WorldWideScience

Sample records for current measuring system

  1. HLS bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.

  2. Automatic system for ionization chamber current measurements.

    Science.gov (United States)

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  3. Beam Current Measurement and Adjustment System on AMS

    Institute of Scientific and Technical Information of China (English)

    WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan

    2003-01-01

    The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.

  4. Current measurement apparatus

    Science.gov (United States)

    Umans, Stephen D.

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  5. Performance of current measurement system in poloidal field power supply for Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Liu, D. M.; Li, J.; Wan, B. N.; Lu, Z.; Wang, L. S.; Jiang, L.; Lu, C. H.; Huang, J.

    2016-11-01

    As one of the core subsystems of the Experimental Advanced Superconducting Tokamak (EAST), the poloidal field power system supplies energy to EAST's superconducting coils. To measure the converter current in the poloidal field power system, a current measurement system has been designed. The proposed measurement system is composed of a Rogowski coil and a newly designed integrator. The results of the resistor-inductor-capacitor discharge test and the converter equal current test show that the current measurement system provides good reliability and stability, and the maximum error of the proposed system is less than 1%.

  6. Offshore Measurement System for Wave Power—Using Current Loop Feedback

    OpenAIRE

    Liselotte Ulvgård; Tobias Kamf; Mats Leijon

    2016-01-01

    This paper presents the design and testing of a measurement system for wave power generators. The work is part of a project to build a robust and cheap measurement system for offshore monitoring of wave power farms. Due to the harsh offshore environment, low accessibility and high cost for installation and maintenance, it is of key importance to minimize power consumption, complexity and cost of each measurement unit. For the first prototype, the objective was to measure voltage, current and ...

  7. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    Science.gov (United States)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  8. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Deyang, E-mail: d.yu@impcas.ac.cn; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Xin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O{sup 3+} ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  9. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    CERN Document Server

    Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-01-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  10. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    CERN Document Server

    Laundal, Karl M; Olsen, Nils

    2016-01-01

    Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting $\\textit{Swarm}$ and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV ...

  11. Automated measurement system employing eddy currents to adjust probe position and determine metal hardness

    Science.gov (United States)

    Prince, James M.; Dodson, Michael G.; Lechelt, Wayne M.

    1989-01-01

    A system for measuring the hardness of cartridge cases employs an eddy current probe for inducing and sensing eddy currents in each cartridge case. A first component of the sensed signal is utilized in a closed loop system for accurately positioning the probe relative to the cartridge case both in the lift off direction and in the tangential direction, and a second component of the sensed signal is employed as a measure of the hardness. The positioning and measurement are carried out under closed loop microprocessor control facilitating hardness testing on a production line basis.

  12. Offshore Measurement System for Wave Power—Using Current Loop Feedback

    Directory of Open Access Journals (Sweden)

    Liselotte Ulvgård

    2016-12-01

    Full Text Available This paper presents the design and testing of a measurement system for wave power generators. The work is part of a project to build a robust and cheap measurement system for offshore monitoring of wave power farms. Due to the harsh offshore environment, low accessibility and high cost for installation and maintenance, it is of key importance to minimize power consumption, complexity and cost of each measurement unit. For the first prototype, the objective was to measure voltage, current and translator position inside the linear wave power generator. For this, two printed circuit boards (PCBs were developed, using a two wire current loop transmitter setup. They were tested separately and in a three phase setup inside a wave power generator during onshore tests. To ensure stability, speed and accuracy in the signal transfer, the PCBs were tested for linearity, frequency response and step response. In addition, power consumption was measured, for operational time evaluation. Results show good agreement between expected and measured performance, with an input range of ±1560 V and ±420 A for alternating current measurements and a bandwidth of 10 kHz and 7 kHz, for voltage and current measurements, respectively. The power consumption was measured to 0.5 W for each measurement unit, at 24 V feed.

  13. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  14. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinzhen; Li, Gang; Lin, Ling, E-mail: linling@tju.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, People' s Republic of China, and Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin (China); Qiao, Xiaoyan [College of Physics and Electronic Engineering, Shanxi University, Shanxi (China); Wang, Mengjun [School of Information Engineering, Hebei University of Technology, Tianjin (China); Zhang, Weibo [Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences, Beijing (China)

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  15. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system.

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  16. A study of pickup and signal processing for HLS-Ⅱ bunch current measurement system

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Liang; MA Tian-Ji; SUN Bao-Gen; WANG Ji-Gang; ZOU Jun-Ying; CHENG Chao-Cai; LU Ping

    2013-01-01

    For the HLS-Ⅱ bunch current measurement system,in order to obtain the absolute value of bunch current,the calibration factor should be determined by using DCCT.At the HLS storage ring,the stretch effect of bunch length is observed and the change rate is about 19% when the bunch current decays over time and this will affect the performance of bunch current detection.To overcome the bunch stretch influence in the HLS-Ⅱ bunch current measurement,an evaluation about pickup type and signal processing is carried out.Strip-line pickup and button pickup are selectable,and the theoretical analysis and demonstration experiment are performed to find out an acceptable solution for the bunch current measurement system at HLS-Ⅱ.The experimental data analysis shows that the normalized calibration factor will change by about 27% when the bunch length changes by about 19% if using the button pickup and processing by peak value of bunch signal; the influence will be reduced to 2% less if adopting the strip-line pickup and integral.

  17. Eddy current measurement system evaluation for corrosion depth determination on cast aluminum aircraft structure

    Science.gov (United States)

    Singh, Surendra; Greving, Dan; Kinney, Andy; Vensel, Fred; Ohm, Jim; Peeler, Mike

    2013-01-01

    An eddy current (EC) technique was developed to determine the corrosion depth on a bare flange face of a cast aluminum A356-T6 aircraft engine structure. The EC response and the corrosion depths determined through metallurgical cross sections were used to develop an empirical relation between EC response and depth. The EC technique and depth determination are used to inspect the engine structures during overhaul to determine if they are fit for continued service. An accurate and reliable Non-Destructive Inspection is required to ensure that structures returned to service are safe for continued operation. NDE system reliability demonstrations of the eddy current technique are traditionally reported in terms of Probability of Detection (POD) data using MIL-HDBK-1823A. However, the calculation of POD data is based on a simple linear predictive model that is valid only if certain criteria are met. These are: 1) NDE system response is measurable (i.e. continuous data), 2) Flaw size is known and measurable (i.e. continuous data), 3) relationship between the NDE system response and flaw size is linear (or linear on a log scale), 4) variation in measured responseresponse around a predicted response for a given flaw size is normally distributed, 5) the variation around the predicted response is constant (i.e. variation does not change with flaw size), and 6) inherent variability in the NDE system is known and fully understood. In this work, a Measurement System Evaluation (MSE) of the Eddy Current System was used to address some of these concerns. This work was completed on two aircraft structures having varying corrosion depths. The data were acquired in a random manner at fifty regions of interests (ROIs). Three operators participated in this study, and each operator measured Eddy Current response three times in each ROI. In total, there were four hundred and fifty data points collected. Following this, the two structures were sectioned for measuring corrosion depth. The

  18. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    Science.gov (United States)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  19. 10 Orders of Magnitude Current Measurement Digitisers for the CERN Beam Loss Systems

    CERN Document Server

    Vigano, W; Dehning, B; Kwiatkowski, M; Venturini, G G; Zamantzas, C

    2014-01-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31nA in an integration window of 2μs. Increasing the integration window, the dynamic range covers 2•1010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  20. 10 orders of magnitude current measurement digitisers for the CERN beam loss systems

    Science.gov (United States)

    Viganò, W.; Alsdorf, M.; Dehning, B.; Kwiatkowski, M.; Venturini, G. G.; Zamantzas, C.

    2014-02-01

    A wide range current digitizer card is needed for the acquisition module of the beam loss monitoring systems in the CERN Injector Complex. The fully differential frequency converter allows measuring positive and negative input currents with a resolution of 31 nA in an integration window of 2 μs. Increasing the integration window, the dynamic range covers 21010 were the upper part of the range is converted by measuring directly the voltage drop on a resistor. The key elements of this design are the fully differential integrator and the switches operated by an FPGA. The circuit is designed to avoid any dead time in the acquisition and reliability and failsafe operational considerations are main design goals. The circuit will be discussed in detail and lab and field measurements will be shown.

