WorldWideScience

Sample records for current monitoring infrastructure

  1. Agile infrastructure monitoring

    International Nuclear Information System (INIS)

    Andrade, P; Ascenso, J; Fedorko, I; Fiorini, B; Paladin, M; Pigueiras, L; Santos, M

    2014-01-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new 'shared monitoring architecture' which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  2. Infrastructure monitoring data management.

    Science.gov (United States)

    2015-07-01

    The primary objective of this project is to advance the development of a structural health monitoring : system (SHMS) for the Cut River Bridge. The scope includes performing an analysis from the fiber : optic strain gauge readings and making recommen...

  3. LHCb online infrastructure monitoring tools

    International Nuclear Information System (INIS)

    Granado Cardoso, L.; Gaspar, C.; Haen, C.; Neufeld, N.; Varela, F.; Galli, D.

    2012-01-01

    The Online System of the LHCb experiment at CERN is composed of a very large number of PCs: around 1500 in a CPU farm for performing the High Level Trigger; around 170 for the control system, running the SCADA system - PVSS; and several others for performing data monitoring, reconstruction, storage, and infrastructure tasks, like databases, etc. Some PCs run Linux, some run Windows but all of them need to be remotely controlled and monitored to make sure they are correctly running and to be able, for example, to reboot them whenever necessary. A set of tools was developed in order to centrally monitor the status of all PCs and PVSS Projects needed to run the experiment: a Farm Monitoring and Control (FMC) tool, which provides the lower level access to the PCs, and a System Overview Tool (developed within the Joint Controls Project - JCOP), which provides a centralized interface to the FMC tool and adds PVSS project monitoring and control. The implementation of these tools has provided a reliable and efficient way to manage the system, both during normal operations as well as during shutdowns, upgrades or maintenance operations. This paper will present the particular implementation of this tool in the LHCb experiment and the benefits of its usage in a large scale heterogeneous system

  4. Infrastructure monitoring with spaceborne SAR sensors

    CERN Document Server

    ANGHEL, ANDREI; CACOVEANU, REMUS

    2017-01-01

    This book presents a novel non-intrusive infrastructure monitoring technique based on the detection and tracking of scattering centers in spaceborne SAR images. The methodology essentially consists of refocusing each available SAR image on an imposed 3D point cloud associated to the envisaged infrastructure element and identifying the reliable scatterers to be monitored by means of four dimensional (4D) tomography. The methodology described in this book provides a new perspective on infrastructure monitoring with spaceborne SAR images, is based on a standalone processing chain, and brings innovative technical aspects relative to conventional approaches. The book is intended primarily for professionals and researchers working in the area of critical infrastructure monitoring by radar remote sensing.

  5. FOREWORD: Structural Health Monitoring and Intelligent Infrastructure

    Science.gov (United States)

    Wu, Zhishen; Fujino, Yozo

    2005-06-01

    This special issue collects together 19 papers that were originally presented at the First International Conference on Structural Health Monitoring and Intelligent Infrastructure (SHMII-1'2003), held in Tokyo, Japan, on 13-15 November 2003. This conference was organized by the Japan Society of Civil Engineers (JSCE) with partial financial support from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sport, Science and Technology, Japan. Many related organizations supported the conference. A total of 16 keynote papers including six state-of-the-art reports from different counties, six invited papers and 154 contributed papers were presented at the conference. The conference was attended by a diverse group of about 300 people from a variety of disciplines in academia, industry and government from all over the world. Structural health monitoring (SHM) and intelligent materials, structures and systems have been the subject of intense research and development in the last two decades and, in recent years, an increasing range of applications in infrastructure have been discovered both for existing structures and for new constructions. SHMII-1'2003 addressed progress in the development of building, transportation, marine, underground and energy-generating structures, and other civilian infrastructures that are periodically, continuously and/or actively monitored where there is a need to optimize their performance. In order to focus the current needs on SHM and intelligent technologies, the conference theme was set as 'Structures/Infrastructures Sustainability'. We are pleased to have the privilege to edit this special issue on SHM and intelligent infrastructure based on SHMII-1'2003. We invited some of the presenters to submit a revised/extended version of their paper that was included in the SHMII-1'2003 proceedings for possible publication in the special issue. Each paper included in this special issue was edited with the same

  6. MONITORING MECHANISM FOR INVESTMENT DEVELOPMENT OF REGIONS’ INFRASTRUCTURE

    Directory of Open Access Journals (Sweden)

    Halyna Leshuk

    2017-09-01

    Full Text Available The subject of the research is the theoretical and methodological principles of the monitoring mechanism of investment development of regions’ infrastructure. The objectives of the research are the generalization of theoretical and methodological bases of monitoring mechanism of investment development of regions’ infrastructure, as well as analysis of the current trends of investment development of the infrastructure in the regions of Ukraine with the identification of positive and negative trends. Methodology. The article deals with theoretical and methodological approaches to the definition of conceptual foundations of the mechanism of monitoring the investment development of the regions’ infrastructure with the help of general scientific methods of analysis: systematization and generalization, induction, and deduction. Results. It is proposed to interpret a monitor of the investment development of the regional infrastructure (IDRI as a systematic and complex measurement of the indicators of regional infrastructure development, the number of implemented investment projects, monitoring compliance with the developed strategic regional programs and concepts, which will ultimately help to effectively and efficiently regulate the detected deviations and passing the appropriate decisions. The IDRI monitoring mechanism should also provide a possibility of creating a system for collecting and analysing data concerning the assessment of infrastructure objects by the territorial community, which will allow potential investors to focus not only on analytical data on monitoring of regional authorities but also to take into account the public interest in a particular region. The general principles of the monitoring mechanism of investment development of the regions infrastructure are proposed in the following directions: complex and system monitoring and data collection concerning the development of the regions’ infrastructure, while the aggregate

  7. CERN LHC Technical Infrastructure Monitoring (TIM)

    CERN Document Server

    Epting, U; Martini, R; Sollander, P; Bartolomé, R; Vercoutter, B; Morodo-Testa, M C

    1999-01-01

    The CERN Large Hadron Collider (LHC) will start to deliver particles to its experiments in the year 2005. However, all the primary services such as electricity, cooling, ventilation, safety systems and others such as vacuum and cryogenics will be commissioned gradually between 2001 and 2005. This technical infrastructure will be controlled using industrial control systems, which have either already been purchased from specialized companies or are currently being put together for tender. This paper discusses the overall architecture and interfaces that will be used by the CERN Technical Control Room (TCR) to monitor the technical services at CERN and those of the LHC and its experiments. The issue of coherently integrating existing and future control systems over a period of five years with constantly evolving technology is addressed. The paper also summarizes the functionality of all the tools needed by the control room such as alarm reporting, data logging systems, man machine interfaces and the console mana...

  8. Monitoring civil infrastructure using satellite radar interferometry

    NARCIS (Netherlands)

    Chang, L.

    2015-01-01

    Satellite radar interferometry (InSAR) is a precise and efficient technique to monitor deformation on Earth with millimeter precision. Most InSAR applications focus on geophysical phenomena, such as earthquakes, volcanoes, or subsidence. Monitoring civil infrastructure with InSAR is relatively new,

  9. Technical infrastructure monitoring from the CCC

    CERN Document Server

    Stowisek, J; Suwalska, A; CERN. Geneva. TS Department

    2005-01-01

    In the summer of 2005, the Technical Infrastructure Monitoring (TIM) system will replace the Technical Data Server (TDS) as the monitoring system of CERN’s technical services. Whereas the TDS was designed for the LEP, TIM will have to cope with the much more extensive monitoring needs of the LHC era. To cater for this, the new system has been built on industry-standard hardware and software components, using Java 2 Enterprise Edition (J2EE) technology to create a highly available, reliable, scalable and flexible control system. A first version of TIM providing the essential functionality will be deployed in the MCR in June 2005. Additional functionality and more sophisticated tools for system maintenance will be ready before the start-up of the LHC in 2007, when CERN’s technical infrastructure will be monitored from the future CERN Control Centre.

  10. RoVi: Continuous transport infrastructure monitoring framework for preventive maintenance

    NARCIS (Netherlands)

    Seraj, Fatjon; Meratnia, Nirvana; Havinga, Paul J.M.

    2017-01-01

    Ground transport infrastructures require in-situ monitoring to evaluate their condition and deterioration and to design appropriate preventive maintenance strategies. Current monitoring practices provide accurate and detailed spatial measurements but often lack the required temporal resolution. This

  11. A data management infrastructure for bridge monitoring

    Science.gov (United States)

    Jeong, Seongwoon; Byun, Jaewook; Kim, Daeyoung; Sohn, Hoon; Bae, In Hwan; Law, Kincho H.

    2015-04-01

    This paper discusses a data management infrastructure framework for bridge monitoring applications. As sensor technologies mature and become economically affordable, their deployment for bridge monitoring will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection. The focus of this study is on the effective data management of bridge information and sensor data, which is crucial to structural health monitoring and life cycle management of bridge structures. We review the state-of-the-art of bridge information modeling and sensor data management, and propose a data management framework for bridge monitoring based on NoSQL database technologies that have been shown useful in handling high volume, time-series data and to flexibly deal with unstructured data schema. Specifically, Apache Cassandra and Mongo DB are deployed for the prototype implementation of the framework. This paper describes the database design for an XML-based Bridge Information Modeling (BrIM) schema, and the representation of sensor data using Sensor Model Language (SensorML). The proposed prototype data management framework is validated using data collected from the Yeongjong Bridge in Incheon, Korea.

  12. Transaction aware tape-infrastructure monitoring

    International Nuclear Information System (INIS)

    Nikolaidis, Fotios; Kruse, Daniele Francesco

    2014-01-01

    Administrating a large scale, multi protocol, hierarchical tape infrastructure like the CERN Advanced STORage manager (CASTOR)[2], which stores now 100 PB (with an increasing step of 25 PB per year), requires an adequate monitoring system for quick spotting of malfunctions, easier debugging and on demand report generation. The main challenges for such system are: to cope with CASTOR's log format diversity and its information scattered among several log files, the need for long term information archival, the strict reliability requirements and the group based GUI visualization. For this purpose, we have designed, developed and deployed a centralized system consisting of four independent layers: the Log Transfer layer for collecting log lines from all tape servers to a single aggregation server, the Data Mining layer for combining log data into transaction context, the Storage layer for archiving the resulting transactions and finally the Web UI layer for accessing the information. Having flexibility, extensibility and maintainability in mind, each layer is designed to work as a message broker for the next layer, providing a clean and generic interface while ensuring consistency, redundancy and ultimately fault tolerance. This system unifies information previously dispersed over several monitoring tools into a single user interface, using Splunk, which also allows us to provide information visualization based on access control lists (ACL). Since its deployment, it has been successfully used by CASTOR tape operators for quick overview of transactions, performance evaluation, malfunction detection and from managers for report generation.

  13. Patient monitoring using infrastructure-oriented wireless LANs.

    Science.gov (United States)

    Varshney, Upkar

    2006-01-01

    There is considerable interest in using wireless and mobile technologies in patient monitoring in diverse environments including hospitals and nursing homes. However, there has not been much work in determining the requirements of patient monitoring and satisfying these requirements using infrastructure-oriented wireless networks. In this paper, we derive several requirements of patient monitoring and show how infrastructure-oriented wireless LANs, such as versions of IEEE 802.11, can be used to support patient monitoring in diverse environments.

  14. Critical infrastructure monitoring using UAV imagery

    Science.gov (United States)

    Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos

    2016-08-01

    The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.

  15. Rolling vibes : continuous transport infrastructure monitoring

    NARCIS (Netherlands)

    Seraj, Fatjon

    2017-01-01

    Transport infrastructure is a people to people technology, in the sense that is build by people to serve people, by facilitating transportation, connection and communication. People improved infrastructure by applying simple methods derived from their sensing and thinking. Since the early ages,

  16. Current and future flood risk to railway infrastructure in Europe

    Science.gov (United States)

    Bubeck, Philip; Kellermann, Patric; Alfieri, Lorenzo; Feyen, Luc; Dillenardt, Lisa; Thieken, Annegret H.

    2017-04-01

    CORINE, due to their line shapes. To assess current and future damage and risk to railway infrastructure in Europe, we apply the damage model RAIL -' RAilway Infrastructure Loss' that was specifically developed for railway infrastructure using empirical damage data. To adequately and comprehensively capture the line-shaped features of railway infrastructure, the assessment makes use of the open-access data set of openrailway.org. Current and future flood hazard in Europe is obtained with the LISFLOOD-based pan-European flood hazard mapping procedure combined with ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios. The presentation shows first results of the combination of the hazard data and the model RAIL for Europe.

  17. Distributed Monitoring Infrastructure for Worldwide LHC Computing Grid

    CERN Document Server

    Andrade, Pedro; Bhatt, Kislay; Chand, Phool; Collados, David; Duggal, Vibhuti; Fuente, Paloma; Hayashi, Soichi; Imamagic, Emir; Joshi, Pradyumna; Kalmady, Rajesh; Karnani, Urvashi; Kumar, Vaibhav; Lapka, Wojciech; Quick, Robert; Tarragon, Jacobo; Teige, Scott; Triantafyllidis, Christos

    2012-01-01

    The journey of a monitoring probe from its development phase to the moment its execution result is presented in an availability report is a complex process. It goes through multiple phases such as development, testing, integration, release, deployment, execution, data aggregation, computation, and reporting. Further, it involves people with different roles (developers, site managers, VO managers, service managers, management), from different middleware providers (ARC, dCache, gLite, UNICORE and VDT), consortiums (WLCG, EMI, EGI, OSG), and operational teams (GOC, OMB, OTAG, CSIRT). The seamless harmonization of these distributed actors is in daily use for monitoring of the WLCG infrastructure. In this paper we describe the monitoring of the WLCG infrastructure from the operational perspective. We explain the complexity of the journey of a monitoring probe from its execution on a grid node to the visualization on the MyWLCG portal where it is exposed to other clients. This monitoring workflow profits from the i...

  18. Distributed optical fiber sensors for integrated monitoring of railway infrastructures

    Science.gov (United States)

    Minardo, Aldo; Coscetta, Agnese; Porcaro, Giuseppe; Giannetta, Daniele; Bernini, Romeo; Zeni, Luigi

    2014-05-01

    We propose the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured dynamically along a 60 meters length of rail track, as well as along a 3-m stone arch bridge. The results indicate that distributed sensing technology is able to provide useful information in railway traffic and safety monitoring.

  19. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  20. The Global Communication Infrastructure of the International Monitoring System

    Science.gov (United States)

    Lastowka, L.; Gray, A.; Anichenko, A.

    2007-05-01

    The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis

  1. Tutorial on beam current monitoring

    International Nuclear Information System (INIS)

    Webber, Robert C.

    2000-01-01

    This paper is a tutorial level review covering a wide range of aspects related to charged particle beam current measurement. The tutorial begins with a look at the characteristics of the beam as a signal source, the associated electromagnetic fields, the influence of the typical accelerator environment on those fields, and the usual means of modifying and controlling that environment to facilitate beam current measurement. Short descriptions of three quite different types of current monitors are presented and a quantitative review of the classical transformer circuit is given. Recognizing that environmental noise pick-up may present a large source of error in quantitative measurements, signal handling considerations are given considerable attention using real-life examples. An example of a successful transport line beam current monitor implementation is presented and the tutorial concludes with a few comments about signal processing and current monitor calibration issues

  2. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    International Nuclear Information System (INIS)

    Babik, Marian; Hook, Nicholas; Lansdale, Thomas Hector; Lenkes, Daniel; Siket, Miroslav; Waldron, Denis; Fedorko, Ivan

    2011-01-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  3. Image-Based Fine-Scale Infrastructure Monitoring

    Science.gov (United States)

    Detchev, Ivan Denislavov

    Monitoring the physical health of civil infrastructure systems is an important task that must be performed frequently in order to ensure their serviceability and sustainability. Additionally, laboratory experiments where individual system components are tested on the fine-scale level provide essential information during the structural design process. This type of inspection, i.e., measurements of deflections and/or cracks, has traditionally been performed with instrumentation that requires access to, or contact with, the structural element being tested; performs deformation measurements in only one dimension or direction; and/or provides no permanent visual record. To avoid the downsides of such instrumentation, this dissertation proposes a remote sensing approach based on a photogrammetric system capable of three-dimensional reconstruction. The proposed system is low-cost, consists of off-the-shelf components, and is capable of reconstructing objects or surfaces with homogeneous texture. The scientific contributions of this research work address the drawbacks in currently existing literature. Methods for in-situ multi-camera system calibration and system stability analysis are proposed in addition to methods for deflection/displacement monitoring, and crack detection and characterization in three dimensions. The mathematical model for the system calibration is based on a single or multiple reference camera(s) and built-in relative orientation constraints where the interior orientation and the mounting parameters for all cameras are explicitly estimated. The methods for system stability analysis can be used to comprehensively check for the cumulative impact of any changes in the system parameters. They also provide a quantitative measure of this impact on the reconstruction process in terms of image space units. Deflection/displacement monitoring of dynamic surfaces in three dimensions is achieved with the system by performing an innovative sinusoidal fitting

  4. Global patterns of current and future road infrastructure

    Science.gov (United States)

    Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.

    2018-06-01

    Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

  5. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    2010-01-01

    In addition to the intense campaign of replacement of the leaky bushing on the Endcap circuits, other important activities have also been completed, with the aim of enhancing the overall reliability of the cooling infrastructures at CMS. Remaining with the Endcap circuit, the regulating valve that supplies cold water to the primary side of the circuit heat-exchanger, is not well adapted in flow capability and a new part has been ordered, to be installed during a stop of LHC. The instrumentation monitoring of the refilling rate of the circuits has been enhanced and we can now detect leaks as small as 0.5 cc/sec, on circuits that have nominal flow rates of some 20 litres/sec. Another activity starting now that the technical stop is over is the collection of spare parts that are difficult to find on the market. These will be stored at P5 with the aim of reducing down-time in case of component failure. Concerning the ventilation infrastructures, it has been noticed that in winter time the relative humidity leve...

  6. HwPMI: An Extensible Performance Monitoring Infrastructure for Improving Hardware Design and Productivity on FPGAs

    Directory of Open Access Journals (Sweden)

    Andrew G. Schmidt

    2012-01-01

    Full Text Available Designing hardware cores for FPGAs can quickly become a complicated task, difficult even for experienced engineers. With the addition of more sophisticated development tools and maturing high-level language-to-gates techniques, designs can be rapidly assembled; however, when the design is evaluated on the FPGA, the performance may not be what was expected. Therefore, an engineer may need to augment the design to include performance monitors to better understand the bottlenecks in the system or to aid in the debugging of the design. Unfortunately, identifying what to monitor and adding the infrastructure to retrieve the monitored data can be a challenging and time-consuming task. Our work alleviates this effort. We present the Hardware Performance Monitoring Infrastructure (HwPMI, which includes a collection of software tools and hardware cores that can be used to profile the current design, recommend and insert performance monitors directly into the HDL or netlist, and retrieve the monitored data with minimal invasiveness to the design. Three applications are used to demonstrate and evaluate HwPMI’s capabilities. The results are highly encouraging as the infrastructure adds numerous capabilities while requiring minimal effort by the designer and low resource overhead to the existing design.

  7. TCR remote monitoring for the LHC technical infrastructure

    CERN Document Server

    Blanc, D; Morodo-Testa, M C; Poulsen, S; CERN. Geneva. ST Division

    2003-01-01

    The remote monitoring of the LHC technical infrastructure will mainly be done in CERN’s Technical Control Room (TCR). The technical infrastrucure consists of specialised equipment from different groups and divisions, mainly cooling and ventilation and electrical equipment. The responsibility for the definition, operation and maintenance of the equipment is covered by the relevant equipment group. However the monitoring and alerting for action in case of equipment failure is initiated by the TCR and is based on alarms that are sent by the equipment. This implies the correct integration of the equipment and the establishment of rules to follow during the commissioning and start-up of the equipment in order to ensure proper operation. This paper shows the integration possibilities and the different tasks and steps to follow by the different parties for smooth equipment integration and avoiding organizational problems.

  8. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  9. Experience with the custom-developed ATLAS Offline Trigger Monitoring Framework and Reprocessing Infrastructure

    CERN Document Server

    Bartsch, V

    2012-01-01

    After about two years of data taking with the ATLAS detector manifold experience with the custom-developed trigger monitoring and reprocessing infrastructure could be collected. The trigger monitoring can be roughly divided into online and offline monitoring. The online monitoring calculates and displays all rates at every level of the trigger and evaluates up to 3000 data quality histograms. The physics analysis relevant data quality information is being checked and recorded automatically. The offline trigger monitoring provides information depending of the physics motivated different trigger streams after a run has finished. Experts are checking the information being guided by the assessment of algorithms checking the current histograms with a reference. The experts are recording their assessment in a so-called data quality defects which are used to select data for physics analysis. In the first half of 2011 about three percent of all data had an intolerable defect resulting from the ATLAS trigger system. T...

  10. Semantic Interpretation of Insar Estimates Using Optical Images with Application to Urban Infrastructure Monitoring

    Science.gov (United States)

    Wang, Y.; Zhu, X. X.

    2015-08-01

    Synthetic aperture radar interferometry (InSAR) has been an established method for long term large area monitoring. Since the launch of meter-resolution spaceborne SAR sensors, the InSAR community has shown that even individual buildings can be monitored in high level of detail. However, the current deformation analysis still remains at a primitive stage of pixel-wise motion parameter inversion and manual identification of the regions of interest. We are aiming at developing an automatic urban infrastructure monitoring approach by combining InSAR and the semantics derived from optical images, so that the deformation analysis can be done systematically in the semantic/object level. This paper explains how we transfer the semantic meaning derived from optical image to the InSAR point clouds, and hence different semantic classes in the InSAR point cloud can be automatically extracted and monitored. Examples on bridges and railway monitoring are demonstrated.

  11. The JET Intershot Analysis: Current infrastructure and future plans

    International Nuclear Information System (INIS)

    Layne, R.; Cook, N.; Harting, D.; McDonald, D.C.; Tidy, C.

    2010-01-01

    The JET Intershot Analysis (Chain1) generates processed data following a pulse. Maintaining the pulse repetition rate is one of JET's key success factors, so performance of Chain1 is crucial. This paper will describe JET's experience of managing Chain1, including a description of the control system used to ensure the analysis chain runs as quickly as possible, and a discussion of JET's experience of integrating externally developed codes into a standard analysis framework. The current Chain1 infrastructure was developed in 1999 and although reliable and efficient is starting to prove costly in terms of flexibility and extensibility to meet JET's current and future needs. For this reason JET is planning to re-implement the Chain1 system. The paper will outline the work done towards this aim, and present a model of the proposed new system. Finally, possible future steps towards an integrated data production chain for JET will be discussed, and the potential applicability to next generation fusion devices will be outlined.

  12. INFRASTRUCTURE

    CERN Document Server

    A. Gaddi

    2011-01-01

    During the last winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages were completed. On the surface, the site cooling facility has passed the annual maintenance process that includes the cleaning of the two evaporative cooling towers, the maintenance of the chiller units and the safety checks on the software controls. In parallel, CMS teams, reinforced by PH-DT group personnel, have worked to shield the cooling gauges for TOTEM and CASTOR against the magnetic stray field in the CMS Forward region, to add labels to almost all the valves underground and to clean all the filters in UXC55, USC55 and SCX5. Following the insertion of TOTEM T1 detector, the cooling circuit has been branched off and commissioned. The demineraliser cartridges have been replaced as well, as they were shown to be almost saturated. New instrumentation has been installed in the SCX5 PC farm cooling and ventilation network, in order to monitor the performance of the HVAC system...

  13. Mechano-Magnetic Telemetry for Underground Water Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Orfeo

    2018-06-01

    Full Text Available This study reports on the theory of operation, design principles, and results from laboratory and field tests of a magnetic telemetry system for communication with underground infrastructure sensors using rotating permanent magnets as the sources and compact magnetometers as the receivers. Many cities seek ways to monitor underground water pipes with centrally managed Internet of Things (IoT systems. This requires the development of numerous reliable low-cost wireless sensors, such as moisture sensors and flow meters, which can transmit information from subterranean pipes to surface-mounted receivers. Traditional megahertz radio communication systems are often unable to penetrate through multiple feet of earthen and manmade materials and have impractically large energy requirements which preclude the use of long-life batteries, require complex (and expensive built-in energy harvesting systems, or long leads that run antennas near to the surface. Low-power magnetic signaling systems do not suffer from this drawback: low-frequency electromagnetic waves readily penetrate through several feet of earth and water. Traditional magnetic telemetry systems that use energy-inefficient large induction coils and antennas as sources and receivers are not practical for underground IoT-type sensing applications. However, rotating a permanent magnet creates a completely reversing oscillating magnetic field. The recent proliferation of strong rare-earth permanent magnets and high-sensitivity magnetometers enables alternative magnetic telemetry system concepts with significantly more compact formats and lower energy consumption. The system used in this study represents a novel combination of megahertz radio and magnetic signaling techniques for the purposes of underground infrastructure monitoring. In this study, two subterranean infrastructure sensors exploit this phenomenon to transmit information to an aboveground radio-networked magnetometer receiver. A flow

  14. Energy infrastructure modeling for the oil sands industry: Current situation

    International Nuclear Information System (INIS)

    Lazzaroni, Edoardo Filippo; Elsholkami, Mohamed; Arbiv, Itai; Martelli, Emanuele; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • A simulation-based modelling of energy demands of oil sands operations is proposed. • Aspen simulations used to simulate delayed coking-based upgrading of bitumen. • The energy infrastructure is simulated using Aspen Plus achieving self-sufficiency. • Various scenarios affecting energy demand intensities are investigated. • Energy and CO_2 emission intensities of integrated SAGD/upgrading are estimated. - Abstract: In this study, the total energy requirements associated with the production of bitumen from oil sands and its upgrading to synthetic crude oil (SCO) are modeled and quantified. The production scheme considered is based on the commercially applied steam assisted gravity drainage (SAGD) for bitumen extraction and delayed coking for bitumen upgrading. In addition, the model quantifies the greenhouse gas (GHG) emissions associated with the production of energy required for these operations from technologies utilized in the currently existing oil sands energy infrastructure. The model is based on fundamental engineering principles, and Aspen HYSYS and Aspen Plus simulations. The energy demand results are expressed in terms of heat, power, hydrogen, and process fuel consumption rates for SAGD extraction and bitumen upgrading. Based on the model’s output, a range of overall energy and emission intensity factors are estimated for a bitumen production rate of 112,500 BPD (or 93,272 BPD of SCO), which were determined to be 262.5–368.5 MJ/GJ_S_C_O and 14.17–19.84 gCO_2/MJ_S_C_O, respectively. The results of the model indicate that the majority of GHG emissions are generated during SAGD extraction (up to 60% of total emissions) due to the combustion of natural gas for steam production, and the steam-to-oil ratio is a major parameter affecting total GHG emissions. The developed model can be utilized as a tool to predict the energy demand requirements for integrated SAGD/upgrading projects under different operating conditions, and

  15. InSAR remote sensing for performance monitoring of transportation infrastructure at the network level.

    Science.gov (United States)

    2016-01-11

    The goal of the project was the implementation of interferometric synthetic aperture radar : (InSAR) monitoring techniques to allow for early detection of geohazard, potentially : affecting the transportation infrastructure, as well as the monitoring...

  16. Absolute beam current monitoring in endstation c

    International Nuclear Information System (INIS)

    Bochna, C.

    1995-01-01

    The first few experiments at CEBAF require approximately 1% absolute measurements of beam currents expected to range from 10-25μA. This represents errors of 100-250 nA. The initial complement of beam current monitors are of the non intercepting type. CEBAF accelerator division has provided a stripline monitor and a cavity monitor, and the authors have installed an Unser monitor (parametric current transformer or PCT). After calibrating the Unser monitor with a precision current reference, the authors plan to transfer this calibration using CW beam to the stripline monitors and cavity monitors. It is important that this be done fairly rapidly because while the gain of the Unser monitor is quite stable, the offset may drift on the order of .5μA per hour. A summary of what the authors have learned about the linearity, zero drift, and gain drift of each type of current monitor will be presented

  17. A Security Monitoring Framework For Virtualization Based HEP Infrastructures

    Science.gov (United States)

    Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.; ALICE Collaboration

    2017-10-01

    High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.

  18. Sensor network infrastructure for a home care monitoring system.

    Science.gov (United States)

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  19. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    Science.gov (United States)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  20. Job monitoring on the WLCG scope: Current status and new strategy

    International Nuclear Information System (INIS)

    Andreeva, Julia; Casey, James; Gaidioz, Benjamin; Karavakis, Edward; Kokoszkiewicz, Lukasz; Lanciotti, Elisa; Maier, Gerhild; Rodrigues, Daniele Filipe Rocha Da Cuhna; Rocha, Ricardo; Saiz, Pablo; Sidorova, Irina; Boehm, Max; Belov, Sergey; Tikhonenko, Elena; Dvorak, Frantisek; Krenek, Ales; Mulac, Milas; Sitera, Jiri; Kodolova, Olga; Vaibhav, Kumar

    2010-01-01

    Job processing and data transfer are the main computing activities on the WLCG infrastructure. Reliable monitoring of the job processing on the WLCG scope is a complicated task due to the complexity of the infrastructure itself and the diversity of the currently used job submission methods. The paper will describe current status and the new strategy for the job monitoring on the WLCG scope, covering primary information sources, job status changes publishing, transport mechanism and visualization.

  1. Intelligent monitoring, control, and security of critical infrastructure systems

    CERN Document Server

    Polycarpou, Marios

    2015-01-01

    This book describes the challenges that critical infrastructure systems face, and presents state of the art solutions to address them. How can we design intelligent systems or intelligent agents that can make appropriate real-time decisions in the management of such large-scale, complex systems? What are the primary challenges for critical infrastructure systems? The book also provides readers with the relevant information to recognize how important infrastructures are, and their role in connection with a society’s economy, security and prosperity. It goes on to describe state-of-the-art solutions to address these points, including new methodologies and instrumentation tools (e.g. embedded software and intelligent algorithms) for transforming and optimizing target infrastructures. The book is the most comprehensive resource to date for professionals in both the private and public sectors, while also offering an essential guide for students and researchers in the areas of modeling and analysis of critical in...

  2. INFRASTRUCTURE

    CERN Document Server

    A.Gaddi

    2011-01-01

    Between the end of March to June 2011, there has been no detector downtime during proton fills due to CMS Infrastructures failures. This exceptional performance is a clear sign of the high quality work done by the CMS Infrastructures unit and its supporting teams. Powering infrastructure At the end of March, the EN/EL group observed a problem with the CMS 48 V system. The problem was a lack of isolation between the negative (return) terminal and earth. Although at that moment we were not seeing any loss of functionality, in the long term it would have led to severe disruption to the CMS power system. The 48 V system is critical to the operation of CMS: in addition to feeding the anti-panic lights, essential for the safety of the underground areas, it powers all the PLCs (Twidos) that control AC power to the racks and front-end electronics of CMS. A failure of the 48 V system would bring down the whole detector and lead to evacuation of the cavern. EN/EL technicians have made an accurate search of the fault, ...

  3. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2011-01-01

    Most of the work relating to Infrastructure has been concentrated in the new CSC and RPC manufactory at building 904, on the Prevessin site. Brand new gas distribution, powering and HVAC infrastructures are being deployed and the production of the first CSC chambers has started. Other activities at the CMS site concern the installation of a new small crane bridge in the Cooling technical room in USC55, in order to facilitate the intervention of the maintenance team in case of major failures of the chilled water pumping units. The laser barrack in USC55 has been also the object of a study, requested by the ECAL community, for the new laser system that shall be delivered in few months. In addition, ordinary maintenance works have been performed during the short machine stops on all the main infrastructures at Point 5 and in preparation to the Year-End Technical Stop (YETS), when most of the systems will be carefully inspected in order to ensure a smooth running through the crucial year 2012. After the incide...

  4. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2012-01-01

    The CMS Infrastructures teams are preparing for the LS1 activities. A long list of maintenance, consolidation and upgrade projects for CMS Infrastructures is on the table and is being discussed among Technical Coordination and sub-detector representatives. Apart from the activities concerning the cooling infrastructures (see below), two main projects have started: the refurbishment of the SX5 building, from storage area to RP storage and Muon stations laboratory; and the procurement of a new dry-gas (nitrogen and dry air) plant for inner detector flushing. We briefly present here the work done on the first item, leaving the second one for the next CMS Bulletin issue. The SX5 building is entering its third era, from main assembly building for CMS from 2000 to 2007, to storage building from 2008 to 2012, to RP storage and Muon laboratory during LS1 and beyond. A wall of concrete blocks has been erected to limit the RP zone, while the rest of the surface has been split between the ME1/1 and the CSC/DT laborat...

  5. Monitor Infrastructure and Space 2012. Baseline; Monitor Infrastructuur en Ruimte 2012. Nulmeting

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, R.; Van der Schuit, J. [Planbureau voor de Leefomgeving PBL, Den Haag (Netherlands)

    2012-09-15

    What about the competitiveness of the Netherlands? Does the accessibility improve? Is the environment safe and sound? This Monitor shows the extent to which the goals of the Vision on Infrastructure and Spatial Planning (SVIR) are reached. The monitor contains indicators for thirteen national interests from the SVIR, the essential components of the Mobility Memorandum (2004) as included in the SVIR, and for some of the 'released' goals of the National Spatial Strategy (2006). This monitor contains the first measurement (baseline) of the indicators. The first follow-up survey is planned in 2014 [Dutch] Hoe staat het met de concurrentiekracht van Nederland? Verbetert de bereikbaarheid? Is de omgeving leefbaar en veilig? De Monitor Infrastructuur en Ruimte laat zien in hoeverre deze doelen uit de Structuurvisie Infrastructuur en Ruimte (SVIR) worden bereikt. De monitor bevat indicatoren voor de dertien nationale belangen uit de SVIR, de essentiele onderdelen van de Nota Mobiliteit (2004) zoals opgenomen in de SVIR, en voor enkele van de 'losgelaten' doelen uit de Nota Ruimte (2006). Deze monitor bevat de eerste meting (nulmeting) van de indicatoren. De eerste vervolgmeting is gepland in 2014.

  6. National infrastructure for detecting, controlling and monitoring radioactive materials

    International Nuclear Information System (INIS)

    Othman, I.

    2001-01-01

    Full text: The Atomic Energy Commission of Syria (AECS) has the direct responsibility to assure proper safety for handling, accounting for and controlling of nuclear materials and radioactive sources which based on a solid regulatory infrastructure , its elements contains the following items: preventing, responding, training, exchanging of information. Based on the National Law for AECS's Establishment no. 12/1976, a Ministerial Decree for Radiation Safety no. 6514 dated 8.12.1997, issued by the Prime Minister. This Decree authorizes the Syrian Atomic Energy Commission to regulate all kinds of radiation sources. It fulfills the basic requirements of radiation protection and enforce the rules and regulations. The Radiation and Nuclear Regulatory Office (RNRO) is responsible for preparing all the draft regulations. In 1999 the General Regulations for Radiation Protection was issued by the Director General of the AECS, under Decision no. 112/99 dated 3.2.1999. It is based on an IAEA publication, Safety Series no. 115 (1996), and adopted to meet the national requirements. Syria has nine Boarding Centers seeking to prevent unauthorized movement of nuclear material and radioactive sources in and out side the country. They are related to the Atomic Energy Commission (AECS), and are located at the main entrances of the country. Each is provided with the practical tools and equipment in order to assist Radiation Protection Officers (RPO) in fulfilling their commitments, by promoting greater transparency in legal transfers of radioactive materials and devices. They apply complete procedures for the safe import, export and transit of radioactive sources. The RPOs provide authorizations by issuing an entry approval document, after making sure that each concerned shipments has an authorized license from the Syrian Regulatory Body (RNRO) before permitting shipments to leave, arrive or transit across their territory, enabling law enforcement to track the legal movement of

  7. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    2012-01-01

    The CMS Infrastructures teams are constantly ensuring the smooth operation of the different services during this critical period when the detector is taking data at full speed. A single failure would spoil hours of high luminosity beam and everything is put in place to avoid such an eventuality. In the meantime however, the fast approaching LS1 requires that we take a look at the various activities to take place from the end of the year onwards. The list of infrastructures consolidation and upgrade tasks is already long and will touch all the services (cooling, gas, inertion, powering, etc.). The definitive list will be available just before the LS1 start. One activity performed by the CMS cooling team that is worth mentioning is the maintenance of the cooling circuits at the CMS Electronics Integration Centre (EIC) at building 904. The old chiller has been replaced by a three-units cooling plant that also serves the HVAC system for the new CSC and RPC factories. The commissioning of this new plant has tak...

  8. Using virtual machine monitors to overcome the challenges of monitoring and managing virtualized cloud infrastructures

    Science.gov (United States)

    Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati

    2012-01-01

    Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.

  9. Monitoring the DNS Infrastructure for Proactive Botnet Detection

    NARCIS (Netherlands)

    Dietz, Christian; Sperotto, Anna; Dreo, G.; Pras, Aiko

    Botnets enable many cyber-criminal activities, such as DDoS attacks, banking fraud and cyberespionage. Botmasters use various techniques to create, maintain and hide their complex C&C infrastructures. First, they use P2P techniques and domain fast-flux to increase the resilience against take-down

  10. Analysis of CERN computing infrastructure and monitoring data

    Science.gov (United States)

    Nieke, C.; Lassnig, M.; Menichetti, L.; Motesnitsalis, E.; Duellmann, D.

    2015-12-01

    Optimizing a computing infrastructure on the scale of LHC requires a quantitative understanding of a complex network of many different resources and services. For this purpose the CERN IT department and the LHC experiments are collecting a large multitude of logs and performance probes, which are already successfully used for short-term analysis (e.g. operational dashboards) within each group. The IT analytics working group has been created with the goal to bring data sources from different services and on different abstraction levels together and to implement a suitable infrastructure for mid- to long-term statistical analysis. It further provides a forum for joint optimization across single service boundaries and the exchange of analysis methods and tools. To simplify access to the collected data, we implemented an automated repository for cleaned and aggregated data sources based on the Hadoop ecosystem. This contribution describes some of the challenges encountered, such as dealing with heterogeneous data formats, selecting an efficient storage format for map reduce and external access, and will describe the repository user interface. Using this infrastructure we were able to quantitatively analyze the relationship between CPU/wall fraction, latency/throughput constraints of network and disk and the effective job throughput. In this contribution we will first describe the design of the shared analysis infrastructure and then present a summary of first analysis results from the combined data sources.

  11. Personal dosimetric monitoring in Ukraine: current status and further development

    International Nuclear Information System (INIS)

    Chumak, V. V.; Musijachenkom, A. V.; Boguslavskaya, A. I.

    2003-01-01

    Presently Ukraine has mixed system for dosimetric monitoring. Nuclear power plants and some major nuclear facilities have their own dosimetry services, which are responsible for regular dosimetric monitoring of workers. Rest of occupationally exposed persons is monitored by dosimetry laboratories affiliated to the territorial authorities for sanitary and epidemiology supervision. In 2002-2003 Ukrainian Ministry of Health performed survey of the status of dosimetric monitoring and inventory of critical groups requiring such monitoring. Dosimetry services in Ukraine cover about 38,000 occupationally exposed workers, including 9,100 medical professionals, 16,400 employees of 5 nuclear power plants and ca.12,400 workers dealing with other sources of occupational exposure (industry, research). Territorial dosimetry services operate in 13 of 24 regions of Ukraine, using DTU-01 manual TLD readers produced with one exception in 1988-1990. The coverage of critical groups by dosimetric monitoring is variable and ranges from 38% to 100% depending on the region. Personnel of nuclear power plants (about 16,400 workers) is monitored by their own dosimetry services achieving absolute coverage of the main staff and temporary workers. Current inadequate status of dosimetric monitoring infrastructure in Ukraine demands an urgent elaboration of the united state system for monitoring and recording of individual doses. The proposed plan would allows to bring dosimetry infrastructure in Ukraine to the modern state which would be compatible with existing and future European and international radiation protection networks. Unitary structure of Ukraine, strong administrative command and good communications between regions of the country are positive factors in favour of efficient implementation of the proposed plan. Deficiencies are associated with limited funding of this effort. (authors)

  12. ATLAS EventIndex General Dataflow and Monitoring Infrastructure

    CERN Document Server

    Barberis, Dario; The ATLAS collaboration

    2016-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast datasets discovery, event-picking, crosschecks with other ATLAS systems and checks for event duplication. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome t...

  13. ATLAS EventIndex General Dataflow and Monitoring Infrastructure

    CERN Document Server

    Fernandez Casani, Alvaro; The ATLAS collaboration

    2016-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast access. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome the performance shortcomings detected during production peaks; an object storage approach is instea...

  14. ATLAS EventIndex general dataflow and monitoring infrastructure

    CERN Document Server

    AUTHOR|(SzGeCERN)638886; The ATLAS collaboration; Barberis, Dario; Favareto, Andrea; Garcia Montoro, Carlos; Gonzalez de la Hoz, Santiago; Hrivnac, Julius; Prokoshin, Fedor; Salt, Jose; Sanchez, Javier; Toebbicke, Rainer; Yuan, Ruijun

    2017-01-01

    The ATLAS EventIndex has been running in production since mid-2015, reliably collecting information worldwide about all produced events and storing them in a central Hadoop infrastructure at CERN. A subset of this information is copied to an Oracle relational database for fast dataset discovery, event-picking, crosschecks with other ATLAS systems and checks for event duplication. The system design and its optimization is serving event picking from requests of a few events up to scales of tens of thousand of events, and in addition, data consistency checks are performed for large production campaigns. Detecting duplicate events with a scope of physics collections has recently arisen as an important use case. This paper describes the general architecture of the project and the data flow and operation issues, which are addressed by recent developments to improve the throughput of the overall system. In this direction, the data collection system is reducing the usage of the messaging infrastructure to overcome th...

  15. Cloud Environment Automation: from infrastructure deployment to application monitoring

    Science.gov (United States)

    Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.

    2017-10-01

    The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.

  16. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    With all the technical services running, the attention has moved toward the next shutdown that will be spent to perform those modifications needed to enhance the reliability of CMS Infrastructures. Just to give an example for the cooling circuit, a set of re-circulating bypasses will be installed into the TS/CV area to limit the pressure surge when a circuit is partially shut-off. This problem has affected especially the Endcap Muon cooling circuit in the past. Also the ventilation of the UXC55 has to be revisited, allowing the automatic switching to full extraction in case of magnet quench. (Normally 90% of the cavern air is re-circulated by the ventilation system.) Minor modifications will concern the gas distribution, while the DSS action-matrix has to be refined according to the experience gained with operating the detector for a while. On the powering side, some LV power lines have been doubled and the final schematics of the UPS coverage for the counting rooms have been released. The most relevant inte...

