WorldWideScience

Sample records for current neurobiological models

  1. Successful and unsuccessful psychopaths: a neurobiological model.

    Science.gov (United States)

    Gao, Yu; Raine, Adrian

    2010-01-01

    Despite increasing interest in psychopathy research, surprisingly little is known about the etiology of non-incarcerated, successful psychopaths. This review provides an analysis of current knowledge on the similarities and differences between successful and unsuccessful psychopaths derived from five population sources: community samples, individuals from employment agencies, college students, industrial psychopaths, and serial killers. An initial neurobiological model of successful and unsuccessful psychopathy is outlined. It is hypothesized that successful psychopaths have intact or enhanced neurobiological functioning that underlies their normal or even superior cognitive functioning, which in turn helps them to achieve their goals using more covert and nonviolent methods. In contrast, in unsuccessful, caught psychopaths, brain structural and functional impairments together with autonomic nervous system dysfunction are hypothesized to underlie cognitive and emotional deficits and more overt violent offending.

  2. Towards a neurobiological model of offending.

    Science.gov (United States)

    Mitchell, Ian J; Beech, Anthony R

    2011-07-01

    In this paper we consider how disturbances in the neurobiological/neurochemical processes at a young age lead to problematic attachment styles in later life, and which can potentiate probability of offending behavior. In particular, we will contrast attachment and offending patterns of the more generalist type of offender (i.e., those who have a varied criminal career, committing both violent and non-violent offenses, in extremis the psychopathic type of offender), with the more specialist sexual offender (prototypically, the fixated pedophile), in the light of a preliminary neurobiological model. Here, we will argue that these two extremes of offenders show, or are predicted to show, differential patterns of neurochemical/neurobiological functioning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Neurobiological correlates of cognitions in fear and anxiety: a cognitive-neurobiological information-processing model.

    Science.gov (United States)

    Hofmann, Stefan G; Ellard, Kristen K; Siegle, Greg J

    2012-01-01

    We review likely neurobiological substrates of cognitions related to fear and anxiety. Cognitive processes are linked to abnormal early activity reflecting hypervigilance in subcortical networks involving the amygdala, hippocampus, and insular cortex, and later recruitment of cortical regulatory resources, including activation of the anterior cingulate cortex and prefrontal cortex to implement avoidant response strategies. Based on this evidence, we present a cognitive-neurobiological information-processing model of fear and anxiety, linking distinct brain structures to specific stages of information processing of perceived threat.

  4. Musical hallucinosis: case reports and possible neurobiological models.

    Science.gov (United States)

    Mocellin, Ramon; Walterfang, Mark; Velakoulis, Dennis

    2008-04-01

    The perception of music without a stimulus, or musical hallucination, is reported in both organic and psychiatric disorders. It is most frequently described in the elderly with associated hearing loss and accompanied by some degree of insight. In this setting it is often referred to as 'musical hallucinosis'. The aim of the authors was to present examples of this syndrome and review the current understanding of its neurobiological basis. We describe three cases of persons experiencing musical hallucinosis in the context of hearing deficits with varying degrees of associated central nervous system abnormalities. Putative neurobiological mechanisms, in particular those involving de-afferentation of a complex auditory recognition system by complete or partial deafness, are discussed in the light of current information from the literature. Musical hallucinosis can be experienced in those patients with hearing impairment and is phenomenologically distinct for hallucinations described in psychiatric disorders.

  5. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders

    Science.gov (United States)

    Kim, Ki Chan; Gonzales, Edson Luck; Lázaro, María T.; Choi, Chang Soon; Bahn, Geon Ho; Yoo, Hee Jeong; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance. PMID:27133257

  6. Neurobiological basis of parenting disturbance.

    Science.gov (United States)

    Newman, Louise K; Harris, Melissa; Allen, Joanne

    2011-02-01

    It has been proposed that early attachment relationships shape the structure and reactivity of social brain structures that underlie later social capacities. We provide a review of the literature surrounding the development of neurological regulatory systems during infancy and outline recent research suggesting these systems go on to underlie adaptive parental responses. We review evidence in the peer-reviewed psychiatric literature including (i) observational human literature on the neurobiological and social sequelae of early parenting experiences, (ii) experimental animal literature on the effects of early maternal care on neurological development, (iii) experimental animal literature on the neurobiological underpinnings of parenting behaviours, (iv) observational and fMRI evidence on the neurobiological correlates of parenting behaviours, (v) functional and volumetric imaging studies on adults affected by borderline personality disorder. The development of infant regulatory systems is influenced by early parenting experiences. These frontolimbic regulatory systems are also heavily implicated in normal parental responses to infant cues. These frontolimbic disturbances are also observed in studies of borderline personality disorder; a disorder associated with poor emotional regulation, early trauma and disturbed parenting. While the current literature is limited to animal models of abnormal care giving, existing disorders associated with deficits in regulatory capacity and abnormal frontolimbic functioning may yet provide a human model of the neurobiology of parenting disturbance.

  7. Body Dysmorphic Disorder: Neurobiological Features and an Updated Model

    Science.gov (United States)

    Li, Wei; Arienzo, Donatello; Feusner, Jamie D.

    2013-01-01

    Body Dysmorphic Disorder (BDD) affects approximately 2% of the population and involves misperceived defects of appearance along with obsessive preoccupation and compulsive behaviors. There is evidence of neurobiological abnormalities associated with symptoms in BDD, although research to date is still limited. This review covers the latest neuropsychological, genetic, neurochemical, psychophysical, and neuroimaging studies and synthesizes these findings into an updated (yet still preliminary) neurobiological model of the pathophysiology of BDD. We propose a model in which visual perceptual abnormalities, along with frontostriatal and limbic system dysfunction, may combine to contribute to the symptoms of impaired insight and obsessive thoughts and compulsive behaviors expressed in BDD. Further research is necessary to gain a greater understanding of the etiological formation of BDD symptoms and their evolution over time. PMID:25419211

  8. Neurobiology of consciousness: an overview.

    Science.gov (United States)

    Delacour, J

    1997-05-01

    The aim of this review is to connect the phenomenology of consciousness to its neurobiology. A survey of the recent literature revealed the following points. (1) Comprehensive descriptions of consciousness, of its subjective as well as of its objective aspects, are both possible and necessary for its scientific study. An intentionality-modeling structure (an unified and stable ego refers to objects or to itself in the framework of a stable, reproducible, predictable world) accounts for the main features. (2) The material basis of consciousness can be clarified without recourse to new properties of matter or to quantum physics. Current neurobiology appears to be able to handle the problem. In fact, the neurobiology of consciousness is already in progress, and has achieved substantial results. At the system level, its main sources of data are: the neurophysiology of sleep-wakefulness, brain imaging of mental representations, attention and working memory, the neuropsychology of frontal syndrome, and awareness-unawareness dissociations in global amnesia and different forms of agnosia. At an intermediate level of organization, the mechanisms of consciousness may be the formation of a certain kind of neural assembly. (3) Further research may focus on neuropsychology and neurophysiology of object perception and recognition as a natural model of intentionality, perception of time, body schema, interhemispheric communications, 'voluntary' acts and mental images. The synthetic and dynamic views provided by brain imaging may be decisive for discovering the neural correlates of the integrative aspects of consciousness. (4) The neurobiological approach may, beyond the finding of cellular and molecular mechanisms, improve the general concepts of consciousness, overcome their antinomies and, against epiphenomenalism, definitely establish the reality of consciousness.

  9. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies.

    Directory of Open Access Journals (Sweden)

    Clare eFinlay

    2014-06-01

    Full Text Available Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson's disease (PD developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography (PET and functional magnetic resonance imaging (fMRI. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry (VBM. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.

  10. Neurobiology of anxious depression: a review.

    Science.gov (United States)

    Ionescu, Dawn F; Niciu, Mark J; Mathews, Daniel C; Richards, Erica M; Zarate, Carlos A

    2013-04-01

    Anxious depression is a common, distinct clinical subtype of major depressive disorder (MDD). This review summarizes current neurobiological knowledge regarding anxious depression. Peer-reviewed articles, published January 1970 through September 2012, were identified via PUBMED, EMBASE, and Cochrane Library, using the following key words: anxious depression electroencephalography (EEG), anxious depression functional magnetic resonance imaging (fMRI), anxious depression genetics, anxious depression neurobiology, and anxious melancholia neurobiology. Despite a general dearth of neurobiological research, the results suggest that anxious depression-when defined either syndromally or dimensionally-has distinct neurobiological findings that separate it from nonanxious depression. Structural neuroimaging, EEG, genetics, and neuropsychiatric studies revealed differences in subjects with anxious depression compared to other groups. Endocrine differences between individuals with anxious depression and those with nonanxious depression have also been noted, as evidenced by abnormal responses elicited by exogenous stimulation of the system. Despite these findings, heterogeneity in the definition of anxious depression complicates the results. Because exploring the neurobiology of this depressive subtype is important for improving diagnosis, prognosis, and treatment, enrichment strategies to decrease heterogeneity within the field should be employed for future research. © 2013 Wiley Periodicals, Inc.

  11. The neurobiological basis of ADHD

    Directory of Open Access Journals (Sweden)

    Curatolo Paolo

    2010-12-01

    Full Text Available Abstract Attention-Deficit/Hyperactivity Disorder is not a single pathophysiological entity and appears to have a complex etiology. There are multiple genetic and environmental risk factors with small individual effect that act in concert to create a spectrum of neurobiological liability. Structural imaging studies show that brains of children with Attention-Deficit/Hyperactivity Disorder are significantly smaller than unaffected controls. The prefrontal cortex, basal ganglia and cerebellum are differentially affected and evidence indicating reduced connectivity in white matter tracts in key brain areas is emerging. Genetic, pharmacological, imaging, and animal models highlight the important role of dopamine dysregulation in the neurobiology of Attention-Deficit/Hyperactivity Disorder. To date, stimulants are the most effective psychopharmacological treatments available for Attention-Deficit/Hyperactivity Disorder. Currently only immediate release methylphenidate and atomoxetine are approved for the treatment of ADHD in Italy. Drug treatment should always be part of a comprehensive plan that includes psychosocial, behavioural and educational advice and interventions.

  12. Applying neurobiology to the treatment of adults with anorexia nervosa.

    Science.gov (United States)

    Hill, Laura; Peck, Stephanie Knatz; Wierenga, Christina E; Kaye, Walter H

    2016-01-01

    Anorexia nervosa is a severe, biologically based brain disorder with significant medical complications. It is critical that new, effective treatments are developed to interrupt the persistent course of the illness due to the medical and psychological sequelae. Several psychosocial, behavioral and pharmacologic interventions have been investigated in adult anorexia nervosa; however, evidence shows that their impact is weak and treatment effects are generally small. This paper describes a new neurobiological anorexia nervosa model that shifts focus from solely external influences, such as social and family, to include internal influences that integrate genetic and neurobiological contributions, across the age span. The model serves as a theoretical structure for a new, five-day treatment, outlined in this paper, targeting anorexia nervosa temperament, which integrates neurobiological dimensions into evidence-based treatment interventions. The treatment is in two phases. Phase I is a five day, 40 hour treatment for anorexia nervosa adults. Phase II is the follow-up and is currently being developed. Preliminary qualitative acceptability data on 37 adults with anorexia nervosa and 60 supports (e.g., spouses, parents, aunts, friends, partners, children of anorexia nervosa adults) are promising from Phase I. Clients with anorexia nervosa and their supports report that learning neurobiological facts improved their understanding of the illness and helped equip them with better tools to manage anorexia nervosa traits and symptoms. In addition, nutritional knowledge changed significantly. This is the first neurobiologically based, five-day treatment for adults with anorexia nervosa and their supports. It is a new model that outlines underlying genetic and neurobiological contributions to anorexia nervosa that serves as a foundation to treat both traits and symptoms. Preliminary qualitative findings are promising, with both clients and supports reporting that the

  13. Unmasking feigned sanity: a neurobiological model of emotion processing in primary psychopathy.

    Science.gov (United States)

    van Honk, Jack; Schutter, Dennis J L G

    2006-05-01

    The neurobiological basis of primary psychopathy, an emotional disorder characterised by a lack of fear and empathy, on the one hand, and extremely violent, antisocial tendencies, on the other, is relatively unknown. Nevertheless, theoretical models that emphasise the role of fearlessness, imbalanced motivation, defective somatic markers, and dysfunctional violence inhibition mechanisms have complementary proposals regarding motivations and brain mechanisms involved. Presently, incorporating the heuristic value of these models and further theorising on the basis of recent data from neuropsychology, neuroendocrinology, neuroimaging, and repetitive transcranial magnetic stimulation (rTMS), an attempt is made to construct a neurobiological framework of emotion processing in primary psychopathy with clinical applicability. According to this framework, defective emotional processing in primary psychopathy results from bottom-up hormone-mediated imbalances at: (1) the subcortical level; (2) in subcortico-cortical "cross-talk"; that end up in an instrumental stance at the cortical level (3). An endocrine dual-system approach for the fine-tuned restoration of these hormone-mediated imbalances is proposed as a possible clinical application. This application may be capable of laying a neurobiological foundation for more successful sociotherapeutic interventions in primary psychopathy.

  14. Mind from genes and neurons: a neurobiological model of Freudian psychology.

    Science.gov (United States)

    Brito, Gilberto N O

    2002-10-01

    A hypothetical neurobiological model of Freud's architecture of the mind is presented in an attempt to unify concepts and data derived from molecular biology (e.g., genomic imprinting), systems neuroscience (e.g., neuroanatomochemical circuitries), evolutionary psychology (e.g., human mating strategies), and Freudian psychology. The model posits that events related to genomic imprinting can be regulated in a tissue-specific manner over the course of neural development such that imprinting along the matriline would favor the development of corticostriatal structures whereas imprinting along the patriline would favor the development of limbic-subcortical structures. A neuropsychological analysis of the brain requirements for successful mating presumably would put an evolutionary premium on the corticostriatal system (matrilineal) in men and limbic-subcortical systems (patrilineal) in women. Additionally, the model emphasizes that the ego and the super-ego of Freudian psychology are dependent on corticostriatal mechanisms (matriline-related), while the id is dependent on brainstem processes (patriline-related). It is hoped that the model herein presented has heuristic value for a rapprochement of psychoanalysis and neurobiology.

  15. The neurobiology of uncertainty: implications for statistical learning.

    Science.gov (United States)

    Hasson, Uri

    2017-01-05

    The capacity for assessing the degree of uncertainty in the environment relies on estimating statistics of temporally unfolding inputs. This, in turn, allows calibration of predictive and bottom-up processing, and signalling changes in temporally unfolding environmental features. In the last decade, several studies have examined how the brain codes for and responds to input uncertainty. Initial neurobiological experiments implicated frontoparietal and hippocampal systems, based largely on paradigms that manipulated distributional features of visual stimuli. However, later work in the auditory domain pointed to different systems, whose activation profiles have interesting implications for computational and neurobiological models of statistical learning (SL). This review begins by briefly recapping the historical development of ideas pertaining to the sensitivity to uncertainty in temporally unfolding inputs. It then discusses several issues at the interface of studies of uncertainty and SL. Following, it presents several current treatments of the neurobiology of uncertainty and reviews recent findings that point to principles that serve as important constraints on future neurobiological theories of uncertainty, and relatedly, SL. This review suggests it may be useful to establish closer links between neurobiological research on uncertainty and SL, considering particularly mechanisms sensitive to local and global structure in inputs, the degree of input uncertainty, the complexity of the system generating the input, learning mechanisms that operate on different temporal scales and the use of learnt information for online prediction.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  16. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    Science.gov (United States)

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  17. Realistic Avatar Eye and Head Animation Using a Neurobiological Model of Visual Attention

    National Research Council Canada - National Science Library

    Itti, L; Dhavale, N; Pighin, F

    2003-01-01

    We describe a neurobiological model of visual attention and eye/head movements in primates, and its application to the automatic animation of a realistic virtual human head watching an unconstrained...

  18. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.

    Science.gov (United States)

    Korf, Jakob

    2015-08-01

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.

  19. [Neither Descartes nor Freud? current pain models in psychosomatic medicine].

    Science.gov (United States)

    Egloff, N; Egle, U T; von Känel, R

    2008-05-14

    Models explaining chronic pain based on the mere presence or absence of peripheral somatic findings or which view pain of psychological origin when there is no somatic explanation, have their shortcomings. Current scientific knowledge calls for distinct pain concepts, which integrate neurobiological and neuropsychological aspects of pain processing.

  20. Mathematical models of blast induced TBI: current status, challenges and prospects

    Directory of Open Access Journals (Sweden)

    Raj K Gupta

    2013-05-01

    Full Text Available Blast induced traumatic brain injury (TBI has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast induced TBI, identify research gaps and recommend future developments. A brief overview of blast wave physics, injury biomechanics and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation and potential applications of the model for prevention and protection against blast wave TBI.

  1. Aspects of Piaget's cognitive developmental psychology and neurobiology of psychotic disorders - an integrative model.

    Science.gov (United States)

    Gebhardt, Stefan; Grant, Phillip; von Georgi, Richard; Huber, Martin T

    2008-09-01

    Psychological, neurobiological and neurodevelopmental approaches have frequently been used to provide pathogenic concepts on psychotic disorders. However, aspects of cognitive developmental psychology have hardly been considered in current models. Using a hypothesis-generating approach an integration of these concepts was conducted. According to Piaget (1896-1980), assimilation and accommodation as forms of maintenance and modification of cognitive schemata represent fundamental processes of the brain. In general, based on the perceived input stimuli, cognitive schemata are developed resulting in a conception of the world, the realistic validity and the actuality of which is still being controlled and modified by cognitive adjustment processes. In psychotic disorders, however, a disproportion of environmental demands and the ability to activate required neuronal adaptation processes occurs. We therefore hypothesize a failure of the adjustment of real and requested output patterns. As a consequence autonomous cognitive schemata are generated, which fail to adjust with reality resulting in psychotic symptomatology. Neurobiological, especially neuromodulatory and neuroplastic processes play a central role in these perceptive and cognitive processes. In conclusion, integration of cognitive developmental psychology into the existing pathogenic concepts of psychotic disorders leads to interesting insights into basic disease mechanisms and also guides future research in the cognitive neuroscience of such disorders.

  2. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    Science.gov (United States)

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2017-09-01

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment

    Directory of Open Access Journals (Sweden)

    Jillian Vinall

    2016-12-01

    Full Text Available Chronic pain during childhood and adolescence can lead to persistent pain problems and mental health disorders into adulthood. Posttraumatic stress disorders and depressive and anxiety disorders are mental health conditions that co-occur at high rates in both adolescent and adult samples, and are linked to heightened impairment and disability. Comorbid chronic pain and psychopathology has been explained by the presence of shared neurobiology and mutually maintaining cognitive-affective and behavioral factors that lead to the development and/or maintenance of both conditions. Particularly within the pediatric chronic pain population, these factors are embedded within the broader context of the parent–child relationship. In this review, we will explore the epidemiology of, and current working models explaining, these comorbidities. Particular emphasis will be made on shared neurobiological mechanisms, given that the majority of previous research to date has centered on cognitive, affective, and behavioral mechanisms. Parental contributions to co-occurring chronic pain and psychopathology in childhood and adolescence will be discussed. Moreover, we will review current treatment recommendations and future directions for both research and practice. We argue that the integration of biological and behavioral approaches will be critical to sufficiently address why these comorbidities exist and how they can best be targeted in treatment.

  4. A Biometric for Neurobiology of Influence with Social Informatics Using Game Theory

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2013-04-01

    Full Text Available This paper is constructed on the premise that human belief dependent emotions can be triggered by story-telling or narratives. With recent technological advancements to measure neurobiological measurements of the brain, such as functional magnetic resonance imaging (fMRI and non-invasive brain computing interface (BCI equipment, these technologies can allow for visualization and data collection of brain activation patterns showing unconsciously controlled responses to narratives or stories. Current game theory application to belief networks has been modeled to help explain observed behavior when material payoffs of others matters to the individual. We discuss a method of how game theory, utilizing communication packet theory, can now be modeled to belief dependent emotions and intentions measured through a new biometric tool correlating neurobiological emotional states and responses.

  5. A Biometric for Neurobiology of Influence with Social Informatics Using Game Theory

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2013-12-01

    Full Text Available This paper is constructed on the premise that human belief dependent emotions can be triggered by story-telling or narratives. With recent technological advancements to measure neurobiological measurements of the brain, such as functional magnetic resonance imaging (fMRI and non-invasive brain computing interface (BCI equipment, these technologies can allow for visualization and data collection of brain activation patterns showing unconsciously controlled responses to narratives or stories. Current game theory application to belief networks has been modeled to help explain observed behavior when material payoffs of others matters to the individual. We discuss a method of how game theory, utilizing communication packet theory, can now be modeled to belief dependent emotions and intentions measured through a new biometric tool correlating neurobiological emotional states and responses.

  6. Modulation of early stress-induced neurobiological changes: a review of behavioural and pharmacological interventions in animal models.

    Science.gov (United States)

    Harrison, E L; Baune, B T

    2014-05-13

    Childhood adversity alters the predisposition to psychiatric disorders later in life. Those with psychiatric conditions and a history of early adversity exhibit a higher incidence of treatment resistance compared with individuals with no such history. Modulation of the influence early stress exerts over neurobiology may help to prevent the development of psychiatric disorders in some cases, while attenuating the extent of treatment resistance in those with established psychiatric disorders. This review aims to critically evaluate the ability of behavioural, environmental and pharmacologic interventions to modulate neurobiological changes induced by early stress in animal models. Databases were systematically searched to locate literature relevant to this review. Early adversity was defined as stress that resulted from manipulation of the mother-infant relationship. Analysis was restricted to animal models to enable characterisation of how a given intervention altered specific neurobiological changes induced by early stress. A wide variety of changes in neurobiology due to early stress are amenable to intervention. Behavioural interventions in childhood, exercise in adolescence and administration of epigenetic-modifying drugs throughout life appear to best modulate cellar and behavioural alterations induced by childhood adversity. Other pharmacotherapies, such as endocannabinoid system modulators, anti-inflammatories and antidepressants can also influence these neurobiological and behavioural changes that result from early stress, although findings are less consistent at present and require further investigation. Further work is required to examine the influence that behavioural interventions, exercise and epigenetic-modifying drugs exert over alterations that occur following childhood stress in human studies, before possible translational into clinical practice is possible.

  7. Obsessive-Compulsive Homeland Security: Insights from the Neurobiological Security Motivation System

    Science.gov (United States)

    2018-03-01

    HOMELAND SECURITY: INSIGHTS FROM THE NEUROBIOLOGICAL SECURITY MOTIVATION SYSTEM by Marissa D. Madrigal March 2018 Thesis Advisor...FROM THE NEUROBIOLOGICAL SECURITY MOTIVATION SYSTEM 5. FUNDING NUMBERS 6. AUTHOR(S) Marissa D. Madrigal 7. PERFORMING ORGANIZATION NAME(S) AND...how activation of the neurobiological security- motivation system can lead to securitization in response to a security speech act. It explores the model

  8. Controlling legs for locomotion-insights from robotics and neurobiology.

    Science.gov (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar

    2015-06-29

    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  9. The neurobiology of syntax: beyond string sets

    Science.gov (United States)

    Petersson, Karl Magnus; Hagoort, Peter

    2012-01-01

    The human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty. PMID:22688633

  10. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder

    Science.gov (United States)

    Gilpin, N. W.; Weiner, J. L.

    2016-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact. PMID:27749004

  11. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder.

    Science.gov (United States)

    Gilpin, N W; Weiner, J L

    2017-01-01

    Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Bridging the divide between neuroprosthetic design, tissue engineering and neurobiology

    Directory of Open Access Journals (Sweden)

    Jennie Leach

    2010-02-01

    Full Text Available Neuroprosthetic devices have made a major impact in the treatment of a variety of disorders such as paralysis and stroke. However, a major impediment in the advancement of this technology is the challenge of maintaining device performance during chronic implantation (months to years due to complex intrinsic host responses such as gliosis or glial scarring. The objective of this review is to bring together research communities in neurobiology, tissue engineering, and neuroprosthetics to address the major obstacles encountered in the translation of neuroprosthetics technology into long-term clinical use. This article draws connections between specific challenges faced by current neuroprosthetics technology and recent advances in the areas of nerve tissue engineering and neurobiology. Within the context of the device-nervous system interface and central nervous system (CNS implants, areas of synergistic opportunity are discussed, including platforms to present cells with multiple cues, controlled delivery of bioactive factors, three-dimensional constructs and in vitro models of gliosis and brain injury, nerve regeneration strategies, and neural stem/progenitor cell (NPC biology. Finally, recent insights gained from the fields of developmental neurobiology and cancer biology are discussed as examples of exciting new biological knowledge that may provide fresh inspiration towards novel technologies to address the complexities associated with long-term neuroprosthetic device performance.

  13. [Recent progress in neurobiological mechanisms of depression].

    Science.gov (United States)

    Gao, Yu-Bo; Li, Liang-Ping; Zhu, Xin-Hong; Gao, Tian-Ming

    2012-08-25

    Revealing the neurobiological mechanism of depression has always been a big challenge in the field of neuroscience. Not only are depressive syndromes heterogeneous and their aetiologies diverse, but also some symptoms are impossible to reproduce in animal models. Nevertheless, great progress has been made on the understanding and treatment of depression in recent years. In this review, we focus on key leading hypotheses in the neurobiological mechanism of depression, examine their strengths and weaknesses critically, and also highlight new insights that promise to extend the understanding of depression and its treatment.

  14. An interoceptive model of bulimia nervosa: A neurobiological systematic review.

    Science.gov (United States)

    Klabunde, Megan; Collado, Danielle; Bohon, Cara

    2017-11-01

    The objective of our study was to examine the neurobiological support for an interoceptive sensory processing model of bulimia nervosa (BN). To do so, we conducted a systematic review of interoceptive sensory processing in BN, using the PRISMA guidelines. We searched PsychInfo, Pubmed, and Web of Knowledge databases to identify biological and behavioral studies that examine interoceptive detection in BN. After screening 390 articles for inclusion and conducting a quality assessment of articles that met inclusion criteria, we reviewed 41 articles. We found that global interoceptive sensory processing deficits may be present in BN. Specifically there is evidence of abnormal brain function, structure and connectivity in the interoceptive neural network, in addition to gastric and pain processing disturbances. These results suggest that there may be a neurobiological basis for global interoceptive sensory processing deficits in BN that remain after recovery. Data from taste and heart beat detection studies were inconclusive; some studies suggest interoceptive disturbances in these sensory domains. Discrepancies in findings appear to be due to methodological differences. In conclusion, interoceptive sensory processing deficits may directly contribute to and explain a variety of symptoms present in those with BN. Further examination of interoceptive sensory processing deficits could inform the development of treatments for those with BN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Craving to quit: psychological models and neurobiological mechanisms of mindfulness training as treatment for addictions.

    Science.gov (United States)

    Brewer, Judson A; Elwafi, Hani M; Davis, Jake H

    2013-06-01

    Humans suffer heavily from substance use disorders and other addictions. Despite much effort that has been put into understanding the mechanisms of the addictive process, treatment strategies have remained suboptimal over the past several decades. Mindfulness training, which is based on ancient Buddhist models of human suffering, has recently shown preliminary efficacy in treating addictions. These early models show remarkable similarity to current models of the addictive process, especially in their overlap with operant conditioning (positive and negative reinforcement). Further, they may provide explanatory power for the mechanisms of mindfulness training, including its effects on core addictive elements, such as craving, and the underlying neurobiological processes that may be active therein. In this review, using smoking as an example, we will highlight similarities between ancient and modern views of the addictive process, review studies of mindfulness training for addictions and their effects on craving and other components of this process, and discuss recent neuroimaging findings that may inform our understanding of the neural mechanisms of mindfulness training. 2013 APA, all rights reserved

  16. [Neurobiology of Tourette Syndrome].

    Science.gov (United States)

    Ünal, Dilek; Akdemir, Devrim

    2016-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder characterized by chronic motor and vocal tics. Although it is a common disorder in childhood, the etiology of Tourette Syndrome has not been fully elucidated yet. Studies, -conducted so far- have revealed differences in neurobiological structures of individuals who suffer from Tourette Syndrome. The objective of this review is to assess etiological and pathophysiological studies in the Tourette Syndrome literature. An electronical search was conducted in PubMed database using the keywords tic disorders, Tourette Syndrome, neurobiology, genetics, neuroimaging and animal models. Research and review studies published between 1985 and 2015, with a selection preference towards recent publications, were reviewed. According to the studies, genetic predisposition hypothesis is considered as a priority. However, a precise genetic disorder associated with Tourette Syndrome has not been found. The evidence from postmortem and neuroimaging studies in heterogenous patient groups and animal studies supports the pathological involvement of cortico-striato-thalamo-cortical (CSTC) circuits in Tourette Syndrome. Consequently, the most emphasized hypothesis in the pathophysiology is the dopaminergic dysfunction in these circuits. Furthermore, these findings of the animal, postmortem and neuroimaging studies have confirmed the neurodevelopmental hypothesis of Tourette Syndrome. In conclusion, more studies are needed to understand the etiology of the disorder. The data obtained from neurobiological studies of the disorder will not only shed light on the way of Tourette Syndrome, but also guide studies on its treatment options.

  17. The neurobiology of the emotional adolescent: From the inside out

    Science.gov (United States)

    Guyer, Amanda E.; Silk, Jennifer S.; Nelson, Eric E.

    2016-01-01

    Adolescents are commonly portrayed as highly emotional, with their behaviors often hijacked by their emotions. Research on the neural substrates of adolescent affective behavior is beginning to paint a more nuanced picture of how neurodevelopmental changes in brain function influence affective behavior, and how these influences are modulated by external factors in the environment. Recent neurodevelopmental models suggest that the brain is designed to promote emotion regulation, learning, and affiliation across development, and that affective behavior reciprocally interacts with age-specific social demands and different social contexts. In this review, we discuss current findings on neurobiological mechanisms of adolescents’ affective behavior and highlight individual differences in and social-contextual influences on adolescents’ emotionality. Neurobiological mechanisms of affective processes related to anxiety and depression are also discussed as examples. As the field progresses, it will be critical to test new hypotheses generated from the foundational empirical and conceptual work and to focus on identifying more precisely how and when neural networks change in ways that promote or thwart adaptive affective behavior during adolescence. PMID:27506384

  18. The default mode network and recurrent depression: a neurobiological model of cognitive risk factors.

    Science.gov (United States)

    Marchetti, Igor; Koster, Ernst H W; Sonuga-Barke, Edmund J; De Raedt, Rudi

    2012-09-01

    A neurobiological account of cognitive vulnerability for recurrent depression is presented based on recent developments of resting state neural networks. We propose that alterations in the interplay between task positive (TP) and task negative (TN) elements of the Default Mode Network (DMN) act as a neurobiological risk factor for recurrent depression mediated by cognitive mechanisms. In the framework, depression is characterized by an imbalance between TN-TP components leading to an overpowering of TP by TN activity. The TN-TP imbalance is associated with a dysfunctional internally-focused cognitive style as well as a failure to attenuate TN activity in the transition from rest to task. Thus we propose the TN-TP imbalance as overarching neural mechanism involved in crucial cognitive risk factors for recurrent depression, namely rumination, impaired attentional control, and cognitive reactivity. During remission the TN-TP imbalance persists predisposing to vulnerability of recurrent depression. Empirical data to support this model is reviewed. Finally, we specify how this framework can guide future research efforts.

  19. Neurobiological Correlates in Internet Gaming Disorder: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Daria J. Kuss

    2018-05-01

    Full Text Available Internet Gaming Disorder (IGD is a potential mental disorder currently included in the third section of the latest (fifth edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5 as a condition that requires additional research to be included in the main manual. Although research efforts in the area have increased, there is a continuing debate about the respective criteria to use as well as the status of the condition as mental health concern. Rather than using diagnostic criteria which are based on subjective symptom experience, the National Institute of Mental Health advocates the use of Research Domain Criteria (RDoC which may support classifying mental disorders based on dimensions of observable behavior and neurobiological measures because mental disorders are viewed as biological disorders that involve brain circuits that implicate specific domains of cognition, emotion, and behavior. Consequently, IGD should be classified on its underlying neurobiology, as well as its subjective symptom experience. Therefore, the aim of this paper is to review the neurobiological correlates involved in IGD based on the current literature base. Altogether, 853 studies on the neurobiological correlates were identified on ProQuest (in the following scholarly databases: ProQuest Psychology Journals, PsycARTICLES, PsycINFO, Applied Social Sciences Index and Abstracts, and ERIC and on MEDLINE, with the application of the exclusion criteria resulting in reviewing a total of 27 studies, using fMRI, rsfMRI, VBM, PET, and EEG methods. The results indicate there are significant neurobiological differences between healthy controls and individuals with IGD. The included studies suggest that compared to healthy controls, gaming addicts have poorer response-inhibition and emotion regulation, impaired prefrontal cortex (PFC functioning and cognitive control, poorer working memory and decision-making capabilities, decreased visual and auditory

  20. Neurobiological Correlates in Internet Gaming Disorder: A Systematic Literature Review

    Science.gov (United States)

    Kuss, Daria J.; Pontes, Halley M.; Griffiths, Mark D.

    2018-01-01

    Internet Gaming Disorder (IGD) is a potential mental disorder currently included in the third section of the latest (fifth) edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) as a condition that requires additional research to be included in the main manual. Although research efforts in the area have increased, there is a continuing debate about the respective criteria to use as well as the status of the condition as mental health concern. Rather than using diagnostic criteria which are based on subjective symptom experience, the National Institute of Mental Health advocates the use of Research Domain Criteria (RDoC) which may support classifying mental disorders based on dimensions of observable behavior and neurobiological measures because mental disorders are viewed as biological disorders that involve brain circuits that implicate specific domains of cognition, emotion, and behavior. Consequently, IGD should be classified on its underlying neurobiology, as well as its subjective symptom experience. Therefore, the aim of this paper is to review the neurobiological correlates involved in IGD based on the current literature base. Altogether, 853 studies on the neurobiological correlates were identified on ProQuest (in the following scholarly databases: ProQuest Psychology Journals, PsycARTICLES, PsycINFO, Applied Social Sciences Index and Abstracts, and ERIC) and on MEDLINE, with the application of the exclusion criteria resulting in reviewing a total of 27 studies, using fMRI, rsfMRI, VBM, PET, and EEG methods. The results indicate there are significant neurobiological differences between healthy controls and individuals with IGD. The included studies suggest that compared to healthy controls, gaming addicts have poorer response-inhibition and emotion regulation, impaired prefrontal cortex (PFC) functioning and cognitive control, poorer working memory and decision-making capabilities, decreased visual and auditory functioning, and a

  1. Neurobiological correlates of internet gaming disorder: Similarities to pathological gambling.

    Science.gov (United States)

    Fauth-Bühler, M; Mann, K

    2017-01-01

    The number of massively multiplayer online games (MMOs) is on the rise worldwide along with the fascination that they inspire. Problems occur when the use of MMOs becomes excessive at the expense of other life domains. Although not yet formally included as disorder in common diagnostic systems, internet gaming disorder (IGD) is considered a "condition for further study" in section III of the DSM-5. The current review aims to provide an overview of cognitive and neurobiological data currently available on IGD, with a particular focus on impulsivity, compulsivity, and sensitivity to reward and punishment. Additionally, we also compare these findings on IGD with data from studies on pathological gambling (PG)-so far the only condition officially classified as a behavioral addiction in the DSM-5. Multiple similarities have been observed in the neurobiology of IGD and PG, as measured by alterations in brain function and behavior. Both patients with IGD and those with PG exhibited decreased loss sensitivity; enhanced reactivity to gaming and gambling cues, respectively; enhanced impulsive choice behavior; aberrant reward-based learning; and no changes in cognitive flexibility. In conclusion, the evidence base on the neurobiology of gaming and gambling disorders is beginning to illuminate the similarities between the two. However, as only a few studies have addressed the neurobiological basis of IGD, and some of these studies suffer from significant limitations, more research is required before IGD's inclusion as a second behavioral addiction in the next versions of the ICD and DSM can be justified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Neglected but Exciting Concepts in Developmental and Neurobiological Psychology

    Science.gov (United States)

    Jordan, Evan M.; Thomas, David G.

    2017-01-01

    This review provides an evaluative overview of five concepts specific to developmental and neurobiological psychology that are found to be largely overlooked in current textbooks. A sample of 19 introductory psychology texts was surveyed to develop a list, including glial cell signaling, grandmother cells, memory reconsolidation, brain plasticity,…

  3. Neurobiological linkage between stress and sleep

    Science.gov (United States)

    Sanford, Larry D.; Wellman, Laurie L.

    2012-10-01

    Stress can have a significant negative impact on health and stress-induced alterations in sleep are implicated in both human sleep disorders and in psychiatric disorders in which sleep is affected. We have demonstrated that the amygdala, a region critical for regulating emotion, is a key modulator of sleep. Our current research is focused on understanding how the amygdala and stressful emotion affect sleep and on the role sleep plays in recovery from stress. We have implemented animal models to examine the how stress and stress-related memories impact sleep. Experiencing uncontrollable stress and reminders of uncontrollable stress can produce significant reductions in sleep, in particular rapid eye movement sleep. We are using these models to explore the neurobiology linking stress-related emotion and sleep. This research is relevant for sleep disorders such as insomnia and into mental disorders in which sleep is affected such as post-traumatic stress disorder (PTSD), which is typically characterized by a prominent sleep disturbance in the aftermath of exposure to a psychologically traumatic event.

  4. [Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].

    Science.gov (United States)

    Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz

    2018-06-01

    Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Animal Models of Post-Traumatic Stress Disorder and Recent Neurobiological Insights

    Science.gov (United States)

    Whitaker, Annie M.; Gilpin, Nicholas W.; Edwards, Scott

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to develop PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress- and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often observed combination of PTSD and co-morbid conditions such as alcohol use disorder (AUD). Future studies will continue to refine preclinical PTSD models in hopes of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders. PMID:25083568

  6. Humanization in newborn care: interpersonal relationships and their importance to the neurobiological organization

    Directory of Open Access Journals (Sweden)

    Saul Cypel

    2007-03-01

    Full Text Available Humanization in newborn care is an ever more emphasized proposalin maternity ward care, both in normal delivery conditions andespecially, when medical intercurrences (prematurity, infections, etc.occur in neonatal intensive care units. The relevance of this approachis based on the current understanding and valorization of the earlyinterpersonal relationships in the organization of the neurobiologicalfoundations to which more complex living and learning experienceswill successively add, building what is currently conceptualized asDevelopmental Neurobiology. The present paper has the objectiveof stressing these aspects, attempting to correlate them with thecorresponding neurobiological structures, stressing the fact thatthe early bonds established by the newborn will shape the neuronalcircuitry responsible for future behaviors and actions of this child.

  7. Imaging and Modeling Laboratory in Neurobiology and Oncology - IMNC. Activity report 2008-2012

    International Nuclear Information System (INIS)

    Charon, Yves; Arlaud, Nathalie; Mastrippolito, Roland

    2014-09-01

    The Imaging and Modeling Laboratory in Neurobiology and Oncology (IMNC) is an interdisciplinary unit shared between the Paris-Sud and Paris-Diderot universities and the National Institute of Nuclear and particle physics (IN2P3). Created in January 2006, the laboratory activities are structured around three main topics: the clinical and pre-clinical multi-modal imaging (optical and isotopic), the modeling of tumoral processes, and radiotherapy. This report presents the activities of the laboratory during the years 2008-2012: 1 - Forewords; 2 - Highlights; 3 - Research teams: Small animal imaging; Metabolism, imaging and olfaction; Surgery imaging in oncology; Quantification in molecular imaging; Modeling of biological systems; 4 - Technical innovations: Instrumentation, Scientific calculation, Biology department, valorisation and open-source softwares; 5 - Publications; 6 - Scientific life, communication and teaching activities; 7 - Laboratory operation; 8 - Perspectives

  8. Neurobiological Basis of Insight in Schizophrenia: A Systematic Review.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2016-01-01

    Insight in schizophrenia is defined as awareness into illness, symptoms, and need for treatment and has long been associated with cognition, other psychopathological symptoms, and several adverse clinical and functional outcomes. However, the biological basis of insight is not clearly understood. The aim of this systematic review was to critically evaluate and summarize advances in the study of the biological basis of insight in schizophrenia and to identify gaps in this knowledge. A literature search of PubMed, CINAHL, PsycINFO, and EMBASE databases was conducted using search terms to identify articles relevant to the biology of insight in schizophrenia published in the last 6 years. Articles that focused on etiology of insight in schizophrenia and those that examined the neurobiology of insight in schizophrenia or psychoses were chosen for analysis. Articles on insight in conditions other than schizophrenia or psychoses and which did not investigate the neurobiological underpinnings of insight were excluded from the review. Twenty-six articles met the inclusion criteria for this review. Of the 26 articles, 3 focused on cellular abnormalities and 23 were neuroimaging studies. Preliminary data identify the prefrontal cortex, cingulate cortex, and regions of the temporal and parietal lobe (precuneus, inferior parietal lobule) and hippocampus as the neural correlates of insight. A growing body of literature attests to the neurobiological basis of insight in schizophrenia. Current evidence supports the neurobiological basis of insight in schizophrenia and identifies specific neural correlates for insight types and its dimensions. Further studies that examine the precise biological mechanisms of insight are needed to apply this knowledge to effective clinical intervention development.

  9. The neurobiology of psychopathy: a neurodevelopmental perspective.

    Science.gov (United States)

    Gao, Yu; Glenn, Andrea L; Schug, Robert A; Yang, Yaling; Raine, Adrian

    2009-12-01

    We provide an overview of the neurobiological underpinnings of psychopathy. Cognitive and affective-emotional processing deficits are associated with abnormal brain structure and function, particularly the amygdala and orbitofrontal cortex. There is limited evidence of lower cortisol levels being associated with psychopathic personality. Initial developmental research is beginning to suggest that these neurobiological processes may have their origins early in life. Findings suggest that psychopathic personality may, in part, have a neurodevelopmental basis. Future longitudinal studies delineating neurobiological correlates of the analogues of interpersonal-affective and antisocial features of psychopathy in children are needed to further substantiate a neurodevelopmental hypothesis of psychopathy.

  10. Neurobiology of cognitive remediation therapy for schizophrenia: a systematic review.

    Science.gov (United States)

    Thorsen, Anders Lillevik; Johansson, Kyrre; Løberg, Else-Marie

    2014-01-01

    Cognitive impairment is an important aspect of schizophrenia, where cognitive remediation therapy (CRT) is a promising treatment for improving cognitive functioning. While neurobiological dysfunction in schizophrenia has been the target of much research, the neural substrate of cognitive remediation and recovery has not been thoroughly examined. The aim of the present article is to systematically review the evidence for neural changes after CRT for schizophrenia. The reviewed studies indicate that CRT affects several brain regions and circuits, including prefrontal, parietal, and limbic areas, both in terms of activity and structure. Changes in prefrontal areas are the most reported finding, fitting to previous evidence of dysfunction in this region. Two limitations of the current research are the few studies and the lack of knowledge on the mechanisms underlying neural and cognitive changes after treatment. Despite these limitations, the current evidence suggests that CRT is associated with both neurobiological and cognitive improvement. The evidence from these findings may shed light on both the neural substrate of cognitive impairment in schizophrenia, and how better treatment can be developed and applied.

  11. Neurobiological correlates of social functioning in autism.

    Science.gov (United States)

    Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael

    2010-08-01

    Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Toward integrating psyche and soma: psychoanalysis and neurobiology.

    Science.gov (United States)

    Flannery, J; Taylor, G

    1981-02-01

    The brain is the "key organ" for understanding mind/body/illness relationships. During the past two decades neurobiological research has generated a plethora of new data and concepts which have increased tremendously our knowledge of the functioning brain. As a result the psychoanalytic view of the relationship between mind and brain may seem at risk of becoming outmoded. Yet while psychoanalytic theory may no longer be wholly tenable, psychoanalysis continues to offer interesting and heuristically valuable isomorphic models of cortical function. On the other hand neurobiology provides a corrective influence on psychoanalytic concept-building, causing theory to be refined as it is tested against the results of research. One possible result of interdisciplinary cross-fertilization is that a revised theory of the function of dreams and fantasy may throw light on the vicissitudes of somatic experience, and the pathogenesis of psychophysiological disorder.

  13. [Neurobiological determinism: questionable inferences on human freedom of choice and forensic criminal responsibility].

