Formation in Partially Observable Multi-Agent Systems

    Science.gov (United States)

    Agogino, Adrian K.; Tumer, Kagan

    2004-01-01

    Sets of multi-agent teams often need to maximize a global utility rating the performance of the entire system where a team cannot fully observe other teams agents. Such limited observability hinders team-members trying to pursue their team utilities to take actions that also help maximize the global utility. In this article, we show how team utilities can be used in partially observable systems. Furthermore, we show how team sizes can be manipulated to provide the best compromise between having easy to learn team utilities and having them aligned with the global utility, The results show that optimally sized teams in a partially observable environments outperform one team in a fully observable environment, by up to 30%.

  9. Controllability and Observability Criteria for Linear Piecewise Constant Impulsive Systems

    Directory of Open Access Journals (Sweden)

    Hong Shi

    2012-01-01

    Full Text Available Impulsive differential systems are an important class of mathematical models for many practical systems in physics, chemistry, biology, engineering, and information science that exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynamical processes. This paper studies the controllability and observability of linear piecewise constant impulsive systems. Necessary and sufficient criteria for reachability and controllability are established, respectively. It is proved that the reachability is equivalent to the controllability under some mild conditions. Then, necessary and sufficient criteria for observability and determinability of such systems are established, respectively. It is also proved that the observability is equivalent to the determinability under some mild conditions. Our criteria are of the geometric type, and they can be transformed into algebraic type conveniently. Finally, a numerical example is given to illustrate the utility of our criteria.

  10. An Isopycnic Coordinate Numerical Model of the Agulhas Current with Comparison to Observations

    Science.gov (United States)

    1990-12-01

    text 71 Numerical modeling of the Agulhas Current in a limited domain begun by Boudra and Chassignet (1988) is extended. First, five experiments...satellite SST images are of limited use after the rings have propagated into the Atlantic. Recently, however, satellite measurements of sea surface height...eddy activity occurs just southeast of the African tip. 49 -- 1. 13.3 CMISEC MOODL -mcW¢c 1 13.3 CMISEC CURRENT METER -- is CM’IC A REGIONAL MOO)FI. OF

  11. Experimental observations of stray current effects on steel fibres embedded in mortar

    DEFF Research Database (Denmark)

    Solgaard, A.O.S.; Carsana, M.; Geiker, M.R.;

    2013-01-01

    It is known that stray direct current can cause corrosive damage over time to bar reinforced concrete, but knowledge on the consequences to steel fibre reinforced concrete is limited. This paper presents analyses and corresponding results from an experimental program (parametric study) investigat...

  12. Observed low-frequency currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Shenoi, S.S.C.; Sundar, D.

    . MEaxz (1984) A 40- to 60-day oscillation in the source region of the Somali current during 1976. Journal of Geophysical Research, 89, 711-715. NAIR R. R., V. ITrEKKOT, S. J. MANGININI, V. RAMASWAMY, B. HAAKE, E. T. DEGENS, B. N. DESAI and S. Homo...

  13. The Demonstrator for the European Plate Observing System (EPOS)

    Science.gov (United States)

    Hoffmann, T. L.; Euteneuer, F.; Ulbricht, D.; Lauterjung, J.; Bailo, D.; Jeffery, K. G.

    2014-12-01

    An important outcome of the 4-year Preparatory Phase of the ESFRI project European Plate Observing System (EPOS) was the development and first implementation of the EPOS Demonstrator by the project's ICT Working Group 7. The Demonstrator implements the vertical integration of the three-layer architectural scheme for EPOS, connecting the Integrated Core Services (ICS), Thematic Core Services (TCS) and the National Research Infrastructures (NRI). The demonstrator provides a single GUI with central key discovery and query functionalities, based on already existing services by the seismic, geologic and geodetic communities. More specifically the seismic services of the Demonstrator utilize webservices and APIs for data and discovery of raw seismic data (FDSN webservices by the EIDA Network), events (Geoportal by EMSC) and analytical data products (e.g., hazard maps by EFEHR via OGC WMS). For geologic services, the EPOS Demonstrator accesses OneGeology Europe which serves the community with geologic maps and point information via OGC webservices. The Demonstrator also provides access to raw geodetic data via a newly developed universal tool called GSAC. The Demonstrator itself resembles the future Integrated Core Service (ICS) and provides direct access to the end user. Its core functionality lies in a metadata catalogue, which serves as the central information hub and stores information about all RIs, related persons, projects, financial background and technical access information. The database schema of the catalogue is based on CERIF, which has been slightly adapted. Currently, the portal provides basic query functions as well as cross domain search. [www.epos.cineca.it