  1. The Research of Through-casing Resistivity Logging Logging Calibration System Leakage Current Measurement Method

    Directory of Open Access Journals (Sweden)

    ZHANG Jiatian

    2013-07-01

    Full Text Available This paper introduces the logging principle of through-casing resistivity logging technology, finds a phenomenon that the leakage current measurements are susceptible to sufferring interferences. The through-casing resistivity logging technology in Russia and that of Schlumberger are studied, and the system of through-casing resistivity logging is established to improve the accuracy of calibrating, testing and measuring of the instrument. In this paper, distribution parameters of the form is replaced by the lumped parameter, and precision resistor array simulation in formation leakage current and scale pool simulation in different resistivity of formation are conducted, which make the dynamic range of the simulation in formation resistivity of the medium increase to 1- 300 Ω·m and meet the requirement of through-casing resistivity logging technology measurement range, 1 Ω·m ~ 100 Ω·m. Since the measuring signals of calibration acquisition and processing systems are extremely weak and calculation signals need to tell the nV (nanovolts level, the high accurate data acquisition system of 24 digits is applied.

  2. Validation of a pulsed eddy current system for measuring wall thinning through insulation

    Science.gov (United States)

    Brett, Colin R.; de Raad, Jan A.

    1996-11-01

    There have been several failures in power plant feedwater piping systems due to wall thinning caused by flow- accelerated corrosion of the inner surface. Detection of wastage in susceptible pipes is costly as traditional NDE methods such as ultrasonic testing entail removal and reinstallation of insulation over many meters of pipework. Radiography is one solution to this problem, but it is slow to apply and requires careful attention to safety. The RTD Incotest system uses pulsed eddy current technology to measure pipewall thickness through insulation and external cladding. The technology has been licensed from Arco, Inc., who originally developed the technique for large diameter pipelines and storage tanks where the area interrogated was made deliberately large. This paper describes an optimized Incotest systems which can detect and measure internal or external wall wastage which is more localized and typical of flow-accelerated corrosion. Improvements have also been made to the inspection and data acquisition in order to increase the inspection rate and overall productivity. Ultimately the performance of the optimized Incotest system has been verified on samples which contain artificial and real corrosion.

  3. Faraday-effect polarimeter-interferometer system for current density measurement on EAST.

    Science.gov (United States)

    Liu, H Q; Jie, Y X; Ding, W X; Brower, D L; Zou, Z Y; Li, W M; Wang, Z X; Qian, J P; Yang, Y; Zeng, L; Lan, T; Wei, X C; Li, G S; Hu, L Q; Wan, B N

    2014-11-01

    A multichannel far-infrared laser-based POlarimeter-INTerferometer (POINT) system utilizing the three-wave technique is under development for current density and electron density profile measurements in the EAST tokamak. Novel molybdenum retro-reflectors are mounted in the inside wall for the double-pass optical arrangement. A Digital Phase Detector with 250 kHz bandwidth, which will provide real-time Faraday rotation angle and density phase shift output, have been developed for use on the POINT system. Initial calibration indicates the electron line-integrated density resolution is less than 5 × 10(16) m(-2) (∼2°), and the Faraday rotation angle rms phase noise is <0.1°.

  4. SBC Dark Current Measurement

    Science.gov (United States)

    Ogaz, Sara

    2013-10-01

    This takes a series of SBC dark measurements over a continuous period of about 6 hours {4 orbits}. The aim is to collect dark images during an extended SBC on-time. Earlier measurements indicate that the dark current increases with SBC on-time and may also be increasing with overall SBC use. The 6-hour time matches the longest time used by any observer. As with all SBC observations this needs continuous SAA free time.This program is executed once per cycle. The last exposures were taken in Mar 2013 under Program 13161.

  5. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    DEFF Research Database (Denmark)

    Laundal, Karl M.; Finlay, Chris; Olsen, Nils

    2016-01-01

    analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal...... show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV emissions on the dayside and on particle precipitation at pre-midnight magnetic local times. In sunlight, the horizontal equivalent current flows in two cells, resembling an opposite ionospheric...

  6. The Measuring and Protection Method for the Abnormal Rise of Magnetizing Inrush Current in a Divided Type 3 CTs System

    Science.gov (United States)

    Iwasaki, Fumio; Ibe, Masayuki; Ninohei, Koichiro; Okamura, Seichiro

    This paper describes the measuring and protection method for the abnormal rise of magnetizing inrush current in a divided type 3 CTs system. By divided type 3 CTs system, it is possible to measure the primary phase current and zero phase current at the same time. In this reason, the divided type 3 CTs system is widely used for the measurement of high voltage distribution line by simply clamping the each phase lines with 3CTs. For the accurate measurement of the phase current and zero phase current, the internal residual current in CT should be small as possible. It is reported that the abnormal rise of the residual current is generated in the practical field use and several ten ampere (converted to the primary current value) is observed in some case. The abnormal rise of the residual current is caused by the primary magnetizing inrush current or by the sum of the influence by electromagnetic field of the nearby conductors. The magnetizing inrush current is caused by the magnetic saturation of the core of CT. It is difficult to eliminate the abnormal residual current by using the bigger size of core. In our test, we used the active elements and independent feed back coils around the right and left core of CT. By using the feed back current from these coils it was observed that the magnetic saturation of the core is improved and the magnetizing inrush current can be controlled.

  7. Measurement system for determination of current-voltage characteristics of PV modules

    Science.gov (United States)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  8. Management system to a photovoltaic panel based on the measurement of short-circuit currents

    Science.gov (United States)

    Dordescu, M.

    2016-12-01

    This article is devoted to fundamental issues arising from operation in terms of increased energy efficiency for photovoltaic panel (PV). By measuring the current from functioning cage determine the current value prescribed amount corresponding to maximum power point results obtained by requiring proof of pregnancy with this method are the maximum energy possible, thus justifying the usefulness of this process very simple and inexpensive to implement in practice. The proposed adjustment method is much simpler and more economical than conventional methods that rely on measuring power cut.

  9. Comparison of three different concepts of high dynamic range and dependability optimised current measurement digitisers for beam loss systems

    CERN Document Server

    Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C

    2012-01-01

    Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...

  10. A Survey of Channel Measurements and Models for Current and Future Railway Communication Systems

    Directory of Open Access Journals (Sweden)

    Paul Unterhuber

    2016-01-01

    Full Text Available Modern society demands cheap, more efficient, and safer public transport. These enhancements, especially an increase in efficiency and safety, are accompanied by huge amounts of data traffic that need to be handled by wireless communication systems. Hence, wireless communications inside and outside trains are key technologies to achieve these efficiency and safety goals for railway operators in a cost-efficient manner. This paper briefly describes nowadays used wireless technologies in the railway domain and points out possible directions for future wireless systems. Channel measurements and models for wireless propagation are surveyed and their suitability in railway environments is investigated. Identified gaps are pointed out and solutions to fill those gaps for wireless communication links in railway environments are proposed.

  11. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique.

    Science.gov (United States)

    Li, Wei; Wang, Hongbo; Feng, Zhihua

    2016-04-01

    This paper proposes an online, non-contact metal film thickness measurement system based on eddy current sensing. The slope of the lift-off curve (LOC) is used for characterizing target thickness. Theoretical derivation was conducted to prove that the slope is independent of the lift-off variation. In practice, the measurement has some immunity to the lift-off, but not perfect. The slope of LOC is still affected at some extent by the lift-off. Hence, a height tracking system was also proposed, which could stabilize the distance between the sensor and the target and significantly reduce the lift-off effect. The height tracking system contains a specially designed probe, which could vibrate rapidly to obtain a fast measurement speed, and its height can be adjusted up and down continuously to stabilize the lift-off. The sensor coil in the thickness measurement system was also used as the height sensor in the height tracking system. Several experiments were conducted to test the system performances under static and dynamic conditions. This measurement system demonstrated significant advantages, such as simple and clear conversion between the slope of LOC and target thickness, high resolution and stability, and minimized effect of lift-off variation.