    Science.gov (United States)

    Urbaniok, F; Hardegger, J; Rossegger, A; Endrass, J

    2006-08-01

    Several authors argue that criminal behavior is generally caused by neurobiological deficits. Based on this neurobiological perspective of assumed causality, the concept of free will is questioned, and the theory of neurobiological determinism of all human behavior is put forward, thus maintaining that human beings are not responsible for their actions, and consequently the principle of guilt should be given up in criminal law. In this context the controversial debate on determinism and indeterminism, which has been held for centuries, has flared up anew, especially within the science of criminal law. When critically examining the current state of research, it becomes apparent that the results do not support the existence of a universally valid neurobiological causality of criminal behavior, nor a theory of an absolute neurobiological determinism. Neither is complete determination of all phenomena in the universe--as maintained--the logical conclusion of the principle of causality, nor is it empirically confirmed. Analyzed methodically, it cannot be falsified, and thus, as a theory which cannot be empirically tested, it represents a dogma against which plausible objections can be made. The criticism of the concept of free will, and even more so of human accountability and criminal responsibility, is not put forward in a valid way. The principle of relative determinism--the evaluation of the degree of determinism of personality factors potentially reducing criminal responsibility, which includes concrete observations and analysis of behavior--thus remains a central and cogent approach to the assessment of criminal responsibility. To sum up, the theories proposed by some authors on the complete neurobiological determinism of human behavior, and the subsequent impossibility of individual responsibility and guilt, reveal both methodical misconception and a lack of empirical foundation.

  14. The neuropsychology and neurobiology of late-onset schizophrenia and very-late-onset schizophrenia-like psychosis : a critical review

    OpenAIRE

    Assche, Van, Lies; Morrens, Manuel; Luyten, Patrick; Ven, Van de, Luc; Vandenbulcke, Mathieu

    2017-01-01

    Abstract: OBJECTIVE: The current review discusses neuropsychological profiles and the longitudinal course of cognitive dysfunction in Late Onset Schizophrenia (LOS) and Very-late-onset schizophrenia-like psychosis (VLOSLP), and attempts to clarify its neurobiological underpinnings. METHOD: A systematic literature search resulted in 29 publications describing original research on the neuropsychology of LOS/VLOSLP and 46 studies focussing on neurobiology. RESULTS: Although mildly progressive co...

  15. Neurobiology of insomnia as measured with FMRI

    OpenAIRE

    Orff, Henry John

    2010-01-01

    Insomnia, the most common sleep disorder afflicting adults, is diagnostically characterized by a chronic complaint of difficulty sleeping at night and a report of consequent impairment in daytime functioning. Despite this diagnostic requirement and the relative prevalence of daytime distress in patients with insomnia, studies to date have shown only limited evidence of objective daytime impairment in this population. This investigation tested a neurobiological compensation model which attempt...

  16. Neurobiological factors as predictors of cognitive-behavioral therapy outcome in individuals with antisocial behavior: a review of the literature.

    Science.gov (United States)

    Cornet, Liza J M; de Kogel, Catharina H; Nijman, Henk L I; Raine, Adrian; van der Laan, Peter H

    2014-11-01

    This review focuses on the predictive value of neurobiological factors in relation to cognitive-behavioral therapy outcome among individuals with antisocial behavior. Ten relevant studies were found. Although the literature on this topic is scarce and diverse, it appears that specific neurobiological characteristics, such as physiological arousal levels, can predict treatment outcome. The predictive value of neurobiological factors is important as it could give more insight into the causes of variability in treatment outcome among individuals with antisocial behavior. Furthermore, results can contribute to improvement in current treatment selection procedures and to the development of alternative treatment options. © The Author(s) 2013.

  17. Atypical Neurotransmitters and the Neurobiology of Depression.

    Science.gov (United States)

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  18. Neurobiology and clinical implications of lucid dreaming

    OpenAIRE

    Mota-Rolim, Sérgio A.; Araujo, John F.

    2013-01-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversi...

  19. Stochastic modeling of neurobiological time series: Power, coherence, Granger causality, and separation of evoked responses from ongoing activity

    Science.gov (United States)

    Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou

    2006-06-01

    In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.

  20. Attachment, Neurobiology, and Mentalizing along the Psychosis Continuum.

    Science.gov (United States)

    Debbané, Martin; Salaminios, George; Luyten, Patrick; Badoud, Deborah; Armando, Marco; Solida Tozzi, Alessandra; Fonagy, Peter; Brent, Benjamin K

    2016-01-01

    In this review article, we outline the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA) axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioral studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

  1. Attachment, Neurobiology, and Mentalizing along the Psychosis Continuum

    Science.gov (United States)

    Debbané, Martin; Salaminios, George; Luyten, Patrick; Badoud, Deborah; Armando, Marco; Solida Tozzi, Alessandra; Fonagy, Peter; Brent, Benjamin K.

    2016-01-01

    In this review article, we outline the evidence linking attachment adversity to psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA) axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioral studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis. PMID:27597820

  2. Bridging the interval: theory and neurobiology of trace conditioning.

    Science.gov (United States)

    Raybuck, Jonathan D; Lattal, K Matthew

    2014-01-01

    An early finding in the behavioral analysis of learning was that conditioned responding weakens as the conditioned stimulus (CS) and unconditioned stimulus (US) are separated in time. This "trace" conditioning effect has been the focus of years of research in associative learning. Theoretical accounts of trace conditioning have focused on mechanisms that allow associative learning to occur across long intervals between the CS and US. These accounts have emphasized degraded contingency effects, timing mechanisms, and inhibitory learning. More recently, study of the neurobiology of trace conditioning has shown that even a short interval between the CS and US alters the circuitry recruited for learning. Here, we review some of the theoretical and neurobiological mechanisms underlying trace conditioning with an emphasis on recent studies of trace fear conditioning. Findings across many studies have implications not just for how we think about time and conditioning, but also for how we conceptualize fear conditioning in general, suggesting that circuitry beyond the usual suspects needs to be incorporated into current thinking about fear, learning, and anxiety. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Auditory object perception: A neurobiological model and prospective review.

    Science.gov (United States)

    Brefczynski-Lewis, Julie A; Lewis, James W

    2017-10-01

    Interaction with the world is a multisensory experience, but most of what is known about the neural correlates of perception comes from studying vision. Auditory inputs enter cortex with its own set of unique qualities, and leads to use in oral communication, speech, music, and the understanding of emotional and intentional states of others, all of which are central to the human experience. To better understand how the auditory system develops, recovers after injury, and how it may have transitioned in its functions over the course of hominin evolution, advances are needed in models of how the human brain is organized to process real-world natural sounds and "auditory objects". This review presents a simple fundamental neurobiological model of hearing perception at a category level that incorporates principles of bottom-up signal processing together with top-down constraints of grounded cognition theories of knowledge representation. Though mostly derived from human neuroimaging literature, this theoretical framework highlights rudimentary principles of real-world sound processing that may apply to most if not all mammalian species with hearing and acoustic communication abilities. The model encompasses three basic categories of sound-source: (1) action sounds (non-vocalizations) produced by 'living things', with human (conspecific) and non-human animal sources representing two subcategories; (2) action sounds produced by 'non-living things', including environmental sources and human-made machinery; and (3) vocalizations ('living things'), with human versus non-human animals as two subcategories therein. The model is presented in the context of cognitive architectures relating to multisensory, sensory-motor, and spoken language organizations. The models' predictive values are further discussed in the context of anthropological theories of oral communication evolution and the neurodevelopment of spoken language proto-networks in infants/toddlers. These phylogenetic

  4. Tactile learning in rodents: Neurobiology and neuropharmacology.

    Science.gov (United States)

    Roohbakhsh, Ali; Shamsizadeh, Ali; Arababadi, Mohammad Kazemi; Ayoobi, Fateme; Fatemi, Iman; Allahtavakoli, Mohammad; Mohammad-Zadeh, Mohammad

    2016-02-15

    Animal models of learning and memory have been the subject of considerable research. Rodents such as mice and rats are nocturnal animals with poor vision, and their survival depends on their sense of touch. Recent reports have shown that whisker somatosensation is the main channel through which rodents collect and process environmental information. This review describes tactile learning in rodents from a neurobiological and neuropharmacological perspective, and how this is involved in memory-related processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Neurobiology of dysregulated motivational systems in drug addiction

    Science.gov (United States)

    Edwards, Scott; Koob, George F

    2010-01-01

    The progression from recreational drug use to drug addiction impacts multiple neurobiological processes and can be conceptualized as a transition from positive to negative reinforcement mechanisms driving both drug-taking and drug-seeking behaviors. Neurobiological mechanisms for negative reinforcement, defined as drug taking that alleviates a negative emotional state, involve changes in the brain reward system and recruitment of brain stress (or antireward) systems within forebrain structures, including the extended amygdala. These systems are hypothesized to be dysregulated by excessive drug intake and to contribute to allostatic changes in reinforcement mechanisms associated with addiction. Points of intersection between positive and negative motivational circuitry may further drive the compulsivity of drug addiction but also provide a rich neurobiological substrate for therapeutic intervention. PMID:20563312

  6. [BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF): NEUROBIOLOGY AND MARKER VALUE IN NEUROPSYCHIATRY].

    Science.gov (United States)

    Levada, O A; Cherednichenko, N V

    2015-01-01

    In this review current publications about neurobiology and marker value of brain derived neurotrophic factor (BDNF) in neuropsychiatry are analyzed. It is shown that BDNF is an important member of the family of neurotrophins which widely represented in various structures of the CNS. In prenatal period BDNF is involved in all stages of neuronal networks formation, and in the postnatal period its main role is maintaining the normal brain architectonics, involvement in the processes of neurogenesis and realization of neuroprotective functions. BDNF plays an important role in learning and memory organization, food and motor behavior. BDNF brain expression decreases with age, as well as in degenerative and vascular dementias, affective, anxiety, and behavioral disorders. The reducing of BDNF serum, level reflects the decreasing of its cerebral expression and could be used as a neurobiological marker of these pathological processes but the rising of its concentration could indicate the therapy effectiveness.

  7. Addicted to palatable foods: comparing the neurobiology of Bulimia Nervosa to that of drug addiction.

    Science.gov (United States)

    Hadad, Natalie A; Knackstedt, Lori A

    2014-05-01

    Bulimia nervosa (BN) is highly comorbid with substance abuse and shares common phenotypic and genetic predispositions with drug addiction. Although treatments for the two disorders are similar, controversy remains about whether BN should be classified as addiction. Here, we review the animal and human literature with the goal of assessing whether BN and drug addiction share a common neurobiology. Similar neurobiological features are present following administration of drugs and bingeing on palatable food, especially sugar. Specifically, both disorders involve increases in extracellular dopamine (DA), D1 binding, D3 messenger RNA (mRNA), and ΔFosB in the nucleus accumbens (NAc). Animal models of BN reveal increases in ventral tegmental area (VTA) DA and enzymes involved in DA synthesis that resemble changes observed after exposure to addictive drugs. Additionally, alterations in the expression of glutamate receptors and prefrontal cortex activity present in human BN or following sugar bingeing in animals are comparable to the effects of addictive drugs. The two disorders differ in regards to alterations in NAc D2 binding, VTA DAT mRNA expression, and the efficacy of drugs targeting glutamate to treat these disorders. Although additional empirical studies are necessary, the synthesis of the two bodies of research presented here suggests that BN shares many neurobiological features with drug addiction. While few Food and Drug Administration-approved options currently exist for the treatment of drug addiction, pharmacotherapies developed in the future, which target the glutamate, DA, and opioid systems, may be beneficial for the treatment of both BN and drug addiction.

  8. Diterpenes: Advances in Neurobiological Drug Research.

    Science.gov (United States)

    Islam, Md Torequl; da Silva, Claucenira Bandeira; de Alencar, Marcus Vinícius Oliveira Barros; Paz, Márcia Fernanda Correia Jardim; Almeida, Fernanda Regina de Castro; Melo-Cavalcante, Ana Amélia de Carvalho

    2016-06-01

    A significant number of studies have been performed with diterpene effect on the brain. Our study aims to make a systematic revision on them. The initial purpose of this review was to screen diterpenes with neurological activity, in particular those that have already been studied and published in different journals (databases until August 2015). The second purpose was to make an action-wise discussion as results viewed on them by taking into drug discovery and development account. Diterpenes considered in this review were selected on the basis of updated information on them and having sufficient information on their screenings. We identified several examples of diterpenes having an interest in further study. We have included the possible sources of them as observed in evidence, their known molecular neurobiological mechanisms, and the active constituents responsible for such activities with the doses and test systems. Results suggest diterpenes to have neurobiological activities like neuro-protection, anti-epileptic, anxiolytic, anti-Alzheimer's disease, anti-Parkinson's disease, anti-cerebral ischemia, anti-neuropathic pain, anti-neuro-inflammatory, and many more. In conclusion, diterpenes may be the prominent candidates in neurobiological drug research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. [The neurobiology of antisocial behaviour].

    Science.gov (United States)

    Loomans, M M; Tulen, J H M; van Marle, H J C

    2010-01-01

    Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.

  10. Attachment, neurobiology, and mentalizing along the psychosis continuum

    Directory of Open Access Journals (Sweden)

    Martin Debbané

    2016-08-01

    Full Text Available In this review article, we outline the evidence linking attachment adversity to the psychosis, from the premorbid stages of the disorder to its clinical forms. To better understand the neurobiological mechanisms through which insecure attachment may contribute to psychosis, we identify at least five neurobiological pathways linking attachment to risk for developing psychosis. Besides its well documented influence on the hypothalamic-pituary-adrenal (HPA axis, insecure attachment may also contribute to neurodevelopmental risk through the dopaminergic and oxytonergic systems, as well as bear influence on neuroinflammation and oxidative stress responses. We further consider the neuroscientific and behavioural studies that underpin mentalization as a suite of processes potentially moderating the risk to transition to psychotic disorders. In particular, mentalization may help the individual compensate for endophenotypical impairments in the integration of sensory and metacognitive information. We propose a model where embodied mentalization would lie at the core of a protective, resilience response mitigating the adverse and potentially pathological influence of the neurodevelopmental cascade of risk for psychosis.

  11. Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction

    Directory of Open Access Journals (Sweden)

    Bianca Jupp

    2013-03-01

    Full Text Available Impulsivity describes the tendency of an individual to act prematurely without foresight and is associated with a number of neuropsychiatric co-morbidities, including drug addiction. As such, there is increasing interest in the neurobiological mechanisms of impulsivity, as well as the genetic and environmental influences that govern the expression of this behaviour. Tests used on rodent models of impulsivity share strong parallels with tasks used to assess this trait in humans, and studies in both suggest a crucial role of monoaminergic corticostriatal systems in the expression of this behavioural trait. Furthermore, rodent models have enabled investigation of the causal relationship between drug abuse and impulsivity. Here, we review the use of rodent models of impulsivity for investigating the mechanisms involved in this trait, and how these mechanisms could contribute to the pathogenesis of addiction.

  12. Aggression and anxiety: social context and neurobiological links

    Directory of Open Access Journals (Sweden)

    Inga D Neumann

    2010-03-01

    Full Text Available Psychopathologies such as anxiety- and depression-related disorders are often characterized by impaired social behaviours including excessive aggression and violence. Excessive aggression and violence likely develop as a consequence of generally disturbed emotional regulation, such as abnormally high or low levels of anxiety. This suggests an overlap between brain circuitries and neurochemical systems regulating aggression and anxiety. In this review, we will discuss different forms of male aggression, rodent models of excessive aggression, and neurobiological mechanisms underlying male aggression in the context of anxiety. We will summarize our attempts to establish an animal model of high and abnormal aggression using rats selected for high (HAB versus low (LAB anxiety-related behaviour. Briefly, male LAB rats and, to a lesser extent, male HAB rats show high and abnormal forms of aggression compared with non-selected (NAB rats, making them a suitable animal model for studying excessive aggression in the context of extremes in innate anxiety. In addition, we will discuss differences in the activity of the hypothalamic-pituitary-adrenal axis, brain arginine vasopressin, and the serotonin systems, among others, which contribute to the distinct behavioural phenotypes related to aggression and anxiety. Further investigation of the neurobiological systems in animals with distinct anxiety phenotypes might provide valuable information about the link between excessive aggression and disturbed emotional regulation, which is essential for understanding the social and emotional deficits that are characteristic of many human psychiatric disorders.

  13. Using the Activity-based Anorexia Rodent Model to Study the Neurobiological Basis of Anorexia Nervosa.

    Science.gov (United States)

    Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye

    2015-10-22

    Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.

  14. Neurobiological Substrates of Tourette's Disorder

    NARCIS (Netherlands)

    Leckman, James F.; Bloch, Michael H.; Smith, Megan E.; Larabi, Daouia; Hampson, Michelle

    Objective: This article reviews the available scientific literature concerning the neurobiological substrates of Tourette's disorder (TD). Methods: The electronic databases of PubMed, ScienceDirect, and PsycINFO were searched for relevant studies using relevant search terms. Results:

  15. “Love” Phenomenon and Neurobiology of Love Relations

    Directory of Open Access Journals (Sweden)

    Ali Evren Tufan

    2010-01-01

    Full Text Available The biology; especially the neurobiological features of the “love” phenomenon has recently started to attract attention. Love relations and attachment, which is closely related with them, are known to be important in health and disease. Love and love relations are found to be complex neurobiological phenomena based on activation of the limbic system of the brain. Those processes involve oxytocin, vasopressin, dopamine and serotonergic functions. Additionally, endorphine and endogenous opiate systems as well as nitrous oxide play role in those processes. The stages of love and love relations may demonstrate different neurochemical and neurophysiological features and may partially overlap with m aternal, romantic and sexual love and attachments. The aim of this article is to evaluate the common neurobiological pathways underlying the “love” phenomenon as well as their importance in medicine and health.

  16. Dynamically stable associative learning: a neurobiologically based ANN and its applications

    Science.gov (United States)

    Vogl, Thomas P.; Blackwell, Kim L.; Barbour, Garth; Alkon, Daniel L.

    1992-07-01

    Most currently popular artificial neural networks (ANN) are based on conceptions of neuronal properties that date back to the 1940s and 50s, i.e., to the ideas of McCullough, Pitts, and Hebb. Dystal is an ANN based on current knowledge of neurobiology at the cellular and subcellular level. Networks based on these neurobiological insights exhibit the following advantageous properties: (1) A theoretical storage capacity of bN non-orthogonal memories, where N is the number of output neurons sharing common inputs and b is the number of distinguishable (gray shade) levels. (2) The ability to learn, store, and recall associations among noisy, arbitrary patterns. (3) A local synaptic learning rule (learning depends neither on the output of the post-synaptic neuron nor on a global error term), some of whose consequences are: (4) Feed-forward, lateral, and feed-back connections (as well as time-sensitive connections) are possible without alteration of the learning algorithm; (5) Storage allocation (patch creation) proceeds dynamically as associations are learned (self- organizing); (6) The number of training set presentations required for learning is small (different expressions and/or corrupted by noise, and on reading hand-written digits (98% accuracy) and hand-printed Japanese Kanji (90% accuracy) is demonstrated.

  17. Neurobiological and Memory Models of Risky Decision Making in Adolescents versus Young Adults

    Science.gov (United States)

    Reyna, Valerie F.; Estrada, Steven M.; DeMarinis, Jessica A.; Myers, Regina M.; Stanisz, Janine M.; Mills, Britain A.

    2011-01-01

    Predictions of fuzzy-trace theory and neurobiological approaches are examined regarding risk taking in a classic decision-making task--the framing task--as well as in the context of real-life risk taking. We report the 1st study of framing effects in adolescents versus adults, varying risk and reward, and relate choices to individual differences,…

  18. Love is more than just a kiss: a neurobiological perspective on love and affection.

    Science.gov (United States)

    de Boer, A; van Buel, E M; Ter Horst, G J

    2012-01-10

    Love, attachment, and truth of human monogamy have become important research themes in neuroscience. After the introduction of functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), neuroscientists have demonstrated increased interest in the neurobiology and neurochemistry of emotions, including love and affection. Neurobiologists have studied pair-bonding mechanisms in animal models of mate choice to elucidate neurochemical mechanisms underlying attachment and showed possible roles for oxytocin, vasopressin, and dopamine and their receptors in pair-bonding and monogamy. Unresolved is whether these substances are also critically involved in human attachment. The limited number of available imaging studies on love and affection is hampered by selection bias on gender, duration of a love affair, and cultural differences. Brain activity patterns associated with romantic love, shown with fMRI, overlapped with regions expressing oxytocin receptors in the animal models, but definite proof for a role of oxytocin in human attachment is still lacking. There is also evidence for a role of serotonin, cortisol, nerve growth factor, and testosterone in love and attachment. Changes in brain activity related to the various stages of a love affair, gender, and cultural differences are unresolved and will probably become important research themes in this field in the near future. In this review we give a resume of the current knowledge of the neurobiology of love and attachment and we discuss in brief the truth of human monogamy. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    Directory of Open Access Journals (Sweden)

    Kathleen Thomaes

    2016-03-01

    Full Text Available Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS. The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses.

  20. Plant neurobiology and green plant intelligence : science, metaphors and nonsense

    NARCIS (Netherlands)

    Struik, P.C.; Yin, X.; Meinke, H.B.

    2008-01-01

    This paper analyses the recent debates on the emerging science of plant neurobiology, which claims that the individual green plant should be considered as an intelligent organism. Plant neurobiology tries to use elements from animal physiology as elegant metaphors to trigger the imagination in

  1. [Conversion disorder : functional neuroimaging and neurobiological mechanisms].

    Science.gov (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G

    2017-04-01

    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.

  2. The neuropsychology and neurobiology of late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: A critical review.

    Science.gov (United States)

    Van Assche, Lies; Morrens, Manuel; Luyten, Patrick; Van de Ven, Luc; Vandenbulcke, Mathieu

    2017-12-01

    The current review discusses neuropsychological profiles and the longitudinal course of cognitive dysfunction in Late Onset Schizophrenia (LOS) and Very-late-onset schizophrenia-like psychosis (VLOSLP), and attempts to clarify its neurobiological underpinnings. A systematic literature search resulted in 29 publications describing original research on the neuropsychology of LOS/VLOSLP and 46 studies focussing on neurobiology. Although mildly progressive cognitive impairment is usually present, only a subgroup of LOS/VLOSLP develops dementia during a 10-year follow-up succeeding the onset of psychosis. This coincides with the absence of neuropathological evidence for neurodegeneration in many cases. Cognitive deterioration is characterized by deficits in (working) memory, language, psychomotor speed and executive functioning. Underlying neurobiological changes encompass white matter pathology, increased ventricle-to-brain ratio (VBR) with coinciding atrophy and hypo-metabolism of frontal, temporal and subcortical areas. Multiple changes in neurobiology and cognition contributing to LOS/VLOSLP may reflect stress-related accelerated brain aging rather than neurodegenerative pathology. Their involvement in the onset of illness, however, might be inversely proportional to pre-existing (psychosocial and/or genetic) vulnerability to psychosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The psychological development of panic disorder: implications for neurobiology and treatment.

    Science.gov (United States)

    Cosci, Fiammetta

    2012-06-01

    The aim of this study was to survey the available literature on psychological development of panic disorder with or without agoraphobia [PD(A)] and its relationship with the neurobiology and the treatment of panic. Both a computerized (PubMed) and a manual search of the literature were performed. Only English papers published in peer-reviewed journals and referring to PD(A) as defined by the diagnostic classifications of the American Psychiatric Association or of the World Health Organization were included. A staging model of panic exists and is applicable in clinical practice. In a substantial proportion of patients with PD(A), a prodromal phase and, despite successful treatment, residual symptoms can be identified. Both prodromes and residual symptoms allow the monitoring of disorder evolution during recovery via the rollback phenomenon. The different stages of the disorder, as well as the steps of the rollback, have a correspondence in the neurobiology and in the treatment of panic. However, the treatment implications of the longitudinal model of PD(A) are not endorsed, and adequate interventions of enduring effects are missing.

  4. Neurobiological findings related to Internet use disorders.

    Science.gov (United States)

    Park, Byeongsu; Han, Doug Hyun; Roh, Sungwon

    2017-07-01

    In the last 10 years, numerous neurobiological studies have been conducted on Internet addiction or Internet use disorder. Various neurobiological research methods - such as magnetic resonance imaging; nuclear imaging modalities, including positron emission tomography and single photon emission computed tomography; molecular genetics; and neurophysiologic methods - have made it possible to discover structural or functional impairments in the brains of individuals with Internet use disorder. Specifically, Internet use disorder is associated with structural or functional impairment in the orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate cortex, and posterior cingulate cortex. These regions are associated with the processing of reward, motivation, memory, and cognitive control. Early neurobiological research results in this area indicated that Internet use disorder shares many similarities with substance use disorders, including, to a certain extent, a shared pathophysiology. However, recent studies suggest that differences in biological and psychological markers exist between Internet use disorder and substance use disorders. Further research is required for a better understanding of the pathophysiology of Internet use disorder. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  5. Internet and Video Game Addictions: Diagnosis, Epidemiology, and Neurobiology.

    Science.gov (United States)

    Sussman, Clifford J; Harper, James M; Stahl, Jessica L; Weigle, Paul

    2018-04-01

    In the past 2 decades, there has been substantial increase in availability and use of digital technologies, including the Internet, computer games, smart phones, and social media. Behavioral addiction to use of technologies spawned a body of related research. The recent inclusion of Internet gaming disorder as a condition for further study in the DSM-V invigorated a new wave of researchers, thereby expanding our understanding of these conditions. This article reviews current research, theory, and practice regarding the diagnosis, epidemiology, and neurobiology of Internet and video game addictions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The neurobiology of individuality

    Science.gov (United States)

    de Bivort, Benjamin

    2015-03-01

    Individuals often display conspicuously different patterns of behavior, even when they are very closely related genetically. These differences give rise to our sense of individuality, but what is their molecular and neurobiological basis? Individuals that are nominally genetically identical differ at various molecular and neurobiological levels: cell-to-cell variation in somatic genomes, cell-to-cell variation in expression patterns, individual-to-individual variation in neuronal morphology and physiology, and individual-to-individual variation in patterns of brain activity. It is unknown which of these levels is fundamentally causal of behavioral differences. To investigate this problem, we use the fruit fly Drosophila melanogaster, whose genetic toolkit allows the manipulation of each of these mechanistic levels, and whose rapid lifecycle and small size allows for high-throughput automation of behavioral assays. This latter point is crucial; identifying inter-individual behavioral differences requires high sample sizes both within and across individual animals. Automated behavioral characterization is at the heart of our research strategy. In every behavior examined, individual flies have individual behavioral preferences, and we have begun to identify both neural genes and circuits that control the degree of behavioral variability between individuals.

  7. Neurobiological and neurocognitive effects of chronic cigarette smoking and alcoholism.

    Science.gov (United States)

    Durazzo, Timothy C; Meyerhoff, Dieter J

    2007-05-01

    Chronic cigarette smoking is associated with adverse effects on cardiac, pulmonary, and vascular function as well as the increased risk for various forms of cancer. However, little is known about the effects of chronic smoking on human brain function. Although smoking rates have decreased in the developed world, they remain high in individuals with alcohol use disorders (AUD) and other neuropsychiatric conditions. Despite the high prevalence of chronic smoking in AUD, few studies have addressed the potential neurobiological or neurocognitive consequences of chronic smoking in alcohol use disorders. Here, we review the the neurobiological and neurocognitive findings in both AUD and chronic cigarette smoking, followed by a review of the effects of comorbid cigarette smoking on neurobiology and neurocognition in AUD. Recent research suggests that comorbid chronic cigarette smoking modulates magnetic resonance-detectable brain injury and neurocognition in alcohol use disorders and adversely affects neurobiological and neurocognitive recovery in abstinent alcoholics.. Consideration of the potential separate and interactive effects of chronic smoking and alcohol use disorders may have significant implications for pharmacological and behavioral treatment interventions.

  8. Mental health: More than neurobiology

    NARCIS (Netherlands)

    Fried, E.; Tuerlinckx, F.; Borsboom, D.

    2014-01-01

    The decision by the US National Institute of Mental Health (NIMH) to fund only research into the neurobiological roots of mental disorders (Nature 507, 288; 2014) presumes that these all result from brain abnormalities. But this is not the case for many people with mental-health issues and we fear

  9. A debate on current eating disorder diagnoses in light of neurobiological findings: is it time for a spectrum model?

    Directory of Open Access Journals (Sweden)

    Brooks Samantha

    2012-07-01

    Full Text Available Abstract Background Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV. Instead they are diagnosed as ‘eating disorders not otherwise specified’ (EDNOS. Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a current issues in the classification of eating disorders in the DSM-IV, b changes proposed for DSM-V, c neuroimaging eating disorder research and d genetic eating disorder research. Summary We outline a novel evidence-based ‘impulse control’ spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V.

  10. A debate on current eating disorder diagnoses in light of neurobiological findings: is it time for a spectrum model?

    Science.gov (United States)

    2012-01-01

    Background Sixty percent of eating disorders do not meet criteria for anorexia- or bulimia nervosa, as defined by the Diagnostic and Statistical Manual version 4 (DSM-IV). Instead they are diagnosed as ‘eating disorders not otherwise specified’ (EDNOS). Discrepancies between criteria and clinical reality currently hampering eating disorder diagnoses in the DSM-IV will be addressed by the forthcoming DSM-V. However, future diagnoses for eating disorders will rely on current advances in the fields of neuroimaging and genetics for classification of symptoms that will ultimately improve treatment. Discussion Here we debate the classification issues, and discuss how brain imaging and genetic discoveries might be interwoven into a model of eating disorders to provide better classification and treatment. The debate concerns: a) current issues in the classification of eating disorders in the DSM-IV, b) changes proposed for DSM-V, c) neuroimaging eating disorder research and d) genetic eating disorder research. Summary We outline a novel evidence-based ‘impulse control’ spectrum model of eating disorders. A model of eating disorders is proposed that will aid future diagnosis of symptoms, coinciding with contemporary suggestions by clinicians and the proposed changes due to be published in the DSM-V. PMID:22770364

  11. Social ‘wanting’ dysfunction in autism: neurobiological underpinnings and treatment implications

    Directory of Open Access Journals (Sweden)

    Kohls Gregor

    2012-06-01

    Full Text Available Abstract Most behavioral training regimens in autism spectrum disorders (ASD rely on reward-based reinforcement strategies. Although proven to significantly increase both cognitive and social outcomes and successfully reduce aberrant behaviors, this approach fails to benefit a substantial number of affected individuals. Given the enormous amount of clinical and financial resources devoted to behavioral interventions, there is a surprisingly large gap in our knowledge of the basic reward mechanisms of learning in ASD. Understanding the mechanisms for reward responsiveness and reinforcement-based learning is urgently needed to better inform modifications that might improve current treatments. The fundamental goal of this review is to present a fine-grained literature analysis of reward function in ASD with reference to a validated neurobiological model of reward: the ‘wanting’/’liking’ framework. Despite some inconsistencies within the available literature, the evaluation across three converging sets of neurobiological data (neuroimaging, electrophysiological recordings, and neurochemical measures reveals good evidence for disrupted reward-seeking tendencies in ASD, particularly in social contexts. This is most likely caused by dysfunction of the dopaminergic–oxytocinergic ‘wanting’ circuitry, including the ventral striatum, amygdala, and ventromedial prefrontal cortex. Such a conclusion is consistent with predictions derived from diagnostic criteria concerning the core social phenotype of ASD, which emphasize difficulties with spontaneous self-initiated seeking of social encounters (that is, social motivation. Existing studies suggest that social ‘wanting’ tendencies vary considerably between individuals with ASD, and that the degree of social motivation is both malleable and predictive of intervention response. Although the topic of reward responsiveness in ASD is very new, with much research still needed, the current data

  12. Avoidant/Restrictive Food Intake Disorder: a Three-Dimensional Model of Neurobiology with Implications for Etiology and Treatment.

    Science.gov (United States)

    Thomas, Jennifer J; Lawson, Elizabeth A; Micali, Nadia; Misra, Madhusmita; Deckersbach, Thilo; Eddy, Kamryn T

    2017-08-01

    DSM-5 defined avoidant/restrictive food intake disorder (ARFID) as a failure to meet nutritional needs leading to low weight, nutritional deficiency, dependence on supplemental feedings, and/or psychosocial impairment. We summarize what is known about ARFID and introduce a three-dimensional model to inform research. Because ARFID prevalence, risk factors, and maintaining mechanisms are not known, prevailing treatment approaches are based on clinical experience rather than data. Furthermore, most ARFID research has focused on children, rather than adolescents or adults. We hypothesize a three-dimensional model wherein neurobiological abnormalities in sensory perception, homeostatic appetite, and negative valence systems underlie the three primary ARFID presentations of sensory sensitivity, lack of interest in eating, and fear of aversive consequences, respectively. Now that ARFID has been defined, studies investigating risk factors, prevalence, and pathophysiology are needed. Our model suggests testable hypotheses about etiology and highlights cognitive-behavioral therapy as one possible treatment.

  13. The Neurobiology of Swallowing and Dysphagia

    Science.gov (United States)

    Miller, Arthur J.

    2008-01-01

    The neurobiological study of swallowing and its dysfunction, defined as dysphagia, has evolved over two centuries beginning with electrical stimulation applied directly to the central nervous system, and then followed by systematic investigations that have used lesioning, transmagnetic stimulation, magnetoencephalography, and functional magnetic…

  14. The neurobiology of the human memory.

    Science.gov (United States)

    Fietta, Pierluigi; Fietta, Pieranna

    2011-01-01

    Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.

  15. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Joshi, Vibhuti; Mishra, Ribhav; Jana, Nihar Ranjan; Mishra, Amit

    2017-12-01

    Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Neurobiology of Methamphetamine Induced Psychosis

    Directory of Open Access Journals (Sweden)

    Jennifer Hsin-Wen Hsieh

    2014-07-01

    Full Text Available Chronic methamphetamine abuse commonly leads to psychosis, with positive and cognitive symptoms that are similar to those of schizophrenia. Methamphetamine induced psychosis (MAP can persist and diagnoses of MAP often change to a diagnosis of schizophrenia over time. Studies in schizophrenia have found much evidence of cortical GABAergic dysfunction. Methamphetamine psychosis is a well studied model for schizophrenia, however there is little research on the effects of methamphetamine on cortical GABAergic function in the model, and the neurobiology of MAP is unknown. This paper reviews the effects of methamphetamine on dopaminergic pathways, with focus on its ability to increase glutamate release in the cortex. Excess cortical glutamate would likely damage GABAergic interneurons, and evidence of this disturbance as a result of methamphetamine treatment will be discussed. We propose that cortical GABAergic interneurons are particularly vulnerable to glutamate overflow as a result of subcellular location of NMDA receptors on interneurons in the cortex. Damage to cortical GABAergic function would lead to dysregulation of cortical signals, resulting in psychosis, and further support methamphetamine induced psychosis as a model for schizophrenia.

  17. The dissociative subtype of posttraumatic stress disorder: rationale, clinical and neurobiological evidence, and implications.

    Science.gov (United States)

    Lanius, Ruth A; Brand, Bethany; Vermetten, Eric; Frewen, Paul A; Spiegel, David

    2012-08-01

    Clinical and neurobiological evidence for a dissociative subtype of posttraumatic stress disorder (PTSD) has recently been documented. A dissociative subtype of PTSD is being considered for inclusion in the forthcoming Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) to address the symptoms of depersonalization and derealization found among a subset of patients with PTSD. This article reviews research related to the dissociative subtype including antecedent, concurrent, and predictive validators as well as the rationale for recommending the dissociative subtype. The relevant literature pertaining to the dissociative subtype of PTSD was reviewed. Latent class analyses point toward a specific subtype of PTSD consisting of symptoms of depersonalization and derealization in both veteran and civilian samples of PTSD. Compared to individuals with PTSD, those with the dissociative subtype of PTSD also exhibit a different pattern of neurobiological response to symptom provocation as well as a differential response to current cognitive behavioral treatment designed for PTSD. We recommend that consideration be given to adding a dissociative subtype of PTSD in the revision of the DSM. This facilitates more accurate analysis of different phenotypes of PTSD, assist in treatment planning that is informed by considering the degree of patients' dissociativity, will improve treatment outcome, and will lead to much-needed research about the prevalence, symptomatology, neurobiology, and treatment of individuals with the dissociative subtype of PTSD. © 2012 Wiley Periodicals, Inc.

  18. Chronic Stress in Adolescents and Its Neurobiological and Psychopathological Consequences: An RDoC Perspective.

    Science.gov (United States)

    Sheth, Chandni; McGlade, Erin; Yurgelun-Todd, Deborah

    2017-01-01

    The Research Domain Criteria (RDoC) initiative provides a strategy for classifying psychopathology based on behavioral dimensions and neurobiological measures. Neurodevelopment is an orthogonal dimension in the current RDoC framework; however, it has not yet been fully incorporated into the RDoC approach. A combination of both a neurodevelopmental and RDoC approach offers a multidimensional perspective for understanding the emergence of psychopathology during development. Environmental influence (e.g., stress) has a profound impact on the risk for development of psychiatric illnesses. It has been shown that chronic stress interacts with the developing brain, producing significant changes in neural circuits that eventually increase the susceptibility for development of psychiatric disorders. This review highlights effects of chronic stress on the adolescent brain, as adolescence is a period characterized by a combination of significant brain alterations, high levels of stress, and emergence of psychopathology. The literature synthesized in this review suggests that chronic stress-induced changes in neurobiology and behavioral constructs underlie the shared vulnerability across a number of disorders in adolescence. The review particularly focuses on depression and substance use disorders; however, a similar argument can also be made for other psychopathologies, including anxiety disorders. The summarized findings underscore the need for a framework to integrate neurobiological findings from disparate psychiatric disorders and to target transdiagnostic mechanisms across disorders.

  19. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  20. A Molecular Neurobiological Approach to Understanding the Aetiology of Chronic Fatigue Syndrome (Myalgic Encephalomyelitis or Systemic Exertion Intolerance Disease) with Treatment Implications.

    Science.gov (United States)

    Monro, Jean A; Puri, Basant K

    2018-02-06

    Currently, a psychologically based model is widely held to be the basis for the aetiology and treatment of chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (ME)/systemic exertion intolerance disease (SEID). However, an alternative, molecular neurobiological approach is possible and in this paper evidence demonstrating a biological aetiology for CFS/ME/SEID is adduced from a study of the history of the disease and a consideration of the role of the following in this disease: nitric oxide and peroxynitrite, oxidative and nitrosative stress, the blood-brain barrier and intestinal permeability, cytokines and infections, metabolism, structural and chemical brain changes, neurophysiological changes and calcium ion mobilisation. Evidence is also detailed for biologically based potential therapeutic options, including: nutritional supplementation, for example in order to downregulate the nitric oxide-peroxynitrite cycle to prevent its perpetuation; antiviral therapy; and monoclonal antibody treatment. It is concluded that there is strong evidence of a molecular neurobiological aetiology, and so it is suggested that biologically based therapeutic interventions should constitute a focus for future research into CFS/ME/SEID.

  1. Neurobiology of rodent self-grooming and its value for translational neuroscience.

    Science.gov (United States)

    Kalueff, Allan V; Stewart, Adam Michael; Song, Cai; Berridge, Kent C; Graybiel, Ann M; Fentress, John C

    2016-01-01

    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders--including models of autism spectrum disorder and obsessive compulsive disorder--that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.

  2. The Neurobiology of Trust and Schooling

    Science.gov (United States)

    Sankey, Derek

    2018-01-01

    Are there neurobiological reasons why we are willing to trust other people and why "trust" and moral values such as "care" play a quite pivotal role in our social lives and the judgements we make, including our social interactions and judgements made in the context of schooling? In pursuing this question, this paper largely…

  3. Schizophrenia and bipolar disorder: The road from similarities and clinical heterogeneity to neurobiological types.

    Science.gov (United States)

    Dacquino, Claudia; De Rossi, Pietro; Spalletta, Gianfranco

    2015-09-20

    Although diagnosis is a central issue in medical care, in psychiatry its value is still controversial. The function of diagnosis is to indicate treatments and to help clinicians take better care of patients. The fundamental role of diagnosis is to predict outcome and prognosis. To date serious concern persists regarding the clinical utility and predictive validity of the diagnosis system in psychiatry, which is at the most syndromal. Schizophrenia and bipolar disorder, which nosologists consider two distinct disorders, are the most discussed psychiatric illnesses. Recent findings in different fields of psychiatric research, such as neuroimaging, neuropathology, neuroimmunology, neuropsychology and genetics, have led to other conceptualizations. Individuals with schizophrenia or bipolar disorder vary greatly with regard to symptoms, illness course, treatment response, cognitive and functional impairment and biological correlates. In fact, it is possible to find heterogeneous correlates even within the same syndrome, i.e., from one stage of the disorder to another. Thus, it is possible to identify different subsyndromes, which share some clinical and neurobiological characteristics. The main goal of modern psychiatry is to ovethrow these barriers and to obtain a better understanding of the biological profiles underlying heterogeneous clinical features and thus reduce the variance and lead to a homogeneous definition. The translational research model, which connects the basic neuroscience research field with clinical experience in psychiatry, aims to investigate different neurobiological features of syndromes and of the shared neurobiological features between two syndromes. In fact, this approach should help us to better understand the neurobiological pathways underlying clinical entities, and even to distinguish different, more homogeneous, diagnostic subtypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The neurobiological link between compassion and love

    Science.gov (United States)

    Esch, Tobias; Stefano, George B.

    2011-01-01

    Summary Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’. PMID:21358615

  5. Neurobiological basis of PTSD

    International Nuclear Information System (INIS)

    Yamasue, Hidenori; Kasai, Kiyoto

    2006-01-01

    This review describes posttraumatic stress disorder (PTSD) from the aspect that it is one of precious neurobiological models where the stress caused by an outer environmental factor affects the livings afterwards. Also described are the actual imaging investigations of PTSD in people encountered the sarin subway terrorism in Tokyo (1995). High resolution MRI has revealed the decreased volume of hippocampus in PTSD patients in recent years. In victims of the terrorism above, authors have found that the volume of anterior cingulate cortical (ACC) gray matter is reduced in voxel-based MRI morphometry and the reduction is well correlated with PTSD severity and lower P300 amplitude. PET and fMRI have shown the hyperactivity of amygdala and hypoactivity of medial prefrontal region around ACC in PTSD. Findings in conditioned animal studies have indicated the importance of ACC neuronal cell activation for fear extinction, where, in humans, fMRI has revealed the cooperation between amygdala and ACC. At present, genetic factors like serotonin transporter polymorphism, environmental ones at infantile stage and their interactive activity are subject to investigation and discussion. Imaging studies will contribute to the clinical diagnosis, treatment and intervention of PTSD. (T.I)

  6. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms

    Science.gov (United States)

    Singh, Amit; Kar, Sujita Kumar

    2017-01-01

    Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT. PMID:28783929

  7. Mathematical methods in biology and neurobiology

    CERN Document Server

    Jost, Jürgen

    2014-01-01

    Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

  8. [Neurobiological foundations underlying normal and disturbed sexuality].

    Science.gov (United States)

    Krüger, T H C; Kneer, J

    2017-05-01

    Sexual functions are regulated by hormonal and neurochemical factors as well as neuronal networks. An understanding of these basic principles is necessary for the diagnostics, counselling and treatment of sexual problems. Description of essential mechanisms of sexual function on a neurochemical and neuronal level. Literature search, selection and discussion of relevant studies. Analogous to the dual control model there are primary inhibitory (e. g. serotonin) and excitatory neurotransmitter systems (e.g. sex steroids and dopamine). Moreover, neuronal structures have been identified that are responsible for processing sexual stimuli. These networks are altered in subjects with sexual disorders or by pharmacological treatment, e. g. antiandrogens and selective serotonin reuptake inhibitors (SSRI) CONCLUSION: Knowledge of the neurobiology of sexuality forms the foundations for the treatment of sexual dysfunctions in psychiatry and other disciplines.

  9. Neurobiological roots of language in primate audition: common computational properties.

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L; Rauschecker, Josef P

    2015-03-01

    Here, we present a new perspective on an old question: how does the neurobiology of human language relate to brain systems in nonhuman primates? We argue that higher-order language combinatorics, including sentence and discourse processing, can be situated in a unified, cross-species dorsal-ventral streams architecture for higher auditory processing, and that the functions of the dorsal and ventral streams in higher-order language processing can be grounded in their respective computational properties in primate audition. This view challenges an assumption, common in the cognitive sciences, that a nonhuman primate model forms an inherently inadequate basis for modeling higher-level language functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Behavioral characteristics and neurobiological substrates shared by Pavlovian sign-tracking and drug abuse.