  17. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi and P. Tropea

    2013-01-01

      Most of the CMS infrastructures at P5 will go through a heavy consolidation-work period during LS1. All systems, from the cryogenic plant of the superconducting magnet to the rack powering in the USC55 counting rooms, from the cooling circuits to the gas distribution, will undergo consolidation work. As announced in the last issue of the CMS Bulletin, we present here one of the consolidation projects of LS1: the installation of a new dry-gas plant for inner detectors inertion. So far the oxygen and humidity suppression inside the CMS Tracker and Pixel volumes were assured by flushing dry nitrogen gas evaporated from a large liquid nitrogen tank. For technical reasons, the maximum flow is limited to less than 100 m3/h and the cost of refilling the tank every two weeks with liquid nitrogen is quite substantial. The new dry-gas plant will supply up to 400 m3/h of dry nitrogen (or the same flow of dry air, during shut-downs) with a comparatively minimal operation cost. It has been evaluated that the...

  18. INFRASTRUCTURE

    CERN Document Server

    Andrea Gaddi

    2010-01-01

    During the last six months, the main activity on the cooling circuit has essentially been preventive maintenance. At each short machine technical stop, a water sample is extracted out of every cooling circuit to measure the induced radioactivity. Soon after, a visual check of the whole detector cooling network is done, looking for water leaks in sensitive locations. Depending on sub-system availability, the main water filters are replaced; the old ones are inspected and sent to the CERN metallurgical lab in case of suspicious sediments. For the coming winter technical stop, a number of corrective maintenance activities and infrastructure consolidation work-packages are foreseen. A few faulty valves, found on the muon system cooling circuit, will be replaced; the cooling gauges for TOTEM and CASTOR, in the CMS Forward region, will be either changed or shielded against the magnetic stray field. The demineralizer cartridges will be replaced as well. New instrumentation will also be installed in the SCX5 PC farm ...

  19. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi.

    The various water-cooling circuits ran smoothly over the summer. The overall performance of the cooling system is satisfactory, even if some improvements are possible, concerning the endcap water-cooling and the C6F14 circuits. In particular for the endcap cooling circuit, we aim to lower the water temperature, to provide more margin for RPC detectors. An expert-on-call piquet has been established during the summer global run, assuring the continuous supervision of the installations. An effort has been made to collect and harmonize the existing documentation on the cooling infrastructures at P5. The last six months have seen minor modifications to the electrical power network at P5. Among these, the racks in USC55 for the Tracker and Sniffer systems, which are backed up by the diesel generator in case of power outage, have been equipped with new control boxes to allow a remote restart. Other interventions have concerned the supply of assured power to those installations that are essential for CMS to run eff...

  20. INFRASTRUCTURE

    CERN Multimedia

    A. Gaddi

    The long winter shut-down allows for modifications that will improve the reliability of the detector infrastructures at P5. The annual maintenance of detector services is taking place as well. This means a full stop of water-cooling circuits from November 24th with a gradual restart from mid January 09. The annual maintenance service includes the cleaning of the two SF5 cooling towers, service of the chiller plants on the surface, and the cryogenic plant serving the CMS Magnet. In addition, the overall site power is reduced from 8MW to 2MW, compatible with the switchover to the Swiss power network in winter. Full power will be available again from end of January. Among the modification works planned, the Low Voltage cabinets are being refurbished; doubling the cable sections and replacing the 40A circuit breakers with 60A types. This will reduce the overheating that has been experienced. Moreover, two new LV transformers will be bought and pre-cabled in order to assure a quick swap in case of failure of any...

  1. Design of Smart Charging Infrastructure Hardware and Firmware Design of the Various Current Multiplexing Charging System

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chu, Peter; Gadh, Rajit

    2013-10-07

    Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system

  2. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  3. Learning from the crowd: Road infrastructure monitoring system

    Directory of Open Access Journals (Sweden)

    Johannes Masino

    2017-10-01

    To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.

  4. SNS project-wide beam current monitors

    International Nuclear Information System (INIS)

    Kesselman, M.; Witkover, R.; Doolittle, L.; Power, J.

    2000-01-01

    A consortium of national laboratories is constructing the Spallation Neutron Source [1] (SNS) to be installed at Oak Ridge National Laboratory. There are signal similarities that exist in the beam diagnostic instrumentation that could permit common designs. This paper will focus on the beam current monitoring requirements, and the methods under consideration to measure beam current in various locations throughout the SNS facility

  5. Noise reduction in the beam current monitor

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1982-02-01

    A simple noise reduction system using a pulse transformer and a pair of L C low pass filters has been introduced to the beam current monitor of a current transformer type at the INS electron linac. With this system, the pick-up noise has been reduced to be 1% of the noise without noise reduction. Signal deformation caused by this system is relatively small and the beam current pulse down to 20 mA is successfully monitored in the actual accelerator operation. (author)

  6. Self-monitoring fiber reinforced polymer strengthening system for civil engineering infrastructures

    Science.gov (United States)

    Jiang, Guoliang; Dawood, Mina; Peters, Kara; Rizkalla, Sami

    2008-03-01

    Fiber reinforced polymer (FRP) materials are currently used for strengthening civil engineering infrastructures. The strengthening system is dependant on the bond characteristics of the FRP to the external surface of the structure to be effective in resisting the applied loads. This paper presents an innovative self-monitoring FRP strengthening system. The system consists of two components which can be embedded in FRP materials to monitor the global and local behavior of the strengthened structure respectively. The first component of the system is designed to evaluate the applied load acting on a structure based on elongation of the FRP layer along the entire span of the structure. Success of the global system has been demonstrated using a full-scale prestressed concrete bridge girder which was loaded up to failure. The test results indicate that this type of sensor can be used to accurately determine the load prior to failure within 15 percent of the measured value. The second sensor component consists of fiber Bragg grating sensors. The sensors were used to monitor the behavior of steel double-lap shear splices tested under tensile loading up to failure. The measurements were used to identify abnormal structural behavior such as epoxy cracking and FRP debonding. Test results were also compared to numerical values obtained from a three dimensional shear-lag model which was developed to predict the sensor response.

  7. Novel method for fog monitoring using cellular networks infrastructures

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2012-08-01

    A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.

  8. Internet optical infrastructure issues on monitoring and failure restoration

    CERN Document Server

    Tapolcai, János; Babarczi, Péter; Rónyai, Lajos

    2015-01-01

    This book covers the issues of monitoring, failure localization, and restoration in the Internet optical backbone, and focuses on the progress of state-of-the-art in both industry standard and academic research. The authors summarize, categorize, and analyze the developed technology in the context of Internet fault management and failure recovery under the Generalized Multi-Protocol Label Switching (GMPLS), via both aspects of network operations and theories. Examines monitoring, failure localization, and failure restoration in the Internet backbone Includes problem formulations based on combinatorial group testing and topology coding Covers state-of-the-art development for the Internet backbone fault management and failure recovery

  9. INFRASTRUCTURES

    CERN Document Server

    Andrea Gaddi

    2013-01-01

    One of the most important tasks for LS1 was achieved this autumn when all the electronics racks in the USC55 counting rooms were switched from the standard powering network to the CMS low-voltage UPS. This long-sought move will prevent fastidious power cuts of the CMS electronics in case of short power glitches on the main powering network, as already assured to the detector front-end electronics in UXC55. In the same time, a study to update the dedicated UPS units for some crucial detector sub-systems, as the Magnet Control System (MCS), the Detector Safety System (DSS) and the IT Network Star-points, has been lunched. A new architecture, with fully redundant UPS units, able to assure power supply in case of long network outage (up to a maximum of five hours, in the case of the Magnet) has been recently presented by the EN-EL group and is currently under evaluation. The dry-gas plant recently commissioned in SH5 has passed a first test in order to understand the time needed to switch from dry-air to dry-n...

  10. INFRASTRUCTURE

    CERN Multimedia

    Andrea Gaddi

    The various water-cooling circuits have been running smoothly since the last maintenance stop. The temperature set-points are being tuned to the actual requests from sub-detectors. As the RPC chambers seem to be rather sensitive to temperature fluctuations, the set-point on the Barrel and Endcap Muon circuits has been lowered by one degree Celsius, reaching the minimum temperature possible with the current hardware. A further decrease in temperature will only be possible with a substantial modification of the heat exchanger and related control valve on the primary circuit. A study has been launched to investigate possible solutions and related costs. The two cooling skids for Totem and Castor have been installed on top of the HF platform. They will supply demineralized water to the two forward sub-detectors, transferring the heat to the main rack circuit via an on-board heat exchanger. A preliminary analysis of the cooling requirements of the SCX5 computer farm has been done. As a first result, two precision...

  11. Design of BEPCII bunch current monitor system

    International Nuclear Information System (INIS)

    Zhang Lei; Ma Huizhou; Yue Junhui; Lei Ge; Cao Jianshe; Ma Li

    2008-01-01

    BEPC II is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM) system is built on BEPC II. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC II timing system can also use the bunch current database to decide which bucket needs to refill to implement 'top-off' injection. (authors)

  12. INFRASTRUCTURE FACILITIES FOR MONITORING AND INTELLECTUAL ROAD TRAFFIC MANAGEMENT

    Directory of Open Access Journals (Sweden)

    G. Belov

    2014-10-01

    Full Text Available Review of automatic management of road traffic technologies in major cities of Ukraine is carried out in the given article. Priority directions of studies are determined for producing modern and perspective technologies in the given area. The facilities for monitoring and intelligence management of the road traffic on the basis of the programmed logical controller, using the device of fuzzy logic are considered.

  13. A flexible monitoring infrastructure for the simulation requests

    International Nuclear Information System (INIS)

    Spinoso, V; Missiato, M

    2014-01-01

    Running and monitoring simulations usually involves several different aspects of the entire workflow: the configuration of the job, the site issues, the software deployment at the site, the file catalogue, the transfers of the simulated data. In addition, the final product of the simulation is often the result of several sequential steps. This project tries a different approach to monitoring the simulation requests. All the necessary data are collected from the central services which lead the submission of the requests and the data management, and stored by a backend into a NoSQL-based data cache; those data can be queried through a Web Service interface, which returns JSON responses, and allows users, sites, physics groups to easily create their own web frontend, aggregating only the needed information. As an example, it will be shown how it is possible to monitor the CMS services (ReqMgr, DAS/DBS, PhEDEx) using a central backend and multiple customized cross-language frontends.

  14. A Flexible Monitoring Infrastructure for the Simulation Requests

    Science.gov (United States)

    Spinoso, V.; Missiato, M.

    2014-06-01

    Running and monitoring simulations usually involves several different aspects of the entire workflow: the configuration of the job, the site issues, the software deployment at the site, the file catalogue, the transfers of the simulated data. In addition, the final product of the simulation is often the result of several sequential steps. This project tries a different approach to monitoring the simulation requests. All the necessary data are collected from the central services which lead the submission of the requests and the data management, and stored by a backend into a NoSQL-based data cache; those data can be queried through a Web Service interface, which returns JSON responses, and allows users, sites, physics groups to easily create their own web frontend, aggregating only the needed information. As an example, it will be shown how it is possible to monitor the CMS services (ReqMgr, DAS/DBS, PhEDEx) using a central backend and multiple customized cross-language frontends.

  15. Beam current monitors at the UNILAC

    International Nuclear Information System (INIS)

    Schneider, N.

    1998-01-01

    One of the most basic linac operation tools is a beam current transformer. Using outstanding materials, the latest low-noise amplifiers, and some good ideas, a universal current monitoring system has been developed and installed at the UNILAC at GSI. With a dynamic range of 112 dB, covering the low-current range down to 100 nA peak to peak at S/N=1, as well as 25 mA pulses, provided for high-current injection to the SIS synchrotron, a well-accepted diagnostic instrument could be placed at the disposal of the operaters

  16. Post Construction Green Infrastructure Performance Monitoring Parameters and Their Functional Components

    Directory of Open Access Journals (Sweden)

    Thewodros K. Geberemariam

    2016-12-01

    Full Text Available Drainage system infrastructures in most urbanized cities have reached or exceeded their design life cycle and are characterized by running with inadequate capacity. These highly degraded infrastructures are already overwhelmed and continued to impose a significant challenge to the quality of water and ecological systems. With predicted urban growth and climate change the situation is only going to get worse. As a result, municipalities are increasingly considering the concept of retrofitting existing stormwater drainage systems with green infrastructure practices as the first and an important step to reduce stormwater runoff volume and pollutant load inputs into combined sewer systems (CSO and wastewater facilities. Green infrastructure practices include an open green space that can absorb stormwater runoff, ranging from small-scale naturally existing pocket of lands, right-of-way bioswales, and trees planted along the sidewalk as well as large-scale public parks. Despite the growing municipalities’ interest to retrofit existing stormwater drainage systems with green infrastructure, few studies and relevant information are available on their performance and cost-effectiveness. Therefore, this paper aims to help professionals learn about and become familiar with green infrastructure, decrease implementation barriers, and provide guidance for monitoring green infrastructure using the combination of survey questionnaires, meta-narrative and systematic literature review techniques.

  17. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  18. A smart monitoring infrastructure design for distributed renewable energy systems

    International Nuclear Information System (INIS)

    Kabalci, Ersan

    2015-01-01

    Highlights: • A smart grid model for renewable energy sources is proposed in this study. • The renewable energy conversion system is constituted with solar plants and full bridge inverter. • The power line communication is performed with QPSK modulation. • The transmission line that has 25 km length is modelled with real-time parameters. • The efficiency of system is analysed by comparing transmitted and received data. - Abstract: The automatic meter reading is essentially required in renewable grids as in conventional grids. It is intended to propose a reliable measurement system that is validated in a photovoltaic power system to meet the requirement of a renewable grid. In the presented study, the photovoltaic plants are controlled by using a widely known maximum power point tracking algorithm that is named as “Perturb and Observe”. The distribution line at the output of inverter is modelled according to realistic parameters of 25 km line. Besides carrying the generated line voltage, the grid is used as a transmission medium for the generated power measurements of photovoltaic plants and power consumptions of load plants separately. The modem constituting the power line communication manages the dual-channel transfer and transmits the consumed energy ratios of the load plants. One of the modems is located at the output of voltage source inverter and the other one of the load plants. The power consumption values of each load plants are individually measured and successfully transmitted to monitoring section in the modelled system. The obtained data that is only used for monitoring in this application can also be evaluated for automatic meter reading applications

  19. Beam current monitors in the NLCTA

    International Nuclear Information System (INIS)

    Nantista, C.; Adolphsen, C.

    1997-05-01

    The current profile along the 126 ns, multi-bunch beam pulse in the Next Linear Collider Test Accelerator (NLCTA) is monitored with fast toroids (rise time ∼ 1 ns). Inserted at several positions along the beam line, they allow one to track current transmission as a function of position along the bunch train. Various measurements, such as rise time, current, width, and slope, are made on the digitized signals, which can be corrected in software by means of stored frequency response files. The design and implementation of these devices is described

  20. Wall current monitor for SPring-8 linac

    International Nuclear Information System (INIS)

    Yanagida, Kenichi; Yamada, Kouji; Yokoyama, Minoru

    1994-06-01

    A fast rise time, broad band width and wide dynamic range wall current monitor was developed for SPring-8 linac. The performances are a rise time of ∼250ps, an effective impedance of 1.4Ω (output of ∼1.4V/A) and a bandwidth of 18kHz-2GHz. From a result of examination using 40ns electron beam, a significant change of effective impedance was not observed when a peak current was changed up to 12A or when a beam was moved by 8mm in a vacuum pipe. A circuit model that includes a core inductor loop was constructed. Using this model effective impedance and band width were calculated and compared to measured ones. They agreed very well except one part. In consequence the mechanism of wall current monitor can be explained by means of this model. (author)

  1. Monitoring Line-Infrastructure With Multisensor SAR Interferometry : Products and Performance Assessment Metrics

    NARCIS (Netherlands)

    Chang, L.; Dollevoet, R.P.B.J.; Hanssen, R.F.

    2018-01-01

    Satellite radar interferometry (InSAR) is an emerging technique to monitor the stability and health of line-infrastructure assets, such as railways, dams, and pipelines. However, InSAR is an opportunistic approach as the location and occurrence of its measurements (coherent scatterers) cannot be

  2. Coarse-Grained Online Monitoring of BTI Aging by Reusing Power-Gating Infrastructure

    OpenAIRE

    Tenentes, V.; Rossi, D.; Sheng Yang,; Khursheed, S.; Al-Hashimi, B.M.; Gunn, S.R.

    2017-01-01

    In this paper, we present a novel coarse-grained technique for monitoring online the Bias Temperature Instability (BTI) aging of circuits by exploiting their power gating infrastructure. The proposed technique relies on monitoring the discharge time of the virtual-power-network during stand-by operations, the value of which depends on the threshold voltage of the CMOS devices in the power-gated design (PGD). It does not require any distributed sensors, because the virtual-power network is alr...

  3. A review on stray current-induced steel corrosion in infrastructure

    NARCIS (Netherlands)

    Chen, Zhipei; Koleva, D.A.; van Breugel, K.

    2017-01-01

    Metallic corrosion can cause substantial damage at various levels and in almost all types of infrastructure. For metallic corrosion to occur, a certain external environment and the presence of corrodents are the prerequisites. Stray current-induced corrosion, however, is a rather underestimated

  4. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  5. Applications of current technology for continuous monitoring of spent fuel

    International Nuclear Information System (INIS)

    Drayer, R.

    2013-01-01

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  6. Monitoring of green infrastructure at The Grove in Bloomington, Illinois

    Science.gov (United States)

    Roseboom, Donald P.; Straub, Timothy D.

    2013-01-01

    The City of Bloomington, Illinois, restored Kickapoo Creek to a more natural state by incorporating green infrastructure—specifically flood-plain reconnection, riparian wetlands, meanders, and rock riffles—at a 90-acre park within The Grove residential development. A team of State and Federal agencies and contractors are collecting data to monitor the effectiveness of this stream restoration in improving water quality and stream habitat. The U.S. Geological Survey (USGS) is collecting and analyzing water resources data; Illinois Department of Natural Resources (IDNR) is collecting fish population data; Illinois Environmental Protection Agency (IEPA) is collecting macroinvertebrates and riparian habitat data; and Prairie Engineers of Illinois, P.C., is collecting vegetation data. The data collection includes conditions upstream, within, and downstream of the development and restoration. The 480-acre development was designed by the Farnsworth Group to reduce peak stormwater flows by capturing runoff in the reconnected flood plains with shallow wetland basins. Also, an undersized park bridge was built at the downstream end of the park to pass the 20-percent annual exceedance probability flows (historically referred to as the 5-year flood), but detain larger floods. This design also helps limit sediment deposition from sediments transported in the drainage ditches in the upper 9,000 acres of agricultural row crops. Maintaining sediment-transport capacity minimizes sediment deposition in the restored stream segments, which reduces the loss of riparian and wetland-plant communities and instream habitat. Two additional goals of the restoration were to reduce nutrient loads and maintain water quality to support a diverse community of biotic species. Overall, 2 miles of previously managed agricultural-drainage ditches of Kickapoo Creek were restored, and the park landscape maximizes the enhancement of native riparian, wetland, and aquatic species for the park’s trail

  7. Current Status of Groundwater Monitoring Networks in Korea

    OpenAIRE

    Jin-Yong Lee; Kideok D. Kwon

    2016-01-01

    Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN), Groundwater Quality Monitoring Network (GQMN), Seawater Intrusion Monitoring Network (SIMN), Rural Groundwater Monitoring Network (RGMN), Subsidiary Groundwater Monitoring Network ...

  8. Machine monitoring via current signature analysis techniques

    International Nuclear Information System (INIS)

    Smith, S.F.; Castleberry, K.N.; Nowlin, C.H.

    1992-01-01

    A significant need in the effort to provide increased production quality is to provide improved plant equipment monitoring capabilities. Unfortunately, in today's tight economy, even such monitoring instrumentation must be implemented in a recognizably cost effective manner. By analyzing the electric current drawn by motors, actuator, and other line-powered industrial equipment, significant insights into the operations of the movers, driven equipment, and even the power source can be obtained. The generic term 'current signature analysis' (CSA) has been coined to describe several techniques for extracting useful equipment or process monitoring information from the electrical power feed system. A patented method developed at Oak Ridge National Laboratory is described which recognizes the presence of line-current modulation produced by motors and actuators driving varying loads. The in-situ application of applicable linear demodulation techniques to the analysis of numerous motor-driven systems is also discussed. The use of high-quality amplitude and angle-demodulation circuitry has permitted remote status monitoring of several types of medium and high-power gas compressors in (US DOE facilities) driven by 3-phase induction motors rated from 100 to 3,500 hp, both with and without intervening speed increasers. Flow characteristics of the compressors, including various forms of abnormal behavior such as surging and rotating stall, produce at the output of the specialized detectors specific time and frequency signatures which can be easily identified for monitoring, control, and fault-prevention purposes. The resultant data are similar in form to information obtained via standard vibration-sensing techniques and can be analyzed using essentially identical methods. In addition, other machinery such as refrigeration compressors, brine pumps, vacuum pumps, fans, and electric motors have been characterized

  9. Unraveling Structural Infrasound: understanding the science for persistent remote monitoring of critical infrastructure (Invited)

    Science.gov (United States)

    McKenna, S. M.; Diaz-Alvarez, H.; McComas, S.; Costley, D.; Whitlow, R. D.; Jordan, A. M.; Taylor, O.

    2013-12-01

    In 2006, the Engineer Research and Development Center (ERDC) began a program designed to meet the capability gap associated with remote assessment of critical infrastructure. This program addresses issues arising from the use of geophysical techniques to solve engineering problems through persistent monitoring of critical infrastructure using infrasound. In the original 2006-2009 study of a railroad bridge in Ft. Leonard Wood, MO, the fundamental modes of motion of the structure were detected at up to 30 km away, with atmospheric excitation deemed to be the source driver. Follow-on research focused on the mechanically driven modes excited by traffic, with directional acoustic emanations. The success of the Ft. Wood ambient excitation study resulted in several subsequent programs to push the boundaries of this new technique for standoff assessment, discussed herein. Detection of scour and river system health monitoring are serious problems for monitoring civil infrastructure, from both civilian and military perspectives. Knowledge of overall system behavior over time is crucial for assessment of bridge foundations and barge navigation. This research focuses on the same steel-truss bridge from the Ft. Wood study, and analyzes 3D and 2D substructure models coupled with the superstructure reaction loads to assess the modal deformations within the infrasound bandwidth and the correlation to scour of embedment material. The Urban infrasound program is infrasound modeling, data analysis, and sensor research leading to the detection, classification and localization of threat activities in complex propagation environments. Three seismo-acoustic arrays were deployed on rooftops across the Southern Methodist University campus in Dallas, Texas, to characterize the urban infrasound environment. Structural sources within 15 km of the arrays have been identified through signal processing and confirmed through acoustical models. Infrasound is also being studied as a means of

  10. FMIT direct-current beam monitor

    International Nuclear Information System (INIS)

    Brousseau, A.T.; Chamberlin, D.D.

    1981-01-01

    The prototype injector section for the Fusion Materials Irradiation Test (FMIT) Facility being developed at the Los Alamos National Laboratory requires that beam parameters be noninterceptively monitored. This report describes the application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam

  11. R and D non-destructive damage monitoring and diagnosing system for civil infrastructures

    International Nuclear Information System (INIS)

    Ren Weixin; Abu Bakar Mohamad Diah; Cheng Hao

    1998-01-01

    Since civil infrastructures serve as the underpinnings of our highly industrialized society, and much of them are now decaying, it is the time to consider how to maintain these widely spread infrastructures in order to prevent potential catastrophic events. Changes in use and the need to maintain an ageing system require improvements in instrumentation for sensing and recording, data acquisition for diagnosing the possible damage, and algorithm for identifying and monitoring the changes in structural characteristics. Researching and developing a real-time, in-serve health detection and monitoring system has drawn a worldwide attention recently for various types of structures. The paper conceives an integrated non-destructive damage monitoring and diagnosing system for civil infrastructures. The system is a high technology and high-commercialised industrial integrated product involved in research and development. The research activities of the system cover three core parts: structural modelling, structural system identification and damage criterion establishment. The development activities of the system include experimental measurements, data acquisition and processing, instrumentation set-up, computer visualisation, and software development. The state-of -the art theories and practices are systematically merged and integrated in the development of the system, and the system will be verified through the real world application for civil infrastructures. Our research results on the damage criterion based on the changes in structural dynamic properties are also reported in the paper. (Author)

  12. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  13. Monitoring current rates of salt dome movement

    International Nuclear Information System (INIS)

    Thoms, R.L.; Manning, T.A.

    1977-01-01

    The tectonic stability of salt domes is a major concern for long-term domal storage of noxious wastes. A necessary phase of the many faceted dome storage study includes obtaining a measure of current vertical movement of any potential storage dome. This information then can be combined with data obtained from studies involving geologic time scales so as to provide a history of dome movement that includes present time. A system of instrumentation for monitoring current rates of dome movement is described. Complimentary finite element modelling of plausible dome movement also is presented. The proposed instrumentation system includes tiltmeters, precise levelling, laser ranging, and monitoring of microseisms. Thus, components of rotation and vertical and horizontal movements at the ground surface over a dome can be monitored. In addition, a measure of dome movement also may be obtained acoustically. The finite element modelling furnishes an aid for: (1) locating instrument sites over a dome so as to maximize instrument sensitivity, and (2) interpreting data obtained from the instrumentation system. An example of tiltmeter installation and operation over a dome in northwest Louisiana is included. Typical tiltmeter output is presented and discussed

  14. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Science.gov (United States)

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  15. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  16. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM of civil infrastructure.

  17. Coherent national IT infrastructure for telehomecare - a case of hypertension measurement, treatment and monitoring

    DEFF Research Database (Denmark)

    Tambo, Torben; Hoffmann-Petersen, Nikolai; Pedersen, Erling B.

    2010-01-01

    defined general repositories eases citizen and professional access to data. By identifying potential datastorage options, and by using a common public infrastructure for making healthcare data secured and available, telehomecare can be realized and barriers between different entities of the healthcare......Hypertension is affecting almost 20% of the population in many countries. Monitoring and treatment is critical. Mobile, wireless hypertension measurement - as other vital signs - is breaking through but require substantial organisational engineering and management of technology at its best. Well...

  18. Coherent national IT infrastructure for telehomecare - a case of hypertension measurement, treatment and monitoring

    DEFF Research Database (Denmark)

    Tambo, Torben; Hoffmann-Petersen, Nikolai; Pedersen, Erling Bjerregaard

    2010-01-01

    Hypertension is affecting almost 20% of the population in many countries. Monitoring and treatment is critical. Mobile, wireless hypertension measurement - as other vital signs - is breaking through but require substantial organisational engineering and management of technology at its best. Well...... defined general repositories eases citizen and professional access to data. By identifying potential datastorage options, and by using a common public infrastructure for making healthcare data secured and available, telehomecare can be realized and barriers between different entities of the healthcare...

  19. X-Band wave radar system for monitoring and risk management of the coastal infrastructures

    Science.gov (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco

    2017-04-01

    The presence of the infrastructures in coastal region entails an increase of the sea level and the shift of the sediment on the bottom with a continuous change of the coastline. In order to preserve the coastline, it has been necessary to resort the use of applications coastal engineering, as the construction of the breakwaters for preventing the coastal erosion. In this frame, the knowledge of the sea state parameters, as wavelength, period and significant wave height and of surface current and bathymetry can be used for the harbor operations and to prevent environmental disasters. In the last years, the study of the coastal phenomena and monitoring of the sea waves impact on the coastal infrastructures through the analysis of images acquired by marine X-band radars is of great interest [1-3]. The possibility to observe the sea surface from radar images is due to the fact that the X-band electromagnetic waves interact with the sea capillary waves (Bragg resonance), which ride on the gravity waves. However, the image acquired by a X-band radar is not the direct representation of the sea state, but it represents the sea surface as seen by the radar. Accordingly, to estimate the sea state parameters as, direction, wavelength, period of dominant waves, the significant wave height as well as the bathymetry and surface current, through a time stack of radar data are required advanced data processing procedures. In particular, in the coastal areas due to the non-uniformity of sea surface current and bathymetry fields is necessary a local analysis of the sea state parameters. In order to analyze the data acquired in coastal area an inversion procedure defined "Local Method" is adopted, which is based on the spatial partitioning of the investigated area in partially overlapping sub-areas. In addition, the analysis of the sea spectrum of each sub-area allows us to retrieve the local sea state parameters. In particular, this local analysis allows us to detect the reflected

  20. Multigigahertz beam-current and position monitor

    International Nuclear Information System (INIS)

    Carlson, R.L.; Stout, L.E.

    1985-01-01

    A self-integrating magnetic-loop device having a risetime of less than 175 ps has been developed to monitor the temporal behavior of the electron beam current and position within each 3.3-ns micropulse generated by the PHERMEX rf linear accelerator. Beam current is measured with a 2-GHz bandwidth by combining these loops in a four-port hybrid summer. Another application of these loops uses two 180 0 hybrids to give 2-GHz time-resolved beam position to an accuracy of 1 mm. These sensors are nonintrusive to the propagating beam and allow ultrafast beam measurements previously restricted to the technique of recording the Cerenkov-light emission from an intercepting Kapton foil using a streak camera

  1. Current concepts in blood glucose monitoring

    OpenAIRE

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on t...

  2. LAMPF experimental-area beam current monitors

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1975-01-01

    This paper summarizes the design and operational performance of a wide- range current monitor system used to measure charged-particle currents in the experimental areas of the Clinton P. Anderson Meson Physics Facility (LAMPF), a proton accelerator. The major features of the system are high sensitivity, wide dynamic range, and the ability to withstand high levels of radiation. The current pulses detected are from 50 μs to 1 ms in duration at repetition rates of from 1 to 120 Hz. The pulse amplitude varies from 1 μA to 17 mA of protons or H - ions. Both real-time and integrated outputs are available, and the minimum detectable currents are 1 μA at the video output and 50 nA at the integrated output. The basic system is comprised of toroids, preamplifiers, signal conditioners, voltage-to-frequency converters, and digital accumulators. The entire system is spread out over 1 km of beam pipe. Provision is made for calibration and for sending the outputs to remote users. The system is normally controlled by a small digital computer, which allows the system to be quite flexible in operation. The design features of the toroids and the associated electronics are discussed in detail, with emphasis on the steps taken to reduce noise and make the toroids temperature and radiation resistant

  3. Metadata and network API aspects of a framework for storing and retrieving civil infrastructure monitoring data

    Science.gov (United States)

    Wong, John-Michael; Stojadinovic, Bozidar

    2005-05-01

    A framework has been defined for storing and retrieving civil infrastructure monitoring data over a network. The framework consists of two primary components: metadata and network communications. The metadata component provides the descriptions and data definitions necessary for cataloging and searching monitoring data. The communications component provides Java classes for remotely accessing the data. Packages of Enterprise JavaBeans and data handling utility classes are written to use the underlying metadata information to build real-time monitoring applications. The utility of the framework was evaluated using wireless accelerometers on a shaking table earthquake simulation test of a reinforced concrete bridge column. The NEESgrid data and metadata repository services were used as a backend storage implementation. A web interface was created to demonstrate the utility of the data model and provides an example health monitoring application.

  4. Rip current monitoring using GPS buoy system

    Science.gov (United States)

    Song, DongSeob; Kim, InHo; Kang, DongSoo

    2014-05-01

    The occurrence of rip current in the Haeundae beach, which is one of the most famous beaches in South Korea, has been threatening beach-goers security in summer season annually. Many coastal scientists have been investigating rip currents by using field observations and measurements, laboratory measurements and wave tank experiments, and computer and numerical modeling. Rip current velocity is intermittent and may rapidly increase within minutes due to larger incoming wave groups or nearshore circulation instabilities. It is important to understand that changes in rip current velocity occur in response to changes in incoming wave height and period as well as changes in water level. GPS buoys have been used to acquire sea level change data, atmospheric parameters and other oceanic variables in sea for the purposes of vertical datum determination, tide correction, radar altimeter calibration, ocean environment and marine pollution monitoring. Therefore, we adopted GPS buoy system for an experiment which is to investigate rip current velocity; it is sporadic and may quickly upsurge within minutes due to larger arriving wave groups or nearshore flow uncertainties. In this study, for high accurate positioning of buy equipment, a Satellite Based Argumentation System DGPS data logger was deployed to investigate within floating object, and it can be acquired three-dimensional coordinate or geodetic position of buoy with continuous NMEA-0183 protocol during 24 hours. The wave height measured by in-situ hydrometer in a cross-shore array clearly increased before and after occurrence of rip current, and wave period also was lengthened around an event. These results show that wave height and period correlate reasonably well with long-shore current interaction in the Haeundae beach. Additionally, current meter data and GPS buoy data showed that rip current velocities, about 0.2 m/s, may become dangerously strong under specific conditions. Acknowledgement This research was

  5. Dedicated IT infrastructure for Smart Levee Monitoring and Flood Decision Support

    Directory of Open Access Journals (Sweden)

    Balis Bartosz

    2016-01-01

    Full Text Available Smart levees are being increasingly investigated as a flood protection technology. However, in large-scale emergency situations, a flood decision support system may need to collect and process data from hundreds of kilometers of smart levees; such a scenario requires a resilient and scalable IT infrastructure, capable of providing urgent computing services in order to perform frequent data analyses required in decision making, and deliver their results in a timely fashion. We present the ISMOP IT infrastructure for smart levee monitoring, designed to support decision making in large-scale emergency situations. Most existing approaches to urgent computing services in decision support systems dealing with natural disasters focus on delivering quality of service for individual, isolated subsystems of the IT infrastructure (such as computing, storage, or data transmission. We propose a holistic approach to dynamic system management during both urgent (emergency and normal (non-emergency operation. In this approach, we introduce a Holistic Computing Controller which calculates and deploys a globally optimal configuration for the entire IT infrastructure, based on cost-of-operation and quality-of-service (QoS requirements of individual IT subsystems, expressed in the form of Service Level Agreements (SLAs. Our approach leads to improved configuration settings and, consequently, better fulfilment of the system’s cost and QoS requirements than would have otherwise been possible had the configuration of all subsystems been managed in isolation.

  6. Current concepts in blood glucose monitoring.

    Science.gov (United States)

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-12-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus.

  7. Current concepts in blood glucose monitoring

    Science.gov (United States)

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus. PMID:24910827

  8. Current concepts in blood glucose monitoring

    Directory of Open Access Journals (Sweden)

    Kranti Shreesh Khadilkar

    2013-01-01

    Full Text Available Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG and continuous glucose monitoring system (CGMS. It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus.

  9. Monitoring performance of a highly distributed and complex computing infrastructure in LHCb

    Science.gov (United States)

    Mathe, Z.; Haen, C.; Stagni, F.

    2017-10-01

    In order to ensure an optimal performance of the LHCb Distributed Computing, based on LHCbDIRAC, it is necessary to be able to inspect the behavior over time of many components: firstly the agents and services on which the infrastructure is built, but also all the computing tasks and data transfers that are managed by this infrastructure. This consists of recording and then analyzing time series of a large number of observables, for which the usage of SQL relational databases is far from optimal. Therefore within DIRAC we have been studying novel possibilities based on NoSQL databases (ElasticSearch, OpenTSDB and InfluxDB) as a result of this study we developed a new monitoring system based on ElasticSearch. It has been deployed on the LHCb Distributed Computing infrastructure for which it collects data from all the components (agents, services, jobs) and allows creating reports through Kibana and a web user interface, which is based on the DIRAC web framework. In this paper we describe this new implementation of the DIRAC monitoring system. We give details on the ElasticSearch implementation within the DIRAC general framework, as well as an overview of the advantages of the pipeline aggregation used for creating a dynamic bucketing of the time series. We present the advantages of using the ElasticSearch DSL high-level library for creating and running queries. Finally we shall present the performances of that system.

  10. The ISTIMES project: a new integrated system for monitoring critical transport infrastructures interested by natural hazards

    Science.gov (United States)

    Proto, Monica; Massimo, Bavusi; Francesco, Soldovieri

    2010-05-01

    The research project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), was approved in the 7th Framework Programme, in the Joint Call ICT and Security and started on 1st July 2009. The purpose of ISTIMES project is to design, assess and promote an ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring in order to achieve the critical transport infrastructures more reliable and safe. The transportation sector's components are susceptible to the consequences of natural disasters and can also be attractive as terrorist targets. The sector's size, its physically dispersed and decentralized nature, the many public and private entities involved in its operations, the critical importance of cost considerations, and the inherent requirement of convenient accessibility to its services by all users - make the transportation particularly vulnerable to security and safety threats. As well known, the surface transportation system consists of interconnected infrastructures including highways, transit systems, railroads, airports, waterways, pipelines and ports, and the vehicles, aircraft, and vessels that operate along these networks. Thus, interdependencies exist between transportation and nearly every other sector of the economy and the effective operation of this system is essential to the European economic productivity; therefore, transportation sector protection is of paramount importance since threats to it may impact other industries that rely on it. The system exploits an open network architecture that can accommodate a wide range of sensors, static and mobile, and can be easily scaled up to allow the integration of additional sensors and interfacing with other networks. It relies on heterogeneous state-of-the-art electromagnetic sensors, enabling a self-organizing, self-healing, ad-hoc networking of terrestrial sensors, supported by specific satellite

  11. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    We will present our motivations for deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States and describe our experience in using it. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. USATLAS has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  12. The integration of novel diagnostics techniques for multi-scale monitoring of large civil infrastructures

    Directory of Open Access Journals (Sweden)

    F. Soldovieri

    2008-11-01

    Full Text Available In the recent years, structural monitoring of large infrastructures (buildings, dams, bridges or more generally man-made structures has raised an increased attention due to the growing interest about safety and security issues and risk assessment through early detection. In this framework, aim of the paper is to introduce a new integrated approach which combines two sensing techniques acting on different spatial and temporal scales. The first one is a distributed optic fiber sensor based on the Brillouin scattering phenomenon, which allows a spatially and temporally continuous monitoring of the structure with a "low" spatial resolution (meter. The second technique is based on the use of Ground Penetrating Radar (GPR, which can provide detailed images of the inner status of the structure (with a spatial resolution less then tens centimetres, but does not allow a temporal continuous monitoring. The paper describes the features of these two techniques and provides experimental results concerning preliminary test cases.

  13. Deep Time Data Infrastructure: Integrating Our Current Geologic and Biologic Databases

    Science.gov (United States)

    Kolankowski, S. M.; Fox, P. A.; Ma, X.; Prabhu, A.

    2016-12-01

    As our knowledge of Earth's geologic and mineralogical history grows, we require more efficient methods of sharing immense amounts of data. Databases across numerous disciplines have been utilized to offer extensive information on very specific Epochs of Earth's history up to its current state, i.e. Fossil record, rock composition, proteins, etc. These databases could be a powerful force in identifying previously unseen correlations such as relationships between minerals and proteins. Creating a unifying site that provides a portal to these databases will aid in our ability as a collaborative scientific community to utilize our findings more effectively. The Deep-Time Data Infrastructure (DTDI) is currently being defined as part of a larger effort to accomplish this goal. DTDI will not be a new database, but an integration of existing resources. Current geologic and related databases were identified, documentation of their schema was established and will be presented as a stage by stage progression. Through conceptual modeling focused around variables from their combined records, we will determine the best way to integrate these databases using common factors. The Deep-Time Data Infrastructure will allow geoscientists to bridge gaps in data and further our understanding of our Earth's history.

  14. Transport Infrastructure Surveillance and Monitoring by Electromagnetic Sensing: The ISTIMES Project

    Directory of Open Access Journals (Sweden)

    Marie Bost

    2010-11-01

    Full Text Available The ISTIMES project, funded by the European Commission in the frame of a joint Call “ICT and Security” of the Seventh Framework Programme, is presented and preliminary research results are discussed. The main objective of the ISTIMES project is to design, assess and promote an Information and Communication Technologies (ICT-based system, exploiting distributed and local sensors, for non-destructive electromagnetic monitoring of critical transport infrastructures. The integration of electromagnetic technologies with new ICT information and telecommunications systems enables remotely controlled monitoring and surveillance and real time data imaging of the critical transport infrastructures. The project exploits different non-invasive imaging technologies based on electromagnetic sensing (optic fiber sensors, Synthetic Aperture Radar satellite platform based, hyperspectral spectroscopy, Infrared thermography, Ground Penetrating Radar-, low-frequency geophysical techniques, Ground based systems for displacement monitoring. In this paper, we show the preliminary results arising from the GPR and infrared thermographic measurements carried out on the Musmeci bridge in Potenza, located in a highly seismic area of the Apennine chain (Southern Italy and representing one of the test beds of the project.

  15. Voltage Harmonics Monitoring in a Microgrid Based on Advanced Metering Infrastructure (AMI)

    DEFF Research Database (Denmark)

    Firoozabadi, Mehdi Savaghebi; Guan, Yajuan; Quintero, Juan Carlos Vasquez

    2015-01-01

    Smart meters are the main part of Advanced Metering Infrastructure (AMI) and are usually able to provide detailed information on customers’ energy consumptions, voltage variations and interruptions. In addition, these meters are potentially able to provide more information about power quality (PQ......) disturbances. This paper will address the monitoring of voltage harmonics utilizing the features of smart meters and AMI system. To do this, the first step is to select proper indices to quantify the distortion. An important point which should be considered in this regard is the limited processing power...

  16. ANALYSIS OF STATISTICAL DATA FROM NETWORK INFRASTRUCTURE MONITORING TO DETECT ABNORMAL BEHAVIOR OF SYSTEM LOCAL SEGMENTS

    Directory of Open Access Journals (Sweden)

    N. A. Bazhayev

    2017-01-01

    Full Text Available We propose a method of information security monitoring for a wireless network segments of low-power devices, "smart house", "Internet of Things". We have carried out the analysis of characteristics of systems based on wireless technologies, resulting from passive surveillance and active polling of devices that make up the network infrastructure. We have considered a number of external signs of unauthorized access to a wireless network by the potential information security malefactor. The model for analysis of information security conditions is based on the identity, quantity, frequency, and time characteristics. Due to the main features of devices providing network infrastructure, estimation of information security state is directed to the analysis of the system normal operation, rather than the search for signatures and anomalies during performance of various kinds of information attacks. An experiment is disclosed that provides obtaining statistical information on the remote wireless devices, where the accumulation of data for decision-making is done by comparing the statistical information service messages from end nodes in passive and active modes. We present experiment results of the information influence on a typical system. The proposed approach to the analysis of network infrastructure statistical data based on naive Bayesian classifier can be used to determine the state of information security.