  12. LEDA beam diagnostics instrumentation: Beam current measurement

    Science.gov (United States)

    Barr, D.; Day, L.; Gilpatrick, J. D.; Kasemir, K.-U.; Martinez, D.; Power, J. F.; Shurter, R.; Stettler, M.

    2000-11-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz® electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  13. Enantiomer Specific Measurements of Current-Use Pesticides in Aquatic Systems.

    Science.gov (United States)

    Research has shown that current-use pesticides can enter urban and agricultural watersheds and adversely affect aquatic organisms. A potential cause may be higher concentrations of the more toxic pesticide enantiomer present in the pesticide mixture. The presence of pesticide ena...

  14. Electronic measurements of ionization currents

    Energy Technology Data Exchange (ETDEWEB)

    Hutyra, F.; Knapp, K.; Gregor, J. (Tesla, Premysleni (Czechoslovakia). Vyzkumny Ustav Pristroju Jaderne Techniky)

    1982-02-01

    Measurements are discussed of very low currents from ionization chambers. The currents range between 10/sup -15/ and 10/sup -9/ A. Two methods are discussed. A description is given of a dynamic and a semiconductor electrometers. Both meters are parts of dosimetric instruments for monitoring the dose rate (NB 9201) and the neutron-gamma mixed radiation dose rate (NDK 601).

  15. Measuring parent-child mutuality: a review of current observational coding systems.

    Science.gov (United States)

    Funamoto, Allyson; Rinaldi, Christina M

    2015-01-01

    Mutuality is defined as a smooth, back-and-forth positive interaction consisting of mutual enjoyment, cooperation, and responsiveness. The bidirectional nature of mutuality is an essential component to the parent-child relationship since a high quality parent-child mutual relationship is crucial to encouraging children's positive socialization and development (S. Lollis & L. Kuczynski, 1997; E.E. Maccoby, 2007). Several coding systems have been developed in recent years to assess this distinct and crucial aspect of the parent-child relationship. The present article reviews the following four mutuality coding schemes: the Parent-Child Interaction System (K. Deater-Deckard, M.V. Pylas, & S. Petrill, 1997), the Mutually Responsive Orientation Scale (N. Aksan, G. Kochanska, & M.R. Ortmann, 2006), the Caregiver-Child Affect, Responsiveness, and Engagement Scale (C.S. Tamis-LeMonda, P. Ahuja, B. Hannibal, J.D. Shannon, & M. Spellmann, 2002), and the Synchrony and Control Coding Scheme (J. Mize & G.S. Pettit, 1997). The review will focus on observational coding schemes available to researchers interested a central element of quality parent-child relationships in the early years.

  16. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk.

    Science.gov (United States)

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility.

  17. Development and Deployment of an Aerospace Recommended Practice (ARP) Compliant Measurement System for nvPM Certification Measurements of Aircraft Engines - Current Status.

    Science.gov (United States)

    Whitefield, P. D.; Hagen, D. E.; Lobo, P.; Miake-Lye, R. C.

    2015-12-01

    The Society of Automotive Engineers (SAE) Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter (nvPM) from aircraft engines (SAE 2013). The system is designed to operate in parallel with existing International Civil Aviation Organization (ICAO) Annex 16 compliant combustion gas sampling systems used for emissions certification from aircraft engines captured by conventional (Annex 16) gas sampling rakes (ICAO, 2008). The SAE E-31 committee is also working to ballot an Aerospace Recommended Practice (ARP) that will provide the methodology and system specification to measure nvPM from aircraft engines. The ARP is currently in preparation and is expected to be ready for ballot in 2015. A prototype AIR-compliant nvPM measurement system - The North American Reference System (NARS) has been built and evaluated at the MSTCOE under the joint sponsorship of the FAA, EPA and Transport Canada. It has been used to validate the performance characteristics of OEM AIR-compliant systems and is being used in engine certification type testing at OEM facilities to obtain data from a set of representative engines in the fleet. The data collected during these tests will be used by ICAO/CAEP/WG3/PMTG to develop a metric on which on the regulation for nvPM emissions will be based. This paper will review the salient features of the NARS including: (1) emissions sample transport from probe tip to the key diagnostic tools, (2) the mass and number-based diagnostic tools for nvPM mass and number concentration measurement and (3) methods employed to assess the extent of nvPM loss throughout the sampling system. This paper will conclude with a discussion of the recent results from inter-comparison studies conducted with other US - based systems that gives credence to the ARP's readiness for ballot.

  18. Measurement system of high voltage and high current measurements at INMETRO - Brazilian Institute for Metrology, Standardization and Industrial Quality; Sistema de medicao de alta tensao e alta corrente do INMETRO - Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vitorio, Patricia Cals de O.; Franca, Ademir Martins de; Soares, Marco Aurelio; Pereira, Luiz Napoleao; Costa, Danielli Guimaraes; Moreira, Giselle Cobica; Nascimento, Paulo Roberto Mesquita [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: latra@inmetro.gov.br

    2009-07-01

    This work presents the basic characteristics and uncertainties of the calibration equipment in high voltage and high current available at the INMETRO: system of measurement in alternating high voltage up to 200 kV, system of measurement in alternating current up to 2 k A, and system of measurement in continuous high voltage up to 150 kV.

  19. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  20. Dark Current Measurements in GIF++

    CERN Document Server

    Al-Qahtani, Abdulaziz

    2017-01-01

    This project revolved around creating a code that treats experiment files in order to fetch dark current measurements done for the Cathode Strip Chambers (CSC) exposed to long-term irradiation at Gamma Irradiation Facility (GIF++) and plot the results as functions of the accumulated charge. This paper will discuss the Compact Muon Solenoid (CMS) experiment, the CSCs that we have looked at (specifically the muon detectors located at the CMS endcaps), longevity test at GIF++, and finally discuss the code and results obtained.

  1. Leakage current measurement in transformerless PV inverters

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Mathe, Laszlo

    2012-01-01

    to be used in commercial PV inverters for the measurement of leakage and fault ground currents. The German VDE0126–1–1 standard gives the limit for fault and leakage ground currents and all grid connected PV inverters have to comply with these limits and disconnect from the grid in case of a fault.......Photovoltaic (PV) installations have seen a huge increase during the last couple of years. Transformerless PV inverters are gaining more share of the total inverter market, due to their high conversion efficiency, small weight and size. Nevertheless safety should have an important role in case...... of these tranformerless systems, due to the missing galvanic isolation. Leakage and fault current measurement is a key issue for these inverter topologies to be able to comply with the required safety standards. This article presents the test results of two different current measurement sensors that were suggested...

  2. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  3. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  4. Eddy current thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  5. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  6. Current adaptation measures and policies

    Science.gov (United States)

    Geoff Roberts; John A. Parrotta; Anita. Wreford

    2009-01-01

    As stated in earlier chapters, the possible impacts of climate change on forests and the forest sector are considerable, and many impacts have already been observed. As forest conditions change, there is an inherent need to change management and policy measures to minimise negative impacts and to exploit the benefits derived from climate change. This chapter highlights...

  7. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  8. Defining and resolving current systems in geospace

    Science.gov (United States)

    Ganushkina, N. Y.; Liemohn, M. W.; Dubyagin, S.; Daglis, I. A.; Dandouras, I.; De Zeeuw, D. L.; Ebihara, Y.; Ilie, R.; Katus, R.; Kubyshkina, M.; Milan, S. E.; Ohtani, S.; Ostgaard, N.; Reistad, J. P.; Tenfjord, P.; Toffoletto, F.; Zaharia, S.; Amariutei, O.