    Science.gov (United States)

    Tomie, Arthur; Grimes, Kathryn L; Pohorecky, Larissa A

    2008-06-01

    Drug abuse researchers have noted striking similarities between behaviors elicited by Pavlovian sign-tracking procedures and prominent symptoms of drug abuse. In Pavlovian sign-tracking procedures, repeated paired presentations of a small object (conditioned stimulus, CS) with a reward (unconditioned stimulus, US) elicits a conditioned response (CR) that typically consists of approaching the CS, contacting the CS, and expressing consummatory responses at the CS. Sign-tracking CR performance is poorly controlled and exhibits spontaneous recovery and long-term retention, effects that resemble relapse. Sign-tracking resembles psychomotor activation, a syndrome of behavioral responses evoked by addictive drugs, and the effects of sign-tracking on corticosterone levels and activation of dopamine pathways resemble the neurobiological effects of abused drugs. Finally, the neurobiological profile of individuals susceptible to sign-tracking resembles the pathophysiological profile of vulnerability to drug abuse, and vulnerability to sign-tracking predicts vulnerability to impulsive responding and alcohol self-administration. Implications of sign-tracking for models of drug addiction are considered.

  11. Unlock The Genıus Within:NEUROBIOLOGICAL TRAUMA, TEACHING, AND TRANSFORMATIVE LEARNING

    Directory of Open Access Journals (Sweden)

    Tojde

    2005-07-01

    , Teaching, and Transformative Learning "Readable, very informative. . . . The concepts put forth are applicable to today's students and their unique needs. . . . This book is a tool that will take them beyond trying to actually succeeding. As I read, I was conscious of an overwhelming feeling of 'I wish I had known that.' I can see this book revolutionizing education as we know it."—Judith M. Ireton, MEd., Anchorage School District, Anchorage Alaska (retired "Informative, educative, stimulating, and fun to read. . . . Recent scientific findings are introduced and explained in a language that I think is fairly accessible . . . especially fascinating and helpful to someone like myself, a language teacher who teaches language and at the same time studies it academically."—Yoichiro Hasebe, Language and Communication Department, Tokushima Bunri University, Japan "A welcome addition to current work on . . . effective learning. After his academic book, A Neurobiological Theory and Method of Language Acquisition, [Janik] now presents us with a text stripped of the medical, biological, linguistic, and educational jargon, highlighting the most compelling and important contemporary contributions to neurobiological learning . . . [and] its derivative, transformational learning."—Sofija Micic, PhD, associate professor of English at the University of Belgrade School of Medicine, Yugoslavia "To an informed language specialist, this book gives a lot to digest, a lot to enjoy, a lot to wonder about. Combining his expertise in medicine and in education, [Dan Janik] has pushed language education theory and practice a quantum leap ahead. . . . To an SLA researcher and an FL educanationalist, this fine and exquisite book tells a different story: something that has not yet been touched upon in the research literature. Simply, this book is thought-provoking, eye-opening, and immensely immersive. I will personally recommend it to all my language colleagues and to our future student teachers

  12. The Neurobiological Impact of Postpartum Maternal Depression: Prevention and Intervention Approaches.

    Science.gov (United States)

    Drury, Stacy S; Scaramella, Laura; Zeanah, Charles H

    2016-04-01

    The lasting negative impact of postpartum depression (PPD) on offspring is well established. PPD seems to have an impact on neurobiological pathways linked to socioemotional regulation, cognitive and executive function, and physiologic stress response systems. This review focus on examining the current state of research defining the effect of universal, selected, and indicated interventions for PPD on infant neurodevelopment. Given the established lasting, and potentially intergenerational, negative implications of maternal depression, enhanced efforts targeting increased identification and early intervention approaches for PPD that have an impact on health outcomes in both infants and mothers represent a critical public health concern. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Insomnia: psychological and neurobiological aspects and non-pharmacological treatments.

    Science.gov (United States)

    Molen, Yara Fleury; Carvalho, Luciane Bizari Coin; Prado, Lucila Bizari Fernandes do; Prado, Gilmar Fernandes do

    2014-01-01

    Insomnia involves difficulty in falling asleep, maintaining sleep or having refreshing sleep. This review gathers the existing informations seeking to explain insomnia, including those that focus on psychological aspects and those considered neurobiological. Insomnia has been defined in psychological (cognitive components, such as worries and rumination, and behavioral aspects, such as classic conditioning) and physiological terms (increased metabolic rate, with increased muscle tone, heart rate and temperature). From the neurobiological point of view, there are two perspectives: one which proposes that insomnia occurs in association with a failure to inhibit wakefulness and another that considers hyperarousal as having an important role in the physiology of sleep. The non-pharmacological interventions developed to face different aspects of insomnia are presented.

  14. Speech perception at the interface of neurobiology and linguistics.

    Science.gov (United States)

    Poeppel, David; Idsardi, William J; van Wassenhove, Virginie

    2008-03-12

    Speech perception consists of a set of computations that take continuously varying acoustic waveforms as input and generate discrete representations that make contact with the lexical representations stored in long-term memory as output. Because the perceptual objects that are recognized by the speech perception enter into subsequent linguistic computation, the format that is used for lexical representation and processing fundamentally constrains the speech perceptual processes. Consequently, theories of speech perception must, at some level, be tightly linked to theories of lexical representation. Minimally, speech perception must yield representations that smoothly and rapidly interface with stored lexical items. Adopting the perspective of Marr, we argue and provide neurobiological and psychophysical evidence for the following research programme. First, at the implementational level, speech perception is a multi-time resolution process, with perceptual analyses occurring concurrently on at least two time scales (approx. 20-80 ms, approx. 150-300 ms), commensurate with (sub)segmental and syllabic analyses, respectively. Second, at the algorithmic level, we suggest that perception proceeds on the basis of internal forward models, or uses an 'analysis-by-synthesis' approach. Third, at the computational level (in the sense of Marr), the theory of lexical representation that we adopt is principally informed by phonological research and assumes that words are represented in the mental lexicon in terms of sequences of discrete segments composed of distinctive features. One important goal of the research programme is to develop linking hypotheses between putative neurobiological primitives (e.g. temporal primitives) and those primitives derived from linguistic inquiry, to arrive ultimately at a biologically sensible and theoretically satisfying model of representation and computation in speech.

  15. PET and SPECT of neurobiological systems

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Gent Univ. (Belgium). Dept. of Nuclear Medicine; Otte, Andreas [Univ. of Applied Sciences, Offenburg (Germany). Faculty of Electrical Engineering and Information Technology; Vries, Erik F.J. de; Waarde, Aren van (eds.) [Groningen Univ. (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging

    2014-04-01

    Addresses a variety of aspects of neurotransmission in the brain. Details the latest results in probe development. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, ?-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed. Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology''.

  16. Stress: Neurobiology, consequences and management

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2013-01-01

    Full Text Available Stress, both physical and psychological, is attracting increasing attention among neuroresearchers. In the last 20 decades, there has been a surge of interest in the research of stress-induced manifestations and this approach has resulted in the development of more appropriate animal models for stress-associated pathologies and its therapeutic management. These stress models are an easy and convenient method for inducing both psychological and physical stress. To understand the behavioral changes underlying major depression, molecular and cellular studies are required. Dysregulation of the stress system may lead to disturbances in growth and development, and may this may further lead to the development of various other psychiatric disorders. This article reviews the different types of stress and their neurobiology, including the different neurotransmitters affected. There are various complications associated with stress and their management through various pharmacological and non-pharmacological techniques. The use of herbs in the treatment of stress-related problems is practiced in both Indian and Western societies, and it has a vast market in terms of anti-stress medications and treatments. Non-pharmacological techniques such as meditation and yoga are nowadays becoming very popular as a stress-relieving therapy because of their greater effectiveness and no associated side effects. Therefore, this review highlights the changes under stress and stressor and their impact on different animal models in understanding the mechanisms of stress along with their effective and safe management.

  17. Neurobiological Programming of Early Life Stress: Functional Development of Amygdala-Prefrontal Circuitry and Vulnerability for Stress-Related Psychopathology.

    Science.gov (United States)

    VanTieghem, Michelle R; Tottenham, Nim

    2017-04-25

    Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.

  18. Insomnia: psychological and neurobiological aspects and non-pharmacological treatments

    Directory of Open Access Journals (Sweden)

    Yara Fleury Molen

    2014-01-01

    Full Text Available Insomnia involves difficulty in falling asleep, maintaining sleep or having refreshing sleep. This review gathers the existing informations seeking to explain insomnia, including those that focus on psychological aspects and those considered neurobiological. Insomnia has been defined in psychological (cognitive components, such as worries and rumination, and behavioral aspects, such as classic conditioning and physiological terms (increased metabolic rate, with increased muscle tone, heart rate and temperature. From the neurobiological point of view, there are two perspectives: one which proposes that insomnia occurs in association with a failure to inhibit wakefulness and another that considers hyperarousal as having an important role in the physiology of sleep. The non-pharmacological interventions developed to face different aspects of insomnia are presented.

  19. Adolescent Alcohol Exposure Persistently Impacts Adult Neurobiology and Behavior

    Science.gov (United States)

    Vetreno, Ryan P.; Broadwater, Margaret A.; Robinson, Donita L.

    2016-01-01

    Adolescence is a developmental period when physical and cognitive abilities are optimized, when social skills are consolidated, and when sexuality, adolescent behaviors, and frontal cortical functions mature to adult levels. Adolescents also have unique responses to alcohol compared with adults, being less sensitive to ethanol sedative–motor responses that most likely contribute to binge drinking and blackouts. Population studies find that an early age of drinking onset correlates with increased lifetime risks for the development of alcohol dependence, violence, and injuries. Brain synapses, myelination, and neural circuits mature in adolescence to adult levels in parallel with increased reflection on the consequence of actions and reduced impulsivity and thrill seeking. Alcohol binge drinking could alter human development, but variations in genetics, peer groups, family structure, early life experiences, and the emergence of psychopathology in humans confound studies. As adolescence is common to mammalian species, preclinical models of binge drinking provide insight into the direct impact of alcohol on adolescent development. This review relates human findings to basic science studies, particularly the preclinical studies of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium. These studies focus on persistent adult changes in neurobiology and behavior following adolescent intermittent ethanol (AIE), a model of underage drinking. NADIA studies and others find that AIE results in the following: increases in adult alcohol drinking, disinhibition, and social anxiety; altered adult synapses, cognition, and sleep; reduced adult neurogenesis, cholinergic, and serotonergic neurons; and increased neuroimmune gene expression and epigenetic modifiers of gene expression. Many of these effects are specific to adolescents and not found in parallel adult studies. AIE can cause a persistence of adolescent-like synaptic physiology, behavior, and sensitivity

  20. A review of the neurobiological basis of dyslexia in the adult population.

    Science.gov (United States)

    Soriano-Ferrer, M; Piedra Martínez, E

    Adult dyslexia affects about 4% of the population. However, studies on the neurobiological basis of dyslexia in adulthood are scarce compared to paediatric studies. This review investigates the neurobiological basis of dyslexia in adulthood. Using PsycINFO, a database of psychology abstracts, we identified 11 studies on genetics, 9 neurostructural studies, 13 neurofunctional studies and 24 neurophysiological studies. Results from the review show that dyslexia is highly heritable and displays polygenic transmission. Likewise, adult neuroimaging studies found structural, functional, and physiological changes in the parieto-occipital and occipito-temporal regions, and in the inferior frontal gyrus, in adults with dyslexia. According to different studies, aetiology in cases of adult dyslexia is complex. We stress the need for neurobiological studies of dyslexia in languages with transparent spelling systems. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Neurobiological Mediators of Squalor-dwelling Behavior.

    Science.gov (United States)

    Kahn, David A

    2017-09-01

    Squalor-dwelling behavior has been characterized as living in conditions so unsanitary that feelings of revulsion are elicited among visitors. This behavior is commonly associated with an insensitivity to distress/disgust and a failure to understand the direness of one's living situation, which leads to social isolation and impairment in quality of life. Etiologically, several associations have been described in the literature, including age-related decline, lower socioeconomic status, and rural dwelling status. Primary neuropsychiatric disorders, such as psychosis, alcoholism, dementia, personality disorders, developmental delays, and learning or physical disabilities are frequently seen in squalor-dwelling individuals. However, none of these disorders seems to be necessary or sufficient to explain the behavior. Neurobiologically, squalor-dwelling behavior has been associated with frontal lobe dysfunction as evidenced by executive dysfunction; however, cognitive impairments also fail to completely explain this behavior. The purpose of this report is to describe a typical case of squalor-dwelling behavior and use it as an example to illustrate the complexity of uncovering the neurobiological basis for this maladaptive personal and public health threat. Neuroimaging findings from our case and a review of the literature point toward decreased activity in the insular cortex and the amygdala as a unifying biological explanation for squalor-dwelling behaviors.

  2. The neurobiology and pharmacology of depression: A comparative ...

    African Journals Online (AJOL)

    Background. Over the past decade, targeted drug design has led to significant advances in the pharmacological management of depression. A serendipitous approach to drug discovery has therefore been replaced by the development of drugs acting on predetermined neurobiological targets recognised to be involved in ...

  3. Neurobiology of aggression and violence

    OpenAIRE

    Ortega Escobar, Joaquín; Alcázar Córcoles, Miguel Ángel

    2016-01-01

    La neurobiología de la agresión y la violencia es de interés para la psicología jurídica porque buenaparte de la conducta delictiva tiene componentes violentos. En esta revisión se definen en primer lugarambos conceptos, para diferenciar a continuación los tipos de agresión (impulsiva vs. instrumental) queaparecen en la literatura científica y finalmente analizar las estructuras nerviosas que según los estudiossobre lesiones cerebrales o de neuroimagen están asociadas con la agresión. Esta re...

  4. Revisiting the Basic Symptom Concept: Towards Translating Risk Symptoms for Psychosis into Neurobiological Targets

    Directory of Open Access Journals (Sweden)

    Frauke eSchultze-Lutter

    2016-01-01

    Full Text Available In its initial formulation, the concept of basic symptoms (BSs integrated findings on the early symptomatic course of schizophrenia and first in vivo evidence of accompanying brain aberrations. It argued that the subtle subclinical disturbances in mental processes described as BSs were the most direct self-experienced expression of the underlying neurobiological aberrations of the disease. Other characteristic symptoms of psychosis (e.g., delusions, hallucinations were conceptualized as secondary phenomena, resulting from dysfunctional beliefs and suboptimal coping styles with emerging BSs and/or concomitant stressors. While BSs can occur in many mental disorders, in particular affective disorders, a subset of perceptive and cognitive BSs appear to be specific to psychosis and are currently employed in two alternative risk criteria. However, despite their clinical recognition in the early detection of psychosis, neurobiological research on the aetiopathology of psychosis with neuroimaging methods has only just begun to consider the neural correlate of BSs. This perspective paper reviews the emerging evidence of an association between BSs and aberrant brain activation, connectivity patterns, and metabolism, and outlines promising routes for the use of BSs in aetiopathological research on psychosis.

  5. The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks.

    Science.gov (United States)

    Vriend, Chris

    2018-01-30

    Impulse control disorders (ICD) are common neuropsychiatric disorders that can arise in Parkinson's disease (PD) patients after commencing dopamine replacement therapy. Approximately 15% of all patients develop these disorders and many more exhibit subclinical symptoms of impulsivity. ICD is thought to develop due to an interaction between the use of dopaminergic medication and an as yet unknown neurobiological vulnerability that either pre-existed before PD onset (possibly genetic) or is associated with neural alterations due to the PD pathology. This review discusses genes, neurotransmitters and neural networks that have been implicated in the pathophysiology of ICD in PD. Although dopamine and the related reward system have been the main focus of research, recently, studies have started to look beyond those systems to find new clues to the neurobiological underpinnings of ICD and come up with possible new targets for treatment. Studies on the whole-brain connectome to investigate the global alterations due to ICD development are currently lacking. In addition, there is a dire need for longitudinal studies that are able to disentangle the contributions of individual (genetic) traits and secondary effects of the PD pathology and chronic dopamine replacement therapy to the development of ICD in PD.

  6. Bodily Intimacy and its Neurobiological Foundations

    OpenAIRE

    Jesús Conill

    2017-01-01

    The first part of this study stresses the importance of intimacy for human life and defends the biological standpoint against the functionalist computational stance. This is based on the concept of bodily subjectivity in Nietzsche, bodily, emotional and spiritual intimacy in Ortega y Gasset, and bodily and personal intimacy in Zubiri. The second part sets forth a significant selection taken from studies on the neurobiological foundations of bodily intimacy, reaching beyond sterile reductionis...

  7. Using cross-species comparisons and a neurobiological framework to understand early social deprivation effects on behavioral development.

    Science.gov (United States)

    Brett, Zoë H; Humphreys, Kathryn L; Fleming, Alison S; Kraemer, Gary W; Drury, Stacy S

    2015-05-01

    Building upon the transactional model of brain development, we explore the impact of early maternal deprivation on neural development and plasticity in three neural systems: hyperactivity/impulsivity, executive function, and hypothalamic-pituitary-adrenal axis functioning across rodent, nonhuman primate, and human studies. Recognizing the complexity of early maternal-infant interactions, we limit our cross-species comparisons to data from rodent models of artificial rearing, nonhuman primate studies of peer rearing, and the relations between these two experimental approaches and human studies of children exposed to the early severe psychosocial deprivation associated with institutional care. In addition to discussing the strengths and limitations of these paradigms, we present the current state of research on the neurobiological impact of early maternal deprivation and the evidence of sensitive periods, noting methodological challenges. Integrating data across preclinical animal models and human studies, we speculate about the underlying biological mechanisms; the differential impact of deprivation due to temporal factors including onset, offset, and duration of the exposure; and the possibility and consequences of reopening of sensitive periods during adolescence.

  8. Social Context Effects on Decision-Making: A Neurobiological Approach

    NARCIS (Netherlands)

    M. Stallen (Mirre)

    2013-01-01

    textabstractThis thesis explores how social context influences the neurobiological processes underlying decision-making. To this end, this research takes an interdisciplinary approach, combining methods and insights from Psychology, Marketing, Economics, and Neuroscience. In particular, behavioural

  9. Neurobiology of Schemas and Schema-Mediated Memory.

    Science.gov (United States)

    Gilboa, Asaf; Marlatte, Hannah

    2017-08-01

    Schemas are superordinate knowledge structures that reflect abstracted commonalities across multiple experiences, exerting powerful influences over how events are perceived, interpreted, and remembered. Activated schema templates modulate early perceptual processing, as they get populated with specific informational instances (schema instantiation). Instantiated schemas, in turn, can enhance or distort mnemonic processing from the outset (at encoding), impact offline memory transformation and accelerate neocortical integration. Recent studies demonstrate distinctive neurobiological processes underlying schema-related learning. Interactions between the ventromedial prefrontal cortex (vmPFC), hippocampus, angular gyrus (AG), and unimodal associative cortices support context-relevant schema instantiation and schema mnemonic effects. The vmPFC and hippocampus may compete (as suggested by some models) or synchronize (as suggested by others) to optimize schema-related learning depending on the specific operationalization of schema memory. This highlights the need for more precise definitions of memory schemas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Matching the Neurobiology of Learning to Teaching Principles

    Science.gov (United States)

    Moffett, Nelle; Fleisher, Steven C.

    2013-01-01

    The authors describe principles of good teaching drawn from meta-analyses of research on teaching effectiveness. Recent developments in neurobiology are presented and aligned to provide biological support for these principles. To make it easier for college faculty to try out sample instructional strategies, the authors map principles of good…

  11. Neurobiological considerations in understanding behavioral treatments for pathological gambling.

    Science.gov (United States)

    Potenza, Marc N; Balodis, Iris M; Franco, Christine A; Bullock, Scott; Xu, Jiansong; Chung, Tammy; Grant, Jon E

    2013-06-01

    Pathological gambling (PG), a disorder currently categorized as an impulse-control disorder but being considered as a nonsubstance addiction in Diagnostic and Statistical Manual of Mental Disorders (5th ed.) discussions, represents a significant public health concern. Over the past decade, considerable advances have been made with respect to understanding the biological underpinnings of PG. Research has also demonstrated the efficacies of multiple treatments, particularly behavioral therapies, for treating PG. Despite these advances, relatively little is known regarding how biological measures, particularly those assessing brain function, relate to treatments for PG. In this article, we present a conceptual review focusing on the neurobiology of behavioral therapies for PG. To illustrate issues related to study design, we present proof-of-concept preliminary data that link Stroop-related brain activations prior to treatment onset to treatment outcome in individuals with PG receiving a cognitive-behavioral treatment incorporating aspects of imaginal desensitization and motivational interviewing. We conclude with recommendations about current and future directions regarding how to incorporate and translate biological findings into improved therapies for individuals with nonsubstance and substance addictions. 2013 APA, all rights reserved

  12. The neurobiology of offensive aggression : Revealing a modular view

    NARCIS (Netherlands)

    de Boer, S F; Olivier, B; Veening, J; Koolhaas, J.M.

    Experimental studies aimed at understanding the neurobiology of aggression started in the early 20th century, and by employing increasingly sophisticated tools of functional neuroanatomy (i.e., from electric/chemical lesion and stimulation techniques to neurochemical mapping and manipulations) have

  13. Integrated neurobiology of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Vladimir eMaletic

    2014-08-01

    Full Text Available From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity—reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition—limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional unified field theory of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia—the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the HPA axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great

  14. Can understanding the neurobiology of body dysmorphic disorder (BDD) inform treatment?

    Science.gov (United States)

    Rossell, Susan L; Harrison, Ben J; Castle, David

    2015-08-01

    We aim to provide a clinically focused review of the neurobiological literature in body dysmorphic disorder (BDD), with a focus on structural and functional neuroimaging. There has been a recent influx of studies examining the underlying neurobiology of BDD using structural and functional neuroimaging methods. Despite obvious symptom similarities with obsessive-compulsive disorder (OCD), no study to date has directly compared the two groups using neuroimaging techniques. Studies have established that there are limbic and visual cortex abnormalities in BDD, in contrast to fronto-striatal differences in OCD. Such data suggests affect or visual training maybe useful in BDD. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  15. The neurobiology of fatherhood.

    Science.gov (United States)

    Rilling, James K; Mascaro, Jennifer S

    2017-06-01

    Only about 5% of mammalian species exhibit paternal caregiving in nature, and paternal behavior has evolved multiple times independently among mammals. The most parsimonious way to evolve paternal behavior may be to utilize pre-existing neural systems that are in place for maternal behavior. Despite evidence for similarity in the neurobiology of maternal and paternal behavior in rodents, paternal behavior also has its own dedicated neural circuitry in some species. Human fathers engage conserved subcortical systems that motivate caregiving in rodent parents and human mothers, as well as cortical systems involved with empathy that they share with human mothers. Finally, paternal behavior is modulated by similar hormones and neuropeptides in rodents, non-human primates, and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Stalking: a neurobiological perspective.

    Science.gov (United States)

    Marazziti, Donatella; Falaschi, Valentina; Lombardi, Amedeo; Mungai, Francesco; Dell'Osso, Liliana

    2015-01-01

    Nowadays stalking is becoming a real social emergency, as it may often fuel severe aggressive behaviours. No exhaustive aetiological hypothesis is still available regarding this complex phenomenon. However, the detailed descriptions of some of its peculiar features allow to draw with cautions some general suggestions. Probably stalking may arise from the derangement of those neural networks subserving the so-called social brain and the pair bonding formation, in particular the processes of attachment/separation, attraction/romantic love/reward. In addition, it seems to be modulated by excessive functioning of the dopamine system coupled with decreased serotonin tone. It is believed that the investigation and deepening of its possible neurobiological substrates may be helpful in the prevention of the severe consequences of stalking.

  17. Binge Drinking and the Young Brain: A Mini Review of the Neurobiological Underpinnings of Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Daniel F. Hermens

    2018-01-01

    Full Text Available Binge drinking has significant effects on memory, particularly with regards to the transfer of information to long-term storage. Partial or complete blocking of memory formation is known as blackout. Youth represents a critical period in brain development that is particularly vulnerable to alcohol misuse. Animal models show that the adolescent brain is more vulnerable to the acute and chronic effects of alcohol compared with the adult brain. This mini-review addresses the neurobiological underpinnings of binge drinking and associated memory loss (blackout in the adolescent and young adult period. Although the extent to which there are pre-existing versus alcohol-induced neurobiological changes remains unclear, it is likely that repetitive binge drinking in youth has detrimental effects on cognitive and social functioning. Given its role in learning and memory, the hippocampus is a critical region with neuroimaging research showing notable changes in this structure associated with alcohol misuse in young people. There is a great need for earlier identification of biological markers associated with alcohol-related brain damage. As a means to assess in vivo neurochemistry, magnetic resonance spectroscopy (MRS has emerged as a particularly promising technique since changes in neurometabolites often precede gross structural changes. Thus, the current paper addresses how MRS biomarkers of neurotransmission (glutamate, GABA and oxidative stress (indexed by depleted glutathione in the hippocampal region of young binge drinkers may underlie propensity for blackouts and other memory impairments. MRS biomarkers may have particular utility in determining the acute versus longer-term effects of binge drinking in young people.

  18. Acid-base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification.

    Science.gov (United States)

    Tresguerres, Martin; Hamilton, Trevor J

    2017-06-15

    Experimental exposure to ocean and freshwater acidification affects the behaviour of multiple aquatic organisms in laboratory tests. One proposed cause involves an imbalance in plasma chloride and bicarbonate ion concentrations as a result of acid-base regulation, causing the reversal of ionic fluxes through GABA A receptors, which leads to altered neuronal function. This model is exclusively based on differential effects of the GABA A receptor antagonist gabazine on control animals and those exposed to elevated CO 2 However, direct measurements of actual chloride and bicarbonate concentrations in neurons and their extracellular fluids and of GABA A receptor properties in aquatic organisms are largely lacking. Similarly, very little is known about potential compensatory mechanisms, and about alternative mechanisms that might lead to ocean acidification-induced behavioural changes. This article reviews the current knowledge on acid-base physiology, neurobiology, pharmacology and behaviour in relation to marine CO 2 -induced acidification, and identifies important topics for future research that will help us to understand the potential effects of predicted levels of aquatic acidification on organisms. © 2017. Published by The Company of Biologists Ltd.

  19. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  20. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  1. Neurobiology of Congenital Amusia.

    Science.gov (United States)

    Peretz, Isabelle

    2016-11-01

    The past decade of research has provided compelling evidence that musical engagement is a fundamental human trait, and its biological basis is increasingly scrutinized. In this endeavor, the detailed study of individuals who have musical deficiencies is instructive because of likely neurogenetic underpinnings. Such individuals have 'congenital amusia', an umbrella term for lifelong musical disabilities that cannot be attributed to intellectual disability, lack of exposure, or brain damage after birth. Key points are reviewed here that have emerged during recent years regarding the neurobiology of the disorder, focusing on the importance of recurrent processing between the right inferior frontal cortex and the auditory cortex for conscious monitoring of musical pitch, and how this relates to developmental cognitive disorders in general. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.

    Science.gov (United States)

    Lockery, S R; Lawton, K J; Doll, J C; Faumont, S; Coulthard, S M; Thiele, T R; Chronis, N; McCormick, K E; Goodman, M B; Pruitt, B L

    2008-06-01

    With a nervous system of only 302 neurons, the free-living nematode Caenorhabditis elegans is a powerful experimental organism for neurobiology. However, the laboratory substrate commonly used in C. elegans research, a planar agarose surface, fails to reflect the complexity of this organism's natural environment, complicates stimulus delivery, and is incompatible with high-resolution optophysiology experiments. Here we present a new class of microfluidic devices for C. elegans neurobiology and behavior: agarose-free, micron-scale chambers and channels that allow the animals to crawl as they would on agarose. One such device mimics a moist soil matrix and facilitates rapid delivery of fluid-borne stimuli. A second device consists of sinusoidal channels that can be used to regulate the waveform and trajectory of crawling worms. Both devices are thin and transparent, rendering them compatible with high-resolution microscope objectives for neuronal imaging and optical recording. Together, the new devices are likely to accelerate studies of the neuronal basis of behavior in C. elegans.

  3. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    Science.gov (United States)

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  4. Feather pecking and monoamines - a behavioral and neurobiological approach

    NARCIS (Netherlands)

    Kops, M.S.|info:eu-repo/dai/nl/341590649

    2014-01-01

    Severe feather pecking (SFP) remains one of the major welfare issues in laying hens. SFP is the pecking at and pulling out of feathers, inflicting damage to the plumage and skin of the recipient. The neurobiological profile determining the vulnerability of individual hens to develop into a severe

  5. The role of BDNF and HPA axis in the neurobiology of burnout syndrome.

    Science.gov (United States)

    Onen Sertoz, Ozen; Tolga Binbay, Ibrahim; Koylu, Ersin; Noyan, Aysin; Yildirim, Emre; Elbi Mete, Hayriye

    2008-08-01

    Chronic stress is known to affect the HPA axis. The few clinical studies which have been conducted on HPA-axis function in burnout have produced inconsistent results. The etiological relationship between sBDNF and burnout has not yet been studied. The aim of the current study was to investigate the role of BDNF and HPA axis in the neurobiology of burnout. In the current study 37 clinically diagnosed burnout participants were compared with 35 healthy controls in terms of BDNF, HPA axis, burnout symptoms, depression, anxiety and psychosomatic complaints. Basal serum cortisol, sBDNF and cortisol level after 1 mg DST was sampled. We found no significant differences in terms of HPA-axis function (for basal serum cortisol, p=0.592; for cortisol level after 1 mg DST, p=0.921), but we did find lowered sBDNF levels in burnout group (88.66+/-18.15 pg/ml) as compared to healthy controls (102.18+/-20.92 pg/ml) and the difference was statistically significant (p=0.005). Logistic Regression Analysis revealed that emotional exhaustion (p=0.05), depersonalization (p=0.005) and depression (p=0.025) were significantly associated with burnout. sBDNF levels correlated negatively with emotional exhaustion (r=-,268, p=0.026), depersonalization (r=-,333, p=0.005) and correlated positively with competence (r=0.293, p=0.015) sub-scales of burnout inventory. However, there were no significant relationships between cortisol levels and sBDNF levels (r=0.80, p=0.51), depression, anxiety, psychosomatic complaints and burnout inventory. Our results suggest that low BDNF might contribute to the neurobiology of burnout syndrome and it seems to be associated with burnout symptoms including altered mood and cognitive functions.

  6. Neurobiological, Psychosocial and Environmental Causes of Violence and Aggression

    Directory of Open Access Journals (Sweden)

    Ozhan Yalcin

    2013-08-01

    Full Text Available In psychiatric practice psychotic disorders, mania, substance and alcohol related disorders, antisocial and borderline personality disorders, attention deficit hyperactivity disorder, conduct disorder, mental retardation, organic brain syndrome, delirium, stereotypical movement disorders, trichotillomania, eating disorders and other obsessive-compulsive spectrum disorders, pervasive developmental disorders, major depressive disorder, mixt episodes are closely related with agression towards surrounding and other people and towards self. Although as in suicide agression and violence are not always related to prominent psychopatology, violence and agression are closely associated with crime. In some societies, especially ritualistic agressive behaviours towards self are perceived as culturally normative. Sex, temperamental and cognitive patterns, medical factors also neurobiological and neuropsychiatric causes like neurotransmitters and hormonal factors and their metabolism, glucocorticoid and cholesterol metabolism, genetic factors and also ecological, toxical, nutritional factors, psychosocial and psychodynamic factors can be related with development and severity of agression and violence towards surrounding, other people and towards self. Although it is accepted that there isn’t single explanation of the individual differences about the tendency to violence, there are contradicting points of view among researchers about the most significant risc factor. Probably development or alleveation of violent behavior is influenced by the reciprocal interaction between psychosocial, psychodynamic, temperamental, neuropsychiatric, enviromental, genetic factors, parenting styles, quality of nurturition and education and school mental health interventions. Positive psychosocial, familial, educational factors, psychiatric interventions, protective mental health quality and positive government political attitudes can restorate negative genetic

  7. To what extent do neurobiological sleep-waking processes support psychoanalysis?

    Science.gov (United States)

    Gottesmann, Claude

    2010-01-01

    Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. The Neurobiological Impact of Ghrelin Suppression after Oesophagectomy

    Directory of Open Access Journals (Sweden)

    Conor F. Murphy

    2016-12-01

    Full Text Available Ghrelin, discovered in 1999, is a 28-amino-acid hormone, best recognized as a stimulator of growth hormone secretion, but with pleiotropic functions in the area of energy homeostasis, such as appetite stimulation and energy expenditure regulation. As the intrinsic ligand of the growth hormone secretagogue receptor (GHS-R, ghrelin appears to have a broad array of effects, but its primary role is still an area of debate. Produced mainly from oxyntic glands in the stomach, but with a multitude of extra-metabolic roles, ghrelin is implicated in complex neurobiological processes. Comprehensive studies within the areas of obesity and metabolic surgery have clarified the mechanism of these operations. As a stimulator of growth hormone (GH, and an apparent inducer of positive energy balance, other areas of interest include its impact on carcinogenesis and tumour proliferation and its role in the cancer cachexia syndrome. This has led several authors to study the hormone in the cancer setting. Ghrelin levels are acutely reduced following an oesophagectomy, a primary treatment modality for oesophageal cancer. We sought to investigate the nature of this postoperative ghrelin suppression, and its neurobiological implications.

  9. Neurobiology of emotions: an update.

    Science.gov (United States)

    Esperidião-Antonio, Vanderson; Majeski-Colombo, Marilia; Toledo-Monteverde, Diana; Moraes-Martins, Glaciele; Fernandes, Juliana José; Bauchiglioni de Assis, Marjorie; Montenegro, Stefânia; Siqueira-Batista, Rodrigo

    2017-06-01

    The 'nature' of emotions is one of the archaic themes of Western thought, thematized in different cultural manifestations - such as art, science, philosophy, myths and religion -, since Ancient times. In the last decades, the advances in neurosciences have permitted the construction of hypotheses that explain emotions, especially through the studies involving the limbic system. To present an updated discussion about the neurobiology of processes relating to emotions - focusing (1) on the main neural structures that relate to emotions, (2) the paths and circuits of greater relevance, (3) the implicated neurotransmitters, (4) the connections that possess neurovegetative control and (5) the discussion about the main emotions - is the objective of this present article.

  10. The Dissociative Subtype of Post-traumatic Stress Disorder: Research Update on Clinical and Neurobiological Features.

    Science.gov (United States)

    van Huijstee, Jytte; Vermetten, Eric

    2017-10-21

    Recently, a dissociative subtype of post-traumatic stress disorder (PTSD) has been included in the DSM-5. This review focuses on the clinical and neurobiological features that distinguish the dissociative subtype of PTSD from non-dissociative PTSD. Clinically, the dissociative subtype of PTSD is associated with high PTSD severity, predominance of derealization and depersonalization symptoms, a more significant history of early life trauma, and higher levels of comorbid psychiatric disorders. Furthermore, PTSD patients with dissociative symptoms exhibit different psychophysiological and neural responses to the recall of traumatic memories. While individuals with non-dissociative PTSD exhibit an increased heart rate, decreased activation of prefrontal regions, and increased activation of the amygdala in response to traumatic reminders, individuals with the dissociative subtype of PTSD show an opposite pattern. It has been proposed that dissociation is a regulatory strategy to restrain extreme arousal in PTSD through hyperinhibition of limbic regions. In this research update, promises and pitfalls in current research studies on the dissociative subtype of PTSD are listed. Inclusion of the dissociative subtype of PTSD in the DSM-5 stimulates research on the prevalence, symptomatology, and neurobiology of the dissociative subtype of PTSD and poses a challenge to improve treatment outcome in PTSD patients with dissociative symptoms.

  11. Sex Influences on the Neurobiology of Learning and Memory

    Science.gov (United States)

    Andreano, Joseph M.; Cahill, Larry

    2009-01-01

    In essentially every domain of neuroscience, the generally implicit assumption that few, if any, meaningful differences exist between male and female brain function is being challenged. Here we address how this development is influencing studies of the neurobiology of learning and memory. While it has been commonly held that males show an…

  12. Cultural Adaptation of a Neurobiologically Informed Intervention in Local and International Contexts.

    Science.gov (United States)

    Pakulak, Eric; Hampton Wray, Amanda; Longoria, Zayra; Garcia Isaza, Alejandra; Stevens, Courtney; Bell, Theodore; Burlingame, Sarah; Klein, Scott; Berlinski, Samuel; Attanasio, Orazio; Neville, Helen

    2017-12-01

    The relationship between early adversity and numerous negative outcomes across the lifespan is evident in a wide range of societies and cultures (e.g., Pakulak, Stevens, & Neville, 2018). Among the most affected neural systems are those supporting attention, self-regulation, and stress regulation. As such, these systems represent targets for neurobiologically informed interventions addressing early adversity. In prior work with monolingual native English-speaking families, we showed that a two-generation intervention targeting these systems in families improves outcomes across multiple domains including child brain function for selective attention (for detail, see Neville et al., 2013). Here, we discuss the translation and cultural adaptation (CA) of this intervention in local and international contexts, which required systematic consideration of cultural differences that could affect program acceptability. First, we conducted a translation and CA of our program to serve Latino families in the United States using the Cultural Adaptation Process (CAP), a model that works closely with stakeholders in a systematic, iterative process. Second, to implement the adapted program in Medellín, Colombia, we conducted a subsequent adaptation for Colombian culture using the same CAP. Our experience underscores the importance of consideration of cultural differences and a systematic approach to adaptation before assessing the efficacy of neurobiologically informed interventions in different cultural contexts. © 2017 Wiley Periodicals, Inc.

  13. Integrated Neurobiology of Bipolar Disorder

    Science.gov (United States)

    Maletic, Vladimir; Raison, Charles

    2014-01-01

    From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity – reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition – limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional “unified field theory” of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial–neuronal interactions. Among these glial elements are microglia – the brain’s primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic–pituitary–adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of

  14. Animal models of binge drinking, current challenges to improve face validity.

    Science.gov (United States)

    Jeanblanc, Jérôme; Rolland, Benjamin; Gierski, Fabien; Martinetti, Margaret P; Naassila, Mickael

    2018-05-05

    Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. [The current conception of the unconscious - empirical results of neurobiology, cognitive sciences, social psychology and emotion research].

    Science.gov (United States)

    Schüssler, Gerhard

    2002-01-01

    The influence of the unconscious on psychosomatic medicine and psychotherapy: a comprehensive concept of unconscious processes based on empirical evidence. The theory of the Unconscious constitutes the basis of psychoanalysis and of psychodynamic therapy. The traditional description of the Unconscious as given by Freud is of historical significance and not only gained widespread acceptance but also attracted much criticism. The most important findings of neurobiology, the cognitive sciences, social psychology and emotion research in relation to the Unconscious are compared with this traditional definition. Empirical observations on defence mechanisms are of particular interest in this context. A comprehensive concept of unconscious processes is revealed: the fundamental process of brain function is unconscious. Parts of the symbolic-declarative and emotional-procedural processing by the brain are permanently unconscious. Other parts of these processing procedures are conscious or can be brought to the conscious or alternatively, can also be excluded from the conscious. Unconscious processes exert decisive influence on experience and behaviour; for this reason, every form of psychotherapy should take into account such unconscious processes.

  16. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    OpenAIRE

    Diamond, David M.; Campbell, Adam M.; Park, Collin R.; Halonen, Joshua; Zoladz, Phillip R.

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics†model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced ...

  17. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Folia, V.; Hagoort, P.

    2012-01-01

    : In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  18. What artificial grammar learning reveals about the neurobiology of syntax

    NARCIS (Netherlands)

    Petersson, K.M.; Vasiliki, F.; Hagoort, P.

    2012-01-01

    In this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple

  19. ALL OUR SONS: THE DEVELOPMENTAL NEUROBIOLOGY AND NEUROENDOCRINOLOGY OF BOYS AT RISK.

    Science.gov (United States)

    Schore, Allan N

    2017-01-01

    Why are boys at risk? To address this question, I use the perspective of regulation theory to offer a model of the deeper psychoneurobiological mechanisms that underlie the vulnerability of the developing male. The central thesis of this work dictates that significant gender differences are seen between male and female social and emotional functions in the earliest stages of development, and that these result from not only differences in sex hormones and social experiences but also in rates of male and female brain maturation, specifically in the early developing right brain. I present interdisciplinary research which indicates that the stress-regulating circuits of the male brain mature more slowly than those of the female in the prenatal, perinatal, and postnatal critical periods, and that this differential structural maturation is reflected in normal gender differences in right-brain attachment functions. Due to this maturational delay, developing males also are more vulnerable over a longer period of time to stressors in the social environment (attachment trauma) and toxins in the physical environment (endocrine disruptors) that negatively impact right-brain development. In terms of differences in gender-related psychopathology, I describe the early developmental neuroendocrinological and neurobiological mechanisms that are involved in the increased vulnerability of males to autism, early onset schizophrenia, attention deficit hyperactivity disorder, and conduct disorders as well as the epigenetic mechanisms that can account for the recent widespread increase of these disorders in U.S. culture. I also offer a clinical formulation of early assessments of boys at risk, discuss the impact of early childcare on male psychopathogenesis, and end with a neurobiological model of optimal adult male socioemotional functions. © 2017 Michigan Association for Infant Mental Health.

  20. Cannabis; Epidemiological, Neurobiological and Psychopathological Issues: An Update.

    Science.gov (United States)

    De Luca, Maria Antonietta; Di Chiara, Gaetano; Cadoni, Cristina; Lecca, Daniele; Orsolini, Laura; Papanti, Duccio; Corkery, John; Schifano, Fabrizio

    2017-01-01

    Cannabis is the illicit drug with both the largest current levels of consumption and the highest reported lifetime prevalence levels in the world. Across different countries, the prevalence of cannabis use varies according to the individual income, with the highest use being reported in North America, Australia and Europe. Despite its 'soft drug' reputation, cannabis misuse may be associated with several acute and chronic adverse effects. The present article aims at reviewing several papers on epidemiological, neurobiological and psychopathological aspects of the use of cannabis. The PubMed database was here examined in order to collect and discuss a range of identified papers. Cannabis intake usually starts during late adolescence/early adulthood (15-24 years) and drastically decreases in adulthood with the acquisition of working, familiar and social responsibilities. Clinical evidence supports the current socio-epidemiological alarm concerning the increased consumption among youngsters and the risks related to the onset of psychotic disorders. The mechanism of action of cannabis presents some analogies with other abused drugs, e.g. opiates. Furthermore, it has been well demonstrated that cannabis intake in adolescence may facilitate the transition to the use and/or abuse of other psychotropic drugs, hence properly being considered a 'gateway drug'. Some considerations on synthetic cannabimimetics are provided here as well. In conclusion, the highest prevalence of cannabis use and the social perception of a relatively low associated risk are in contrast with current knowledge based on biological and clinical evidence. Indeed, there are concerns relating to cannabis intake association with detrimental effects on both cognitive impairment and mental health. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescence.

    Science.gov (United States)

    Winsper, Catherine; Marwaha, Steven; Lereya, Suzet Tanya; Thompson, Andrew; Eyden, Julie; Singh, Swaran P

    2016-12-01

    Contemporary theories for the aetiology of borderline personality disorder (BPD) take a lifespan approach asserting that inborn biological predisposition is potentiated across development by environmental risk factors. In this review, we present and critically evaluate evidence on the neurobiology of BPD in childhood and adolescence, compare this evidence to the adult literature, and contextualise within a neurodevelopmental framework. A systematic review was conducted to identify studies examining the neurobiological (i.e. genetic, structural neuroimaging, neurophysiological, and neuropsychological) correlates of BPD symptoms in children and adolescents aged 19 years or under. We identified, quality assessed, and narratively summarised 34 studies published between 1980 and June 2016. Similar to findings in adult populations, twin studies indicated moderate to high levels of heritability of BPD, and there was some evidence for gene-environment interactions. Also consistent with adult reports is that some adolescents with BPD demonstrated structural (grey and white matter) alterations in frontolimbic regions and neuropsychological abnormalities (i.e. reduced executive function and disturbances in social cognition). These findings suggest that neurobiological abnormalities observed in adult BPD may not solely be the consequence of chronic morbidity or prolonged medication use. They also provide tentative support for neurodevelopmental theories of BPD by demonstrating that neurobiological markers may be observed from childhood onwards and interact with environmental factors to increase risk of BPD in young populations. Prospective studies with a range of repeated measures are now required to elucidate the temporal unfurling of neurobiological features and further delineate the complex pathways to BPD.

  2. Neurobiology of inflammation-associated anorexia

    Directory of Open Access Journals (Sweden)

    Laurent Gautron

    2010-01-01

    Full Text Available Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients.

  3. Investigation on the neurobiological correlates of social anxiety disorder using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sladky, R.