  14. ADCP Observations of the Western Adriatic Slope Current During Winter of 2001

    Science.gov (United States)

    2005-05-23

    northern and central Adriatic Sea. Journal of Marine Systems , 20, 279-300. Cavaleri, L. (2000). The oceanographic tower Acqua Alta - activity and...Northern Adriatic Sea surface circulation and temperature/pigment fields in September and October 1997. Journal of Marine Systems , 29, 51-67. Orli6, M...drifter data between 1990 and 1999. Journal of Marine Systems , 29, 3-32. Pullen, J., Doyle, J. D., Hodur, R., Ogsten, A., Book, J. W., Perkins, H

  15. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  16. OBSERVATIONS OF HIERARCHICAL SOLAR-TYPE MULTIPLE STAR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C. Jr. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91109 (United States); Tokovinin, Andrei [Cerro Tololo Inter-American Observatory, Casilla 603, La Serena (Chile); Mason, Brian D.; Hartkopf, William I. [U.S. Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States); Riddle, Reed L., E-mail: lewis.c.roberts@jpl.nasa.gov [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-10-15

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color–magnitude diagram and discuss each multiple system individually.

  17. Observations of Hierarchical Solar-Type Multiple Star Systems

    CERN Document Server

    Roberts,, Lewis C; Mason, Brian D; Hartkopf, William I; Riddle, Reed L

    2015-01-01

    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.

  18. Real time Aanderaa current meter data collection system

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    in laboratory. In this paper a method is described to read the real time current meter data and display/print/store on cartridge. For this, binary coded electrical signal available at the top end plate of the current meter is connectEd. by underwater cable...

  19. Mitigation of commutation failures in LCC-HVDC systems based on superconducting fault current limiters

    Science.gov (United States)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-11-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC-HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC-HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC-HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC-HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  20. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  1. Marginal Ice Zone Processes Observed from Unmanned Aerial Systems

    Science.gov (United States)

    Zappa, C. J.

    2015-12-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving mixing and gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Measurements from unmanned aerial systems (UAS) in the marginal ice zone were made during 2 experiments: 1) North of Oliktok Point AK in the Beaufort Sea were made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013 and 2) Fram Strait and Greenland Sea northwest of Ny-Ålesund, Svalbard, Norway during the Air-Sea-Ice Physics and Biogeochemistry Experiment (ASIPBEX) April - May 2015. We developed a number of new payloads that include: i) hyperspectral imaging spectrometers to measure VNIR (400-1000 nm) and NIR (900-1700 nm) spectral radiance; ii) net longwave and net shortwave radiation for ice-ocean albedo studies; iii) air-sea-ice turbulent fluxes as well as wave height, ice freeboard, and surface roughness with a LIDAR; and iv) drone-deployed micro-drifters (DDµD) deployed from the UAS that telemeter temperature, pressure, and RH as it descends through the atmosphere and temperature and salinity of the upper meter of the ocean once it lands on the ocean's surface. Visible and IR imagery of melting ice floes clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near

  2. Infectious bronchitis in Brazilian chickens: current data and observations of field service personnel

    Directory of Open Access Journals (Sweden)

    EN Silva

    2010-09-01

    Full Text Available The infectious bronchitis virus (IBV was detected for the first time in Brazil by Hipólito in 1957 in chickens sold life in the municipal market of Belo Horizonte, MG, when commercial poultry production was just starting in that country. The Massachusetts (Mass serotype was identified. However, the clinical disease was only observed in 1975, when poultry production was intensely growing. The extensive outbreak produced the classical condition in layers and breeders, affecting egg production and quality, whereas broilers presented respiratory and "nephritis-nephrosis" signs. The disease rapidly spread to all poultry-producing regions in the country, and in 1979, both the imports and the manufacturing of live vaccines against IB strains Mass, H120 and H52, were licensed. In 1980, inactivated vaccines were introduced. Molecular techniques, particularly PCR, started to bed in the identification of IBV. A retrospective analysis showed that, up to 1989, the main IBV strain circulating in Brazil was Mass. However, other studies shows the presence of a wide diversity of IBV strains in Brazil since the first strains were isolated, even before vaccination was introduced. Most researchers agree that the incidence of IBV different from Mass has increased, including of exclusively Brazilian genotypes, different from those described in other countries. Indeed, during the last few years, the number of genotypical variants has been much higher than that of the classical Mass serotype. Clinically, in addition of the classic presentations, atypical forms such as testicular atrophy and stones in the epidydimis associated to low fertility have been described. Serological techniques started to be used in vaccination monitoring and as a diagnostic tool. Serological response standards were developed, and have shown to be very useful to determine the expected profile in vaccination programs and when clinical disease is suspected. However, the immuno-enzymatic test