    2015-11-01

    Electric currents flowing through near-Earth space (R ≤ 12 RE) can support a highly distorted magnetic field topology, changing particle drift paths and therefore having a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly defined as (1) the dayside magnetopause Chapman-Ferraro currents, (2) the Birkeland field-aligned currents with high-latitude "region 1" and lower-latitude "region 2" currents connected to the partial ring current, (3) the magnetotail currents, and (4) the symmetric ring current. In the near-Earth nightside region, however, several of these current systems flow in close proximity to each other. Moreover, the existence of other temporal current systems, such as the substorm current wedge or "banana" current, has been reported. It is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed.

  9. Eddy Current COPV Overwrap and Liner Thickness Measurement System and Data Analysis for 40-Inch Kevlar COPVs SN002 and SN027

    Science.gov (United States)

    Wincheski, Russell A.

    2008-01-01

    As part of the health assessment of flight spare 40in diameter Kevlar composite overwrapped pressure vessels (COPVs) SN002 and SN027 an eddy current characterization of the composite and liner thickness change during pressurization was requested under WSTF-TP-1085-07.A, "Space Shuttle Orbiter Main Propulsion System P/N MC282-0082-0101 S/N 002 and Orbital Maneuvering System P/N MC282-0082-001 S/N 027 COPV Health Assessment." The through the thickness strains have been determined to be an important parameter in the analysis of the reliability and likelihood of stress rupture failure. Eddy current techniques provide a means to measure these thicknesses changes based upon the change in impedance of an eddy current sensor mounted on the exterior of the vessel. Careful probe and technique design have resulted in the capability to independently measure the liner and overwrap thickness changes to better than +/- 0.0005 in. at each sensor location. Descriptions of the inspection system and test results are discussed.

  10. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  11. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.; Mistry, Divyang; Li, Lianhe; Linfield, Edmund H.; Giles Davies, A.; Cunningham, John E., E-mail: j.e.cunningham@leeds.ac.uk [School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Sydoruk, Oleksiy [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  12. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  13. Noncontact Measurement Of Critical Current In Superconductor

    Science.gov (United States)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  14. Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current

    Science.gov (United States)

    Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu

    2017-07-01

    The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.

  15. Calorimetric measuring systems

    DEFF Research Database (Denmark)

    Ritchie, Andrew Ewen; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    the system cooling requirement. A common problem is that high-frequency phenomena like proximity effect, skin effect, hysteresis losses, and eddy current losses appear in the systems. These losses are very difficult to treat both theoretically and in practice. It is often difficult to measure the effect......Power Electronics remains an emerging technology. New materials, new devices, and new circuit topologies reduce the cost, weight, and volume for important applications [1]. Two important factors in power electronic circuits are the switching speed of the devices and the total power losses...... in the system. If the switching speed can be increased, improvements may be possible (e.g., current ripple in an electrical machine or physical size of passive components may be reduced). On the other hand, increased switching speed may cause additional losses in a power electronic system and increase...

  16. High impulse voltage and current measurement techniques fundamentals, measuring instruments, measuring methods

    CERN Document Server

    Schon, Klaus

    2013-01-01

    Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The book deals with: principal generator circuits for generating high-voltage and high-current impulses measuring systems and their calibration according to IEC 60060 and IEC 62475 methods of estimating uncertainties of measurement mathematical and experimental basis for characterizing the transfer behavior of spatially extended systems used for measuring fast transients. This book is intended for engineers and ...

  17. Wave measurement in severe ocean currents

    Digital Repository Service at National Institute of Oceanography (India)

    Diwan, S.G.; Suryavanshi, A.K.; Nayak, B.U.

    from 2 to 5 knots are observed. As a consequence of prevailing high currents, significant drag forces have been experiencEd. by the buoys and their mooring system causing occasional submergence. Some of the mooring systems and the components adopted...

  18. Variable-Temperature Critical-Current Measurements

    Energy Technology Data Exchange (ETDEWEB)

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  19. Current american practice in color measurement.

    Science.gov (United States)

    Billmeyer, F W

    1969-04-01

    Current Aimerienn practice in color measurement is reviewed from the standpoint of instrumentation practice, measurement concepts, and computational methods. Instrumentation practice is described for spectrophotometers, abridged spectrophotometers, and tristimulus colorimeters. Measurement variables discussed include photometric and wavelength scales, standards and standardization, illuminating and viewing geometry, and instrument sources simulating standard illuminants. Computation-methods practiced for obtaining color coordinates and color differences are discussed. Topics indirectly related to the measurement step, such as the basis of colorimetry, color mixing laws, and computer color matching, are specifically excluded from this paper.

  20. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  1. 恒流源法电感测量系统设计%Design of constant current source inductance measurement system

    Institute of Scientific and Technical Information of China (English)

    邹宇汉

    2014-01-01

    This paper introduces a kind of inductance measurement system realized with MCU as the control core.By using DDS chip AD9850 as the sine wave signal generator,under the control of MCU,the system can adjust the test frequency and switching signal gain,compele the functions of 1uH ~ 10mH inductance value and Q value measure and display.The whole system can work in the range of 0 ~ 100KHz with simulating actual condition of the inductance works in,playing the advantage of wide measuring range,high precision, automatic measurement by using the method of constant current source.%本文介绍一种可实现的以单片机为核心的电感测量系统,采用DDS芯片AD9850作为正弦波信号发生器,在单片机的控制下,调整测试频率和切换信号增益,实现对1uH~10mH电感电感值测量、Q值的估算并显示的功能。整个系统可以在0~100KHz范围内模拟电感实际工作频率进行测量,并发挥了恒流源法测量范围宽、精度高、便于实现自动测量的优点。

  2. A study of eddy current measurement (1986-1987)

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, R.S.; Armstrong, K.P.

    1989-06-22

    A study was conducted in 1986 to evaluate a modified eddy current system for measuring copper thickness on Kapton. Results showed a measurement error of 0.42 {mu}in. for a thickness range of 165 to 170 {mu}in. and a measurement variability of 3.2 {mu}in.

  3. Enterprise performance measurement systems

    Directory of Open Access Journals (Sweden)

    Milija Bogavac

    2014-10-01

    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  4. Critical current density: Measurements vs. reality

    Science.gov (United States)

    Pan, A. V.; Golovchanskiy, I. A.; Fedoseev, S. A.

    2013-07-01

    Different experimental techniques are employed to evaluate the critical current density (Jc), namely transport current measurements and two different magnetisation measurements forming quasi-equilibrium and dynamic critical states. Our technique-dependent results for superconducting YBa2Cu3O7 (YBCO) film and MgB2 bulk samples show an extremely high sensitivity of Jc and associated interpretations, such as irreversibility fields and Kramer plots, which lose meaning without a universal approach. We propose such approach for YBCO films based on their unique pinning features. This approach allows us to accurately recalculate the magnetic-field-dependent Jc obtained by any technique into the Jc behaviour, which would have been measured by any other method without performing the corresponding experiments. We also discovered low-frequency-dependent phenomena, governing flux dynamics, but contradicting the considered ones in the literature. The understanding of these phenomena, relevant to applications with moving superconductors, can clarify their dramatic impact on the electric-field criterion through flux diffusivity and corresponding measurements.

  5. Integration of bed characteristics, geochemical tracers, current measurements, and numerical modeling for assessing the provenance of beach sand in the San Francisco Bay Coastal System

    Science.gov (United States)

    Barnard, Patrick L.; Foxgrover, Amy C.; Elias, Edwin P.L.; Erikson, Li H.; Hein, James R.; McGann, Mary; Mizell, Kira; Rosenbauer, Robert J.; Swarzenski, Peter W.; Takesue, Renee K.; Wong, Florence L.; Woodrow, Donald L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Over 150 million m3 of sand-sized sediment has disappeared from the central region of the San Francisco Bay Coastal System during the last half century. This enormous loss may reflect numerous anthropogenic influences, such as watershed damming, bay-fill development, aggregate mining, and dredging. The reduction in Bay sediment also appears to be linked to a reduction in sediment supply and recent widespread erosion of adjacent beaches, wetlands, and submarine environments. A unique, multi-faceted provenance study was performed to definitively establish the primary sources, sinks, and transport pathways of beach-sized sand in the region, thereby identifying the activities and processes that directly limit supply to the outer coast. This integrative program is based on comprehensive surficial sediment sampling of the San Francisco Bay Coastal System, including the seabed, Bay floor, area beaches, adjacent rock units, and major drainages. Analyses of sample morphometrics and biological composition (e.g., Foraminifera) were then integrated with a suite of tracers including 87Sr/86Sr and 143Nd/144Nd isotopes, rare earth elements, semi-quantitative X-ray diffraction mineralogy, and heavy minerals, and with process-based numerical modeling, in situ current measurements, and bedform asymmetry to robustly determine the provenance of beach-sized sand in the region.