  17. Development of an intelligent hydroinformatic system for real-time monitoring and assessment of civil infrastructure

    Science.gov (United States)

    Cahill, Paul; Michalis, Panagiotis; Solman, Hrvoje; Kerin, Igor; Bekic, Damir; Pakrashi, Vikram; McKeogh, Eamon

    2017-04-01

    With the effects of climate change becoming more apparent, extreme weather events are now occurring with greater frequency throughout the world. Such extreme events have resulted in increased high intensity flood events which are having devastating consequences on hydro-structures, especially on bridge infrastructure. The remote and often inaccessible nature of such bridges makes inspections problematic, a major concern if safety assessments are required during and after extreme flood events. A solution to this is the introduction of smart, low cost sensing solutions at locations susceptible to hydro-hazards. Such solutions can provide real-time information on the health of the bridge and its environments, with such information aiding in the mitigation of the risks associated with extreme weather events. This study presents the development of an intelligent system for remote, real-time monitoring of hydro-hazards to bridge infrastructure. The solution consists of two types of remote monitoring stations which have the capacity to monitor environmental conditions and provide real-time information to a centralized, big data database solution, from which an intelligent decision support system will accommodate the results to control and manage bridge, river and catchment assets. The first device developed as part of the system is the Weather Information Logging Device (WILD), which monitors rainfall, temperature and air and soil moisture content. The ability of the WILD to monitor rainfall in real time enables flood early warning alerts and predictive river flow conditions, thereby enabling decision makers the ability to make timely and effective decisions about critical infrastructures in advance of extreme flood events. The WILD is complemented by a second monitoring device, the Bridge Information Recording Device (BIRD), which monitors water levels at a given location in real-time. The monitoring of water levels of a river allows for, among other applications

  18. Monitoring and Control of Urban Critical Infrastructures: A Novel Approach to System Design and Data Fusion

    Directory of Open Access Journals (Sweden)

    Mario La Manna

    2015-02-01

    Full Text Available The monitoring and control of urban critical infrastructures consists of the protection of assets such as houses, offices, government and private buildings, with low cost, high quality and high dependability. In order to satisfy all these requirements at the same time, the control of a number of assets has to be performed by means of automated systems based on networks of heterogeneous sensors. This new concept idea is based on the use of unmanned operations at each of the many remote assets (each asset is monitored through a network of sensors and a man-in-the-loop automated control in a central site (Operational Center, which performs alarm detection and system management.

  19. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    CERN Document Server

    Kazarov, A; The ATLAS collaboration; Magnoni, L

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  20. The AAL project: Automated monitoring and intelligent AnaLysis for the ATLAS data taking infrastructure

    CERN Document Server

    Magnoni, L; The ATLAS collaboration; Kazarov, A

    2011-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for filtering and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The huge flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This require strong competence and experience in understanding and discovering problems and root causes, and often the meaningful in...

  1. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  2. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    International Nuclear Information System (INIS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  3. A Serviced-based Approach to Connect Seismological Infrastructures: Current Efforts at the IRIS DMC

    Science.gov (United States)

    Ahern, Tim; Trabant, Chad

    2014-05-01

    As part of the COOPEUS initiative to build infrastructure that connects European and US research infrastructures, IRIS has advocated for the development of Federated services based upon internationally recognized standards using web services. By deploying International Federation of Digital Seismograph Networks (FDSN) endorsed web services at multiple data centers in the US and Europe, we have shown that integration within seismological domain can be realized. By deploying identical methods to invoke the web services at multiple centers this approach can significantly ease the methods through which a scientist can access seismic data (time series, metadata, and earthquake catalogs) from distributed federated centers. IRIS has developed an IRIS federator that helps a user identify where seismic data from global seismic networks can be accessed. The web services based federator can build the appropriate URLs and return them to client software running on the scientists own computer. These URLs are then used to directly pull data from the distributed center in a very peer-based fashion. IRIS is also involved in deploying web services across horizontal domains. As part of the US National Science Foundation's (NSF) EarthCube effort, an IRIS led EarthCube Building Block's project is underway. When completed this project will aid in the discovery, access, and usability of data across multiple geoscienece domains. This presentation will summarize current IRIS efforts in building vertical integration infrastructure within seismology working closely with 5 centers in Europe and 2 centers in the US, as well as how we are taking first steps toward horizontal integration of data from 14 different domains in the US, in Europe, and around the world.

  4. Precision intercomparison of beam current monitors at CEBAF

    International Nuclear Information System (INIS)

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, R.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-01-01

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 μA. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current

  5. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    International Nuclear Information System (INIS)

    Kazarov, A; Miotto, G Lehmann; Magnoni, L

    2012-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker

  6. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    Science.gov (United States)

    Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-06-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker

  7. A Cloud Computing-Enabled Spatio-Temporal Cyber-Physical Information Infrastructure for Efficient Soil Moisture Monitoring

    Directory of Open Access Journals (Sweden)

    Lianjie Zhou

    2016-06-01

    Full Text Available Comprehensive surface soil moisture (SM monitoring is a vital task in precision agriculture applications. SM monitoring includes remote sensing imagery monitoring and in situ sensor-based observational monitoring. Cloud computing can increase computational efficiency enormously. A geographical web service was developed to assist in agronomic decision making, and this tool can be scaled to any location and crop. By integrating cloud computing and the web service-enabled information infrastructure, this study uses the cloud computing-enabled spatio-temporal cyber-physical infrastructure (CESCI to provide an efficient solution for soil moisture monitoring in precision agriculture. On the server side of CESCI, diverse Open Geospatial Consortium web services work closely with each other. Hubei Province, located on the Jianghan Plain in central China, is selected as the remote sensing study area in the experiment. The Baoxie scientific experimental field in Wuhan City is selected as the in situ sensor study area. The results show that the proposed method enhances the efficiency of remote sensing imagery mapping and in situ soil moisture interpolation. In addition, the proposed method is compared to other existing precision agriculture infrastructures. In this comparison, the proposed infrastructure performs soil moisture mapping in Hubei Province in 1.4 min and near real-time in situ soil moisture interpolation in an efficient manner. Moreover, an enhanced performance monitoring method can help to reduce costs in precision agriculture monitoring, as well as increasing agricultural productivity and farmers’ net-income.

  8. The role of minimum supply and social vulnerability assessment for governing critical infrastructure failure: current gaps and future agenda

    Directory of Open Access Journals (Sweden)

    M. Garschagen

    2018-04-01

    Full Text Available Increased attention has lately been given to the resilience of critical infrastructure in the context of natural hazards and disasters. The major focus therein is on the sensitivity of critical infrastructure technologies and their management contingencies. However, strikingly little attention has been given to assessing and mitigating social vulnerabilities towards the failure of critical infrastructure and to the development, design and implementation of minimum supply standards in situations of major infrastructure failure. Addressing this gap and contributing to a more integrative perspective on critical infrastructure resilience is the objective of this paper. It asks which role social vulnerability assessments and minimum supply considerations can, should and do – or do not – play for the management and governance of critical infrastructure failure. In its first part, the paper provides a structured review on achievements and remaining gaps in the management of critical infrastructure and the understanding of social vulnerabilities towards disaster-related infrastructure failures. Special attention is given to the current state of minimum supply concepts with a regional focus on policies in Germany and the EU. In its second part, the paper then responds to the identified gaps by developing a heuristic model on the linkages of critical infrastructure management, social vulnerability and minimum supply. This framework helps to inform a vision of a future research agenda, which is presented in the paper's third part. Overall, the analysis suggests that the assessment of socially differentiated vulnerabilities towards critical infrastructure failure needs to be undertaken more stringently to inform the scientifically and politically difficult debate about minimum supply standards and the shared responsibilities for securing them.

  9. The role of minimum supply and social vulnerability assessment for governing critical infrastructure failure: current gaps and future agenda

    Science.gov (United States)

    Garschagen, Matthias; Sandholz, Simone

    2018-04-01

    Increased attention has lately been given to the resilience of critical infrastructure in the context of natural hazards and disasters. The major focus therein is on the sensitivity of critical infrastructure technologies and their management contingencies. However, strikingly little attention has been given to assessing and mitigating social vulnerabilities towards the failure of critical infrastructure and to the development, design and implementation of minimum supply standards in situations of major infrastructure failure. Addressing this gap and contributing to a more integrative perspective on critical infrastructure resilience is the objective of this paper. It asks which role social vulnerability assessments and minimum supply considerations can, should and do - or do not - play for the management and governance of critical infrastructure failure. In its first part, the paper provides a structured review on achievements and remaining gaps in the management of critical infrastructure and the understanding of social vulnerabilities towards disaster-related infrastructure failures. Special attention is given to the current state of minimum supply concepts with a regional focus on policies in Germany and the EU. In its second part, the paper then responds to the identified gaps by developing a heuristic model on the linkages of critical infrastructure management, social vulnerability and minimum supply. This framework helps to inform a vision of a future research agenda, which is presented in the paper's third part. Overall, the analysis suggests that the assessment of socially differentiated vulnerabilities towards critical infrastructure failure needs to be undertaken more stringently to inform the scientifically and politically difficult debate about minimum supply standards and the shared responsibilities for securing them.

  10. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    Science.gov (United States)

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  11. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    Directory of Open Access Journals (Sweden)

    Eduardo Cañete

    2015-06-01

    Full Text Available Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  12. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    Webber, R.C.

    1994-10-01

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  13. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    CERN Document Server

    McKee, S; The ATLAS collaboration; Laurens, P; Severini, H; Wlodek, T; Wolff, S; Zurawski, J

    2012-01-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multidomain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit[8] at ATLAS sites in the United States. This software cr...

  14. Current Status of Groundwater Monitoring Networks in Korea

    Directory of Open Access Journals (Sweden)

    Jin-Yong Lee

    2016-04-01

    Full Text Available Korea has been operating groundwater monitoring systems since 1996 as the Groundwater Act enacted in 1994 enforces nationwide monitoring. Currently, there are six main groundwater monitoring networks operated by different government ministries with different purposes: National Groundwater Monitoring Network (NGMN, Groundwater Quality Monitoring Network (GQMN, Seawater Intrusion Monitoring Network (SIMN, Rural Groundwater Monitoring Network (RGMN, Subsidiary Groundwater Monitoring Network (SGMN, and Drinking Water Monitoring Network (DWMN. The Networks have a total of over 3500 monitoring wells and the majority of them are now equipped with automatic data loggers and remote terminal units. Most of the monitoring data are available to the public through internet websites. These Networks have provided scientific data for designing groundwater management plans and contributed to securing the groundwater resource particularly for recent prolonged drought seasons. Each Network, however, utilizes its own well-specifications, probes, and telecommunication protocols with minimal communication with other Networks, and thus duplicate installations of monitoring wells are not uncommon among different Networks. This mini-review introduces the current regulations and the Groundwater Monitoring Networks operated in Korea and provides some suggestions to improve the sustainability of the current groundwater monitoring system in Korea.

  15. European seismological data exchange, access and processing: current status of the Research Infrastructure project NERIES

    Science.gov (United States)

    Giardini, D.; van Eck, T.; Bossu, R.; Wiemer, S.

    2009-04-01

    The EC Research infrastructure project NERIES, an Integrated Infrastructure Initiative in seismology for 2006-2010 has passed its mid-term point. We will present a short concise overview of the current state of the project, established cooperation with other European and global projects and the planning for the last year of the project. Earthquake data archiving and access within Europe has dramatically improved during the last two years. This concerns earthquake parameters, digital broadband and acceleration waveforms and historical data. The Virtual European Broadband Seismic Network (VEBSN) consists currently of more then 300 stations. A new distributed data archive concept, the European Integrated Waveform Data Archive (EIDA), has been implemented in Europe connecting the larger European seismological waveform data. Global standards for earthquake parameter data (QuakeML) and tomography models have been developed and are being established. Web application technology has been and is being developed to make a jump start to the next generation data services. A NERIES data portal provides a number of services testing the potential capacities of new open-source web technologies. Data application tools like shakemaps, lossmaps, site response estimation and tools for data processing and visualisation are currently available, although some of these tools are still in an alpha version. A European tomography reference model will be discussed at a special workshop in June 2009. Shakemaps, coherent with the NEIC application, are implemented in, among others, Turkey, Italy, Romania, Switzerland, several countries. The comprehensive site response software is being distributed and used both inside and outside the project. NERIES organises several workshops inviting both consortium and non-consortium participants and covering a wide range of subjects: ‘Seismological observatory operation tools', ‘Tomography', ‘Ocean bottom observatories', 'Site response software training

  16. Shaft MisalignmentDetectionusing Stator Current Monitoring

    OpenAIRE

    Alok Kumar Verma, Somnath Sarangi and M.H. Kolekar

    2013-01-01

    This paper inspects the misaligned of shaft by usingdiagnostic medium such as current and vibration.Misalignments in machines can cause decrease inefficiency and in the long-run it may cause failurebecause of unnecessary vibration, stress on motor,bearings and short-circuiting in stator and rotorwindings.In this study, authors investigate the onsetof instability on a shaft mounted on journal bearings.Shaft displacement and stator current samples duringmachine run up under misaligned condition...

  17. Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.

    Science.gov (United States)

    Gharavi, Hamid; Hu, Bin

    2017-01-01

    With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.

  18. Beam-current monitor for FMIT

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Brousseau, A.T.

    1981-03-01

    The application of a single toroidal core, coupled with very simple circuitry, that results in the production of a simple instrument, and eliminates the problems inherent in the Faraday cup technique for the current measurements of the FMIT injector beam is described

  19. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    Science.gov (United States)

    Sipos, Roland; Govi, Giacomo; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-10-01

    The CMS experiment at CERN LHC has a dedicated infrastructure to handle the alignment and calibration data. This infrastructure is composed of several services, which take on various data management tasks required for the consumption of the non-event data (also called as condition data) in the experiment activities. The criticality of these tasks imposes tights requirements for the availability and the reliability of the services executing them. In this scope, a comprehensive monitoring and alarm generating system has been developed. The system has been implemented based on the Nagios open source industry standard for monitoring and alerting services, and monitors the database back-end, the hosting nodes and key heart-beat functionalities for all the services involved. This paper describes the design, implementation and operational experience with the monitoring system developed and deployed at CMS in 2016.

  20. Transport infrastructure monitoring: Testing of the NIODIM optical displacement monitoring system at the Sihlhochstrasse bridge in Zürich, Switzerland.

    Science.gov (United States)

    Hagene, J. K.

    2012-04-01

    A gound based optical displacement monitoring system, "NIODIM", is being developed by Norsk Elektro Optikk in the framework of the activities of the European project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), funded in the 7th Framework Programme (FP7/2007-2013). The optical displacement monitoring system has now participated in two real life field campaigns one in Switzerland and one in Italy. The test campaign in Switzerland during a week in May 2011 will be presented below. The NIODIM system is based on a camera part mounted on firm ground and this camera is imaging a reference point, normally a light emitting diode (LED) which is supposed to be mounted on an object susceptible to move or oscillate. A microprocessor based unit is processing the acquired images and is calculating the displacement. The Sihlhochstrasse bridge is placed on concrete pillars in the river Sihl in Zürich and the motorway is one of the entrance routes to the city. A site visit had been performed in advance and it had been decided to mount the camera part as well as the processing unit at the lower part of the pillar above the relatively dry riverbed. The reference point in form of a light emitting diode was to be mounted below the bridge deck. However, due to practical access limitations it was not possible to place the reference LED in the middle between pillar pairs, but the LED had to be placed closer to next pair of the pillars downstream the river thus increasing the distance and possibly reducing the potential displacement. A lower signal due to reduced sensitivity (length) and due to lower deflection (better support from the pillar) had to be expected. The system would be powered by a generator placed on the riverbed. Arriving at the river front the fist day of the field trials was a surprise to most the campaign members. Due to heavy rain the week before, and in particular up in the mountains, the water

  1. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    Science.gov (United States)

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.

  2. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    Science.gov (United States)

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-01

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events. PMID:26805832

  3. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure

    Directory of Open Access Journals (Sweden)

    Gianfranco Manes

    2016-01-01

    Full Text Available This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN architecture, is organised into sub-networks to be positioned in the plant’s critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  4. The Trauma Patient Tracking System: implementing a wireless monitoring infrastructure for emergency response.

    Science.gov (United States)

    Maltz, Jonathan; C Ng, Thomas; Li, Dustin; Wang, Jian; Wang, Kang; Bergeron, William; Martin, Ron; Budinger, Thomas

    2005-01-01

    In mass trauma situations, emergency personnel are challenged with the task of prioritizing the care of many injured victims. We propose a trauma patient tracking system (TPTS) where first-responders tag all patients with a wireless monitoring device that continuously reports the location of each patient. The system can be used not only to prioritize patient care, but also to determine the time taken for each patient to receive treatment. This is important in training emergency personnel and in identifying bottlenecks in the disaster response process. In situations where biochemical agents are involved, a TPTS may be employed to determine sites of cross-contamination. In order to track patient location in both outdoor and indoor environments, we employ both Global Positioning System (GPS) and Television/ Radio Frequency (TVRF) technologies. Each patient tag employs IEEE 802.11 (Wi-Fi)/TCP/IP networking to communicate with a central server via any available Wi-Fi basestation. A key component to increase TPTS fault-tolerance is a mobile Wi-Fi basestation that employs redundant Internet connectivity to ensure that tags at the disaster scene can send information to the central server even when local infrastructure is unavailable for use. We demonstrate the robustness of the system in tracking multiple patients in a simulated trauma situation in an urban environment.

  5. Realtime Gas Emission Monitoring at Hazardous Sites Using a Distributed Point-Source Sensing Infrastructure.

    Science.gov (United States)

    Manes, Gianfranco; Collodi, Giovanni; Gelpi, Leonardo; Fusco, Rosanna; Ricci, Giuseppe; Manes, Antonio; Passafiume, Marco

    2016-01-20

    This paper describes a distributed point-source monitoring platform for gas level and leakage detection in hazardous environments. The platform, based on a wireless sensor network (WSN) architecture, is organised into sub-networks to be positioned in the plant's critical areas; each sub-net includes a gateway unit wirelessly connected to the WSN nodes, hence providing an easily deployable, stand-alone infrastructure featuring a high degree of scalability and reconfigurability. Furthermore, the system provides automated calibration routines which can be accomplished by non-specialized maintenance operators without system reliability reduction issues. Internet connectivity is provided via TCP/IP over GPRS (Internet standard protocols over mobile networks) gateways at a one-minute sampling rate. Environmental and process data are forwarded to a remote server and made available to authenticated users through a user interface that provides data rendering in various formats and multi-sensor data fusion. The platform is able to provide real-time plant management with an effective; accurate tool for immediate warning in case of critical events.

  6. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    Science.gov (United States)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  7. Case studies: Application of SEA in provincial level expressway infrastructure network planning in China - Current existing problems

    International Nuclear Information System (INIS)

    Zhou Kaiyi; Sheate, William R.

    2011-01-01

    Since the Law of the People's Republic of China on Environmental Impact Assessment was enacted in 2003 and Huanfa 2004 No. 98 was released in 2004, Strategic Environmental Assessment (SEA) has been officially being implemented in the expressway infrastructure planning field in China. Through scrutinizing two SEA application cases of China's provincial level expressway infrastructure (PLEI) network plans, it is found that current SEA practice in expressway infrastructure planning field has a number of problems including: SEA practitioners do not fully understand the objective of SEA; its potential contributions to strategic planning and decision-making is extremely limited; the employed application procedure and prediction and assessment techniques are too simple to bring objective, unbiased and scientific results; and no alternative options are considered. All these problems directly lead to poor quality SEA and consequently weaken SEA's effectiveness.

  8. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  9. The current status of radioactive monitoring gauges in UIC

    International Nuclear Information System (INIS)

    Ji Changsong

    1993-01-01

    The author introduces the characteristics of representative products for current environment radiation monitoring and measurement instruments of radiation nuclide content in UIC including aerosol detection equipment and multi function radiation dosemeters

  10. Geodetic Infrastructure in the Ibiza and Barcelona Harbours for Sea Level Monitoring

    Science.gov (United States)

    Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Perez, B.; Pros, F.

    2013-12-01

    The presentation is directed to the description of the actual situation and relevant information of the geodetic infrastructure of Ibiza and Barcelona sites for sea level determination and contribution to regional sea level rise. Time series are being analysed for mean sea level variations www.puertos.es. .In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica s.l. near an acoustic tide gauge. Puertos del Estado installed in 2007 a MIROS radar tide gauge and the Barcelona Harbour Authority a GPS referente station in the roof of the new Control Tower situated in the Energy Pier. The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land. The measured settlement rate is about 1cm/year that may be could mask the values registered by the tide gauge. A description of the actual infrastructure at Ibiza harbour at Marina de Botafoch, is presented and its applications to sea level monitoring and altimeter calibration in support of the main CGPS at Ibiza harbour. It is described the geometrical precision levelling made in June 2013 between the radar tide gauge and the GPS station. In particular, the CGPS located at Ibiza harbour is essential for its application to the marine campaign Baleares 2013, near Ibiza island. The main objective is to determine the altimeter bias for Jason-2, about 9:09 UTC September 15, 2013, and Saral/AltiKa, about 05:30 UTC September 16, UTC. These activities has been received funding of the Ministerio de Ciencia e Innovacion under Spanish

  11. Railway infrastructure monitoring with COSMO/SkyMed imagery and multi-temporal SAR interferometry

    Science.gov (United States)

    Chiaradia, M.; Nutricato, R.; Nitti, D. O.; Bovenga, F.; Guerriero, L.

    2012-12-01

    For all the European Countries, the rail network represents a key critical infrastructure, deserving protection in view of its continuous structure spread over the whole territory, of the high number of European citizens using it for personal and professional reasons, and of the large volume of freight moving through it. Railway system traverses a wide variety of terrains and encounters a range of geo-technical conditions. The interaction of these factors together with climatic and seismic forcing, may produce ground instabilities that impact on the safety and efficiency of rail operations. In such context, a particular interest is directed to the development of technologies regarding both the prevention of mishaps of infrastructures and the fast recovery of their normal working conditions after the occurrence of accidents (disaster managing). Both these issues are of strategic interest for EU Countries, and in particular for Italy, since, more than other countries, it is characterized by a geo-morphological and hydro-geological structure complexity that increases the risk of natural catastrophes due to landslides, overflowings and floods. The present study has been carried out in the framework of a scientific project aimed at producing a diagnostic system, capable to foresee and monitor landslide events along railway networks by integrating in situ data, detected from on board sophisticated innovative measuring systems, with Earth Observation (EO) techniques. Particular importance is devoted to the use of advanced SAR interferometry, thanks to their all-weather, day-night capability to detect and measure with sub-centimeter accuracy ground surface displacements that, in such context, can occur before a landslide event or after that movements . Special attention is directed to the use of SAR images acquired by COSMO/SkyMed (ASI) constellation capable to achieve very high spatial resolution and very short revisit and response time. In this context, a stack of 57 CSK

  12. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    Science.gov (United States)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata

  13. The development of beam current monitors in the APS

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The Advanced Photon Source (APS) is a third-generation 7-GeV synchrotron radiation source. The precision measurement of beam current is a challenging task in high energy accelerators, such as the APS, with a wide range of beam parameters and complicated noise, radiation, and thermal environments. The beam pulses in the APS injector and storage ring have charge ranging from 50pC to 25nC with pulse durations varying from 30ps to 30ns. A total of nine non- intercepting beam current monitors have been installed in the APS facility (excluding those in the linac) for general current measurement. In addition, several independent current monitors with specially designed redundant interlock electronics are installed for personnel safety and machine protection. This paper documents the design and development of current monitors in the APS,. discusses the commissioning experience in the past year, and presents the results of recent operations

  14. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    Science.gov (United States)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  15. Understanding the Effects of Infrastructure Changes on Subpopulations: Survey of Current Methods, Models, and Tools

    Science.gov (United States)

    2016-04-01

    storage, banks Mosque, wedding halls, popular restaurants Roads, bridges, electric lines, gabion walls, dams Cell, radio, TV towers, print...requirements borne of past or present health, safety, social, and organizational concerns, as well as by the limitations of existing infrastructure

  16. Promising Data for Public Empowerment: The Making of Data Culture and Water Monitoring Infrastructures in the Marcellus Shale Gas Rush

    Science.gov (United States)

    Jalbert, Kirk

    A recent wave of advanced technologies for collecting and interpreting data offer new opportunities for laypeople to contribute to environmental monitoring science. This dissertation examines the conditions in which building knowledge infrastructures and embracing data "cultures" empowers and disempowers communities to challenge polluting industries. The processes and technologies of data cultures give people new capacities to understand their world, and to formulate powerful scientific arguments. However, data cultures also make many aspects of social life invisible, and elevate quantitative objective analysis over situated, subjective observation. This study finds that data cultures can empower communities when concerned citizens are equal contributors to research partnerships; ones that enable them to advocate for more nuanced data cultures permitting of structural critiques of status-quo environmental governance. These arguments are developed through an ethnographic study of participatory watershed monitoring projects that seek to document the impacts of shale gas extraction in Pennsylvania, New York, and West Virginia. Energy companies are drilling for natural gas using highly controversial methods of extraction known as hydraulic fracturing. Growing evidence suggests that nearby watersheds can be impacted by a myriad of extraction related problems including seepage from damaged gas well casing, improper waste disposal, trucking accidents, and the underground migration of hydraulic fracking fluids. In response to these risks, numerous organizations are coordinating and carrying out participatory water monitoring efforts. All of these projects embrace data culture in different ways. Each monitoring project has furthermore constructed its own unique infrastructure to support the sharing, aggregation, and analysis of environmental data. Differences in data culture investments and infrastructure building make some projects more effective than others in empowering

  17. A Decision Matrix and Monitoring based Framework for Infrastructure Performance Enhancement in A Cloud based Environment

    OpenAIRE

    Alam, Mansaf; Shakil, Kashish Ara

    2014-01-01

    Cloud environment is very different from traditional computing environment and therefore tracking the performance of cloud leverages additional requirements. The movement of data in cloud is very fast. Hence, it requires that resources and infrastructure available at disposal must be equally competent. Infrastructure level performance in cloud involves the performance of servers, network and storage which act as the heart and soul for driving the entire cloud business. Thus a constant improve...

  18. CURRENT TENDENCIES REGARDING THE TOURISTIC INFRASTRUCTURE OF DRĂGOIASA-TULGHEŞ DEPRESSION ALIGNMENT

    Directory of Open Access Journals (Sweden)

    George-Bogdan TOFAN

    2013-06-01

    Full Text Available The study at hand deals with a relatively small region (790 km2 , that, from an administrative point of view, encapsulates the territory of Drăgoiasa, Păltiniş, Glodu and Catrinari villages, belonging to Panaci Commune, Suceava County, and Bilbor commune, Secu, a locality of the City of TopliŃa, the City of Borsec, and Corbu and Tulgheş communes, all situated in the northern part of Harghita County. The touristic infrastructure contains the ensemble of therapeutic, recreational, food and transport elements, whose purpose is to satisfy touristic demand. The aim of this study is to present aspects regarding the main touristic infrastructures, mainly concentrated in Borsec, the oldest of the Eastern Carpathians, which has seen a dramatic decrease in touristic activity, in the last two decades. The accommodation infrastructure mostly remained at the same level as during the interwar years by exclusively maintaining the villa system (until 2001, which only recently went through a restoration process. This led to fewer and fewer demands. This status quo was further exacerbated by precarious connections, which involve transbordations.

  19. Developing an open source-based spatial data infrastructure for integrated monitoring of mining areas

    Science.gov (United States)

    Lahn, Florian; Knoth, Christian; Prinz, Torsten; Pebesma, Edzer

    2014-05-01

    In all phases of mining campaigns, comprehensive spatial information is an essential requirement in order to ensure economically efficient but also safe mining activities as well as to reduce environmental impacts. Earth observation data acquired from various sources like remote sensing or ground measurements is important e.g. for the exploration of mineral deposits, the monitoring of mining induced impacts on vegetation or the detection of ground subsidence. The GMES4Mining project aims at exploring new remote sensing techniques and developing analysis methods on various types of sensor data to provide comprehensive spatial information during mining campaigns (BENECKE et al. 2013). One important task in this project is the integration of the data gathered (e.g. hyperspectral images, spaceborne radar data and ground measurements) as well as results of the developed analysis methods within a web-accessible data source based on open source software. The main challenges here are to provide various types and formats of data from different sensors and to enable access to analysis and processing techniques without particular software or licensing requirements for users. Furthermore the high volume of the involved data (especially hyperspectral remote sensing images) makes data transfer a major issue in this use case. To engage these problems a spatial data infrastructure (SDI) including a web portal as user frontend is being developed which allows users to access not only the data but also several analysis methods. The Geoserver software is used for publishing the data, which is then accessed and visualized in a JavaScript-based web portal. In order to perform descriptive statistics and some straightforward image processing techniques on the raster data (e.g. band arithmetic or principal component analysis) the statistics software R is implemented on a server and connected via Rserve. The analysis is controlled and executed directly by the user through the web portal and

  20. rf beam-current, -phase, and -position monitors

    International Nuclear Information System (INIS)

    Young, L.

    1984-01-01

    A prototype rf beam monitor has been tested on the Racetrack Microtron's (RTM) 100 kV injector beam line at the National Bureau of Standards (NBS). This beam monitor is capable of measuring the current, the relative phase, and the position of the beam. The beam is bunched at 2380 MHz for acceleration by the linac in the injector beam line. This train of beam bunches passing through the beam monitor cavities excites the cavities at this resonance frequency of 2380 MHz. Probes in the cavities couple some of the beam-excited rf power out of the cavities. This rf power can be amplified if necessary and then analyzed by a double balanced mixer (DBM). The DBM can also be used as a phase detector. The effective shunt impedance of the cavities was measured with the CW beam. For the position monitor cavity, the shunt impedance is proportional to the displacement from the axis. The measured response of the prototype rf beam current monitor setup is a linear function of beam current. Response of the rf beam-position monitor is also shown

  1. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  2. Seismic array processing and computational infrastructure for improved monitoring of Alaskan and Aleutian seismicity and volcanoes

    Science.gov (United States)

    Lindquist, Kent Gordon

    We constructed a near-real-time system, called Iceworm, to automate seismic data collection, processing, storage, and distribution at the Alaska Earthquake Information Center (AEIC). Phase-picking, phase association, and interprocess communication components come from Earthworm (U.S. Geological Survey). A new generic, internal format for digital data supports unified handling of data from diverse sources. A new infrastructure for applying processing algorithms to near-real-time data streams supports automated information extraction from seismic wavefields. Integration of Datascope (U. of Colorado) provides relational database management of all automated measurements, parametric information for located hypocenters, and waveform data from Iceworm. Data from 1997 yield 329 earthquakes located by both Iceworm and the AEIC. Of these, 203 have location residuals under 22 km, sufficient for hazard response. Regionalized inversions for local magnitude in Alaska yield Msb{L} calibration curves (logAsb0) that differ from the Californian Richter magnitude. The new curve is 0.2\\ Msb{L} units more attenuative than the Californian curve at 400 km for earthquakes north of the Denali fault. South of the fault, and for a region north of Cook Inlet, the difference is 0.4\\ Msb{L}. A curve for deep events differs by 0.6\\ Msb{L} at 650 km. We expand geographic coverage of Alaskan regional seismic monitoring to the Aleutians, the Bering Sea, and the entire Arctic by initiating the processing of four short-period, Alaskan seismic arrays. To show the array stations' sensitivity, we detect and locate two microearthquakes that were missed by the AEIC. An empirical study of the location sensitivity of the arrays predicts improvements over the Alaskan regional network that are shown as map-view contour plots. We verify these predictions by detecting an Msb{L} 3.2 event near Unimak Island with one array. The detection and location of four representative earthquakes illustrates the expansion

  3. Development of a Data Acquisition Program for the Purpose of Monitoring Processing Statistics Throughout the BaBar Online Computing Infrastructure's Farm Machines

    Energy Technology Data Exchange (ETDEWEB)

    Stonaha, P.

    2004-09-03

    A current shortcoming of the BaBar monitoring system is the lack of systematic gathering, archiving, and access to the running statistics of the BaBar Online Computing Infrastructure's farm machines. Using C, a program has been written to gather the raw data of each machine's running statistics and compute various rates and percentages that can be used for system monitoring. These rates and percentages then can be stored in an EPICS database for graphing, archiving, and future access. Graphical outputs show the reception of the data into the EPICS database. The C program can read if the data are 32- or 64-bit and correct for overflows. This program is not exclusive to BaBar and can be easily modified for any system.

  4. INFRASTRUCTURE OF INNOVATIVE ENTREPRENEURSHIP IN RUSSIA IN SCIENTIFIC AND EDUCATIONAL SPHERES: ASSESSMENT OF ITS CURRENT STATE

    Directory of Open Access Journals (Sweden)

    Cheremisina T. P.

    2014-09-01

    Full Text Available In the midst of the global financial crisis (2007-2009 World Economic Forum has recognized Russia's economy as being on the brink of innovative stage of development. Only in 2010, the negative impact of the crisis has manifested itself with a sharp drop in competitiveness of economy, especially in the areas where the innovative potential of the country was being formed. The domain of science and education form the infrastructure basis of innovative entrepreneurship, and in Russia, until recently, levels of these, though falling, were still recognized as high. Therefore, it is very important today to raise and strengthen the competitiveness of science and professional education, i.e. the sphere wherein the human capital necessary for innovation and for stimulation of innovative entrepreneurship, is formed. In 2010-2012, the Government of the Russian Federation implemented a program to stimulate innovative entrepreneurship based on accelerated infrastructure development in the spheres of science and education, and in 2013 began to reform science. Within the scope of this study are the 2007-2013 changes in the infrastructure of innovative entrepreneurship in scientific and educational spheres and their evaluation. The purpose of the study is to determine the most urgent and pressing issues requiring priority innovative solutions to increase the country's innovation potential. For evaluation, the methodology and tools used by the Global Competitiveness Index IEF are used. The choice of this methodology is justified not only by the close relationship between the respective competitiveness of the economies and their potentials for innovation, but also due to public confidence in this rating as a useful tool for analysts to identify the weaknesses in national competitiveness and to identify priority areas for action to improve it and to accelerate economic growth. The conclusions of the evaluation conducted in this study relate to inertia in scientific

  5. What threat do turbidity currents and submarine landslides pose to submarine telecommunications cable infrastructure?

    Science.gov (United States)

    Clare, Michael; Pope, Edward; Talling, Peter; Hunt, James; Carter, Lionel

    2016-04-01

    The global economy relies on uninterrupted usage of a network of telecommunication cables on the seafloor. These submarine cables carry ~99% of all trans-oceanic digital data and voice communications traffic worldwide, as they have far greater bandwidth than satellites. Over 9 million SWIFT banks transfers alone were made using these cables in 2004, totalling 7.4 trillion of transactions per day between 208 countries, which grew to 15 million SWIFT bank transactions last year. We outline the challenge of why, how often, and where seafloor cables are broken by natural causes; primarily subsea landslides and sediment flows (turbidity currents and also debris flows and hyperpycnal flows). These slides and flows can be very destructive. As an example, a sediment flow in 1929 travelled up to 19 m/s and broke 11 cables in the NE Atlantic, running out for ~800 km to the abyssal ocean. The 2006 Pingtung earthquake triggered a sediment flow that broke 22 cables offshore Taiwan over a distance of 450 km. Here, we present initial results from the first statistical analysis of a global database of cable breaks and causes. We first investigate the controls on frequency of submarine cable breaks in different environmental and geological settings worldwide. We assess which types of earthquake pose a significant threat to submarine cable networks. Meteorological events, such as hurricanes and typhoons, pose a significant threat to submarine cable networks, so we also discuss the potential impacts of future climate change on the frequency of such hazards. We then go on to ask what are the physical impacts of submarine sediment flows on submerged cables? A striking observation from past cable breaks is sometimes cables remain unbroken, whilst adjacent cables are severed (and record powerful flows travelling at up to 6 m/s). Why are some cables broken, but neighbouring cables remain intact? We provide some explanations for this question, and outline the need for future in

  6. A beam position monitor for low current dc beams

    International Nuclear Information System (INIS)

    Adderley, P.; Barry, W.; Heefner, J.; Kloeppel, P.; Rossmanith, R.; Wise, M.; Jachim, S.

    1989-01-01

    The 4 GeV recirculating linac, CEBAF, if presently under construction and will produce a CW beam with average current between.1 and 200 μA. In order to measure beam position, the beam current will be amplitude modulated at a frequency of 10 MHz. The modulation is detected by an inductive loop type monitor with electronics sensitive only to the modulation frequency. The first test with beam from the CEBAF injector indicate that beam position can be measured with an accuracy of .1 mm at a modulated beam current of 1 μA. 1 ref., 6 figs., 1 tab

  7. Superconducting quantum interference monitor of charged particle beam current

    International Nuclear Information System (INIS)

    Gertsev, K.F.; Mikheev, M.S.

    1981-01-01

    Description and test results of the monitor of charged particle beam current on the base of the high-frequency superconducting quantum interference detector with lead slotted shield are presented. The toroidal superconducting coil, which covers the measured beam has 16 turns wound by the lead belt of 7 mm width with 0.5 mm gaps between the turns. A superconducting low-coupling monitor having two holes and point oxidated niobium contact has been used in the mode of quanta counting of magnetic flux. The lead point shield was 2 mm thick and it had 30 mm aperture. The coefficient of background shielding within 0-200 Hz frequency range constituted more than 10 8 . The threshold current resolution of the monitor had the value less than 01 μA √Hz. The suggested monitor requires helium cooling. The proposed design of the monitor is applicable for mounting on the vacuum chamber when it is surrounded by helium conductor. In other cases mounting of low-powerful autonomic system or cryostat of helium storage up to several weeks is possible [ru

  8. Current issues and regulatory infrastructure aspects on radioactive waste management in Romania

    International Nuclear Information System (INIS)

    Vieru, G.

    2002-01-01

    The nuclear facilities that exist throughout Romania perform a broad range of missions from research to nuclear materials production to radioactive waste management, and to deactivation and decommissioning. As a consequence, there is a broad array of external regulations and internal requirements that potentially applies to a facility or activity. Therefore, the management of radioactive waste occurs within a larger context of managing hazards, both radiological and industrial, at these facilities. At the same time, concern for upgrading existing facilities used for radioactive waste management, as called for in Article 12, fits into a larger framework of safety management. The primary objective of the Romanian Nuclear Regulatory Body-CNCAN on legislation and regulatory infrastructure for the safety of radioactive waste management is to protect human health and the environment now and in the future. It is unanimously recognized that a well developed regulated system for the management and disposal of radioactive waste is a prerequisite for both public and market acceptance of nuclear energy. It is to underline that the continuing internationalization of the nuclear industry following terrorist attacks of 11 September 2001 stresses the need for national legislation and regulatory infrastructure to be based on internationally endorsed principles and safety standards. The paper presents some aspects of the Romanian experience on the national legislative and regulatory system related to the followings aspects of the safety aspects of radioactive waste management: definition of responsibilities; nuclear and radiation safety requirements; siting and licensing procedures; regulatory functions; international co-operation and coherence on strategies and criteria in the area of safety of radioactive waste management. Finally, prescriptive and goal oriented national as well international regimes in the field of the safety of radioactive waste management are briefly commented

  9. Extending the Advanced Data Extraction Infrastructure : Research on HTML5 usage, server monitoring tool, support for multidimensional datasets

    OpenAIRE

    Hytönen, Riku

    2012-01-01

    The Advanced Data Extraction Infrastructure (ADEI) project functions as a bridge between the control systems that collect the measurements of various subsystems controlling the flow of data acquisition from experiments, and scientists analysing the flow of experiments and evaluating the collected data. The project is still in development and new features are added constantly. During the thesis the current version of the ADEI was extended by implementing a new data reader module to deal wi...

  10. REVIEW OF CURRENT PRACTICE IN CHARACTERIZATION AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    M.A.Ebadian, Ph.D.

    2001-01-01

    Characterization and monitoring are important parts of environmental remediation of contaminated sites by the Department of Energy--Office of Environmental Management (DOE-EM). The actual remediation process often cannot begin or even be planned until characterization is complete. Monitoring is essential to verify the progress of remediation and of the waste stream. However, some contaminated sites are difficult, costly, or have a high exposure risk to personnel to characterize or monitor using the baseline technology or current practice. Therefore, development of new characterization and monitoring technologies is time-critical to remediate these sites. The main task of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to develop and deploy innovative characterization and monitoring technologies that improve performance and reduce personnel exposure, cost, and detection limits. However, to evaluate different proposals for new technologies to decide which ones to develop or deploy, it is necessary to compare their cost and performance to the baseline technology. The goal of this project is to facilitate the direct comparison of new technologies to the baseline technology by documenting the current practices for site characterization and monitoring at DOE sites and by presenting the information in an easy-to-use, concise database. The database will assist the CMST-CP and others in evaluating or designing new technologies by identifying the baseline technologies and describing their performance and cost. The purpose of this document is to report on the completion of this project and to describe the database. Section 2.0 describes the data assessment methodology. Section 3.0 presents the database and serves as a user manual. Section 4.0 lists the references used for each baseline technology in the database. The full references can be found in the Appendix.

  11. REVIEW OF CURRENT PRACTICE IN CHARACTERIZATION AND MONITORING

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    2001-01-01

    Characterization and monitoring are important parts of environmental remediation of contaminated sites by the Department of Energy--Office of Environmental Management (DOE-EM). The actual remediation process often cannot begin or even be planned until characterization is complete. Monitoring is essential to verify the progress of remediation and of the waste stream. However, some contaminated sites are difficult, costly, or have a high exposure risk to personnel to characterize or monitor using the baseline technology or current practice. Therefore, development of new characterization and monitoring technologies is time-critical to remediate these sites. The main task of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to develop and deploy innovative characterization and monitoring technologies that improve performance and reduce personnel exposure, cost, and detection limits. However, to evaluate different proposals for new technologies to decide which ones to develop or deploy, it is necessary to compare their cost and performance to the baseline technology. The goal of this project is to facilitate the direct comparison of new technologies to the baseline technology by documenting the current practices for site characterization and monitoring at DOE sites and by presenting the information in an easy-to-use, concise database. The database will assist the CMST-CP and others in evaluating or designing new technologies by identifying the baseline technologies and describing their performance and cost. The purpose of this document is to report on the completion of this project and to describe the database. Section 2.0 describes the data assessment methodology. Section 3.0 presents the database and serves as a user manual. Section 4.0 lists the references used for each baseline technology in the database. The full references can be found in the Appendix

  12. New analysis and performance of a wall-current monitor

    Energy Technology Data Exchange (ETDEWEB)

    Suwada, T.; Urano, T.; Kobayashi, H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Tamiya, K.; Asami, A. [Naruto University of Education, Takashima, Naruto-cho, Naruto-shi 772 (Japan)

    1997-09-01

    A new wall-current monitor has been developed in order to reinforce the beam-monitoring system in the PF 2.5-GeV linac for the KEK B-Factory. A prototype monitor was tested for its performance and characteristics. The experimental results in terms of both bench tests and beam tests by single-bunch electron beams were analyzed on the basis of equivalent-circuit models. The frequency response of the monitor agreed well with a lumped equivalent-circuit model for both time- and frequency-domain measurements. The position dependence and its frequency characteristics of the monitor also agreed well with a distributed equivalent-circuit model for both time- and frequency-domain measurements. The rise time of the monitor was about 3 ns, which indicated a poor response for short-pulse beams (<1) ns. The reason could be attributed to the stray inductance of the ceramic solid resistor and not very good frequency response of the ferrite core. (orig.).