  3. Stability of uniformly bounded switched systems and Observability

    OpenAIRE

    Balde, Moussa; Jouan, Philippe; Naciri, Said

    2014-01-01

    This paper mainly deals with switched linear systems defined by a pair of Hurwitz matrices that share a common but not strict quadratic Lyapunov function. Its aim is to give sufficient conditions for such a system to be GUAS.We show that this property of being GUAS is equivalent to the uniform observability on $[0,+\\infty)$ of a bilinear system defined on a subspace whose dimension is in most cases much smaller than the dimension of the switched system.Some sufficient conditions of uniform as...

  4. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    Directory of Open Access Journals (Sweden)

    Prechanon Kumkratug

    2010-01-01

    Full Text Available Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into the existing power flow program based on fast decoupled method. The presented method was tested on the multimachine power system. Results: The transmission line loss of the system with and without HVDC was compared. Conclusion: From the simulation results, the HVDC can reduce transmission line loss of power system.

  5. Predicting the future completing models of observed complex systems

    CERN Document Server

    Abarbanel, Henry

    2013-01-01

    Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated. Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and o...

  6. Numerical analysis of global ionospheric current system including the effect of equatorial enhancement

    Directory of Open Access Journals (Sweden)

    S. Tsunomura

    Full Text Available A modeling method is proposed to derive a two-dimensional ionospheric layer conductivity, which is appropriate to obtain a realistic solution of the polar-originating ionospheric current system including equatorial enhancement. The model can be obtained by modifying the conventional, thin shell conductivity model. It is shown that the modification for one of the non-diagonal terms (Σθφ in the conductivity tensor near the equatorial region is very important; the term influences the profile of the ionospheric electric field around the equator drastically. The proposed model can reproduce well the results representing the observed electric and magnetic field signatures of geomagnetic sudden commencement. The new model is applied to two factors concerning polar-originating ionospheric current systems. First, the latitudinal profile of the DP2 amplitude in the daytime is examined, changing the canceling rate for the dawn-to-dusk electric field by the region 2 field-aligned current. It is shown that the equatorial enhancement would not appear when the ratio of the total amount of the region 2 field-aligned current to that of region 1 exceeds 0.5. Second, the north-south asymmetry of the magnetic fields in the summer solstice condition of the ionospheric conductivity is examined by calculating the global ionospheric current system covering both hemispheres simultaneously. It is shown that the positive relationship between the magnitudes of high latitude magnetic fields and the conductivity is clearly seen if a voltage generator is given as the source, while the relationship is vague or even reversed for a current generator. The new model, based on the International Reference Ionosphere (IRI model, can be applied to further investigations in the quantitative analysis of the magnetosphere-ionosphere coupling problems.

    Key words. Ionosphere (electric fields and currents; equatorial ionosphere; ionosphere

  7. Currents in the Cochin estuarine system [southwest coast of India] during March

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, K.; Revichandran, C.; Thottam, T.J.; Maheswaran, P.A.; Asharaf, T.T.M.; Murukesh, N.

    Analysis of current meter data collected in the Cochin estuarine system (southwest coast of India) has been made, to understand variations of currents in the estuary for spring and neap tidal phases during March 2000. The currents were strongest...

  8. LMI Approach to Observer-based FD Systems Designing

    Institute of Scientific and Technical Information of China (English)

    钟麦英; 汤兵勇; 丁·史蒂芬·先春

    2001-01-01

    Increasing the robustness to the unknown uncertainty and simultaneously enhancing the sensibility to the faults is one of the important issues considered in the fault detection development. Considering the L2-gain of residual system, this paper deals the observer-based fault detection problem. By using of H∞ control theory,an LMI approach to design fault detection observer is given. A numerical example is used to illustrate the effectiveness of the proposed approach.

  9. NANOOS, the Northwest Association of Networked Ocean Observing Systems: a regional Integrated Ocean Observing System (IOOS) for the Pacific Northwest US

    Science.gov (United States)

    Newton, J.; Martin, D.; Kosro, M.