    2012-01-01

    Functional MRI is based on the very intuitive principle that neuronal activity leads to locally increased energy demand, which can be measured due to the different magnetic properties of oxygenated and deoxygenated blood. Interdisciplinary research and development in MR physics, engineering, bioinformatics and neuroscience have made fMRI an indispensible research tool for all domains of cognitive science. Besides basic research, fMRI has become a gold standard diagnostic method for clinical applications, as well. The main goal of the present doctoral thesis was to contribute to the understanding of the neural mechanisms of social anxiety disorder (SAD) patients. SAD is a disabling psychiatric conditions that impairs social interactions and acts as a major risk factor for depression and addiction. To this end, an fMRI study has been conducted on a population of SAD patients and healthy controls to highlight functional aberrations within the emotion regulation network. Failed adaptation towards social stressors, such as emotional faces, is a characterizing symptom of SAD. And indeed, in this study, which involved an emotion discrimination task, group differences in neural habituation of SAD patients were found in the amygdala and the orbitofrontal cortex (OFC), two central nodes of the emotion regulation network. To highlight the causal neurobiological mechanisms, the same data were analyzed using dynamic causal modeling (DCM). In this study, a difference in effective connectivity between the OFC and the amygdala was found. In healthy subjects, the OFC showed to down-regulate amygdalar activation, which corresponds to the conception of cognitive top-down control over affective influences. In SAD patients, however, a positive effective connectivity from OFC to amygdala was found, indicating a positive feedback loop between these regions. This finding, thus, nurtures a neurobiological model that could explain the decreased inhibition of affective stimuli by cognitive

  4. Experimental medicine in drug addiction: towards behavioral, cognitive and neurobiological biomarkers.

    Science.gov (United States)

    Duka, Theodora; Crombag, Hans S; Stephens, David N

    2011-09-01

    Several theoretical frameworks have been developed to understand putative processes and mechanisms involved in addiction. Whilst these 'theories of addiction' disagree about importance and/or nature of a number of key psychological processes (e.g. the necessity of craving and/or the involvement of drug-value representations), a number of commonalities exist. For instance, it is widely accepted that Pavlovian associations between cues and environmental contexts and the drug effects acquired over the course of addiction play a critical role, especially in relapse vulnerability in detoxified addicts. Additionally, all theories of addiction (explicitly or implicitly) propose that chronic drug exposure produces persistent neuroplastic changes in neurobiological circuitries underlying critical emotional, cognitive and motivational processes, although disagreement exists as to the precise nature of these neurobiological changes and/or their psychological consequences. The present review, rather than limiting itself to any particular theoretical stance, considers various candidate psychological, neurobiological and/or behavioral processes in addiction and outlines conceptual and procedural approaches for the experimental medicine laboratory. The review discusses (1) extinction, renewal and (re)consolidation of learned associations between cues and drugs, (2) the drug reward value, (3) motivational states contributing to drug seeking and (4) reflective (top-down) and sensory (bottom-up) driven decision-making. In evaluating these psychological and/or behavioral processes and their relationship to addiction we make reference to putative underlying brain structures identified by basic animal studies and/or imaging studies with humans.

  5. Assessing the place of neurobiological explanations in accounts of a family member's addiction.

    Science.gov (United States)

    Meurk, Carla; Fraser, Doug; Weier, Megan; Lucke, Jayne; Carter, Adrian; Hall, Wayne

    2016-07-01

    The brain disease model of addiction posits that addiction is a persistent form of neural dysfunction produced by chronic drug use, which makes it difficult for addicted persons to become and remain abstinent. As part of an anticipatory policy analysis of addiction neuroscience, we engaged family members of addicted individuals to assess their views on the place and utility of brain-based accounts of addiction. Fifteen in-depth qualitative interviews were conducted and used to develop a quantitative online survey that was completed by 55 family members. This article reports responses on what addiction is and how it is caused and responses to explanations of the brain disease model of addiction. Participants gave multiple reasons for their family members developing an addiction and there was no single dominant belief about the best way to describe addiction. Participants emphasised the importance of both scientific and non-scientific perspectives on addiction by providing multifactorial explanations of their family members' addictions. Most family members acknowledged that repeated drug use can cause changes to the brain, but they varied in their reactions to labelling addiction a 'brain disease'. They believed that understanding addiction, and how it is caused, could help them support their addicted relative. Participants' beliefs about neurobiological information and the brain disease model of addiction appeared to be driven by empathetic, utilitarian considerations rather than rationalist ones. We discuss the importance of providing information about the nature and causes of addiction. [Meurk C, Fraser D, Weier M, Lucke J, Carter A, Hall W. Assessing the place of neurobiological explanations in accounts of a family member's addiction. Drug Alcohol Rev 2016;35:461-469]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  6. Analysis of the Poisson-Nernst-Planck equation in a ball for modeling the Voltage-Current relation in neurobiological microdomains

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-01-01

    The electro-diffusion of ions is often described by the Poisson-Nernst-Planck (PNP) equations, which couple nonlinearly the charge concentration and the electric potential. This model is used, among others, to describe the motion of ions in neuronal micro-compartments. It remains at this time an open question how to determine the relaxation and the steady state distribution of voltage when an initial charge of ions is injected into a domain bounded by an impermeable dielectric membrane. The purpose of this paper is to construct an asymptotic approximation to the solution of the stationary PNP equations in a d-dimensional ball (d = 1 , 2 , 3) in the limit of large total charge. In this geometry the PNP system reduces to the Liouville-Gelfand-Bratú (LGB) equation, with the difference that the boundary condition is Neumann, not Dirichlet, and there is a minus sign in the exponent of the exponential term. The entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. These differences replace attraction by repulsion in the LGB equation, thus completely changing the solution. We find that the voltage is maximal in the center and decreases toward the boundary. We also find that the potential drop between the center and the surface increases logarithmically in the total number of charges and not linearly, as in classical capacitance theory. This logarithmic singularity is obtained for d = 3 from an asymptotic argument and cannot be derived from the analysis of the phase portrait. These results are used to derive the relation between the outward current and the voltage in a dendritic spine, which is idealized as a dielectric sphere connected smoothly to the nerve axon by a narrow neck. This is a fundamental microdomain involved in neuronal communication. We compute the escape rate of an ion from the steady density in a ball, which models a neuronal spine head, to a small absorbing window in the sphere. We

  7. Towards a neurobiology of creativity in nonhuman animals.

    Science.gov (United States)

    Kaufman, Allison B; Butt, Allen E; Kaufman, James C; Colbert-White, Erin N

    2011-08-01

    We propose a cognitive and neurobiological framework for creativity in nonhuman animals based on the framework previously proposed by Kaufman and Kaufman (2004), with additional insight from recent animal behavior research, behavioral neuroscience, and creativity theories. The additional information has lead to three major changes in the 2004 model-the addition of novelty seeking as a subcategory of novelty recognition, the addition of specific neurological processing sites that correspond to each of the processes, and the transformation of the model into a spectrum in which all three levels represent different degrees of the creative process (emphasis on process) and the top level, dubbed innovation, is defined by the creative product. The framework remains a three-level model of creativity. The first level is composed of both the cognitive ability to recognize novelty, a process linked to hippocampal function, and the seeking out of novelty, which is linked to dopamine systems. The next level is observational learning, which can range in complexity from imitation to the cultural transmission of creative behavior. Observational learning may critically depend on the cerebellum, in addition to cortical regions. At the peak of the model is innovative behavior, which can include creating a tool or exhibiting a behavior with the specific understanding that it is new and different. Innovative behavior may be especially dependent upon the prefrontal cortex and/or the balance between left and right hemisphere functions. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  8. The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications.

    Science.gov (United States)

    Scioli-Salter, Erica R; Forman, Daniel E; Otis, John D; Gregor, Kristin; Valovski, Ivan; Rasmusson, Ann M

    2015-04-01

    Chronic pain and posttraumatic stress disorder (PTSD) are disabling conditions that affect biological, psychological, and social domains of functioning. Clinical research demonstrates that patients who are affected by chronic pain and PTSD in combination experience greater pain, affective distress, and disability than patients with either condition alone. Additional research is needed to delineate the interrelated pathophysiology of chronic pain and PTSD, with the goal of facilitating more effective therapies to treat both conditions more effectively; current treatment strategies for chronic pain associated with PTSD have limited efficacy and place a heavy burden on patients, who must visit various specialists to manage these conditions separately. This article focuses on neurobiological factors that may contribute to the coprevalence and synergistic interactions of chronic pain and PTSD. First, we outline how circuits that mediate emotional distress and physiological threat, including pain, converge. Secondly, we discuss specific neurobiological mediators and modulators of these circuits that may contribute to chronic pain and PTSD symptoms. For example, neuropeptide Y, and the neuroactive steroids allopregnanolone and pregnanolone (together termed ALLO) have antistress and antinociceptive properties. Reduced levels of neuropeptide Y and ALLO have been implicated in the pathophysiology of both chronic pain and PTSD. The potential contribution of opioid and cannabinoid system factors also will be discussed. Finally, we address potential novel methods to restore the normal function of these systems. Such novel perspectives regarding disease and disease management are vital to the pursuit of relief for the many individuals who struggle with these disabling conditions.

  9. Neurobiologic Correlates of Attention and Memory Deficits Following Critical Illness in Early Life.

    Science.gov (United States)

    Schiller, Raisa M; IJsselstijn, Hanneke; Madderom, Marlous J; Rietman, André B; Smits, Marion; van Heijst, Arno F J; Tibboel, Dick; White, Tonya; Muetzel, Ryan L

    2017-10-01

    Survivors of critical illness in early life are at risk of long-term-memory and attention impairments. However, their neurobiologic substrates remain largely unknown. A prospective follow-up study. Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands. Thirty-eight school-age (8-12 yr) survivors of neonatal extracorporeal membrane oxygenation and/or congenital diaphragmatic hernia with an intelligence quotient greater than or equal to 80 and a below average score (z score ≤ -1.5) on one or more memory tests. None. Intelligence, attention, memory, executive functioning, and visuospatial processing were assessed and compared with reference data. White matter microstructure and hippocampal volume were assessed using diffusion tensor imaging and structural MRI, respectively. Global fractional anisotropy was positively associated with selective attention (β = 0.53; p = 0.030) and sustained attention (β = 0.48; p = 0.018). Mean diffusivity in the left parahippocampal region of the cingulum was negatively associated with visuospatial memory, both immediate (β = -0.48; p = 0.030) and delayed recall (β = -0.47; p = 0.030). Mean diffusivity in the parahippocampal region of the cingulum was negatively associated with verbal memory delayed recall (left: β = -0.52, p = 0.021; right: β = -0.52, p = 0.021). Hippocampal volume was positively associated with verbal memory delayed recall (left: β = 0.44, p = 0.037; right: β = 0.67, p = 0.012). Extracorporeal membrane oxygenation treatment or extracorporeal membrane oxygenation type did not influence the structure-function relationships. Our findings indicate specific neurobiologic correlates of attention and memory deficits in school-age survivors of neonatal extracorporeal membrane oxygenation and congenital diaphragmatic hernia. A better understanding of the neurobiology following critical illness, both in early and in adult life, may lead to earlier identification of patients at risk for impaired

  10. THE NEUROBIOLOGICAL, SOCIAL AND EVOLUTIONARY ASPECTS OF INTER PERSONAL ATTRACTION

    OpenAIRE

    Smrithi; Devdas; Ashok; Meghashree; Aarathi

    2015-01-01

    Interpersonal Attraction is the attraction between two people, which leads to friendships and even romantic relationships. Although Interpersonal Attraction has been a long - standing concept, only recently it is being studied regarding its neurobiological and socio evolutionary basis. It is now a major area of research in Social as well as Evolutionary Psychology.

  11. Neurobiological indicators of disinhibition in posttraumatic stress disorder.

    Science.gov (United States)

    Sadeh, Naomi; Spielberg, Jeffrey M; Miller, Mark W; Milberg, William P; Salat, David H; Amick, Melissa M; Fortier, Catherine B; McGlinchey, Regina E

    2015-08-01

    Deficits in impulse control are increasingly recognized in association with posttraumatic stress disorder (PTSD). To our further understanding of the neurobiology of PTSD-related disinhibition, we examined alterations in brain morphology and network connectivity associated with response inhibition failures and PTSD severity. The sample consisted of 189 trauma-exposed Operation Enduring Freedom/Operation Iraqi Freedom veterans (89% male, ages 19-62) presenting with a range of current PTSD severity. Disinhibition was measured using commission errors on a Go/No-Go (GNG) task with emotional stimuli, and PTSD was assessed using a measure of current symptom severity. Whole-brain vertex-wise analyses of cortical thickness revealed two clusters associated with PTSD-related disinhibition (Monte Carlo cluster corrected P < 0.05). The first cluster included portions of right inferior and middle frontal gyri and frontal pole. The second cluster spanned portions of left medial orbital frontal, rostral anterior cingulate, and superior frontal gyrus. In both clusters, commission errors were associated with reduced cortical thickness at higher (but not lower) levels of PTSD symptoms. Resting-state functional magnetic resonance imaging analyses revealed alterations in the functional connectivity of the right frontal cluster. Together, study findings suggest that reductions in cortical thickness in regions involved in flexible decision-making, emotion regulation, and response inhibition contribute to impulse control deficits in PTSD. Furthermore, aberrant coupling between frontal regions and networks involved in selective attention, memory/learning, and response preparation suggest disruptions in functional connectivity may also play a role. © 2015 Wiley Periodicals, Inc.

  12. Bodily Intimacy and its Neurobiological Foundations

    Directory of Open Access Journals (Sweden)

    Jesús Conill

    2017-02-01

    Full Text Available The first part of this study stresses the importance of intimacy for human life and defends the biological standpoint against the functionalist computational stance. This is based on the concept of bodily subjectivity in Nietzsche, bodily, emotional and spiritual intimacy in Ortega y Gasset, and bodily and personal intimacy in Zubiri. The second part sets forth a significant selection taken from studies on the neurobiological foundations of bodily intimacy, reaching beyond sterile reductionisms: its possible neuronal substrate (the neurology of intimacy?, the brain as selectional system, mirror neurons, synaesthesia and neurophenomenology. It ends by putting forward the problem of the power of intimacy, the conflict between this and the reputation.

  13. Neurobiological Adaptations to Violence across Development

    Science.gov (United States)

    Mead, Hilary K.; Beauchaine, Theodore P.; Shannon, Katherine E.

    2009-01-01

    Adaptation to violent environments across development involves a multitude of cascading effects spanning many levels of analysis from genes to behavior. In this review, we (a) examine the potentiating effects of violence on genetic vulnerabilities and the functioning of neurotransmitter systems in producing both internalizing and externalizing psychopathology, (b) consider the impact of violence on the developing human stress and startle responses, and (c) brain development including the hippocampus and prefrontal cortex. This review integrates literature on the developmental effects of violence on rodents, non-human primates, and humans. Many neurobiological changes that are adaptive for survival in violent contexts become maladaptive in other environments, conferring life-long risk for psychopathology. PMID:20102643

  14. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models.

    Science.gov (United States)

    Johnson, Alexander W

    2018-02-01

    Ingestive behavior is controlled by multiple distinct peripheral and central physiological mechanisms that ultimately determine whether a particular food should be accepted or avoided. As rodents consume a fluid they display stereotyped rhythmic tongue movements, and by analyzing the temporal distribution of pauses of licking, it is possible through analyses of licking microstructure to uncover dissociable evaluative and motivational variables that contribute to ingestive behavior. The mean number of licks occurring within each burst of licking (burst and cluster size) reflects the palatability of the consumed solution, whereas the frequency of initiating novel bouts of licking behavior (burst and cluster number) is dependent upon the degree of gastrointestinal inhibition that accrues through continued fluid ingestion. This review describes the analysis of these measures within a context of the behavioral variables that come to influence the acceptance or avoidance of a fluid, and the neurobiological mechanisms that underlie alterations in the temporal distribution of pauses of licks. The application of these studies to models of obesity in animals is also described. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. [Is it still the "royal way"? The dream as a junction of neurobiology and psychoanalysis].

    Science.gov (United States)

    Simon, Mária

    2011-01-01

    Some decades ago the dream seemed to be randomly generated by brain stem mechanisms in the cortical and subcortical neuronal networks. However, most recent empirical data, studies on brain lesions and functional neuroimaging results have refuted this theory. Several data support that motivation pathways, memory systems, especially implicit, emotional memory play an important role in dream formation. This essay reviews how the results of neurobiology and cognitive psychology can be fitted into the theoretical frameworks and clinical practice of the psychoanalysis. The main aim is to demonstrate that results of neurobiology and empirical observations of psychoanalysis are complementary rather than contradictory.

  16. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness

    OpenAIRE

    Vago, David R.; Silbersweig, David A.

    2012-01-01

    Mindfulness—as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and cr...

  17. Self-Awareness, Self-Regulation, and Self-Transcendence (S-ART): A Framework for Understanding the Neurobiological Mechanisms of Mindfulness

    OpenAIRE

    David R. Vago; David R. Vago; Silbersweig A. David; Silbersweig A. David

    2012-01-01

    Mindfulness - as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and ...

  18. A tribute to Peter H Seeburg (1944-2016: a founding father of molecular neurobiology

    Directory of Open Access Journals (Sweden)

    William Wisden

    2016-11-01

    Full Text Available On 22nd August 2016, the fields of molecular neurobiology and endocrinology lost one of their pioneers and true giants, Peter Seeburg, who died aged 72, a day after his birthday. His funeral ceremony took place in Heidelberg where he had worked since 1988, first as a professor at the University of Heidelberg (ZMBH and then since 1996 as a director of the Max Plank Institute (Dept. of Molecular Neurobiology. Many of Peter’s former colleagues, students and postdocs came together with his family members to celebrate his life. Touching eulogies were given by no less than two Nobel prize winners: the physiologist Bert Sakmann, who collaborated with Peter for many years, and the developmental biologist Christiane Nüsslein-Vollhard, who was a friend and fellow PhD student with Peter. His professional contemporary, Heinrich Betz, gave a warm and endearing assessment of Peter’s contributions to the field of molecular neurobiology. One of Peter’s sons, Daniel P. Seeburg, now a neuroradiologist in the USA, and biotechnologist Karoly Nikolics, one of Peter’s friends from the days of Genentech, both emotionally summed up the warm and intense character of the man that many of his former students and postdocs knew.

  19. Interacting Neural Processes of Feeding, Hyperactivity, Stress, Reward, and the Utility of the Activity-Based Anorexia Model of Anorexia Nervosa.

    Science.gov (United States)

    Ross, Rachel A; Mandelblat-Cerf, Yael; Verstegen, Anne M J

    Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.

  20. The neurobiology of reward and cognitive control systems and their role in incentivizing health behavior.

    Science.gov (United States)

    Garavan, Hugh; Weierstall, Karen

    2012-11-01

    This article reviews the neurobiology of cognitive control and reward processes and addresses their role in the treatment of addiction. We propose that the neurobiological mechanisms involved in treatment may differ from those involved in the etiology of addiction and consequently are worthy of increased investigation. We review the literature on reward and control processes and evidence of differences in these systems in drug addicted individuals. We also review the relatively small literature on neurobiological predictors of abstinence. We conclude that prefrontal control systems may be central to a successful recovery from addiction. The frontal lobes have been shown to regulate striatal reward-related processes, to be among the regions that predict treatment outcome, and to show elevated functioning in those who have succeeded in maintaining abstinence. The evidence of the involvement of the frontal lobes in recovery is consistent with the hypothesis that recovery is a distinct process that is more than the undoing of those processes involved in becoming addicted and a return to the pre-addiction state of the individual. The extent to which these frontal systems are engaged by treatment interventions may contribute to their efficacy. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The neurobiology of pleasure, reward processes, addiction and their health implications.

    Science.gov (United States)

    Esch, Tobias; Stefano, George B

    2004-08-01

    Modern science begins to understand pleasure as a potential component of salutogenesis. Thereby, pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. Further, health implications related to pleasurable activities are analyzed. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors, i.e., motivational toxicity. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, endorphin and endogenous morphinergic mechanisms may play a role. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways. Thus, the concrete outcome of pleasant experiences may be a question of dose. Moderate pleasurable experiences are able to enhance biological flexibility and health. Hence, pleasure can be a resistance resource or may serve salutogenesis. Natural rewards are mediated by sensory organ stimulation, thereby exhibiting a potential association with complementary medical approaches. Trust and belief can be part of a self-healing potential connected with rewarding stimuli. Further, the placebo response physiologically resembles pleasure phenomena, since both involve brain's reward circuitry stimulation and subjective feelings of well-being. Pleasurable activities can stimulate

  2. Neurobiological response to EMDR therapy in clients with different psychological traumas

    Directory of Open Access Journals (Sweden)

    MARCO ePAGANI

    2015-10-01

    Full Text Available We assessed cortical activation differences in real-time upon exposure to traumatic memory between two distinct groups of psychologically traumatised clients also in comparison with healthy controls. We used electroencephalography (EEG to compare neuronal activation throughout the bilateral stimulation phase of Eye Movement Desensitization and Reprocessing (EMDR sessions. We compared activation between the first (T0 and the last (T1 session, the latter performed after processing the index trauma. The group including all clients showed significantly higher cortical activity in orbito-frontal cortex at T0 shifting at T1 towards posterior associative regions. However the subgroup of clients with chronic exposure to the traumatic event showed a cortical firing at both stages which was closer to that of controls. For the first time EEG monitoring enabled to disclose neurobiological differences between groups of clients with different trauma histories during the reliving of the traumatic event. Cortical activations in clients chronically exposed to traumatic memories were moderate, suggesting an association between social and environmental contexts with the neurobiological response to trauma exposure and psychotherapy.

  3. Introduction to the special section: Mind and matter: New insights on the role of parental cognitive and neurobiological functioning in process models of parenting.

    Science.gov (United States)

    Deater-Deckard, Kirby; Sturge-Apple, Melissa L

    2017-02-01

    This is an introduction to the special section on neurobiological and neurocognitive factors in parenting. The collection of 11 papers are published in 2 serial subsections of consecutive issues of the journal. The science they present captures the leading edge of work examining the interface of cognitive, emotional, behavioral, and physiological self-regulation in parenting and how these operate to protect or increment risk for poorer parenting among families who face chronic stressors (e.g., poverty, single parenthood, homelessness, mood disorders). Samples span the poor to the affluent, many ethnicities, several nationalities, and a wide variety of geographic locations. The studies also are diverse in the methods employed, spanning behavioral and questionnaire indicators of executive function and effortful control, attentional and social-cognitive biases, and psychophysiology. Taken together, the papers present clear and compelling evidence for the crucial role of parental neurobiological and neurocognitive deficits and strengths in the etiology of distressed and resilient parenting. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.

    Science.gov (United States)

    Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni

    2015-11-01

    Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The neurobiology of falls.

    Science.gov (United States)

    Fasano, Alfonso; Plotnik, Meir; Bove, Francesco; Berardelli, Alfredo

    2012-12-01

    Falling is a major clinical problem; especially, in elderly population as it often leads to fractures, immobilization, poor quality of life and life-span reduction. Given the growing body of evidences on the physiopathology of balance disorders in humans, in recent years the approach of research on falls has completely changed and new instruments and new definitions have been formulated. Among them, the definition of "idiopathic faller" (i.e. no overt cause for falling in a given subject) represented a milestone in building the "science of falling". This review deals with the new determinants of the neurobiology of falling: (1) the role of motor impairment and particularly of those "mild parkinsonian signs" frequently detectable in elderly subjects, (2) the role of executive and attentive resources when coping with obstacles, (3) the role of vascular lesions in "highest level gait disorder" (a condition tightly connected with senile gait, cautious gait and frailty), (4) the role of the failure of automaticity or inter-limbs coordination/symmetry during walking and such approach would definitely help the development of screening instrument for subjects at risk (still lacking in present days). This translational approach will lead to the development of specific therapeutic interventions.

  6. Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning.

    Science.gov (United States)

    Todd, Travis P; Vurbic, Drina; Bouton, Mark E

    2014-02-01

    This article reviews research on the behavioral and neural mechanisms of extinction as it is represented in both Pavlovian and instrumental learning. In Pavlovian extinction, repeated presentation of a signal without its reinforcer weakens behavior evoked by the signal; in instrumental extinction, repeated occurrence of a voluntary action without its reinforcer weakens the strength of the action. In either case, contemporary research at both the behavioral and neural levels of analysis has been guided by a set of extinction principles that were first generated by research conducted at the behavioral level. The review discusses these principles and illustrates how they have informed the study of both Pavlovian and instrumental extinction. It shows that behavioral and neurobiological research efforts have been tightly linked and that their results are readily integrated. Pavlovian and instrumental extinction are also controlled by compatible behavioral and neural processes. Since many behavioral effects observed in extinction can be multiply determined, we suggest that the current close connection between behavioral-level and neural-level analyses will need to continue. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Formation and adaptation of memory : Neurobiological mechanisms underlying learning and reversal learning

    NARCIS (Netherlands)

    Havekes, Robbert

    2008-01-01

    The hippocampus is a brain region that plays a critical role in memory formation. In addition, it has been suggested that this brain region is important for ‘updating’ information that is incorrect or outdated. The main goal of this thesis project was to investigate which neurobiological processes

  8. [Neurobiological aspects of personality disorders and emotional instability].

    Science.gov (United States)

    Petrovic, Predrag

    2016-12-06

    Neurobiological aspects of personality disorders and emotional instability ADHD and mental disorders encompassing emotional instability such as emotionally unstable personality disorder and antisocial personality disorder can potentially be explained by a suboptimal regulation of information processing in the brain. ADHD involves suboptimal function of non-emotional attentional regulatory processes and emotional instability involves suboptimal emotional regulation. A network including prefrontal areas, anterior cingulate cortex, basal ganglia and specific neuromodulatory systems such as the dopamine system are dysfunctional in both ADHD and emotional instability. One might suggest that a dimensional view better describes these mental states than categorical diagnoses.

  9. Diagnosis, treatment, and neurobiology of autism in children.

    Science.gov (United States)

    Lainhart, J E; Piven, J

    1995-08-01

    Autism is a developmental neuropsychiatric disorder defined by the presence of social and communicative deficits, restricted and repetitive behaviors and interests, and a characteristic course. Research suggests that hereditary factors play a principal role in the etiology of most cases. A phenotype broader than autism, including milder social and language-based cognitive deficits, appears to be inherited. Although the pathogenesis is unknown, neurobiologic mechanisms clearly underlie the disorder. Neuropathologic studies have demonstrated abnormalities in limbic structures, the cerebellum, and the cortex. New advances in behavioral therapies and pharmacologic treatment are important components of successful multidisciplinary treatment of this disorder.

  10. A systematic review of neurobiological and clinical features of mindfulness meditations.

    Science.gov (United States)

    Chiesa, A; Serretti, A

    2010-08-01

    Mindfulness meditation (MM) practices constitute an important group of meditative practices that have received growing attention. The aim of the present paper was to systematically review current evidence on the neurobiological changes and clinical benefits related to MM practice in psychiatric disorders, in physical illnesses and in healthy subjects. A literature search was undertaken using Medline, ISI Web of Knowledge, the Cochrane collaboration database and references of retrieved articles. Controlled and cross-sectional studies with controls published in English up to November 2008 were included. Electroencephalographic (EEG) studies have revealed a significant increase in alpha and theta activity during meditation. Neuroimaging studies showed that MM practice activates the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) and that long-term meditation practice is associated with an enhancement of cerebral areas related to attention. From a clinical viewpoint, Mindfulness-Based Stress Reduction (MBSR) has shown efficacy for many psychiatric and physical conditions and also for healthy subjects, Mindfulness-Based Cognitive Therapy (MBCT) is mainly efficacious in reducing relapses of depression in patients with three or more episodes, Zen meditation significantly reduces blood pressure and Vipassana meditation shows efficacy in reducing alcohol and substance abuse in prisoners. However, given the low-quality designs of current studies it is difficult to establish whether clinical outcomes are due to specific or non-specific effects of MM. Despite encouraging findings, several limitations affect current studies. Suggestions are given for future research based on better designed methodology and for future directions of investigation.

  11. Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention.

    Science.gov (United States)

    Lemasson, B H; Anderson, J J; Goodwin, R A

    2009-12-21

    We explore mechanisms associated with collective animal motion by drawing on the neurobiological bases of sensory information processing and decision-making. The model uses simplified retinal processes to translate neighbor movement patterns into information through spatial signal integration and threshold responses. The structure provides a mechanism by which individuals can vary their sets of influential neighbors, a measure of an individual's sensory load. Sensory loads are correlated with group order and density, and we discuss their adaptive values in an ecological context. The model also provides a mechanism by which group members can identify, and rapidly respond to, novel visual stimuli.

  12. Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment

    Directory of Open Access Journals (Sweden)

    Søren S. Olesen

    2017-12-01

    Conclusion:. Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.

  13. Neurobiological Phenotypes Associated with a Family History of Alcoholism

    Science.gov (United States)

    Cservenka, Anita

    2015-01-01

    Background Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. Methods This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. Results Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. Conclusions It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults. PMID:26559000

  14. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies

    OpenAIRE

    Guendelman, Simón; Medeiros, Sebastián; Rampes, Hagen

    2017-01-01

    There is increasing interest in the beneficial clinical effects of mindfulness-based interventions (MBIs). Research has demonstrated their efficacy in a wide range of psychological conditions characterized by emotion dysregulation. Neuroimaging studies have evidenced functional and structural changes in a myriad of brain regions mainly involved in attention systems, emotion regulation, and self-referential processing. In this article we review studies on psychological and neurobiological corr...

  15. Action control processes in autism spectrum disorder--insights from a neurobiological and neuroanatomical perspective.

    Science.gov (United States)

    Chmielewski, Witold X; Beste, Christian

    2015-01-01

    Autism spectrum disorders (ASDs) encompass a range of syndromes that are characterized by social interaction impairments, verbal and nonverbal communication difficulties, and stereotypic or repetitive behaviours. Although there has been considerable progress in understanding the mechanisms underlying the changes in the 'social' and 'communicative' aspects of ASD, the neurofunctional architecture of repetitive and stereotypic behaviours, as well as other cognitive domains related to response and action control, remain poorly understood. Based on the findings of neurobiological and neuroanatomical alterations in ASD and the functional neuroanatomy and neurobiology of different action control functions, we emphasize that changes in action control processes, including response inhibition, conflict and response monitoring, task switching, dual-tasking, motor timing, and error monitoring, are important facets of ASD. These processes must be examined further to understand the executive control deficits in ASD that are related to stereotypic or repetitive behaviours as a major facet of ASD. The review shows that not all domains of action control are strongly affected in ASD. Several factors seem to determine the consistency with which alterations in cognitive control are reported. These factors relate to the relevance of neurobiological changes in ASD for the cognitive domains examined and in how far action control relies upon the adjustment of prior experience. Future directions and hypotheses are outlined that may guide basic and clinical research on action control in ASD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Love is more than just a kiss : A neurobiological perspective on love and affection

    NARCIS (Netherlands)

    de Boer, A.; van Buel, E. M.; ter Horst, G. J.

    2012-01-01

    Love, attachment, and truth of human monogamy have become important research themes in neuroscience. After the introduction of functional Magnetic Resonance Imaging (fMRI) and Positron Emission Tomography (PET), neuroscientists have demonstrated increased interest in the neurobiology and

  17. Trait and neurobiological correlates of individual differences in dream recall and dream content.

    Science.gov (United States)

    Blagrove, Mark; Pace-Schott, Edward F

    2010-01-01

    Individuals differ greatly in their dream recall frequency, in their incidence of recalling types of dreams, such as nightmares, and in the content of their dreams. This chapter reviews work on the waking life correlates of these differences between people in their experience of dreaming and reviews some of the neurobiological correlates of these individual differences. The chapter concludes that despite there being trait-like aspects of general dream recall and of dream content, very few psychometrically assessed correlates for dream recall frequency and dream content have been found. More successful has been the investigation of correlates of frequency of particular types of dreams, such as nightmares and lucid dreams, and also of how waking-life experience is associated with dream content. There is also potential in establishing neurobiological correlates of individual differences in dream recall and dream content, and recent work on this is reviewed. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. On tridimensional rip current modeling

    Science.gov (United States)

    Marchesiello, Patrick; Benshila, Rachid; Almar, Rafael; Uchiyama, Yusuke; McWilliams, James C.; Shchepetkin, Alexander

    2015-12-01

    Do lateral shear instabilities of nearshore circulation account for a substantial part of Very Low-Frequency (VLF) variability? If yes, it would promote stirring and mixing of coastal waters and surf-shelf exchanges. Another question is whether tridimensional transient processes are important for instability generation. An innovative modeling system with tridimensional wave-current interactions was designed to investigate transient nearshore currents and interactions between nearshore and innershelf circulations. We present here some validation of rip current modeling for the Aquitanian coast of France, using in-situ and remote video sensing. We then proceed to show the benefits of 3D versus 2D (depth-mean flow) modeling of rip currents and their low-frequency variability. It appears that a large part of VLF motions is due to intrinsic variability of the tridimensional flow. 3D models may thus provide a valuable, only marginally more expensive alternative to conventional 2D approaches that miss the vertical flow structure and its nonlinear interaction with the depth-averaged flow.

  19. Opposite brain emotion-regulation patterns in identity states of dissociative identity disorder: a PET study and neurobiological model.

    Science.gov (United States)

    Reinders, Antje A T S; Willemsen, Antoon T M; den Boer, Johan A; Vos, Herry P J; Veltman, Dick J; Loewenstein, Richard J

    2014-09-30

    Imaging studies in posttraumatic stress disorder (PTSD) have shown differing neural network patterns between hypo-aroused/dissociative and hyper-aroused subtypes. Since dissociative identity disorder (DID) involves different emotional states, this study tests whether DID fits aspects of the differing brain-activation patterns in PTSD. While brain activation was monitored using positron emission tomography, DID individuals (n=11) and matched DID-simulating healthy controls (n=16) underwent an autobiographic script-driven imagery paradigm in a hypo-aroused and a hyper-aroused identity state. Results were consistent with those previously found in the two PTSD subtypes for the rostral/dorsal anterior cingulate, the prefrontal cortex, and the amygdala and insula, respectively. Furthermore, the dissociative identity state uniquely activated the posterior association areas and the parahippocampal gyri, whereas the hyper-aroused identity state uniquely activated the caudate nucleus. Therefore, we proposed an extended PTSD-based neurobiological model for emotion modulation in DID: the hypo-aroused identity state activates the prefrontal cortex, cingulate, posterior association areas and parahippocampal gyri, thereby overmodulating emotion regulation; the hyper-aroused identity state activates the amygdala and insula as well as the dorsal striatum, thereby undermodulating emotion regulation. This confirms the notion that DID is related to PTSD as hypo-aroused and hyper-arousal states in DID and PTSD are similar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Biological sex affects the neurobiology of autism

    Science.gov (United States)

    Lombardo, Michael V.; Suckling, John; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C. L.; Craig, Michael C.; Murphy, Declan G. M.; Bullmore, Edward T.; Baron-Cohen, Simon

    2013-01-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the ‘extreme male brain’ theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce

  1. Circulation-based Modeling of Gravity Currents

    Science.gov (United States)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related

  2. Neurobiological phenotypes associated with a family history of alcoholism.

    Science.gov (United States)

    Cservenka, Anita

    2016-01-01

    Individuals with a family history of alcoholism are at much greater risk for developing an alcohol use disorder (AUD) than youth or adults without such history. A large body of research suggests that there are premorbid differences in brain structure and function in family history positive (FHP) individuals relative to their family history negative (FHN) peers. This review summarizes the existing literature on neurobiological phenotypes present in FHP youth and adults by describing findings across neurophysiological and neuroimaging studies. Neuroimaging studies have shown FHP individuals differ from their FHN peers in amygdalar, hippocampal, basal ganglia, and cerebellar volume. Both increased and decreased white matter integrity has been reported in FHP individuals compared with FHN controls. Functional magnetic resonance imaging studies have found altered inhibitory control and working memory-related brain response in FHP youth and adults, suggesting neural markers of executive functioning may be related to increased vulnerability for developing AUDs in this population. Additionally, brain activity differences in regions involved in bottom-up reward and emotional processing, such as the nucleus accumbens and amygdala, have been shown in FHP individuals relative to their FHN peers. It is critical to understand premorbid neural characteristics that could be associated with cognitive, reward-related, or emotional risk factors that increase risk for AUDs in FHP individuals. This information may lead to the development of neurobiologically informed prevention and intervention studies focused on reducing the incidence of AUDs in high-risk youth and adults. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Internet Addiction in adolescence: Neurobiological, psychosocial and clinical issues.

    Science.gov (United States)

    Cerniglia, L; Zoratto, F; Cimino, S; Laviola, G; Ammaniti, M; Adriani, W

    2017-05-01

    Despite it has not been formally included in DSM-5 as a disorder, 'Internet addiction (IA)' has become a worldwide issue. It can be broadly defined as a non-chemical, behavioral addiction, which involves human-machine interaction. We pinpoint it as an "instrumental" form of social interaction (i.e. mediated by machines), a notion that appears useful for the sake of possible preclinical modeling. The features of Internet use reveals as addictive when this comes at the expense of genuine real-life sociability, with an overlap towards the hikikomori phenomenon (i.e., extreme retreat to one's own room). Due to the specific neuro-developmental plasticity in adolescence, IA poses risks to youths' mental health, and may likely produce negative consequences in everyday life. The thwarted development of adolescents' identity, self-image and adaptive social relationships is discussed: the IA adolescents often suffer loss of control, feelings of anger, symptoms of distress, social withdrawal, and familial conflicts. Further, more severe clinical conditions are also associated to IA, such as dysthymic, bipolar, affective, social-anxiety disorders, as well as major depression. This paper overviews the literature on IA, from neuro-biological, psycho-social and clinical standpoints, taking into account recent debates on diagnostic criteria, nosographic label and assessment tools. Neuroimaging data and neurochemical regulations are illustrated with links to pathogenetic hypotheses, which are amenable to validation through innovative preclinical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review.

    OpenAIRE

    Hechtman, L

    1994-01-01

    This paper reviews key studies that have addressed genetic and neurobiological aspects in attention deficit hyperactive disorder. Genetic studies can be divided into three distinct types: twin, adoption, and family studies. Evidence for a particular mode of inheritance and the possible specific genetic abnormalities are also explored. There is strong evidence of genetic involvement in this condition, although a clear-cut mode of inheritance and specific genetic abnormalities are yet to be det...

  5. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  6. Self-Awareness, Self-Regulation, and Self-Transcendence (S-ART: A Framework for Understanding the Neurobiological Mechanisms of Mindfulness

    Directory of Open Access Journals (Sweden)

    David R. Vago

    2012-10-01

    Full Text Available Mindfulness - as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness, an ability to effectively modulate one’s behavior (self-regulation, and the development of a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence. This framework of self-awareness, regulation, and transcendence (S-ART illustrates a method for becoming aware of the conditions that cause (and remove distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  7. Self-awareness, self-regulation, and self-transcendence (S-ART): a framework for understanding the neurobiological mechanisms of mindfulness.

    Science.gov (United States)

    Vago, David R; Silbersweig, David A

    2012-01-01

    Mindfulness-as a state, trait, process, type of meditation, and intervention has proven to be beneficial across a diverse group of psychological disorders as well as for general stress reduction. Yet, there remains a lack of clarity in the operationalization of this construct, and underlying mechanisms. Here, we provide an integrative theoretical framework and systems-based neurobiological model that explains the mechanisms by which mindfulness reduces biases related to self-processing and creates a sustainable healthy mind. Mindfulness is described through systematic mental training that develops meta-awareness (self-awareness), an ability to effectively modulate one's behavior (self-regulation), and a positive relationship between self and other that transcends self-focused needs and increases prosocial characteristics (self-transcendence). This framework of self-awareness, -regulation, and -transcendence (S-ART) illustrates a method for becoming aware of the conditions that cause (and remove) distortions or biases. The development of S-ART through meditation is proposed to modulate self-specifying and narrative self-networks through an integrative fronto-parietal control network. Relevant perceptual, cognitive, emotional, and behavioral neuropsychological processes are highlighted as supporting mechanisms for S-ART, including intention and motivation, attention regulation, emotion regulation, extinction and reconsolidation, prosociality, non-attachment, and decentering. The S-ART framework and neurobiological model is based on our growing understanding of the mechanisms for neurocognition, empirical literature, and through dismantling the specific meditation practices thought to cultivate mindfulness. The proposed framework will inform future research in the contemplative sciences and target specific areas for development in the treatment of psychological disorders.

  8. Neurobiological Correlates and Predictors of Two Distinct Personality Trait Pathways to Escalated Alcohol Use

    Directory of Open Access Journals (Sweden)

    Malak Abu Shakra

    2018-01-01

    Interpretation: This double dissociation provides evidence of distinct neurobiological profiles in a priori identified personality trait-based risk groups for AUDs, and links these signatures to clinically relevant substance use outcomes at follow-up. AUD subtypes might benefit from motivationally and personality-specific ameliorative and preventative interventions.

  9. The Influence of Prebiotics on Neurobiology and Behavior.

    Science.gov (United States)

    Kao, A C C; Harty, S; Burnet, P W J

    2016-01-01

    Manipulating the intestinal microbiota for the benefit of the brain is a concept that has become widely acknowledged. Prebiotics are nondigestible nutrients (i.e., fibers, carbohydrates, or various saccharides) that proliferate intrinsic, beneficial gut bacteria, and so provide an alternative strategy for effectively altering the enteric ecosystem, and thence brain function. Rodent studies demonstrating neurobiological changes following prebiotic intake are slowly emerging, and have thus far revealed significant benefits in disease models, including antiinflammatory and neuroprotective actions. There are also compelling data showing the robust and favorable effects of prebiotics on several behavioral paradigms including, anxiety, learning, and memory. At present, studies in humans are limited, though there is strong evidence for prebiotics modulating emotional processes and the neuroendocrine stress response that may underlie the pathophysiology of anxiety. While the mechanistic details linking the enteric microbiota to the central nervous system remain to be elucidated, there are a number of considerations that can guide future studies. These include the modulation of intestinal endocrine systems and inflammatory cascades, as well as direct interaction with the enteric nervous system and gut mucosa. Our knowledge of gut microbiome-brain communication is steadily progressing, and thorough investigations validating the use of prebiotics in the treatment of neuropsychiatric disorders would be highly valued and are encouraged. © 2016 Elsevier Inc. All rights reserved.

  10. Student-Designed Service-Learning Projects in an Undergraduate Neurobiology Course

    Directory of Open Access Journals (Sweden)

    Katharine V. Northcutt

    2015-12-01

    Full Text Available One of the challenges in teaching a service-learning course is obtaining student buy-in from all students in the course. To circumvent this problem, I have let students in my undergraduate Neurobiology course design their own service-learning projects at the beginning of the semester. Although this can be chaotic because it requires last-minute planning, I have made it successful through facilitating student communication in the classroom, requiring thorough project proposals, meeting with students regularly, and monitoring group progress through written reflection papers. Most of my students have strong opinions about the types of projects that they want to carry out, and many students have used connections that they have already made with local organizations. Almost all projects that students have designed to this point involve teaching basic concepts of neurobiology to children of various ages while simultaneously sparking their interest in science. Through taking ownership of the project and designing it such that it works well with their strengths, interests, and weekly schedule, students have become more engaged in service learning and view it as a valuable experience. Despite some class time being shifted away from more traditional assignments, students have performed equally well in the course, and they are more eager to talk with others about course concepts. Furthermore, the feedback that I have received from community partners has been excellent, and some students have maintained their work with the organizations.

  11. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    Science.gov (United States)

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.

    Science.gov (United States)

    Tarlacı, Sultan; Pregnolato, Massimo

    2016-05-01

    The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and

  13. The Self-Organizing Psyche: Nonlinear and Neurobiological Contributions to Psychoanalysis

    Science.gov (United States)

    Stein, A. H.

    Sigmund Freud attempted to align nineteenth century biology (and the dynamically conservative, continuous, Newtonian mechanics that underlie it) with discontinuous conscious experience. His tactics both set the future course for psychoanalytic development and introduced seemingly intractable complications into its metapsychology. In large part, these arose from what we now recognize were biological errors and dynamical oversimplifications amid his physical assumptions. Their correction, brought about by integrating nonlinear dynamics and neuro-biological research findings with W. Bion's reading of metapsychology, fundamentally supports a psychoanalysis based upon D. W. Winnicott's ideas surrounding play within transitional space.

  14. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    M. Teresa Pinelo-Nava

    2007-04-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  15. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  16. Neurobiology and clinical implications of lucid dreaming.