  6. Lightning Current Measurement with Fiber-Optic Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  7. Spatially resolved voltage, current and electrochemical impedance spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, D.; Kurz, T.; Schwager, M.; Hebling, C. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg im Breisgau (Germany); Merida, W. [Clean Energy Research Centre, University of British Columbia, Vancouver, BC (Canada); Lupotto, P. [Materials Mates Italia, Milano (Italy)

    2011-04-15

    In this work a 50-channel characterisation system for PEMFCs is presented. The system is capable of traditional electrochemical measurements (e.g. staircase voltammetry, chronoamperometry and cyclic voltammetry), and concurrent EIS measurements. Unlike previous implementations, this system relies on dedicated potentiostats for current and voltage control, and independent frequency response analysers (FRAs) at each channel. Segmented fuel cell hardware is used to illustrate the system's flexibility and capabilities. The results here include steady-state data for cell characterisation under galvanostatic and potentiostatic control as well as spatially resolved impedance spectra. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  9. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  10. Thermal microstructure measurement system

    Science.gov (United States)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  11. The evaluation of rock permeability with streaming current measurements

    Science.gov (United States)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2016-09-01

    Rock permeability is an important parameter for the formation evaluation. In this paper, a new method with streaming current is proposed to determine the sample permeability based on the electrokinetic effects, and is proved by the experimental measurements. Corresponding to this method, we have designed an experimental setup and a test system, then performed the streaming current (potential) and electro-osmosis pressure experiments with 23 sandstone samples at 0.05 mol l-1 NaCl solution. The streaming current (potential) coefficient and electro-osmosis pressure coefficient are obtained, respectively, with the experimental data at low frequencies with AC lock-in technique. The electrokinetic permeabilities are further calculated with these coefficients. The results are consistent well with the gas permeability measured with Darcy's law, which verifies the current method for estimating rock permeability. Our measurements are also analysed and compared with previous measurements. The results indicate that our method can reflect the essence of electrokinetic effects better and simplify the electrokinetic measurements as well. In addition, we discuss the influences of experimental artefacts (core holder and confining pressure installation) on the electrokinetic data. The results show that the trough phenomenon, appeared in frequency curves of streaming current (potential) coefficients, is induced by the resonance of the core-holder/vibrator system. This is important for the design of electrokinetic setup and the analysis of low-frequency response of the electrokinetic coupling coefficients.

  12. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  13. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  14. Evaluation of Leakage Current Measurement for Site Pollution Severity Assessment

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shercat MASOUM

    2007-01-01

    Full Text Available Flashover of insulators in transmission and distribution systems may cause costly outages for power companies and their customers. Industrial and/or coastal pollution of external insulation is a major cause for such events at the normal power frequency voltage of the systems. The power companies are now facing increasing competition resulting in pressure to lower the cost and to increase the system reliability. Different methods have been applied in the past to overcome or reduce the problems with flashover on insulators. Methods which should provide reliable data under real physical conditions. In this paper several measuring methods to evaluate the pollution levels on outdoor insulators are described. According to this comparison, Leakage Current Measurement ‘LCM’ method is a reliable method for measurement leakage current in outdoor insulators and surge arresters.

  15. Study of a fibre optics current sensor for the measurement of plasma current in ITER

    Science.gov (United States)

    Wuilpart, Marc; Vanus, Benoit; Andrasan, Alina; Gusarov, Andrei; Moreau, Philippe; Mégret, Patrice

    2016-05-01

    In this article, we study the feasibility of using a fibre-optics current sensor (FOCS) for the measurement of plasma current in the future fusion reactor ITER. The sensor is based on a classical FOCS interrogator involving the measurement of the state of polarization rotation undergone by the light in presence of a magnetic field (Faraday effect) in an optical fibre surrounding the current and terminated by a Faraday mirror. We considered a uniformly spun optical fibre as the sensing element and we used the Stokes formalism to simulate the sensor. The objective of the simulations is to quantify the ratio LB/SP (beat length over the spun period of the spun fibre) enabling a measurement error in agreement with the ITER specifications. The simulator takes into account the temperature variations undergone by the measurement system under ITER operation. The simulation work showed that a LB/SP ratio of 19.2 is adequate.

  16. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  17. Automatic control system for measuring currents produced by ionization chambers; Automatizacao de um sistema de medidas de correntes produzidas por camaras de ionizacao e aplicacao na calibracao do {sup 18}F e {sup 153}Sm

    Energy Technology Data Exchange (ETDEWEB)

    Brancaccio, Franco

    2002-07-01

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for {sup 18}F and {sup 153}Sm were obtained, making possible to determine activities of these radionuclides. (author)

  18. Current trends to measure implant stability.

    Science.gov (United States)

    Swami, Vasanthi; Vijayaraghavan, Vasantha; Swami, Vinit

    2016-01-01

    Implant stability plays a critical role for successful osseointegration. Successful osseointegration is a prerequisite for functional dental implants. Continuous monitoring in an objective and qualitative manner is important to determine the status of implant stability. Implant stability is measured at two different stages: Primary and secondary. Primary stability comes from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodelling. The time of functional loading is dependent upon the implant stability. Historically the gold standard method to evaluate stability were microscopic or histologic analysis, radiographs, however due to invasiveness of these methods and related ethical issues various other methods have been proposed like cutting torque resistance, reverse torque analysis, model analysis etc. It is, therefore, of an utmost importance to be able to access implant stability at various time points and to project a long term prognosis for successful therapy. Therefore this review focuses on the currently available methods for evaluation of implant stability.

  19. Systemic risk measures

    Science.gov (United States)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  20. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  1. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...

  2. Point discharge current measurements beneath dust devils

    Science.gov (United States)

    Lorenz, Ralph D.; Neakrase, Lynn D. V.; Anderson, John P.; Harrison, R. Giles; Nicoll, Keri A.

    2016-12-01

    We document for the first time observations of point discharge currents under dust devils using a novel compact sensor deployed in summer 2016 at the USDA-ARS Jornada Experimental Range in New Mexico, USA. A consistent signature is noted in about a dozen events seen over 40 days, with a positive current ramping up towards closest approach, switching to a decaying negative current as the devil recedes. The currents, induced on a small wire about 10 cm above the ground, correlate with dust devil intensity (pressure drop) and dust loading, and reached several hundred picoAmps.

  3. Interlaboratory Comparisons of NbTi Critical Current Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Godeke, A.; Turrioni, D.; Boutboul, T.; Cheggour, N.; Goodrich, L.F.; Ghosh, A.; Den Ouden, A.; Meinesz, M.

    2009-08-16

    We report on a multi-institute comparison of critical current data measured on a modern NbTi wire for the Large Hadron Collider (LHC), which has shown a standard deviation below 1% in critical current density spread in more than 1500 measurements. Interlaboratory comparisons on Nb{sub 3}Sn wires have shown ambiguities that could be attributable to strain related differences in critical current density, originating from differences in sample handling, reaction, and mounting techniques, or also to differences in the magnetic field and current calibrations between the institutes. A round robin test of a well characterized NbTi wire provides a baseline variance in critical current results that is presumed to be attributable only to differences in the characterization systems. Systematic differences on the order of 3.5% are found in the comparison. The most likely cause for the observed differences is a small diameter holder that brings the wire into a strain regime in which strain effects can no longer be ignored. A NbTi round robin test, when performed properly, will separate system differences from sample specific differences and provide laboratories with an opportunity to calibrate equipment against a standard measurement.