    2012-12-01

    from the need for sustained funding at a level that complements the rigors of maintaining a coastal ocean observing system. This continues to be a severe issue, where functional leeway is minimal. To date, NANOOS has met this challenge because of the significant leveraging of the system. While such integration has led to successes from bringing together different programs and capacities, there is need to harden the robustness of the system. Examples of NANOOS products within our regional priorities include 1. Maritime Operations: provision of surface currents and modeled conditions; 2. Regional Fisheries: maps of sea surface temperatures optimized for tuna fishers; 3. Ecosystem Assessment: real-time measurements of variables for ocean acidification, hypoxia, and other water quality indicators; 4. Coastal Hazards: an application for tsunami evacuation routes; and Climate: climatologies for selected time-series.

  10. Verifying Embedded Systems using Component-based Runtime Observers

    DEFF Research Database (Denmark)

    Guan, Wei; Marian, Nicolae; Angelov, Christo K.

    Formal verification methods, such as exhaustive model checking, are often infeasible because of high computational complexity. Runtime observers (monitors) provide an alternative, light-weight verification method, which offers a non-exhaustive yet feasible approach to monitoring system behavior...... against formally specified properties. This paper presents a component-based design method for runtime observers, which are configured from instances of prefabricated reusable components---Predicate Evaluator (PE) and Temporal Evaluator (TE). The PE computes atomic propositions for the TE; the latter...... specified properties via simulation. The presented method has been experimentally validated in an industrial case study---a control system for a safety-critical medical ventilator unit....

  11. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    . Then the geometric approach is applied to a nonlinear ship propulsion system benchmark. The calculations and application results are presented in detail to give an illustrative example. The obtained subsystems are considered for the design of nonlinear observers in order to obtain FDI. Additionally, an adaptive...... for the observers designed for the ship propulsion system. Furthermore, it stresses the importance of the time-variant character of the linearization along a trajectory. It leads to a different stability analysis than for linearization at one operation point. Finally, the preliminary concept of (actuator) fault...

  12. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  13. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  14. An observational study of the western boundary currents in the Indian and South Atlantic Oceans

    NARCIS (Netherlands)

    Ponsoni, L.

    2016-01-01

    In this thesis we have investigated different aspects of the WBCs in the Indian and South Atlantic Oceans, based on observational data sampled both in situ and from satellites. In October 2010 an array of five moorings were deployed off eastern Madagascar, nominally at 23S, as part of the “INdian-AT

  15. Observed tidal currents on the continental shelf off the west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subeesh, M.P.; Unnikrishnan, A.S.; Fernando, V.; Agarwadekar, Y.; Khalap, S.T.; Satelkar, N.P.; Shenoi, S.S.C.

    . The observations extended over a 6-month period (March–August), which includes two seasons, pre-monsoon (March–April) and southwest (SW) monsoon (May–August) during 2008, 2009 and 2011. Tidal ellipses, constructed for M2 and K1 constituents...

  16. Observability analysis of feature aided terminal guidance systems

    Institute of Scientific and Technical Information of China (English)

    Shijie Fan; Hongqi Fan; Huaitie Xiao; Jianpeng Fan; Qiang Fu

    2015-01-01

    Feature aided design of estimators and guidance laws can significantly improve the interception performance of the ter-minal guidance system. The achieved enhancement can be ef-fectively assessed by observability analysis methods. This paper first analyzes and discusses the existing assessment methods in a typical endgame scenario with target orientation observations. To get over their deficiencies, a novel singular value decomposition (SVD) method is proposed. Employing both theoretical analysis and numerical simulation, the proposed method can represent the degree of state observability which is enhanced by integrating tar-get features more completely and quantitatively.

  17. "Convergent observations" with the stereoscopic HEGRA CT system

    CERN Document Server

    Lampeitl, H; Lampeitl, Hubert; Hofmann, Werner

    1999-01-01

    Observations of air showers with the stereoscopic HEGRA IACT system are usually carried out in a mode where all telescopes point in the same direction. Alternatively, one could take into account the finite distance to the shower maximum and orient the telescopes such that their optical axes intersect at the average height of the shower maximum. In this paper we show that this ``convergent observation mode'' is advantageous for the observation of extended sources and for surveys, based on a small data set taken with the HEGRA telescopes operated in this mode.