  13. New analysis and performance of a wall-current monitor

    International Nuclear Information System (INIS)

    Suwada, T.; Urano, T.; Kobayashi, H.; Tamiya, K.; Asami, A.

    1997-01-01

    A new wall-current monitor has been developed in order to reinforce the beam-monitoring system in the PF 2.5-GeV linac for the KEK B-Factory. A prototype monitor was tested for its performance and characteristics. The experimental results in terms of both bench tests and beam tests by single-bunch electron beams were analyzed on the basis of equivalent-circuit models. The frequency response of the monitor agreed well with a lumped equivalent-circuit model for both time- and frequency-domain measurements. The position dependence and its frequency characteristics of the monitor also agreed well with a distributed equivalent-circuit model for both time- and frequency-domain measurements. The rise time of the monitor was about 3 ns, which indicated a poor response for short-pulse beams (<1) ns. The reason could be attributed to the stray inductance of the ceramic solid resistor and not very good frequency response of the ferrite core. (orig.)

  14. A communication and information technology infrastructure for real time monitoring and management of type 1 diabetes patients.

    Science.gov (United States)

    Skevofilakas, Marios; Mougiakakou, Stavroula G; Zarkogianni, Konstantia; Aslanoglou, Erika; Pavlopoulos, Sotiris A; Vazeou, Andriani; Bartsocas, Christos S; Nikita, Konstantina S

    2007-01-01

    This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.

  15. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  16. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    Science.gov (United States)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this

  17. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  18. A Labview Based Leakage Current Monitoring System For HV Insulators

    Directory of Open Access Journals (Sweden)

    N. Mavrikakis

    2015-10-01

    Full Text Available In this paper, a Labview based leakage current monitoring system for High Voltage insulators is described. The system uses a general purpose DAQ system with the addition of different current sensors. The DAQ system consists of a chassis and hot-swappable modules. Through the proper design of current sensors, low cost modules operating with a suitable input range can be employed. Fully customizable software can be developed using Labview, allowing on-demand changes and incorporation of upgrades. Such a system provides a low cost alternative to specially designed equipment with the added advantage of maximum flexibility. Further, it can be modified to satisfy the specifications (technical and economical set under different scenarios. In fact, the system described in this paper has already been installed in the HV Lab of the TEI of Crete whereas a variation of it is currently in use in TALOS High Voltage Test Station.

  19. More green infrastructure is required to maintain ecosystem services under current trends in land-use change in Europe.

    Science.gov (United States)

    Maes, Joachim; Barbosa, Ana; Baranzelli, Claudia; Zulian, Grazia; Batista E Silva, Filipe; Vandecasteele, Ine; Hiederer, Roland; Liquete, Camino; Paracchini, Maria Luisa; Mubareka, Sarah; Jacobs-Crisioni, Chris; Castillo, Carolina Perpiña; Lavalle, Carlo

    Green infrastructure (GI), a network of nature, semi-natural areas and green space, delivers essential ecosystem services which underpin human well-being and quality of life. Maintaining ecosystem services through the development of GI is therefore increasingly recognized by policies as a strategy to cope with potentially changing conditions in the future. This paper assessed how current trends of land-use change have an impact on the aggregated provision of eight ecosystem services at the regional scale of the European Union, measured by the Total Ecosystem Services Index (TESI8). Moreover, the paper reports how further implementation of GI across Europe can help maintain ecosystem services at baseline levels. Current demographic, economic and agricultural trends, which affect land use, were derived from the so called Reference Scenario. This scenario is established by the European Commission to assess the impact of energy and climate policy up to 2050. Under the Reference Scenario, economic growth, coupled with the total population, stimulates increasing urban and industrial expansion. TESI8 is expected to decrease across Europe between 0 and 5 % by 2020 and between 10 and 15 % by 2050 relative to the base year 2010. Based on regression analysis, we estimated that every additional percent increase of the proportion of artificial land needs to be compensated with an increase of 2.2 % of land that qualifies as green infrastructure in order to maintain ecosystem services at 2010 levels.

  20. Current status of the infrastructure and characteristics of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Huh, Seung Jae

    2007-01-01

    An analysis of radiotherapy infrastructure in Korea was performed in 2006 to collect data on treatment devices, the work force and new patients for future development plans. The survey included radiotherapy centers, their major equipment and personnel. The centers were categorized into four levels: level 0 (stand-alone teletherapy units); level 1 (teletherapy, brachytherapy, treatment planning system, and at least the part-time service of a medical physicist); level 2 (level 1 plus individual customized radiotherapy block and full-time medical physicist); and level 3 [level 2 plus intensity-modulated radiation therapy (IMRT), intra-operative radiation therapy or stereotactic radiotherapy]. A total of 61 facilities delivered radiation therapy with 104 megavoltage devices, which included 96 linear accelerators, two cobalt 60 units, three Tomotherapy, two CyberKnife units and one proton accelerator. There were 28789 new radiotherapy patients in 2004. Personnel included 132 radiation oncologists, 50 radiation oncology residents, 64 physicists, 130 nurses and 369 radiation therapy technologists. Thirty-two percent (20 facilities) used a CT-simulator, 66% (40) used a positron emission tomography (PET) or PET-CT scanner, and 35% (22) had the capacity to implement IMRT. Centers were also divided into four levels: 41% were included in level 3, 31% in level 2, 25% in level 1 and 3% in level 0. There is a shortage of human resources. The distribution of megavoltage units per million inhabitants over the country was inadequate; geographic disparities were noted. Furthermore, the necessity of quality assurance for recent high-technology radiation therapy is increasing. (author)

  1. Current deflection NDE for pipeline inspection and monitoring

    Science.gov (United States)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  2. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chen, Liangzhe [ORNL; Duan, Sisi [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun (Arjun) [ORNL; Prakash, B. Aditya [Virginia Tech, Blacksburg, VA

    2016-01-01

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here a novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.

  3. Stepping up Information Infrastructures and Statistical Reporting: Monitoring the German Excellence Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, A.

    2016-07-01

    The Excellence Initiative has not only been the most prominent funding scheme in German research policy in recent years, but has also had important side effects on research management. This paper argues that the Excellence Initiative was indeed a “boost” for improving the data infrastructure and statistical reporting of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). The learning effects are now transferred to the line business and serve as a good starting point for the reporting on a potential third phase of the Excellence Initiative. (Author)

  4. Condition monitoring of machinery using motor current signature analysis

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs

  5. Vulnerability assessment of critical infrastructure : activity 2 progress report : information of SCADA systems and other security monitoring systems used in oil and gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2007-12-15

    Many pipelines are located in remote regions and subjected to harsh environmental conditions. Damage to pipelines can have significant economic and environmental impacts. This paper discussed the use of supervisory control and data acquisition (SCADA) systems to monitor and control oil and gas pipeline infrastructure. SCADA systems are a real time, distributed computerized system with an intelligent capability for condition identification and fault diagnosis. SCADA systems can be used to capture thousands of miles of pipeline system process data and distribute it to pipeline operators, whose work stations are networked with the SCADA central host computer. SCADA architectures include monolithic, distributed, and networked systems that can be distributed across wide area networks (WANs). SCADA security strategies must be implemented to ensure corporate network security. Case studies of SCADA systems currently used by oil and gas operators in Alberta were also presented. 15 refs., 1 fig.

  6. Research Activity and Infrastructure of Korea Polar Research Institute: Current and Future Perspectives

    Science.gov (United States)

    Jin, D.; Kim, S.; Lee, H.

    2011-12-01

    The Korea Polar Research Institute (KOPRI) opened the Antarctic King Sejong research station in 1988 at the King George Island off the Antarctic Peninsula and started the polar research mainly in the fields of biology and geology with some atmosphere observations. To extend the view of polar research, the KOPRI opened the Arctic Dasan research station at Ny-Alesund, Spitsbergen Island in 2002 and has studied the rapid climate change diagnostics and some microbiological observation. The KOPRI is now expanding the Arctic research into Alaska and Canada under the international collaboration, and planning to outreach to Russia to monitor the change in permafrost and to understand its impact on global warming. To deepen the views of polar research including the ice covered oceans in both poles, the ice-breaking vessel, the ARAON of about 7000 ton, was launched recently and successfully finished the Arctic and Antarctic cruises for research activity on all perspectives of ocean sciences and support for the King Sejong station. The KOPRI is now building another Antarctic research station, called Jangbogo, at the Terra Nova Bay off the Ross Sea and plan to open the station at the March of 2014. By building the second Antarctic station together with the ARAON, the KOPRI will focus its research on understanding the rapid climate change in west Antarctica such as to monitor the calving of the Larsen Ice shelf, rapid melting of Pine Island Glacier, and upper atmosphere, to study the sea ice and ecosystem change in the Amundsen Sea and the role of the southern annular mode in the west Antarctic warming, upper atmosphere and climate change, to reconstruct paleoclimate records from ice and sediment cores.

  7. Mesh Network Design for Smart Charging Infrastructure and Electric Vehicle Remote Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, Aleksey; Chung, Ching-Yen; Chu, Chi-Cheng; Gadh, Rajit

    2013-10-14

    Plug-In Electric Vehicle (PEV) charging today happens with little knowledge of the state of the vehicle being charged. In order to implement smart charging algorithms and other capabilities of the future smart grid, provisions for remote PEV monitoring will have to be developed and tested. The UCLA Smart-grid Energy Research Center (SMERC) is working on a smart charging research platform that includes data acquired in real time from PEVs being charged in order to investigate smart charging algorithms and demand response (DR) strategies for PEVs in large parking garage settings. The system outlined in this work allows PEVs to be remotely monitored throughout the charging process by a smart-charging controller communicating through a mesh network of charging stations and in-vehicle monitoring devices. The approach may be used for Vehicle to Grid (V2G) communication as well as PEV monitoring.

  8. Beam position dependence of a wall-current monitor

    International Nuclear Information System (INIS)

    Tamiya, K.; Asami, A.; Suwada, T.; Urano, T.; Kobayashi, H.

    1995-01-01

    It was pointed out recently that there exists an appreciable beam position dependence in the wall-current monitor widely used in electron accelerators. Detailed study of this dependence is performed on a test bench varying the pulse width and the frequency of the input signal simulating the beam. The results of experiments show that when the pulse width becomes shorter more appreciable becomes the dependence, and it approaches to that of calculated from the method of images. A unified analysis is under way. (author)

  9. Transport infrastructure monitoring: A ground based optical displacement monitoring system, field tests on a bridge, the Musmeci's bridge in Potenza, Italy.

    Science.gov (United States)

    Hagene, J. K.

    2012-04-01

    A gound based optical displacement monitoring system, "NIODIM", is being developed by Norsk Elektro Optikk in the framework of the activities of the European project "Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing" (ISTIMES), funded in the 7th Framework Programme (FP7/2007-2013). The optical displacement monitoring system has now participated in two real life field campaigns one in Switzerland and one in Italy. The latter, the tests in Potenza, Italy, will be presented in the following. The NIODIM system has undergone some development during the last year to adopt it for use in a somewhat higher frequency domain by changing the camera sensor part. This to make it more useful for monitoring of structures with oscillation frequencies tens of Hz. The original system was intended to a large extent to monitor land slides, quick clay and rock slides and similar phenomena typically having a relatively slow time response. The system has been significantly speeded up from the original 12 Hz. Current tests have been performed at a frame rate of 64 Hz i.e., the camera part and data processing unit have been running on 64Hz. In connection with the tests in Italy the data processing has been upgraded to include sub-pixel resolution i.e., the measurement results are no longer limited by pixel borders or single pixels. The main part of the NIODIM system is a camera capable of operating at a sufficiently high frame rate. This camera will typically be mounted on firm ground and will depict and monitor a reference point, typically a light emitting diode, LED, which will be mounted on the object susceptible to move. A processing unit will acquire the images from the camera part and find the position of the LED in the image and compare that to threshold values and if required raise a warning or an alarm. The NIODIM system can either be a standalone system or be an integrated part of the overall ISTIMES system, the ISTIMES system

  10. Fast Beam Current Change Monitor for the LHC

    CERN Document Server

    Kral, Jan

    Stringent demands on the LHC safety and protection systems require improved methods of detecting fast beam losses. The Fast Beam Current Transformer (FBCT) is a measurement instrument, providing information about bunch-to-bunch intensity of the accelerated beam. This thesis describes the development of a new protection system based on the FBCT signal measurements. This system, the Fast Beam Current Change Monitor (FBCCM), measures the FBCT signal in a narrow frequency band and computes time derivation of the beam signal magnitude. This derivation is proportional to the beam losses. When the losses exceed a certain level, the FBCCM requests a beam dump in order to protect the LHC. The LHC protection will be ensured by four FBCCMs which will be installed into the LHC in July 2014. Six FBCCMs have been already constructed and their characteristics were measured with satisfactory results. The FBCCMs were tested by a laboratory simulation of the real LHC environment.

  11. Hogthrob: Towards a Sensor Network Infrastructure for Sow Monitoring (wireless sensor network special day)

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Leopold, Martin; Madsen, K

    2006-01-01

    We aim at developing a next-generation system for sow monitoring. Today, farmers use RFID based solutions with an ear tag on the sows and a reader located inside the feeding station. This does not allow the farmers to locate a sow in a large pen, or to monitor the life cycle of the sow (detect he...... period, detect injury...). Our goal is to explore the design of a sensor network that supports such functionalities and meets the constraints of this industry in terms of price, energy consumption and availability....

  12. Current Monitoring System for ITER Like ICRH Antenna

    International Nuclear Information System (INIS)

    Argouarch, A.

    2006-01-01

    On TS antennas, the power transfer optimization from ICRH antenna to Plasma load is performed using feedback internal matching system. Experimental handling is required to mach the reactive impedance accordingly to the fluctuant plasma loading. As part of the development of the new ICRH prototype antenna, an additional measurement system based on Rogowski coils was developed to monitor the current distribution in antenna straps. The objective is to control module and phase of the antenna current straps with measurement provided by the coil system. Matching capacitors values, generators power and phase can also be controlled using the output of the devices, improving the real time matching control of the array. This paper details the new measurement layout, the Rogowski coil, and the whole system connected on each strap design for RF currents measurement between 40 MHz - 60 MHz for maximum amplitude of 1 kA. On the new ICRH prototype antenna, the measurement coils are coupled to the point where the strap currents are short circuited to the frame. The module and phase measurements are performed with the coils by direct magnetic induction in a vacuum and high temperature environment. Also, the Rogowski coils were characterized at low level power with vector network analyzer and the design adapted in order to obtain a controlled and reproducible gain in the desire bandwidth. The transconductive function is established with an experimental gain near -80 dB between primary circuit and inductive signal generated by the Rogowski coil. In a second step, the system with its associated electronic was qualified under high RF power. First results with high RF current (closed to 500 A at 57 MHz) match the desire Rogowski coil response. Compromises with electrical response at low power level and the coil under thermal/RF stresses were the most challenging part of the development. The overall response of the system and the current module/phase measurements are promising. A proper

  13. Instrumentation and monitoring of the nextgen road infrastructure: Some results and perspectives from the R5G project

    Science.gov (United States)

    Hautière, Nicolas; Bourquin, Frédéric

    2017-04-01

    Through the centuries, the roads - which today constitute in France a huge transport network of 1 millions kilometers length - have always been able to cope with society needs and challenges. As a consequence, the next generation road infrastructure will have to take into account at least three societal transitions: ecological, energetic and digital. The goal of the 5th generation road project (R5G©) [1], led by Ifsttar in France, aligned with the Forever Open program [2], is to design and build demonstrators of such future road infrastructures. The goal of this presentation is to present different results related to the greening of road materials [3], the design of energy-positive roads [4, 5], the test of roads that self-diagnose [6], the design of roads adapted for connected [7], autonomous [8] and electrified vehicles [9], etc. In terms of perspectives, we will demonstrate that the road infrastructures will soon become a complex system: On one side road users will benefit from new services, on the other side such massively connected and instrumented infrastructures will potentially become an opportune sensor for knowledge development in geoscience, such as air quality, visibility and fog monitoring. References: [1] R5G project. r5g.ifsttar.fr [2] Forever Open Road project. www.foreveropenroad.eu [3] Biorepavation project. www.infravation.net/projects/BIOREPAVATION [4] N. Le Touz, J. Dumoulin. Numerical study of the thermal behavior of a new deicing road structure design with energy harvesting capabilities. EGU General Assembly 2015, Apr 2015, Vienne, Austria. [5] S. Asfour, F. Bernardin, E. Toussaint, J.-M. Piau. Hydrothermal modeling of porous pavement for its surface de-freezing. Applied Thermal Engineering. Volume 107, 25 August 2016, Pages 493-500 [6] LGV BPL Instrumentation. http://railenium.eu/wp-content/uploads/2016/08/INSTRUMENTATION-BPL-FR.pdf [7] SCOOP@F project. https://ec.europa.eu/inea/en/connecting

  14. Large scale distribution monitoring of FRP-OF based on BOTDR technique for infrastructures

    Science.gov (United States)

    Zhou, Zhi; He, Jianping; Yan, Kai; Ou, Jinping

    2007-04-01

    BOTDA(R) sensing technique is considered as one of the most practical solution for large-sized structures as the instrument. However, there is still a big obstacle to apply BOTDA(R) in large-scale area due to the high cost and the reliability problem of sensing head which is associated to the sensor installation and survival. In this paper, we report a novel low-cost and high reliable BOTDA(R) sensing head using FRP(Fiber Reinforced Polymer)-bare optical fiber rebar, named BOTDA(R)-FRP-OF. We investigated the surface bonding and its mechanical strength by SEM and intensity experiments. Considering the strain difference between OF and host matrix which may result in measurement error, the strain transfer from host to OF have been theoretically studied. Furthermore, GFRP-OFs sensing properties of strain and temperature at different gauge length were tested under different spatial and readout resolution using commercial BOTDA. Dual FRP-OFs temperature compensation method has also been proposed and analyzed. And finally, BOTDA(R)-OFs have been applied in Tiyu west road civil structure at Guangzhou and Daqing Highway. This novel FRP-OF rebar shows both high strengthen and good sensing properties, which can be used in long-term SHM for civil infrastructures.

  15. Evaluation and implementation of CEP mechanisms to act upon infrastructure metrics monitored by Ganglia

    CERN Document Server

    Adam, Martin

    2015-01-01

    The LHC experiments are progressively moving towards computing resources that are provided dynamically by Cloud services. It is important to monitor the health and performance of the virtual machines of these dynamic clusters and to provide early warnings in order to prevent the problems of degraded service and interruptions due to eventual failures of the cluster nodes. The goal of the project is to develop a system that will digest monitoring information coming from the cluster, analyze it almost in real time and provide necessary input for the control engine of the workload management systems of the experiments. The system should be generic and not coupled to any experiment frameworks, so that it can be used by any LHC experiment.

  16. Spectrum Analyzer Application for the Proton Synchrotron Wall Current Monitors

    CERN Document Server

    Limpens, Rik

    The Proton Synchrotron (PS) is a key component in CERN's accelerator complex, where it usually accelerates either protons or heavy ions. The new acquisition system for the PS ring wall current monitors has been installed to be able to perform higher frequency measurements of a beam bunch. This is an important improvement, since the oscillating signals are related to losses of a beam bunch. The main goal of this project is to develop a LabVIEW application running on a Real-Time target to perform continuous and triggered spectral acquisition of a PS beam bunch and to provide a data visualization and analysis tool for the operators and users of the machine.

  17. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  18. An accurate low current measurement circuit for heavy iron beam current monitor

    International Nuclear Information System (INIS)

    Zhou Chaoyang; Su Hong; Mao Ruishi; Dong Chengfu; Qian Yi; Kong Jie

    2012-01-01

    Heavy-ion beams at 10 6 particles per second have been applied to the treatment of deep-seated inoperable tumors in the therapy terminal of the Heavy Ion Research Facility in Lanzhou (HIRFL) which is located at the Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS). An accurate low current measurement circuit following a Faraday cup was developed to monitor the beam current at pA range. The circuit consisted of a picoammeter with a bandwidth of 1 kHz and a gated integrator (GI). A low input bias current precision amplifier and new guarding and shielding techniques were used in the picoammeter circuit which allowed as to measure current less than 1 pA with a current gain of 0.22 V/pA and noise less than 10 fA. This paper will also describe a novel compensation approach which reduced the charge injection from switches in the GI to 10 −18 C, and a T-switch configuration which was used to eliminate leakage current in the reset switch.

  19. Rheticus: a cloud-based Geo-Information Service for the Detection and Monitoring of Geohazards and Infrastructural Instabilities

    Science.gov (United States)

    Chiaradia, M. T.; Samarelli, S.; Massimi, V.; Nutricato, R.; Nitti, D. O.; Morea, A.; Tijani, K.

    2017-12-01

    Geospatial information is today essential for organizations and professionals working in several industries. More and more, huge information is collected from multiple data sources and is freely available to anyone as open data. Rheticus® is an innovative cloud-based data and services hub able to deliver Earth Observation added-value products through automatic complex processes and, if appropriate, a minimum interaction with human operators. This target is achieved by means of programmable components working as different software layers in a modern enterprise system which relies on SOA (Service-Oriented-Architecture) model. Due to its spread architecture, where every functionality is defined and encapsulated in a standalone component, Rheticus is potentially highly scalable and distributable allowing different configurations depending on the user needs. This approach makes the system very flexible with respect to the services implementation, ensuring the ability to rethink and redesign the whole process with little effort. In this work, we outline the overall cloud-based platform and focus on the "Rheticus Displacement" service, aimed at providing accurate information to monitor movements occurring across landslide features or structural instabilities that could affect buildings or infrastructures. Using Sentinel-1 (S1) open data images and Multi-Temporal SAR Interferometry techniques (MTInSAR), the service is complementary to traditional survey methods, providing a long-term solution to slope instability monitoring. Rheticus automatically browses and accesses (on a weekly basis) the products of the rolling archive of ESA S1 Scientific Data Hub. S1 data are then processed by SPINUA (Stable Point Interferometry even in Unurbanized Areas), a robust MTInSAR algorithm, which is responsible of producing displacement maps immediately usable to measure movements of point and distributed scatterers, with sub-centimetric precision. We outline the automatic generation

  20. Usage of Wireless Sensor Networks in a service based spatial data infrastructure for Landslide Monitoring and Early Warning

    Science.gov (United States)

    Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.

    2007-12-01

    The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings

  1. Web-based biobank system infrastructure monitoring using Python, Perl, and PHP.

    Science.gov (United States)

    Norling, Martin; Kihara, Absolomon; Kemp, Steve

    2013-12-01

    The establishment and maintenance of biobanks is only as worthwhile as the security and logging of the biobank contents. We have designed a monitoring system that continuously measures temperature and gas content, records the movement of samples in and out of the biobank, and also records the opening and closing of the freezers-storing the results and images in a database. We have also incorporated an early warning feature that sends out alerts, via SMS and email, to responsible persons if any measurement is recorded outside the acceptable limits, guaranteeing the integrity of biobanked samples, as well as reagents used in sample analysis. A surveillance system like this increases the value for any biobank as the initial investment is small and the value of having trustworthy samples for future research is high.

  2. A Context-Aware System Infrastructure for Monitoring Activities of Daily Living in Smart Home

    Directory of Open Access Journals (Sweden)

    Qin Ni

    2016-01-01

    Full Text Available We propose a three-layered context-aware architecture for monitoring activities of daily life in smart home. This architecture provides for the inclusion of functionalities that range from low-level data collection to high-level context knowledge extraction. We have also devised an upper-level ontology to model the context in which the activities take place. This enables having a common activity-related context representation, on which to infer and share knowledge. Furthermore, we have begun to implement a platform that realizes our architecture and ontology, making use of Microsoft’s Lab of Things (LoT platform, being the preliminary results on this task also described in the paper.

  3. Collision and displacement vulnerability among marine birds of the California Current System associated with offshore wind energy infrastructure

    Science.gov (United States)

    Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.

    2016-10-27

    With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis

  4. An automatic monitoring system of leak current for testing TGC detectors based on LabVIEW

    International Nuclear Information System (INIS)

    Feng Cunfeng; Lu Taiguo; Yan Zhen; Wang Suojie; Zhu Chengguang; Sun Yansheng; He Mao

    2005-01-01

    An automatic monitoring system of leak current for testing TGC detectors with high voltage was set up by using the graphic LabVIEW platform and NI 4351 data acquisition card. The leak current was automatically monitored and recorded with this system, the time and the value of the leak current were showed instantly. Good efficiency and precision of monitoring were obtained. (authors)

  5. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  6. Support infrastructure available to Canadian residents completing post-graduate global health electives: current state and future directions

    Directory of Open Access Journals (Sweden)

    Lojan Sivakumaran

    2016-12-01

    Conclusion: Canadian universities are encouraged to continue to send their trainees on global health electives. To address the gaps in infrastructure reported in this study, the authors suggest the development of comprehensive standardized guidelines by post-graduate regulatory/advocacy bodies to better ensure patient and participant safety. We also encourage the centralization of infrastructure management to the universities’ global health departments to aid in resource management.

  7. Current limitations and challenges in nanowaste detection, characterisation and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Part, Florian; Zecha, Gudrun [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria); Causon, Tim [Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna (Austria); Sinner, Eva-Kathrin [Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna (Austria); Huber-Humer, Marion, E-mail: marion.huber-humer@boku.ac.at [Department of Water-Atmosphere-Environment, University of Natural Resources and Life Sciences, Institute of Waste Management, Muthgasse 107, 1190 Vienna (Austria)

    2015-09-15

    Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while

  8. National health inequality monitoring: current challenges and opportunities.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne; Boerma, Ties

    National health inequality monitoring needs considerably more investment to realize equity-oriented health improvements in countries, including advancement towards the Sustainable Development Goals. Following an overview of national health inequality monitoring and the associated resource requirements, we highlight challenges that countries may encounter when setting up, expanding or strengthening national health inequality monitoring systems, and discuss opportunities and key initiatives that aim to address these challenges. We provide specific proposals on what is needed to ensure that national health inequality monitoring systems are harnessed to guide the reduction of health inequalities.

  9. Current status of process monitoring for IAEA safeguards

    International Nuclear Information System (INIS)

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  10. Current applications of vibration monitoring and neutron noise analysis

    International Nuclear Information System (INIS)

    Damiano, B.; Kryter, R.C.

    1990-02-01

    Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs

  11. Current limitations and challenges in nanowaste detection, characterisation and monitoring.

    Science.gov (United States)

    Part, Florian; Zecha, Gudrun; Causon, Tim; Sinner, Eva-Kathrin; Huber-Humer, Marion

    2015-09-01

    Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generated when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from

  12. Monitor Clean and Efficient. Current state of affairs 2010

    International Nuclear Information System (INIS)

    Gerdes, J.

    2010-04-01

    This is the second report of the annual Monitor of the Dutch Clean and Efficient programme. The monitoring focuses on the development of target variables, effects, results and progress of the process. Most of the data regarding the results and effects concern the period until the end of 2009. Some data are not yet available for 2009 and can therefore only be provided for the preceding years. [nl

  13. The Ever-Est Virtual Research Environment Infrastructure for Marine - the Sea Monitoring Virtual Research Community (vrc) Use Case

    Science.gov (United States)

    Foglini, F.

    2016-12-01

    The EVER-EST project aims to develop a generic Virtual Research Environment (VRE) tailored to the needs and validated by the Earth Science domain. To achieve this the EVER-EST VRE provides earth scientists with the means to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modellings, which lead to the specific results that need to be attributable, validated and shared within the community e.g. in the form of scholarly communications. Central to this approach is the concept of Research Objects (ROs) as semantically rich aggregations of resources that bring together data, methods and people in scientific investigations. ROs enable the creation of digital artifacts that can encapsulate scientific knowledge and provide a mechanism for sharing and discovering assets of reusable research and scientific assets as first-class citizens. The EVER-EST VRE is the first RO-centric native infrastructure leveraging the notion of ROs and their application in observational rather than experimental disciplines and particularly in Earth Science. The Institute of MARine Science (ISMAR-CNR) is a scientific partner of the EVER-EST project providing useful and applicable contributions to the identification and definition of variables indicated by the European Commission in the Marine Strategy Framework Directive (MSFD) to achieve the Good Environment Status (GES). The VRC is willing to deliver practical methods, procedures and protocols to support coherent and widely accepted interpretation of the MSFD. The use case deal with 1. the Posidonia meadows along the Apulian coast, 2. the deep-sea corals along the Apulian continenatal slope and 3. the jellyfish abundance in the Italian water. The SeaMonitoring VRC created specific RO for asesing deep sea corals suitabilty, Posidonia meadows occurrences and for detecting jelly fish density aloing the italian coast. The VRC developed specific RO

  14. FBG-Based Monitoring of Geohazards: Current Status and Trends

    Directory of Open Access Journals (Sweden)

    Hong-Hu Zhu

    2017-02-01

    Full Text Available In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG, as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

  15. FBG-Based Monitoring of Geohazards: Current Status and Trends.

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng

    2017-02-24

    In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

  16. Radiation detectors for personnel monitoring - current developments and future trends

    International Nuclear Information System (INIS)

    Kannan, S.

    2003-01-01

    The radiation detectors for personnel monitoring range from the conventional passive dosimeters like the film badge and the TLD, to sophisticated active dosimeters for integrated gamma, beta and neutron dose measurement. With the availability of high accuracy active dosimeters, the process of personnel monitoring, acceptability among radiation workers, record keeping and dose control have become more simplified. However the high level of sophistication in the active dosimeter has its own inevitable price tag and the new breed of active dosimeters are prohibitively costly. The silver lining, in the otherwise dark cost scenario of these dosimeters is the potential for cost reduction at least in some of the dosimeters in the near future

  17. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  18. Unattended Dual Current Monitor (UDCM) FY17 Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-13

    The UDCM is a low current measurement device designed to record pico-amp to micro-amp currents from radiation detectors. The UDCM is the planned replacement for the IAEA’s obsolete MiniGRAND data acquisition module. Preliminary testing of the UDCM at the IAEA facilities lead to the following recommendations from the IAEA: Increase the measurement range. Lower range by a factor of 5 and upper range by 2 orders of magnitude; Modifications to the web interface; Increase programmable acquisition time to 3600s; Develop a method to handle current offsets and negative current; Error checking when writing data to the uSD card; and Writing BID files along with the currently stored BI0 files.

  19. Current status of personnel monitoring for β particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1984-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. This paper addresses two major questions. First, what have the HPSSC/ANSI Standard and the NRC-sponsored pilot study contributed toward improvements in personnel monitoring for β particles. Second, what additional improvements are necessary. The Standard defines test categories for β particles and mixtures of β particles plus γ rays in addition to test categories for other types of radiation. It also defines a reference β-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and β particles in particular, that otherwise would have been given to other squeaky wheels. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring problems of the work place and to define appropriate β-particle sources clearly

  20. Current status of personnel monitoring for beta particles

    International Nuclear Information System (INIS)

    Plato, P.; Miklos, J.

    1983-01-01

    From 1975 to 1982, a concerted effort was made to develop a uniform procedure to test the performance of personnel dosimetry processors throughout the United States. The heart of this effort is a standard developed by the Health Physics Society Standards Committee (HPSSC) and adopted by the American National Standards Institute (ANSI) as ANSI N13.11-1982. The US Nuclear Regulatory Commission (NRC) sponsored a five year pilot study of this Standard which included three trial tests in which approximately 80 dosimetry processors participated. The Standard has made several contributions to the art and science of personnel monitoring for beta particles. First, the Standard defines test categories for beta particles and mixtures of beta particles plus gamma rays in addition to test categories for other types of radiation. Second, it defines a reference beta-particle source for test purposes. Third, it provides test criteria which are used to determine acceptable performance by a processor. The pilot study provided information on the state of the art of personnel monitoring within the bounds of the Standard. In addition, since the pilot study was advertised as the forerunner of a future mandatory certification program for dosimetry processors throughout the United States, considerable attention was given to personnel monitoring in general, and beta particles in particular. This paper discusses specific contibutions of the HPSSC/ANSI Standard and the pilot study to beta-particle dosimetry. The results of the three tests of the pilot study are summarized. The paper also amplifies on the needs to define the monitoring particle sources clearly

  1. Radiation monitoring systems: current status and future prospects

    International Nuclear Information System (INIS)

    McArthur, W.C.; Kniazewycz, B.G.

    1978-01-01

    The Radiation Monitoring System (RMS) in a nuclear power plant is used for assessing radiological impact of plant operation. A classical RMS consists of several types of radiation detectors strategically placed about a nuclear plant to ensure the safety of operating personnel and the surrounding environment. It serves in conjunction with, and as a backup to, a comprehensive sampling program to quantitatively evaluate process systems and effluent activity levels. The development of the computerized and digitalized RMS is reviewed with emphasis upon its added capability and flexibility. The potential future requirements for the RMS, as a result of regulatory criteria development, is briefly discussed

  2. Alternating current techniques for corrosion monitoring in water reactor systems

    International Nuclear Information System (INIS)

    Isaacs, H.S.; Weeks, J.R.

    1977-01-01

    Corrosion in both nuclear and fossil fueled steam generators is generally a consequence of the presence of aggressive impurities introduced into the coolant system through condenser leakage. The impurities concentrate in regions of the steam generator protected from coolant flow, in crevices or under deposited corrosion products and adjacent to heat transfer surfaces. These three factors, the aggressive impurity, crevice type areas and heat transfer surfaces appear to be the requirements for the onset of rapid corrosion. Under conditions where coolant impurities do not concentrate the corrosion rates are low, easily measured and can be accounted for by allowances in the design of the steam generator. Rapid corrosion conditions cannot be designed for and must be suppressed. The condition of the surfaces when rapid corrosion develops must be markedly different from those during normal operation and these changes should be observable using electrochemical techniques. This background formed the basis of a design of a corrosion monitoring device, work on which was initiated at BNL. The basic principles of the technique are described. The object of the work is to develop a corrosion monitoring device which can be operated with PWR steam generator secondary coolant feed water

  3. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  4. Current Status of the Beam Position Monitoring System at TLS

    Science.gov (United States)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  5. Safeguards Technology Factsheet - Unattended Dual Current Monitor (UDCM)

    International Nuclear Information System (INIS)

    Newell, Matthew R.

    2016-01-01

    The UDCM is a low-current measurement device designed to record sub-nano-amp to micro-amp currents from radiation detectors. The UDCM is a two-channel device that incorporates a Commercial-Off-The-Shelf (COTS) processor enabling both serial over USB as well as Ethernet communications. The instrument includes microSD and USB flash memory for data storage as well as a programmable High Voltage (HV) power supply for detector bias. The UDCM is packaged in the same enclosure, employs the same processor and has a similar user interface as the UMSR. A serial over USB communication line to the UDCM allows the use of existing versions of MIC software, while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.

  6. Remote Patient Monitoring in IBD: Current State and Future Directions.

    Science.gov (United States)

    Atreja, Ashish; Otobo, Emamuzo; Ramireddy, Karthik; Deorocki, Allyssa

    2018-03-07

    Mobile apps are now increasingly used in conjunction with telemedicine and wearable devices to support remote patient monitoring (RPM). The goal of this paper is to review the available evidence and assess the scope of RPM integration into standard practices for care and management of chronic disease in general and, more specifically, inflammatory bowel disease (IBD). RPM has been associated with improvements in health outcomes and indicators across a broad range of chronic diseases. However, there is limited data on the effectiveness of RPM in IBD care. From the emerging literature and body of research, we found promising results about the feasibility of integrating RPM in IBD care and RPM's capacity to support IBD improvement in key process and outcome metrics. Concerns regarding privacy and provider acceptability have limited the mass integration of RPM to date. However, with the healthcare industry's move toward value-based population care and the advent of novel payment models for RPM reimbursement, the adoption of RPM into standard IBD care practices will likely increase as the technology continues to improve and become a mainstream tool for healthcare delivery in the near future.

  7. Current Status of The Low Frequency All Sky Monitor

    Science.gov (United States)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  8. Greening infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-10-01

    Full Text Available The development and maintenance of infrastructure is crucial to improving economic growth and quality of life (WEF 2013). Urban infrastructure typically includes bulk services such as water, sanitation and energy (typically electricity and gas...

  9. Multi-sensor sheets based on large-area electronics for advanced structural health monitoring of civil infrastructure.

    Science.gov (United States)

    2014-09-01

    Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...

  10. Bike Infrastructures

    DEFF Research Database (Denmark)

    Silva, Victor; Harder, Henrik; Jensen, Ole B.

    Bike Infrastructures aims to identify bicycle infrastructure typologies and design elements that can help promote cycling significantly. It is structured as a case study based research where three cycling infrastructures with distinct typologies were analyzed and compared. The three cases......, the findings of this research project can also support bike friendly design and planning, and cyclist advocacy....

  11. Stray current monitoring at Nuremberg subway; Streustromueberwachung bei der U-Bahn Nuernberg

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, M.; Halfmann, U.; Schneider, E. [Siemens AG, Erlangen (Germany). TS EL EN 2; Roesch, N. [VAG Verkehrs-AG Nuernberg, FA/SA - Starkstromanlagen, Nuernberg (Germany)

    2004-05-01

    Operating DC traction systems requires protective measures against the effects of stray currents. Damage by corrosion could occur both at railway and third party installations. The continuous effectiveness of protective measures needs to be monitored and recorded during revenue operation, and shall be capable to be demonstrated to supervising authorities. Measuring the rail-to-earth potential within the traction network under operational conditions, combined with centralized analysis, visualization, signaling and archiving is a straightforward and efficient method of stray current monitoring. For more than one year, the stray current monitoring system SITRAS SMS {sup registered} has been undergoing successful field application at the Nuremberg Subway. (orig.)

  12. Current and Emerging Uses of Insertable Cardiac Monitors: Evaluation of Syncope and Monitoring for Atrial Fibrillation.

    Science.gov (United States)

    Tomson, Todd T; Passman, Rod

    Insertable cardiac monitors (ICMs) have provided clinicians with a superb tool for assessing infrequent or potentially asymptomatic arrhythmias. ICMs have shown their usefulness in the evaluation of unexplained syncope, providing high diagnostic yields in a cost-effective manner. While unexplained syncope continues to be the most common reason for their use, ICMs are increasingly being used for the monitoring of atrial fibrillation (AF). Recent trials have demonstrated that a substantial proportion of patients with cryptogenic stroke have AF detected only by the prolonged monitoring provided by ICMs. A particularly promising and emerging use for ICMs is in the management of anticoagulation in patients with known paroxysmal AF. The introduction in recent years of ICMs with automatic AF detection algorithms and continuous remote monitoring in combination with novel oral anticoagulants have opened the door for targeted anticoagulation guided by remote monitoring, a strategy that has recently shown promise in pilot studies of this technique. While further research is needed before official recommendations can be given, this use of ICMs opens exciting new possibilities for personalized medicine that could potentially reduce bleeding risk and improve quality of life in patients with atrial fibrillation.

  13. Current Measurements and Overwash Monitoring Using Tilt Current Meters in Three Coastal Environments

    Science.gov (United States)

    Lowell, N. S.; Sherwood, C. R.; Decarlo, T. M.; Grant, J. R.

    2014-12-01

    Tilt Current Meters (TCMs) provide accurate, cost effective measurements of near-bottom current velocities. Many studies in coastal environments require current measurements, which are frequently made with Acoustic Doppler Profilers (ADPs). ADPs are expensive, however, and may not be suitable for locations where there is significant risk of damage, loss, or theft or where a large spatial array of measurements is required. TCMs, by contrast, are smaller, less expensive, and easier to deploy. This study tested TCMs in three sites to determine their suitability for use in research applications. TCMs are based on the drag-tilt principle, where the instrument tilts in response to current. The meter consists of a buoyant float with an onboard accelerometer, three-axis tilt sensor, three-axis magnetometer (compass), and a data logger. Current measurements are derived by post processing the tilt and compass values and converting them to velocity using empirical calibration data. Large data-storage capacity (4 GB) and low power requirements allow long deployments (many months) at high sample rates (16 Hz). We demonstrate the utility of TCM current measurements on a reef at Dongsha Atoll in the South China Sea, and in Vineyard Sound off Cape Cod, where the TCM performance was evaluated against ADP measurements. We have also used the TCM to record waves during an overwash event on a Cape Cod barrier beach during a winter storm. The TCM recorded waves as they came through the overwash channel, and the data were in agreement with the water-level record used as a reference. These tests demonstrate that TCMs may be used in a variety of near shore environments and have the potential to significantly increase the density of meters in future studies were current measurements are required.

  14. Continuous Glucose Monitoring in the Cardiac ICU: Current Use and Future Directions.

    Science.gov (United States)

    Scrimgeour, Laura A; Potz, Brittany A; Sellke, Frank W; Abid, M Ruhul

    2017-11-01

    Perioperative glucose control is highly important, particularly for patients undergoing cardiac surgery. Variable glucose levels before, during and after cardiac surgery lead to increased post-operative complications and patient mortality. [1] Current methods for intensive monitoring and treating hyperglycemia in the Intensive Care Unit (ICU) usually involve hourly glucose monitoring and continuous intravenous insulin infusions. With the advent of more accurate subcutaneous glucose monitoring systems, the role of improved glucose control with newer systems deserves consideration for widespread adoption.

  15. Vulnerability assessment of critical infrastructure : activity 2 final report : information on SCADA systems and other security monitoring techniques used in oil and gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gu, G.P.; Revie, R.W. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Laboratory

    2008-03-15

    This study evaluated various technologies for monitoring the security of remote pipeline infrastructure. The technologies included flow, pressure and mass variations; negative pressure waves; dynamic and statistical modelling; hydrocarbon-sensitive cables; fiber optic systems; infrared thermography; spectral imaging; and synthetic aperture radar and radio frequency identification methods. A brief outline of the technologies was provided, along with suggestions for integrating the technology with other commercially available tools designed to manage security and reduce risk. The study demonstrated that many monitoring technologies are suitable for detecting pipeline leaks and identifying third party intrusions. A combination of different methods may provide optimal security and accuracy in leak detection and location. Automatic range and plausibility checks can be used to enhance system security and to recognize invalid changes in measuring devices and poorly parameterized media. Detailed reviews of the technologies were included in 2 appendices. 28 refs., 2 appendices.

  16. A Fast Non Intercepting Linac Electron Beam Position and Current Monitor

    DEFF Research Database (Denmark)

    Hansen, Jørgen-Walther; Wille, Mads

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating...