  4. Precision volume measurement system.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  5. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    2017-01-01

    We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall...... of components of SES to predict emerging systemic risk during the financial crisis of 2007–2009....

  6. Nephrogenic systemic fibrosis: Current concepts

    Directory of Open Access Journals (Sweden)

    Prasanta Basak

    2011-01-01

    Full Text Available Nephrogenic systemic fibrosis (NSF was first described in 2000 as a scleromyxedema-like illness in patients on chronic hemodialysis. The relationship between NSF and gadolinium contrast during magnetic resonance imaging was postulated in 2006, and subsequently, virtually all published cases of NSF have had documented prior exposure to gadolinium-containing contrast agents. NSF has been reported in patients from a variety of ethnic backgrounds from America, Europe, Asia and Australia. Skin lesions may evolve into poorly demarcated thickened plaques that range from erythematous to hyperpigmented. With time, the skin becomes markedly indurated and tethered to the underlying fascia. Extracutaneous manifestations also occur. The diagnosis of NSF is based on the presence of characteristic clinical features in the setting of chronic kidney disease, and substantiated by skin histology. Differential diagnosis is with scleroderma, scleredema, scleromyxedema, graft-versus-host disease, etc. NSF has a relentlessly progressive course. While there is no consistently successful treatment for NSF, improving renal function seems to slow or arrest the progression of this condition. Because essentially all cases of NSF have developed following exposure to a gadolinium-containing contrast agent, prevention of this devastating condition involves the careful avoidance of administering these agents to individuals at risk.

  7. Determining Confounding Sensitivities In Eddy Current Thin Film Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2016-07-01

    Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring

  8. Surface Current Measurements In Terra Nova Bay By Hf Radar

    Science.gov (United States)

    Flocco, D.; Falco, P.; Wadhams, P.; Spezie, G.

    We present the preliminary results of a field experiment carried out within frame- work of the CLIMA project of the Italian National Programme for Antarctic Research (PNRA) and in cooperation with the Scott Polar Research Institute of Cambridge. Dur- ing the second period (02/12/1999-23/01/2000) of the XV Italian expedition a coastal radar was used to characterize the current field in the area of Terra Nova Bay (TNB). One of the aims of the CLIMA (Climatic Long-term Interactions for the Mass balance in Antarctica) project is to determine the role of the polynya in the sea ice mass bal- ance, water structure and local climate. The OSCR-II experiment was planned in order to provide surface current measurements in the area of TNB polynya, one of the most important coastal polynya of the Ross Sea. OSCR (Ocean Surface Current Radar) is a shore based, remote sensing system designed to measure sea surface currents in coastal waters. Two radar sites (a master and a slave) provide with radial current mea- surements; data combined from both sites yield the total current vector. Unfortunately the master and slave stations did not work together throughout the whole period of the experiment. A description of the experiment and a discussion of the results, will be proposed.

  9. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  10. Resistance Measurement by Leakage Current Method Based on PASCO System%基于PASCO实验平台的电容漏电法测电阻

    Institute of Scientific and Technical Information of China (English)

    李蓓; 招文育; 顾磊; 石江; 陈杰

    2016-01-01

    利用PASCO实验平台代替传统的冲击电流计,用电容漏电法测量电阻[1]。这种实验方法操作简单快捷,对中值电阻的测量结果误差较小。%The traditional quantometer is replaced by PASCO system to measure resistance. This method is simple and fast, and the value of middle resistance is accurate.

  11. Current measurement method for characterization of fast switching power semiconductors with Silicon Steel Current Transformer

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper proposes a novel current measurement method with Silicon Steel Current Transformer (SSCT) for the characterization of fast switching power semiconductors. First, the existing current sensors for characterization of fast switching power semiconductors are experimentally evaluated...

  12. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  13. Current and Future Flight Operating Systems

    Science.gov (United States)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  14. Measurement System Reliability Assessment

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2015-06-01

    Full Text Available Decision-making in problem situations is based on up-to-date and reliable information. A great deal of information is subject to rapid changes, hence it may be outdated or manipulated and enforce erroneous decisions. It is crucial to have the possibility to assess the obtained information. In order to ensure its reliability it is best to obtain it with an own measurement process. In such a case, conducting assessment of measurement system reliability seems to be crucial. The article describes general approach to assessing reliability of measurement systems.

  15. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution's leverage and with its expected loss in the tail of the system's loss distribution. Institutions internalize their externality if they are ‘taxed’ based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular...

  16. Measurement of mobile antenna systems

    CERN Document Server

    Arai, Hiroyuki

    2012-01-01

    If you're involved with the design, installation or maintenance of mobile antenna systems, this thoroughly revised and updated edition of a classic Artech book offers you the most current and comprehensive coverage of all the mandatory measurement techniques you need for your work in the field. This Second Edition presents critical new material in key areas, including radiation efficiency measurement, mobile phone usage position, and MIMO (multiple-input/multiple-output) antennas.This unique resource provides in-depth examinations of all relevant mobile antenna measurement theories, along with

  17. Determining confounding sensitivities in eddy current thin film measurements

    Science.gov (United States)

    Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn

    2017-02-01

    Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.

  18. Viral fitness: definitions, measurement, and current insights

    Science.gov (United States)

    Wargo, Andrew R.; Kurath, Gael

    2012-01-01

    Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.

  19. The Applications of Current Comparators in the Measurements on High Voltage Insulation

    Directory of Open Access Journals (Sweden)

    Fei Yi-jun

    2016-01-01

    Full Text Available This paper describes the basic structure of the current comparator used for high voltage insulation measurements. Further applications for the current comparator in high voltage insulation are investigated and developed. A measuring system for the measurement of harmonics in the loss current of water tree aged insulation is described, as well as the principles to measure partial discharges with the current comparator bridge. A new system for the measurement of the DC component in the leakage current of insulation is de1veloped and presented. The results of experiments on XLPE cable insulation are also given.

  20. Thermal currents in highly correlated systems

    OpenAIRE

    MORENO, J; Coleman, P.

    1996-01-01

    Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.

  1. Multiple Currents in the Gulf Stream System

    OpenAIRE

    Fuglister, F. C.

    2011-01-01

    A new interpretation of the accumulated temperature and salinity data from the Gulf Stream Area indicates that the System is made up of a series of overlapping currents. These currents are separated by relatively weak countercurrents. Data from a recent survey are presented as supporting this hypothesis.DOI: 10.1111/j.2153-3490.1951.tb00804.x

  2. Current frontiers in systemic sclerosis pathogenesis

    NARCIS (Netherlands)

    Ciechomska, Marzena; van Laar, Jacob; O'Reilly, Steven

    2015-01-01

    Systemic sclerosis is an autoimmune disease characterised by vascular dysfunction, impaired angiogenesis, inflammation and fibrosis. There is no currently accepted disease-modifying treatment with only autologous stem cell transplant showing clinically meaningful benefit. The lack of treatment optio

  3. Superpersistent Currents in Dirac Fermion Systems

    Science.gov (United States)

    2017-03-06

    TITLE AND SUBTITLE Superpersistent Currents in Dirac Fermion Systems 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0151 5c.   PROGRAM ELEMENT...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic...anomalous optical transitions, and spin control in topological insulator quantum dots, (4) the discovery of nonlinear dynamics induced anomalous Hall

  4. Design on measurement system of small current signal%微弱电流信号测量系统的设计

    Institute of Scientific and Technical Information of China (English)

    陆蔺; 齐东升; 卜树坡

    2011-01-01

    随着微电子技术的迅速发展,电子产品已经进入了国民经济的各个领域。展望21世纪,信息高速公路的开通,以计算机为核心的多媒体信息网将进入千家万户,对人类社会的生活方式将再一次进行重大的变革,其前途不可限量。同时,对于测量技术也是一样的,当测量电路与计算机接轨以后,测量一起以其测量精度高、测量的速度快、以及操作的简便性价比高而得到了广泛的发展和应用。%Some of the major configuration technology and the concept of a powerful graphical user interface features was proposed, with B / S network technology in the framework of a network by reason of flexibility and reliability, and according to the Angang transformer station actual situation, a solving scheme is presented in this paper to carry out the supervisory control and electric quantity measurement system based on B/S (Brow/Service) mode for the graphic user interface in WEB

  5. A microcomputer based system for current-meter data acquisition

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.