  18. Entanglement Observables and Witnesses for Interacting Quantum Spin Systems

    CERN Document Server

    Wu, L A; Sarandy, M S; Lidar, D A

    2004-01-01

    We discuss the detection of entanglement in interacting quantum spin systems. First, thermodynamic Hamiltonian-based witnesses are computed for a general class of one-dimensional spin-1/2 models. Second, we introduce optimal bipartite entanglement observables. We show that a bipartite entanglement measure can generally be associated to a set of independent two-body spin observables whose expectation values can be used to witness entanglement. The number of necessary observables is ruled by the symmetries of the model. Illustrative examples are presented.

  19. EXTREME AO OBSERVATIONS OF TWO TRIPLE ASTEROID SYSTEMS WITH SPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, B.; Wahhaj, Z.; Dumas, C.; Marsset, M. [European Southern Observatory, Santiago (Chile); Beauvalet, L. [National Observatory, Rio de Janeiro (Brazil); Marchis, F.; Nielsen, E. L. [Carl Sagan Center at the SETI Institute, Mountain View, CA (United States); Vachier, F., E-mail: byang@eso.org [Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris (France)

    2016-04-01

    We present the discovery of a new satellite of asteroid (130) Elektra—S/2014 (130) 1—in differential imaging and in integral field spectroscopy data over multiple epochs obtained with Spectro-Polarimetric High-contrast Exoplanet Research/Very Large Telescope. This new (second) moonlet of Elektra is about 2 km across, on an eccentric orbit, and about 500 km away from the primary. For a comparative study, we also observed another triple asteroid system, (93) Minerva. For both systems, component-resolved reflectance spectra of the satellites and primary were obtained simultaneously. No significant spectral difference was observed between the satellites and the primary for either triple system. We find that the moonlets in both systems are more likely to have been created by sub-disruptive impacts as opposed to having been captured.

  20. Current Developments in the French Engineering Education System

    Science.gov (United States)

    Lemaître, Denis

    2017-01-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of…

  1. Eddies on the boundary between the Kuroshio current and coastal waters observed by HF ocean surface radar

    Science.gov (United States)

    Nadai, A.

    2016-02-01

    The HF ocean surface radar (HFOSR) is one of the powerful tools to measure the ocean current parameters like surface currents. Three observations of the Kuroshio current in the Tokara straight using HFOSR had done by the National Institute of Information and Comunications Technology (NICT: the former name is the Communications Research Laboratory). The first-order echoes on Doppler spectra of HFOSR shows broaden and splitting shape in the region of the border between the Kuroshio currents and coastal waters. The surface velocity maps show the existence of eddy on the border. The investigation of the mechanism of broadening first order-echoes by Nadai (2006) revealed that the modulation of wave fields from surface currents like eddy is the cause of broadening and the measured current fields also influenced the modulated wave fields. Moreover, Nadai (2006) also suggested that the influence is able to reduce using the average of two radial velocities extracted by the first-order echoes. In this paper, the results of current field observation around the border between the Kuroshio current and coastal waters are presented. Many small scale eddies are observed at the border of the Kuroshio current and coastal waters. The typical radius of the eddies is about 10km. Usury the observation of such a small scale eddy is difficult, but the eddies with same scale are observed by airborne synthetic aperture radar in the same area at different time. The eddies shows strong rotation as the typical tangential speed is about 1m/s. While the typical speed of the Kuroshio current is about 1.5m/s, the typical speed of the eddy movements is about 0.7m/s. No eddies generated in the radar coverage, but one or two eddies entered in the radar coverage a day. Therefore the origin of these eddies will exist in the upstream area of the radar coverage. Using the compensation method for the influence of the modulated wave field suggested by Nadai (2006), the eddies shows weak divergence. It is

  2. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): progress, activities, and prospects

    Science.gov (United States)

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  3. LACROS: the Leipzig Aerosol and Cloud Remote Observations System

    Science.gov (United States)

    Bühl, Johannes; Seifert, Patric; Wandinger, Ulla; Baars, Holger; Kanitz, Thomas; Schmidt, Jörg; Myagkov, Alexander; Engelmann, Ronny; Skupin, Annett; Heese, Birgit; Klepel, André; Althausen, Dietrich; Ansmann, Albert

    2013-10-01

    The study of interactions between aerosol particles, atmospheric dynamics and clouds and their resulting corresponding indirect effects on precipitation and radiative transfer demand new measurement strategies combining the strength of lidar, radar, and in-situ instrumentation. To match this challenge the Leipzig Aerosol and Cloud Remote Observations System (LACROS) has been set up at TROPOS, combining the strengths of a unique set of active and passive remote sensing and in-situ measurement systems.