  17. Development of a Geographical Information System for the monitoring of the health infrastructure in rural areas in Tanzania

    Directory of Open Access Journals (Sweden)

    Jürgen Schweikart

    2008-12-01

    Full Text Available

    Background: Setting up Geographical Information Systems (GIS on the existing health infrastructure and ongoing and planned interventions in public health in Tanzania is still in its infancy. While there are several activities on gathering information and attempts of documentation there does not exist an overall systematic approach of generally capturing all health related facts and bringing them together into a unique information system yet. In order to strengthen the information system in the health sector in general, and to assist Ministry of Health and Social Welfare (MoHSW in better receiving an overview of health related infrastructure and intervention data for management purpose, a first-pilot GIS was built up in the Mbeya Region in cooperation with Tanzanian German Programme to Support Health (TGPSH/Gesellschaft für technische Zusammenarbeit (GTZ.

    Methods: The Health-GIS contains information on all health facilities (HF in the region and their infrastructure. Therefore, personal interviews were conducted in selected HF based on a comprehensive questionnaire. The spatial coordinates of the HF were taken with a Global Positioning System (GPS. In a relational database, the newly coded HF are linked to the gathered information pertaining to them and in a second step are analysed and visualised with help of GIS. Results: First results show newly collected geometry and attribute data for a considerable number of HFs in Mbeya Region, which are then supplemented by information on the street network lately surveyed during the fieldtrip. With the help of a database management system (DBMS all information are stored and maintained within one health database. By their spatial relation, data may be analysed and mapped with a Health-GIS. Because of the targeted cooperation with people and institutions from the local health sector, the way for integrating the Health-GIS into the health

  18. A New Current Drogue System for Remotely Monitoring Shelf Current Circulation

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Davis, G.; Whelan, W.; Tornatore, G.

    1975-01-01

    The author has identified the following significant results. An ocean current drogue system was developed for use in the coastal zone and continental shelf region. The method features an extremely simple radiosonde device whose position is determined from a pair of cooperative shore stations. These ocean sondes follow the tradition of the atmospheric radiosonde in that they are economically disposable at the end of their mission. The system was successfully tested in a number of environments, including the North Atlantic in two winter coastal storms. Tracking to the edge of the Baltimore and Wilmington trenches was achieved. The drogue system is being used in conjunction with remote sensing aircraft and satellites to chart current circulation at ocean waste disposal sites 40 miles off Delaware's coast.

  19. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  20. Monitoring of the infrastructure and services used to handle and automatically produce Alignment and Calibration conditions at CMS

    CERN Document Server

    Sipos, Roland; Franzoni, Giovanni; Di Guida, Salvatore; Pfeiffer, Andreas

    2017-01-01

    The Compact Muon Solenoid (CMS) experiment makes a vast use of alignment and calibration measurements in several crucial workflows in the event selection at the High Level Trigger (HLT), in the processing of the recorded collisions and in the production of simulated events.A suite of services addresses the key requirements for the handling of the alignment and calibration conditions such as recording the status of the experiment and of the ongoing data taking, accepting conditions data updates provided by the detector experts, aggregating and navigating the calibration scenarios, and distributing conditions for consumption by the collaborators. Since a large fraction of such services is critical for the data taking and event filtering in the HLT, a comprehensive monitoring and alarm generating system had to be developed. Such monitoring system has been developed based on the open source industry standard for monitoring and alerting services (Nagios) to monitor the database back-end, the hosting nodes and k...

  1. A new on-line leakage current monitoring system of ZnO surge arresters

    International Nuclear Information System (INIS)

    Lee, Bok-Hee; Kang, Sung-Man

    2005-01-01

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications

  2. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  3. A review of the Irish road networks infrastructure barriers to older peoples mobility: current policy and literature

    OpenAIRE

    Fenton, Valerie; Caufield, Brian; Ahern, Aoife

    2012-01-01

    Over the next thirty years in Ireland, the population aged over 65 is estimated to grow considerably. The maturation of the ‘baby boom’ generation will transform the demographics of the country. In our current and future aging society, transport and mobility are key factors in facilitating active aging. In general, older people now travel more than before, have higher levels of car ownership and are more likely to continue to drive for longer. Modal shift to more sustainable modes of transpor...

  4. Indonesia municiple solid waste life cycle and environmental monitoring: current situation, before and future challenges

    Science.gov (United States)

    Susmono

    2017-03-01

    Indonesia is a big country with circa 250 million population, with more than 500 Local Governments and they are going to improve their municiple solid waste dumping method from Open Dumping to Sanitary Landfill (SLF) and to promote Reduce-Reuse-Recycling (3R) since many years ago, and it is strengthened by issuing of Solid Waste Management Act No.18/2008, MSW Government Regulation No.12/2012 and other regulations which are issued by Central Government and Local Governments. During “Water and Sanitation Decade 1980-1990” through “Integrated Urban Infrastructures Development Program” some pilot project such as 30 units of 3R station were developed in the urban areas, and modified or simplification of SLF call Controlled Landfill (CLF) were implemented. In the year of 2002 about 45 units of composting pilot projects were developed under “Western Java Environmental Management Project”, and the result was notified that some of them are not sustain because many aspects. At the beginning of 2007 until now, some pilot projects of 3R were continued in some cities and since 2011 some Waste Banks are growing fast. In the year of 2014 was recorded that of 70 % of 3Rs in Java Island well developed (2014, Directorate of Environment Sanitation Report), and in the year of 2012 was recorded that development of Communal Waste Banks were growing fast during two months from 400 units to 800 units (2012, Ministry of Environment report), now more Communal Waste Banks all ready exist. After the last overview monitoring activity by Ministry of Environment and JICA (2008), because of lack of data is very difficult to give current accurate information of Municiple Solid Waste Handling in Indonesia. Nevertheless some innovation are developed because of impact of many pilot projects, Adipura City Cleanest Competition among Local Governments and growing of the spirit of autonomous policy of Local Governments, but some Local Governments still dependence on Central Government support

  5. A new implementation of full resolution SBAS-DInSAR processing chain for the effective monitoring of structures and infrastructures

    Science.gov (United States)

    Bonano, Manuela; Buonanno, Sabatino; Ojha, Chandrakanta; Berardino, Paolo; Lanari, Riccardo; Zeni, Giovanni; Manunta, Michele

    2017-04-01

    The advanced DInSAR technique referred to as Small BAseline Subset (SBAS) algorithm has already largely demonstrated its effectiveness to carry out multi-scale and multi-platform surface deformation analyses relevant to both natural and man-made hazards. Thanks to its capability to generate displacement maps and long-term deformation time series at both regional (low resolution analysis) and local (full resolution analysis) spatial scales, it allows to get more insights on the spatial and temporal patterns of localized displacements relevant to single buildings and infrastructures over extended urban areas, with a key role in supporting risk mitigation and preservation activities. The extensive application of the multi-scale SBAS-DInSAR approach in many scientific contexts has gone hand in hand with new SAR satellite mission development, characterized by different frequency bands, spatial resolution, revisit times and ground coverage. This brought to the generation of huge DInSAR data stacks to be efficiently handled, processed and archived, with a strong impact on both the data storage and the computational requirements needed for generating the full resolution SBAS-DInSAR results. Accordingly, innovative and effective solutions for the automatic processing of massive SAR data archives and for the operational management of the derived SBAS-DInSAR products need to be designed and implemented, by exploiting the high efficiency (in terms of portability, scalability and computing performances) of the new ICT methodologies. In this work, we present a novel parallel implementation of the full resolution SBAS-DInSAR processing chain, aimed at investigating localized displacements affecting single buildings and infrastructures relevant to very large urban areas, relying on different granularity level parallelization strategies. The image granularity level is applied in most steps of the SBAS-DInSAR processing chain and exploits the multiprocessor systems with distributed

  6. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  7. Eddy current monitoring of spacers in coolant channel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.; Vijayaraghavan, R.

    1993-01-01

    An eddy current testing method has been standardised for monitoring spacer springs which are used in coolant channel assemblies of pressurised heavy water nuclear reactors (PHWRs). The standard bobbin coil probe used for monitoring the spacer spring detects only the location but does not monitor the tilt orientation and tilt angle of a tilted spacer spring. The knowledge of location along with the tilt orientation of the spacer spring greatly improves the performance of repositioning methods. A modified probe with angular windings has been developed in laboratory tests for monitoring the location as well as the tilt orientation of the spacer springs. Experimental results are presented showing excellent performance of the modified probe in monitoring the exact location as well as tilt orientation of a spacer spring. The modified probe has also been used successfully in the field during repositioning of spacer springs in PHWRs before commissioning. (Author)

  8. A fast non-intercepting linac beam position and current monitor

    International Nuclear Information System (INIS)

    Hansen, J.W.; Wille, M.

    1982-01-01

    A non-intercepting beam monitor consisting of four detecting loops is used to determine the spatial postion and current of a pulsed beam from an electron linear accelerator. The monitor detects the magnetic field radiated by the substructure of the electron bunches created by the accelerating microwave. The detecting loops are interconnected two by two, by means of two coaxial hybrid junctions, the two sets positioned perpendicular to each other. By means of the two signals from the diametrically positioned detecting loops, a good spatial displacement and current monitoring sensitivity are achieved by subtracting one signal from the other and adding the two signals, respectively. For displacements below 2 mm from the center axis an average sensitivity of 0.5 mV/mm x mA is measured, whereas displacements more than 2 mm yields 1.3 mV/mm x mA. A sensitivity of 0.2 mV/mA in current monitoring is measured, and the rise time of the monitored pulse signal is better than 5 ns measured from 10 to 90% of the pulse height. Design strategy and performance of the monitor are described. (orig.)

  9. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    Science.gov (United States)

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between

  10. Development of a beam current monitor by using an amorphous magnetic core

    International Nuclear Information System (INIS)

    Kobayashi, T.; Ueda, T.; Yoshida, Y.; Miya, K.; Tagawa, S.; Kobayashi, H.

    1993-01-01

    The high performance amorphous magnetic core monitor (ACM) for the measurement of electron beam currents has been developed. This monitor is composed of an amorphous magnetic core, radiation shields, a winding, magnetic absorbers, a ceramic vacuum duct and a SMA connecter. The ACM showed the very fast rise and fall times (< 1 ns), the high sensitivity (5 V/A at 50 Ω load), the good linearity, and good S/N ratio due to the high permeability of the amorphous magnetic core. The monitor works as a primary transformer. The time-response was simulated by an electric circuit analysis code. (orig.)

  11. High-stable secondary-emission monitor for accelerated electron beam current

    International Nuclear Information System (INIS)

    Prudnikov, I.A.; Saksaganskij, G.L.; Bazhanov, E.B.; Zabrodin, B.V.

    1977-01-01

    A secondary-emission monitor for a 10 to 30 MeV electron beam (beam current is 10 -4 to 10 -2 A) is described. The monitor comprises a measuring electrode unit, titanium discharge-type pump, getter made of porous titanium, all enclosed in a metal casing. The measuring unit comprises three electrodes made of 20 μm aluminium foil. The secondary emission coefficient (5.19%+-0.06% for the electron energy of 20 MeV) is maintained stable for a long time. The monitor detects pulses of up to some nanoseconds duration. It is reliable in operation, and is recommended for a wide practical application

  12. 10^{7}-A load-current B-dot monitor: Simulations, design, and performance

    Directory of Open Access Journals (Sweden)

    D. V. Rose

    2010-04-01

    Full Text Available A B-dot monitor that measures the current 6 cm from the axis of dynamic loads fielded on 10^{7}-A multiterawatt pulsed-power accelerators has been developed. The monitor improves upon the multimegampere load-current gauge described in Phys. Rev. ST Accel. Beams 11, 100401 (2008PRABFM1098-440210.1103/PhysRevSTAB.11.100401. The design of the improved monitor was developed using three-dimensional particle-in-cell simulations that model vacuum electron flow in the transmission line near the monitor. The simulations include important geometric features of the B-dot probe and model the deposition of electron energy within the probe. The simulations show that the improved design reduces by as much as a factor of 5 the electron energy deposition to the interior of the monitor. Data taken on accelerator shots demonstrate that the improved monitor works as well as the original monitor on shots with low-impedance loads, and delivers superior performance on higher-impedance-load shots.

  13. A Smart Voltage and Current Monitoring System for Three Phase Inverters Using an Android Smartphone Application.

    Science.gov (United States)

    Mnati, Mohannad Jabbar; Van den Bossche, Alex; Chisab, Raad Farhood

    2017-04-15

    In this paper, a new smart voltage and current monitoring system (SVCMS) technique is proposed. It monitors a three phase electrical system using an Arduino platform as a microcontroller to read the voltage and current from sensors and then wirelessly send the measured data to monitor the results using a new Android application. The integrated SVCMS design uses an Arduino Nano V3.0 as the microcontroller to measure the results from three voltage and three current sensors and then send this data, after calculation, to the Android smartphone device of an end user using Bluetooth HC-05. The Arduino Nano V3.0 controller and Bluetooth HC-05 are a cheap microcontroller and wireless device, respectively. The new Android smartphone application that monitors the voltage and current measurements uses the open source MIT App Inventor 2 software. It allows for monitoring some elementary fundamental voltage power quality properties. An effort has been made to investigate what is possible using available off-the-shelf components and open source software.

  14. Monitoring of levees, bridges, pipelines, and other critical infrastructure during the 2011 flooding in the Mississippi River Basin: Chapter J in 2011 floods of the central United States

    Science.gov (United States)

    Densmore, Brenda K.; Burton, Bethany L.; Dietsch, Benjamin J.; Cannia, James C.; Huizinga, Richard J.

    2014-01-01

    During the 2011 Mississippi River Basin flood, the U.S. Geological Survey evaluated aspects of critical river infrastructure at the request of and in support of local, State, and Federal Agencies. Geotechnical and hydrographic data collected by the U.S. Geological Survey at numerous locations were able to provide needed information about 2011 flood effects to those managing the critical infrastructure. These data were collected and processed in a short time frame to provide managers the ability to make a timely evaluation of the safety of the infrastructure and, when needed, to take action to secure and protect critical infrastructure. Critical infrastructure surveyed by the U.S. Geological Survey included levees, bridges, pipeline crossings, power plant intakes and outlets, and an electrical transmission tower. Capacitively coupled resistivity data collected along the flood-protection levees surrounding the Omaha Public Power District Nebraska City power plant (Missouri River Levee Unit R573), mapped the near-subsurface electrical properties of the levee and the materials immediately below it. The near-subsurface maps provided a better understanding of the levee construction and the nature of the lithology beneath the levee. Comparison of the capacitively coupled resistivity surveys and soil borings indicated that low-resistivity value material composing the levee generally is associated with lean clay and silt to about 2 to 4 meters below the surface, overlying a more resistive layer associated with sand deposits. In general, the resistivity structure becomes more resistive to the south and the southern survey sections correlate well with the borehole data that indicate thinner clay and silt at the surface and thicker sand sequences at depth in these sections. With the resistivity data Omaha Public Power District could focus monitoring efforts on areas with higher resistivity values (coarser-grained deposits or more loosely compacted section), which typically are

  15. Education technology with continuous real time monitoring of the current functional and emotional students' states

    Science.gov (United States)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  16. MFC Communications Infrastructure Study

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  17. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1994-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  18. A squid-based beam current monitor for FAIR/CRYRING

    International Nuclear Information System (INIS)

    Geithner, Rene; Stöhlker, Thomas; Kurian, Febin; Reeg, Hansjörg; Schwickert, Marcus; Neubert, Ralf; Seidel, Paul

    2015-01-01

    A SQUID-based beam current monitor was developed for the upcoming FAIR-Project, providing a non-destructive online monitoring of the beam currents in the nA-range. The cryogenic current comparator (CCC) was optimized for lowest possible noise-limited current resolution together with a high system bandwidth. This CCC is foreseen to be installed in the CRYRING facility (CRYRING@ESR: A study group report www.gsi.de/fileadmin/SPARC/documents/Cryring/ReportCryring-40ESR.PDF), working as a test bench for FAIR. In this contribution we present results of the completed CCC for FAIR/CRYRING and also arrangements that have been done for the installation of the CCC at CRYRING, regarding the cryostat design. (paper)

  19. A DSP-Based Beam Current Monitoring System for Machine Protection Using Adaptive Filtering

    International Nuclear Information System (INIS)

    J. Musson; H. Dong; R. Flood; C. Hovater; J. Hereford

    2001-01-01

    The CEBAF accelerator at Jefferson Lab is currently using an analog beam current monitoring (BCM) system for its machine protection system (MPS), which has a loss accuracy of 2 micro-amps. Recent burn-through simulations predict catastrophic beam line component failures below 1 micro-amp of loss, resulting in a blind spot for the MPS. Revised MPS requirements target an ultimate beam loss accuracy of 250 nA. A new beam current monitoring system has been developed which utilizes modern digital receiver technology and digital signal processing concepts. The receiver employs a direct-digital down converter integrated circuit, mated with a Jefferson Lab digital signal processor VME card. Adaptive filtering is used to take advantage of current-dependent burn-through rates. Benefits of such a system include elimination of DC offsets, generic algorithm development, extensive filter options, and interfaces to UNIX-based control systems

  20. Design and commissioning of the APS beam charge and current monitors

    International Nuclear Information System (INIS)

    Wang, X.; Lenkszus, F.; Rotela, E.

    1995-01-01

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100 pC to 10 nC with pulse width varying from 30 ps to 30 ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented. copyright 1995 American Institute of Physics

  1. Putting Ug99 on the map: An update on current and future monitoring

    DEFF Research Database (Denmark)

    Hodson, D P; Nazari, K; Park, R F

    2011-01-01

    Detection of stem rust race TTKSK (Ug99) from Uganda in 1998/99 highlighted not only the extremely high vulnerability of the global wheat crop to stem rust but also a lack of adequate global systems to monitor such a threat. Progress in the development and expansion of the Global Cereal Rust...... Monitoring System (GCRMS) is described. The current situation regarding the Ug99 lineage of races is outlined and the potential for expansion into important wheat areas is considered. The GCRMS has successfully tracked the spread and changes that are occurring within the Ug99 lineage and is now well...... capacity for race analysis is seen to be critical and integration of the Global Rust Reference Centre into the stem rust monitoring network is seen as a positive development. The current acute situation with severe epidemics of stripe rust in many countries indicates a clear need for more effective global...

  2. Monitoring of Oil Exploitation Infrastructure by Combining Unsupervised Pixel-Based Classification of Polarimetric SAR and Object-Based Image Analysis

    Directory of Open Access Journals (Sweden)

    Simon Plank

    2014-12-01

    Full Text Available In developing countries, there is a high correlation between the dependence of oil exports and violent conflicts. Furthermore, even in countries which experienced a peaceful development of their oil industry, land use and environmental issues occur. Therefore, independent monitoring of oil field infrastructure may support problem solving. Earth observation data enables fast monitoring of large areas which allows comparing the real amount of land used by the oil exploitation and the companies’ contractual obligations. The target feature of this monitoring is the infrastructure of the oil exploitation, oil well pads—rectangular features of bare land covering an area of approximately 50–60 m × 100 m. This article presents an automated feature extraction procedure based on the combination of a pixel-based unsupervised classification of polarimetric synthetic aperture radar data (PolSAR and an object-based post-classification. The method is developed and tested using dual-polarimetric TerraSAR-X imagery acquired over the Doba basin in south Chad. The advantages of PolSAR are independence of the cloud coverage (vs. optical imagery and the possibility of detailed land use classification (vs. single-pol SAR. The PolSAR classification uses the polarimetric Wishart probability density function based on the anisotropy/entropy/alpha decomposition. The object-based post-classification refinement, based on properties of the feature targets such as shape and area, increases the user’s accuracy of the methodology by an order of a magnitude. The final achieved user’s and producer’s accuracy is 59%–71% in each case (area based accuracy assessment. Considering only the numbers of correctly/falsely detected oil well pads, the user’s and producer’s accuracies increase to even 74%–89%. In an iterative training procedure the best suited polarimetric speckle filter and processing parameters of the developed feature extraction procedure are

  3. Faulkes Telescope monitoring of the current outburst of IGR J00291+5934

    NARCIS (Netherlands)

    Russell, D.M.; Lewis, F.; Linares, M.; Roche, P.; Maitra, D.

    2008-01-01

    As part of an optical monitoring project of low-mass X-ray binaries (Lewis et al. 2008, http://adsabs.harvard.edu/abs/2008AIPC.1010..204L), we report on recent observations just prior to, and during the current outburst of the millisecond X-ray pulsar IGR J00291+5934 (ATel #1660, #1664, #1665). The

  4. Online Chip Temperature Monitoring Using υce-Load Current and IR Thermography

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Trintis, Ionut

    2015-01-01

    This paper presents on-state collector-emitter voltage (υce, on)-load current (Ic) method to monitor chip temperature on power insulated gate bipolar transistor (IGBT) modules in converter operation. The measurement method is also evaluated using infrared (IR) thermography. Temperature dependencies...

  5. A Review of Player Monitoring Approaches in Basketball: Current Trends and Future Directions.

    Science.gov (United States)

    Fox, Jordan L; Scanlan, Aaron T; Stanton, Robert

    2017-07-01

    Fox, JL, Scanlan, AT, and Stanton, R. A review of player monitoring approaches in basketball: current trends and future directions. J Strength Cond Res 31(7): 2021-2029, 2017-Effective monitoring of players in team sports such as basketball requires an understanding of the external demands and internal responses, as they relate to training phases and competition. Monitoring of external demands and internal responses allows coaching staff to determine the dose-response associated with the imposed training load (TL), and subsequently, if players are adequately prepared for competition. This review discusses measures reported in the literature for monitoring the external demands and internal responses of basketball players during training and competition. The external demands of training and competition were primarily monitored using time-motion analysis, with limited use of microtechnology being reported. Internal responses during training were typically measured using hematological markers, heart rate, various TL models, and perceptual responses such as rating of perceived exertion (RPE). Heart rate was the most commonly reported indicator of internal responses during competition with limited reporting of hematological markers or RPE. These findings show a large discrepancy between the reporting of external and internal measures and training and competition demands. Microsensors, however, may be a practical and convenient method of player monitoring in basketball to overcome the limitations associated with current approaches while allowing for external demands and internal responses to be recorded simultaneously. The triaxial accelerometers of microsensors seem well suited for basketball and warrant validation to definitively determine their place in the monitoring of basketball players. Coaching staff should make use of this technology by tracking individual player responses across the annual plan and using real-time monitoring to minimize factors such as fatigue

  6. Landslide monitoring and early warning systems in Lower Austria - current situation and new developments

    Science.gov (United States)

    Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem

    2014-05-01

    Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement

  7. Web-GIS platform for green infrastructure in Bucharest, Romania

    Science.gov (United States)

    Sercaianu, Mihai; Petrescu, Florian; Aldea, Mihaela; Oana, Luca; Rotaru, George

    2015-06-01

    In the last decade, reducing urban pollution and improving quality of public spaces became a more and more important issue for public administration authorities in Romania. The paper describes the development of a web-GIS solution dedicated to monitoring of the green infrastructure in Bucharest, Romania. Thus, the system allows the urban residents (citizens) to collect themselves and directly report relevant information regarding the current status of the green infrastructure of the city. Consequently, the citizens become an active component of the decision-support process within the public administration. Besides the usual technical characteristics of such geo-information processing systems, due to the complex legal and organizational problems that arise in collecting information directly from the citizens, additional analysis was required concerning, for example, local government involvement, environmental protection agencies regulations or public entities requirements. Designing and implementing the whole information exchange process, based on the active interaction between the citizens and public administration bodies, required the use of the "citizen-sensor" concept deployed with GIS tools. The information collected and reported from the field is related to a lot of factors, which are not always limited to the city level, providing the possibility to consider the green infrastructure as a whole. The "citizen-request" web-GIS for green infrastructure monitoring solution is characterized by a very diverse urban information, due to the fact that the green infrastructure itself is conditioned by a lot of urban elements, such as urban infrastructures, urban infrastructure works and construction density.

  8. European Communication Monitor: Current developments, issues and tendencies of the professional practice of public relations in Europe

    NARCIS (Netherlands)

    Moreno, A.; Zerfass, A.; Tench, R.; Verčič, D.; Verhoeven, P.

    2009-01-01

    The European Communication Monitor (ECM) research explores the current developments for communications disciplines, practices and instruments. It is an extensive research project to monitor trends in communication management, analyse the changing framework for the profession driven by European

  9. [Current situation of soil-transmitted nematodiasis monitoring in China and working keys in future].

    Science.gov (United States)

    Chen, Ying-dan; Zang, Wei

    2015-04-01

    Soil-transmitted nematodiasis is widely epidemic in rural areas in China. It was showed that the infection rate of soil-transmitted nematodes was 19.56% while the overall number of persons infected was 129,000,000, which was supported by the results of the National Survey of Current Situation of Major Human Parasitic Diseases in China in 2005 published by former Ministry of Health. Therefore, soil-transmitted nematodiasis was included in the national infectious diseases and pathogenic media monitoring system by Chinese Center for Disease Control and Prevention in 2006, and subsequently 22 monitoring spots were established nationwide. From 2006 to 2013, the human infection rate of intestinal nematodes in national monitoring spots decreased from 20.88% to 3.12%, which showed a declining trend year by year. Meanwhile, the infection rates of Ascaris lumbricoides, Trichuris trichiura, hookworm, Enterobius vermicularis decreased from 10.10%, 5.88%, 8.88%, 10.00% in 2006 to 0.76%, 0.42%, 2.04%, 6.78% in 2013 respectively. In this paper, the current situation of soil-transmitted nematodiasis is overviewed based on a summary of the 8 years' monitoring work, as well as the experiences, challenges and key of monitoring work in the future.

  10. Design and initial tests of beam current monitoring systems for the APS transport lines

    International Nuclear Information System (INIS)

    Wang, Xucheng.

    1992-01-01

    The non-intercepting beam current monitoring systems suitable for a wide, range of beam parameters have been developed for the Advanced Photon Source (APS) low energy transport lines and high energy transport line. The positron or electron beam pulse in the transport lines wig have peak beam currents ranging from 8 mA to 29 A with pulse widths varying from 120 ps to 30 ns and pulse repetition rates from 2 Hz to 60 Hz. The peak beam current or total beam charge is measured with the fast or integrating current transformer, respectively, manufactured by Bergoz. In-house high speed beam signal processing electronics provide a DC level output proportional to the peak current or total charge for the digitizer input. The prototype systems were tested on the linacs which have beam pulse structures similar to that of the APS transport lines. This paper describes the design of beam signal processing electronics and grounding and shielding methods for current transformers. The results of the initial operations are presented. A short introduction on the preliminary design of current monitoring systems for the APS rings is also included

  11. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  12. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  13. Current Trends in Neuromuscular Blockade, Management, and Monitoring amongst Singaporean Anaesthetists

    Directory of Open Access Journals (Sweden)

    Wendy H. Teoh

    2016-01-01

    Full Text Available Introduction. This survey aimed to investigate the attitudes/practice pertaining the use, management, and monitoring of neuromuscular blockade amongst Singaporean anaesthetists. Methods. All specialist accredited anaesthetists registered with the Singapore Medical Council were invited to complete an anonymous online survey. Results. The response rate was 39.5%. Neuromuscular monitoring (NM was used routinely by only 13.1% despite the widespread availability of monitors. 82% stated residual NMB (RNMB was a significant risk factor for patient outcome, but only 24% believed NMB monitoring should be compulsory in all paralyzed patients. 63.6% of anaesthetists estimated the risk of RNMB in their own institutions to be 50% said such benefits may be able to offset the associated costs. Conclusions. There is a significant need for reeducation about RNMB, studies on local RNMB incidences, and strengthening of current monitoring practices and guidelines. Strategies are discussed. As NM monitors appear widely available and reversal of NMB standard practice, it is hopeful that Singaporean anaesthetists will change and strive for evidence-based best clinical practice to enhance patient safety.

  14. Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia

    Directory of Open Access Journals (Sweden)

    Kobza Jozef

    2017-08-01

    Full Text Available Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.

  15. Radionuclide monitoring in foodstuff: overview of the current implementation in the EU countries

    International Nuclear Information System (INIS)

    Borbala Mate; Katarzyna Sobiech-Matura; Timotheos Altzitzoglou

    2015-01-01

    The Member States (MS) of the European Union (EU) are obliged to monitor the radioactivity in the environment since the signature of the Euratom Treaty (Treaty establishing the European Atomic Energy Community). Numerous secondary legislations derived from the Treaty can be found stating restrictions and maximum permitted levels of radionuclides in foodstuff. But to that purpose, no common integrated measurement methods are used with well-defined measurands. The present work consists of two parts. First, the current European regulations in force were collected, and then the food monitoring results, provided by the MS, were analysed. (author)

  16. Development of DQM software infrastructure: storing and reading the monitoring information from the histograms filled by online client applications into relational tables.

    CERN Document Server

    Andrzejczak, Adam

    2015-01-01

    In CMS the online DQM stores the monitoring information from several heterogeneous data sources into histograms, which are later sent to the DQMGUI for visualization. System for the handling of monitoring data is crucial for operating the detector and realizing whether or not it is undergoing failures: in particular, relational databases are the current best option for hosting such data. In this context a new DQM plugin DQMDatabaseWriter was developed, it provides interface which can be used in other DQM modules to drop desired data into the relational database. In addition, a python script provides possibility to read and visualize already saved records.

  17. A MEMS AC current sensor for residential and commercial electricity end-use monitoring

    International Nuclear Information System (INIS)

    Leland, E S; Wright, P K; White, R M

    2009-01-01

    This paper presents a novel prototype MEMS sensor for alternating current designed for monitoring electricity end-use in residential and commercial environments. This new current sensor design is comprised of a piezoelectric MEMS cantilever with a permanent magnet mounted on the cantilever's free end. When placed near a wire carrying AC current, the magnet is driven sinusoidally, producing a voltage in the cantilever proportional to the current being measured. Analytical models were developed to predict the applicable magnetic forces and piezoelectric voltage output in order to guide the design of a sensor prototype. This paper also details the fabrication process for this sensor design. Released piezoelectric MEMS cantilevers have been fabricated using a four-mask process and aluminum nitride as the active piezoelectric material. Dispenser-printed microscale composite permanent magnets have been integrated, resulting in the first MEMS-scale prototypes of this current sensor design

  18. Small-sized monitor of beam current and profile for the proton pulse electrostatic accelerator

    International Nuclear Information System (INIS)

    Getmanov, V.N.

    1985-01-01

    Design and principle of operation of current monitor and beam profile of range-coordinate type are described. Monitor operation peculiarities are discussed using diagnostics of a beam of 330-420 keV electrostatic pulse proton accelerator with a beam current of up to 20 mA, at a current density of up to 23 mA x cm -2 and wth pulse duraton of about 20 μs. The monitor consists of a vacuum-dense foil of 3.0+-0.1 μm in thickness (or 0.81+-0.0x- mg x cm -2 ) two grid electrodes, each containing 12 wires, and as solid copper bottom. Foil serves for chopping off background particles with a path lesser 3.0 μm and stands thermal pulse load up to 0.5 J/cm -2 . Grid electrode wires are oriented perpendicularly to lach other and form a two-coordinate secondary-emisson roughness indicator. The bothhom is used for measuring an absolute value of beam current

  19. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    Stevens, Rebecca S.; McClelland-Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  20. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    Science.gov (United States)

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the

  1. Monitoring of radioactivity in the UK environment. An annotated bibliography of current programmes

    International Nuclear Information System (INIS)

    2001-01-01

    With the continuing use of radioactive materials in industry, research and medicine, the public's awareness about the potential impact on human health and safety of any enhanced levels of radiation in the environment has heightened. All those involved recognise this concern and there has developed over the years a network of comprehensive monitoring systems designed to determine the levels of radiation to which members of the public are exposed. In the UK, many organisations carry out regular radioactivity monitoring programmes, and summaries of these programmes have been published in 1983, 1988 and 1992. The number of organisations carrying out monitoring, particularly in the local authority sector, increased rapidly following the Chernobyl incident in 1986 and later levelled off. This report updates those previous summaries, giving synopses of regular UK programmes whose results are published in report form, and of which the Department of the Environment, Transport and the Regions is currently aware

  2. Infrastructural Fractals

    DEFF Research Database (Denmark)

    Bruun Jensen, Casper

    2007-01-01

    . Instead, I outline a fractal approach to the study of space, society, and infrastructure. A fractal orientation requires a number of related conceptual reorientations. It has implications for thinking about scale and perspective, and (sociotechnical) relations, and for considering the role of the social...... and a fractal social theory....

  3. Impacts of Extreme Space Weather Events on Power Grid Infrastructure: Physics-Based Modelling of Geomagnetically-Induced Currents (GICs) During Carrington-Class Geomagnetic Storms

    Science.gov (United States)

    Henderson, M. G.; Bent, R.; Chen, Y.; Delzanno, G. L.; Jeffery, C. A.; Jordanova, V. K.; Morley, S.; Rivera, M. K.; Toth, G.; Welling, D. T.; Woodroffe, J. R.; Engel, M.

    2017-12-01

    Large geomagnetic storms can have devastating effects on power grids. The largest geomagnetic storm ever recorded - called the Carrington Event - occurred in 1859 and produced Geomagnetically Induced Currents (GICs) strong enough to set fires in telegraph offices. It has been estimated that if such a storm occurred today, it would have devastating, long-lasting effects on the North American power transmission infrastructure. Acutely aware of this imminent threat, the North American Electric Reliability Corporation (NERC) was recently instructed to establish requirements for transmission system performance during geomagnetic disturbance (GMD) events and, although the benchmarks adopted were based on the best available data at the time, they suffer from a severely limited physical understanding of the behavior of GMDs and the resulting GICs for strong events. To rectify these deficiencies, we are developing a first-of-its-kind data-informed modelling capability that will provide transformational understanding of the underlying physical mechanisms responsible for the most harmful intense localized GMDs and their impacts on real power transmission networks. This work is being conducted in two separate modes of operation: (1) using historical, well-observed large storm intervals for which robust data-assimilation can be performed, and (2) extending the modelling into a predictive realm in order to assess impacts of poorly and/or never-before observed Carrington-class events. Results of this work are expected to include a potential replacement for the current NERC benchmarking methodology and the development of mitigation strategies in real power grid networks. We report on progress to date and show some preliminary results of modeling large (but not yet extreme) events.

  4. Monitoring of the submerged arc welding process using current and voltage transducers

    International Nuclear Information System (INIS)

    Barrera, G.; Velez, M.; Espinosa, M.A.; Santos, O.; Barrera, E.; Gomez, G.

    1996-01-01

    Welding by fusion is one of the most used techniques to join materials in the manufacture industry. given the increase in applications of this welding process and the demand of more quality in the welding deposits, these welding processes are good candidates for the improvement of their instrumentation and control. Any improvement in the control technique will have a positive effect in the quality and productivity of the welding process. Some of the most significant variables in the submerged arc welding process are: current, voltage and torch speed. For the instrumentation of this research work, two transducers were designed, one for CD current monitoring and one for CD voltage monitoring of the welding machine. The design of both transducers includes an isolation amplifier. Graphical programming and the concept of virtual instrumentation were the main tools used for the design of the data acquisition system and the signal processing task. (Author) 9 refs

  5. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring.

    Science.gov (United States)

    Koo, Gunhee; Kim, Kiyoung; Chung, Jun Yeon; Choi, Jaemook; Kwon, Nam-Yeol; Kang, Doo-Young; Sohn, Hoon

    2017-11-28

    A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS) receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  6. Development of a High Precision Displacement Measurement System by Fusing a Low Cost RTK-GPS Sensor and a Force Feedback Accelerometer for Infrastructure Monitoring

    Directory of Open Access Journals (Sweden)

    Gunhee Koo

    2017-11-01

    Full Text Available A displacement measurement system fusing a low cost real-time kinematic global positioning system (RTK-GPS receiver and a force feedback accelerometer is proposed for infrastructure monitoring. The proposed system is composed of a sensor module, a base module and a computation module. The sensor module consists of a RTK-GPS rover and a force feedback accelerometer, and is installed on a target structure like conventional RTK-GPS sensors. The base module is placed on a rigid ground away from the target structure similar to conventional RTK-GPS bases, and transmits observation messages to the sensor module. Then, the initial acceleration, velocity and displacement responses measured by the sensor module are transmitted to the computation module located at a central monitoring facility. Finally, high precision and high sampling rate displacement, velocity, and acceleration are estimated by fusing the acceleration from the accelerometer, the velocity from the GPS rover, and the displacement from RTK-GPS. Note that the proposed displacement measurement system can measure 3-axis acceleration, velocity as well as displacement in real time. In terms of displacement, the proposed measurement system can estimate dynamic and pseudo-static displacement with a root-mean-square error of 2 mm and a sampling rate of up to 100 Hz. The performance of the proposed system is validated under sinusoidal, random and steady-state vibrations. Field tests were performed on the Yeongjong Grand Bridge and Yi Sun-sin Bridge in Korea, and the Xihoumen Bridge in China to compare the performance of the proposed system with a commercial RTK-GPS sensor and other data fusion techniques.

  7. Beam current monitoring in the AGS Booster and its transfer lines

    International Nuclear Information System (INIS)

    Witkover, R.L.; Zitvogel, E.; Castillo, V.

    1991-01-01

    The new AGS Booster is designed to accelerate low intensity polarized protons and heavy ions, and high intensity protons. The wide range of beam parameters and the vacuum, thermal and radiation environment, presented challenges in the instrumentation design. This paper describes the problems and solutions for the beam current monitors in the Booster and its transport lines. Where available, results of the initial operation will be presented. 11 refs., 3 figs

  8. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  9. Safety and security of energy infrastructures in Europe - the EC - DG JRC's energy risks monitor (ERMON) project

    International Nuclear Information System (INIS)

    Kirchsteiger, C.

    2005-01-01

    Full text: Technological progress is directed towards fulfilling human needs for development and progress. At the same time, the detriments or risks arising from specific technologies can not be avoided. The potential public health, environmental and economic risk impact of technologies is therefore a topic of considerable public and professional debate across all different industry sectors, - from energy production to transport and process industries. This demonstrates the need for all different types of risks to be systematically assessed and managed in order to protect public health and safety, and to limit the environmental and economic impacts of potential accidents. Risk-based methods provide various qualitative and quantitative measures that can significantly support consistent decision-making on managing accidental risks related to a specific technology across its entire life cycle, both for harmful effects inside the installation and off-site (for fixed installations). However, these methods rarely consider the requirements of individuals who suddenly find themselves in need of information on the 'risk dimension' of a certain technology compared to alternatives with similar benefits. Therefore, there is a necessity that risk assessment methods and modeling data are consistent within a specific technology sector or across technological divides so that they can produce results that are, at least in principle, dependable and comparable. The paper starts with mapping of current regulation on managing the risks related to the operation of fixed industrial installations for energy production and chemical process industry in different member states of the enlarged European Union (EU) with regard to consistency in the risk assessment approaches, methods and data as used by industry and as required or recommended by the regulators, and the specific requirements related to damage compensation. The review shows that technological risks are dealt with quite

  10. Momentum in Transformation of Technical Infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten

    1999-01-01

    Current infrastructure holds a considerable momentum and this momentum is a barrier of transformation towards more sustainable technologies and more sustainable styles of network management. Using the sewage sector in Denmark as an example of a technical infrastructure system this paper argues...... that there are technical, economical and social aspects of the current infrastructures momentum....

  11. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    International Nuclear Information System (INIS)

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2011-01-01

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO 2 laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  12. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  13. Private investments in new infrastructures

    NARCIS (Netherlands)

    Baarsma, B.; Poort, J.P.; Teulings, C.N.; de Nooij, M.

    2004-01-01

    The Lisbon Strategy demands large investments in transport projects, broadband networks and energy infrastructure. Despite the widely-acknowledged need for investments in new infrastructures, European and national public funds are scarce in the current economic climate. Moreover, both policy-makers

  14. Distributed Monitoring System Based on ICINGA

    CERN Multimedia

    Haen, C; Neufeld, N

    2011-01-01

    The LHCb online system relies on a large and heterogeneous I.T. infrastructure : it comprises more than 2000 servers and embedded systems and more than 200 network devices. While for the control and monitoring of detectors, PLCs, and readout boards an industry standard SCADA system PVSSII has been put in production, we use a low level monitoring system to monitor the control infrastructure itself. While our previous system was based on a single central NAGIOS server, our current system uses a distributed ICINGA infrastructure.

  15. A numerical similarity approach for using retired Current Procedural Terminology (CPT) codes for electronic phenotyping in the Scalable Collaborative Infrastructure for a Learning Health System (SCILHS).

    Science.gov (United States)

    Klann, Jeffrey G; Phillips, Lori C; Turchin, Alexander; Weiler, Sarah; Mandl, Kenneth D; Murphy, Shawn N

    2015-12-11

    Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer

  16. Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop.

    Science.gov (United States)

    Hamandi, Khalid; Beniczky, Sandor; Diehl, Beate; Kandler, Rosalind H; Pressler, Ronit M; Sen, Arjune; Solomon, Juliet; Walker, Matthew C; Bagary, Manny

    2017-08-01

    Inpatient video-EEG monitoring (VEM) is an important investigation in patients with seizures or blackouts, and in the pre-surgical workup of patients with epilepsy. There has been an expansion in the number of Epilepsy Monitoring Units (EMU) in the UK offering VEM with a necessary increase in attention on quality and safety. Previous surveys have shown variation across centres on issues including consent and patient monitoring. In an effort to bring together healthcare professionals in the UK managing patients on EMU, we conducted an online survey of current VEM practice and held a one-day workshop convened under the auspices of the British Chapter of the ILAE. The survey and workshop aimed to cover all aspects of VEM, including pre-admission, consent procedures, patient safety, drug reduction and reinstatement, seizure management, staffing levels, ictal testing and good data recording practice. This paper reports on the findings of the survey, the workshop presentations and workshop discussions. 32 centres took part in the survey and there were representatives from 22 centres at the workshop. There was variation in protocols, procedures and consent processes between units, and levels of observation of monitored patients. Nevertheless, the workshop discussion found broad areas of agreement on points. A survey and workshop of UK epilepsy monitoring units found that some variability in practice is inevitable due to different local arrangements and patient groups under investigation. However, there were areas of clear consensus particularly in relation to consent and patient safety that can be applied to most units and form a basis for setting minimum standards. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-03-01

    Full Text Available Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR images, we adopt the termed temporarily-coherent point (TCP InSAR (TCPInSAR technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables.

  18. The EGEE user support infrastructure

    CERN Document Server

    Antoni, T; Mills, A

    2007-01-01

    User support in a grid environment is a challenging task due to the distributed nature of the grid. The variety of users and VOs adds further to the challenge. One can find support requests by grid beginners, users with specific applications, site administrators, or grid monitoring operators. With the GGUS infrastructure, EGEE provides a portal where users can find support in their daily use of the grid. The current use of the system has shown that the goal has been achieved with success. The grid user support model in EGEE can be captioned ‘regional support with central coordination’. Users can submit a support request to the central GGUS service, or to their Regional Operations' Centre (ROC) or to their Virtual Organisation helpdesks. Within GGUS there are appropriate support groups for all support requests. The ROCs and VOs and the other project wide groups such as middleware groups (JRA), network groups (NA), service groups (SA) and other grid infrastructures (OSG, NorduGrid, etc.) are connected via a...