    1979-01-01

    The U.S. Geological Survey is conducting current measurements as part of an interdisciplinary study of the San Francisco Bay estuarine system. The current meters used in the study record current speed, direction, temperature, and conductivity in digital codes on magnetic tape cartridges. Upon recovery of the current meters, the data tapes are translated by a tape reader into computer codes for further analyses. Quite often the importance of the data processing phase of a current-measurement program is underestimated and downplayed. In this paper a data-processing system which performs the complete data processing and analyses is described. The system, which is configured around an LSI-11 microcomputer, has been assembled to provide the capabilities of data translation, reduction, and tabulation and graphical display immediately following recovery of current meters. The flexibility inherent in a microcomputer has made it available to perform many other research functions which would normally be done on an institutional computer.

  6. Measuring the Magnetic Force on a Current-Carrying Conductor.

    Science.gov (United States)

    Herreman, W.; Huysentruyt, R.

    1995-01-01

    Describes a fast and simple method for measuring the magnetic force acting on a current-carrying conductor using a digital balance. Discusses the influence of current intensity and wire length on the magnetic force on the conductor. (JRH)

  7. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse

    We present a simple model of systemic risk and we show that each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution’s leverage and with its expected loss in the tail of the system’s loss distribution. Institutions internalize their externality if they are “taxed” based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  8. Direct-current proton-beam measurements at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  9. Wireless Acoustic Measurement System

    Science.gov (United States)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  10. Understanding Process Performance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Ljubica MilanoviÊ Glavan

    2011-01-01

    Full Text Available The purpose of this paper is to analyze the current state of Process Performance Measurement Systems (PPMS by means of a systematic review of literature. The PPMS literature is reviewed using a systematic approach. Based on an extensive literature review only twelve articles that contain the term PPMS in the title were found. The literature analysis showed that PPMS is a relatively new topic in the area of performance measurement. In order to understand PPMS, it was crucial to explain the concepts of business process management, business performance measurement and Performance Measurement System (PMS which are well known and used in the literature and practice. PPMS is a special type of PMS that should be used in process-oriented organizations. Limitations of this research lie in the fact that all the conclusions were derived only from the literature, not empirical research. The results presented in the paper continue towards providing an updated overview of the current state of performance measurement, especially PPMS in order to identify the existing research gaps on which ongoing and future research efforts regarding this topic can be focused.

  11. Medical Robots: Current Systems and Research Directions

    OpenAIRE

    Beasley, Ryan A.

    2012-01-01

    First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...

  12. Current Measurements of Low-Intensity Beams at CRYRING

    CERN Document Server

    Paál, A; Källberg, A

    2003-01-01

    The demand for new ion species leads to an increasing number of cases in which the ions can only be produced in small quantities. Thus, weak ion currents quite often have to be handled in low energy ion storage ring, like CRYRING. Various detector systems have been developed to measure such low intensity coasting and bunched beams by using the overlapping ranges of those systems. We have extended the RMS resolution to 1 nA of the Bergoz Beam Charge Monitor (BCM) by using a low noise 60 dB preamplifier for the Integrating Current Transformer. The sum signal of a capacitive pick-up is integrated by a second gated integrator and the BCM output signal is used for calibration. The RMS resolution is about 100 pA.. To measure the coasting beam intensity, neutral particle detectors have been built. The fast Microchannel plate detector can handle 1 Mc/s, and a 50 Mc/s Secondary Electron Multiplier based detector is under construction. On the magnetic flat top, a time of 100 ms is available to calibrate the count r...

  13. 普朗克常数h测定系统中磁场线圈稳流源研究%Special Constant Current Source for Magnetic Field of Measuring System of Planck' s Constant

    Institute of Scientific and Technical Information of China (English)

    王农; 韩冰; 贺青; 张钟华; 李小亭

    2011-01-01

    A constant current source with high stability is required in establishing measuring system of Planck' s constant. The technique based on series compensation type for special constant current source for magnetic field was described. Therewith the constant current source with 4. 5 X 10 ~ /30min stability was constructed through designing the extraordinary sampling resistor, selecting stable voltage reference and operational amplifier with outstanding properties, offsetting the phase shift of inductive load. As a special constant current source for magnetic field, it presently could serve for the measuring system of Planck' s constant.%在建立我国普朗克常数h测定系统中,对高稳定度直流电源提出了新的要求.本文提出一种基于串联补偿型的专用磁场稳流源.通过设计特殊的采样电阻,选用稳定的基准电压,优选性能突出的运放,并针对感性负载进行关键的补偿,搭建了一套稳定度达到4.5×10 -6/30min的稳流源,可用作现阶段普朗克常数h测定系统的磁场稳流源.

  14. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  15. Critical current measurement for design of HTS DC power cables

    Science.gov (United States)

    Watanabe, Hirofumi

    2017-02-01

    Critical currents of HTS DC power cables were calculated. In the calculation a relationship between critical current density and magnetic flux density proposed by Gömöry et al. [1] was used and the parameters used in the relationship were obtained by the critical current measurements with respect to the external magnetic field for a sample of the HTS tape. Numerical models of cables were composed and their critical currents were calculated, which showed the strong dependence on the arrangement of the HTS tapes in the cable. Critical current measurements of model cables assembled based on the calculations showed that the measured critical currents also depended on the arrangement of the HTS tapes strongly. The calculated results were compared with the experimental results, which showed that the experimental results agreed well with the calculated results.

  16. History and current safety measures at Laguna Palcacocha, Huaraz, Peru

    Science.gov (United States)

    Salazar Checa, César; Cochachin, Alejo; Frey, Holger; Huggel, Christian; Portocarrero, César

    2017-04-01

    Laguna Palcacocha is a large glacier lake in the Cordillera Blanca, Peru, located in the Quillcay catchment, above the city of Huaraz, the local capital. On 13 December 1941, the moraine dam lake collapsed, probably after having been impacted by a large ice avalanche, and triggered a major outburst flood. This GLOF destroyed about a third of the city of Huaraz, causing about 2,000 casualties and is therefore one of the deadliest glacier lake outbursts known in history. In 1974, the Glaciology Unit of Peru, responsible for the studying, monitoring and mitigation works related to glacier hazards installed a reinforcement of the natural moraine dam of the newly filled Laguna Palcacocha, with an artificial drainage channel at 7 m below the crest of the reinforced dam. At that time, the lake had an area of 66,800 m2 and a volume of 0.5 x 106 m3. During the past decades, in the course of continued glacier retreat, Laguna Palcacocha has undergone an extreme growth. In February 2016, the lake had an area of 514,000 m2 (7.7 times the area of 1974) and a volume of more than 17 x 106 m3 (more than 34 times the volume of 1974). At the same time, the city of Huaraz, located 20 km downstream of the lake, grew significantly after its almost complete destruction by the 1970 earthquake. Today, about 120,000 people are living in the city. Due to the persisting possibility for large ice avalanches directly above the Palcacocha lake, this constitutes a high-risk situation, requiring new hazard and risk mitigation measures. As an immediate temporal measure, in order to bridge the time until the realization of a more permanent measure, a syphoning system has been installed in 2011, using about ten 700-m pipes with a 10-inch (25.4 cm) diameter. The aim of this syphoning attempt is to lower the lake level by about 7 m, and therefore reduce the lake volume on the one hand, and also reach a higher dam freeboard. However, the system is less effective than assumed, currently the lake level

  17. CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. R. Tajane et al.

    2012-01-01

    Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  18. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  19. Stochastic measurements and systems implications

    Science.gov (United States)

    Collins, J. L.; Greene, R. R.