    Science.gov (United States)

    Mota-Rolim, Sérgio A; Araujo, John F

    2013-11-01

    Several lines of evidence converge to the idea that rapid eye movement sleep (REMS) is a good model to foster our understanding of psychosis. Both REMS and psychosis course with internally generated perceptions and lack of rational judgment, which is attributed to a hyperlimbic activity along with hypofrontality. Interestingly, some individuals can become aware of dreaming during REMS, a particular experience known as lucid dreaming (LD), whose neurobiological basis is still controversial. Since the frontal lobe plays a role in self-consciousness, working memory and attention, here we hypothesize that LD is associated with increased frontal activity during REMS. A possible way to test this hypothesis is to check whether transcranial magnetic or electric stimulation of the frontal region during REMS triggers LD. We further suggest that psychosis and LD are opposite phenomena: LD as a physiological awakening while dreaming due to frontal activity, and psychosis as a pathological intrusion of dream features during wake state due to hypofrontality. We further suggest that LD research may have three main clinical implications. First, LD could be important to the study of consciousness, including its pathologies and other altered states. Second, LD could be used as a therapy for recurrent nightmares, a common symptom of depression and post-traumatic stress disorder. Finally, LD may allow for motor imagery during dreaming with possible improvement of physical rehabilitation. In all, we believe that LD research may clarify multiple aspects of brain functioning in its physiological, altered and pathological states. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Internet gaming addiction: current perspectives.

    Science.gov (United States)

    Kuss, Daria J

    2013-01-01

    In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual's context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that

  18. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies

    Science.gov (United States)

    Davis, Margaret T.; Holmes, Sophie E.; Pietrzak, Robert H.; Esterlis, Irina

    2018-01-01

    Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress. PMID:29862379

  19. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Distracted Brain : The neurobiology and neuropsychology of attention-deficit/hyperactivity problems in the general population

    NARCIS (Netherlands)

    S.E. Mous (Sabine)

    2015-01-01

    markdownabstractThis thesis focuses on the neurobiology and neuropsychology of attention-deficit/hyperactivity problems in the general population. The notion that child psychopathology might be better described within a dimensional framework, rather than with clearly defined diagnostic categories,

  1. Imaging the neurobiological substrate of atypical depression by SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Nardo, Davide [University of Rome La Sapienza, Department of Psychology, Rome (Italy); Jonsson, Cathrine; Larsson, Stig A. [Karolinska University Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Jacobsson, Hans [Karolinska University Hospital, Department of Radiology, Stockholm (Sweden); Gardner, Ann [Karolinska University Hospital Huddinge, Karolinska Institutet, Department of Clinical Neuroscience, Section of Psychiatry, Stockholm (Sweden)

    2007-01-15

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in {sup 99m}Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  2. Imaging the neurobiological substrate of atypical depression by SPECT

    International Nuclear Information System (INIS)

    Pagani, Marco; Salmaso, Dario; Nardo, Davide; Jonsson, Cathrine; Larsson, Stig A.; Jacobsson, Hans; Gardner, Ann

    2007-01-01

    Neurobiological abnormalities underlying atypical depression have previously been suggested. The purpose of this study was to explore differences at functional brain imaging between depressed patients with and without atypical features and healthy controls. Twenty-three out-patients with chronic depressive disorder recruited from a service for patients with audiological symptoms were investigated. Eleven fulfilled the DSM-IV criteria for atypical depression (mood reactivity and at least two of the following: weight gain, hypersomnia, leaden paralysis and interpersonal rejection sensitivity). Twenty-three healthy subjects served as controls. Voxel-based analysis was applied to explore differences in 99m Tc-HMPAO uptake between groups. Patients in the atypical group had a higher prevalence of bilateral hearing impairment and higher depression and somatic distress ratings at the time of SPECT. Significantly higher tracer uptake was found bilaterally in the atypical group as compared with the non-atypicals in the sensorimotor (Brodmann areas, BA1-3) and premotor cortex in the superior frontal gyri (BA6), in the middle frontal cortex (BA8), in the parietal associative cortex (BA5, BA7) and in the inferior parietal lobule (BA40). Significantly lower tracer distribution was found in the right hemisphere in the non-atypicals compared with the controls in BA6, BA8, BA44, BA45 and BA46 in the frontal cortex, in the orbito-frontal cortex (BA11, BA47), in the postcentral parietal cortex (BA2) and in the multimodal association parietal cortex (BA40). The differences found between atypical and non-atypical depressed patients suggest different neurobiological substrates in these patient groups. The putative links with the clinical features of atypical depression are discussed. These findings encourage the use of functional neuroimaging in psychiatric disorders. (orig.)

  3. Internet gaming addiction: current perspectives

    Directory of Open Access Journals (Sweden)

    Kuss DJ

    2013-11-01

    Full Text Available Daria J KussPsychology Research and Behavior Management, Birmingham City University, Birmingham, UKAbstract: In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual's context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive

  4. The Neurobiology of Imagination: Possible Role of Interaction-Dominant Dynamics and Default Mode Network

    Directory of Open Access Journals (Sweden)

    Luigi Francesco Agnati

    2013-05-01

    Full Text Available This work aims at presenting some hypotheses about the potential neurobiological substrate of imagery and imagination. For the present purposes, we will define imagery as the production of mental images associated with previous percepts, and imagination as the faculty of forming mental images of a novel character relating to something that has never been actually experienced by the subject but at a great extent emerges from his inner world.The two processes appear intimately related and imagery can arguably be considered as one of the main components of imagination. In this proposal, we argue that exaptation and redeployment, two basic concepts capturing important aspects of the evolution of biological structures and functions (Anderson 2007, could also be useful in explaining imagery and imagination. As far as imagery is concerned it is proposed that neural structures originally implicated in performing certain functions, e.g. motor actions, can be reused for the imagery of the virtual execution of that function. As far as imagination is concerned we speculate that it can be the result of a tinkering that combines and modifies stored perceptual information and concepts leading to the creation of novel mental objects that are shaped by the subject peculiar inner world. Hence it is related to his self-awareness. The neurobiological substrate of the tinkering process could be found in a hierarchical model of the brain characterized by a multiplicity of functional modules (FMs that can be assembled according to different spatial and temporal scales. Thus, it is surmised that a possible mechanism for the emergence of imagination could be represented by modulatory mechanisms controlling the perviousness of modifiers along the communication channels within and between FMs leading to their dynamically reassembling into novel configurations.

  5. Studying the neurobiology of human social interaction: Making the case for ecological validity.

    Science.gov (United States)

    Hogenelst, Koen; Schoevers, Robert A; aan het Rot, Marije

    2015-01-01

    With this commentary we make the case for an increased focus on the ecological validity of the measures used to assess aspects of human social functioning. Impairments in social functioning are seen in many types of psychopathology, negatively affecting the lives of psychiatric patients and those around them. Yet the neurobiology underlying abnormal social interaction remains unclear. As an example of human social neuroscience research with relevance to biological psychiatry and clinical psychopharmacology, this commentary discusses published experimental studies involving manipulation of the human brain serotonin system that included assessments of social behavior. To date, these studies have mostly been laboratory-based and included computer tasks, observations by others, or single-administration self-report measures. Most laboratory measures used so far inform about the role of serotonin in aspects of social interaction, but the relevance for real-life interaction is often unclear. Few studies have used naturalistic assessments in real life. We suggest several laboratory methods with high ecological validity as well as ecological momentary assessment, which involves intensive repeated measures in naturalistic settings. In sum, this commentary intends to stimulate experimental research on the neurobiology of human social interaction as it occurs in real life.

  6. The Molecular Neurobiology of Twelve Steps Program & Fellowship: Connecting the Dots for Recovery.

    Science.gov (United States)

    Blum, Kenneth; Thompson, Benjamin; Demotrovics, Zsolt; Femino, John; Giordano, John; Oscar-Berman, Marlene; Teitelbaum, Scott; Smith, David E; Roy, A Kennison; Agan, Gozde; Fratantonio, James; Badgaiyan, Rajendra D; Gold, Mark S

    There are some who suggest that alcoholism and drug abuse are not diseases at all and that they are not consequences of a brain disorder as espoused recently by the American Society of Addiction Medicine (ASAM). Some would argue that addicts can quit on their own and moderate their alcohol and drug intake. When they present to a treatment program or enter the 12 Step Program & Fellowship, many addicts finally achieve complete abstinence. However, when controlled drinking fails, there may be successful alternatives that fit particular groups of individuals. In this expert opinion, we attempt to identify personal differences in recovery, by clarifying the molecular neurobiological basis of each step of the 12 Step Program. We explore the impact that the molecular neurobiological basis of the 12 steps can have on Reward Deficiency Syndrome (RDS) despite addiction risk gene polymorphisms. This exploration has already been accomplished in part by Blum and others in a 2013 Springer Neuroscience Brief. The purpose of this expert opinion is to briefly, outline the molecular neurobiological and genetic links, especially as they relate to the role of epigenetic changes that are possible in individuals who regularly attend AA meetings. It begs the question as to whether "12 steps programs and fellowship" does induce neuroplasticity and continued dopamine D2 receptor proliferation despite carrying hypodopaminergic type polymorphisms such as DRD2 A1 allele. "Like-minded" doctors of ASAM are cognizant that patients in treatment without the " psycho-social-spiritual trio ," may not be obtaining the important benefits afforded by adopting 12-step doctrines. Are we better off with coupling medical assisted treatment (MAT) that favors combining dopamine agonist modalities (DAM) as possible histone-deacetylase activators with the 12 steps followed by a program that embraces either one or the other? While there are many unanswered questions, at least we have reached a time when

  7. Students’ mental model in electric current

    Science.gov (United States)

    Pramesti, Y. S.; Setyowidodo, I.

    2018-05-01

    Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.

  8. Mindfulness and Emotion Regulation: Insights from Neurobiological, Psychological, and Clinical Studies

    Science.gov (United States)

    Guendelman, Simón; Medeiros, Sebastián; Rampes, Hagen

    2017-01-01

    There is increasing interest in the beneficial clinical effects of mindfulness-based interventions (MBIs). Research has demonstrated their efficacy in a wide range of psychological conditions characterized by emotion dysregulation. Neuroimaging studies have evidenced functional and structural changes in a myriad of brain regions mainly involved in attention systems, emotion regulation, and self-referential processing. In this article we review studies on psychological and neurobiological correlates across different empirically derived models of research, including dispositional mindfulness, mindfulness induction, MBIs, and expert meditators in relation to emotion regulation. From the perspective of recent findings in the neuroscience of emotion regulation, we discuss the interplay of top-down and bottom-up emotion regulation mechanisms associated with different mindfulness models. From a phenomenological and cognitive perspective, authors have argued that mindfulness elicits a “mindful emotion regulation” strategy; however, from a clinical perspective, this construct has not been properly differentiated from other strategies and interventions within MBIs. In this context we propose the distinction between top-down and bottom-up mindfulness based emotion regulation strategies. Furthermore, we propose an embodied emotion regulation framework as a multilevel approach for understanding psychobiological changes due to mindfulness meditation regarding its effect on emotion regulation. Finally, based on clinical neuroscientific evidence on mindfulness, we open perspectives and dialogues regarding commonalities and differences between MBIs and other psychotherapeutic strategies for emotion regulation. PMID:28321194

  9. Storm-time ring current: model-dependent results

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2012-01-01

    Full Text Available The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT on 6–7 November 1997 and one intense (SymH minimum of −230 nT on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM, in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.

  10. Revisiting Antipsychotic-induced Akathisia: Current Issues and Prospective Challenges

    Science.gov (United States)

    Salem, Haitham; Nagpal, Caesa; Pigott, Teresa; Teixeira, Antonio Lucio

    2017-01-01

    Background: Akathisia continues to be a significant challenge in current neurological and psychiatric practice. Prompt and accurate detection is often difficult and there is a lack of consensus concerning the neurobiological basis of akathisia. No definitive treatment has been established for akathisia despite numerous preclinical and clinical studies. Method: We reviewed antipsychotic-induced akathisia including its clinical presentation, proposed underlying pathophysiology, current and under investigation therapeutic strategies. Conclusion: Despite the initial promise that second generation antipsychotics would be devoid of akathisia effects, this has not been confirmed. Currently, there are limited therapeutic options for the clinical practice and the evidence supporting the most widely used treatments (beta blockers, anticholinergic drugs) is still absent or inconsistent. PMID:27928948

  11. Is it possible to delete a philosophical consciousness? Metaphysical aspects of Ssearle’s neurobiological approach of free will

    Directory of Open Access Journals (Sweden)

    Grujić Snežana

    2016-01-01

    Full Text Available In an effort to adjust his theoretical comprehension to the existing natural-scientific paradigm, Searle develops neurobiological naturalism, an approach which should rely on basic facts obtained from the neuroscience researches of living organisms when solving basic philosophical problems. This paper briefly presents this view’s theory leading to the argumentation that Searle’s point of view is of metaphysical characteristics which is exactly what he was trying to avoid. The metaphysical character of Searle’s neurobiological naturalism has been seen through the problem of free will resulting from his understanding of consciousness. The argumentation is based on an analysis of the concepts, the gap and the self, as well as on possible solutions of the problem of free will (hypothesis 1 and 2.

  12. Implementation is crucial but must be neurobiologically grounded. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    Science.gov (United States)

    Bornkessel-Schlesewsky, Ina; Schlesewsky, Matthias; Small, Steven L.

    2014-09-01

    From the perspective of language, Fitch's [1] claim that theories of cognitive computation should not be separated from those of implementation surely deserves applauding. Recent developments in the Cognitive Neuroscience of Language, leading to the new field of the Neurobiology of Language [2-4], emphasise precisely this point: rather than attempting to simply map cognitive theories of language onto the brain, we should aspire to understand how the brain implements language. This perspective resonates with many of the points raised by Fitch in his review, such as the discussion of unhelpful dichotomies (e.g., Nature versus Nurture). Cognitive dichotomies and debates have repeatedly turned out to be of limited usefulness when it comes to understanding language in the brain. The famous modularity-versus-interactivity and dual route-versus-connectionist debates are cases in point: in spite of hundreds of experiments using neuroimaging (or other techniques), or the construction of myriad computer models, little progress has been made in their resolution. This suggests that dichotomies proposed at a purely cognitive (or computational) level without consideration of biological grounding appear to be "asking the wrong questions" about the neurobiology of language. In accordance with these developments, several recent proposals explicitly consider neurobiological constraints while seeking to explain language processing at a cognitive level (e.g. [5-7]).

  13. Avatar's neurobiological traces in the self-concept of massively multiplayer online role-playing game (MMORPG) addicts.

    Science.gov (United States)

    Dieter, Julia; Hill, Holger; Sell, Madlen; Reinhard, Iris; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl; Leménager, Tagrid

    2015-02-01

    Psychometric studies suggest that observed self-concept deficits in addicted massively multiplayer online role-playing game (MMORPG) are compensated through the replacement of their ideal (i.e., how an individual would like to be) by their own avatar (i.e., graphical agent in the virtual world). Neurobiological studies indicate that increased identification with their own avatar in regular MMORPG gamers is possibly reflected by enhanced avatar-referential brain activation in the left angular gyrus (AG). However, the neurobiological correlates reflecting the relations of the avatar to addicted gamers' self and ideal are still unexplored. Therefore, we compare these relations between addicted and nonaddicted MMORPG gamers. A sample of n = 15 addicted and n = 17 nonaddicted players underwent functional MRI (fMRI) while completing a Giessen-Test (GT)-derived paradigm assessing self-, ideal-, and avatar-related self-concept domains. Neurobiological analyses included the comparisons avatar versus self, avatar versus ideal, and avatar versus self, ideal. Psychometrically, addicts showed significantly lower scores on the self-concept subscale of 'social resonance,' that is, social popularity. In all avatar-related contrasts, within-group comparisons showed addicted players to exhibit significantly higher brain activations in the left AG. The between-groups comparisons revealed avatar-related left AG hyperactivations in addicts. Our results may suggest that addicted MMORPG players identify significantly more with their avatar than nonaddicted gamers. The concrete avatar might increasingly replace the rather abstract ideal in the transition from normal- controlled to addictive-compulsive MMORPG usage. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  14. Neurobiology of empathy and callousness: implications for the development of antisocial behavior.

    Science.gov (United States)

    Shirtcliff, Elizabeth A; Vitacco, Michael J; Graf, Alexander R; Gostisha, Andrew J; Merz, Jenna L; Zahn-Waxler, Carolyn

    2009-01-01

    Information on the neurobiology of empathy and callousness provides clinicians with an opportunity to develop sophisticated understanding of mechanisms underpinning antisocial behavior and its counterpart, moral decision-making. This article provides an integrated in-depth review of hormones (e.g. peripheral steroid hormones such as cortisol) and brain structures (e.g. insula, anterior cingulate cortex, and amygdala) implicated in empathy, callousness, and psychopathic-like behavior. The overarching goal of this article is to relate these hormones and brain structures to moral decision-making. This review will begin in the brain, but will then integrate information about biological functioning in the body, specifically stress-reactivity. Our aim is to integrate understanding of neural processes with hormones such as cortisol, both of which have demonstrated relationships to empathy, psychopathy, and antisocial behavior. The review proposes that neurobiological impairments in individuals who display little empathy are not necessarily due to a reduced ability to understand the emotions of others. Instead, evidence suggests that individuals who show little arousal to the distress of others likewise show decreased physiological arousal to their own distress; one manifestation of reduced stress reactivity may be a dysfunction in empathy, which supports psychopathic-like constructs (e.g. callousness). This integration will assist in the development of objective methodologies that can inform and monitor treatment interventions focused on decreasing antisocial behavior. Copyright 2009 John Wiley & Sons, Ltd.

  15. [The dual process model of addiction. Towards an integrated model?].

    Science.gov (United States)

    Vandermeeren, R; Hebbrecht, M

    2012-01-01

    Neurobiology and cognitive psychology have provided us with a dual process model of addiction. According to this model, behavior is considered to be the dynamic result of a combination of automatic and controlling processes. In cases of addiction the balance between these two processes is severely disturbed. Automated processes will continue to produce impulses that ensure the continuance of addictive behavior. Weak, reflective or controlling processes are both the reason for and the result of the inability to forgo addiction. To identify features that are common to current neurocognitive insights into addiction and psychodynamic views on addiction. The picture that emerges from research is not clear. There is some evidence that attentional bias has a causal effect on addiction. There is no evidence that automatic associations have a causal effect, but there is some evidence that automatic action-tendencies do have a causal effect. Current neurocognitive views on the dual process model of addiction can be integrated with an evidence-based approach to addiction and with psychodynamic views on addiction.

  16. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses.

    Science.gov (United States)

    Guilarte, Tomás R; Opler, Mark; Pletnikov, Mikhail

    2012-06-01

    Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb(2+)) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb(2+) exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb(2+) exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Is Lead Exposure in Early Life An Environmental Risk Factor for Schizophrenia? Neurobiological Connections and Testable Hypotheses

    Science.gov (United States)

    Guilarte, Tomás R.; Opler, Mark; Pletnikov, Mikhail

    2013-01-01

    Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb2+) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb2+ exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb2+ exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders. PMID:22178136

  18. Obesity and addiction: neurobiological overlaps.

    Science.gov (United States)

    Volkow, N D; Wang, G-J; Tomasi, D; Baler, R D

    2013-01-01

    Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  19. Toward a neurobiology of temporal cognition: advances and challenges.

    Science.gov (United States)

    Gibbon, J; Malapani, C; Dale, C L; Gallistel, C

    1997-04-01

    A rich tradition of normative psychophysics has identified two ubiquitous properties of interval timing: the scalar property, a strong form of Weber's law, and ratio comparison mechanisms. Finding the neural substrate of these properties is a major challenge for neurobiology. Recently, advances have been made in our understanding of the brain structures important for timing, especially the basal ganglia and the cerebellum. Surgical intervention or diseases of the cerebellum generally result in increased variability in temporal processing, whereas both clock and memory effects are seen for neurotransmitter interventions, lesions and diseases of the basal ganglia. We propose that cerebellar dysfunction may induce deregulation of tonic thalamic tuning, which disrupts gating of the mnemonic temporal information generated in the basal ganglia through striato-thalamo-cortical loops.

  20. Towards a neurobiological understanding of pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Olesen, Søren S; Krauss, Theresa; Demir, Ihsan Ekin

    2017-01-01

    a chronic pain syndrome. Objectives: We aimed to characterize the neurobiological signature of pain associated with CP and to discuss its implications for treatment strategies. Methods: Relevant basic and clinical articles were selected for review following an extensive search of the literature. Results......: Pathophysiological changes in the peripheral (pancreatic gland) and central nervous system characterize the pain syndrome associated with CP; involved mechanisms can be broken down to 3 main branches: (1) peripheral sensitization, (2) pancreatic neuropathy, and (3) neuroplastic changes in the central pain pathways...... with those observed in neuropathic pain disorders and have important implications for treatment; adjuvant analgesics are effective in a subset of patients, and neuromodulation and neuropsychological interventions may prove useful in the future. Conclusion: Chronic pancreatitis is associated with abnormal...

  1. Neurobiological stress responses predict aggression in boys with oppositional defiant disorder/conduct disorder: a 1-year follow-up intervention study.

    Science.gov (United States)

    Schoorl, Jantiene; van Rijn, Sophie; de Wied, Minet; van Goozen, Stephanie H M; Swaab, Hanna

    2017-07-01

    To improve outcome for children with antisocial and aggressive behavior, it is important to know which individual characteristics contribute to reductions in problem behavior. The predictive value of a parent training (Parent Management Training Oregon; PMTO), parenting practices (monitoring, discipline, and punishment), and child neurobiological function (heart rate, cortisol) on the course of aggression was investigated. 64 boys with oppositional defiant disorder or conduct disorder (8-12 years) participated; parents of 22 boys took part in PMTO. All data were collected before the start of the PMTO, and aggression ratings were collected three times, before PMTO, and at 6 and 12 month follow-up. Parent training predicted a decline in aggression at 6 and 12 months. Child neurobiological variables, i.e., higher cortisol stress reactivity and better cortisol recovery, also predicted a decline in aggression at 6 and 12 months. Heart rate and parenting practices were not related to the course of aggression. These results indicate that child neurobiological factors can predict persistence or reduction of aggression in boys with ODD/CD, and have unique prognostic value on top of the parent training effects.

  2. Structural neurobiological correlates of Mayer-Salovery-Caruso Emotional Intelligence Test performance in early course schizophrenia.

    Science.gov (United States)

    Wojtalik, Jessica A; Eack, Shaun M; Keshavan, Matcheri S

    2013-01-10

    The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) is a key measure of social cognition in schizophrenia that has good psychometric properties and is recommended by the MATRICS committee. As a way to further investigate the validity of the MSCEIT, this study sought to examine the neurobiological correlates of MSCEIT performance in patients with early course schizophrenia. A total of 51 patients diagnosed with early course, stabilized schizophrenia or schizoaffective disorder completed structural magnetic resonance imaging (MRI) scans and the MSCEIT. Investigation of the associations between MSCEIT performance and gray matter morphology was examined by conducting voxel-based morphometry (VBM) analyses across hypothesized social-cognitive regions of interest using automated anatomical labeling in Statistical Parametric Mapping Software, version 5 (SPM5). All VBM analyses utilized general linear models examining gray matter density partitioned images, adjusting for demographic and illness-related confounds. VBM results were then followed up with confirmatory volumetric analyses. Patients with poorer overall and Facilitating, Understanding, and Managing Emotions subscale performances on the MSCEIT showed significantly reduced gray matter density in the left parahippocampal gyrus. Additionally, attenuated performance on the Facilitating and Managing Emotions subscales was significantly associated with reduced right posterior cingulate gray matter density. All associations observed between MSCEIT performance and gray matter density were supported with confirmatory gray matter volumetric analyses, with the exception of the association between the right posterior cingulate and the facilitation of emotions. These findings provide additional evidence for the MSCEIT as a valid social-cognitive measure by elucidating its correlates with neurobiological structures commonly implicated in emotion processing. These findings provide additional biological evidence

  3. Adult Attention Deficit Hyperactivity Disorder: Neurobiology, Diagnostic Problems and Clinical Features

    Directory of Open Access Journals (Sweden)

    Cengiz Tuglu

    2010-04-01

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is a chronic, lifelong neurobeha-vioral disorder with childhood-onset, which seriously impairs the affected adults in a variety of daily living functions like academic, social and occupational functioning. Prevalence of ADHD declines with age in the general population. The approximate prevalence rates of ADHD is 8% in childhood, 6% in adolescence and 4% in adulthood. The unclear validity of DSM-IV diagnostic criteria for this condition can lead to reduced prevalence rates by underestimation of the prevalence of adult ADHD. The disorder is characterized by behavioral symptoms of inattention, hyperactivity, and impulsivity across the life cycle and is associated with considerable morbidity and disability. Although its etiology remains unclear, considerable evidence documents its strong neurobiological and genetic underpinnings. ADHD is associated with a high percentage of comorbid psychiatric disorders in every lifespan. In adulthood between 65-89% of all patients with ADHD suffer from one or more additional psychiatric disorders, above all mood and anxiety disorders, substance use disorders and personality disorders, which complicate the clinical picture in terms of diagnostics, treatment and outcome issues. The high comorbidity with other psychiatric disorders, the resulting deficits in social competences and risky health behavior that often go along with a diminished life quality must be stressed in these patients. Preventive and therapeutic interventions should be taken at an early stage to counteract the possible negative influences of ADHD on functioning and relationships. In this paper, we reviewed the historical aspects, epidemiology, neurobiology, comorbidity, diagnostic difficulties and clinical features of adult ADHD.

  4. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  5. A Neural Systems-Based Neurobiology and Neuropsychiatry Course: Integrating Biology, Psychodynamics, and Psychology in the Psychiatric Curriculum

    Science.gov (United States)

    Lacy, Timothy; Hughes, John D.

    2006-01-01

    Objective: Psychotherapy and biological psychiatry remain divided in psychiatry residency curricula. Behavioral neurobiology and neuropsychiatry provide a systems-level framework that allows teachers to integrate biology, psychodynamics, and psychology. Method: The authors detail the underlying assumptions and outline of a neural systems-based…

  6. Internet gaming addiction: current perspectives

    Science.gov (United States)

    Kuss, Daria J

    2013-01-01

    In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual’s context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that

  7. The acceptability, feasibility, and possible benefits of a neurobiologically-informed 5-day multifamily treatment for adults with anorexia nervosa.

    Science.gov (United States)

    Wierenga, Christina E; Hill, Laura; Knatz Peck, Stephanie; McCray, Jason; Greathouse, Laura; Peterson, Danika; Scott, Amber; Eisler, Ivan; Kaye, Walter H

    2018-05-02

    Novel treatments for adults with anorexia nervosa (AN) are lacking. Recent scientific advances have identified neurobiologically-driven temperament contributors to AN symptoms that may guide development of more effective treatments. This preliminary study evaluates the acceptability, feasibility and possible benefits of a multicenter open trial of an intensive 5-day neurobiologically-informed multifamily treatment for adults with AN and their supports (SU). The temperament-focused treatment combines psychoeducation of AN neurobiology and SU involvement to develop skills to manage traits contributing to disease chronicity. Fifty-four adults with AN and at least one SU (n = 73) received the 5-day treatment. Acceptability, feasibility, and attrition were measured post-treatment. Clinical outcome (BMI, eating disorder psychopathology, family function) was assessed post-treatment and at >3-month follow-up. The treatment had low attrition, with only one drop-out. Patients and SU rated the intervention as highly acceptable, and clinicians reported good feasibility. At post-treatment, patients demonstrated significantly increased BMI, reduced eating disorder psychopathology, and improved family function. Benefits were maintained in the 39 patients who completed follow-up assessment, with 62% reporting full or partial remission. Preliminary results are promising and suggest this novel treatment is feasible and acceptable. To establish treatment efficacy, fully-powered randomized controlled trials are necessary. © 2018 Wiley Periodicals, Inc.

  8. Conversion disorder: towards a neurobiological understanding

    Science.gov (United States)

    Harvey, Samuel B; Stanton, Biba R; David, Anthony S

    2006-01-01

    Conversion disorders are a common cause of neurological disability, but the diagnosis remains controversial and the mechanism by which psychological stress can result in physical symptoms “unconsciously” is poorly understood. This review summarises research examining conversion disorder from a neurobiological perspective. Early observations suggesting a role for hemispheric specialization have not been replicated consistently. Patients with sensory conversion symptoms have normal evoked responses in primary and secondary somatosensory cortex but a reduction in the P300 potential, which is thought to reflect a lack of conscious processing of sensory stimuli. The emergence of functional imaging has provided the greatest opportunity for understanding the neural basis of conversion symptoms. Studies have been limited by small patient numbers and failure to control for confounding variables. The evidence available would suggest a broad hypothesis that frontal cortical and limbic activation associated with emotional stress may act via inhibitory basal ganglia–thalamocortical circuits to produce a deficit of conscious sensory or motor processing. The conceptual difficulties that have limited progress in this area are discussed. A better neuropsychiatric understanding of the mechanisms of conversion symptoms may improve our understanding of normal attention and volition and reduce the controversy surrounding this diagnosis. PMID:19412442

  9. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  10. Neurobiological correlates of externalizing and prosocial behavior in school-age children : A study on truths and lies

    NARCIS (Netherlands)

    S. Thijssen (Sandra)

    2015-01-01

    markdownabstractThis thesis describes a series of studies on the neurobiological correlates of externalizing and prosocial behavior in six-to ten-year old children. Chapter 1 provides an outline and describes the background and aims of our work. The studies described in this thesis are embedded in

  11. Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates.

    Science.gov (United States)

    Petkov, Christopher I; Jarvis, Erich D

    2012-01-01

    Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species.

  12. A computational model for lower hybrid current drive

    International Nuclear Information System (INIS)

    Englade, R.C.; Bonoli, P.T.; Porkolab, M.

    1983-01-01

    A detailed simulation model for lower hybrid (LH) current drive in toroidal devices is discussed. This model accounts reasonably well for the magnitude of radio frequency (RF) current observed in the PLT and Alcator C devices. It also reproduces the experimental dependencies of RF current generation on toroidal magnetic field and has provided insights about mechanisms which may underlie the observed density limit of current drive. (author)

  13. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects. Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  14. Integrating the context-appropriate balanced attention model and reinforcement sensitivity theory: Towards a domain-general personality process model.

    Science.gov (United States)

    Collins, Michael D; Jackson, Chris J; Walker, Benjamin R; O'Connor, Peter J; Gardiner, Elliroma

    2017-01-01

    Over the last 40 years or more the personality literature has been dominated by trait models based on the Big Five (B5). Trait-based models describe personality at the between-person level but cannot explain the within-person mental mechanisms responsible for personality. Nor can they adequately account for variations in emotion and behavior experienced by individuals across different situations and over time. An alternative, yet understated, approach to personality architecture can be found in neurobiological theories of personality, most notably reinforcement sensitivity theory (RST). In contrast to static trait-based personality models like the B5, RST provides a more plausible basis for a personality process model, namely, one that explains how emotions and behavior arise from the dynamic interaction between contextual factors and within-person mental mechanisms. In this article, the authors review the evolution of a neurobiologically based personality process model based on RST, the response modulation model and the context-appropriate balanced attention model. They argue that by integrating this complex literature, and by incorporating evidence from personality neuroscience, one can meaningfully explain personality at both the within- and between-person levels. This approach achieves a domain-general architecture based on RST and self-regulation that can be used to align within-person mental mechanisms, neurobiological systems and between-person measurement models. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. [Neurousurpation--the expropriation and suppression of Dölle's neurobiological pioneer work].

    Science.gov (United States)

    Bertram, Wulf

    2011-08-01

    The discovery of a hitherto unpublished dissertational thesis in the archive of a publishing house has lead to a lost publication by Ernst August Dölle. In this manuscript, the author reports on the stimulation of a cerebral libido area in the dog, long before Olds and Milner published their work on the discovery of the rewarding area. The reasons for the suppression of this early publication by Dölle are investigated and are ascribed to an effort to use his neurobiologic research for secret mental manipulation experiments of the CIA at the beginning of the Cold War. George Thieme Verlag KG Stuttgart · New York.

  16. Neurobiological Foundations of Acupuncture: The Relevance and Future Prospect Based on Neuroimaging Evidence

    Directory of Open Access Journals (Sweden)

    Lijun Bai

    2013-01-01

    Full Text Available Acupuncture is currently gaining popularity as an important modality of alternative and complementary medicine in the western world. Modern neuroimaging techniques such as functional magnetic resonance imaging, positron emission tomography, and magnetoencephalography open a window into the neurobiological foundations of acupuncture. In this review, we have summarized evidence derived from neuroimaging studies and tried to elucidate both neurophysiological correlates and key experimental factors involving acupuncture. Converging evidence focusing on acute effects of acupuncture has revealed significant modulatory activities at widespread cerebrocerebellar brain regions. Given the delayed effect of acupuncture, block-designed analysis may produce bias, and acupuncture shared a common feature that identified voxels that coded the temporal dimension for which multiple levels of their dynamic activities in concert cause the processing of acupuncture. Expectation in acupuncture treatment has a physiological effect on the brain network, which may be heterogeneous from acupuncture mechanism. “Deqi” response, bearing clinical relevance and association with distinct nerve fibers, has the specific neurophysiology foundation reflected by neural responses to acupuncture stimuli. The type of sham treatment chosen is dependent on the research question asked and the type of acupuncture treatment to be tested. Due to the complexities of the therapeutic mechanisms of acupuncture, using multiple controls is an optimal choice.

  17. The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains.

    Science.gov (United States)

    Matthys, Walter; Vanderschuren, Louk J M J; Schutter, Dennis J L G

    2013-02-01

    This review discusses neurobiological studies of oppositional defiant disorder and conduct disorder within the conceptual framework of three interrelated mental domains: punishment processing, reward processing, and cognitive control. First, impaired fear conditioning, reduced cortisol reactivity to stress, amygdala hyporeactivity to negative stimuli, and altered serotonin and noradrenaline neurotransmission suggest low punishment sensitivity, which may compromise the ability of children and adolescents to make associations between inappropriate behaviors and forthcoming punishments. Second, sympathetic nervous system hyporeactivity to incentives, low basal heart rate associated with sensation seeking, orbitofrontal cortex hyporeactiviy to reward, and altered dopamine functioning suggest a hyposensitivity to reward. The associated unpleasant emotional state may make children and adolescents prone to sensation-seeking behavior such as rule breaking, delinquency, and substance abuse. Third, impairments in executive functions, especially when motivational factors are involved, as well as structural deficits and impaired functioning of the paralimbic system encompassing the orbitofrontal and cingulate cortex, suggest impaired cognitive control over emotional behavior. In the discussion we argue that more insight into the neurobiology of oppositional defiance disorder and conduct disorder may be obtained by studying these disorders separately and by paying attention to the heterogeneity of symptoms within each disorder.

  18. Experimental pain processing in individuals with cognitive impairment: current state of the science

    DEFF Research Database (Denmark)

    Defrin, R; Amanzio, Martina; de Tomasso, M

    2015-01-01

    Cognitive impairment (CI) can develop during the course of ageing and is a feature of many neurological and neurodegenerative diseases. Many individuals with CI have substantial, sustained and complex healthcare needs which frequently include pain. However, individuals with CI can have difficulty...... of neurological and neurodegenerative disorders in which CI is typically present. Overall, the existing data suggest that pain processing is altered in most individuals with CI compared to cognitively intact matched controls. The precise nature of these alterations varies with the type of CI (or associated...... to cognitively unimpaired individuals. Our current understanding of the neurobiological mechanisms underpinning these alterations is limited, but may be enhanced through the use of animal models of CI which also exhibit alterations in nociceptive responding. Further research employing additional behavioural...

  19. The Significance of Human-Animal Relationships as Modulators of Trauma Effects in Children: A Developmental Neurobiological Perspective

    Science.gov (United States)

    Yorke, Jan

    2010-01-01

    Emotional stress and trauma impacts the neurobiology of children. They are especially vulnerable given the developmental plasticity of the brain. The neural synaptic circular processes between the anterior cingulated cortex, prefrontal cortex, amygdala and the hypothalamus are altered. Trauma results in the release of the peptide glucocortisoid,…

  20. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  1. Current-voltage model of LED light sources

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Munk-Nielsen, Stig

    2012-01-01

    Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...

  2. General Potential-Current Model and Validation for Electrocoagulation

    International Nuclear Information System (INIS)

    Dubrawski, Kristian L.; Du, Codey; Mohseni, Madjid

    2014-01-01

    A model relating potential and current in continuous parallel plate iron electrocoagulation (EC) was developed for application in drinking water treatment. The general model can be applied to any EC parallel plate system relying only on geometric and tabulated input variables without the need of system-specific experimentally derived constants. For the theoretical model, the anode and cathode were vertically divided into n equipotential segments in a single pass, upflow, and adiabatic EC reactor. Potential and energy balances were simultaneously solved at each vertical segment, which included the contribution of ionic concentrations, solution temperature and conductivity, cathodic hydrogen flux, and gas/liquid ratio. We experimentally validated the numerical model with a vertical upflow EC reactor using a 24 cm height 99.99% pure iron anode divided into twelve 2 cm segments. Individual experimental currents from each segment were summed to determine total current, and compared with the theoretically derived value. Several key variables were studied to determine their impact on model accuracy: solute type, solute concentration, current density, flow rate, inter-electrode gap, and electrode surface condition. Model results were in good agreement with experimental values at cell potentials of 2-20 V (corresponding to a current density range of approximately 50-800 A/m 2 ), with mean relative deviation of 9% for low flow rate, narrow electrode gap, polished electrodes, and 150 mg/L NaCl. Highest deviation occurred with a large electrode gap, unpolished electrodes, and Na 2 SO 4 electrolyte, due to parasitic H 2 O oxidation and less than unity current efficiency. This is the first general model which can be applied to any parallel plate EC system for accurate electrochemical voltage or current prediction

  3. Evidence of Neurobiological Changes in the Presymptomatic PINK1 Knockout Rat.

    Science.gov (United States)

    Ferris, Craig F; Morrison, Thomas R; Iriah, Sade; Malmberg, Samantha; Kulkarni, Praveen; Hartner, Jochen C; Trivedi, Malav

    2018-01-01

    Genetic models of Parkinson's disease (PD) coupled with advanced imaging techniques can elucidate neurobiological disease progression, and can help identify early biomarkers before clinical signs emerge. PTEN-induced putative kinase 1 (PINK1) helps protect neurons from mitochondrial dysfunction, and a mutation in the associated gene is a risk factor for recessive familial PD. The PINK1 knockout (KO) rat is a novel model for familial PD that has not been neuroradiologically characterized for alterations in brain structure/function, alongside behavior, prior to 4 months of age. To identify biomarkers of presymptomatic PD in the PINK1 -/- rat at 3 months using magnetic resonance imaging techniques. At postnatal weeks 12-13; one month earlier than previously reported signs of motor and cognitive dysfunction, this study combined imaging modalities, including assessment of quantitative anisotropy across 171 individual brain areas using an annotated MRI rat brain atlas to identify sites of gray matter alteration between wild-type and PINK1 -/- rats. The olfactory system, hypothalamus, thalamus, nucleus accumbens, and cerebellum showed differences in anisotropy between experimental groups. Molecular analyses revealed reduced levels of glutathione, ATP, and elevated oxidative stress in the substantia nigra, striatum and deep cerebellar nuclei. Mitochondrial genes encoding proteins in Complex IV, along with mRNA levels associated with mitochondrial function and genes involved in glutathione synthesis were reduced. Differences in brain structure did not align with any cognitive or motor impairment. These data reveal early markers, and highlight novel brain regions involved in the pathology of PD in the PINK1 -/- rat before behavioral dysfunction occurs.

  4. [The neurobiology of sleep: Cajal and present-day neuroscience].

    Science.gov (United States)

    Velayos-Jorge, J L; Hernández-Roca, J J; Moleres-Echevarría, F J

    We briefly describe the most significant findings obtained recently concerning the sleep-waking cycle in comparison to the studies conducted by Cajal on the same subject. This paper includes a short biographical sketch of Santiago Ramón y Cajal, with special emphasis on his importance within the framework of neuroscience. Cajal represents the decisive turning point in neurobiological studies, with the discovery of the synapse and his law of dynamic polarization. We conduct a short survey of the current knowledge about the phases of sleep and oneiric phenomena, based on their anatomo-physiological foundations. We present a summary of the history of the subject and analyze the contributions made by Cajal to this field, i.e. his study of the associative cortices, which are essential in memory processes and related to the mechanisms governing the sleep-waking cycle. For Cajal the fine anatomy of the thalamus must be considered in relation to the specificity of its connections an idea that is still completely valid today. He did not observe any projections of the thalamic reticular nucleus towards the cerebral cortex, a fact that has been corroborated using modern-day techniques. He spoke of the involvement of neuroglia in the attentional and sleep processes, which is so, although not quite in the way Cajal thought. He considered the production of dreams to be based on intimate neural mechanisms, which is still so. He also studied other brain structures related with the regulation of the sleep waking cycle, although avoiding any specific mention of the mechanisms controlling such a cycle. Furthermore, he conducted self-observation studies with a high degree of insight. Cajal studied the phenomena of attention and sleep in an objective manner and contributed a number of significant interpretations, some of which are now somewhat outdated while others are still wholly valid today.

  5. The Neurobiology and Psychiatric Perspective of Vaginismus: Linking the Pharmacological and Psycho-Social Interventions.

    Science.gov (United States)

    Kadir, Zuri Shahidii; Sidi, Hatta; Kumar, Jaya; Das, Srijit; Midin, Marhani; Baharuddin, Najwa

    2018-01-01

    Vaginismus is an involuntary muscle contraction of the outer third of vaginal barrel causing sexual penetration almost impossible. It is generally classified under sexual pain disorder (SPD). In Diagnostic and Statistical Manual, 5th edition (DSM-5), it is classified under the new rubric of Genito-Pelvic Pain/Sexual Penetration Disorder. This fear-avoidance condition poses an ongoing significant challenge to the medical and health professionals due to the very demanding needs in health care despite its unpredictable prognosis. The etiology of vaginismus is complex: through multiple biopsycho- social processes, involving bidirectional connections between pelvic-genital (local) and higher mental function (central regulation). It has robust neural and psychological-cognitive loop feedback involvement. The internal neural circuit involves an inter-play of at least two-pathway systems, i.e. both "quick threat assessment" of occipital-limbic-occipital-prefrontal-pelvic-genital; and the chronic pain pathways through the genito-spinothalamic-parietal-pre-frontal system, respectively. In this review, a neurobiology root of vaginismus is deliberated with the central role of an emotional-regulating amygdala, and other neural loop, i.e. hippocampus and neo-cortex in the core psychopathology of fear, disgust, and sexual avoidance. Many therapists view vaginismus as a neglected art-and-science which demands a better and deeper understanding on the clinico-pathological correlation to enhance an effective model for the bio-psycho-social treatment. As vaginismus has a strong presentation in psychopathology, i.e. fear of penetration, phobic avoidance, disgust, and anticipatory anxiety, we highlighted a practical psychiatric approach to the clinical management of vaginismus, based on the current core knowledge in the perspective of neuroscience. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  7. Microscopic models for bridging electrostatics and currents

    Science.gov (United States)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  8. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Science.gov (United States)

    Giordano, James; Bikson, Marom; Kappenman, Emily S.; Clark, Vincent P.; Coslett, H. Branch; Hamblin, Michael R.; Hamilton, Roy; Jankord, Ryan; Kozumbo, Walter J.; McKinley, R. Andrew; Nitsche, Michael A.; Reilly, J. Patrick; Richardson, Jessica; Wurzman, Rachel

    2017-01-01

    The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged. PMID:28210202

  9. Numerical modeling of transformer inrush currents

    Energy Technology Data Exchange (ETDEWEB)

    Cardelli, E. [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy); Faba, A., E-mail: faba@unipg.it [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy)

    2014-02-15

    This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.

  10. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  11. The neurobiology of addiction: the perspective from magnetic resonance imaging present and future

    Science.gov (United States)

    Nestor, Liam J.

    2016-01-01

    Abstract Background and Aims Addiction is associated with severe economic and social consequences and personal tragedies, the scientific exploration of which draws upon investigations at the molecular, cellular and systems levels with a wide variety of technologies. Magnetic resonance imaging (MRI) has been key to mapping effects observed at the microscopic and mesoscopic scales. The range of measurements from this apparatus has opened new avenues linking neurobiology to behaviour. This review considers the role of MRI in addiction research, and what future technological improvements might offer. Methods A hermeneutic strategy supplemented by an expansive, systematic search of PubMed, Scopus and Web of Science databases, covering from database inception to October 2015, with a conjunction of search terms relevant to addiction and MRI. Formal meta‐analyses were prioritized. Results Results from methods that probe brain structure and function suggest frontostriatal circuitry disturbances within specific cognitive domains, some of which predict drug relapse and treatment response. New methods of processing imaging data are opening opportunities for understanding the role of cerebral vasculature, a global view of brain communication and the complex topology of the cortical surface and drug action. Future technological advances include increases in MRI field strength, with concomitant improvements in image quality. Conclusions The magnetic resonance imaging literature provides a limited but convergent picture of the neurobiology of addiction as global changes to brain structure and functional disturbances to frontostriatal circuitry, accompanied by changes in anterior white matter. PMID:27452960

  12. Model for the resistive critical current transition in composite superconductors

    International Nuclear Information System (INIS)

    Warnes, W.H.