  19. Evaluative Infrastructures

    DEFF Research Database (Denmark)

    Kornberger, Martin; Pflueger, Dane; Mouritsen, Jan

    2017-01-01

    Platform organizations such as Uber, eBay and Airbnb represent a growing disruptive phenomenon in contemporary capitalism, transforming economic organization, the nature of work, and the distribution of wealth. This paper investigates the accounting practices that underpin this new form...... of organizing, and in doing so confronts a significant challenge within the accounting literature: the need to escape what Hopwood (1996) describes as its “hierarchical consciousness”. In order to do so, this paper develops the concept of evaluative infrastructure which describes accounting practices...

  20. Ritual Infrastructure

    DEFF Research Database (Denmark)

    Sjørslev, Inger

    2017-01-01

    within urban life. There is a certain parallel between these different locations and the difference in ritual roads to certainty in the two religions. The article draws out connections between different levels of infrastructure – material, spatial and ritual. The comparison between the two religions......This article compares the ways in which two different religions in Brazil generate roads to certainty through objectification, one through gods, the other through banknotes. The Afro-Brazilian religion Candomblé provides a road to certainty based on cosmological ideas about gods whose presence...

  1. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  2. VME computer monitoring system of KEK-PS fast pulsed magnet currents and beam intensities

    International Nuclear Information System (INIS)

    Kawakubo, T.; Akiyama, A.; Kadokura, E.; Ishida, T.

    1992-01-01

    For beam transfer from the KEK-PS Linac to the Booster synchrotron ring and from the Booster to the Main ring, many pulse magnets have been installed. It is very important for the machine operation to monitor the firing time, rising time and peak value of the pulsed magnet currents. It is also very important for magnet tuning to obtain good injection efficiency of the Booster and the Main ring, and to observe the last circulating bunched beam in the Booster as well as the first circulating in the Main. These magnet currents and beam intensity signals are digitized by a digital oscilloscope with signal multiplexers, and then shown on a graphic display screen of the console via a VME computer. (author)

  3. Tidal Stream Generators, current state and potential opportunities for condition monitoring

    DEFF Research Database (Denmark)

    Kappatos, Vassilios; Georgoulas, George; Avdelidis, Nicolas

    2016-01-01

    Tidal power industry has made significant progress towards commercialization over the past decade. Significant investments from sector leaders, strong technical progress and positive media coverage have established the credibility of this specific renewable energy source. However, its progress...... is being retarded by operation and maintenance problems, which results in very low operational availability times, as low as 25 %. This paper presents a literature review of the current state of tidal device operators as well as some commercial tidal turbine condition monitoring solutions. Furthermore......, an overview is given of the global tidal activity status (tidal energy market size and geography), the key industry activity and the regulations-standards related with tidal energy industry. Therefore, the main goal of this paper is to provide a bird’s view of the current status of the tidal power industry...

  4. Beam position and total current monitor for heavy ion fusion beams

    International Nuclear Information System (INIS)

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 μs. For accurate beam transport, the center of charge must be located to within ± 100 μm. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information

  5. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    1999-01-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques

  6. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    Science.gov (United States)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  7. An in-vacuum wall current monitor and low cost signal sampling system

    International Nuclear Information System (INIS)

    Yin, Y.; Rawnsley, W.R.; Mackenzie, G.H.

    1993-11-01

    The beam bunches extracted from the TRIUMF cyclotron are usually about 4 ns long, contain ∼ 4 x 10 7 protons, and are spaced at 43 ns. A wall current monitor capable of giving the charge distribution within a bunch, on a bunch by bunch basis, has recently been installed together with a sampling system for routine display in the control room. The wall current monitor is enclosed in a vacuum vessel and no ceramic spacer is required. This enhances the response to high frequencies, ferrite rings extend the low frequency response. Bench measurements show a flat response between a few hundred kilohertz and 4.6 GHz. For a permanent display in the control room the oscilloscope will be replaced by a Stanford Research Systems fast sampler module, a scanner module, and an interface module made at TRIUMF. The time to acquire one 10 ns distribution encompassing the beam bunch is 30 ms with a sample width of 100 ps and an average sample spacing of 13 ps. The scan, sample, and retrace signals are buffered carried on 70 m differential lines to the control room. An analog scope in XYZ mode provides a real time display. Signal averaging can be performed by using a digital oscilloscope in YT mode. (author). 6 refs., 2 tabs., 7 figs

  8. A Systematic Review of Wearable Patient Monitoring Systems - Current Challenges and Opportunities for Clinical Adoption.

    Science.gov (United States)

    Baig, Mirza Mansoor; GholamHosseini, Hamid; Moqeem, Aasia A; Mirza, Farhaan; Lindén, Maria

    2017-07-01

    The aim of this review is to investigate barriers and challenges of wearable patient monitoring (WPM) solutions adopted by clinicians in acute, as well as in community, care settings. Currently, healthcare providers are coping with ever-growing healthcare challenges including an ageing population, chronic diseases, the cost of hospitalization, and the risk of medical errors. WPM systems are a potential solution for addressing some of these challenges by enabling advanced sensors, wearable technology, and secure and effective communication platforms between the clinicians and patients. A total of 791 articles were screened and 20 were selected for this review. The most common publication venue was conference proceedings (13, 54%). This review only considered recent studies published between 2015 and 2017. The identified studies involved chronic conditions (6, 30%), rehabilitation (7, 35%), cardiovascular diseases (4, 20%), falls (2, 10%) and mental health (1, 5%). Most studies focussed on the system aspects of WPM solutions including advanced sensors, wireless data collection, communication platform and clinical usability based on a specific area or disease. The current studies are progressing with localized sensor-software integration to solve a specific use-case/health area using non-scalable and 'silo' solutions. There is further work required regarding interoperability and clinical acceptance challenges. The advancement of wearable technology and possibilities of using machine learning and artificial intelligence in healthcare is a concept that has been investigated by many studies. We believe future patient monitoring and medical treatments will build upon efficient and affordable solutions of wearable technology.

  9. Making green infrastructure healthier infrastructure

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2015-11-01

    Full Text Available Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  10. Making green infrastructure healthier infrastructure.

    Science.gov (United States)

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  11. Gap assessment in current soil monitoring networks across Europe for measuring soil functions

    Science.gov (United States)

    van Leeuwen, J. P.; Saby, N. P. A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R. P. O.; Spiegel, H.; Toth, G.; Creamer, R. E.

    2017-12-01

    Soil is the most important natural resource for life on Earth after water. Given its fundamental role in sustaining the human population, both the availability and quality of soil must be managed sustainably and protected. To ensure sustainable management we need to understand the intrinsic functional capacity of different soils across Europe and how it changes over time. Soil monitoring is needed to support evidence-based policies to incentivise sustainable soil management. To this aim, we assessed which soil attributes can be used as potential indicators of five soil functions; (1) primary production, (2) water purification and regulation, (3) carbon sequestration and climate regulation, (4) soil biodiversity and habitat provisioning and (5) recycling of nutrients. We compared this list of attributes to existing national (regional) and EU-wide soil monitoring networks. The overall picture highlighted a clearly unbalanced dataset, in which predominantly chemical soil parameters were included, and soil biological and physical attributes were severely under represented. Methods applied across countries for indicators also varied. At a European scale, the LUCAS-soil survey was evaluated and again confirmed a lack of important soil biological parameters, such as C mineralisation rate, microbial biomass and earthworm community, and soil physical measures such as bulk density. In summary, no current national or European monitoring system exists which has the capacity to quantify the five soil functions and therefore evaluate multi-functional capacity of a soil and in many countries no data exists at all. This paper calls for the addition of soil biological and some physical parameters within the LUCAS-soil survey at European scale and for further development of national soil monitoring schemes.

  12. Feedback from physical activity monitors is not compatible with current recommendations: A recalibration study.

    Science.gov (United States)

    Thompson, Dylan; Batterham, Alan M; Peacock, Oliver J; Western, Max J; Booso, Rahuman

    2016-10-01

    Wearable devices to self-monitor physical activity have become popular with individuals and healthcare practitioners as a route to the prevention of chronic disease. It is not currently possible to reconcile feedback from these devices with activity recommendations because the guidelines refer to the amount of activity required on top of normal lifestyle activities (e.g., 150 minutes of moderate-to-vigorous intensity activity per week over-and-above normal moderate-to-vigorous lifestyle activities). The aim of this study was to recalibrate the feedback from self-monitoring. We pooled data from four studies conducted between 2006 and 2014 in patients and volunteers from the community that included both sophisticated measures of physical activity and 10-year risk for cardiovascular disease and type 2 diabetes (n=305). We determined the amount of moderate-to-vigorous intensity activity that corresponded to FAO/WHO/UNU guidance for a required PAL of 1.75 (Total Energy Expenditure/Basal Metabolic Rate). Our results show that, at the UK median PAL, total moderate-to-vigorous intensity physical activity will be around 735 minutes per week (~11% of waking time). We estimate that a 4% increase in moderate-to-vigorous intensity activity will achieve standardised guidance from FAO/WHO/UNU and will require ~1000 minutes of moderate-to-vigorous intensity activity per week. This study demonstrates that feedback from sophisticated wearable devices is incompatible with current physical activity recommendations. Without adjustment, people will erroneously form the view that they are exceeding recommendations by several fold. A more appropriate target from self-monitoring that accounts for normal moderate-to-vigorous lifestyle activities is ~1000 minutes per week, which represents ~15% of waking time. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. VAMOS: The verification and monitoring options study: Current research options for in-situ monitoring and verification of contaminant remediation and containment within the vadose zone

    International Nuclear Information System (INIS)

    Betsill, J.D.; Gruebel, R.D.

    1995-09-01

    The Verification and Monitoring Options Study Project (VAMOS) was established to identify high-priority options for future vadose-zone environmental research in the areas of in-situ remediation monitoring, post-closure monitoring, and containment emplacement and verification monitoring. VAMOS examined projected needs not currently being met with applied technology in order to develop viable monitoring and verification research options. The study emphasized a compatible systems approach to reinforce the need for utilizing compatible components to provide user friendly site monitoring systems. To identify the needs and research options related to vadose-zone environmental monitoring and verification, a literature search and expert panel forums were conducted. The search included present drivers for environmental monitoring technology, technology applications, and research efforts. The forums included scientific, academic, industry, and regulatory environmental professionals as well as end users of environmental technology. The experts evaluated current and future monitoring and verification needs, methods for meeting these needs, and viable research options and directions. A variety of high-priority technology development, user facility, and technology guidance research options were developed and presented as an outcome of the literature search and expert panel forums

  14. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept

    Science.gov (United States)

    Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping

    2018-05-01

    We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  15. An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors.

    Science.gov (United States)

    Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.

  16. Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM concept

    Directory of Open Access Journals (Sweden)

    F. Ardhuin

    2018-05-01

    Full Text Available We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.

  17. DASISH Reference Model for SSH Data Infrastructures

    NARCIS (Netherlands)

    Fihn, Johan; Gnadt, Timo; Hoogerwerf, M.L.; Jerlehag, Birger; Lenkiewicz, Przemek; Priddy, M.; Shepherdson, John

    2016-01-01

    The current ”rising tide of scientific data” accelerates the need for e-infrastructures to support the lifecycle of data in research, from creation to reuse [RTW]. Different types of e-infrastructures address this need. Consortia like GÉANT and EGI build technical infrastructures for networking and

  18. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  19. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    Science.gov (United States)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  20. Monitoring of anticoagulant therapy in heart disease: considerations for the current assays.

    Science.gov (United States)

    Boroumand, Mohammadali; Goodarzynejad, Hamidreza

    2010-01-01

    Clinicians should be aware of new developments to familiarize themselves with pharmacokinetic and pharmacodynamic characteristics of new anticoagulant agents to appropriately and safely use them. For the moment, cardiologists and other clinicians also require to master currently available drugs, realizing the mechanism of action, side effects, and laboratory monitoring to measure their anticoagulant effects. Warfarin and heparin have narrow therapeutic window with high inter- and intra-patient variability, thereby the use of either drug needs careful laboratory monitoring and dose adjustment to ensure proper antithrombotic protection while minimizing the bleeding risk. The prothrombin time (PT) and the activated partial thromboplastin time (aPTT) are laboratory tests commonly used to monitor warfarin and heparin, respectively. These two tests depend highly on the combination of reagent and instrument utilized. Results for a single specimen tested in different laboratories are variable; this is mostly attributable to the specific reagents and to a much lesser degree to the instrument used. The PT stands alone as the single coagulation test that has undergone the most extensive attempt at assay standardization. The international normalized ratio (INR) was introduced to "normalize" all PT reagents to a World Health Organization (WHO) reference thromboplastin preparation standard, such that a PT measured anywhere in the world would result in an INR value similar to that which would have been achieved had the WHO reference thromboplastin been utilized. However, INRs are reproducible between laboratories for only those patients who are stably anticoagulated with vitamin K antagonists (VKAs) (i.e., at least 6 weeks of VKA therapy), and are not reliable or reproducible between laboratories for patients for whom VKA therapy has recently been started or any other clinical conditions associated with a prolonged PT such as liver disease, disseminated intravascular coagulation

  1. CERN printing infrastructure

    International Nuclear Information System (INIS)

    Otto, R; Sucik, J

    2008-01-01

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all (∼1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration

  2. CERN printing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Otto, R; Sucik, J [CERN, Geneva (Switzerland)], E-mail: Rafal.Otto@cern.ch, E-mail: Juraj.Sucik@cern.ch

    2008-07-15

    For many years CERN had a very sophisticated print server infrastructure [13] which supported several different protocols (AppleTalk, IPX and TCP/IP) and many different printing standards. Today's situation differs a lot: we have a much more homogenous network infrastructure, where TCP/IP is used everywhere and we have less printer models, which almost all work using current standards (i.e. they all provide PostScript drivers). This change gave us the possibility to review the printing architecture aiming at simplifying the infrastructure in order to achieve full automation of the service. The new infrastructure offers both: LPD service exposing print queues to Linux and Mac OS X computers and native printing for Windows based clients. The printer driver distribution is automatic and native on Windows and automated by custom mechanisms on Linux, where the appropriate Foomatic drivers are configured. Also the process of printer registration and queue creation is completely automated following the printer registration in the network database. At the end of 2006 we have moved all ({approx}1200) CERN printers and all users' connections at CERN to the new service. This paper will describe the new architecture and summarize the process of migration.

  3. [Intraoperative neurophysiological monitoring in Spain: its beginnings, current situation and future prospects].

    Science.gov (United States)

    Cortes-Donate, V E; Perez-Lorensu, P J; Garcia-Garcia, A; Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine, Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine; Sociedad Espanola de Neurofisiologia Clinica Senfc, Sociedad Espanola de Neurofisiologia Clinica Senfc; Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc, Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc

    2018-05-01

    Intraoperative neurophysiological monitoring (IONM) is nowadays another tool within the operating room that seeks to avoid neurological sequels derived from the surgical act. The Spanish Neurophysiological Intra-Surgical Monitoring Association (AMINE) in collaboration with the Spanish Society of Clinical Neurophysiology (SENFC), and the IONM Working Group of the SENFC has been collecting data in order to know the current situation of the IONM in Spain by hospitals, autonomous communities including the autonomous cities of Ceuta and Melilla, the opinions of the specialists in clinical neurophysiology involved in this topic and further forecasts regarding IONM. The data was gathered from November 2015 to May 2016 through telephone contact and/or email with specialists in clinical neurophysiology of the public National Health System, and through a computerized survey that also includes private healthcare centers. With the data obtained, from the perspective of AMINE and the SENFC we consider that nowadays the field of medicine covered by IONM is considerably large and it is foreseen that it will continue to grow. Therefore, a greater number of specialists in Clinical Neurophysiology will be required, as well as the need for specific training within the specialty that involves increasing the training period of MIRs based on competencies due to the increase in techniques/procedures, as well as its complexity.

  4. Development of a piping thickness monitoring system using equipotential switching direct current potential drop method

    International Nuclear Information System (INIS)

    Kyung Ha, Ryu; Na Young, Lee; Il Soon, Hwang

    2007-01-01

    As nuclear power plants age, low alloy steel piping undergoes wall thickness reduction due to Flow Accelerated Corrosion (FAC). Persisting pipe rupture accidents prompted thinned pipe management programs. As a consequence extensive inspection activities are made based on the Ultrasonic Technique (UT). As the inspection points increase, time is needed to cover required inspection areas. In this paper, we present the Wide Range Monitoring (WiRM) concept with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method by which FAC-active areas can be screened for detailed UT inspections. To apply ES-DCPD, we developed an electric resistance network model and electric field model based on Finite Element Analysis (FEA) to verify its feasibility. Experimentally we measured DCPD of the pipe elbow and confirmed the validity using UT inspections. For a more realistic validation test, we designed a high temperature flow test loop with environmental parameters turned for FAC simulation in the laboratory. Using electrochemical monitoring of water chemistry and local flow velocity prediction by computational fluid dynamic model, FAC rate is estimated. Based on the FAC prediction model and the simulation loop test, we plan to demonstrate the applicability of ES-DCPD in the PWR secondary environment. (authors)

  5. Coliform Bacteria Monitoring in Fish Systems: Current Practices in Public Aquaria.

    Science.gov (United States)

    Culpepper, Erin E; Clayton, Leigh A; Hadfield, Catherine A; Arnold, Jill E; Bourbon, Holly M

    2016-06-01

    Public aquaria evaluate coliform indicator bacteria levels in fish systems, but the purpose of testing, testing methods, and management responses are not standardized, unlike with the coliform bacteria testing for marine mammal enclosures required by the U.S. Department of Agriculture. An online survey was sent to selected aquaria to document current testing and management practices in fish systems without marine mammals. The information collected included indicator bacteria species, the size and type of systems monitored, the primary purpose of testing, sampling frequency, test methods, the criteria for interpreting results, corrective actions, and management changes to limit human exposure. Of the 25 institutions to which surveys were sent, 19 (76%) responded. Fourteen reported testing for fecal indicator bacteria in fish systems. The most commonly tested indicator species were total (86%) and fecal (79%) coliform bacteria, which were detected by means of the membrane filtration method (64%). Multiple types and sizes of systems were tested, and the guidelines for testing and corrective actions were highly variable. Only three institutions performed additional tests to confirm the identification of indicator organisms. The results from this study can be used to compare bacterial monitoring practices and protocols in fish systems, as an aid to discussions relating to the accuracy and reliability of test results, and to help implement appropriate management responses. Received August 23, 2015; accepted December 29, 2015.

  6. Condition monitoring of a wind turbine doubly-fed induction generator through current signature analysis

    Science.gov (United States)

    Artigao, Estefania; Honrubia-Escribano, Andres; Gomez-Lazaro, Emilio

    2017-11-01

    Operation and maintenance (O&M) of wind turbines is recently becoming the spotlight in the wind energy sector. While wind turbine power capacities continue to increase and new offshore developments are being installed, O&M costs keep raising. With the objective of reducing such costs, the new trends are moving from corrective and preventive maintenance toward predictive actions. In this scenario, condition monitoring (CM) has been identified as the key to achieve this goal. The induction generator of a wind turbine is a major contributor to failure rates and downtime where doubly-fed induction generators (DFIG) are the dominant technology employed in variable speed wind turbines. The current work presents the analysis of an in-service DFIG. A one-year measurement campaign has been used to perform the study. Several signal processing techniques have been applied and the optimal method for CM has been identified. A diagnosis has been reached, the DFIG under study shows potential gearbox damage.

  7. Monitoring And Recording Data For Solar Radiation Temperature And Charging Current

    Directory of Open Access Journals (Sweden)

    Aung Bhone Myint

    2015-08-01

    Full Text Available A data logger based on 8051 microcontroller has been implemented in this project to measure the solar radiation temperature and charging current. Development of a low-cost data logger can easily be made and easily be used to convert the analog signal of physical parameters of various test or other purposes of engineering. By using a suitable program code it can be used to read the value digitally with a PC. Our aim is to provide with a module and a software package when installed in a computer one can remotely acquire and monitor several numbers of the same or different types of signals sequentially at a time. Signals obtained from various sensors have been effectively conditioned. Now interfacing these signals using ADC with the Bluetooth module port of a computer satisfies the very goal of data acquisition. Proposed system provides better performance and has low cost versatile portable.

  8. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    Science.gov (United States)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  9. Continuous Glucose Monitoring: Current Use in Diabetes Management and Possible Future Applications.

    Science.gov (United States)

    Vettoretti, Martina; Cappon, Giacomo; Acciaroli, Giada; Facchinetti, Andrea; Sparacino, Giovanni

    2018-05-01

    The recent announcement of the production of new low-cost continuous glucose monitoring (CGM) sensors, the approval of marketed CGM sensors for making treatment decisions, and new reimbursement criteria have the potential to revolutionize CGM use. After briefly summarizing current CGM applications, we discuss how, in our opinion, these changes are expected to extend CGM utilization beyond diabetes patients, for example, to subjects with prediabetes or even healthy individuals. We also elaborate on how the integration of CGM data with other relevant information, for example, health records and other medical device/wearable sensor data, will contribute to creating a digital data ecosystem that will improve our understanding of the etiology and complications of diabetes and will facilitate the development of data analytics for personalized diabetes management and prevention.

  10. IrLaW an OGC compliant infrared thermography measurement system developed on mini PC with real time computing capabilities for long term monitoring of transport infrastructures

    Science.gov (United States)

    Dumoulin, J.; Averty, R.

    2012-04-01

    One of the objectives of ISTIMES project is to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, uncooled infrared camera is a promising technique due to its dissemination potential according to its relative low cost on the market. Infrared thermography, when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey), requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The system studied and developed uses a fast Ethernet camera FLIR A320 [1] coupled with a VAISALA WXT520 [2] weather station and a light GPS unit [3] for positioning and dating. It can be used with other Ethernet infrared cameras (i.e. visible ones) but requires to be able to access measured data at raw level. In the present study, it has been made possible thanks to a specific agreement signed with FLIR Company. The prototype system studied and developed is implemented on low cost small computer that integrates a GPU card to allow real time parallel computing [4] of simplified radiometric [5] heat balance using information measured with the weather station. An HMI was developed under Linux using OpenSource and complementary pieces of software developed at IFSTTAR. This new HMI called "IrLaW" has various functionalities that let it compliant to be use in

  11. Cyber and physical infrastructure interdependencies.

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  12. Carbon emissions of infrastructure development.

    Science.gov (United States)

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  13. Supervision of Equipment in O&M Infrastructure

    OpenAIRE

    Thyresson, Love

    2007-01-01

    The COMInf network is the infrastructure part of the operation and management system used for guarding the radio access networks developed by Ericsson. This thesis investigates the Ericsson COMInf network; identifies problems covering both functional as well as security aspects of the network and its current monitoring solution, and also presents a set of requirements and recommendations for a future network surveillance solution. As this thesis shows, the COMInf network today has limited fun...

  14. Narrating national geo information infrastructures : Balancing infrastructures and innovation

    NARCIS (Netherlands)

    Koerten, H.; Veenswijk, M.

    2009-01-01

    This paper examines narratives relating to the development of National Geo Information Infrastructures (NGII) in eth-nographic research on a Dutch NGII project which was monitored throughout its course. We used an approach which focuses on narratives concerning the environment, groups and practice

  15. USDA Foreign Agricultural Service overview for operational monitoring of current crop conditions and production forecasts.

    Science.gov (United States)

    Crutchfield, J.

    2016-12-01

    The presentation will discuss the current status of the International Production Assessment Division of the USDA ForeignAgricultural Service for operational monitoring and forecasting of current crop conditions, and anticipated productionchanges to produce monthly, multi-source consensus reports on global crop conditions including the use of Earthobservations (EO) from satellite and in situ sources.United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) International Production AssessmentDivision (IPAD) deals exclusively with global crop production forecasting and agricultural analysis in support of the USDAWorld Agricultural Outlook Board (WAOB) lockup process and contributions to the World Agricultural Supply DemandEstimates (WASE) report. Analysts are responsible for discrete regions or countries and conduct in-depth long-termresearch into national agricultural statistics, farming systems, climatic, environmental, and economic factors affectingcrop production. IPAD analysts become highly valued cross-commodity specialists over time, and are routinely soughtout for specialized analyses to support governmental studies. IPAD is responsible for grain, oilseed, and cotton analysison a global basis. IPAD is unique in the tools it uses to analyze crop conditions around the world, including customweather analysis software and databases, satellite imagery and value-added image interpretation products. It alsoincorporates all traditional agricultural intelligence resources into its forecasting program, to make the fullest use ofavailable information in its operational commodity forecasts and analysis. International travel and training play animportant role in learning about foreign agricultural production systems and in developing analyst knowledge andcapabilities.

  16. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  17. LCG/AA build infrastructure

    International Nuclear Information System (INIS)

    Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt

    2012-01-01

    The Software Process and Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.

  18. Transport infrastructure development in China

    Directory of Open Access Journals (Sweden)

    Bouraima Mouhamed Bayane

    2017-05-01

    Full Text Available This paper reviews the historical configuration process of transportation systems in China and examines the relationship between economic development and transport system at three different levels. The current status of transport infrastructure system development in China is summarized at national and regional level. The investment trends for transport infrastructure in China are also depicted. The keys issues relating to government initiatives are presented.

  19. Hydrology of and Current Monitoring Issues for the Chicago Area Waterway System, Northeastern Illinois

    Science.gov (United States)

    Duncker, James J.; Johnson, Kevin K.

    2015-10-28

    The Chicago Area Waterway System (CAWS) consists of a combination of natural and manmade channels that form an interconnected navigable waterway of approximately 90-plus miles in the metropolitan Chicago area of northeastern Illinois. The CAWS serves the area as the primary drainage feature, a waterway transportation corridor, and recreational waterbody. The CAWS was constructed by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). Completion of the Chicago Sanitary and Ship Canal (initial portion of the CAWS) in 1900 breached a low drainage divide and resulted in a diversion of water from the Lake Michigan Basin. A U.S. Supreme Court decree (Consent Decree 388 U.S. 426 [1967] Modified 449 U.S. 48 [1980]) limits the annual diversion from Lake Michigan. While the State of Illinois is responsible for the diversion, the MWRDGC regulates and maintains water level and water quality within the CAWS by using several waterway control structures. The operation and control of water levels in the CAWS results in a very complex hydraulic setting characterized by highly unsteady flows. The complexity leads to unique gaging requirements and monitoring issues. This report provides a general discussion of the complex hydraulic setting within the CAWS and quantifies this information with examples of data collected at a range of flow conditions from U.S. Geological Survey streamflow gaging stations and other locations within the CAWS. Monitoring to address longstanding issues of waterway operation, as well as current (2014) emerging issues such as wastewater disinfection and the threat from aquatic invasive species, is included in the discussion.

  20. Remote monitoring of implantable cardiac devices: current state and future directions.

    Science.gov (United States)

    Ganeshan, Raj; Enriquez, Alan D; Freeman, James V

    2018-01-01

    Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.

  1. Central Region Green Infrastructure

    Data.gov (United States)

    Minnesota Department of Natural Resources — This Green Infrastructure data is comprised of 3 similar ecological corridor data layers ? Metro Conservation Corridors, green infrastructure analysis in counties...

  2. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  3. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  4. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    Science.gov (United States)

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Therapeutic drug monitoring in pediatric IBD: current application and future perspectives.

    Science.gov (United States)

    Lega, Sara; Bramuzzo, Matteo; Dubinsky, Marla

    2017-09-11

    As the paradigm for IBD management is evolving from symptom control to the more ambitious goal of complete deep remission, the concept of personalized medicine, as a mean to deliver individualized treatment with the best effectiveness and safety profile, is becoming paramount. Therapeutic drug monitoring (TDM) is an essential part of personalized medicine wherein serum drug concentrations are used to guide drug dosing on an individual basis. The concept of TDM has been introduced in the field of IBD along with thiopurines, over a decade ago, and evolved around anti-TNFs therapies. In the era of biologics, TDM entered the clinical field to assist clinicians managing anti-TNF failure and its role is now moving toward the concept of "proactive" TDM with the goal to optimize drug exposure and prevent loss of response. Research in TDM is rapidly expanding: while the role of TDM with new biologics is under investigation, preliminary data suggest that software-systems support tools could be an opportunity to guide dosing choices and maximize the cost-benefit profile of therapies in the near future. The review discusses the current knowledge that poses the rationale for the use of TDM and the present and future role of TDM-based approaches in the management of pediatric IBD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Understanding the infrastructure of European Research Infrastructures

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Kropp, Kristoffer

    2017-01-01

    European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ER....... It is also a promising theoretical framework for addressing the relationship between the ERIC construct and the large diversity of European Research Infrastructures.......European Research Infrastructure Consortia (ERIC) are a new form of legal and financial framework for the establishment and operation of research infrastructures in Europe. Despite their scope, ambition, and novelty, the topic has received limited scholarly attention. This article analyses one ERIC...... became an ERIC using the Bowker and Star’s sociology of infrastructures. We conclude that focusing on ERICs as a European standard for organising and funding research collaboration gives new insights into the problems of membership, durability, and standardisation faced by research infrastructures...

  7. California Hydrogen Infrastructure Project

    Energy Technology Data Exchange (ETDEWEB)

    Heydorn, Edward C

    2013-03-12

    stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user's fueling experience.

  8. A simple and powerful XY-Type current monitor for 30 MeV IPEN/CNEN-SP cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Henrique; Matsuda, Hylton; Sumyia, Luiz Carlos do A.; Junqueira, Fernando de C.; Costa, Osvaldo L. da, E-mail: hbolivei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    A water-cooled XY-type current monitor was designed and built in the Cyclotrons Laboratory of the Nuclear and Energy Research Institute (IPEN). It is a very simple design and easily adaptable to the cyclotron beam lines. Tests were done demonstrating to be an instrument of great assistance in proton beam position along beam transport line and target port. Nowadays the XY-type current monitor has been widely used in {sup 18}F-FDG routine productions, employing irradiation system which were originally designed for productions on 18 MeV cyclotron accelerator only, however, applying the XY-type current monitor the target port may be exchanged between the 30 MeV and 18 MeV cyclotrons and the observed results are in perfect agreement with expected. (author)

  9. Current status of radon and radium monitoring at the Federal University of Technology (UTFPR), PR, Brazil

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Schelin, Hugo R.; Denyak, Valeriy; Barbosa, Laercio; Perna, Allan F.N.

    2011-01-01

    Numerous and systematic studies performed in different countries for many decades resulted in the explicit conclusion that radon exposure, as well as its progeny, is the main cause of lung cancer among non-smokers. All three natural radon isotopes ( 222 Rn, 220 Rn and 219 Rn) are produced in the three principal natural radioactive decay chains. Specifically, the 222 Rn is produced by the decay series of 238 U and proceeded from α-decay of 226 Ra. Current work describes the present status and obtained results concerning indoor radon survey in dwellings, radon in water supply and soil gas tests performed by the Laboratory of Applied Nuclear Physics of the Federal University of Technology (UTFPR) within Curitiba urban area. For radon in air activity measurements, it was used polycarbonate etched track detectors such as LEXAN (GE) and CR-39, mounted in diffusion chambers. For soil gas measurements, the experimental setup was based on the Professional Radon Monitor (AlphaGUARD, Genitron/SAPHYMO) connected to the air pump with filter vessels and to specially developed in our Laboratory the Soil Gas Probe. In the case of radon tests in drinking water, the experimental setup was based on the AlphaGUARD Radon monitor and Electronic radon detector RAD7 (Durridge Company, Inc.) connected to special kit of glass vessels through the air pump. Obtained results permitted to identify few dwellings where radon concentration in air was found bigger than 600 Bq/m 3 which is considered as the action level by most of the European Community and the World Health Organization (WHO). In the case of studied artesian wells, collected samples of water presented the average 222 Rn activity about 60 Bq/L which is 6 times bigger than maximum level recommended by USEPA. Some artesian wells presented the radon activity of almost 200 Bq/L. More over, it was identified the radioactivity of radium ( 226 Ra) salts which are soluble in water and almost all water samples presented results bigger than

  10. Inventory of current environmental monitoring projects in the US-Canadian transboundary region

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ballinger, M.Y.; Chapman, E.G.

    1986-05-01

    This document presents the results of a study commissioned to survey and summarize major environmental monitoring projects in the US-Canadian transboundary region. Projects with field sites located within 400 km (250 mi) of the border and active after 1980 were reviewed. The types of projects included: ambient air-quality monitoring, ambient water-quality monitoring, deposition monitoring, forest/vegetation monitoring and research, soil studies, and ecosystem studies. Ecosystem studies included projects involving the measurement of parameters from more than one monitoring category (e.g., studies that measured both water and soil chemistry). Individual descriptions were formulated for 184 projects meeting the spatial and temporal criteria. Descriptions included the official title for the project, its common abbreviation, program emphasis, monitoring site locations, time period conducted, parameters measured, protocols employed, frequency of sample collection, data storage information, and the principal contact for the project. A summary inventory subdivided according to the six monitoring categories was prepared using a computerized data management system. Information on major centralized data bases in the field of environmental monitoring was also obtained, and summary descriptions were prepared. The inventory and data base descriptions are presented in appendices to this document.

  11. The development of condition monitoring for the safety of rotating machine in PWR using motor current signature analysis

    International Nuclear Information System (INIS)

    Syaiful Bakhri

    2013-01-01

    Condition monitoring of rotating machine is essential to guarantee the safety operation as well as to improve the efficiency of nuclear power plants operations. One of the promising condition monitoring techniques which has been preferred currently since it is simple, non-invasive and inexpensive is Motor Stator Signature Analysis (MCSA). However, the investigation of the MCSA technique using a compact, low cost, and having industrial class hardware which is capable for nuclear power plant applications has been limited. The research is aimed to develop condition monitoring method based on MCSA utilizing a compact industrial class for nuclear power plant. The investigation includes development of condition monitoring based on real-time FPGA-CompatRIO hardware, development of a custom built display module for early warning system, testing of the monitoring hardware, fault frequency analysis of electric motors including the performances of fault detections. The condition monitoring system is able to execute a fault detection task around 164 ms, to recognize accurately fault frequencies of stator shorted turn for about 75%, broken rotor bar around 95%, eccentricity 65%, mechanical misalignment 85%, including supply voltage unbalances 100%. The condition monitoring system based on its performance assessments could become a suitable alternative not only for rotating machines but also condition monitoring for other nuclear reactor components. (author)

  12. CERN Infrastructure Evolution

    CERN Document Server

    Bell, Tim

    2012-01-01

    The CERN Computer Centre is reviewing strategies for optimizing the use of the existing infrastructure in the future, and in the likely scenario that any extension will be remote from CERN, and in the light of the way other large facilities are today being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote computer centres. This presentation will give the details on the project’s motivations, current status and areas for future investigation.

  13. International Conference on Durability of Critical Infrastructure

    CERN Document Server

    Cherepetskaya, Elena; Pospichal, Vaclav

    2017-01-01

    This book presents the proceedings of the International Conference on Durability of Critical Infrastructure. Monitoring and Testing held in Satov, Czech Republic from 6 to 9 December 2016. It discusses the developments in the theoretical and practical aspects in the fields of Safety, Sustainability and Durability of the Critical Infrastructure. The contributions are dealing with monitoring and testing of structural and composite materials with a new methods for their using for protection and prevention of the selected objects.

  14. Requirements for flexible learner monitoring

    NARCIS (Netherlands)

    Glahn, Christian; Specht, Marcus; Koper, Rob

    2007-01-01

    Glahn, C., Specht, M., & Koper, R. (2007). Requirements for flexible learner monitoring. In T. Navarette, J. Blat & R. Koper (Eds.). Proceedings of the 3rd TENCompetence Open Workshop 'Current Research on IMS Learning Design and Lifelong Competence Development Infrastructures' (pp. 89-96). June,

  15. Current and future technologies for remote monitoring in cardiology and evidence from trial data.

    Science.gov (United States)

    Acosta-Lobos, Andres; Riley, Jillian P; Cowie, Martin R

    2012-05-01

    All major manufacturers of implantable pacing or defibrillator technologies support remote monitoring of their devices. Integration of signals from several monitored variables can facilitate earlier detection of arrhythmia or technical problems, and can also identify patients at risk of deterioration. Meta-analyses of randomized studies of remote monitoring of heart failure using standalone systems suggest considerable clinical benefit when compared with usual care. However, there may be little to be gained by frequently monitoring patients with well-treated stable disease. Trials of implantable monitoring-only devices suggest that there is a subgroup of patients that may benefit from such remote monitoring. Remote monitoring is still not widely adopted due to a number of social, technological and reimbursement issues, but this is likely to change rapidly. Remote monitoring will not replace face-to-face clinical review, but it will be part of the solution to ever increasing numbers of patients with heart failure and/or an implantable device requiring expert input to their care.

  16. MAGNET / INFRASTRUCTURE

    CERN Multimedia

    D. Campi

    The final fast discharge of the Magnet took place on 3rd of November. The Coil reached a temperature of 70K by internal energy dissipation. By injecting a current of 200 A room temperature was reached on the 23rd November. During the heating of the coil un-connecting of the first magnet connectors on YBO was started to give the earliest possible access to the assembly groups and to continue the installation of the muon chambers. The removal of the pumping lines and the disconnection of the vacuum system was instead done as soon as the room temperature was reached: more precisely from the 4 to the 18 December. The disconnection of the transfer line from the cold box and the completion of the removal of the control cables of the vacuum system and cryogenics was done at last. In January 2007 the disconnection of MCS-MSS, CDS, vacuum racks and their cable trays was also achieved. After coil disconnection the effort of the magnet team has been mainly devoted in optimizing the lowering and reassembly of the a...

  17. One-by-one single-molecule detection of mutated nucleobases by monitoring tunneling current using a DNA tip.

    Science.gov (United States)

    Bui, Phuc Tan; Nishino, Tomoaki; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2015-01-31

    A DNA molecule was utilized as a probe tip to achieve single-molecule genetic diagnoses. Hybridization of the probe and target DNAs resulted in electron tunneling along the emergent double-stranded DNA. Simple stationary monitoring of the tunneling current leads to single-molecule DNA detection and discovery of base mismatches and methylation.

  18. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  19. The EGEE user support infrastructure

    CERN Document Server

    Antoni, Torsten

    2008-01-01

    Grid user support is a challenging task due to the distributed nature of the Grid. The variety of users and Virtual Organisations adds further to the challenge. Support requests come from Grid beginners, from users with specific applications, from site administrators, or from Grid monitoring operators. With the GGUS infrastructure, EGEE provides a portal where users can find support in their daily use of the Grid. The current use of the system shows that the goal has been achieved with success. The Grid user support model in EGEE can be captioned "regional support with central coordination". This model is realised through a support process which is clearly defined and involves all the parties that are needed to run a project-wide support service. This process is sustained by a help desk system which consists of a central platform integrated with several satellite systems belonging to the Regional Operations Centres (ROCs) and the Virtual Organisations (VOs). The central system (Global Grid User Support, GGUS)...

  20. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations

    Science.gov (United States)

    Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta

    2018-02-01

    The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.

  1. Building climate change into infrastructure codes and standards

    International Nuclear Information System (INIS)

    Auld, H.; Klaasen, J.; Morris, R.; Fernandez, S.; MacIver, D.; Bernstein, D.

    2009-01-01

    'Full text:' Building codes and standards and the climatic design values embedded within these legal to semi-legal documents have profound safety, health and economic implications for Canada's infrastructure systems. The climatic design values that have been used for the design of almost all of today's more than $5.5 Trillion in infrastructure are based on historical climate data and assume that the extremes of the past will represent future conditions. Since new infrastructure based on codes and standards will be built to survive for decades to come, it is critically important that existing climatic design information be as accurate and up-to-date as possible, that the changing climate be monitored to detect and highlight vulnerabilities of existing infrastructure, that forensic studies of climate-related failures be undertaken and that codes and standards processes incorporate future climates and extremes as much as possible. Uncertainties in the current climate change models and their scenarios currently challenge our ability to project future extremes regionally and locally. Improvements to the spatial and temporal resolution of these climate change scenarios, along with improved methodologies to treat model biases and localize results, will allow future codes and standards to better reflect the extremes and weathering conditions expected over the lifespan of structures. In the meantime, other information and code processes can be used to incorporate changing climate conditions into upcoming infrastructure codes and standards, to “bridge” the model uncertainty gap and to complement the state of existing projections. This presentation will outline some of the varied information and processes that will be used to incorporate climate change adaptation into the next development cycle of the National Building Code of Canada and numerous other national CSA infrastructure standards. (author)

  2. Monitoring of radioactivity in the UK environment: an annotated bibliography of current programmes

    International Nuclear Information System (INIS)

    Cotter, A.J.R.; Hunt, G.J.

    1992-01-01

    In the UK, many organisations carry out regular radioactivity monitoring programmes, and summaries of these programmes have been published in 1983 and 1988. The number of organisations carrying out radioactivity monitoring has increased rapidly in recent years, particularly in the local authority sector. The present report updates the previous summarises in the form of an annotated bibliography, giving synopses of all regular UK programmes whose results are published in report form. (author)

  3. Monitoring techniques for the impact assessment during nuclear and radiological emergencies: current status and the challenges

    International Nuclear Information System (INIS)

    Pradeepkumar, K.S.; Sharma, D.N.

    2003-01-01

    Preparedness and response capability for Nuclear and Radiological emergencies, existing world over, are mainly based on the requirement of responding to radiation emergency caused by nuclear or radiological accidents. Cosmos satellite accident, plutonium contamination at Polaris, nuclear accidents like Kystium, Windscale, TMI and Chernobyl, radiological accidents at Goiania etc have demonstrated the requirement of improved radiation monitoring techniques. For quick decision making, state of the art monitoring methodology which can support quantitative and qualitative impact assessment is essential. Evaluation of radiological mapping of the area suspected to be contaminated needs ground based as well as aerial based monitoring systems to predict the level of radioactive contamination on ground. This will help in delineating the area and deciding the required countermeasures, based on the quantity and type of radionuclides responsible for it. The response can be successful with the effective use of i) Early Warning System ii) Mobile Monitoring System and iii) Aerial Gamma Spectrometric System. Selection of the monitoring methodology and survey parameters and assessment of situation using available resources etc. are to be optimized depending on the accident scenario. Recently, many countries and agencies like IAEA have expressed the requirement for responding to other types of nuclear/radiological emergencies i.e, man made radiation emergency situations aimed at harming public at large that can also lead to environmental contamination and significant exposure to public. Reports of lost / misplaced / stolen radioactive sources from many countries are alarming as safety and security of these radioactive sources are under challenge. The monitoring methodology has to take into account of the increase in such demands and more periodic monitoring in suspected locations is to be carried out. Detection of orphan sources possible amidst large heap of metallic scraps may pose

  4. Development of a highly sensitive current and position monitor with HTS squids and an HTS magnetic shield

    International Nuclear Information System (INIS)

    Watanabe, T.; Ikeda, T.; Kase, M.; Yano, Y.; Watanabe, S.; Sasaki, Y.; Kawaguchi, T.