  4. Controllable and Observable Polynomial Description for 2D Noncausal Systems

    Directory of Open Access Journals (Sweden)

    M. S. Boudellioua

    2007-01-01

    Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.

  5. Preservation of controllability-observability in expanded systems

    OpenAIRE

    Bakule, Lubomir; Rodellar Benedé, José; Rossell Garriga, Josep Maria; Rubio Díaz, Pedro

    2001-01-01

    The result contributed by the article is that controllability-observability of an original continuous-time LTI dynamic system can always be simultaneously preserved in expanded systems within the inclusion principle when using block structured complementary matrices. This new structure offers more degrees of freedom for the selection of specific complementary matrices than well known used cases, such as aggregations and restrictions, which enable such preservation only in certain special case...

  6. Observation of {sup 135}Xe with the PNNL ARSA System

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, P.L.; Bowyer, T.W.; Abel, K.H. [and others

    1997-08-01

    The automated radioxenon sampler-analyzer (ARSA) developed by PNNL and with funding and support form the DOE NN-20 CTBT research and development program, observed 9.1-hr {sup 135}Xe in a sample of New York City air obtained on April 4th, 1997. The report below briefly describes the ARSA system and the first ever reported measurement of the short-lived {sup 135}Xe from an automated radioxenon system.

  7. Experimental Observation of Kink in a Perfect Bidimensional Granular System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; MIAO Guo-Qing; HUANG Kai; YUN Yi; WEI Rong-Jue

    2005-01-01

    @@ The kink formation in a vertical vibrated granular layer has been widely studied in three-dimensional systems, but there are few if any experimental reports on bidimensional granular layers. We report the kink formation newly found in a perfect bidimensional granular system. We measure the range of the driving frequencies and dimensionless accelerations for kinks. Furthermore, we observe a heaping process, which is caused by co-operative action of the kink-associated convection and the sidewall-associated convection.

  8. Current perspectives on post systems: a literature review.

    Science.gov (United States)

    Goracci, C; Ferrari, M

    2011-06-01

    This literature review summarizes the most recent and reliable evidence on post systems. A search was limited to review articles published over the last 10 years in dental journals with an impact factor. Papers cited in the initially retrieved review articles were also included if significant. Preservation of tooth tissue, presence of a ferrule effect, and adhesion are regarded as the most effective conditions for long-term success of post-endodontic restorations. Adhesively luted fibre-reinforced composite post restorations have demonstrated satisfactory survival rates over relatively long follow-up periods. The clinical effectiveness of such restorations has been mainly ascribed to the more biomimetic behaviour of fibre-reinforced composite posts that reduces the risk of vertical root fractures. The most common type of failure when using fibre posts is post debonding and it is generally agreed that achieving stable adhesion to intraradicular dentine is more challenging than to coronal dentine. Several factors related to endodontic treatment, root canal shape, post space preparation, post translucency, adhesive cement handling and curing may have an influence on the outcome of the luting procedure. The most reliable results in fibre post cementation are obtained by etch-and-rinse adhesives in combination with dual-cure resin cements. The use of self-adhesive resin cements has also been proposed. Simplification is an obvious advantage of these new materials. However, the durability of their bond still needs to be verified with long-term clinical studies. Several techniques for pre-treating the fibre-reinforced composite post surface have been tested with the aim of improving the bond strength at the post-core and post-cement interfaces. Silicoating followed by silanization currently appears to be the most effective and convenient method for this purpose. In conclusion, the available evidence validates the use of fibre posts as an alternative to metal posts and

  9. Large Extent Volunteer Roadkill and Wildlife Observation Systems as Sources of Reliable Data

    Directory of Open Access Journals (Sweden)