    1988-01-01

    Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites

  13. Foraging for brain stimulation: toward a neurobiology of computation.

    Science.gov (United States)

    Gallistel, C R

    1994-01-01

    The self-stimulating rat performs foraging tasks mediated by simple computations that use interreward intervals and subjective reward magnitudes to determine stay durations. This is a simplified preparation in which to study the neurobiology of the elementary computational operations that make cognition possible, because the neural signal specifying the value of a computationally relevant variable is produced by direct electrical stimulation of a neural pathway. Newly developed measurement methods yield functions relating the subjective reward magnitude to the parameters of the neural signal. These measurements also show that the decision process that governs foraging behavior divides the subjective reward magnitude by the most recent interreward interval to determine the preferability of an option (a foraging patch). The decision process sets the parameters that determine stay durations (durations of visits to foraging patches) so that the ratios of the stay durations match the ratios of the preferabilities.

  14. Experimental modeling of eddy current inspection capabilities

    International Nuclear Information System (INIS)

    Junker, W.R.; Clark, W.G.

    1984-01-01

    This chapter examines the experimental modeling of eddy current inspection capabilities based upon the use of liquid mercury samples designed to represent metal components containing discontinuities. A brief summary of past work with mercury modeling and a detailed discussion of recent experiments designed to further evaluate the technique are presented. The main disadvantages of the mercury modeling concept are that mercury is toxic and must be handled carefully, liquid mercury can only be used to represent nonferromagnetic materials, and wetting and meniscus problems can distort the effective size of artificial discontinuities. Artificial discontinuities placed in a liquid mercury sample can be used to represent discontinuities in solid metallic structures. Discontinuity size and type cannot be characterized from phase angle and signal amplitude data developed with a surface scanning, pancake-type eddy current probe. It is concluded that the mercury model approach can greatly enhance the overall understanding and applicability of eddy current inspection techniques

  15. Nature and autonomy: an organizational view of social and neurobiological aspects of self-regulation in behavior and development.

    Science.gov (United States)

    Ryan, R M; Kuhl, J; Deci, E L

    1997-01-01

    The concepts of self-regulation and autonomy are examined within an organizational framework. We begin by retracing the historical origins of the organizational viewpoint in early debates within the field of biology between vitalists and reductionists, from which the construct of self-regulation emerged. We then consider human autonomy as an evolved behavioral, developmental, and experiential phenomenon that operates at both neurobiological and psychological levels and requires very specific supports within higher order social organizations. We contrast autonomy or true self-regulation with controlling regulation (a nonautonomous form of intentional behavior) in phenomenological and functional terms, and we relate the forms of regulation to the developmental processes of intrinsic motivation and internalization. Subsequently, we describe how self-regulation versus control may be characterized by distinct neurobiological underpinnings, and we speculate about some of the adaptive advantages that may underlie the evolution of autonomy. Throughout, we argue that disturbances of autonomy, which have both biological and psychological etiologies, are central to many forms of psychopathology and social alienation.

  16. Comorbid substance use disorder in schizophrenia: a selective overview of neurobiological and cognitive underpinnings.

    Science.gov (United States)

    Thoma, Patrizia; Daum, Irene

    2013-09-01

    Although individuals with schizophrenia show a lifetime prevalence of 50% for suffering from a comorbid substance use disorder, substance abuse usually represents an exclusion criterion for studies on schizophrenia. This implies that surprisingly little is known about a large group of patients who are particularly difficult to treat. The aim of the present work is to provide a brief and non-exhaustive overview of the current knowledgebase about neurobiological and cognitive underpinnings for dual diagnosis schizophrenia patients. Studies published within the last 20 years were considered using computerized search engines. The focus was on nicotine, caffeine, alcohol, cannabis and cocaine being among the most common substances of abuse. All drugs of abuse target dopaminergic, glutamatergic and GABAergic transmission which are also involved in the pathophysiology of schizophrenia. Current literature suggests that neurocognitive function might beless disrupted in substance-abusing compared to non-abusing schizophrenia patients, but in particular the neuroimaging database on this topic is sparse. Detrimental effects on brain structure and function were shown for patients for whom alcohol is the main substance of abuse. It is as yet unclear whether this finding might be an artifact of age differences of patient subgroups with different substance abuse patterns. More research is warranted on the specific neurocognitive underpinnings of schizophrenia patients abusing distinct psychoactive substances. Treatment programs might either benefit from preserved cognitive function as a resource or specifically target cognitive impairment in different subgroups of addicted schizophrenia patients. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  17. Professor Eric Can't See: A Project-Based Learning Case for Neurobiology Students.

    Science.gov (United States)

    Ogilvie, Judith Mosinger; Ribbens, Eric

    2016-01-01

    "Professor Eric Can't See" is a semi-biographical case study written for an upper level undergraduate Neurobiology of Disease course. The case is integrated into a unit using a project-based learning approach to investigate the retinal degenerative disorder Retinitis pigmentosa and the visual system. Some case study scenes provide specific questions for student discussion and problem-based learning, while others provide background for student inquiry and related active learning exercises. The case was adapted from "'Chemical Eric' Can't See," and could be adapted for courses in general neuroscience or sensory neuroscience.

  18. The neurobiological drive for overeating implicated in Prader-Willi syndrome.

    Science.gov (United States)

    Zhang, Yi; Wang, Jing; Zhang, Guansheng; Zhu, Qiang; Cai, Weiwei; Tian, Jie; Zhang, Yi Edi; Miller, Jennifer L; Wen, Xiaotong; Ding, Mingzhou; Gold, Mark S; Liu, Yijun

    2015-09-16

    Prader-Willi syndrome (PWS) is a genetic imprinting disorder characterized mainly by hyperphagia and early childhood obesity. Previous fMRI studies examined the activation of eating-related neural circuits in PWS patients with or without exposures to food cues and found an excessive eating motivation and a reduced inhibitory control of cognitive processing of food. However, the effective connectivity between various brain areas or neural circuitry critically implicated in both the biological and behavioral control of overeating in PWS is largely unexplored. The current study combined resting-state fMRI and Granger causality analysis (GCA) techniques to investigate interactive causal influences among key neural pathways underlying overeating in PWS. We first defined the regions of interest (ROIs) that demonstrated significant alterations of the baseline brain activity levels in children with PWS (n = 21) as compared to that of their normal siblings controls (n = 18), and then carried out GCA to characterize the region-to-region interactions among these ROIs. Our data revealed significantly enhanced causal influences from the amygdala to the hypothalamus and from both the medial prefrontal cortex and anterior cingulate cortex to the amygdala in patients with PWS (P < 0.001). These alterations offer new explanations for hypothalamic regulation of homeostatic energy intake and impairment in inhibitory control circuit. The deficits in these dual aspects may jointly contribute to the extreme hyperphagia in PWS. This study provides both a new methodological and a neurobiological perspective to aid in a better understanding of neural mechanisms underlying obesity in the general public. This article is part of a Special Issue entitled 1618. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Downward Causation and the Neurobiology of Free Will

    CERN Document Server

    Murphy, Nancey; O’Connor, Timothy

    2009-01-01

    How is free will possible in the light of the physical and chemical underpinnings of brain activity and recent neurobiological experiments? How can the emergence of complexity in hierarchical systems such as the brain, based at the lower levels in physical interactions, lead to something like genuine free will? The nature of our understanding of free will in the light of present-day neuroscience is becoming increasingly important because of remarkable discoveries on the topic being made by neuroscientists at the present time, on the one hand, and its crucial importance for the way we view ourselves as human beings, on the other. A key tool in understanding how free will may arise in this context is the idea of downward causation in complex systems, happening coterminously with bottom up causation, to form an integral whole. Top-down causation is usually neglected, and is therefore emphasized in the other part of the book’s title. The concept is explored in depth, as are the ethical and legal implications of...

  20. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    NARCIS (Netherlands)

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to

  1. Variations in the neurobiology of reading in children and adolescents born full term and preterm

    Directory of Open Access Journals (Sweden)

    Katherine E. Travis

    2016-01-01

    Full Text Available Diffusion properties of white matter tracts have been associated with individual differences in reading. Individuals born preterm are at risk of injury to white matter. In this study we compared the associations between diffusion properties of white matter and reading skills in children and adolescents born full term and preterm. 45 participants, aged 9–17 years, included 26 preterms (born <36 weeks' gestation and 19 full-terms. Tract fractional anisotropy (FA profiles were generated for five bilateral white matter tracts previously associated with reading: anterior superior longitudinal fasciculus (aSLF, arcuate fasciculus (Arc, corticospinal tract (CST, uncinate fasciculus (UF and inferior longitudinal fasciculus (ILF. Mean scores on reading for the two groups were in the normal range and were not statistically different. In both groups, FA was associated with measures of single word reading and comprehension in the aSLF, AF, CST, and UF. However, correlations were negative in the full term group and positive in the preterm group. These results demonstrate variations in the neurobiology of reading in children born full term and preterm despite comparable reading skills. Findings suggest that efficient information exchange required for strong reading abilities may be accomplished via a different balance of neurobiological mechanisms in different groups of readers.

  2. A targeted review of the neurobiology and genetics of behavioural addictions: an emerging area of research.

    Science.gov (United States)

    Leeman, Robert F; Potenza, Marc N

    2013-05-01

    This review summarizes neurobiological and genetic findings in behavioural addictions, draws parallels with findings pertaining to substance use disorders, and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity, and family history and (or) genetic findings for behavioural addictions involving gambling, Internet use, video game playing, shopping, kleptomania, and sexual activity were reviewed. Behavioural addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and grey matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history and genetic data support heritability for pathological gambling and that people with behavioural addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic and family history findings in substance and nonsubstance addictions, suggesting that compulsive engagement in these behaviours may constitute addictions. To date, findings are limited, particularly for shopping, kleptomania, and sexual behaviour. Genetic understandings are at an early stage. Future research directions are offered.

  3. A Targeted Review of the Neurobiology and Genetics of Behavioral Addictions: An Emerging Area of Research

    Science.gov (United States)

    Leeman, Robert F.; Potenza, Marc N.

    2013-01-01

    This review summarizes neurobiological and genetic findings in behavioral addictions, draws parallels with findings pertaining to substance use disorders and offers suggestions for future research. Articles concerning brain function, neurotransmitter activity and family history/genetics findings for behavioral addictions involving gambling, internet use, video game playing, shopping, kleptomania and sexual activity were reviewed. Behavioral addictions involve dysfunction in several brain regions, particularly the frontal cortex and striatum. Findings from imaging studies incorporating cognitive tasks have arguably been more consistent than cue-induction studies. Early results suggest white and gray matter differences. Neurochemical findings suggest roles for dopaminergic and serotonergic systems, but results from clinical trials seem more equivocal. While limited, family history/genetic data support heritability for pathological gambling and that those with behavioral addictions are more likely to have a close family member with some form of psychopathology. Parallels exist between neurobiological and genetic/family history findings in substance and non-substance addictions, suggesting that compulsive engagement in these behaviors may constitute addictions. Findings to date are limited, particularly for shopping, kleptomania and sexual behavior. Genetic understandings are at an early stage. Future research directions are offered. PMID:23756286

  4. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  5. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  6. The Neurobiology of Speech Perception and Production-Can Functional Imaging Tell Us Anything We Did Not Already Know?

    Science.gov (United States)

    Scott, Sophie K.

    2012-01-01

    Our understanding of the neurobiological basis for human speech production and perception has benefited from insights from psychology, neuropsychology and neurology. In this overview, I outline some of the ways that functional imaging has added to this knowledge and argue that, as a neuroanatomical tool, functional imaging has led to some…

  7. Sex differences in stress-related psychiatric disorders: neurobiological perspectives.

    Science.gov (United States)

    Bangasser, Debra A; Valentino, Rita J

    2014-08-01

    Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Survey of Artistic Value: From Analytic Philosophy to Neurobiology

    Directory of Open Access Journals (Sweden)

    Zachary P. Norwood

    2013-12-01

    Full Text Available Analytic philosophers have disputed the nature of “artistic value” for over six decades, bringing much needed clarity and rigor to a subject discussed with fashionable obscurity in other disciplines. This essay frames debates between analytic philosophers on artistic value and suggests new directions for future research. In particular, the problem of “intrinsic value” is considered, that is, whether a work’s value derives from its experienced properties, as a work of art, or from cultural trends outside the work’s properties. It is argued that neurobiological research helps resolve perceived differences between a work’s intrinsic and extrinsic values. A work can be both rewarding and punishing on its own, “intrinsic” merit—as a percipient, real thing in the world evoking predictable kinds of emotion—and with respect to ever shifting, “extrinsic” cultural norms.

  9. Post-traumatic stress disorder: the neurobiological impact of psychological trauma

    Science.gov (United States)

    Sherin, Jonathan E.; Nemeroff, Charles B.

    2011-01-01

    The classic fight-or-flight response to perceived threat is a reflexive nervous phenomenon thai has obvious survival advantages in evolutionary terms. However, the systems that organize the constellation of reflexive survival behaviors following exposure to perceived threat can under some circumstances become dysregulated in the process. Chronic dysregulation of these systems can lead to functional impairment in certain individuals who become “psychologically traumatized” and suffer from post-traumatic stress disorder (PTSD), A body of data accumulated over several decades has demonstrated neurobiological abnormalities in PTSD patients. Some of these findings offer insight into the pathophysiology of PTSD as well as the biological vulnerability of certain populations to develop PTSD, Several pathological features found in PTSD patients overlap with features found in patients with traumatic brain injury paralleling the shared signs and symptoms of these clinical syndromes. PMID:22034143

  10. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  11. Modeling suicide in bipolar disorders.

    Science.gov (United States)

    Malhi, Gin S; Outhred, Tim; Das, Pritha; Morris, Grace; Hamilton, Amber; Mannie, Zola

    2018-02-19

    Suicide is a multicausal human behavior, with devastating and immensely distressing consequences. Its prevalence is estimated to be 20-30 times greater in patients with bipolar disorders than in the general population. The burden of suicide and its high prevalence in bipolar disorders make it imperative that our current understanding be improved to facilitate prediction of suicide and its prevention. In this review, we provide a new perspective on the process of suicide in bipolar disorder, in the form of a novel integrated model that is derived from extant knowledge and recent evidence. A literature search of articles on suicide in bipolar disorder was conducted in recognized databases such as Scopus, PubMed, and PsycINFO using the keywords "suicide", "suicide in bipolar disorders", "suicide process", "suicide risk", "neurobiology of suicide" and "suicide models". Bibliographies of identified articles were further scrutinized for papers and book chapters of relevance. Risk factors for suicide in bipolar disorders are well described, and provide a basis for a framework of epigenetic mechanisms, moderated by neurobiological substrates, neurocognitive functioning, and social inferences within the environment. Relevant models and theories include the diathesis-stress model, the bipolar model of suicide and the ideation-to-action models, the interpersonal theory of suicide, the integrated motivational-volitional model, and the three-step theory. Together, these models provide a basis for the generation of an integrated model that illuminates the suicidal process, from ideation to action. Suicide is complex, and it is evident that a multidimensional and integrated approach is required to reduce its prevalence. The proposed model exposes and provides access to components of the suicide process that are potentially measurable and may serve as novel and specific therapeutic targets for interventions in the context of bipolar disorder. Thus, this model is useful not only

  12. Microbial endocrinology: Why the intersection of microbiology and neurobiology matters to poultry health.

    Science.gov (United States)

    Villageliu, Daniel N; Lyte, Mark

    2017-08-01

    The union of microbiology and neurobiology has led to a revolution in the way we view the microbiome. Now recognized as important symbionts, the microorganisms which inhabit multiple niches in mammalian and avian (chicken) hosts, such as the intestinal tract and skin, serve and influence many important physiological functions. The realization that the gut microbiome serves as a kind of "microbial organ" has important implications for many areas of biology. In this paper advances in the field of microbial endocrinology which may hold relevance for the poultry industry are examined. © 2017 Poultry Science Association Inc.

  13. An avant-garde professorship of neurobiology in education: Christofredo Jakob (1866-1956) and the 1920s lead of the National University of La Plata, Argentina.

    Science.gov (United States)

    Théodoridou, Zoe D; Koutsoklenis, Athanasios; del Cerro, Manuel; Triarhou, Lazaros C

    2013-01-01

    The interdisciplinary trend in "Mind, Brain, and Education" has witnessed dynamic international growth in recent years. Yet, it remains little known that the National University of La Plata in Argentina probably holds the historical precedent as the world's first institution of higher education that formally included neurobiology in the curriculum of an educational department, having done so as early as 1922. The responsibility of teaching neurobiology to educators was assigned to Professor Christofredo Jakob (1866-1956). In the present article, we highlight Jakob's emphasis on interdisciplinarity and, in particular, on the neuroscientific foundations of education, including special education.

  14. The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law.

    Science.gov (United States)

    Diamond, David M; Campbell, Adam M; Park, Collin R; Halonen, Joshua; Zoladz, Phillip R

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our "temporal dynamics" model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a "configural/cognitive map" mode to a "flashbulb memory" mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  15. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  16. An analytical gate tunneling current model for MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Kazerouni, Iman Abaspur, E-mail: imanabaspur@gmail.com; Hosseini, Seyed Ebrahim [Sabzevar Tarbiat Moallem University, Electrical and Computer Department (Iran, Islamic Republic of)

    2012-03-15

    Gate tunneling current of MOSFETs is an important factor in modeling ultra small devices. In this paper, gate tunneling in present-generation MOSFETs is studied. In the proposed model, we calculate the electron wave function at the semiconductor-oxide interface and inversion charge by treating the inversion layer as a potential well, including some simplifying assumptions. Then we compute the gate tunneling current using the calculated wave function. The proposed model results have an excellent agreement with experimental results in the literature.

  17. MASCOTTE: analytical model of eddy current signals

    International Nuclear Information System (INIS)

    Delsarte, G.; Levy, R.

    1992-01-01

    Tube examination is a major application of the eddy current technique in the nuclear and petrochemical industries. Such examination configurations being specially adapted to analytical modes, a physical model is developed on portable computers. It includes simple approximations made possible by the effective conditions of the examinations. The eddy current signal is described by an analytical formulation that takes into account the tube dimensions, the sensor conception, the physical characteristics of the defect and the examination parameters. Moreover, the model makes it possible to associate real signals and simulated signals

  18. Aging, neurogenesis, and caloric restriction in different model organisms.

    Science.gov (United States)

    Arslan-Ergul, Ayca; Ozdemir, A Tugrul; Adams, Michelle M

    2013-08-01

    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions.

  19. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    Science.gov (United States)

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  20. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease.

    Science.gov (United States)

    Kumar, Kushal; Kumar, Ashwani; Keegan, Richard M; Deshmukh, Rahul

    2018-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive deterioration of cognitive functions. The pathological hallmarks are extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles of tau protein. The cognitive deficits seen are thought to be due to synaptic dysfunction and neurochemical deficiencies. Various neurochemical abnormalities have been observed during progressive ageing, and are linked to cognitive abnormalities as seen with the sporadic form of AD. Acetylcholinesterase inhibitors are one of the major therapeutic strategies used for the treatment of AD. During the last decade, various new therapeutic strategies have shown beneficial effects in preclinical studies and under clinical development for the treatment of AD. The present review is aimed at discussing the neurobiology of AD and association of neurochemical abnormalities associated with cognitive deterioration and new therapeutic strategies for the treatment of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.

  2. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    International Nuclear Information System (INIS)

    Venkattraman, Ayyaswamy

    2013-01-01

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission

  3. An embodied view of octopus neurobiology.

    Science.gov (United States)

    Hochner, Binyamin

    2012-10-23

    Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Cardiac magnetic source imaging based on current multipole model

    International Nuclear Information System (INIS)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution. Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseudoinverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides, two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared. (general)

  5. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    Wei Sun; Yongjian Yang

    2017-01-01

    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  6. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior.

    Science.gov (United States)

    Sokolov, Alexander N; Pavlova, Marina A; Klosterhalfen, Sibylle; Enck, Paul

    2013-12-01

    Cocoa products and chocolate have recently been recognized as a rich source of flavonoids, mainly flavanols, potent antioxidant and anti-inflammatory agents with established benefits for cardiovascular health but largely unproven effects on neurocognition and behavior. In this review, we focus on neuromodulatory and neuroprotective actions of cocoa flavanols in humans. The absorbed flavonoids penetrate and accumulate in the brain regions involved in learning and memory, especially the hippocampus. The neurobiological actions of flavanols are believed to occur in two major ways: (i) via direct interactions with cellular cascades yielding expression of neuroprotective and neuromodulatory proteins that promote neurogenesis, neuronal function and brain connectivity, and (ii) via blood-flow improvement and angiogenesis in the brain and sensory systems. Protective effects of long-term flavanol consumption on neurocognition and behavior, including age- and disease-related cognitive decline, were shown in animal models of normal aging, dementia, and stroke. A few human observational and intervention studies appear to corroborate these findings. Evidence on more immediate action of cocoa flavanols remains limited and inconclusive, but warrants further research. As an outline for future research on cocoa flavanol impact on human cognition, mood, and behavior, we underscore combination of functional neuroimaging with cognitive and behavioral measures of performance. Copyright © 2013. Published by Elsevier Ltd.

  7. The Cannabis Pathway to Non-Affective Psychosis may Reflect Less Neurobiological Vulnerability

    Science.gov (United States)

    Løberg, Else-Marie; Helle, Siri; Nygård, Merethe; Berle, Jan Øystein; Kroken, Rune A.; Johnsen, Erik

    2014-01-01

    There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability × cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics, and neurological soft signs (NSS) in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group, which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings PMID:25477825

  8. The cannabis pathway to non-affective psychosis may reflect less neurobiological vulnerability

    Directory of Open Access Journals (Sweden)

    Else-Marie eLøberg

    2014-11-01

    Full Text Available There is a high prevalence of cannabis use reported in non-affective psychosis. Early prospective longitudinal studies conclude that cannabis use is a risk factor for psychosis, and neurochemical studies on cannabis have suggested potential mechanisms for this effect. Recent advances in the field of neuroscience and genetics may have important implications for our understanding of this relationship. Importantly, we need to better understand the vulnerability x cannabis interaction to shed light on the mediators of cannabis as a risk factor for psychosis. Thus, the present study reviews recent literature on several variables relevant for understanding the relationship between cannabis and psychosis, including age of onset, cognition, brain functioning, family history, genetics and neurological soft signs (NSS in non-affective psychosis. Compared with non-using non-affective psychosis, the present review shows that there seem to be fewer stable cognitive deficits in patients with cannabis use and psychosis, in addition to fewer NSS and possibly more normalized brain functioning, indicating less neurobiological vulnerability for psychosis. There are, however, some familiar and genetic vulnerabilities present in the cannabis psychosis group which may influence the cannabis pathway to psychosis by increasing sensitivity to cannabis. Furthermore, an earlier age of onset suggests a different pathway to psychosis in the cannabis-using patients. Two alternative vulnerability models are presented to integrate these seemingly paradoxical findings.

  9. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  10. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Dual resonance models and their currents

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1978-01-01

    It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents

  12. A developmental social neuroscience model for understanding loneliness in adolescence.

    Science.gov (United States)

    Wong, Nichol M L; Yeung, Patcy P S; Lee, Tatia M C

    2018-02-01

    Loneliness is prevalent in adolescents. Although it can be a normative experience, children and adolescents who experience loneliness are often at risk for anxiety, depression, and suicide. Research efforts have been made to identify the neurobiological basis of such distressful feelings in our social brain. In adolescents, the social brain is still undergoing significant development, which may contribute to their increased and differential sensitivity to the social environment. Many behavioral studies have shown the significance of attachment security and social skills in adolescents' interactions with the social world. In this review, we propose a developmental social neuroscience model that extends from the social neuroscience model of loneliness. In particular, we argue that the social brain and social skills are both important for the development of adolescents' perceived loneliness and that adolescents' familial attachment sets the baseline for neurobiological development. By reviewing the related behavioral and neuroimaging literature, we propose a developmental social neuroscience model to explain the heightened perception of loneliness in adolescents using social skills and attachment style as neurobiological moderators. We encourage future researchers to investigate adolescents' perceived social connectedness from the developmental neuroscience perspective.

  13. Towards the development of improved tests for negative symptoms of schizophrenia in a validated animal model.

    Science.gov (United States)

    Sahin, Ceren; Doostdar, Nazanin; Neill, Joanna C

    2016-10-01

    Negative symptoms in schizophrenia remain an unmet clinical need. There is no licensed treatment specifically for this debilitating aspect of the disorder and effect sizes of new therapies are too small to make an impact on quality of life and function. Negative symptoms are multifactorial but often considered in terms of two domains, expressive deficit incorporating blunted affect and poverty of speech and avolition incorporating asociality and lack of drive. There is a clear need for improved understanding of the neurobiology of negative symptoms which can be enabled through the use of carefully validated animal models. While there are several tests for assessing sociability in animals, tests for blunted affect in schizophrenia are currently lacking. Two paradigms have recently been developed for assessing negative affect of relevance to depression in rats. Here we assess their utility for studying negative symptoms in schizophrenia using our well validated model for schizophrenia of sub-chronic (sc) treatment with Phencyclidine (PCP) in adult female rats. Results demonstrate that sc PCP treatment produces a significant negative affect bias in response to a high value reward in the optimistic and affective bias tests. Our results are not easily explained by the known cognitive deficits induced by sc PCP and support the hypothesis of a negative affective bias in this model. We suggest that further refinement of these two tests will provide a means to investigate the neurobiological basis of negative affect in schizophrenia, thus supporting the assessment of efficacy of new targets for this currently untreated symptom domain. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Animal Models for the Study of Female Sexual Dysfunction

    Science.gov (United States)

    Marson, Lesley; Giamberardino, Maria Adele; Costantini, Raffaele; Czakanski, Peter; Wesselmann, Ursula

    2017-01-01

    Introduction Significant progress has been made in elucidating the physiological and pharmacological mechanisms of female sexual function through preclinical animal research. The continued development of animal models is vital for the understanding and treatment of the many diverse disorders that occur in women. Aim To provide an updated review of the experimental models evaluating female sexual function that may be useful for clinical translation. Methods Review of English written, peer-reviewed literature, primarily from 2000 to 2012, that described studies on female sexual behavior related to motivation, arousal, physiological monitoring of genital function and urogenital pain. Main Outcomes Measures Analysis of supporting evidence for the suitability of the animal model to provide measurable indices related to desire, arousal, reward, orgasm, and pelvic pain. Results The development of female animal models has provided important insights in the peripheral and central processes regulating sexual function. Behavioral models of sexual desire, motivation, and reward are well developed. Central arousal and orgasmic responses are less well understood, compared with the physiological changes associated with genital arousal. Models of nociception are useful for replicating symptoms and identifying the neurobiological pathways involved. While in some cases translation to women correlates with the findings in animals, the requirement of circulating hormones for sexual receptivity in rodents and the multifactorial nature of women’s sexual function requires better designed studies and careful analysis. The current models have studied sexual dysfunction or pelvic pain in isolation; combining these aspects would help to elucidate interactions of the pathophysiology of pain and sexual dysfunction. Conclusions Basic research in animals has been vital for understanding the anatomy, neurobiology, and physiological mechanisms underlying sexual function and urogenital pain

  15. Current definition and a generalized federbush model

    International Nuclear Information System (INIS)

    Singh, L.P.S.; Hagen, C.R.

    1978-01-01

    The Federbush model is studied, with particular attention being given to the definition of currents. Inasmuch as there is no a priori restriction of local gauge invariance, the currents in the interacting case can be defined more generally than in Q.E.D. It is found that two arbitrary parameters are thereby introduced into the theory. Lowest order perturbation calculations for the current correlation functions and the Fermion propagators indicate that the theory admits a whole class of solutions dependent upon these parameters with the closed solution of Federbush emerging as a special case. The theory is shown to be locally covariant, and a conserved energy--momentum tensor is displayed. One finds in addition that the generators of gauge transformations for the fields are conserved. Finally it is shown that the general theory yields the Federbush solution if suitable Thirring model type counterterms are added

  16. Stress-related exhaustion disorder--clinical manifestation of burnout? A review of assessment methods, sleep impairments, cognitive disturbances, and neuro-biological and physiological changes in clinical burnout.

    Science.gov (United States)

    Grossi, Giorgio; Perski, Aleksander; Osika, Walter; Savic, Ivanka

    2015-12-01

    The aim of this paper was to provide an overview of the literature on clinically significant burnout, focusing on its assessment, associations with sleep disturbances, cognitive impairments, as well as neurobiological and physiological correlates. Fifty-nine English language articles and six book chapters were included. The results indicate that exhaustion disorder (ED), as described in the Swedish version of the International Classification of Diseases, seems to be the most valid clinical equivalent of burnout. The data supports the notion that sleep impairments are causative and maintaining factors for this condition. Patients with clinical burnout/ED suffer from cognitive impairments in the areas of memory and executive functioning. The studies on neuro-biological mechanisms have reported functional uncoupling of networks relating the limbic system to the pre-frontal cortex, and decreased volumes of structures within the basal ganglia. Although there is a growing body of literature on the physiological correlates of clinical burnout/ED, there is to date no biomarker for this condition. More studies on the role of sleep disturbances, cognitive impairments, and neurobiological and physiological correlates in clinical burnout/ED are warranted. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  17. Modelling of the ring current in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Giampieri

    2004-01-01

    Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set.

    First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.

    Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet

  18. Personality, Executive Control, and Neurobiological Characteristics Associated with Different Forms of Risky Driving.

    Directory of Open Access Journals (Sweden)

    Thomas G Brown

    Full Text Available Road crashes represent a huge burden on global health. Some drivers are prone to repeated episodes of risky driving (RD and are over-represented in crashes and related morbidity. However, their characteristics are heterogeneous, hampering development of targeted intervention strategies. This study hypothesized that distinct personality, cognitive, and neurobiological processes are associated with the type of RD behaviours these drivers predominantly engage in.Four age-matched groups of adult (19-39 years males were recruited: 1 driving while impaired recidivists (DWI, n = 36; 2 non-alcohol reckless drivers (SPEED, n = 28; 3 drivers with a mixed RD profile (MIXED, n = 27; and 4 low-risk control drivers (CTL, n = 47. Their sociodemographic, criminal history, driving behaviour (by questionnaire and simulation performance, personality (Big Five traits, impulsivity, reward sensitivity, cognitive (disinhibition, decision making, behavioural risk taking, and neurobiological (cortisol stress response characteristics were gathered and contrasted.Compared to controls, group SPEED showed greater sensation seeking, disinhibition, disadvantageous decision making, and risk taking. Group MIXED exhibited more substance misuse, and antisocial, sensation seeking and reward sensitive personality features. Group DWI showed greater disinhibition and more severe alcohol misuse, and compared to the other RD groups, the lowest level of risk taking when sober. All RD groups exhibited less cortisol increase in response to stress compared to controls.Each RD group exhibited a distinct personality and cognitive profile, which was consistent with stimulation seeking in group SPEED, fearlessness in group MIXED, and poor behavioural regulation associated with alcohol in group DWI. As these group differences were uniformly accompanied by blunted cortisol stress responses, they may reflect the disparate behavioural consequences of dysregulation of the stress system. In sum, RD

  19. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  20. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  1. The brain decade in debate: I. Neurobiology of learning and memory

    Directory of Open Access Journals (Sweden)

    Baddeley A.

    2000-01-01

    Full Text Available This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex, or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas or the modulation of the storage of memories related to emotional events (e.g., amygdala. This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

  2. NEUROBIOLOGICAL AND PSYCHOPATHOLOGICAL MECHANISMS UNDERLYING ADDICTION-LIKE BEHAVIORS: AN OVERVIEW AND THEMATIC SYNTHESIS.

    Directory of Open Access Journals (Sweden)

    Loredana Scala

    2017-08-01

    Full Text Available The term dependency is increasingly being used also to explain symptoms resulting from the repetition of a behavior or legalized and socially accepted activities that do not involve substance assumption. These activities, although considered normal habits of daily life can become real addictions that may affect and disrupt socio-relational and working functioning. Growing evidence suggests to consider behavioral addictions similar to drug dependence for their common symptoms, the high frequency of poly-dependence conditions, and the correlation in risk (impulsivity, sensation seeking, early exposure, familiarity and protective (parental control, adequate metacognitive skills factors. The aim of this paper is to describe addiction in its general aspects, highlighting the underlying neurobiological and psychopathological mechanisms.

  3. A hydrodynamic model of nearshore waves and wave-induced currents

    Directory of Open Access Journals (Sweden)

    Ahmed Khaled Seif

    2011-09-01

    Full Text Available In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995 and Larson and Kraus (2002. Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF basin and the Hazaki Oceanographical Research Station (HORS. Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

  4. Physics-based electromechanical model of IPMC considering various underlying currents

    Science.gov (United States)

    Pugal, D.; Kim, K. J.; Palmre, V.; Leang, K. K.; Aabloo, A.

    2012-04-01

    Experiments indicate that the electrodes affect the charge dynamics, and therefore actuation of ionic polymermetal composite (IPMC) via three different types of currents - electric potential induced ionic current, leakage current, and electrochemical current if approximately higher than 2 V voltage is applied to a typical 200 μm thick IPMC. The ionic current via charge accumulation near the electrodes is the direct cause of the osmotic and electrostatic stresses in the polymer and therefore carries the major role in the actuation of IPMC. However, the leakage and the electrochemical - electrolysis in case of water based IPMCs - currents do not affect the actuation dynamics as directly but cause potential gradients on the electrodes. These in turn affect the ionic current. A physics based finite element (FE) model was developed to incorporate the effect of the electrodes and three different types of currents in the actuation calculations. The Poisson-Nernst-Planck system of equations is used in the model to describe the ionic current and the Butler-Volmer relation is used to describe the electrolysis current for different applied voltages and IPMC thicknesses. To validate the model, calculated tip deflection, applied net current, and potential drop in case of various IPMC thicknesses and applied voltages are compared to experimental data.

  5. Modeling the current distribution in HTS tapes with transport current and applied magnetic field

    NARCIS (Netherlands)

    Yazawa, T.; Yazawa, Takashi; Rabbers, J.J.; Chevtchenko, O.A.; ten Haken, Bernard; ten Kate, Herman H.J.; Maeda, Hideaki

    1999-01-01

    A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in

  6. Modeling of Tsunami Currents in Harbors

    Science.gov (United States)

    Lynett, P. J.

    2010-12-01

    Extreme events, such as large wind waves and tsunamis, are well recognized as a damaging hazard to port and harbor facilities. Wind wave events, particularly those with long period spectral components or infragravity wave generation, can excite resonance inside harbors leading to both large vertical motions and strong currents. Tsunamis can cause great damage as well. The geometric amplification of these very long waves can create large vertical motions in the interior of a harbor. Additionally, if the tsunami is composed of a train of long waves, which it often is, resonance can be easily excited. These long wave motions create strong currents near the node locations of resonant motions, and when interacting with harbor structures such as breakwaters, can create intense turbulent rotational structures, typical in the form of large eddies or gyres. These gyres have tremendous transport potential, and have been observed to break mooring lines, and even cause ships to be trapped inside the rotation, moving helplessly with the flow until collision, grounding, or dissipation of the eddy (e.g. Okal et al., 2006). This presentation will introduce the traditional theory used to predict wave impacts on harbors, discussing both how these models are practically useful and in what types of situations require a more accurate tool. State-of-the-art numerical models will be introduced, with a focus on recent developments in Boussinesq-type modeling. The Boussinesq equations model can account the dispersive, turbulent and rotational flow properties frequently observed in nature. Also they have the ability to coupling currents and waves and can predict nonlinear wave propagation over uneven bottom from deep (or intermediate) water area to shallow water area. However, during the derivation of a 2D-horizontal equation set, some 3D flow features, such those driven by as the dispersive stresses and the effects of the unresolved small scale 3D turbulence, are excluded. Consequently

  7. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  8. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    Science.gov (United States)

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  9. Neurobiological correlates of externalizing and prosocial behavior in school-age children: A study on truths and lies

    OpenAIRE

    Thijssen, Sandra

    2015-01-01

    markdownabstractThis thesis describes a series of studies on the neurobiological correlates of externalizing and prosocial behavior in six-to ten-year old children. Chapter 1 provides an outline and describes the background and aims of our work. The studies described in this thesis are embedded in the Generation R study, a prospective cohort from fetal life onwards in Rotterdam, the Netherlands. We describe both structural (chapter 2, 3, and 6) and functional neuroimaging studies (chapter 4 a...

  10. Current algebra of classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Laartz, J.; Schaeper, U.

    1992-01-01

    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

  11. Combined kinetic and transport modeling of radiofrequency current drive

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.; Barbato, E.

    2000-07-01

    A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)

  12. Harmonic current prediction by impedance modeling of grid-tied inverters

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.

    2017-01-01

    and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...

  13. Current State of the Art Historic Building Information Modelling

    Science.gov (United States)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  14. Static current-sheet models of quiescent prominences

    Science.gov (United States)

    Wu, F.; Low, B. C.

    1986-12-01

    A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.

  15. Stress and neurobiology of coping styles

    Directory of Open Access Journals (Sweden)

    Vsevolod V. Nemets

    2017-06-01

    Full Text Available In stressful environment, animal can use different coping strategies. Passive animals manifest freezing behaviour at predator attacks, active ones are trying to have an impact on a stressful situation. Each coping style is presupposed to have a neurobiological basis and it helps animals to survive in aggressive and mutable environment. Being under a long lasting stress, leaders can be affected by cardiovascular and ulcer diseases, but a short term impact can cheer them up, improve neuroendocrine stress response more than passive coping style in animals. This paper analyzes animal pattern of coping behaviour, their inheritance based on gender, social status and age. The research shows how anxiety affects social behaviour of people individuals and typological reactions were compared. These patterns can be used by people in a situation of uncontrolled stress to prevent diseases and depressive disorders through altering one’s type of behavior to the one which is more effective. In addition, knowledge of behavioural types can assist teachers in implementing the learning process as in stress situations (e.g. taking exams, working on course papers, doing tests not all students are able to effectively perceive and present the resulting material. On the other hand, active students could encourage short-term rather than long-term stressor irritation. It is necessary to pay special attention to students with low social economic status who display active response to stress. According to statistics, problem students often become aggressors and commit antisocial and sometimes criminal acts. The coping styles mentioned here above are not polar, there are no clear boundaries of personality. In addition, behaving according to the active / non-active type is identified by customary and inherited behaviour patterns.

  16. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  17. One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour

    Directory of Open Access Journals (Sweden)

    Staffan Lundin

    2016-04-01

    Full Text Available If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.

  18. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.

  19. Psychoanalytic dream theory and recent neurobiological findings about REM sleep.

    Science.gov (United States)

    Wasserman, M D

    1984-01-01

    I have reviewed Hobson and McCarley's activation-synthesis hypothesis of dreaming which attempts to show that the instigation and certain formal aspects of dreaming are physiologically determined by a brainstem neuronal mechanism, their reasons for suggesting major revisions in psychoanalytic dream theory, and neurophysiological data that are inconsistent with their hypothesis. I then discussed the concept of mind-body isomorphism pointing out that they use this concept inconsistently, that despite their denials they regularly view physiology as primary and psychological processes as secondary, and that they frequently make the error of mixing the languages of physiology and psychology in their explanatory statements. Finally, in order to evaluate Hobson and McCarley's claim that their findings require revision of psychoanalytic dream theory, I examined their discussions of chase dreams, flying dreams, sexual dreams, the formal characteristics of dreams, the forgetting of dreams, and the instigation of dreams. I concluded that although their fascinating physiological findings may be central to understanding the neurobiology of REM sleep, they do not alter the meaning and interpretation of dreams gleaned through psychoanalytic study.

  20. Modelling of current loads on aquaculture net cages

    Science.gov (United States)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  1. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    Directory of Open Access Journals (Sweden)

    Phillip R. Zoladz

    2007-03-01

    Full Text Available We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics” model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced amnesia. An important feature of the model is the idea that endogenous mechanisms of plasticity in the hippocampus and amygdala are rapidly activated for a relatively short period of time by a strong emotional learning experience. Following this activational period, both structures undergo a state in which the induction of new plasticity is suppressed, which facilitates the memory consolidation process. We further propose that with the onset of strong emotionality, the hippocampus rapidly shifts from a “configural/cognitive map” mode to a “flashbulb memory” mode, which underlies the long-lasting, but fragmented, nature of traumatic memories. Finally, we have speculated on the significance of stress-LTP interactions in the context of the Yerkes-Dodson Law, a well-cited, but misunderstood, century-old principle which states that the relationship between arousal and behavioral performance can be linear or curvilinear, depending on the difficulty of the task.

  2. Neurobiology of anxiety disorders and implications for treatment.

    Science.gov (United States)

    Garakani, Amir; Mathew, Sanjay J; Charney, Dennis S

    2006-11-01

    The neurobiology of the anxiety disorders, which include panic disorder, post-traumatic stress disorder (PTSD), and specific phobias, among others, has been clarified by advances in the field of classical or Pavlovian conditioning, and in our understanding of basic mechanisms of memory and learning. Fear conditioning occurs when a neutral conditioned stimulus (such as a tone) is paired with an aversive, or unconditioned stimulus (such as a footshock), and then in the absence of the unconditioned stimulus, causes a conditioned fear response. Preclinical studies have shown that the amygdala plays a key role in fear circuitry, and that abnormalities in amygdala pathways can affect the acquisition and expression of fear conditioning. Drugs such as glutamate N-methyl-D-aspartate (NMDA) antagonists, and blockers of voltage-gated calcium channels, in the amygdala, may block these effects. There is also preliminary evidence for the use of centrally acting beta-adrenergic antagonists, like propranolol, to inhibit consolidation of traumatic memories in PTSD. Finally, fear extinction, which entails new learning of fear inhibition, is central to the mechanism of effective anti-anxiety treatments. Several pharmacological manipulations, such as D-cycloserine, a partial NMDA agonist, have been found to facilitate extinction. Combining these medication approaches with psychotherapies that promote extinction, such as cognitive behavioral therapy (CBT), may offer patients with anxiety disorders a rapid and robust treatment with good durability of effect.

  3. An analytical drain current model for symmetric double-gate MOSFETs

    Science.gov (United States)

    Yu, Fei; Huang, Gongyi; Lin, Wei; Xu, Chuanzhong

    2018-04-01

    An analytical surface-potential-based drain current model of symmetric double-gate (sDG) MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson's equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson's equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  4. Meson exchange current (MEC) models in neutrino interaction generators

    International Nuclear Information System (INIS)

    Katori, Teppei

    2015-01-01

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators

  5. Alcohol and Suicide: Neurobiological and Clinical Aspects

    Directory of Open Access Journals (Sweden)

    Leo Sher

    2006-01-01

    Full Text Available Alcohol, primarily in the form of ethyl alcohol (ethanol, has occupied an important place in the history of humankind for at least 8,000 years. In most Western societies, at least 90% of people consume alcohol at some time during their lives, and 30% or more of drinkers develop alcohol-related problems. Severe alcohol-related life impairment, alcohol dependence (alcoholism, is observed at some time during their lives in about 10% of men and 3—5% of women. An additional 5—10% of each sex develops persistent, but less intense, problems that are diagnosed as alcohol abuse. It this review, neurobiological aspects of suicidal behavior in alcoholism is discussed. In individuals with comorbid depression and alcoholism, greater serotonergic impairment may be associated with higher risk of completed suicide. Dopaminergic dysfunction may play an important role in the pathophysiology of suicidal behavior in alcoholism. Brain damage and neurobehavioral deficits are associated with alcohol use disorders and may contribute to suicidal behavior in persons with alcohol dependence or abuse. Aggression/impulsivity and alcoholism severity affect risk for suicide among individuals with alcoholism. Major depressive episodes and stressful life events particularly, partner-relationship disruptions, may precipitate suicidal behavior in individuals with alcohol use disorders. Alcohol misuse and psychosocial adversity can combine to increase stress on the person, and, thereby, potentially, increase the risk for suicidal behavior. The management of suicidal patients with alcohol use disorders is also discussed. It is to be hoped that the efforts of clinicians will reduce morbidity and mortality associated with alcohol misuse.

  6. Electromagnetic modeling method for eddy current signal analysis

    International Nuclear Information System (INIS)

    Lee, D. H.; Jung, H. K.; Cheong, Y. M.; Lee, Y. S.; Huh, H.; Yang, D. J.