    2005-01-01

    A highly sensitive current and position monitor with HTS (High-Temperature Superconducting) SQUIDs (Superconducting QUantum Interference Device) and an HTS magnetic shield for the measurement of the intensity of faint beams, such as a radioisotope beam, has been developed for the RIKEN RI beam factory project. The HTS magnetic shield and the HTS current sensor including the HTS SQUID are cooled by a low-vibration pulse-tube refrigerator. Both the HTS magnetic shield and the HTS current sensor were fabricated by dip-coating a thin Bi 2 -Sr 2 -Ca 2 -Cu 3 -O x (Bi-2223) layer on 99.9% MgO ceramic substrates. The HTS technology enables us to develop a system equipped with a downsized and highly sensitive current monitor. Recently, a prototype system was completed and installed in the beam transport line of the RIKEN Ring Cyclotron to measure the DC-current of high-energy heavy-ion beams. As a result, we succeeded in measuring the intensity of the 600 nA 40 Ar 17+ beam (95 MeV/u). We describe the present status of the monitor system and the results of the beam measurements. (author)

  5. The current situation of personal dose monitoring in Chinese medicine radiation and undamaged detection

    International Nuclear Information System (INIS)

    Zhang Liangan; Zhang Wenyi; Yuan Shuyu; Song Shijun; Chang Hexin; Sun Kai

    1993-01-01

    The situation of personal dose monitoring in γ(X) external exposure in China is mainly outlined. Thermoluminescent dosimetry (TLD) was adopted for personal dose measurement of the radiation workers. The computer software and data base for the work have been developed and applied. National intercomparison of TLD, monitoring control of personal dose monitoring in field, and technical training were carried out for quality control. In China, the dominant occupational exposures is X-ray diagnosis and it increases year by year, the highest values is about 22.6%. The highest values of annual collective dose and annual average of individual dose (AAID) are 272.8 man·Sv and 3.21 mSv respectively. This work shows that the fraction of the population receiving high dose is decreased with time rapidly. The situation for whole occupational exposures is also described. (3 tabs.)

  6. Strengthening the sports data infrastructure

    NARCIS (Netherlands)

    Annet Tiessen-Raaphorst; Jos de Haan; with contributions from Remco van den Dool

    2012-01-01

    Original title: Versterking data-infrastructuur sport Sports research in the Netherlands has developed rapidly over the last ten years; strengthening the data infrastructure will facilitate its further growth in the future. Currently, however, there is no clear overall picture of the available

  7. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    Science.gov (United States)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  8. Permafrost Hazards and Linear Infrastructure

    Science.gov (United States)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  9. Sustainable Water Infrastructure

    Science.gov (United States)

    Resources for state and local environmental and public health officials, and water, infrastructure and utility professionals to learn about sustainable water infrastructure, sustainable water and energy practices, and their role.

  10. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  11. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  12. Test of a non-invasive bunch shape monitor at the GSI high current LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, Benjamin; Forck, Peter; Kester, Oliver [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Institut fuer Angewandte Physik, Goethe Universitaet Frankfurt (Germany); Dorn, Christoph; Kowina, Piotr [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2014-07-01

    At the heavy ion LINAC at GSI, a novel scheme of non-invasive Bunch Shape Monitor has been tested with several ion beams at 11.4 MeV/u. Caused by the beam impact on the residual gas, secondary electrons are liberated. These electrons are accelerated by an electrostatic field, transported through a sophisticated electrostatic energy analyzer and an rf-deflector, acting as a time-to-space converter. Finally a MCP detects the electron distribution. For the applied beam settings this Bunch Shape Monitor is able to obtain longitudinal profiles down to 400 ps with a resolution of 50 ps, corresponding to 2 degree of the 36 MHz acceleration frequency. During a long shutdown period for the GSI accelerators in 2013, the monitor underwent a general technical retrofit: Influence of the beam has been significantly reduced, due enhanced electrodes, new apertures have been installed to decrease electron scattering, sophisticated stepping motors will allow better image properties, a MCP shielding plate will prevent high background. Together with these improvements the achievements of the monitor are discussed.

  13. Operating results for the beam profile monitor system currently in use at Bevalac Facility

    International Nuclear Information System (INIS)

    Stover, G.; Fowler, K.

    1987-03-01

    Three stations of a soon to be completed multi-station, multi-wire beam monitoring system have been installed in the Bevalac transfer line. The following article will provide a cursory analysis of the electronic circuitry, discuss new design additions and summarize the operating results obtained over the last year

  14. Self-Monitoring Interventions for Students with Behavior Problems: A Systematic Review of Current Research

    Science.gov (United States)

    Bruhn, Allison; McDaniel, Sara; Kreigh, Christi

    2015-01-01

    Explicitly teaching skills associated with self-determination has been promoted to support students' independence and control over their own lives. This is especially important for students with behavior problems. One self-determination skill or behavior that has been studied widely is self-monitoring. Although multiple reviews of various…

  15. National inventory of selected biological monitoring programs. Summary report of current or recently completed projects, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, H. T.

    1976-10-01

    The Inventory has resulted in establishment of a series of data bases containing biological monitoring information of varying types, namely, directory of investigators, record of projects received from mail questionnaire, detailed description of selected biomonitoring projects, and bibliographic citations supporting the projects received. This report contains detailed descriptions of selected biomonitoring projects organized on a state-by-state basis and with appropriate indices.

  16. Electrical - light current remote monitoring, control and automation. [Coal mine, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, C H

    1981-06-01

    A brief discussion is given of the application of control monitoring and automation techniques to coal mining in the United Kingdom, especially of the use of microprocessors, for the purpose of enhancing safety and productivity. Lighting systems for the coal mine is similarly discussed.

  17. Microbiological Monitoring for the Constellation Program: Current Requirements and Future Considerations

    Science.gov (United States)

    Ott, C. Mark

    2007-01-01

    Microbiological requirements for spaceflight are based on assessments of infectious disease risk which could impact crew health or mission success. The determination of risk from infectious disease is composed of several factors including (1) crew susceptibility, (2) crew exposure to the infectious disease agent, (3) the concentration of the infectious agent, and (4) the characteristics of the infectious agent. As a result of the Health Stabilization Program, stringent monitoring, and cleaning protocols, in-flight environmental microbial monitoring is not necessary for short-duration spaceflights. However, risk factors change for long-duration missions, as exemplified by the presence of medically significant organisms in the environments of both the Mir and International Space Station (ISS). Based upon this historical evidence, requirements for short duration usage aboard the Orion Crew Exploration Vehicle and Lunar Lander Vehicle will not require in-flight monitoring; however, as mission duration increases with a Lunar Outpost, an ability to detect microbial hazard will be necessary. The nature of the detection requirements will depend on the maturity of technology in a rapidly evolving marketplace. Regardless, the hardware will still need to maximize information to discipline experts and the crew, while minimizing the size, mass, power consumption, and crew time usage. The refinement of these monitors will be a major goal in our efforts to travel successfully to Mars.

  18. Anticipating Interruptions. Security and risk in a liberalized electricity infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Silvast, A.

    2013-11-01

    During the past ten years, a number of social scientists have emphasized the importance of material infrastructures like electricity supply as a research topic for the social sciences. The developing of such new perspectives concerning infrastructures also includes uncertainties and risks. This research analyzes the management of uncertainties in the Finnish electricity infrastructure by posing the following research question: how are electricity interruptions, or blackouts, anticipated in Finland and how are these interruptions managed as risks? The main research methodology of the work is multi-sited field work. The empirical materials include interviews with experts and lay people (33 interviews); participant observation in two electricity control rooms; an electricity consumer survey (115 respondents); and also a number of infrastructure and security policy documents and observations from electricity security seminars. The materials were primarily gathered between 2004 and 2008. Social science research often links risks with major current social changes or socio-cultural risk perceptions. In recent international social science discussions, however, a new research topic has emerged - those styles of reasoning and techniques of governance that are deployed to manage risk as a practical matter. My study explores these themes empirically by focusing on the specific habitual practices of risk management in the Finnish electricity infrastructure. The work develops various also semi-ethnographic inquiries into infrastructure risk techniques like monitor screening of real-time risks in electricity control rooms; the management of risks in a liberalized electricity market; the emergence of Finnish reasoning about blackouts from a specific historical background; and the ways in which electricity consumers respond to blackouts in their homes. In addition, the work reflects upon the position of a risk researcher in those situations when the research subjects do not define

  19. Monitoring van de veiligheidskwaliteit van weginfrastructuur en fietsinfrastructuur : proefmetingen in een aantal regio's.

    NARCIS (Netherlands)

    Dijkstra, A. Wijlhuizen, G.J. & Aarts, L.T.

    2015-01-01

    Monitoring the safety of road infrastructure and cycling infrastructure : pilots in a number of Dutch regions. Currently, data on road crash casualties provide local authorities with insufficient starting points for their road safety policy. The regional road safety bodies of the Dutch provinces of

  20. VM-based infrastructure for simulating different cluster and storage solutions in ATLAS

    CERN Document Server

    KUTOUSKI, M; The ATLAS collaboration; PETROSYAN, A; KADOCHNIKOV, I; BELOV, S; KORENKOV, V

    2012-01-01

    The current ATLAS Tier3 infrastructure consists of a variety of sites of different sizes and with a mix of local resource management systems (LRMS) and mass storage system (MSS) implementations. The Tier3 monitoring suite, having been developed in order to satisfy the needs of Tier3 site administrators and to aggregate Tier3 monitoring information on the global VO level, needs to be validated for various combinations of LRMS and MSS solutions along with the corresponding Ganglia and/or Nagios plugins. For this purpose the Testbed infrastructure, which allows simulation of various computational cluster and storage solutions, had been set up at JINR (Dubna). This infrastructure provides the ability to run testbeds with various LRMS and MSS implementations, and with the capability to quickly redeploy particular testbeds or their components. Performance of specific components is not a critical issue for development and validation, whereas easy management and deployment are crucial. Therefore virtual machines were...

  1. Support Process Development for Assessing Green Infrastructure in Omaha, NE

    Science.gov (United States)

    Evaluates Omaha’s current process for assessing green infrastructure projects and recommends improvements for comparing green and gray infrastructure. Compares Omaha’s design criteria to other cities. Reviews other US programs with rights-of-way criteria.

  2. Nordic research infrastructures for plant phenotyping

    Directory of Open Access Journals (Sweden)

    Kristiina Himanen

    2018-03-01

    Full Text Available Plant phenomics refers to the systematic study of plant phenotypes. Together with closely monitored, controlled climates, it provides an essential component for the integrated analysis of genotype-phenotype-environment interactions. Currently, several plant growth and phenotyping facilities are under establishment globally, and numerous facilities are already in use. Alongside the development of the research infrastructures, several national and international networks have been established to support shared use of the new methodology. In this review, an overview is given of the Nordic plant phenotyping and climate control facilities. Since many areas of phenomics such as sensor-based phenotyping, image analysis and data standards are still developing, promotion of educational and networking activities is especially important. These facilities and networks will be instrumental in tackling plant breeding and plant protection challenges. They will also provide possibilities to study wild species and their ecological interactions under changing Nordic climate conditions.

  3. Infrastructure for the Geospatial Web

    Science.gov (United States)

    Lake, Ron; Farley, Jim

    Geospatial data and geoprocessing techniques are now directly linked to business processes in many areas. Commerce, transportation and logistics, planning, defense, emergency response, health care, asset management and many other domains leverage geospatial information and the ability to model these data to achieve increased efficiencies and to develop better, more comprehensive decisions. However, the ability to deliver geospatial data and the capacity to process geospatial information effectively in these domains are dependent on infrastructure technology that facilitates basic operations such as locating data, publishing data, keeping data current and notifying subscribers and others whose applications and decisions are dependent on this information when changes are made. This chapter introduces the notion of infrastructure technology for the Geospatial Web. Specifically, the Geography Markup Language (GML) and registry technology developed using the ebRIM specification delivered from the OASIS consortium are presented as atomic infrastructure components in a working Geospatial Web.

  4. Current strategies for monitoring men with localised prostate cancer lack a strong evidence base: observational longitudinal study.

    Science.gov (United States)

    Metcalfe, C; Tilling, K; Davis, M; Lane, J A; Martin, R M; Kynaston, H; Powell, P; Neal, D E; Hamdy, F; Donovan, J L

    2009-08-04

    The UK National Institute for Health and Clinical Excellence (NICE) guidance recommends conservative management of men with 'low-risk' localised prostate cancer, monitoring the disease using prostate-specific antigen (PSA) kinetics and re-biopsy. However, there is little evidence of the changes in PSA level that should alert to the need for clinical re-assessment. This study compares the alerts resulting from PSA kinetics and a novel longitudinal reference range approach, which incorporates age-related changes, during the monitoring of 408 men with localised prostate cancer. Men were monitored by regular PSA tests over a mean of 2.9 years, recording when a man's PSA doubling time fell below 2 years, PSA velocity exceeded 2 ng ml(-1) per year, or when his upper 10% reference range was exceeded. Prostate-specific antigen doubling time and PSA velocity alerted a high proportion of men initially but became unresponsive to changes with successive tests. Calculating doubling time using recent PSA measurements reduced the decline in response. The reference range method maintained responsiveness to changes in PSA level throughout the monitoring. The increasing unresponsiveness of PSA kinetics is a consequence of the underlying regression model. Novel methods are needed for evaluation in cohorts currently being managed by monitoring. Meanwhile, the NICE guidance should be cautious.

  5. Current state in the research on electronic monitoring systems for the security and flow of objects and individuals

    Directory of Open Access Journals (Sweden)

    Man Dietrich Marcela

    2017-01-01

    Full Text Available This paper sets forth the current state of security systems in prisons from Romania and around the world, particularly aiming electronic systems of monitoring the flow of people, materials control and perimeter security, focusing on the research results concluded by motion detection tests and devices. The currently used systems were observed in order to put an analysis of the methodology together and implement and perfect these systems in protected areas. The protection of citizens must be performed to the extent that is allowed by the legislation.

  6. Experiment study on four button electrode used to monitor position of high current electron-beam

    International Nuclear Information System (INIS)

    Xu Tiezheng; Wang Huacen; Xie Yutong; Zhang Wenwei

    2004-01-01

    The button electrode is one that widely used in high energy accelerators, such as storage ring, and the button electrode has many merit like high accuracy, high resolution, resisting magnetic field, simple machinery, without magnetic core and low cost, etc. It's helpful that the button electrode is used as the beam position monitor in the linear induction accelerator. The experimental facilities have been designed and set up and it can simulate the beam of linear induction accelerator. The button electrode beam position monitor experiment have been done on the experimental facilities. The result of the experiment prove that the button electrode has an accuracy of 0.5 mm, and can reflect the wave of electron-beam accurately

  7. FerryBox-assisted monitoring of mixed layer pH in the Norwegian Coastal Current

    OpenAIRE

    Reggiani, Emanuele R.; King, Andrew L.; Norli, Marit; Jaccard, Pierre; Sørensen, Kai; Bellerby, Richard G.J.

    2016-01-01

    The evaluation of marine carbonate system variability and the impacts of ocean acidification (OA) on coastal marine ecosystems increasingly rely on monitoring platforms capable of delivering near real-time in situ carbonate system observations. These observations are also used for developing models and scenarios of OA, including potential impacts on marine ecosystem structure and function. An embedded flow-through spectrophotometric pH detection system has been developed alongside an underway...

  8. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  9. An "Off-the-Shelf" System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy.

    Science.gov (United States)

    Neal, Robert E; Kavnoudias, Helen; Thomson, Kenneth R

    2015-06-01

    Irreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators. We describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator. Accuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues. This system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents-sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  10. Current development of radon and radium monitoring at the Federal University of Technology (UTFPR)

    Energy Technology Data Exchange (ETDEWEB)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Claro, Flavia Del; Perna, Allan F.N.; Reque, Marilson; Levchuk, Leonid, E-mail: sergei@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com, E-mail: flavia_delclaro@yahoo.com.br [Universidade Federal Tecnologica do Parana (UTFPR), Curitiba, PR (Brazil); Denyak, Valeriy; Schelin, Hugo R. [Instituto de Pesquisa Pele Pequeno Principe, Curitiba, PR (Brazil); Rocha, Zildete; Santos, Talita O., E-mail: rochaz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The present work describes the principal results concerning the radon and radium measurements at Curitiba (PR) urban area during the last decade. The monitoring was performed in cooperation with the Center of Nuclear Technology Development (CDTN/CNEN). For radon in air activity measurements, it was used polycarbonate etched track detectors such as LEXAN and CR-39, mounted in diffusion chambers. For soil gas measurements, the experimental setup was based on the Professional AlphaGUARD Radon Monitor connected to the Soil Gas Probe, filter vessels and air pump (AlphaPUMP), following the recommended protocols elaborated in the Soil-Gas Radon Intercomparison Measurements performed at different Countries of the world. In the case of radon tests in drinking water, the experimental setup was based on the AlphaGUARD Radon monitor and Electronic Radon Detector RAD7 connected to a special kit of glass vessels through the air pump. The obtained results permitted to identify few dwellings where radon concentration in air was found bigger than 600 Bq/m{sup 3}, that is considered as the action level by most of the European Community and the World Health Organization (WHO). In the case of well water, collected samples presented the average Rn-222 activity of about 60 Bq/L, that is 6 times bigger than the maximum level recommended by USEPA. Some artesian wells presented radon activity of almost 200 Bq/L. More over, almost all water samples presented the radioactivity of radium (Ra-226) salts bigger than the upper limit for global alpha radioactivity of potable water established by the Norms and Regulation of the Brazilian Ministry of Health. (author)

  11. Current development of radon and radium monitoring at the Federal University of Technology (UTFPR)

    International Nuclear Information System (INIS)

    Paschuk, Sergei A.; Correa, Janine N.; Kappke, Jaqueline; Claro, Flavia Del; Perna, Allan F.N.; Reque, Marilson; Levchuk, Leonid; Denyak, Valeriy; Schelin, Hugo R.; Rocha, Zildete; Santos, Talita O.

    2013-01-01

    The present work describes the principal results concerning the radon and radium measurements at Curitiba (PR) urban area during the last decade. The monitoring was performed in cooperation with the Center of Nuclear Technology Development (CDTN/CNEN). For radon in air activity measurements, it was used polycarbonate etched track detectors such as LEXAN and CR-39, mounted in diffusion chambers. For soil gas measurements, the experimental setup was based on the Professional AlphaGUARD Radon Monitor connected to the Soil Gas Probe, filter vessels and air pump (AlphaPUMP), following the recommended protocols elaborated in the Soil-Gas Radon Intercomparison Measurements performed at different Countries of the world. In the case of radon tests in drinking water, the experimental setup was based on the AlphaGUARD Radon monitor and Electronic Radon Detector RAD7 connected to a special kit of glass vessels through the air pump. The obtained results permitted to identify few dwellings where radon concentration in air was found bigger than 600 Bq/m 3 , that is considered as the action level by most of the European Community and the World Health Organization (WHO). In the case of well water, collected samples presented the average Rn-222 activity of about 60 Bq/L, that is 6 times bigger than the maximum level recommended by USEPA. Some artesian wells presented radon activity of almost 200 Bq/L. More over, almost all water samples presented the radioactivity of radium (Ra-226) salts bigger than the upper limit for global alpha radioactivity of potable water established by the Norms and Regulation of the Brazilian Ministry of Health. (author)

  12. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    Full Text Available Traumatic brain injury (TBI is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key

  13. Circuitry for monitoring a high direct current voltage supply for an ionization chamber

    International Nuclear Information System (INIS)

    1981-01-01

    An arrangement to measure the voltage of the supply and a switching means controlled by this is described. The voltage measurer consists of first and second signal coupling means, the input of the second (connected to the voltage supply) is connected in series with the output of the first. An ionization chamber with this circuitry may be used to monitor the radiation output of a particle accelerator more accurately. Faulty measurements of the dose output, caused by voltages in the earth circuit, are avoided. (U.K.)

  14. An “Off-the-Shelf” System for Intraprocedural Electrical Current Evaluation and Monitoring of Irreversible Electroporation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Robert E., E-mail: Robert.Neal@alfred.org.au; Kavnoudias, Helen; Thomson, Kenneth R. [The Alfred Hospital, Radiology Research Unit, Department of Radiology (Australia)

    2015-06-15

    IntroductionIrreversible electroporation (IRE) ablation uses a series of brief electric pulses to create nanoscale defects in cell membranes, killing the cells. It has shown promise in numerous soft-tissue tumor applications. Larger voltages between electrodes will increase ablation volume, but exceeding electrical limits may risk damage to the patient, cause ineffective therapy delivery, or require generator restart. Monitoring electrical current for these conditions in real-time enables managing these risks. This capacity is not presently available in clinical IRE generators.MethodsWe describe a system using a Tektronix TCP305 AC/DC Current Probe connected to a TCPA300 AC/DC Current Probe Amplifier, which is read on a computer using a Protek DSO-2090 USB computer-interfacing oscilloscope. Accuracy of the system was tested with a resistor circuit and by comparing measured currents with final outputs from the NanoKnife clinical electroporation pulse generator.ResultsAccuracy of measured currents was 1.64 ± 2.4 % relative to calculations for the resistor circuit and averaged 0.371 ± 0.977 % deviation from the NanoKnife. During clinical pulse delivery, the system offers real-time evaluation of IRE procedure progress and enables a number of methods for identifying approaching issues from electrical behavior of therapy delivery, facilitating protocol changes before encountering therapy delivery issues.ConclusionsThis system can monitor electrical currents in real-time without altering the electric pulses or modifying the pulse generator. This facilitates delivering electric pulse protocols that remain within the optimal range of electrical currents—sufficient strength for clinically relevant ablation volumes, without the risk of exceeding safe electric currents or causing inadequate ablation.

  15. Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review

    Directory of Open Access Journals (Sweden)

    Shucai Li

    2015-08-01

    Full Text Available Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection; with this method, the flanking interference can be reduced and the detection distance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1 available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM, (2 high-resolution detection method in holes, (3 four-dimensional (4D monitoring technology for water inrush sources, and (4 estimation of water volume in water-bearing structures.

  16. New insights from direct monitoring of turbidity currents; and a proposal for co-ordinating international efforts at a series of global "turbidity current test sites"

    Science.gov (United States)

    Talling, Peter

    2015-04-01

    Turbidity currents, and other types of submarine sediment density flow, arguably redistribute more sediment across the surface of the Earth than any other flow process. It is now over 60 years since the seminal publication of Kuenen and Migliorini (1950) in which they made the link between sequences of graded bedding and turbidity currents. The deposits of submarine sediment density flows have been described in numerous locations worldwide, and this might lead to the view that these flows are well understood. However, it is sobering to note quite how few direct measurements we have from these submarine flows in action. Sediment concentration is the critical parameter controlling such flows, yet it has never been measured directly for flows that reach and build submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical simulations or analytical models? It is proposed here that international efforts are needed for an initiative to monitor active turbidity currents at a series of 'test sites' where flows occur frequently. The flows evolve significantly, such that source to sink data are needed. We also need to directly monitor flows in different settings with variable triggering factors and flow path morphologies because their character can vary significantly. Such work should integrate numerical and physical modelling with the collection of field observations in order to understand the significance of field observations. Such an international initiative also needs to include coring of deposits to link flow processes to deposit character, because in most global locations flow behaviour must be inferred from deposits alone. Collection of seismic datasets is also crucial for understanding the larger-scale evolution and resulting architecture of these systems, and to link with studies of subsurface reservoirs. Test site datasets should thus include a wide range of data types, not just from direct flow

  17. Intelligent Structural Health Management of Civil Infrastructure

    Science.gov (United States)

    2012-10-19

    The collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing interest in the : development of reliable techniques for evaluating the structural integrity of civil infrastructure. Current inspection : techniques tailored to ...

  18. Second annual Transportation Infrastructure Engineering Conference.

    Science.gov (United States)

    2013-10-01

    The conference will highlight a few of the current projects that have been sponsored by the Center for Transportation : Infrastructure and Safety (CTIS), a national University Transportation Center at S&T. In operation since 1998, the CTIS supports :...

  19. Managing Transportation Infrastructure for Sustainable Development

    NARCIS (Netherlands)

    Akinyemi, Edward O.; Zuidgeest, M.H.P.

    Major requirements for operationalization of the concept of sustainable development in urban transportation infrastructure operations management are presented. In addition, it is shown that the current approach to management is incompatible with the requirements for sustainable urban development.

  20. Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS

    Directory of Open Access Journals (Sweden)

    Andreas Petzold

    2015-10-01

    and aerosol particles in the UTLS, including the impacts of cross-tropopause transport, deep convection and lightning on the distribution of these species; characterisation of ice-supersaturated regions in the UTLS; and finally, improved understanding of the spatial distribution of upper tropospheric humidity including the finding that the UTLS is much more humid than previously assumed.

  1. Direct current linear measurement sub-assembly data and test methods. Nuclear electronic equipment for control and monitoring panel

    International Nuclear Information System (INIS)

    1977-12-01

    The M.C.H./M.E.N.T.3 document is concerned with sub-assemblies intended for measuring on a linear scale the neutron fluence rate or radiation dose rate when connected with nuclear detectors working in current. The symbols used are described. Some definitions and a bibliography are given. The main characteristics of direct current linear measurement sub-assemblies are then described together with corresponding test methods. This type of instrument indicates on a linear scale the level of a direct current applied to its input. The document reviews linear sub-assemblies for general purpose applications, difference amplifiers for monitoring, and averaging amplifiers. The document is intended for electronics manufacturers, designers, persons participating in acceptance trials and plant operators [fr

  2. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  3. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  4. Motor current and leakage flux signature analysis technique for condition monitoring

    International Nuclear Information System (INIS)

    Pillai, M.V.; Moorthy, R.I.K.; Mahajan, S.C.

    1994-01-01

    Till recently analysis of vibration signals was the only means available to predict the state of health of plant equipment. Motor current and leakage magnetic flux signature analysis is acquiring importance as a technique for detection of incipient damages in the electrical machines and as a supplementary technique for diagnostics of driven equipment such as centrifugal and reciprocating pumps. The state of health of the driven equipment is assessed by analysing time signal, frequency spectrum and trend analysis. For example, the pump vane frequency, piston stroke frequency, gear frequency and bearing frequencies are indicated in the current and flux spectra. By maintaining a periodic record of the amplitudes of various frequency lines in the frequency spectra, it is possible to understand the trend of deterioration of parts and components of the pump. All problems arising out of inappropriate mechanical alignment of vertical pumps are easily identified by a combined analysis of current, flux and vibration signals. It is found that current signature analysis technique is a sufficient method in itself for the analysis of state of health of reciprocating pumps and compressors. (author). 10 refs., 4 figs

  5. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  6. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  7. Natural outbreaks of Phytophthora ramorum in the U.K.—current status and monitoring update

    Science.gov (United States)

    Judith Turner; Philip Jennings; Gilli Humphries; Steve Parker; Sam McDonough; Jackie Stonehouse; David Lockley; David Slawson

    2008-01-01

    To date (February 2007) there have been 160 outbreaks of Phytophthora ramorum in gardens or woodlands in the U.K. Current EU policy requires that appropriate measures be taken to contain P. ramorum in such situations. In the U.K., the measures have either been aimed at eradication, through destruction of infected plants, or at...

  8. Operation of the DC current transformer intensity monitors at FNAL during run II

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  9. A low-cost non-intercepting beam current and phase monitor for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Clifft, B.E.

    1995-01-01

    A low cost ion beam measurement system has been developed for use at ATLAS. The system provides nondestructive phase and intensity measurement of passing ion beam bunches by sensing their electric fields. Bunches traverse a short tubular electrode thereby inducing displacement currents. These currents are brought outside the vacuum jacket where a lumped inductance resonates electrode capacitance at one of the bunching harmonic frequencies. This configuration yields a basic sensitivity of a few hundred millivolts signal per microampere of beam current. Beam induced radiofrequency signals are summed against an offset frequency generated by the master oscillator. The resulting difference frequency conveys beam intensity and bunch phase information which is sent to separate processing channels. One channel utilizes a phase locked loop to stabilize phase readings during microsecond beam drop outs. The other channel uses a linear full-wave active rectifier circuit which converts sine wave signal amplitude to a DC voltage representing beam current. Plans are in progress to install this new diagnostic at several locations in ATLAS which should help shorten the tuning cycle of new ion species

  10. Michigan E85 Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  11. Pin Diode Detector For Radiation Field Monitoring In A Current Mode

    International Nuclear Information System (INIS)

    Beck, A.; Wengrowicz, U.; Kadmon, Y.; Tirosh, D.; Osovizky, A.; Vulasky, E.; Tal, N.

    1999-01-01

    Thus paper presents calculations and tests made for a detector based on a bare Pin diode and a Pin diode coupled to a plastic scintillator. These configurations have a variety of applications in radiation field monitoring. For example, the Positron Emission Tomography (PET) technology which becomes an established diagnostic imaging modality. Flour-18 is one of the major isotopes being used by PET imaging. The PET method utilizes short half life β + radioisotopes which, by annihilation, produce a pair of high energy photons (511 keV). Fluoro-deoxyglucose producers are required to meet federal regulations and licensing requirements. Some of the regulations are related to the production in chemistry modules regarding measuring the Start Of Synthesis (SOS) activity and verifying the process repeatability. Locating a radiation detector based on Pin diode inside the chemistry modules is suitable for this purpose. The dimensions of a Pin diode based detector can be small, with expected linearity over several scale decades

  12. Current Status of the Advanced Residual Gas Monitor for Heavy Ion Synchrotron Applications

    CERN Document Server

    Liakin, D A; Sergeeva, O; Skachkov, V S

    2005-01-01

    The challenge and complexity of the advanced RGM requires very careful design of each structural component of the monitor and special attention to match the properties of different subsystems. In the present paper the status of the high performance readout electronics is discussed. Single optical decoupled profile measurement channel (one of 100) with 14 bit resolution and 10 MHz bandwidth was tested and step-by-step improved. Special attention had been paid to the noise cancellation and digital data processing algorithms optimization. Another important point is a proper electromagnetic guiding system design. As it is shown, high field homogeneity, which is required for sub-millimeter spatial resolution, can be achieved despite the presence of the field-distorting hole for the light signal transmitting. The low energy (down to 10MeV per nucleon) beam disturbance compensation methods are also discussed. The ionization process and electron dynamics simulations are used for proving this system design.

  13. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  14. Tracheal cuff pressure monitoring in the ICU: a literature review and survey of current practice in Queensland.

    Science.gov (United States)

    Talekar, C R; Udy, A A; Boots, R J; Lipman, J; Cook, D

    2014-11-01

    The application of tracheal cuff pressure monitoring is likely to vary between institutions. The aim of this study was therefore to review current evidence concerning this intervention in the intensive care unit (ICU) and to appraise regional practice by performing a state-wide survey. Publications for review were identified through searches of PubMed, EMBASE and Cochrane (1977 to 2014). All studies in English relevant to critical care and with complete data were included. Survey questions were developed by small-group consensus. Public and private ICUs across Queensland were contacted, with responses obtained from a representative member of the medical or nursing staff. Existing literature suggests significant variability in tracheal cuff pressure monitoring in the ICU, particularly in the applied technique, frequency of assessment and optimal intra-cuff pressures. Twenty-nine respondents completed the survey, representing 80.5% (29/36) of ICUs in Queensland. Twenty-eight out of twenty-nine respondents reported routinely monitoring tracheal cuff function, primarily employing cuff pressure measurement (26/28). Target cuff pressures varied, with 3/26 respondents aiming for 10 to 20 cmH2O, 10/26 for 21 to 25 cmH2O, and 13/26 for 26 to 30 cmH2O. Fifteen out of twenty-nine reported they had no current guideline or protocol for tracheal cuff management and only 16/29 indicated there was a dedicated area in the clinical record for reporting cuff intervention. Our results indicate that many ICUs across Queensland routinely measure tracheal cuff function, with most utilising pressure monitoring devices. Consistent with existing literature, the optimum cuff pressure remains uncertain. Most, however, considered that this should be a routine part of ICU care.

  15. Monitoring coastal water properties and current circulation with ERTS-1. [Delaware Bay

    Science.gov (United States)

    Klemas, V.; Otley, M.; Wethe, C.; Rogers, R.

    1974-01-01

    Imagery and digital tapes from nine successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle have been analyzed with special emphasis on turbidity, current circulation, waste disposal plumes and convergent boundaries between different water masses. ERTS-1 image radiance correlated well with Secchi depth and suspended sediment concentration. Circulation patterns observed by ERTS-1 during different parts of the tidal cycle, agreed well with predicted and measured currents throughout Delaware Bay. Convergent shear boundaries between different water masses were observed from ERTS-1. In several ERTS-1 frames, waste disposal plumes have been detected 36 miles off Delaware's Atlantic coast. The ERTS-1 results are being used to extend and verify hydrodynamic models of the bay, developed for predicting oil slick movement and estimating sediment transport.

  16. Optimization of a cryogenic current comparator for the application as beam monitor

    International Nuclear Information System (INIS)

    Geithner, Rene

    2013-01-01

    Aim of the present thesis was to improve by the application of new materials and concepts the noise-limited resolution as well as the band width of a cryogenic current comparator for the measurement of the time behavior of smallest beam currents, consisting of a superconducting meander-shaped screening, a superconducting pick-up coil, a superconducting matching transformer, and a SQID sensor, and to reduce its sensitivity against mechanical oscillations. because of this the present thesis deals with the systematic study of the magnetic properties of ferromagnetic materials and their noise contributions for the application in pick-up coils respectively transformers. The main topic of this thesis layed thereby on the characterization of novel amorphous as well as nanocrystalline materials at low temperatures, for which hitherto no reliable values were present in the literature.

  17. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    Science.gov (United States)

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.

  18. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    DEFF Research Database (Denmark)

    Yang, Zhenyu

    2015-01-01

    An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the pot...... characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.......An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated...... is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis...

  19. Structures and infrastructures series

    National Research Council Canada - National Science Library

    2008-01-01

    "Research, developments, and applications...on the most advanced techonologies for analyzing, predicting, and optimizing the performance of structures and infrastructures such as buildings, bridges, dams...

  20. Historical and current use of spanish moss as a monitor of atmospheric trace metals

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, M.L.; Mossler, M.A.; Kosalwat, P.; Newman, J.R. [KBN Engineering and Applied Sciences, Inc., Gainesville, FL (United States)

    1995-12-31

    Spanish moss (Tillandsia usnesoides) is an epiphytic member of the pineapple family, Historically, tissue levels in this plant have illustrated the elevated concentration of lead near well traveled roads, as well as nickel and tin in the vicinity of battery fabrication or smelting facilities, respectively. From a survey of Spanish moss plants growing throughout the Southeast, mercury at or slightly above the limit of detection was present in eight of 128 samples. Five of these samples were collected in Florida. As part of a biomonitoring project, Spanish moss was collected from 1991 to 1993 around a waste-to-energy facility in Lake County, Florida, After three years, the percentage of Spanish moss samples which contained detectable levels of arsenic and cadmium decreased over time. Lead was detected in all samples collected throughout the monitoring period, but the mean concentration decreased from 3.7 mg/kg on a dry weight basis (1991) to 1.4 mg/kg (1993). This trend in lead levels may indicate clearance that is occurring due to the discontinuation of leaded gasoline. The percentage of moss samples containing mercury above the limit of detection increased from 67% (1991) to 97% (1993); however, mean concentrations do not support a trend in increasing concentration of this element (0.30 mg/kg on a fresh weight basis in 1991 vs. 0.19 mg/kg in 1993). Apparently, atmospheric metal concentrations are not increasing in the vicinity of the facility at this time.

  1. Assessment and monitoring of treatment response in adult ADHD patients: current perspectives.

    Science.gov (United States)

    Ramsay, J Russell

    2017-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental syndrome that emerges in childhood or early adolescence and persists into adulthood for a majority of individuals. There are many other adults with ADHD who may not seek out evaluation and treatment until adulthood, having been able to "get by" before struggling with inattention, hyperactivity, and/or impulsivity in adulthood, in addition to facing the associated features of disorganization, poor time management, and procrastination among many others. A lifetime diagnosis of ADHD is associated with a wide range of life impairments, which makes a comprehensive and accurate diagnostic assessment essential in order to obtain appropriate treatment. Moreover, while there are effective medical and psychosocial treatments for ADHD, it is important to be able to track treatment response in order to evaluate whether adjustments in specific interventions are needed or referrals for adjunctive treatments and supports are indicated to facilitate optimal therapeutic outcomes. The goal of this article is to provide a clinically useful review of the various measures that practicing clinicians can use to aid in the diagnostic assessment and monitoring of psychosocial and medical treatment of ADHD in adult patients. This review includes various structured interviews, screening scales, adult ADHD symptom inventories, measures of associated features of ADHD, as well as ratings of impairment and functioning which can be adapted to clinicians' practice needs in order to track treatment progress and optimize treatments for adults with ADHD.

  2. Current Status of the Personal Monitoring in Japan After the Fukushima Accident

    International Nuclear Information System (INIS)

    Koguchi, Y.; Takeuchi, N.; Yamamoto, T.

    2013-01-01

    On 11 March 2011 Japan suffered a magnitude 9.0 earthquake. The 2011 Great East Japan Earthquake created a series of massive tsunami waves that struck to the east coast of Japan, causing serious damage to Fukushima Daiichi Nuclear Power Plants (NPPs). The radioactive materials such as 134Cs and 137Cs were released into the environment in widespread area of east Japan, especially Fukushima prefecture. Many people living in Fukushima prefecture especially parents of children up to junior high school age have been worrying about the effect of health risk by contaminated radioactive materials. In addition, the International Commission on Radiological Protection (ICRP) has recommended that the dose (effective dose) limits in planned exposure situation for public is 1 mSv in a single year. Therefore, the local governments in Fukushima prefecture have decided to measure the exposed dose using passive dosemeter for public especially children in order to the health risk assessment and the optimum planning of decontamination. The RPL glass dosemeter, we called Glass Badge, based on radiophotoluminescence (RPL) technology is one of suitable dosimeters for the personal monitoring. More than 300 000 Glass Badges were distributed in Fukushima area up to the end of 2012 since the Fukushima Daiichi NPPs accident. It is very easy to know the individual dose and also useful for the health risk assessment.(author)

  3. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below...

  4. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (IP...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  5. The ISMAR high frequency coastal radar network: Monitoring surface currents for management of marine resources

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier

    2015-01-01

    The Institute of Marine Sciences (ISMAR) of the National Research Council of Italy (CNR) established a High Frequency (HF) Coastal Radar Network for the measurement of the velocity of surface currents in coastal seas. The network consists of four HF radar systems located on the coast of the Gargano...... Promontory (Southern Adriatic, Italy). The network has been operational since May 2013 and covers an area of approximately 1700 square kilometers in the Gulf of Manfredonia. Quality Assessment (QA) procedures are applied for the systems deployment and maintenance and Quality Control (QC) procedures...

  6. Breakthrough In Current In Plane Metrology For Monitoring Large Scale MRAM Production

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Østerberg, Frederik Westergaard; Hansen, Ole

    2017-01-01

    The current-in-plane tunneling technique (CIPT) has been a crucial tool in the development of magnetic tunnel junction stacks suitable for Magnetic Random Access Memories (MRAM) for more than a decade. The MRAM development has now reached the maturity to make the transition from R&D to large...... of the Resistance Area product (RA) and the Tunnel Magnetoresistance (TMR) measurements, compared to state of the art CIPT metrology tools dedicated to R&D. On two test wafers, the repeatability of RA and MR was improved up to 350% and the measurement reproducibility up to 1700%. We believe that CIPT metrology now...

  7. Possibilities of Monitoring the Technical Condition of the Combustion Engine with Starter Load Current

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This article deals with the verification of relations between the electric current of engine starter and tightness of the combustion chamber and the possibility of its use for the evaluation of the state in terms of engine wear. Engine wear is closely related to the quality of fuel combustion and also with the amount of produced harmful emissions. On this basis, it would be possible to extend the technical requirements of the protocol OBD to include the indirect control of engine wear. To meet the objectives set out above measurement was carried out by a petrol engine, which was located in the vehicle Škoda Felicia Combi GLX 1.3 The whole measurement was divided into several parts. The first measurement was carried out on the abovementioned motor without simulating leakage. The second measurement was performed when the leakage of one cylinder was simulated. Simulated leakage was conducted at removing the spark plugs. Other measurements simulated “mild” leak of the whole engine – all cylinders. Leakage was implemented by loosing all the spark plugs about 8 turns against full tightening with the appropriate torque. The last, fourth measurement simulates a “large” leaks of engine cylinders. This leakage was induced by removing all the spark plugs from all cylinders. As the measurement results showed leakage of one cylinder, and also the whole engine is reflected not only in the individual amplitude of the starter current, but also the shape of the entire curve.