    David P. Waetjen

    2017-08-01

    Full Text Available Large-extent wildlife-reporting systems have sets of goals and methods to facilitate standardized data collection, statistical analysis, informative visualizations, and use in decision-making within the system area. Many systems employ “crowds” of volunteers to collect these data at large spatial extents (e.g., US state or small country scale, especially along roadways. This raises the important question of how these systems could be standardized and the data made broadly useful in ecological and transportation studies, i.e., beyond the system area or goals. We describe two of the first and longest-running systems for volunteer observation of road-associated wildlife (live and dead at the US state scale. The California Roadkill Observation System (CROS, http://wildlifecrossing.net/california uses a form-based data entry system to report carcasses resulting from wildlife-vehicle collisions (WVC. Operating since 2009, it currently (June, 2017 contains 1,338 users and >54,000 observations of 424 species of ground-dwelling vertebrates and birds, making it one of the most successful examples of crowd-sourced, roadkill and wildlife reporting. Its sister system, the Maine Audubon Wildlife Road Watch (http://wildlifecrossing.net/maine has a similar structure, and can accept data from transect surveys, animal tracks and scat observations, and reports of “no animal observed.” Both systems can operate as web-applications on a smart-phone (using a web browser, providing the ability to enter observations in the field. Locational accuracy for California observations was estimated to be ±14 m (n = 552 records. Species identification accuracy rate for observations with photographs was 97% (n = 3,700 records. We propose that large extent, volunteer systems can be used to monitor wildlife occurrences along or away from roads and that these observations can be used to inform ecological studies and transportation mitigation planning.

  10. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    Science.gov (United States)

    2015-08-27

    indicate that the assimilation of satellite observations significantly improves NAAPS aerosol forecasting capability and reliability. To fully utilize...method derives a semi-quantitative indicator of nighttime x using artificial light sources. Nighttime x retrievals from the newly-developed method are...Kemper, T. Craig, I. Ginis , Evaluation of Maine aerosol production simulated using the WaveWatchlll prognostic Wave Model coupled to the Community

  11. Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, current, and future activities

    Science.gov (United States)

    Proshutinsky, A.; Steele, M.; Timmermans, M.-L.

    2016-06-01

    The overall goal of the Forum for Arctic Modeling and Observational Synthesis (FAMOS) community activities reported in this special issue is to enhance understanding of processes and mechanisms driving Arctic Ocean marine and sea ice changes, and the consequences of those changes especially in biogeochemical and ecosystem studies. Major 2013-2015 FAMOS accomplishments to date are: identification of consistent errors across Arctic regional models; approaches to reduce these errors, and recommendations for the most effective coupled sea ice-ocean models for use in fully coupled regional and global climate models. 2013-2015 FAMOS coordinated analyses include many process studies, using models together with observations to investigate: dynamics and mechanisms responsible for drift, deformation and thermodynamics of sea ice; pathways and mechanisms driving variability of the Atlantic, Pacific and river waters in the Arctic Ocean; processes of freshwater accumulation and release in the Beaufort Gyre; the fate of melt water from Greenland; characteristics of ocean eddies; biogeochemistry and ecosystem processes and change, climate variability, and predictability. Future FAMOS collaborations will focus on employing models and conducting observations at high and very high spatial and temporal resolution to investigate the role of subgrid-scale processes in regional Arctic Ocean and coupled ice-ocean and atmosphere-ice-ocean models.

  12. Quintessence versus phantom dark energy: the arbitrating power of current and future observations

    CERN Document Server

    Novosyadlyj, B; Durrer, R; Pelykh, V

    2013-01-01

    We analyze the possibility to distinguish between quintessence and phantom scalar field models of dark energy using observations of luminosity distance moduli of SNe Ia, CMB anisotropies and polarization, matter density perturbations and baryon acoustic oscillations. None of the present observations can decide between quintessence or phantom scalar field models at a statistically significant level: for each model a set of best-fit parameters exists, which matches all data with similar goodness of fit. We compare the relative differences of best-fit model predictions with observational uncertainties for each type of data and we show that the accuracy of SNe Ia luminosity distance data is far from the one necessary to distinguish these types of dark energy models, while the CMB data (WMAP, SPT and Planck) are close to being able to distinguish them. Also a significant improvement of the large-scale structure data (e.g. Euclid or BigBOSS) will enable us to decide between quintessence and phantom dark energy.

  13. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  14. Formation of Observed Asteroid Systems by Rotational Fission

    Science.gov (United States)

    Jacobson, Seth A.; Scheeres, D. J.