    2004-10-01

    An electromagnetic modeling method for eddy current signal analysis is necessary before an experiment is performed. Electromagnetic modeling methods consists of the analytical method and the numerical method. Also, the numerical methods can be divided by Finite Element Method(FEM), Boundary Element Method(BEM) and Volume Integral Method(VIM). Each modeling method has some merits and demerits. Therefore, the suitable modeling method can be chosen by considering the characteristics of each modeling. This report explains the principle and application of each modeling method and shows the comparison modeling programs

  7. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  8. Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence

    Science.gov (United States)

    Strait, Dana; Kraus, Nina

    2012-01-01

    Human hearing depends on a combination of cognitive and sensory processes that function by means of an interactive circuitry of bottom-up and top-down neural pathways, extending from the cochlea to the cortex and back again. Given that similar neural pathways are recruited to process sounds related to both music and language, it is not surprising that the auditory expertise gained over years of consistent music practice fine-tunes the human auditory system in a comprehensive fashion, strengthening neurobiological and cognitive underpinnings of both music and speech processing. In this review we argue not only that common neural mechanisms for speech and music exist, but that experience in music leads to enhancements in sensory and cognitive contributors to speech processing. Of specific interest is the potential for music training to bolster neural mechanisms that undergird language-related skills, such as reading and hearing speech in background noise, which are critical to academic progress, emotional health, and vocational success. PMID:22993456

  9. Modeling of Pulsed Direct-Current Glow Discharge

    International Nuclear Information System (INIS)

    Du Mu; Zheng Yaru; Fan Yujia; Zhang Nan; Liu Chengsen; Wang Dezhen

    2010-01-01

    A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic calculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.

  10. Current algebra of WZNW models at and away from criticality

    International Nuclear Information System (INIS)

    Abdalla, E.; Forger, M.

    1992-01-01

    In this paper, the authors derive the current algebra of principal chiral models with a Wess-Zumino term. At the critical coupling where the model becomes conformally invariant (Wess-Zumino-Novikov-Witten theory), this algebra reduces to two commuting Kac-Moody algebras, while in the limit where the coupling constant is taken to zero (ordinary chiral model), we recover the current algebra of that model. In this way, the latter is explicitly realized as a deformation of the former, with the coupling constant as the deformation parameter

  11. An analytical drain current model for symmetric double-gate MOSFETs

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2018-04-01

    Full Text Available An analytical surface-potential-based drain current model of symmetric double-gate (sDG MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson’s equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson’s equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  12. Method of controlling illumination device based on current-voltage model

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an illumination device comprising a number of LEDs, means for receiving an input signal, means for generating an activation signal for at least one of the LEDs based on the input signal. The illumination device comprises further means for obtaining the voltage...... and the colorimetric properties of said light emitted by LED. The present invention relates also to a method of controlling and a meted of calibrating such illumination device....... across and current through the LED and the means for generating the activation signal is adapted to generate the activating signal based on the voltage, the current and a current- voltage model related to LED. The current-voltage model defines a relationship between the current, the voltage...

  13. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence.

    Directory of Open Access Journals (Sweden)

    Mayte Alvarez-Crespo

    Full Text Available Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL and ventromedial (LaVM parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field, intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like behaviors if food is not available.

  14. A two dimensional model of undertow current over mud bed

    International Nuclear Information System (INIS)

    Mir Hammadul Azam; Abdul Aziz Ibrahim; Noraieni Hj, Mokhtar

    1996-01-01

    Coastal wave-current dynamics often causes severe erosion and this activity is more prominent within the surf zone. Turbulence generated by breaking wave is a complex phenomena and the degree of complexity increases to a higher degree when it happens over mud bed. A better understanding on wave and current is necessary to enrich the engineering hand to facilitate any coastal development work. Since physical model has certain deficiencies, such as high cost and scaling problem, the need for developing numerical models in such cases is significant. A time averaged two dimensional model has been developed to simulate the undertow over mud bed. A turbulent energy model also included which considers only the vertical variation of mixing length. Production of turbulent kinetic energy in the surf zone has been calculated from an hydraulic jump analogy. The result obtained shows an insignificant vertical variation of current. Further research is needed involving laboratory and field works to get sufficient data for comparing the model results

  15. Induction of innate immune genes in brain create the neurobiology of addiction.

    Science.gov (United States)

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Parametric overdispersed frailty models for current status data.

    Science.gov (United States)

    Abrams, Steven; Aerts, Marc; Molenberghs, Geert; Hens, Niel

    2017-12-01

    Frailty models have a prominent place in survival analysis to model univariate and multivariate time-to-event data, often complicated by the presence of different types of censoring. In recent years, frailty modeling gained popularity in infectious disease epidemiology to quantify unobserved heterogeneity using Type I interval-censored serological data or current status data. In a multivariate setting, frailty models prove useful to assess the association between infection times related to multiple distinct infections acquired by the same individual. In addition to dependence among individual infection times, overdispersion can arise when the observed variability in the data exceeds the one implied by the model. In this article, we discuss parametric overdispersed frailty models for time-to-event data under Type I interval-censoring, building upon the work by Molenberghs et al. (2010) and Hens et al. (2009). The proposed methodology is illustrated using bivariate serological data on hepatitis A and B from Flanders, Belgium anno 1993-1994. Furthermore, the relationship between individual heterogeneity and overdispersion at a stratum-specific level is studied through simulations. Although it is important to account for overdispersion, one should be cautious when modeling both individual heterogeneity and overdispersion based on current status data as model selection is hampered by the loss of information due to censoring. © 2017, The International Biometric Society.

  17. Neuroscience of exercise: from neurobiology mechanisms to mental health.

    Science.gov (United States)

    Matta Mello Portugal, Eduardo; Cevada, Thais; Sobral Monteiro-Junior, Renato; Teixeira Guimarães, Thiago; da Cruz Rubini, Ercole; Lattari, Eduardo; Blois, Charlene; Camaz Deslandes, Andrea

    2013-01-01

    The neuroscience of exercise is a growing research area that is dedicated to furthering our understanding of the effects that exercise has on mental health and athletic performance. The present study examined three specific topics: (1) the relationship between exercise and mental disorders (e.g. major depressive disorder, dementia and Parkinson's disease), (2) the effects of exercise on the mood and mental health of athletes, and (3) the possible neurobiological mechanisms that mediate the effects of exercise. Positive responses to regular physical exercise, such as enhanced functional capacity, increased autonomy and improved self-esteem, are frequently described in the recent literature, and these responses are all good reasons for recommending regular exercise. In addition, physical exercise may improve both mood and adherence to an exercise program in healthy individuals and might modulate both the performance and mental health of athletes. Exercise is associated with the increased synthesis and release of both neurotransmitters and neurotrophic factors, and these increases may be associated with neurogenesis, angiogenesis and neuroplasticity. This review is a call-to-action that urges researchers to consider the importance of understanding the neuroscience of physical exercise and its contributions to sports science. Copyright © 2013 S. Karger AG, Basel.

  18. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE

    Directory of Open Access Journals (Sweden)

    Mark eSundman

    2015-09-01

    Full Text Available Traumatic brain injury (TBI has been increasingly accepted as a major external risk factor for neurodegenerative morbidity and mortality. Recent evidence indicates that the resultant chronic neurobiological sequelae following head trauma may, at least in part, contribute to a pathologically distinct disease known as Chronic Traumatic Encephalopathy (CTE. The clinical manifestation of CTE is variable, but the symptoms of this progressive disease include impaired memory and cognition, affective disorders (i.e., impulsivity, aggression, depression, suicidality, etc., and diminished motor control. Notably, mounting evidence suggests that the pathology contributing to CTE may be caused by repetitive exposure to subconcussive hits to the head, even in those with no history of a clinically evident head injury. Given the millions of athletes and military personnel with potential exposure to repetitive subconcussive insults and TBI, CTE represents an important public health issue. However, the incidence rates and pathological mechanisms are still largely unknown, primarily due to the fact that there is no in vivo diagnostic tool. The primary objective of this manuscript is to address this limitation and discuss potential neuroimaging modalities that may be capable of diagnosing CTE in vivo through the detection of tau and other known pathological features. Additionally, we will discuss the challenges of TBI research, outline the known pathology of CTE (with an emphasis on Tau, review current neuroimaging modalities to assess the potential routes for in vivo diagnosis, and discuss the future directions of CTE research.

  19. Virtual Universities: Current Models and Future Trends.

    Science.gov (United States)

    Guri-Rosenblit, Sarah

    2001-01-01

    Describes current models of distance education (single-mode distance teaching universities, dual- and mixed-mode universities, extension services, consortia-type ventures, and new technology-based universities), including their merits and problems. Discusses future trends in potential student constituencies, faculty roles, forms of knowledge…

  20. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica; Pratchett, Morgan; Walker, Stefan; Coker, Darren James; O'Connell, Lauren A.

    2017-01-01

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  1. Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant vertebrate lineages

    KAUST Repository

    Nowicki, Jessica

    2017-11-14

    Pair bonding has independently evolved numerous times among vertebrates. The governing neural mechanisms of pair bonding have only been studied in depth in the mammalian model species, the prairie vole, Microtus ochrogaster. In this species, oxytocin (OT), arginine vasopressin (AVP), dopamine (DA), and opioid (OP) systems play key roles in signaling in the formation and maintenance of pair bonding by targeting specific social and reward-mediating brain regions. By contrast, the neural basis of pair bonding is poorly studied in other vertebrates, and especially those of early origins, limiting our understanding of the evolutionary history of pair bonding regulatory mechanisms. We compared receptor gene expression between pair bonded and solitary individuals across eight socio-functional brain regions. We found that in females, ITR and V1aR receptor expression varied in the lateral septum-like region (the Vv/Vl), while in both sexes D1R, D2R, and MOR expression varied within the mesolimbic reward system, including a striatum-like region (the Vc); mirroring sites of action in M. ochrogaster. This study provides novel insights into the neurobiology of teleost pair bonding. It also reveals high convergence in the neurochemical mechanisms governing pair bonding across actinopterygians and sarcopterygians, by repeatedly co-opting and similarly assembling deep neurochemical and neuroanatomical homologies that originated in ancestral osteithes.

  2. Modeling of leakage currents in high-k dielectrics

    International Nuclear Information System (INIS)

    Jegert, Gunther Christian

    2012-01-01

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO 2 material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO 2 /TiN capacitor structures were suggested and problem areas that may

  3. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  4. Adolescent Social Isolation as a Model of Heightened Vulnerability to Comorbid Alcoholism and Anxiety Disorders.

    Science.gov (United States)

    Butler, Tracy R; Karkhanis, Anushree N; Jones, Sara R; Weiner, Jeffrey L

    2016-06-01

    Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in

  5. Modelling of helical current filaments induced by LHW on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Rack, Michael; Denner, Peter; Liang, Yunfeng [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Zeng, Long [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, D-52425 Juelich (Germany); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gong, Xianzu; Gan, Kaifu; Wang, Liang; Liu, Fukun; Qian, Jinping; Shen, Biao; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Gauthier, Eric [Association EURATOM-CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Collaboration: the EAST Team

    2013-07-01

    Helical radiation belts have been observed in the scrape-off layer (SOL) of the plasma during the application of lower hybrid wave (LHW) heating at the superconducting tokamak EAST. Modelled SOL field lines, starting in-front of the LHW antennas, show agreement in position and pitch angle to the experimental observed radiation belts. A splitting of the strike-line can be observed on the outer divertor plates during the application of LHW heating. Agreement in the comparison of the Mirnov coil signals and a modelled electric current flow along these SOL field lines was found. A lower hybrid current drive can induce such an electric current flow near the plasma edge. This electric current flow causes a change of the plasma topology which could result in the splitting of the strike-line as known from the application of resonant magnetic perturbation fields. Comparisons of modelled footprint structures and experimental observed heat load patterns in the divertor region are discussed.

  6. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  7. Current algebra, statistical mechanics and quantum models

    Science.gov (United States)

    Vilela Mendes, R.

    2017-11-01

    Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.

  8. Study of mouse behavioural response in microgravity: ethogram and neurobiological related

    Science.gov (United States)

    Santucci, Daniela; Francia, Nadia; Schwartz, Silvia; Biticchi, Roberta; Liu, Yi; Cancedda, Ranieri; Aloe, Luigi

    The conquest of space, which started with the dog Laika in 1966 to be followed few years later by Yuri Gagarin, has witnessed an increasing numbers of both vertebrates (tadpoles, frogs, rats mice etc.) and invertebrates (flies, scorpions, protozoa) species exposed to zero gravity levels. Animals are sent into orbit to proactively foresee possible health problems in humans. The issue of animal exposure to un-physiological gravity is of primary importance to i) understand behavioural and physiological adaptations in such environment as well as ii) develop coun-termeasures to improve 0-g life conditions and reduce possible animal suffering. The Mouse Drawer System (MDS), an Italian facility, has been transferred to the International Space Sta-tion with a first experiment investigating mechanisms underlying bone mass loss in microgravity in mice. Preliminary and ground-based control experiments have been conducted with six mice housed individually inside the MDS facility for 20 and 100 days. The behavioural repertoire of wild-type and transgenic mice housed in the MDS has been videorecorded with the observation subsystem, which allows to monitor animal's behavior through the use of 6 video cameras. The behavioural patterns characterizing mice in the MDS system have been finely analysed at several time points during the the experiment. Moreover, neurobiological parameters, known to be involved in the response to stress, have been evaluated. In particular, NGF and BDNF levels have been measured in the central nervous system (hippocampus, striatum, and cortex), adrenal gland and limbs. Preliminary data from ground based experiment revealed Several dif-ferences in behavioural profile between wt and tg mice, with transgenic ones apparently more active than wild type controls. Moreover a clear difference in time spent in different areas of the MDS cage was observed. Finally changes in neurotrophins levels were observed in relation to both genotype and environmental

  9. Exploring in vitro neurobiological effects and high-pressure liquid chromatography-assisted quantitation of chlorogenic acid in 18 Turkish coffee brands

    OpenAIRE

    Erdem, Sinem Aslan; Senol, F. Sezer; Budakoglu, Esin; Orhan, Ilkay Erdogan; Sener, Bilge

    2016-01-01

    The hydroalcoholic extracts of the Turkish traditional coffee samples from 18 commercial brands were tested for their neurobiological effects through enzyme inhibition based on enzyme-linked immunosorbance microtiter assays against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, linked to Alzheimer's and Parkinson's diseases. The extracts were also subjected to several antioxidant test systems to define their antiradical, metal-chelation capacity, and reducing power. Total phenol...

  10. Oxytocin and Socioemotional Aging─Current Knowledge and Future Trends

    Directory of Open Access Journals (Sweden)

    Natalie C. Ebner

    2013-08-01

    Full Text Available The oxytocin (OT system is involved in various aspects of social cognition and prosocial behavior. Specifically, OT has been examined in the context of social memory, emotion recognition, cooperation, trust, empathy, and bonding, and─though evidence is somewhat mixed─intranasal OT appears to benefit aspects of socioemotional functioning. However, most of the extant data on aging and OT is from animal research and human OT research has focused largely on young adults. As such, though we know that various socioemotional capacities change with age, we know little about whether age-related changes in the OT system may underlie age-related differences in socioemotional functioning. In this review, we take a genetic-neuro-behavioral approach and evaluate current evidence on age-related changes in the OT system as well as the putative effects of these alterations on age-related socioemotional functioning. Looking forward, we identify informational gaps and propose an Age-Related Genetic, Neurobiological, Sociobehavioral Model of Oxytocin (AGeNeS-OT model which may structure and inform investigations into aging-related genetic, neural, and sociocognitive processes related to OT. As an exemplar of the use of the model, we report exploratory data suggesting differences in socioemotional processing associated with genetic variation in the oxytocin receptor gene (OXTR in samples of young and older adults. Information gained from this arena has translational potential in depression, social stress, and anxiety─all of which have high relevance in aging─and may contribute to reducing social isolation and improving well-being of individuals across the lifespan.

  11. Towards a neurobiological understanding of alexithymia

    Directory of Open Access Journals (Sweden)

    Nicolás Meza-Concha

    2017-05-01

    Full Text Available Resumen Si bien la literatura especializada sobre la etiología de la alexitimia es controvertida, la investigación neurobiológica sobre el fenómeno ha demostrado importantes avances. El objetivo de esta revisión es analizar la evidencia disponible en relación a las bases neurofisiológicas de la alexitimia. Se realizó una revisión exhaustiva de artículos disponibles en MEDLINE/PubMed, EBSCO y SciELO. Inicialmente, se vinculó a la alexitimia con una conexión cerebral interhemisférica reducida. Desde la perspectiva traumática infantil, la corteza prefrontal derecha y la red neuronal por defecto experimentarían alteraciones, primero hipermetabólicas (desregulación dopaminérgica y glutamatérgica y luego hipometabólicas-disociativas (desregulación serotoninérgica y opioide, resultando en una consciencia interoceptiva y emocional distorsionada. Las neuronas espejo son el sustrato neurobiológico fundamental de la teoría de la mente y la cognición social, intrínsecamente vinculadas con la alexitimia, involucrando cortezas como la parietal, la temporal, la premotora, la cingulada y el giro frontal inferior. Otras estructuras involucradas son amígdala (expresión facial y reactividad emocional, ínsula (interocepción, integración emocional y empatía y cerebelo (cerebelo límbico y consciencia somatosensorial. La genética molecular ha detectado polimorfismos en el gen del transportador de serotonina, en los genes de las enzimas del metabolismo dopaminérgico y del factor neurotrófico derivado del cerebro, mientras que el rol de la oxitocina es controvertido. En conclusión, numerosos estudios demuestran contundentemente la existencia de una neurobiología subyacente a la alexitimia. Sin embargo, la investigación es aún poco concluyente y debe considerar los factores ambientales, traumáticos, sociales y psicológicos que contribuyen al origen del fenómeno.

  12. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  13. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  14. Model for an irreversible bias current in the superconducting qubit measurement process

    International Nuclear Information System (INIS)

    Hutchinson, G. D.; Williams, D. A.; Holmes, C. A.; Stace, T. M.; Spiller, T. P.; Barrett, S. D.; Milburn, G. J.; Hasko, D. G.

    2006-01-01

    The superconducting charge-phase ''quantronium'' qubit is considered in order to develop a model for the measurement process used in the experiment of Vion et al. [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device

  15. The Role of Pleasure Neurobiology and Dopamine in Mental Health Disorders.

    Science.gov (United States)

    Worley, Julie

    2017-09-01

    Recent evidence and research has demonstrated that the pleasure response and associated neurotransmitters and brain circuits play a significant role in substance use disorders (SUDs). It was thought that negative behaviors associated with SUDs resulted from negative choices, but it is now known that chemical changes in the brain drive those behaviors. Several mental health disorders (e.g., eating disorders, non-suicidal self-injury, compulsive sex behaviors, internet gaming, gambling) are also thought to involve those same pleasure responses, neurotransmitters, and brain regions. Studies have shown that the use of naltrexone, a dopamine antagonist, can reduce symptoms of these disorders. It is important for nurses to understand the underlying physiology of mental health disorders that are thought to have an addictive or craving component. This understanding can help reduce stigma. Educating patients about likely neurobiological causes for their disorders can also help reduce guilt and shame. Nurses should educate patients about these disorders and evidence-based treatments, including off-label use of naltrexone. [Journal of Psychosocial Nursing and Mental Health Services, 55(9), 17-21.]. Copyright 2017, SLACK Incorporated.

  16. Neurobiological and psychosocial conditionings of rationality of criminal behaviour – review

    Directory of Open Access Journals (Sweden)

    Przemysław Piotrowski

    2011-12-01

    Full Text Available The term “rationality” has been mentioned for ages in philosophical discourse, and later in science. No wonder that considerations regarding the reasons behind committing crimes involve the question of rationality of culprits. The article comprises a review of contemporary research on factors which, on a neurobiological, psychological or social level, modify the level of rationality of criminals. In case of the juveniles, factors such as not fully developed brain structures, the influence of hormonal changes resulting in emotional instability and peer pressure, should also be taken into account. Adult criminals often manifest a deficit of activity in the prefrontal cortex of the brain, combined with increased activity in the subcortex, resulting in an increased propensity for violence. Neurophysiologic disorders may be accompanied by factors reducing the rationality, such as: errors in thinking, habitual use of neutralisation techniques or being lead by the, typical for street culture, perception of justice. All of the above should be taken into account as a part of a multi-aspect analyses of the causes of crime.

  17. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory.

    Science.gov (United States)

    Ikemoto, Satoshi

    2010-11-01

    Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area. Published by Elsevier Ltd.

  18. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    Science.gov (United States)

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

  19. Theoretical and practical insights for anorexia nervosa and major depression: novel neurobiological targets for pharmacology and brain stimulation therapies

    OpenAIRE

    Keating, Charlotte

    2017-01-01

    Major Depression (MD) and Anorexia Nervosa (AN) often present co-morbidly and both share neurobiological abnormalities. MD presents up to 3 times as often in females than males and AN presents in up to 95% of females. In the illness phase, pathophysiological evidence indicates similar abnormalities in both clinical groups including; dysfunction in the serotonin system (5-hydroxytryptamine, 5-HT) (of which some abnormalities persist following recovery) and between 60-80% of patients in both gr...

  20. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  1. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  2. Fokker-Planck modeling of current penetration during electron cyclotron current drive

    International Nuclear Information System (INIS)

    Merkulov, A.; Westerhof, E.; Schueller, F. C.

    2007-01-01

    The current penetration during electron cyclotron current drive (ECCD) on the resistive time scale is studied with a Fokker-Planck simulation, which includes a model for the magnetic diffusion that determines the parallel electric field evolution. The existence of the synergy between the inductive electric field and EC driven current complicates the process of the current penetration and invalidates the standard method of calculation in which Ohm's law is simply approximated by j-j cd =σE. Here it is proposed to obtain at every time step a self-consistent approximation to the plasma resistivity from the Fokker-Planck code, which is then used in a concurrent calculation of the magnetic diffusion equation in order to obtain the inductive electric field at the next time step. A series of Fokker-Planck calculations including a self-consistent evolution of the inductive electric field has been performed. Both the ECCD power and the electron density have been varied, thus varying the well known nonlinearity parameter for ECCD P rf [MW/m -3 ]/n e 2 [10 19 m -3 ] [R. W. Harvey et al., Phys. Rev. Lett 62, 426 (1989)]. This parameter turns out also to be a good predictor of the synergetic effects. The results are then compared with the standard method of calculations of the current penetration using a transport code. At low values of the Harvey parameter, the standard method is in quantitative agreement with Fokker-Planck calculations. However, at high values of the Harvey parameter, synergy between ECCD and E parallel is found. In the case of cocurrent drive, this synergy leads to the generation of large amounts of nonthermal electrons and a concomitant increase of the electrical conductivity and current penetration time. In the case of countercurrent drive, the ECCD efficiency is suppressed by the synergy with E parallel while only a small amount of nonthermal electrons is produced

  3. Ring current models for acetylene and ethylene molecules

    International Nuclear Information System (INIS)

    Pelloni, Stefano; Lazzeretti, Paolo

    2009-01-01

    Spatial models of the current density vector field, induced in the electronic cloud of the acetylene and ethylene molecules by a uniform, time-independent magnetic field, are discussed in terms of topological stagnation graphs and three-dimensional streamline plots. The models are validated by documenting their ability to explain magnetic susceptibility and nuclear magnetic shieldings of carbon and hydrogen via related shielding density maps

  4. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    Science.gov (United States)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric

  5. Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model.

    Science.gov (United States)

    Rice, William R; Friberg, Urban; Gavrilets, Sergey

    2013-09-01

    We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  6. Dynamics of the exponential integrate-and-fire model with slow currents and adaptation.

    Science.gov (United States)

    Barranca, Victor J; Johnson, Daniel C; Moyher, Jennifer L; Sauppe, Joshua P; Shkarayev, Maxim S; Kovačič, Gregor; Cai, David

    2014-08-01

    In order to properly capture spike-frequency adaptation with a simplified point-neuron model, we study approximations of Hodgkin-Huxley (HH) models including slow currents by exponential integrate-and-fire (EIF) models that incorporate the same types of currents. We optimize the parameters of the EIF models under the external drive consisting of AMPA-type conductance pulses using the current-voltage curves and the van Rossum metric to best capture the subthreshold membrane potential, firing rate, and jump size of the slow current at the neuron's spike times. Our numerical simulations demonstrate that, in addition to these quantities, the approximate EIF-type models faithfully reproduce bifurcation properties of the HH neurons with slow currents, which include spike-frequency adaptation, phase-response curves, critical exponents at the transition between a finite and infinite number of spikes with increasing constant external drive, and bifurcation diagrams of interspike intervals in time-periodically forced models. Dynamics of networks of HH neurons with slow currents can also be approximated by corresponding EIF-type networks, with the approximation being at least statistically accurate over a broad range of Poisson rates of the external drive. For the form of external drive resembling realistic, AMPA-like synaptic conductance response to incoming action potentials, the EIF model affords great savings of computation time as compared with the corresponding HH-type model. Our work shows that the EIF model with additional slow currents is well suited for use in large-scale, point-neuron models in which spike-frequency adaptation is important.

  7. Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use and compulsive smoking

    Directory of Open Access Journals (Sweden)

    Ami eCohen

    2013-06-01

    Full Text Available Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake.

  8. Analysis and Modeling of Circulating Current in Two Parallel-Connected Inverters

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand

    2015-01-01

    Parallel-connected inverters are gaining attention for high power applications because of the limited power handling capability of the power modules. Moreover, the parallel-connected inverters may have low total harmonic distortion of the ac current if they are operated with the interleaved pulse...... this model, the circulating current between two parallel-connected inverters is analysed in this study. The peak and root mean square (rms) values of the normalised circulating current are calculated for different PWM methods, which makes this analysis a valuable tool to design a filter for the circulating......-width modulation (PWM). However, the interleaved PWM causes a circulating current between the inverters, which in turn causes additional losses. A model describing the dynamics of the circulating current is presented in this study which shows that the circulating current depends on the common-mode voltage. Using...

  9. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction.

    Science.gov (United States)

    Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R

    2012-06-01

    Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Neural network modeling of associative memory: Beyond the Hopfield model

    Science.gov (United States)

    Dasgupta, Chandan

    1992-07-01

    A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

  11. Neurobiological correlates of panic disorder and agoraphobia.

    Directory of Open Access Journals (Sweden)

    Al-Haddad M

    2001-01-01

    Full Text Available Panic Disorder and agoraphobia offer considerable diagnostic and management challenges, particularly in general practice. We describe a typical case of panic disorder in a young adult. The recent advances in our understanding of brain functions can be used to explain to a certain extent the biologic basis of panic disorder. A hypothetical model integrating current views on panic disorder and agoraphobia has been proposed. The management principles including the role of cognitive therapy and pharmacotherapy have been discussed.

  12. Dream interpretation, affect, and the theory of neuronal group selection: Freud, Winnicott, Bion, and Modell.

    Science.gov (United States)

    Shields, Walker

    2006-12-01

    The author uses a dream specimen as interpreted during psychoanalysis to illustrate Modell's hypothesis that Edelman's theory of neuronal group selection (TNGS) may provide a valuable neurobiological model for Freud's dynamic unconscious, imaginative processes in the mind, the retranscription of memory in psychoanalysis, and intersubjective processes in the analytic relationship. He draws parallels between the interpretation of the dream material with keen attention to affect-laden meanings in the evolving analytic relationship in the domain of psychoanalysis and the principles of Edelman's TNGS in the domain of neurobiology. The author notes how this correlation may underscore the importance of dream interpretation in psychoanalysis. He also suggests areas for further investigation in both realms based on study of their interplay.

  13. Food reward system: current perspectives and future research needs.

    Science.gov (United States)

    Alonso-Alonso, Miguel; Woods, Stephen C; Pelchat, Marcia; Grigson, Patricia Sue; Stice, Eric; Farooqi, Sadaf; Khoo, Chor San; Mattes, Richard D; Beauchamp, Gary K

    2015-05-01

    This article reviews current research and cross-disciplinary perspectives on the neuroscience of food reward in animals and humans, examines the scientific hypothesis of food addiction, discusses methodological and terminology challenges, and identifies knowledge gaps and future research needs. Topics addressed herein include the role of reward and hedonic aspects in the regulation of food intake, neuroanatomy and neurobiology of the reward system in animals and humans, responsivity of the brain reward system to palatable foods and drugs, translation of craving versus addiction, and cognitive control of food reward. The content is based on a workshop held in 2013 by the North American Branch of the International Life Sciences Institute. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  14. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  15. Generalized Veneziano model for pion scattering off isovector currents and the scaling limit

    CERN Document Server

    Rothe, H J; Rolhe, K D

    1972-01-01

    Starting from a local one-particle approximation scheme for the commutator of two conserved currents, the authors construct a generalized Veneziano model for pion scattering off neutral and charged isovector currents, satisfying the constraints of current conservation and current algebra. The model factorizes correctly on the leading Regge trajectories and incorporates the proper Regge behaviour for strong amplitudes. Fixed poles are found to be present in the s and t channels of the one- and two-current amplitudes. Furthermore, the model makes definite predictions about the structure of Schwinger terms and of the 'seagull' terms in the retarded commutator. (13 refs).

  16. Short-channel drain current model for asymmetric heavily/lightly ...

    Indian Academy of Sciences (India)

    The paper presents a drain current model for double gate metal oxide semiconductor field effect transistors (DG MOSFETs) based on a new velocity saturation model that accounts for short-channel velocity saturation effect independently in the front and the back gate controlled channels under asymmetric front and back ...

  17. Model-independent determination of hadronic neutral-current couplings

    International Nuclear Information System (INIS)

    Claudson, M.; Paschos, E.A.; Strait, J.; Sulak, L.R.

    1979-01-01

    Completion of a second generation of experiments on neutrino-induced neutral-current reactions allows a more discriminating study of neutral-current couplings to hadrons. To minimize the sensitivity to model-dependent analyses of inclusive and exclusive pion data, we base our work on measurements of deep-inelastic and elastic reactions alone. Within the regions allowed by the deep-inelastic data for scattering on isoscalar targets, the coupling constants are fit to the q 2 dependence of the neutrino-proton elastic scattering data. This procedure initially yields two solutions for the couplings. One of these, at theta/sub L/ = 55 0 and theta/sub R/ = 205 0 , is predominantly isoscalar and therefore is ruled out by only qualitative consideration of exclusive pion data. The other solution at theta/sub D/ = 140 0 and and theta/sub R/ = 330 0 , is thus a unique determination of the hadronic neutral-current couplings. It coincides with solution A obtained in earlier work, and is insensitive to variations of M/sub A/ within 2 standard deviations of the world average. When constrained to the coupling constants required by the Weinberg-Salam model, the fit agrees with the data to within 1 standard deviation

  18. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  19. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  20. Alfven Wave Reflection Model of Field-Aligned Currents at Mercury

    Science.gov (United States)

    Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James

    2010-01-01

    An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.

  1. Two-current nucleon observables in Skyrme model

    International Nuclear Information System (INIS)

    Chemtob, M.

    1987-01-01

    Three independent two-current nucleon observables are studied within the two-flavor Skyrme model for the πρω system. The effecive lagrangian is that of the gauged chiral symmetry approach, consistent with the vector meson dominance, in the linear realization (for the vector mesons) of the global chiral symmetry. The first application deals with the nucleon electric polarizability and magnetic susceptibility. Both seagull and dispersive contributions appear and we evaluate the latter in terms of the sums over intermediate states. The results are compared with existing quark model results as well as with empirical determinations. The second application concerns the zero-point quantum correction to the skyrmion mass. We apply a chiral perturbation theory approach to evaluate the ion loop contribution to the nucleon mass. The comparison with the conventional Skyrme model result reveals an important sensitivity to the stabilization mechanism. The third application is to lepton-nucleon deep inelastic scattering in the Bjorken scaling limit. The structure tensor is calculated in terms of the representation as a commutator product of two currents. Numerical results are presented for the scaling function F 2 (x). An essential use is made of the large N c (number of colors) approximation in all these applications. In the numerical computations we ignore the distortion effects, relative to the free plane wave limit, on the pionic fluctuations. (orig.)

  2. The chronic mild stress (CMS) model of depression: History, evaluation and usage.

    Science.gov (United States)

    Willner, Paul

    2017-02-01

    Now 30 years old, the chronic mild stress (CMS) model of depression has been used in >1300 published studies, with a year-on-year increase rising to >200 papers in 2015. Data from a survey of users show that while a variety of names are in use (chronic mild/unpredictable/varied stress), these describe essentially the same procedure. This paper provides an update on the validity and reliability of the CMS model, and reviews recent data on the neurobiological basis of CMS effects and the mechanisms of antidepressant action: the volume of this research may be unique in providing a comprehensive account of antidepressant action within a single model. Also discussed is the use of CMS in drug discovery, with particular reference to hippocampal and extra-hippocampal targets. The high translational potential of the CMS model means that the neurobiological mechanisms described may be of particular relevance to human depression and mechanisms of clinical antidepressant action.

  3. "More than skin deep": stress neurobiology and mental health consequences of racial discrimination.

    Science.gov (United States)

    Berger, Maximus; Sarnyai, Zoltán

    2015-01-01

    Ethnic minority groups across the world face a complex set of adverse social and psychological challenges linked to their minority status, often involving racial discrimination. Racial discrimination is increasingly recognized as an important contributing factor to health disparities among non-dominant ethnic minorities. A growing body of literature has recognized these health disparities and has investigated the relationship between racial discrimination and poor health outcomes. Chronically elevated cortisol levels and a dysregulated hypothalamic-pituitary-adrenal (HPA) axis appear to mediate effects of racial discrimination on allostatic load and disease. Racial discrimination seems to converge on the anterior cingulate cortex (ACC) and may impair the function of the prefrontal cortex (PFC), hence showing substantial similarities to chronic social stress. This review provides a summary of recent literature on hormonal and neural effects of racial discrimination and a synthesis of potential neurobiological pathways by which discrimination affects mental health.

  4. Analytical drift-current threshold voltage model of long-channel double-gate MOSFETs

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Wang, Jhong-Sheng

    2009-01-01

    This paper presents a new, physical threshold voltage model to solve the ambiguity in determining the threshold voltage of double-gate (DG) MOSFETs. To avoid the difficulties of the conventional 2ψ B model in nearly undoped DG MOSFETs, this study proposes to define the on–off switching based on the actual roles of the drift and diffusion components in the total drain current. The drift current strongly enhances beyond the threshold voltage, while the diffusion current plays a major role in the subthreshold. The threshold voltage is defined as the drift component that exceeds the diffusion counterpart. From the solutions of Poisson's equation, the drift and diffusion currents of DG MOSFETs are separately formulated to derive the analytical expressions of the threshold voltage and associated threshold current. This model provides a comprehensive description of the switching behavior of DG MOSFET devices, and offers a physical onset threshold current to determine the threshold voltage in practical extraction

  5. Charged-current inclusive neutrino cross sections in the SuperScaling model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M. V., E-mail: martin.inrne@gmail.com [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Megias, G. D.; Caballero, J. A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); González-Jiménez, R. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Moreno, O.; Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Barbaro, M. B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Moya de Guerra, E.; Udías, J. M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain)

    2016-03-25

    SuperScaling model (SuSA) predictions to neutrino-induced charged-current π{sup +} production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current π{sup +} results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.

  6. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  7. A Neural Network Model of the Structure and Dynamics of Human Personality

    Science.gov (United States)

    Read, Stephen J.; Monroe, Brian M.; Brownstein, Aaron L.; Yang, Yu; Chopra, Gurveen; Miller, Lynn C.

    2010-01-01

    We present a neural network model that aims to bridge the historical gap between dynamic and structural approaches to personality. The model integrates work on the structure of the trait lexicon, the neurobiology of personality, temperament, goal-based models of personality, and an evolutionary analysis of motives. It is organized in terms of two…

  8. Epidemiology, neurobiology and pharmacological interventions related to suicide deaths and suicide attempts in bipolar disorder

    DEFF Research Database (Denmark)

    Schaffer, Ayal; Isometsä, Erkki T; Tondo, Leonardo

    2015-01-01

    associations with suicide attempts and deaths in bipolar disorder, but few replication studies. Data on treatment with lithium or anticonvulsants are strongly suggestive for prevention of suicide attempts and deaths, but additional data are required before relative anti-suicide effects can be confirmed......, and the most common methods, are important building blocks to greater awareness and improved interventions for suicide prevention in bipolar disorder. Replication of genetic findings and stronger prospective data on treatment options are required before more decisive conclusions can be made regarding......OBJECTIVES: Bipolar disorder is associated with elevated risk of suicide attempts and deaths. Key aims of the International Society for Bipolar Disorders Task Force on Suicide included examining the extant literature on epidemiology, neurobiology and pharmacotherapy related to suicide attempts...

  9. Modelling and analysis of the transformer current resonance in dual active bridge converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Zhan; Blaabjerg, Frede

    2017-01-01

    Due to the parasitic capacitances of the transformer and inductor in Dual Active Bridge (DAB) converters, resonance happens in the transformer currents. This high frequency resonant current flowing into the full bridges will worsen their soft-switching performance and thereby reduce its efficiency....... In order to study the generation mechanism of this current resonance, the impedance of the transformer and inductor with parasitic components is modelled in this digest. Then, based on the impedance model, an approach is proposed to mitigate the current resonance. Finally, both the impedance model...

  10. Computer modelling of eddy current probes

    International Nuclear Information System (INIS)

    Sullivan, S.P.

    1992-01-01

    Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs

  11. Two ways to model voltage-current curves of adiabatic MgB2 wires

    International Nuclear Information System (INIS)

    Stenvall, A; Korpela, A; Lehtonen, J; Mikkonen, R

    2007-01-01

    Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB 2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB 2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB 2 wires have been reported. In order to find out the real properties of MgB 2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values

  12. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Reversible thermal fusing model of carbon black current-limiting thermistors

    International Nuclear Information System (INIS)

    Martin, James E.; Heaney, Michael B.

    2000-01-01

    Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the applied electric field is increased, making this material commercially useful as current-limiting thermistors, also known as automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to the applied field, in agreement with experimental observations, which is solely due to fluctuations in the microstructure

  14. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique

    2010-12-15

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  15. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    International Nuclear Information System (INIS)

    Kozlowski, K.K.; Terras, V.

    2010-12-01

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  16. [The "diagnosis" in the light of Charles S. Peirce, Sherlock Holmes, Sigmund Freud and modern neurobiology].

    Science.gov (United States)

    Adler, R H

    2006-05-10

    A diagnostic hypothesis is a causa ficta. It is an assumption, suitable to explain phenomena, which are not yet proven to be the only and valid explanation of the observed. One of Wilhelm Hauff's faitales illustrates how a hypothesis is generated. It is based on the interpretation of signs. Signs are of an ikonic, an indexical or a symbolic nature. According to S. Peirce, a hypothesis is created by abduction, to Conan Doyle's Sherlock Holmes by immersion into thoughts, and to S. Freud by free floating attention. The three procedures are alike. Neurobiological structures and functions, which correspond to these processes, are described; especially the emotional-implicite memory. The technique of hypothesis-generation is meaningful to clinical medicine.

  17. Neurobiología de la agresión y la violencia

    Directory of Open Access Journals (Sweden)

    Joaquín Ortega-Escobar

    2016-01-01

    Full Text Available La neurobiología de la agresión y la violencia es de interés para la psicología jurídica porque buena parte de la conducta delictiva tiene componentes violentos. En esta revisión se definen en primer lugar ambos conceptos, para diferenciar a continuación los tipos de agresión (impulsiva vs. instrumental que aparecen en la literatura científica y finalmente analizar las estructuras nerviosas que según los estudios sobre lesiones cerebrales o de neuroimagen están asociadas con la agresión. Esta revisión destaca: a las estructuras subcorticales como el hipotálamo/tronco del encéfalo, donde se genera la conducta agresiva y la amígdala, implicada en procesar estímulos emocionalmente destacados; b las estructuras corticales como la corteza prefrontal (que comprende la corteza orbitofrontal, la corteza prefrontal ventromedial y la corteza cingulada anterior, que parecen ser hipofuncionales en los sujetos violentos. Por último, se revisan estudios sobre el papel del neurotransmisor serotonina en la manifestación del comportamiento agresivo.

  18. Transcranial Direct Current Stimulation: Considerations for Research in Adolescent Depression

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-06-01

    Full Text Available Adolescent depression is a prevalent disorder with substantial morbidity and mortality. Current treatment interventions do not target relevant pathophysiology and are frequently ineffective, thereby leading to a substantial burden for individuals, families, and society. During adolescence, the prefrontal cortex undergoes extensive structural and functional changes. Recent work suggests that frontolimbic development in depressed adolescents is delayed or aberrant. The judicious application of non-invasive brain stimulation techniques to the prefrontal cortex may present a promising opportunity for durable interventions in adolescent depression. Transcranial direct current stimulation (tDCS applies a low-intensity, continuous current that alters cortical excitability. While this modality does not elicit action potentials, it is thought to manipulate neuronal activity and neuroplasticity. Specifically, tDCS may modulate N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and effect changes through long-term potentiation or long-term depression-like mechanisms. This mini-review considers the neurobiological rationale for developing tDCS protocols in adolescent depression, reviews existing work in adult mood disorders, surveys the existing tDCS literature in adolescent populations, reviews safety studies, and discusses distinct ethical considerations in work with adolescents.

  19. The nonparametric bootstrap for the current status model

    NARCIS (Netherlands)

    Groeneboom, P.; Hendrickx, K.

    2017-01-01

    It has been proved that direct bootstrapping of the nonparametric maximum likelihood estimator (MLE) of the distribution function in the current status model leads to inconsistent confidence intervals. We show that bootstrapping of functionals of the MLE can however be used to produce valid

  20. Tridimensional numerical modelling of an eddy current non destructive testing process

    International Nuclear Information System (INIS)

    Bonnin, O.; Chavant, C.; Giordano, P.

    1993-01-01

    This paper presents the numerical modelling of a new eddy current inspection process. The originality of the process, developed jointly by IFREMER and the CEA, lies in the mode of inducing the currents in the component to be tested. The TRIFOU eddy current calculation code is used for the modelling, which is in 3D. It is shown that a crack in the component inspected will cause localized disturbance of the currents induced. If we then focus on this disturbance, assuming the electrical behaviour of the materials to be linear, the resulting problem can be set for a limited geometrical area, leading to an appreciable saving in machine time. It is also shown that the computed and experimental results are quantitatively similar. (authors). 2 figs., 6 refs

  1. Review. The neurobiology of pathological gambling and drug addiction: an overview and new findings.

    Science.gov (United States)

    Potenza, Marc N

    2008-10-12

    Gambling is a prevalent recreational behaviour. Approximately 5% of adults have been estimated to experience problems with gambling. The most severe form of gambling, pathological gambling (PG), is recognized as a mental health condition. Two alternate non-mutually exclusive conceptualizations of PG have considered it as an obsessive-compulsive spectrum disorder and a 'behavioural' addiction. The most appropriate conceptualization of PG has important theoretical and practical implications. Data suggest a closer relationship between PG and substance use disorders than exists between PG and obsessive-compulsive disorder. This paper will review data on the neurobiology of PG, consider its conceptualization as a behavioural addiction, discuss impulsivity as an underlying construct, and present new brain imaging findings investigating the neural correlates of craving states in PG as compared to those in cocaine dependence. Implications for prevention and treatment strategies will be discussed.

  2. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...... dynamics, as well as a battery model based on an equivalent circuit model and a balance of plant power consumption model. The models are tuned with experimental data and verified using a verification data set. The model is used to develop an output current controller which can control the charge current...... of the battery. The controller is a PI controller with feedforward and anti-windup. The performance of the controller is tested and verified on the physical system....

  3. Neurobiological approaches to a better understanding of human nature and human values

    Directory of Open Access Journals (Sweden)

    Gerald Hüther

    2006-04-01

    Full Text Available The most important finding made in the field of neurobiological research during the last decade is the discovery of the enormous experience-dependent plasticity of the human brain. The elaboration and stabilization of synaptic connectivity, and therefore, the complexity of neuronal networks in the higher brain centres depend to a far greater extent than previously believed on how – or rather, for which purpose – an individual uses his brain, the goals pursued, the experiences made in the course of his life, the models used for orientation, the values providing stability and eliciting a sense of commitment. The transmission and internalization of culture-specific abilities and of culture-specific values is achieved primarily during childhood by nonverbal communication (mirror neuron system, imitation learning as well as by implicit and explicit experiences (reward system, avoidance and reinforcement learning. Therefore the structural and functional organization of the human brain is crucially determined by social and cultural factors. Especially the frontal cortex with its highly complex neuronal networks involved in executive functions, evaluation an decision making must be conceptualized as a social, culturally shaped construct. The most important prerequisites for the transgenerational transmission of human values and their deep implementation into the higher frontocortical networks of the brains of subsequent generations are secure affectional relationships and a broad spectrum of different challenges. Only under such conditions, children are able to stabilize sufficiently complex networks and internal representations for metacognitive competences in their brains. This delicate process of experience-dependent organization of neuronal connectivity is seriously and often also persistently hampered or prematurely terminated by uncontrollable stress experiences. This danger ought be minimized by education programs aiming at the implementation

  4. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  5. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  6. Currents, charges, and canonical structure of pseudodual chiral models

    International Nuclear Information System (INIS)

    Curtright, T.; Zachos, C.