  8. Energy Transmission and Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  9. Assessment and monitoring of treatment response in adult ADHD patients: current perspectives

    Directory of Open Access Journals (Sweden)

    Ramsay JR

    2017-01-01

    Full Text Available J Russell Ramsay Adult ADHD Treatment & Research Program, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA Abstract: Attention-deficit/hyperactivity disorder (ADHD is a neurodevelopmental syndrome that emerges in childhood or early adolescence and persists into adulthood for a majority of individuals. There are many other adults with ADHD who may not seek out evaluation and treatment until adulthood, having been able to “get by” before struggling with inattention, hyperactivity, and/or impulsivity in adulthood, in addition to facing the associated features of disorganization, poor time management, and procrastination among many others. A lifetime diagnosis of ADHD is associated with a wide range of life impairments, which makes a comprehensive and accurate diagnostic assessment essential in order to obtain appropriate treatment. Moreover, while there are effective medical and psychosocial treatments for ADHD, it is important to be able to track treatment response in order to evaluate whether adjustments in specific interventions are needed or referrals for adjunctive treatments and supports are indicated to facilitate optimal therapeutic outcomes. The goal of this article is to provide a clinically useful review of the various measures that practicing clinicians can use to aid in the diagnostic assessment and monitoring of psychosocial and medical treatment of ADHD in adult patients. This review includes various structured interviews, screening scales, adult ADHD symptom inventories, measures of associated features of ADHD, as well as ratings of impairment and functioning which can be adapted to clinicians’ practice needs in order to track treatment progress and optimize treatments for adults with ADHD. Keywords: adult attention-deficit/hyperactivity disorder, adult ADHD, pharmacotherapy, psychosocial treatment, symptoms, functional impairments, executive functions

  10. Integrating sea floor observatory data: the EMSO data infrastructure

    Science.gov (United States)

    Huber, Robert; Azzarone, Adriano; Carval, Thierry; Doumaz, Fawzi; Giovanetti, Gabriele; Marinaro, Giuditta; Rolin, Jean-Francois; Beranzoli, Laura; Waldmann, Christoph

    2013-04-01

    The European research infrastructure EMSO is a European network of fixed-point, deep-seafloor and water column observatories deployed in key sites of the European Continental margin and Arctic. It aims to provide the technological and scientific framework for the investigation of the environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere and for a sustainable management by long-term monitoring also with real-time data transmission. Since 2006, EMSO is on the ESFRI (European Strategy Forum on Research Infrastructures) roadmap and has entered its construction phase in 2012. Within this framework, EMSO is contributing to large infrastructure integration projects such as ENVRI and COOPEUS. The EMSO infrastructure is geographically distributed in key sites of European waters, spanning from the Arctic, through the Atlantic and Mediterranean Sea to the Black Sea. It is presently consisting of thirteen sites which have been identified by the scientific community according to their importance respect to Marine Ecosystems, Climate Changes and Marine GeoHazards. The data infrastructure for EMSO is being designed as a distributed system. Presently, EMSO data collected during experiments at each EMSO site are locally stored and organized in catalogues or relational databases run by the responsible regional EMSO nodes. Three major institutions and their data centers are currently offering access to EMSO data: PANGAEA, INGV and IFREMER. In continuation of the IT activities which have been performed during EMSOs twin project ESONET, EMSO is now implementing the ESONET data architecture within an operational EMSO data infrastructure. EMSO aims to be compliant with relevant marine initiatives such as MyOceans, EUROSITES, EuroARGO, SEADATANET and EMODNET as well as to meet the requirements of international and interdisciplinary projects such as COOPEUS and ENVRI, EUDAT and iCORDI. A major focus is therefore set on standardization and

  11. Site Support Program Plan Infrastructure Program

    International Nuclear Information System (INIS)

    1995-01-01

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site's infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford's infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition

  12. Site Support Program Plan Infrastructure Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-26

    The Fiscal Year 1996 Infrastructure Program Site Support Program Plan addresses the mission objectives, workscope, work breakdown structures (WBS), management approach, and resource requirements for the Infrastructure Program. Attached to the plan are appendices that provide more detailed information associated with scope definition. The Hanford Site`s infrastructure has served the Site for nearly 50 years during defense materials production. Now with the challenges of the new environmental cleanup mission, Hanford`s infrastructure must meet current and future mission needs in a constrained budget environment, while complying with more stringent environmental, safety, and health regulations. The infrastructure requires upgrading, streamlining, and enhancement in order to successfully support the site mission of cleaning up the Site, research and development, and economic transition.

  13. Investment opportunities in infrastructure regardless of financial crisis

    OpenAIRE

    ILIE Georgeta

    2009-01-01

    During these times of dramatic change and financial market disorder, the challenge of infrastructure development is being drawn more into the highlight. Infrastructure will be rising in importance over the next years. The availability and quality of infrastructure directly affect where business operations are located and expanded. In this context, roads and power generation are the most urgent infrastructure needs. The paper reveals a few economic characteristics of current stage of infrastru...

  14. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    Two new radar systems have been developed for real-time measurement of near-shore processes, and results are presented for measurements of ocean wave spectra, near-shore sand bar structure, and ocean currents. The first is a non-coherent radar based on a modified version of the Sitex radar family, with a data acquisition system designed around an ISR digital receiver card. The card operates in a PC computer with inputs from a Sitex radar modified for extraction of analogue signals for digitization. Using a 9' antenna and 25 kW transmit power system, data were collected during 2007 at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC during winter and spring of 2007. The directional wave spectrum measurements made are based on using a sequence of 64 to 640 antenna rotations to form a snapshot series of radar images of propagating waves. A square window is extracted from each image, typically 64 x 64 pixels at 3-m resolution. Then ten sets of 64 windows are submitted to a three-dimensional Fast Fourier Transform process to generate radar image spectra in the frequency-wavenumber space. The relation between the radar image spectral intensity and wave spectral intensity derived from the FRF pressure gauge array was used for a test set of data, in order to establish a modulation transfer function (MTF) for each frequency component. For 640 rotations, 10 of such spectra are averaged for improved statistics. The wave spectrum so generated was compared for extended data sets beyond those used to establish the MTF, and those results are presented here. Some differences between the radar and pressure sensor data that are observed are found to be due to the influence of the wind field, as the radar echo image weakens for light winds. A model is developed to account for such an effect to improve the radar estimate of the directional wave spectrum. The radar ocean wave imagery is severely influenced only by extremely heavy rain-fall rates, so that

  15. Dynamic Collaboration Infrastructure for Hydrologic Science

    Science.gov (United States)

    Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.

    2016-12-01

    Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the

  16. Building an evaluation infrastructure

    DEFF Research Database (Denmark)

    Brandrup, Morten; Østergaard, Kija Lin

    Infrastructuring does not happen by itself; it must be supported. In this paper, we present a feedback mechanism implemented as a smartphone-based application, inspired by the concept of infrastructure probes, which supports the in situ elicitation of feedback. This is incorporated within an eval...

  17. Physical resources and infrastructure

    NARCIS (Netherlands)

    Foeken, D.W.J.; Hoorweg, J.; Foeken, D.W.J.; Obudho, R.A.

    2000-01-01

    This chapter describes the main physical characteristics as well as the main physical and social infrastructure features of Kenya's coastal region. Physical resources include relief, soils, rainfall, agro-ecological zones and natural resources. Aspects of the physical infrastructure discussed are

  18. Transport Infrastructure Slot Allocation

    NARCIS (Netherlands)

    Koolstra, K.

    2005-01-01

    In this thesis, transport infrastructure slot allocation has been studied, focusing on selection slot allocation, i.e. on longer-term slot allocation decisions determining the traffic patterns served by infrastructure bottlenecks, rather than timetable-related slot allocation problems. The

  19. Telecom infrastructure leasing

    International Nuclear Information System (INIS)

    Henley, R.

    1995-01-01

    Slides to accompany a discussion about leasing telecommunications infrastructure, including radio/microwave tower space, radio control buildings, paging systems and communications circuits, were presented. The structure of Alberta Power Limited was described within the ATCO group of companies. Corporate goals and management practices and priorities were summarized. Lessons and experiences in the infrastructure leasing business were reviewed

  20. Infrastructures for healthcare

    DEFF Research Database (Denmark)

    Langhoff, Tue Odd; Amstrup, Mikkel Hvid; Mørck, Peter

    2018-01-01

    The Danish General Practitioners Database has over more than a decade developed into a large-scale successful information infrastructure supporting medical research in Denmark. Danish general practitioners produce the data, by coding all patient consultations according to a certain set of classif...... synergy into account, if not to risk breaking down the fragile nature of otherwise successful information infrastructures supporting research on healthcare....

  1. Automatic Condition Monitoring of Industrial Rolling-Element Bearings Using Motor’s Vibration and Current Analysis

    Directory of Open Access Journals (Sweden)

    Zhenyu Yang

    2015-01-01

    Full Text Available An automatic condition monitoring for a class of industrial rolling-element bearings is developed based on the vibration as well as stator current analysis. The considered fault scenarios include a single-point defect, multiple-point defects, and a type of distributed defect. Motivated by the potential commercialization, the developed system is promoted mainly using off-the-shelf techniques, that is, the high-frequency resonance technique with envelope detection and the average of short-time Fourier transform. In order to test the flexibility and robustness, the monitoring performance is extensively studied under diverse operating conditions: different sensor locations, motor speeds, loading conditions, and data samples from different time segments. The experimental results showed the powerful capability of vibration analysis in the bearing point defect fault diagnosis. The current analysis also showed a moderate capability in diagnosis of point defect faults depending on the type of fault, severity of the fault, and the operational condition. The temporal feature indicated a feasibility to detect generalized roughness fault. The practical issues, such as deviations of predicted characteristic frequencies, sideband effects, time-average of spectra, and selection of fault index and thresholds, are also discussed. The experimental work shows a huge potential to use some simple methods for successful diagnosis of industrial bearing systems.

  2. CURRENT STATE ANALYSIS OF AUTOMATIC BLOCK SYSTEM DEVICES, METHODS OF ITS SERVICE AND MONITORING

    Directory of Open Access Journals (Sweden)

    A. M. Beznarytnyy

    2014-01-01

    Full Text Available Purpose. Development of formalized description of automatic block system of numerical code based on the analysis of characteristic failures of automatic block system and procedure of its maintenance. Methodology. For this research a theoretical and analytical methods have been used. Findings. Typical failures of the automatic block systems were analyzed, as well as basic reasons of failure occur were found out. It was determined that majority of failures occurs due to defects of the maintenance system. Advantages and disadvantages of the current service technology of automatic block system were analyzed. Works that can be automatized by means of technical diagnostics were found out. Formal description of the numerical code of automatic block system as a graph in the state space of the system was carried out. Originality. The state graph of the numerical code of automatic block system that takes into account gradual transition from the serviceable condition to the loss of efficiency was offered. That allows selecting diagnostic information according to attributes and increasing the effectiveness of recovery operations in the case of a malfunction. Practical value. The obtained results of analysis and proposed the state graph can be used as the basis for the development of new means of diagnosing devices for automatic block system, which in turn will improve the efficiency and service of automatic block system devices in general.

  3. An Optically-Coupled System for Quantitative Monitoring of MRI-Induced RF Currents into Long Conductors

    Science.gov (United States)

    Zanchi, Marta G.; Venook, Ross; Pauly, John M.; Scott, Greig C.

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically-coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed LED transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions. PMID:19758855

  4. Assessment of Current Inservice Inspection and Leak Monitoring Practices for Detecting Materials Degradation in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Simonen, Fredric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Muscara, Joseph [US Nuclear Regulatory Commission (NRC), Rockville, MD (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kupperman, David S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    An assessment was performed to determine the effectiveness of existing inservice inspection (ISI) and leak monitoring techniques, and recommend improvements, as necessary, to the programs as currently performed for light water reactor (LWR) components. Information from nuclear power plant (NPP) aging studies and from the U. S. Nuclear Regulatory Commission’s Generic Aging Lessons Learned (GALL) report (NUREG-1801) was used to identify components that have already experienced, or are expected to experience, degradation. This report provides a discussion of the key aspects and parameters that constitute an effective ISI program and a discussion of the basis and background against which the effectiveness of the ISI and leak monitoring programs for timely detection of degradation was evaluated. Tables based on the GALL components were used to systematically guide the process, and table columns were included that contained the ISI requirements and effectiveness assessment. The information in the tables was analyzed using histograms to reduce the data and help identify any trends. The analysis shows that the overall effectiveness of the ISI programs is very similar for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). The evaluations conducted as part of this research showed that many ISI programs are not effective at detecting degradation before its extent reached 75% of the component wall thickness. This work should be considered as an assessment of NDE practices at this time; however, industry and regulatory activities are currently underway that will impact future effectiveness assessments. A number of actions have been identified to improve the current ISI programs so that degradation can be more reliably detected.

  5. Security infrastructure for dynamically provisioned cloud infrastructure services

    NARCIS (Netherlands)

    Demchenko, Y.; Ngo, C.; de Laat, C.; Lopez, D.R.; Morales, A.; García-Espín, J.A.; Pearson, S.; Yee, G.

    2013-01-01

    This chapter discusses conceptual issues, basic requirements and practical suggestions for designing dynamically configured security infrastructure provisioned on demand as part of the cloud-based infrastructure. This chapter describes general use cases for provisioning cloud infrastructure services

  6. Settlement characteristics of major infrastructures in Shanghai

    Directory of Open Access Journals (Sweden)

    X. Jiao

    2015-11-01

    Full Text Available Critical infrastructures in Shanghai have undergone uneven settlement since their operation, which plays an important role in affecting the security of Shanghai. This paper, taking rail transportation as example, investigates settlement characteristics and influencing factors of this linear engineering, based on long-term settlement monitoring data. Results show that rail settlement is related to geological conditions, regional ground subsidence, surrounding construction activities and structural differences in the rail systems. In order to effectively decrease the impact of regional ground subsidence, a monitoring and early-warning mechanism for critical infrastructure is established by the administrative department and engineering operators, including monitoring network construction, settlement monitoring, information sharing, settlement warning, and so on.

  7. Information infrastructure(s) boundaries, ecologies, multiplicity

    CERN Document Server

    Mongili, Alessandro

    2014-01-01

    This book marks an important contribution to the fascinating debate on the role that information infrastructures and boundary objects play in contemporary life, bringing to the fore the concern of how cooperation across different groups is enabled, but also constrained, by the material and immaterial objects connecting them. As such, the book itself is situated at the crossroads of various paths and genealogies, all focusing on the problem of the intersection between different levels of scale...

  8. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  9. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Wagoner

    2008-10-01

    Full Text Available We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs, and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample, numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two

  10. Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator

    International Nuclear Information System (INIS)

    Shoup, Roy Willlam; Gilliland, Terrance Leo; Lee, James R.; Speas, Christopher Shane; Kim, Alexandre A.; Struve, Kenneth William; York, Mathew William; Leifeste, Gordon T.; Rochau, Gregory Alan; Sharpe, Arthur William; Stygar, William A.; Porter, John Larry Jr.; Wagoner, Tim C.; Reynolds, Paul Gerard; Slopek, Jeffrey Scott; Moore, William B.S.; Dinwoodie, Thomas Albert; Woodring, R.M.; Broyles, Robin Scott; Mills, Jerry Alan; Melville, J.A.; Dudley, M.E.; Androlewicz, K.E.; Mourning, R.W.; Moore, J.K.; Serrano, Jason Dimitri; Ives, H.C.; Johnson, M.F.; Peyton, B.P.; Leeper, Ramon Joe; Savage, Mark Edward; Donovan, Guy Louis; Spielman, R.B.; Seamen, Johann F.

    2007-01-01

    We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-(Omega) balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two signals from a pair are

  11. Towards sustainable infrastructure development through integrated contracts : Experiences with inclusiveness in Dutch infrastructure projects

    NARCIS (Netherlands)

    Lenferink, Sander; Tillema, Taede; Arts, Jos

    Current complex society necessitates finding inclusive arrangements for delivering sustainable road infrastructure integrating design, construction and maintenance stages of the project lifecycle. In this article we investigate whether linking stages by integrated contracts can lead to more

  12. Online monitoring method using Equipotential Switching Direct Current potential drop for piping wall loss by flow accelerated corrosion

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Lee, Tae Hyun; Kim, Ji Hak; Hwang, Il Soon; Lee, Na Young; Kim, Ji Hyun; Park, Jin Ho; Sohn, Chang Ho

    2010-01-01

    The flow accelerated corrosion (FAC) phenomenon persistently impacts plant reliability and personnel safety. We have shown that Equipotential Switching Direct Current Potential Drop (ES-DCPD) can be employed to detect piping wall loss induced by FAC. It has been demonstrated to have sufficient sensitivity to cover both long and short lengths of piping. Based on this, new FAC screening and inspection approaches have been developed. For example, resolution of ES-DCPD can be adjusted according to its monitoring purpose. The developed method shows good integrity during long test periods. It also shows good reproducibility. The Seoul National University FAC Accelerated Simulation Loop (SFASL) has been constructed for ES-DCPD demonstration purposes. During one demonstration, the piping wall was thinned by 23.7% through FAC for a 13,000 min test period. In addition to the ES-DCPD method, ultrasonic technique (UT) has been applied to SFASL for verification while water chemistry was continually monitored and controlled using electrochemical sensors. Developed electrochemical sensors showed accurate and stable water conditions in the SFASL during the test period. The ES-DCPD results were also theoretically predicted by the Sanchez-Caldera's model. The UT, however, failed to detect thinning because of its localized characteristics. Online UT that covers only local areas cannot assure the detection of wall loss.

  13. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  14. Health Monitoring of Composite Overwrapped Pressure Vessels (COPVs) Using Meandering Winding Magnetometer ((MWM(Registered Trademark)) Eddy Current Sensors

    Science.gov (United States)

    Russell, Rick; Grundy, David; Jablonski, David; Martin, Christopher; Washabaugh, Andrew; Goldfine, Neil

    2011-01-01

    There are 3 mechanisms that affect the life of a COPV are: a) The age life of the overwrap; b) Cyclic fatigue of the metallic liner; c) Stress Rupture life. The first two mechanisms are understood through test and analysis. A COPV Stress Rupture is a sudden and catastrophic failure of the overwrap while holding at a stress level below the ultimate strength for an extended time. Currently there is no simple, deterministic method of determining the stress rupture life of a COPV, nor a screening technique to determine if a particular COPV is close to the time of a stress rupture failure. Conclusions: Demonstrated a correlation between MWM response and pressure or strain. Demonstrated the ability to monitor stress in COPV at different orientations and depths. FA41 provides best correlation with bottle pressure or stress.

  15. Nuclear electronic equipment for control and monitoring boards. Specifications and test methods of direct current period meters

    International Nuclear Information System (INIS)

    Roquefort, Henri; Chapelot; Ramard; Tardif; Tournier; Vaux

    1973-11-01

    After a few words of introduction, mention of the main notations used and the definition of certain terms, the field of application of the document is outlined and a list of references given. The main specifications of electronic 'direct current period meter' subassemblies for the monitoring, control and safety of nuclear reactors are then defined and the corresponding test methods described. The apparatus measures on a logarithmic scale the neutron fluence rate of a reactor by means of an ionisation chamber and supplies 'period' data relative to the fluence rate variation in time. The specifications and test methods are given for the different components: logarithmic amplifier, time derivative unit, threshold releases, high tension supply for ionisation chamber, auxiliary circuits and finally the complete period meter. (author) [fr

  16. Wall-Current-Monitor based Ghost and Satellite Bunch Detection in the CERN PS and the LHC Accelerators

    CERN Document Server

    Steinhagen, R J; Belleman, J; Bohl, T; Damerau, H

    2012-01-01

    While most LHC detectors and instrumentation systems are optimised for a nominal bunch spacing of 25 ns, the LHC RF cavities themselves operate at the 10th harmonic of the maximum bunch frequency. Due to the beam production scheme and transfers in the injector chain, part of the nominally ‘empty’ RF buckets may contain particles, referred to as ghost or satellite bunches. These populations must be accurately quantified for high-precision experiments, luminosity calibration and control of parasitic particle encounters at the four LHC interaction points. This contribution summarises the wall-current-monitor based ghost and satellite bunch measurements in CERN’s PS and LHC accelerators. Instrumentation set-up, post-processing and achieved performance are discussed.

  17. Infrastructure Area Simplification Plan

    CERN Document Server

    Field, L.

    2011-01-01

    The infrastructure area simplification plan was presented at the 3rd EMI All Hands Meeting in Padova. This plan only affects the information and accounting systems as the other areas are new in EMI and hence do not require simplification.

  18. IPHE Infrastructure Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  19. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  20. Pennsylvania Reaches Infrastructure Milestone

    Science.gov (United States)

    With a series of “aye” votes, the Pennsylvania agency that turns EPA funding and state financing into water infrastructure projects crossed a key threshold recently – $8 billion in investment over nearly three decades

  1. EV Charging Infrastructure Roadmap

    International Nuclear Information System (INIS)

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-01-01

    As highlighted in the U.S. Department of Energy's EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to ''... produce plug-in electric vehicles that are as affordable and convenient for the average American family as today's gasoline-powered vehicles ...'' [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  2. Green Infrastructure Modeling Toolkit

    Science.gov (United States)

    Green infrastructure, such as rain gardens, green roofs, porous pavement, cisterns, and constructed wetlands, is becoming an increasingly attractive way to recharge aquifers and reduce the amount of stormwater runoff that flows into wastewater treatment plants or into waterbodies...

  3. Clarkesville Green Infrastructure Implementation Strategy

    Science.gov (United States)

    The report outlines the 2012 technical assistance for Clarkesville, GA to develop a Green Infrastructure Implementation Strategy, which provides the basic building blocks for a green infrastructure plan:

  4. Optimally Reorganizing Navy Shore Infrastructure

    National Research Council Canada - National Science Library

    Kerman, Mitchell

    1997-01-01

    ...), but infrastructure reductions continue to lag force structure reductions. The United States Navy's recent initiatives to reduce its shore infrastructure costs include "regionalization", "outsourcing," and "homebasing...

  5. Infrastructure Engineering and Deployment Division

    Data.gov (United States)

    Federal Laboratory Consortium — Volpe's Infrastructure Engineering and Deployment Division advances transportation innovation by being leaders in infrastructure technology, including vehicles and...

  6. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions.

    Science.gov (United States)

    Wen, Dong; Zhang, Xingting; Liu, Xingyu; Lei, Jianbo

    2017-03-07

    Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R 2 >.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R 2 >.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same brand, Apple or Samsung (r>.88

  7. Building a NGII : Balancing between infrastructure and innovation

    NARCIS (Netherlands)

    Koerten, H.; Veenswijk, M.

    2009-01-01

    A multitude of studies has been published on how National Geo Information Infrastructures (NGII), also known as Spatial Data Infrastructures (SDI), should be designed, set up and monitored. Scientific research on day-to-day experiences, on what is really happening in NGIIprojects is hard to find. We

  8. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  9. The impact of clinical trial monitoring approaches on data integrity and cost--a review of current literature.

    Science.gov (United States)

    Olsen, Rasmus; Bihlet, Asger Reinstrup; Kalakou, Faidra; Andersen, Jeppe Ragnar

    2016-04-01

    Monitoring is a costly requirement when conducting clinical trials. New regulatory guidance encourages the industry to consider alternative monitoring methods to the traditional 100 % source data verification (SDV) approach. The purpose of this literature review is to provide an overview of publications on different monitoring methods and their impact on subject safety data, data integrity, and monitoring cost. The literature search was performed by keyword searches in MEDLINE and hand search of key journals. All publications were reviewed for details on how a monitoring approach impacted subject safety data, data integrity, or monitoring costs. Twenty-two publications were identified. Three publications showed that SDV has some value for detection of not initially reported adverse events and centralized statistical monitoring (CSM) captures atypical trends. Fourteen publications showed little objective evidence of improved data integrity with traditional monitoring such as 100 % SDV and sponsor queries as compared to reduced SDV, CSM, and remote monitoring. Eight publications proposed a potential for significant cost reductions of monitoring by reducing SDV without compromising the validity of the trial results. One hundred percent SDV is not a rational method of ensuring data integrity and subject safety based on the high cost, and this literature review indicates that reduced SDV is a viable monitoring method. Alternative methods of monitoring such as centralized monitoring utilizing statistical tests are promising alternatives but have limitations as stand-alone tools. Reduced SDV combined with a centralized, risk-based approach may be the ideal solution to reduce monitoring costs while improving essential data quality.

  10. Smart CCP. Integration of CCP data in the existing infrastructure of a grid operator; Smart KKS. Integration von KKS-Daten in die bestehende Infrastruktur eines Netzbetreibers

    Energy Technology Data Exchange (ETDEWEB)

    Deiss, Rainer [EnBW Regional AG, Stuttgart (Germany); Mueller, Matthias [RBS wave GmbH, Stuttgart (Germany)

    2012-07-01

    The ever growing importance of the cathodic corrosion protection (CCP) requires a much greater integration of the CCP data in the existing infrastructure of a grid operator. The necessary technical adjustments to CCP current protection devices and CCP remote monitoring systems easily can be done with the help of embedded systems.

  11. Assessing dependability and resilience in critical infrastructures: challenges and opportunities

    NARCIS (Netherlands)

    Avritzer, Alberto; Di Giandomenico, Felicita; Remke, Anne Katharina Ingrid; Riedl, Martin; Wolter, Katinka; Avritzer, Alberto; Vieira, Marco; van Moorsel, Aad

    2012-01-01

    Critical infrastructures (CI) are very complex and highly interdependent systems, networks and assets that provide essential services in our daily life. Most CI are either built upon or monitored and controlled by vulnerable information and communication technology (ICT) systems. Critical

  12. New infrastructures, new landscapes

    Directory of Open Access Journals (Sweden)

    Chiara Nifosì

    2014-06-01

    Full Text Available New infrastructures, new landscapes AbstractThe paper will discuss one recent Italian project that share a common background: the relevance of the existing maritime landscape as a non negotiable value. The studies will be discussed in details a feasibility study for the new port in Monfalcone. National infrastructural policies emphasize competitiveness and connection as a central issue incultural, economic and political development of communities . Based on networks and system development along passageways that make up the European infrastructural armor; the two are considered at the meantime as cause and effect of "territorialisation”. These two views are obviously mutually dependent. It's hard to think about a strong attractiveness out of the network, and to be part of the latter encourages competitiveness. Nonetheless this has proved to be conflictual when landscape values and the related attractiveness are considered.The presented case study project, is pursuing the ambition to promote a new approach in realizing large infrastructures; its double role is to improve connectivity and to generate lasting and positive impact on the local regions. It deal with issues of inter-modality and the construction of nodes and lines which connects Europe, and its markets.Reverting the usual approach which consider landscape project as as a way to mitigate or to compensate for the infrastructure, the goal is to succeed in realizing large infrastructural works by conceiving them as an occasion to reinterpret a region or, as extraordinary opportunities, to build new landscapes.The strategy proposed consists in achieving structural images based on the reinforcement of the environmental and historical-landscape systems. Starting from the reinterpretation of local maritime context and resources it is possible not just to preserve the attractiveness of a specific landscape but also to conceive infrastructure in a more efficient way. 

  13. The sea surface currents as a potential factor in the estimation and monitoring of wave energy potential

    Science.gov (United States)

    Zodiatis, George; Galanis, George; Nikolaidis, Andreas; Stylianoy, Stavros; Liakatas, Aristotelis

    2015-04-01

    The use of wave energy as an alternative renewable is receiving attention the last years under the shadow of the economic crisis in Europe and in the light of the promising corresponding potential especially for countries with extended coastline. Monitoring and studying the corresponding resources is further supported by a number of critical advantages of wave energy compared to other renewable forms, like the reduced variability and the easier adaptation to the general grid, especially when is jointly approached with wind power. Within the framework, a number of countries worldwide have launched research and development projects and a significant number of corresponding studies have been presented the last decades. However, in most of them the impact of wave-sea surface currents interaction on the wave energy potential has not been taken into account neglecting in this way a factor of potential importance. The present work aims at filling this gap for a sea area with increased scientific and economic interest, the Eastern Mediterranean Sea. Based on a combination of high resolution numerical modeling approach with advanced statistical tools, a detailed analysis is proposed for the quantification of the impact of sea surface currents, which produced from downscaling the MyOcean-FO regional data, to wave energy potential. The results although spatially sensitive, as expected, prove beyond any doubt that the wave- sea surface currents interaction should be taken into account for similar resource analysis and site selection approaches since the percentage of impact to the available wave power may reach or even exceed 20% at selected areas.

  14. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  15. Railway infrastructure security

    CERN Document Server

    Sforza, Antonio; Vittorini, Valeria; Pragliola, Concetta

    2015-01-01

    This comprehensive monograph addresses crucial issues in the protection of railway systems, with the objective of enhancing the understanding of railway infrastructure security. Based on analyses by academics, technology providers, and railway operators, it explains how to assess terrorist and criminal threats, design countermeasures, and implement effective security strategies. In so doing, it draws upon a range of experiences from different countries in Europe and beyond. The book is the first to be devoted entirely to this subject. It will serve as a timely reminder of the attractiveness of the railway infrastructure system as a target for criminals and terrorists and, more importantly, as a valuable resource for stakeholders and professionals in the railway security field aiming to develop effective security based on a mix of methodological, technological, and organizational tools. Besides researchers and decision makers in the field, the book will appeal to students interested in critical infrastructur...

  16. Building safeguards infrastructure

    International Nuclear Information System (INIS)

    McClelland-Kerr, J.; Stevens, J.

    2010-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the clean and safe growth of nuclear power, and the infrastructure that supports these three areas should be robust. The focus of this paper will be on the development of the infrastructure necessary to support safeguards, and the integration of safeguards infrastructure with other elements critical to ensuring nuclear energy security

  17. Internationalization of infrastructure companies

    Directory of Open Access Journals (Sweden)

    Frederico Araujo Turolla

    2009-03-01

    Full Text Available The decision of infrastructure firms to go international is not a simple one. Differently from firms from most of the sectors, investment requires large amounts of capital, there are significant transaction costs and also involves issues that are specific to the destiny country. In spite of the risks, several infrastructure groups have been investing abroad and have widened the foreign part in the share of the receipts. The study herein proposed is a refinement of the established theory of international business, with support from the industrial organization theory, namely on infrastructure economics. The methodology is theoretical empirical since it starts from two existing theories. Hypotheses relate the degree of internationalization (GI to a set of determinants of internationalization. As of conclusions, with the exception of the economies of density and scale, which did not show as relevant, all other variables behaved as expected.

  18. The ATLAS Simulation Infrastructure

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernandez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M.A.B.; Do Valle Wemans, A.; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gautard, V.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.K.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Ponsot, P.; Pontecorvo, L.; Pope, B.G.; Popeneciu, G.A.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, JEM; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.A.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zutshi, V.

    2010-01-01

    The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.

  19. Making Energy Infrastructure

    DEFF Research Database (Denmark)

    Schick, Lea; Winthereik, Brit Ross

    2016-01-01

    in a pragmatic present and in an unprecedented future; between being tied to the specific site of the competition and belonging to no place in particular; and not least between being predominantly an art project and primarily an infrastructure project. Remarkable differences between cosmopolitics and smooth...... politics appear here, especially compared to the literature analysing the roles played by art and design when imagining new ways of living with energy. Oscillation between smooth politics and cosmopolitics may provide a generative way forward for actors wishing to engage in the infrastructuring...

  20. Transformation of technical infrastructure

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev

    , the evolution of large technological systems and theories about organisational and technological transformationprocesses. The empirical work consist of three analysis at three different levels: socio-technical descriptions of each sector, an envestigation of one municipality and envestigations of one workshop......The scope of the project is to investigate the possibillities of - and the barriers for a transformation of technical infrastructure conserning energy, water and waste. It focus on urban ecology as a transformation strategy. The theoretical background of the project is theories about infrastructure...

  1. VADMC: The Infrastructure

    Directory of Open Access Journals (Sweden)

    Le Sidaner Pierre

    2012-09-01

    Full Text Available The Virtual Atomic and Molecular Data Centre (VAMDC; http://www.vamdc.eu is a European-Union-funded collaboration between several groups involved in the generation, evaluation, and use of atomic and molecular data. VAMDC aims at building a secure, documented, flexible and interoperable e-Science environment-based interface to existing atomic and molecular databases. The global infrastructure of this project uses technologies derived from the International Virtual Observatory Alliance (IVOA. The infrastructure, as well as the first database prototypes will be described.

  2. Indonesian infrastructure development

    International Nuclear Information System (INIS)

    Djojohadikusumo, H.S.

    1991-01-01

    It is with the achievement of a competitive advantage as a motivating factor that the Indonesian coal industry is engaged in infrastructure development including both small regionally trade-based terminals and high capacity capesize bulk terminals to support large scale coal exports. The unique characteristics of Indonesian coal quality, low production costs and the optimization of transport economics in accordance with vessel size provides great incentives for the European and U.S. market. This paper reports on the infrastructure development, Indonesian coal resources, and coal exports

  3. Review of current research and application of ductile cast iron quality monitoring technologies in Chinese foundry industry

    Directory of Open Access Journals (Sweden)

    Da-yong Li

    2015-07-01

    Full Text Available There is a long history of studying and making use of ductile cast iron in China. Over the years, the foundrymen in China have carried out a lot of valuable research and development work for measuring parameters and controlling the quality in ductile cast iron production. Many methods, such as rapid metallographic phase, thermal analysis, eutectic expansion ratio, surface tension measurement, melt electrical resistivity, oxygen and sulfur activity measurement, ultrasonic measurement and sound frequency measurement, have been used and have played important roles in Chinese casting production in the past. These methods can be generally classified as liquid testing and solid testing according to the sample state. Based on the analysis of the present situation of these methods applied in the Chinese metal casting industry, the authors consider that there are two difficult technical problems to be currently solved in monitoring ductile iron quality. One is to seek an effective method for quickly evaluating the nodularizing result through on-the-spot sample analysis before the liquid iron is poured into the mould. The other is to find a nondestructive method for accurately identifying casting quality before castings are delivered.

  4. Effects of synchronous irradiance monitoring and correction of current-voltage curves on the outdoor performance measurements of photovoltaic modules

    Science.gov (United States)

    Hishikawa, Yoshihiro; Doi, Takuya; Higa, Michiya; Ohshima, Hironori; Takenouchi, Takakazu; Yamagoe, Kengo

    2017-08-01

    Precise outdoor measurement of the current-voltage (I-V) curves of photovoltaic (PV) modules is desired for many applications such as low-cost onsite performance measurement, monitoring, and diagnosis. Conventional outdoor measurement technologies have a problem in that their precision is low when the solar irradiance is unstable, hence, limiting the opportunity of precise measurement only on clear sunny days. The purpose of this study is to investigate an outdoor measurement procedure, that can improve both the measurement opportunity and precision. Fast I-V curve measurements within 0.2 s and synchronous measurement of irradiance using a PV module irradiance sensor very effectively improved the precision. A small standard deviation (σ) of the module’s maximum output power (P max) in the range of 0.7-0.9% is demonstrated, based on the basis of a 6 month experiment, that mainly includes partly sunny days and cloudy days, during which the solar irradiance is unstable. The σ was further improved to 0.3-0.5% by correcting the curves for the small variation of irradiance. This indicates that the procedure of this study enables much more reproducible I-V curve measurements than a conventional usual procedure under various climatic conditions. Factors that affect measurement results are discussed, to further improve the precision.

  5. Using a CRIS for e-Infrastructure: e-Infrastructure for Scholarly Publications

    Directory of Open Access Journals (Sweden)

    E Dijk

    2010-05-01

    Full Text Available Scholarly publications are a major part of the research infrastructure. One way to make output available is to store the publications in Open Access Repositories (OAR. A Current Research Information System (CRIS that conforms to the standard CERIF (Common European Research Information Format could be a key component in the e-infrastructure. A CRIS provides the structure and makes it possible to interoperate the CRIS metadata at every stage of the research cycle. The international DRIVER projects are creating a European repository infrastructure. Knowledge Exchange has launched a project to develop a metadata exchange format for publications between CRIS and OAR systems.

  6. Augmented Reality for Infrastructure Information

    DEFF Research Database (Denmark)

    Kjems, Erik; Hansen, Lasse Hedegaard

    2018-01-01

    . Is it possible to retrieve useful information of a design model at a later point in the life cycle for instance during maintenance? This question has actually been answered back in 2009 in (Schall et al., 2009) where a group of researchers developed a handheld AR device with a little monitor and GPS...... with infrastructure projects? There are three major use cases which are straight forward but certainly not all there is. 1. During the planning phase the new road structure can be presented making it way more easy for for instance politicians and neighbors in the area to grasp the new structure and the impact...... and consequences to the area. 2. During construction, the contractor can get an impression of the progress in the work especially connected to a 4D project management system seeing what is missing and what is not. 3. Finally, during maintenance, the possibility to “see through” the surface can give you...

  7. Benchmarking infrastructure for mutation text mining.

    Science.gov (United States)

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  8. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  9. Aluminium in Infrastructures

    NARCIS (Netherlands)

    Maljaars, J.

    2016-01-01

    Aluminium alloys are used in infrastructures such as pedestrian bridges or parts of it such as handrail. This paper demonstrates that aluminium alloys are in principle also suited for heavy loaded structures, such as decks of traffic bridges and helicopter landing platforms. Recent developments in

  10. Language Convergence Infrastructure

    NARCIS (Netherlands)

    V. Zaytsev (Vadim); J.M. Fernandes; R. Lämmel (Ralf); J.M.W. Visser (Joost); J. Saraiva

    2011-01-01

    htmlabstractThe process of grammar convergence involves grammar extraction and transformation for structural equivalence and contains a range of technical challenges. These need to be addressed in order for the method to deliver useful results. The paper describes a DSL and the infrastructure behind

  11. Documentation of Infrastructure

    DEFF Research Database (Denmark)

    Workspace

    2003-01-01

    This report describes the software infrastructure developed within the WorkSPACE  project, both from a software architectural point of view and from a user point of  view. We first give an overview of the system architecture, then go on to present the  more prominent features of the 3D graphical...

  12. Serial private infrastructures

    NARCIS (Netherlands)

    van den Berg, V.A.C.

    2013-01-01

    This paper investigates private supply of two congestible infrastructures that are serial, where the consumer has to use both in order to consume. Four market structures are analysed: a monopoly and 3 duopolies that differ in how firms interact. It is well known that private supply leads too high

  13. Building National Healthcare Infrastructure

    DEFF Research Database (Denmark)

    Jensen, Tina Blegind; Thorseng, Anne

    2017-01-01

    This case chapter is about the evolution of the Danish national e-health portal, sundhed.dk, which provides patient-oriented digital services. We present how the organization behind sundhed.dk succeeded in establishing a national healthcare infrastructure by (1) collating and assembling existing...

  14. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  15. Energy consumption in communication infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Dittmann, L.

    2012-11-15

    Despite communication infrastructures (excluding computer and storage center) are ''only'' consuming 2-4% of the global power usage, the concern arise from the growth rate of around 40%. Unless action is taken the power provided to operate the Internet, the cellular mobile network, the WiFi hotspots will be so significant that usage restrictions might be applied - and economic growth limited. The evolutionary and the disruptive approach is not a choice as the implementation of the disruptive approach has a timeline of at least 10 years and the evolutionary approach is unlikely to cope with demand growth in a longer perspective. A more intensive use of optical technology is currently the best solution for the long term future but requires a complete restructuring of the way networks are researched and implemented as optics are unlikely to provide the same flexibility as the electronic/software solution used in current networks. (Author)

  16. Development Model for Research Infrastructures

    Science.gov (United States)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  17. Financing and current capacity for REDD+ readiness and monitoring, measurement, reporting and verification in the Congo Basin.

    Science.gov (United States)

    Maniatis, Danae; Gaugris, Jérôme; Mollicone, Danilo; Scriven, Joel; Corblin, Alexis; Ndikumagenge, Cleto; Aquino, André; Crete, Philippe; Sanz-Sanchez, Maria-José

    2013-01-01

    This paper provides the first critical analysis of the financing and current capacity for REDD+ readiness in the Congo Basin, with a particular focus on the REDD+ component of national forest monitoring and measurement, reporting and verification (M&MRV). We focus on three areas of analysis: (i) general financing for REDD+ readiness especially M&MRV; (ii) capacity and information for REDD+ implementation and M&MRV; (iii) prospects and challenges for REDD+ and M&MRV readiness in terms of financing and capacity. For the first area of analysis, a REDD+ and M&MRV readiness financing database was created based on the information from the REDD+ voluntary database and Internet searches. For the second area of analysis, a qualitative approach to data collection was adopted (semi-structured interviews with key stakeholders, surveys and observations). All 10 countries were visited between 2010 and 2012. We find that: (i) a significant amount of REDD+ financing flows into the Congo Basin (±US$550 million or almost half of the REDD+ financing for the African continent); (ii) across countries, there is an important disequilibrium in terms of REDD+ and M&MRV readiness financing, political engagement, comprehension and capacity, which also appears to be a key barrier to countries receiving equal resources; (iii) most financing appears to go to smaller scale (subnational) REDD+ projects; (iv) four distinct country groups in terms of REDD+ readiness and M&MRV status are identified; and (v) the Congo Basin has a distinct opportunity to have a specific REDD+ financing window for large-scale and more targeted national REDD+ programmes through a specific fund for the region.

  18. Financing and current capacity for REDD+ readiness and monitoring, measurement, reporting and verification in the Congo Basin

    Science.gov (United States)

    Maniatis, Danae; Gaugris, Jérôme; Mollicone, Danilo; Scriven, Joel; Corblin, Alexis; Ndikumagenge, Cleto; Aquino, André; Crete, Philippe; Sanz-Sanchez, Maria-José

    2013-01-01

    This paper provides the first critical analysis of the financing and current capacity for REDD+ readiness in the Congo Basin, with a particular focus on the REDD+ component of national forest monitoring and measurement, reporting and verification (M&MRV). We focus on three areas of analysis: (i) general financing for REDD+ readiness especially M&MRV; (ii) capacity and information for REDD+ implementation and M&MRV; (iii) prospects and challenges for REDD+ and M&MRV readiness in terms of financing and capacity. For the first area of analysis, a REDD+ and M&MRV readiness financing database was created based on the information from the REDD+ voluntary database and Internet searches. For the second area of analysis, a qualitative approach to data collection was adopted (semi-structured interviews with key stakeholders, surveys and observations). All 10 countries were visited between 2010 and 2012. We find that: (i) a significant amount of REDD+ financing flows into the Congo Basin (±US$550 million or almost half of the REDD+ financing for the African continent); (ii) across countries, there is an important disequilibrium in terms of REDD+ and M&MRV readiness financing, political engagement, comprehension and capacity, which also appears to be a key barrier to countries receiving equal resources; (iii) most financing appears to go to smaller scale (subnational) REDD+ projects; (iv) four distinct country groups in terms of REDD+ readiness and M&MRV status are identified; and (v) the Congo Basin has a distinct opportunity to have a specific REDD+ financing window for large-scale and more targeted national REDD+ programmes through a specific fund for the region. PMID:23878337

  19. Dynamic response of infrastructure to environmentally induced loads analysis, measurements, testing, and design

    CERN Document Server

    Manolis, George

    2017-01-01

    This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the empha...

  20. A sociotechnical framework for understanding infrastructure breakdown and repair

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Benjamin H [Los Alamos National Laboratory

    2009-01-01

    This paper looks at how and why infrastructure is repaired. With a new era of infrastructure spending underway, policymakers need to understand and anticipate the particular technical and political challenges posed by infrastructure repair. In particular, as infrastructure problems are increasingly in the public eye with current economic stimulus efforts, the question has increasingly been asked: why has it been so difficult for the United Statesto devote sustained resources to maintaining and upgrading its national infrastructure? This paper provides a sociotechnical framework for understanding the challenges of infrastructure repair, and demonstrates this framework using a case study of seismic retrofit of freeway bridges in California. The design of infrastructure is quite different from other types of design work even when new infrastructure is being designed. Infrastructure projects are almost always situated within, and must work with, existing infrastructure networks. As a result, compared to design of more discrete technological artifacts, the design of infrastructure systems requires a great deal of attention to interfaces as well as adaptation of design to the constraints imposed by existing systems. Also, because of their scale, infrastructural technologies engage with social life at a level where explicit political agendas may playa central role in the design process. The design and building of infrastructure is therefore often an enormously complex feat of sociotechnical engineering, in which technical and political agendas are negotiated together until an outcome is reached that allows the project to move forward. These sociotechnical settlements often result in a complex balancing of powerful interests around infrastructural artifacts; at the same time, less powerful interests have historically often been excluded or marginalized from such settlements.