    2010-05-01

    Binary asteroid systems comprise 16% of the Near-Earth asteroid (NEA) population. A proposed mechanism for creating these systems is rotational fission, observational evidence for which is being reported at this meeting (Scheeres, Pravec, et al.). We have developed a detailed simulation of this process to mimic the evolution of rubble pile asteroids spun to fission by YORP. We model the proto-binary using tri-axial ellipsoid components to capture spin-orbit coupling, apply instantaneous tidal torques to both members to model energy dissipation, and incorporate solar perturbations. After fission these binaries are located deep in their Hill sphere and their non-spherical shapes strongly couple the spin and orbital states of the bodies, transferring angular momentum and energy across the system. These systems evolve chaotically and quickly, and often reach high apoapsis radii where solar perturbations can play an important role. We find distinct evolution of the systems as a function of the mass ratio of the fissioned asteroid. For mass ratios greater than 0.2 systems cannot escape and all rapidly evolve into doubly-synchronous binaries, similar to Hermes, whose apparent lack of abundance may be due to observational bias and to rapid evolution due to the BYORP effect. For mass ratios less than 0.2 we find a number of different outcomes. First, the systems are Hill unstable and can escape from each other, forming asteroid pairs. Prior to escape, however, the secondary of a significant fraction is spun to fission, thus creating a temporary ternary system subject to three body dynamics, solar perturbations, spin-orbit coupling, and additional fission events. Resulting from our simulations we find final asteroid states that include a-synchronous binaries, high eccentricity binaries, ternary systems, and asteroid pairs - all of which are also found in the observed asteroid population. The process also predicts the creation of primaries with equatorial bulges.

  15. Carrier currents systems and home integrated systems; Les courants porteurs vont-ils epanouir la domotique

    Energy Technology Data Exchange (ETDEWEB)

    Remond, C.

    1996-12-31

    Energy savings in buildings can be performed by remote control applications. Current carrier equipment interfaces use buildings integrated power network to perform data transmission through an entire building, or even to a remote building. The case of industrial buildings lighting systems is sketched out, but these interfaces apply as well to electric heating (space or water heating). (D.L.)

  16. Wave and Current Observations in a Tidal Inlet Using GPS Drifter Buoys

    Science.gov (United States)

    2013-03-01

    Micro-Electro-Mechanical System MRU Motion Reference Unit NDBC National Data Buoy Center NOAA National Oceanic and Atmospheric Administration...made by accelerometers integrated into a motion reference unit ( MRU ). The vertical accelerations (heave measurements) were used to calculate the wave

  17. Thermally stimulated current observation of trapping centers in undoped GaSe layered single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gasanly, N.M.; Salihoglu, Oe. [Middle East Technical Univ., Ankara (Turkey). Dept. of Physics; Aydinli, A. [Middle East Technical Univ., Ankara (Turkey). Dept. of Physics; Bilkent Univ., Ankara (Turkey). Dept. of Physics

    2001-07-01

    Undoped p-GaSe layered single crystals were grown using Bridgman technique. Thermally stimulated current measurements in the temperature range of 10-300 K were performed at a heating rate of 0.18 K/s. The analysis of the data revealed three trap levels at 0.02, 0.10 and 0.26 eV. The calculation for these traps yielded 8.8 x 10{sup -27}, 1.9 x 10{sup -25}, and 3.2 x 10{sup -21} cm{sup 2} for capture cross sections and 3.2 x 10{sup 14}, 1.1 x 10{sup 16}, and 1.2 x 10{sup 16} cm{sup -3} for the concentrations, respectively. (orig.)

  18. Electric double layer effect on observable characteristics of the tunnel current through a bridged electrochemical contact

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Medvedev, I.G.; Ulstrup, Jens

    2007-01-01

    Scanning tunneling microscopy and electrical conductivity of redox molecules in conducting media (aqueous or other media) acquire increasing importance both as novel single-molecule science and with a view on molecular scale functional elements. Such configurations require full and independent....../overpotential relation shows a maximum at a position which depends on the ionic strength. It is shown, in particular, that the dependence of the maximum position on the bias voltage may be nonmonotonous. Approximate expressions for the limiting value of the slope of the current/overpotential dependence and the width...... of the maximum on the bias voltage are also given and found to depend strongly on both the Debye screening and the position of the redox group in the tunnel gap, with diagnostic value in experimental data analysis....

  19. Tourism and Arctic Observation Systems: exploring the relationships

    NARCIS (Netherlands)

    Barre, de la Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing th

  20. INVIS : Integrated night vision surveillance and observation system

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Dijk, J.; Son, R. van

    2010-01-01

    We present the design and first field trial results of the all-day all-weather INVIS Integrated Night Vision surveillance and observation System. The INVIS augments a dynamic three-band false-color nightvision image with synthetic 3D imagery in a real-time display. The night vision sensor suite