    1994-01-01

    We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory

  7. A case report of hypertensive bleed presenting with pathological laughter: Focus on neurobiological correlates and pharmacological management

    Directory of Open Access Journals (Sweden)

    Sujita Kumar Kar

    2015-01-01

    Full Text Available Pathological laughter and crying are episodes of either laughter or crying, which is intense and uncontrollable, usually lasting for brief periods and occurring in paroxysms. In the literature, pathological laughing and crying, emotionalism, pseudo-bulbar affect are synonymously used. Favorable evidences exist with regard to the use of antidepressants, mood stabilizers, and anti-glutaminergic agents for the management of pathological laughter and crying. In this case report, we highlight the clinical presentation of hypertensive bleed in the form of pathological laughter and its management with selective serotonin reuptake inhibitor - sertraline along with literature review regarding its neurobiological basis and pharmacological management.

  8. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  9. Dynamic neural network modeling of HF radar current maps for forecasting oil spill trajectories

    International Nuclear Information System (INIS)

    Tissot, P.; Perez, J.; Kelly, F.J.; Bonner, J.; Michaud, P.

    2001-01-01

    This paper examined the concept of dynamic neural network (NN) modeling for short-term forecasts of coastal high-frequency (HF) radar current maps offshore of Galveston Texas. HF radar technology is emerging as a viable and affordable way to measure surface currents in real time and the number of users applying the technology is increasing. A 25 megahertz, two site, Seasonde HF radar system was used to map ocean and bay surface currents along the coast of Texas where wind and river discharge create complex and rapidly changing current patters that override the weaker tidal flow component. The HF radar system is particularly useful in this type of setting because its mobility makes it a good marine spill response tool that could provide hourly current maps. This capability helps improve deployment of response resources. In addition, the NN model recently developed by the Conrad Blucher Institute can be used to forecast water levels during storm events. Forecasted currents are based on time series of current vectors from HF radar plus wind speed, wind direction, and water levels, as well as tidal forecasts. The dynamic NN model was tested to evaluate its performance and the results were compared with a baseline model which assumes the currents do not change from the time of the forecast up to the forecasted time. The NN model showed improvements over the baseline model for forecasting time equal or greater than 3 hours, but the difference was relatively small. The test demonstrated the ability of the dynamic NN model to link meteorological forcing functions with HF radar current maps. Development of the dynamic NN modeling is still ongoing. 18 refs., 1 tab., 5 figs

  10. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  11. Differential Susceptibility to the Environment: Are Developmental Models Compatible with the Evidence from Twin Studies?

    Science.gov (United States)

    Del Giudice, Marco

    2016-01-01

    According to models of differential susceptibility, the same neurobiological and temperamental traits that determine increased sensitivity to stress and adversity also confer enhanced responsivity to the positive aspects of the environment. Differential susceptibility models have expanded to include complex developmental processes in which genetic…

  12. Rectifier Current Control for an LLC Resonant Converter Based on a Simplified Linearized Model

    OpenAIRE

    Zhijian Fang; Junhua Wang; Shanxu Duan; Liangle Xiao; Guozheng Hu; Qisheng Liu

    2018-01-01

    In this paper, a rectifier current control for an LLC resonant converter is proposed, based on a simplified, two-order, linearized model that adds a rectifier current feedback inner loop to improve dynamic performance. Compared to the traditional large-signal model with seven resonant states, this paper utilizes a rectifier current state to represent the characteristics of the resonant states, simplifying the LLC resonant model from seven orders to two orders. Then, the rectifier current feed...

  13. Higher-spin currents in the Gross-Neveu model at 1/n"2

    International Nuclear Information System (INIS)

    Manashov, A.N.

    2016-10-01

    We calculate the anomalous dimensions of higher-spin currents, both singlet and non-singlet, in the Gross - Neveu model at the 1/n"2 order. It was conjectured that in the critical regime this model is dual to a higher-spin gauge theory on AdS_4. The AdS/CFT correspondence predicts that the masses of higher-spin fields correspond to the scaling dimensions of the singlet currents in the Gross - Neveu model.

  14. Current computational modelling trends in craniomandibular biomechanics and their clinical implications.

    Science.gov (United States)

    Hannam, A G

    2011-03-01

    Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid-body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non-linear and non-isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus. © 2010 Blackwell Publishing Ltd.

  15. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    Science.gov (United States)

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Current-voltage relation for thin tunnel barriers: Parabolic barrier model

    DEFF Research Database (Denmark)

    Hansen, Kim; Brandbyge, Mads

    2004-01-01

    We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant...

  17. Online-coupled meteorology and chemistry models: history, current status, and outlook

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2008-06-01

    Full Text Available The climate-chemistry-aerosol-cloud-radiation feedbacks are important processes occurring in the atmosphere. Accurately simulating those feedbacks requires fully-coupled meteorology, climate, and chemistry models and presents significant challenges in terms of both scientific understanding and computational demand. This paper reviews the history and current status of the development and application of online-coupled meteorology and chemistry models, with a focus on five representative models developed in the US including GATOR-GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM. These models represent the current status and/or the state-of-the science treatments of online-coupled models worldwide. Their major model features, typical applications, and physical/chemical treatments are compared with a focus on model treatments of aerosol and cloud microphysics and aerosol-cloud interactions. Aerosol feedbacks to planetary boundary layer meteorology and aerosol indirect effects are illustrated with case studies for some of these models. Future research needs for model development, improvement, application, as well as major challenges for online-coupled models are discussed.

  18. How Preclinical Models Evolved to Resemble the Diagnostic Criteria of Drug Addiction.

    Science.gov (United States)

    Belin-Rauscent, Aude; Fouyssac, Maxime; Bonci, Antonello; Belin, David

    2016-01-01

    Drug addiction is a complex neuropsychiatric disorder that affects a subset of the individuals who take drugs. It is characterized by maladaptive drug-seeking habits that are maintained despite adverse consequences and intense drug craving. The pathophysiology and etiology of addiction is only partially understood despite extensive research because of the gap between current preclinical models of addiction and the clinical criteria of the disorder. This review presents a brief overview, based on selected methodologies, of how behavioral models have evolved over the last 50 years to the development of recent preclinical models of addiction that more closely mimic diagnostic criteria of addiction. It is hoped that these new models will increase our understanding of the complex neurobiological mechanisms whereby some individuals switch from controlled drug use to compulsive drug-seeking habits and relapse to these maladaptive habits. Additionally, by paving the way to bridge the gap that exists between biobehavioral research on addiction and the human situation, these models may provide new perspectives for the development of novel and effective therapeutic strategies for drug addiction. Published by Elsevier Inc.

  19. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia.

    Science.gov (United States)

    Radulovic, Jelena

    2017-03-01

    Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients' symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time-questions such as are traumatic memories special, and why are stress effects on memory diverse. Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

  20. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Gilian eTenbergen

    2015-06-01

    Full Text Available A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural Magnetic Resonance Imaging (sMRI, fMRI together with neuropsychological studies we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time we are faced with methodological challenges such as group differences between studies including age, intelligence, and comorbidities together with a lack of careful assessment and control of child sexual abuse. Having this in mind this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro- biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal and limbic brain areas. With this approach we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations.

  1. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges.

    Science.gov (United States)

    Tenbergen, Gilian; Wittfoth, Matthias; Frieling, Helge; Ponseti, Jorge; Walter, Martin; Walter, Henrik; Beier, Klaus M; Schiffer, Boris; Kruger, Tillmann H C

    2015-01-01

    A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause to others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural magnetic resonance imaging (sMRI, fMRI), together with neuropsychological studies, we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time, we are faced with methodological challenges, such as group differences between studies, including age, intelligence, and comorbidities, together with a lack of careful assessment and control of child sexual abuse. Having this in mind, this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro-) biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal, and limbic brain areas. With this approach, we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations.

  2. The Neurobiology and Psychology of Pedophilia: Recent Advances and Challenges

    Science.gov (United States)

    Tenbergen, Gilian; Wittfoth, Matthias; Frieling, Helge; Ponseti, Jorge; Walter, Martin; Walter, Henrik; Beier, Klaus M.; Schiffer, Boris; Kruger, Tillmann H. C.

    2015-01-01

    A pedophilic disorder is recognized for its impairment to the individual and for the harm it may cause to others. Pedophilia is often considered a side issue and research into the nature of pedophilia is delayed in comparison to research into other psychiatric disorders. However, with the increasing use of neuroimaging techniques, such as functional and structural magnetic resonance imaging (sMRI, fMRI), together with neuropsychological studies, we are increasing our knowledge of predisposing and accompanying factors contributing to pedophilia development. At the same time, we are faced with methodological challenges, such as group differences between studies, including age, intelligence, and comorbidities, together with a lack of careful assessment and control of child sexual abuse. Having this in mind, this review highlights the most important studies investigating pedophilia, with a strong emphasis on (neuro-) biological studies, combined with a brief explanation of research into normal human sexuality. We focus on some of the recent theories on the etiology of pedophilia such as the concept of a general neurodevelopmental disorder and/or alterations of structure and function in frontal, temporal, and limbic brain areas. With this approach, we aim to not only provide an update and overview but also a framework for future research and to address one of the most significant questions of how pedophilia may be explained by neurobiological and developmental alterations. PMID:26157372

  3. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function.

    Science.gov (United States)

    Neef, Nicole E; Anwander, Alfred; Friederici, Angela D

    2015-09-01

    Neuroimaging and transcranial magnetic stimulation provide insights into the neuronal mechanisms underlying speech disfluencies in chronic persistent stuttering. In the present paper, the goal is not to provide an exhaustive review of existing literature, but rather to highlight robust findings. We, therefore, conducted a meta-analysis of diffusion tensor imaging studies which have recently implicated disrupted white matter connectivity in stuttering. A reduction of fractional anisotropy in persistent stuttering has been reported at several different loci. Our meta-analysis revealed consistent deficits in the left dorsal stream and in the interhemispheric connections between the sensorimotor cortices. In addition, recent fMRI meta-analyses link stuttering to reduced left fronto-parieto-temporal activation while greater fluency is associated with boosted co-activations of right fronto-parieto-temporal areas. However, the physiological foundation of these irregularities is not accessible with MRI. Complementary, transcranial magnetic stimulation (TMS) reveals local excitatory and inhibitory regulation of cortical dynamics. Applied to a speech motor area, TMS revealed reduced speech-planning-related neuronal dynamics at the level of the primary motor cortex in stuttering. Together, this review provides a focused view of the neurobiology of stuttering to date and may guide the rational design of future research. This future needs to account for the perpetual dynamic interactions between auditory, somatosensory, and speech motor circuits that shape fluent speech.

  4. Animal models of Central Diabetes Insipidus: Human relevance of acquired beyond hereditary syndromes and the role of oxytocin.

    Science.gov (United States)

    Bernal, Antonio; Mahía, Javier; Puerto, Amadeo

    2016-07-01

    The aim of this study was to review different animal models of Central Diabetes Insipidus, a neurobiological syndrome characterized by the excretion of copious amounts of diluted urine (polyuria), a consequent water intake (polydipsia), and a rise in the serum sodium concentration (hypernatremia). In rodents, Central Diabetes Insipidus can be caused by genetic disorders (Brattleboro rats) but also by various traumatic/surgical interventions, including neurohypophysectomy, pituitary stalk compression, hypophysectomy, and median eminence lesions. Regardless of its etiology, Central Diabetes Insipidus affects the neuroendocrine system that secretes arginine vasopressin, a neurohormone responsible for antidiuretic functions that acts trough the renal system. However, most Central Diabetes Insipidus models also show disorders in other neurobiological systems, specifically in the secretion of oxytocin, a neurohormone involved in body sodium excretion. Although the hydromineral behaviors shown by the different Central Diabetes Insipidus models have usually been considered as very similar, the present review highlights relevant differences with respect to these behaviors as a function of the individual neurobiological systems affected. Increased understanding of the relationship between the neuroendocrine systems involved and the associated hydromineral behaviors may allow appropriate action to be taken to correct these behavioral neuroendocrine deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Automated MRI segmentation for individualized modeling of current flow in the human head.

    Science.gov (United States)

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible

  6. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  7. Five-quark model with flavour-changing neutral current and dimuon events

    International Nuclear Information System (INIS)

    Kim, J.E.; Kang, K.

    1976-01-01

    The recent dimuon data seem to suggest either the necessity of flavor-changing hadronic neutral current or proliferation of quarks beyond charm or both. It is shown how a five-quark model based on simple gauge group SU(2) x U(1) x U(1)' can generate the flavor-changing, in particular the needed charm-changing, neutral current in a natural fashion. A substantial D 0 --D -0 mixing can be obtained to account for the ''wrong-sign'' dimuons observed in ν/sub μ/-induced reactions. Because of the role of the extra neutral boson in this model, the flavor-changing neutral current is decoupled from leptonic sectors, thus suppressing the trimuon events as experiments indicate thus far

  8. A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    . A simple but comprehensive mathematical model of the Li-S battery cell self-discharge based on the shuttle current was developed and is presented. The shuttle current values for the model parameterization were obtained from the direct shuttle current measurements. Furthermore, the battery cell depth......-of-discharge values were recomputed in order to account for the influence of the self-discharge and provide a higher accuracy of the model. Finally, the derived model was successfully validated against laboratory experiments at various conditions....

  9. IMPROVING MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Yu. P. Artemenko

    2015-01-01

    Full Text Available This article is devoted to math modeling of channel of alternating current airborne electrical power-supply system. Mathematical modeling of generator, voltage regulator, constant speed drive is considered.

  10. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success

    Directory of Open Access Journals (Sweden)

    Julia eRahe

    2015-10-01

    Full Text Available Data is inconsistent concerning the question whether cognitive-physical training (CPT yields stronger cognitive gains than cognitive training (CT. Effects of additional counseling, neurobiological mechanisms, and predictors have scarcely been studied. Healthy older adults were trained with CT (n=20, CPT (n=25, or CPT with counseling (CPT+C; n=23. Cognition, physical fitness, BDNF, IGF-1, and VEGF were assessed at pre- and posttest. No interaction effects were found except for one effect showing that CPT+C led to stronger gains in verbal fluency than CPT (p = .03. However, this superiority could not be assigned to additional physical training gains. Low baseline cognitive performance and BDNF, not carrying apoE4, gains in physical fitness and the moderation of gains in physical fitness x gains in BDNF predicted training success. Although all types of interventions seem successful to enhance cognition, our data do not support the hypotheses that CPT shows superior cognitive training gains compared to CT or that CPT+C adds merit to CPT. However, as CPT leads to additional gains in physical fitness which in turn is known to have positive impact on cognition in the long-term, CPT seems more beneficial. Training success can partly be predicted by neuropsychological, neurobiological, and genetic parameters.http://www.who.int/ictrp; ID: DRKS00005194

  11. Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder.

    Science.gov (United States)

    Robinson, Emma S J

    2018-03-19

    Mood disorders represent one of society's most costly and challenging health burdens. The drug treatments used today were initially discovered serendipitously in the 1950s. Animal models were then developed based on the ability of these drugs to alter specific behaviours. These models have played a major role in the development of the second generation of antidepressants. However, their use has been heavily criticized, particularly in relation to whether they recapitulate similar underlying biology to the psychiatric disorder they are proposed to represent. This article considers our work in the field of affective bias and the development of a translational research programme to try to develop and validate better animal models. We discuss whether the new data that have arisen from these studies support an alternative perspective on the underlying neurobiological processes that lead to major depressive disorder (MDD). Specifically, this article will consider whether a neuropsychological mechanism involving affective biases plays a causal role in the development of MDD and its associated emotional and behavioural symptoms. These animal studies also raise the possibility that neuropsychological mechanisms involving affective biases are a precursor to, rather than a consequence of, the neurotrophic changes linked to MDD.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'. © 2018 The Authors.

  12. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  13. The Role of Wakes in Modelling Tidal Current Turbines

    Science.gov (United States)

    Conley, Daniel; Roc, Thomas; Greaves, Deborah

    2010-05-01

    The eventual proper development of arrays of Tidal Current Turbines (TCT) will require a balance which maximizes power extraction while minimizing environmental impacts. Idealized analytical analogues and simple 2-D models are useful tools for investigating questions of a general nature but do not represent a practical tool for application to realistic cases. Some form of 3-D numerical simulations will be required for such applications and the current project is designed to develop a numerical decision-making tool for use in planning large scale TCT projects. The project is predicated on the use of an existing regional ocean modelling framework (the Regional Ocean Modelling System - ROMS) which is modified to enable the user to account for the effects of TCTs. In such a framework where mixing processes are highly parametrized, the fidelity of the quantitative results is critically dependent on the parameter values utilized. In light of the early stage of TCT development and the lack of field scale measurements, the calibration of such a model is problematic. In the absence of explicit calibration data sets, the device wake structure has been identified as an efficient feature for model calibration. This presentation will discuss efforts to design an appropriate calibration scheme which focuses on wake decay and the motivation for this approach, techniques applied, validation results from simple test cases and limitations shall be presented.

  14. Stress-induced electric current fluctuations in rocks: a superstatistical model

    Science.gov (United States)

    Cartwright-Taylor, Alexis; Vallianatos, Filippos; Sammonds, Peter

    2017-04-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and the overall signal is correlated with the damage induced by microcracking. Our results show that fracture plays a key role in the generation of electric currents in deforming rocks (Cartwright-Taylor et al., in prep). We also analysed the high-frequency fluctuations of these electric current signals and found that they are not normally distributed - they exhibit power-law tails (Cartwright-Taylor et al., 2014). We modelled these distributions with q-Gaussian statistics, derived by maximising the Tsallis entropy. This definition of entropy is particularly applicable to systems which are strongly correlated and far from equilibrium. Good agreement, at all experimental conditions, between the distributions of electric current fluctuations and the q-Gaussian function with q-values far from one, illustrates the highly correlated, fractal nature of the electric source network within the samples and provides further evidence that the source of the electric signals is the developing fractal network of cracks. It has been shown (Beck, 2001) that q-Gaussian distributions can arise from the superposition of local relaxations in the presence of a slowly varying driving force, thus providing a dynamic reason for the appearance of Tsallis statistics in systems with a fluctuating energy dissipation rate. So, the probability distribution for a dynamic variable, u under some external slow forcing, β, can be obtained as a superposition of temporary local

  15. Positive feedback : exploring current approaches in iterative travel demand model implementation.

    Science.gov (United States)

    2012-01-01

    Currently, the models that TxDOTs Transportation Planning and Programming Division (TPP) developed are : traditional three-step models (i.e., trip generation, trip distribution, and traffic assignment) that are sequentially : applied. A limitation...

  16. Analytical Model of Subthreshold Drain Current Characteristics of Ballistic Silicon Nanowire Transistors

    Directory of Open Access Journals (Sweden)

    Wanjie Xu

    2015-01-01

    Full Text Available A physically based subthreshold current model for silicon nanowire transistors working in the ballistic regime is developed. Based on the electric potential distribution obtained from a 2D Poisson equation and by performing some perturbation approximations for subband energy levels, an analytical model for the subthreshold drain current is obtained. The model is further used for predicting the subthreshold slopes and threshold voltages of the transistors. Our results agree well with TCAD simulation with different geometries and under different biasing conditions.

  17. Flavor-singlet axial-vector current in quark model within background field

    International Nuclear Information System (INIS)

    Chen Kun; Yan Mulin

    1993-01-01

    The flavor-singlet axial-vector current is calculated in a quark model within pseudoscalar background-field through the Seeley-DeWitt coefficients. This current is responsible for the quark spin content of proton and is of O(1) in the large-N e expansion

  18. Application of Eddy Currents in Medicine and their Modelling

    International Nuclear Information System (INIS)

    Krawczyk, A.; Wiak, S.; Zyss, T.; Sikora, R.

    1998-01-01

    The paper deals with the problems of interactions between the electromagnetic field and biological material, in particular the problem of eddy currents in human tissues and cells induced there for medical purposes, and the mathematical modeling of the phenomenon. The diagnostic and therapeutic effects of eddy currents are discussed and the advantages and drawbacks of these effects are given. A deeper analysis is devoted to the problem of transcranial magnetic stimulation (TMS) which is used in psychiatry as the treatment in depressive psychosis. (author)

  19. Gain weight by "going diet?" Artificial sweeteners and the neurobiology of sugar cravings: Neuroscience 2010.

    Science.gov (United States)

    Yang, Qing

    2010-06-01

    America's obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed. While people often choose "diet" or "light" products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale's Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward.

  20. A current profile model for magnetic analysis of the start-up phase of toroidal plasmas driven by electron cyclotron heating and current drive

    International Nuclear Information System (INIS)

    Yoshinaga, T.; Uchida, M.; Tanaka, H.; Maekawa, T.

    2007-01-01

    An estimation model of plasma current density distribution for the start-up phase of toroidal plasmas generated by electron cyclotron heating (ECH) in the low aspect ratio torus experiment device is presented. The model assumes a power law parabolic current profile having seven fitting parameters. Its position, extent and broadness (or steepness) are fitted by adjusting these parameters to the observed magnetic flux signals. The adequacy of the model has been examined and confirmed by comparisons of the reconstructed current profiles and the resultant poloidal flux surfaces with the plasma images at visible light range at various stages of start-up discharges, including both the initial open field phase, the subsequent closed field phase, the current decay phase after ECH is turned off and also by a current-profile limiting experiment. This method may be useful for the study of non-inductive start-up experiments by ECH, where there is no appropriate MHD constraint on the current distribution as that in the full tokamak discharge plasmas

  1. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Science.gov (United States)

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  2. Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea

    Science.gov (United States)

    Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.

    2016-02-01

    The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.

  3. Modeling of LH current drive in self-consistent elongated tokamak MHD equilibria

    International Nuclear Information System (INIS)

    Blackfield, D.T.; Devoto, R.S.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.; Yugo, J.

    1989-01-01

    Calculations of non-inductive current drive typically have been used with model MHD equilibria which are independently generated from an assumed toroidal current profile or from a fit to an experiment. Such a method can lead to serious errors since the driven current can dramatically alter the equilibrium and changes in the equilibrium B-fields can dramatically alter the current drive. The latter effect is quite pronounced in LH current drive where the ray trajectories are sensitive to the local values of the magnetic shear and the density gradient. In order to overcome these problems, we have modified a LH simulation code to accommodate elongated plasmas with numerically generated equilibria. The new LH module has been added to the ACCOME code which solves for current drive by neutral beams, electric fields, and bootstrap effects in a self-consistent 2-D equilibrium. We briefly describe the model in the next section and then present results of a study of LH current drive in ITER. 2 refs., 6 figs., 2 tabs

  4. Computational dosimetry for grounded and ungrounded human models due to contact current

    International Nuclear Information System (INIS)

    Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao

    2013-01-01

    This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm 2 . (paper)

  5. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy

    NARCIS (Netherlands)

    Staay, van der F.J.

    2006-01-01

    In behavioral neurosciences, such as neurobiology and biopsychology, animal models make it possible to investigate brain-behavior relations, with the aim of gaining insight into normal and abnormal human behavior and its underlying neuronal and neuroendocrinological processes. Different types of

  6. An ocean current inversion accuracy analysis based on a Doppler spectrum model

    Institute of Scientific and Technical Information of China (English)

    BAO Qingliu; ZHANG Youguang; LIN Mingsen; GONG Peng

    2017-01-01

    Microwave remote sensing is one of the most useful methods for observing the ocean parameters.The Doppler frequency or interferometric phase of the radar echoes can be used for an ocean surface current speed retrieval,which is widely used in spaceborne and airborne radars.While the effect of the ocean currents and waves is interactional.It is impossible to retrieve the ocean surface current speed from Doppler frequency shift directly.In order to study the relationship between the ocean surface current speed and the Doppler frequency shift,a numerical ocean surface Doppler spectrum model is established and validated with a reference.The input parameters of ocean Doppler spectrum include an ocean wave elevation model,a directional distribution function,and wind speed and direction.The suitable ocean wave elevation spectrum and the directional distribution function are selected by comparing the ocean Doppler spectrum in C band with an empirical geophysical model function (CDOP).What is more,the error sensitivities of ocean surface current speed to the wind speed and direction are analyzed.All these simulations are in Ku band.The simulation results show that the ocean surface current speed error is sensitive to the wind speed and direction errors.With VV polarization,the ocean surface current speed error is about 0.15 m/s when the wind speed error is 2 m/s,and the ocean surface current speed error is smaller than 0.3 m/s when the wind direction error is within 20° in the cross wind direction.

  7. Modeling specific phobias and posttraumatic stress disorder in rodents: the challenge to convey both cognitive and emotional features.

    Science.gov (United States)

    Berardi, Andrea; Trezza, Viviana; Campolongo, Campolongo

    2012-01-01

    Aberrant emotional memory processing is a core, disabling feature of both specific phobias and posttraumatic stress disorder (PTSD), two psychiatric diseases of significant prevalence and morbidity whose cognitive symptoms cannot be adequately treated by current psychopharmacological tools. Elucidating the neurobiological mechanisms involved in the etiology of these diseases is of great interest for the identification of new therapeutics that improve not only the symptomatology but also the full recovery from the pathology. To this aim, several animal models have been proposed based on substantial resemblance between the behavioral alterations seen in animals and the human pathology. The purpose of this review is to describe and comment on the most commonly used rodent models of specific phobias and PTSD. A particular focus will be reserved to the cued version of fear conditioning, as the highly specific stimulus-bound conditioned fear response seems to fit well with clinical descriptions of phobic fear.Moreover, animal models of PTSD will be evaluated by referring to three elements that are considered essential ina valid model of this disease: stressor exposure, memory for the stressor, and anxiety-related behaviors. Finally, current therapeutic directions, with a focus on cannabinoid and glucocorticoid compounds, will be briefly outlined.

  8. Current Challenges in the First Principle Quantitative Modelling of the Lower Hybrid Current Drive in Tokamaks

    Science.gov (United States)

    Peysson, Y.; Bonoli, P. T.; Chen, J.; Garofalo, A.; Hillairet, J.; Li, M.; Qian, J.; Shiraiwa, S.; Decker, J.; Ding, B. J.; Ekedahl, A.; Goniche, M.; Zhai, X.

    2017-10-01

    The Lower Hybrid (LH) wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum). Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model), for robust interpretative and predictive simulations.

  9. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior.

    Science.gov (United States)

    Bauman, M D; Schumann, C M

    2018-01-01

    Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Numerical modeling of 3D halo current path in ITER structures

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Paolo; Marconato, Nicolò; Furno Palumbo, Maurizio; Peruzzo, Simone [Consorzio RFX, EURATOM-ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Specogna, Ruben, E-mail: ruben.specogna@uniud.it [DIEGM, Università di Udine, Via delle Scienze, 208, 33100 Udine (Italy); Albanese, Raffaele; Rubinacci, Guglielmo; Ventre, Salvatore; Villone, Fabio [Consorzio CREATE, EURATOM-ENEA Association, Via Claudio 21, 80125 Napoli (Italy)

    2013-10-15

    Highlights: ► Two numerical codes for the evaluation of halo currents in 3D structures are presented. ► A simplified plasma model is adopted to provide the input (halo current injected into the FW). ► Two representative test cases of ITER symmetric and asymmetric VDEs have been analyzed. ► The proposed approaches provide results in excellent agreement for both cases. -- Abstract: Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.

  11. Rationale and consequences of reclassifying obesity as an addictive disorder: neurobiology, food environment and social policy perspectives.

    Science.gov (United States)

    Allen, Patricia J; Batra, Payal; Geiger, Brenda M; Wommack, Tara; Gilhooly, Cheryl; Pothos, Emmanuel N

    2012-08-20

    The rapid increase in the prevalence of obesity is a priority for investigators from across numerous disciplines, including biology, nutritional science, and public health and policy. In this paper, we systematically examine the premise that common dietary obesity is an addictive disorder, based on the criteria for addiction described in the Diagnostic and Statistical Manual (DSM) of Mental Disorders of the American Psychiatric Association, version IV, and consider the consequences of such a reclassification of obesity for public policy. Specifically, we discuss evidence from both human and animal studies investigating the effects of various types and amounts of food and the food environment in obese individuals. Neurobiological studies have shown that the hedonic brain pathways activated by palatable food overlap considerably with those activated by drugs of abuse and suffer significant deficits after chronic exposure to high-energy diets. Furthermore, food as a stimulus can induce the sensitization, compulsion and relapse patterns observed in individuals who are addicted to illicit drugs. The current food environment encourages these addictive-like behaviors where increased exposure through advertisements, proximity and increased portion sizes are routine. Taking lessons from the tobacco experience, it is clear that reclassifying common dietary obesity as an addictive disorder would necessitate policy changes (e.g., regulatory efforts, economic strategies, and educational approaches). These policies could be instrumental in addressing the obesity epidemic, by encouraging the food industry and the political leadership to collaborate with the scientific and medical community in establishing new and more effective therapeutic approaches. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    Science.gov (United States)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  13. Resistive switching near electrode interfaces: Estimations by a current model

    Science.gov (United States)

    Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer

    2013-02-01

    The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.

  14. Econometric modelling of Serbian current account determinants: Jackknife Model Averaging approach

    Directory of Open Access Journals (Sweden)

    Petrović Predrag

    2014-01-01

    Full Text Available This research aims to model Serbian current account determinants for the period Q1 2002 - Q4 2012. Taking into account the majority of relevant determinants, using the Jackknife Model Averaging approach, 48 different models have been estimated, where 1254 equations needed to be estimated and averaged for each of the models. The results of selected representative models indicate moderate persistence of the CA and positive influence of: fiscal balance, oil trade balance, terms of trade, relative income and real effective exchange rates, where we should emphasise: (i a rather strong influence of relative income, (ii the fact that the worsening of oil trade balance results in worsening of other components (probably non-oil trade balance of CA and (iii that the positive influence of terms of trade reveals functionality of the Harberger-Laursen-Metzler effect in Serbia. On the other hand, negative influence is evident in case of: relative economic growth, gross fixed capital formation, net foreign assets and trade openness. What particularly stands out is the strong effect of relative economic growth that, most likely, reveals high citizens' future income growth expectations, which has negative impact on the CA.

  15. Model and performance of current sensor observers for a doubly fed induction generator

    DEFF Research Database (Denmark)

    Li, Hui; Yang, Chao; Hu, Yaogang

    2014-01-01

    . A stator and rotor current observer model, which is based on the state-space models of doubly fed induction generators, is then derived by using the stator and rotor voltage signals as inputs. To demonstrate the effectiveness of the proposed current observer, its dynamic performance is simulated using...

  16. [The normative concept of guilt in criminal law between freedom of will and neurobiological determinism].

    Science.gov (United States)

    Czerner, Frank

    2006-01-01

    To make criminal conduct liable to punishment, criminal responsibility, defined as individual blameworthiness in terms of social ethics, is required as point of reference--both to create and limit the state's right to punish the offender. Neurobiological findings and more recent investigations in brain research have given rise to serious doubts regarding this "conditio sine qua non" of the state's power monopoly. As a result of preceding unconscious decisions, so the argument goes, Man is not free in his will, and the normative principle of culpability would need to be relinquished in favour of a "law of measures" detached from guilt. A detailed analysis of the underlying experimental setups, in particular the investigations by Benjamin Libet involving the measurement of the readiness potential, has shown, however, that the results of the test methods do not justify the demand for a profound change up to the point of a total revision of criminal law, and that they cannot invalidate the concept of freedom of will apostrophised on principle. The empirical data obtained fail to demonstrate if and why decisions of the will should not be free, the more so as the nomothetic method used ignores completely the idiographic understanding and interpretation of the always context-related and socio-structurally (pre)-moulded personality of the offender. Performed in a laboratory setting as individual actions with a comparatively simple structure and unrelated to a concrete situation, they can by no means be translated to the (more) complex situation under which an offence is committed including the decision-making processes determined by psychodynamic, motivational and intentional aspects as well as highly specific reciprocal interactions within the offender-victim constellation. Even if these experiments had shown the determined nature of human decisions, they would not necessarily have to bring about a conceptual change of paradigms of the normative concept of guilt, because

  17. The neurobiology of focus and distraction: The case for incorporating mindfulness into leadership.

    Science.gov (United States)

    Mohapel, Paul

    2018-05-01

    Increasingly health leaders are experiencing greater demands and pressures, which require the need for better focus while limiting unwarranted distractions. This article offers a neurobiological explanation of how the brain focuses and becomes distracted, in order to help health leaders gain insight into their own effectiveness. Two main neural circuits are contrasted: the mind-wandering default mode circuit and the attentional central executive system. These two systems act in an antagonistic pairing, where the degree of toggling between systems is associated with the degree a person can sustain focus and filter out unwarranted distractions. Excessive multitasking appears to compromise the neural switch of these two systems, thereby diminishing our focus and concentration. In contrast, mindfulness practice is shown to have the opposite effect by enhancing the neural switch, thereby enhancing leadership focus that can lead to greater flexibility, foresight, regulation, and creativity. To conclude, leaders who are excessively distracted, such as with multitasking, may be compromising cognitive brain functioning, while engaging in mindfulness may replenish the brain and thereby enhance leaders' ability to sustain focus and tap into higher cognitive functioning.

  18. Behavioural, hormonal and neurobiological mechanisms of aggressive behaviour in human and nonhuman primates.

    Science.gov (United States)

    de Almeida, Rosa Maria Martins; Cabral, João Carlos Centurion; Narvaes, Rodrigo

    2015-05-01

    Aggression is a key component for social behaviour and can have an adaptive value or deleterious consequences. Here, we review the role of sex-related differences in aggressive behaviour in both human and nonhuman primates. First, we address aggression in primates, which varies deeply between species, both in intensity and in display, ranging from animals that are very aggressive, such as chimpanzees, to the nonaggressive bonobos. Aggression also influences the hierarchical structure of gorillas and chimpanzees, and is used as the main tool for dealing with other groups. With regard to human aggression, it can be considered a relevant adaptation for survival or can have negative impacts on social interaction for both sexes. Gender plays a critical role in aggressive and competitive behaviours, which are determined by a cascade of physiological changes, including GABAergic and serotonergic systems, and sex neurosteroids. The understanding of the neurobiological bases and behavioural determinants of different types of aggression is fundamental for minimising these negative impacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Multi-terminal direct-current grids modeling, analysis, and control

    CERN Document Server

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  20. How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?

    Science.gov (United States)

    Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.

    2017-12-01

    Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here

  1. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    Science.gov (United States)

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval.

    Science.gov (United States)

    Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2008-07-01

    Tests of object recognition memory, or the judgment of the prior occurrence of an object, have made substantial contributions to our understanding of the nature and neurobiological underpinnings of mammalian memory. Only in recent years, however, have researchers begun to elucidate the specific brain areas and neural processes involved in object recognition memory. The present review considers some of this recent research, with an emphasis on studies addressing the neural bases of perirhinal cortex-dependent object recognition memory processes. We first briefly discuss operational definitions of object recognition and the common behavioural tests used to measure it in non-human primates and rodents. We then consider research from the non-human primate and rat literature examining the anatomical basis of object recognition memory in the delayed nonmatching-to-sample (DNMS) and spontaneous object recognition (SOR) tasks, respectively. The results of these studies overwhelmingly favor the view that perirhinal cortex (PRh) is a critical region for object recognition memory. We then discuss the involvement of PRh in the different stages--encoding, consolidation, and retrieval--of object recognition memory. Specifically, recent work in rats has indicated that neural activity in PRh contributes to object memory encoding, consolidation, and retrieval processes. Finally, we consider the pharmacological, cellular, and molecular factors that might play a part in PRh-mediated object recognition memory. Recent studies in rodents have begun to indicate the remarkable complexity of the neural substrates underlying this seemingly simple aspect of declarative memory.

  3. Neurobiology of Insight Deficits in Schizophrenia: An fMRI Study

    Science.gov (United States)

    Shad, Mujeeb U.; Keshavan, Matcheri S.

    2015-01-01

    Prior research has shown insight deficits in schizophrenia to be associated with specific neuroimaging changes (primarily structural) especially in the prefrontal sub-regions. However, little is known about the functional correlates of impaired insight. Seventeen patients with schizophrenia (mean age 40.0±10.3; M/F= 14/3) underwent fMRI on a Philips 3.0 T Achieva system while performing on a self-awareness task containing self- vs. other-directed sentence stimuli. SPM5 was used to process the imaging data. Preprocessing consisted of realignment, coregistration, and normalization, and smoothing. A regression analysis was used to examine the relationship between brain activation in response to self-directed versus other-directed sentence stimuli and average scores on behavioral measures of awareness of symptoms and attribution of symptoms to the illness from Scale to Assess Unawareness of Mental Disorders. Family Wise Error correction was employed in the fMRI analysis. Average scores on awareness of symptoms (1 = aware; 5 = unaware) were associated with activation of multiple brain regions, including prefrontal, parietal and limbic areas as well as basal ganglia. However, average scores on correct attribution of symptoms (1 = attribute; 5 = misattribute) were associated with relatively more localized activation of prefrontal cortex and basal ganglia. These findings suggest that unawareness and misattribution of symptoms may have different neurobiological basis in schizophrenia. While symptom unawareness may be a function of a more complex brain network, symptom misattribution may be mediated by specific brain regions. PMID:25957484

  4. Modeling of finite aspect ratio effects on current drive

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.

    1996-01-01

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, η, is judged by a comparison with a direct calculation: where χ is the adjoint function, ε is the kinetic energy, and rvec Γ is the quasilinear flux. It is shown that for large aspect ratio devices (ε → 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear

  5. Development of three dimensional ocean current model for coastal region

    International Nuclear Information System (INIS)

    Kobayashi, Takuya

    1999-12-01

    In order to study the migration behavior of radionuclides released into a coastal region around Japan, Princeton Ocean Model (POM) was introduced. This three-dimensional ocean current model was modified to be applied for oceanic simulations around Japan. This report describes the governing equations, numerical methods and model improvements. In addition, database system which is utilized for calculations and visualization system for graphical outputs are also described. Model simulation was carried out at off the area of Shimokita. Aomori-ken, Japan to investigate the effects of the boundary conditions on simulated results. (author)

  6. An investigation of r.f. travelling wave current drive using the model

    International Nuclear Information System (INIS)

    Bertram, W.K.

    1988-01-01

    Previous experimental investigations in the use of travelling r.f. waves to drive steady toroidal currents in a toroidal plasma have shown that I t , the amount of current driven, is strongly dependent on the ratio of the static toroidal magnetic field B z , to the strength of the r.f. magnetic field B ω . This dependence is characterised by an initial increase and subsequent decrease of I t when B t /B ω increases. It is shown that this observed behaviour is entirely consistent with the behaviour predicted by the current drive model. Results from numerical computations using the model show good quantitative agreement with the published experimental results

  7. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  8. Current amplification models of sensorineurall and conductive hearing loss

    OpenAIRE

    Ostojić, Sanja; Mikić, Branka; Mirić, Danica

    2012-01-01

    The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss ...

  9. Maternal hypothyroidism: An overview of current experimental models.

    Science.gov (United States)

    Ghanbari, Mahboubeh; Ghasemi, Asghar

    2017-10-15

    Maternal hypothyroidism (MH) is the most common cause of transient congenital hypothyroidism. Different animal models are used for assessing developmental effects of MH in offspring. The severity and status of hypothyroidism in animal models must be a reflection of the actual conditions in humans. To obtain comparable results with different clinical conditions, which lead to MH in humans, several factors have been suggested for researchers to consider before designing the experimental models. Regarding development of fetal body systems during pregnancy, interference at different times provides different results and the appropriate time for induction of hypothyroidism should be selected based on accurate time of development of the system under assessment. Other factors that should be taken into consideration include, physiological and biochemical differences between humans and other species, thyroid hormone-independent effects of anti-thyroid drugs, circadian rhythms in TSH secretion, sex differences, physical and psychological stress. This review addresses essential guidelines for selecting and managing the optimal animal model for MH as well as discussing the pros and cons of currently used models. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A focus on reward in anorexia nervosa through the lens of the activity-based anorexia rodent model.

    Science.gov (United States)

    Foldi, C J; Milton, L K; Oldfield, B J

    2017-10-01

    Patients suffering anorexia nervosa (AN) become anhedonic, unable or unwilling to derive normal pleasures and tend to avoid rewarding outcomes, most profoundly in food intake. The activity-based anorexia model recapitulates many of the pathophysiological and behavioural hallmarks of the human condition, including a reduction in food intake, excessive exercise, dramatic weight loss, loss of reproductive cycles, hypothermia and anhedonia, and therefore it allows investigation into the underlying neurobiology of anorexia nervosa. The use of this model has directed attention to disruptions in central reward neurocircuitry, which may contribute to disease susceptibility. The purpose of this review is to demonstrate the utility of this unique model to provide insight into the mechanisms of reward relevant to feeding and weight loss, which may ultimately help to unravel the neurobiology of anorexia nervosa and, in a broader sense, the foundation of reward-based feeding. © 2017 British Society for Neuroendocrinology.

  11. Higher-spin currents in the Gross-Neveu model at 1/n{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Manashov, A.N. [Institut für Theoretische Physik, Universität Hamburg,Hamburg, D-22761 (Germany); Institut für Theoretische Physik, Universität Regensburg,Regensburg, D-93040 (Germany); Skvortsov, E.D. [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich, Theresienstr. 37, Munich, D-80333 (Germany); Lebedev Institute of Physics,Leninsky ave. 53, Moscow, 119991 (Russian Federation)

    2017-01-30

    We calculate the anomalous dimensions of higher-spin currents, both singlet and non-singlet, in the Gross-Neveu model at the 1/n{sup 2} order. It was conjectured that in the critical regime this model is dual to a higher-spin gauge theory on AdS{sub 4}. The AdS/CFT correspondence predicts that the masses of higher-spin fields correspond to the scaling dimensions of the singlet currents in the Gross-Neveu model.

  12. Bench to Bedside: From the Science to the Practice of Addiction Medicine.

    Science.gov (United States)

    Levounis, Petros

    2016-03-01

    The current understanding of addiction is based on a biopsychosocial model of illness. From a neurobiological perspective, addiction can be seen as the hijacking of the pleasure-reward pathways of the brain with a concomitant weakening of its executive function. The fundamental model has been expanded to include newer concepts such as multiple levels of severity of illness, motivational circuitry, and anti-reward pathways. These neurobiological concepts can explain some of the successes and failures of addiction treatment in the second half of the 20th century and the beginning of the 21st century. Psychosocial interventions (primarily cognitive behavior therapy, mutual help groups, and motivational interviewing) and pharmacological treatments (such as agonists, antagonists, and partial agonists) form the basis of addiction treatment today.

  13. Dynamic modelling of tearing mode stabilization by RF current drive

    International Nuclear Information System (INIS)

    Giruzzi, G.; Zabiego, M.; Gianakon, T.A.; Garbet, X.; Bernabei, S.

    1998-01-01

    The theory of tearing mode stabilization in toroidal plasmas by RF-driven currents that are modulated in phase with the island rotation is investigated. A time scale analysis of the phenomena involved indicates that transient effects, such as finite time response of the driven currents, island rotation during the power pulses, and the inductive response of the plasma, are intrinsically important. A dynamic model of such effects is developed, based on a 3-D Fokker-Planck code coupled to both the electric field diffusion and the island evolution equations. Extensive applications to both Electron Cyclotron and Lower Hybrid current drive in ITER are presented. (author)

  14. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  15. Regression analysis of informative current status data with the additive hazards model.

    Science.gov (United States)

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  16. Three-dimensional eddy current solution of a polyphase machine test model (abstract)

    Science.gov (United States)

    Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado

    1994-05-01

    This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.

  17. Vacuum circuit breaker postarc current modelling based on the theory of Langmuir probes

    NARCIS (Netherlands)

    Lanen, van E.P.A.; Smeets, R.; Popov, M.; Sluis, van der L.

    2007-01-01

    High-resolution measurements on the postarc current in vacuum circuit breakers (VCBs) reveal a period, immediately following current-zero, in which the voltage remains practically zero. The most widely used model for simulating the interaction between the postarc current with the electrical circuit

  18. Modeling current climate conditions for forest pest risk assessment

    Science.gov (United States)

    Frank H. Koch; John W. Coulston

    2010-01-01

    Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...

  19. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  20. Eddy Current Loss Modeling for Design of PM Generators for Wind Turbines

    NARCIS (Netherlands)

    Jassal, A.

    2014-01-01

    This thesis deals with analysis, calculation and validation of eddy current loss models for Permanent Magnet (PM) direct drive generators for wind turbines. The modelling approach is a mixed use of analytical and Finite Element (FE) methods. The models are validated experimentally and design