    1985-06-01

    The U.S. Navy is defining the baseline performance of the current SSN ASW suite in the Arctic operating environment. This suite includes the AN/BQQ-5 sonar suit (including the Towed Array, the sphere and other sensor and processor sub-systems), communications subsystems and weapon systems (Mk 48 and ADCAP). An effective acoustic measurement program in the Arctic must support the evaluation of how well the different subsystems are able to carry out their assigned functions. Unique aspects of the operating environment in the Arctic include unusual noise properties, unusual transmission effects and an unusual sea surface. This report addresses those acoustic transmission effects which affect system performance due to fluctuations or spreads in the acoustic field space, angle time and frequency.

  20. Research on Precision Assembly Robot's Joint Torque Control Based on Current Measurement

    Institute of Scientific and Technical Information of China (English)

    董高云; 许春山; 费燕琼; 赵锡芳

    2003-01-01

    A set of new current sensing device is used to realize joint torque control based on current measurement in a precision assembly robot's third joint. The output torque's model of the joint's brnshless DC motor is founded. Disturbance factors and the compensated effect of the torque's closed loop based on current measurement are analyzed. Related simulations and experiments show that the system has good current tracking and anti-disturbances performance, which improve the force control performance of the robot in assembly.

  1. Current interruption measurement and analysis for PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.C.; Yuan, X.; Wang, H. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2007-07-01

    The ohmic resistance, charge transfer resistance and the capacity discharge limit of proton exchange membrane (PEM) fuel cells can be evaluated and characterized by a newly developed, low cost, current interruption measuring method. This paper presented the results of a study in which the current interruption measurement for a PEM fuel cell was set up and proven through measurements with a dummy cell. The current interruption characteristics of a 500 W PEM fuel cell stack with an active area of 280 cm{sup 2} was measured using the National Instrument PCI data acquisition unit combined with a TDI electronics load-bank and a FuelCon test station, at different load currents. The ohmic loss of the stack determined by current interruption measurements was in good agreement with that determined by AC impedance spectroscopy. The same setup was shown to be effective for single cell measurements of a small PEM fuel cell and for a PEM fuel cell stack with a load bank. It was concluded that the current interruption measurement is much faster than the AC impedance method, but has lower accuracy, particularly for a signal with high noise. 1 ref., 10 figs.

  2. Modeling and strain gauging of eddy current repulsion deicing systems

    Science.gov (United States)

    Smith, Samuel O.

    1993-01-01

    Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.

  3. Review of Current Nuclear Vacuum System Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-02-25

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.

  4. Critical Current Measurements in Commercial Tapes, Coils, and Magnets.

    Science.gov (United States)

    Gubser, D. U.; Soulen, R. J., Jr.; Fuller-Mora, W. W.; Francavilla, T. L.

    1996-03-01

    We have measured a number of tapes, coils, and magnets produced by commercial vendors and determined their properties as functions of magnetic field and temperature. The tapes were measured at the National High Magnetic Field Laboratory in magnetic fields to 20 tesla and at temperatures of 4.2 K, 27 K, 65 K, and 77 K. For the tapes we report critical currents and current-voltage characteristics. Six inch diameter coils were measured at NRL in zero magnetic field. Critical currents, current-voltage characteristics, and reliability studies are reported for the coils. Larger 10 inch diameter coils, which are to be used in a 200 hp superconducting motor, were also measured and results will be presented. The talk will also review the status of the most recent tests of the superconducting motor.

  5. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  6. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  7. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Deibele, Craig Edmond [ORNL; Curry, Douglas E [ORNL; Dickson, Richard W [ORNL

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  8. Current therapy of systemic sclerosis (scleroderma).

    Science.gov (United States)

    Müller-Ladner, U; Benning, K; Lang, B

    1993-04-01

    Treatment of systemic sclerosis (scleroderma) presents a challenge to both the patient and the physician. Established approaches include long-term physiotherapy, disease-modifying agents such as D-penicillamine, and treatment of organ involvement. These efforts are often unsatisfactory since the results are poor. However, recent advances include treatment of Raynaud's phenomenon (plasmapheresis, stanozolol, and prostacyclin analogues), scleroderma renal crisis (angiotensin-converting enzyme inhibitors), and gastric hypomotility (cisapride). This article covers the current approaches to the disease-modifying therapy including those related to the function of collagen-producing fibroblasts, vascular alterations, and the cellular and humoral immune system, as well as treatment of involved organs.

  9. Transport currents measured in ring samples: test of superconducting weld

    Science.gov (United States)

    Zheng, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Veal, B. W.; Olsson, B.; Koshelev, A.; Hull, J.; Crabtree, G. W.

    2001-02-01

    The critical current densities in bulk melt-textured YBa 2Cu 3O x and across superconducting “weld” joints are measured using scanning Hall probe measurements of the trapped magnetic field in ring samples. With this method, critical current densities are obtained without the use of electrical contacts. Large persistent currents are induced in ring samples at 77 K, after cooling in a 3 kG field. These currents can be determined from the magnetic field they produce. At 77 K a supercurrent exceeding 2000 A (about 10 4 A/cm 2) was induced in a 2 cm diameter ring; this current produces a magnetic field exceeding 1.5 kG in the bore of the ring. We demonstrate that when a ring is cut, and the cut is repaired by a superconducting weld, the weld joint can transmit the same high supercurrent as the bulk.

  10. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  11. Atmospheric point discharge current measurements using a\\ud temperature-compensated logarithmic current amplifier

    OpenAIRE

    Marlton, Graeme; Harrison, R. Giles; Nicoll, Keri A.

    2013-01-01

    Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar\\ud logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA i...

  12. Note: Atmospheric point discharge current measurements using a temperature-compensated logarithmic current amplifier

    Science.gov (United States)

    Marlton, G. J.; Harrison, R. G.; Nicoll, K. A.

    2013-06-01

    Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 °C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ˜0.5 μA.

  13. Note: atmospheric point discharge current measurements using a temperature-compensated logarithmic current amplifier.

    Science.gov (United States)

    Marlton, G J; Harrison, R G; Nicoll, K A

    2013-06-01

    Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 °C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ~0.5 μA.

  14. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  15. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  16. Measurement of Current Profile in a Tokamak Through AC Modulation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz~900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r2/a2)α with a parameter α, which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.

  17. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  18. The performance of integrated transconductance amplifiers as variable current sources for bio-electric impedance measurements.

    Science.gov (United States)

    Smith, D N

    1992-01-01

    Multiple applied current impedance measurement systems require numbers of current sources which operate simultaneously at the same frequency and within the same phase but at variable amplitudes. Investigations into the performance of some integrated operational transconductance amplifiers as variable current sources are described. Measurements of breakthrough, non-linearity and common-mode output levels for LM13600, NE5517 and CA3280 were carried out. The effects of such errors on the overall performance and stability of multiple current systems when driving floating loads are considered.

  19. Intercomparison tests of moored current measurements in the upper ocean

    Science.gov (United States)

    Halpern, David; Weller, Robert A.; Briscoe, Melbourne G.; Davis, Russ E.; McCullough, James R.

    1981-01-01

    During the August-September 1977 Mixed Layer Experiment (Mile) and the July-September 1978 Joint Air-Sea Interaction (Jasin) project, moored current measurements were made in the upper ocean with Savonius rotor and vane vector-averaging current meters (VACM), dual orthogonal propeller vector-measuring current meters (VMCM), and dual orthogonal acoustic travel-time vector-averaging current meters (ACM). Wind speeds and significant wave heights reached 20ms-1 and 5 m. The influence of mooring motion upon ACM, VACM, and VMCM measurements are described. In the mixed layer above about 30 m depth where mean currents are relatively large, the effect of a surface-following buoy upon ACM, VACM, and VMCM velocity fluctuations at frequencies less than 0.3 cph was negligible; at frequencies above 4 cph, the VACM data contained the largest amount of mooring induced contamination. Below the mixed layer at depths greater than about 75 m, a subsurface mooring should be used; however, when a surface-following buoy was used, then VMCM data better approximated the spectrum of the fluctuations than VACM data. A spar-buoy should not be used to measure currents at depths as deep as 80 m. The frequency-dependent differences between VACM and VMCM and between VACM and ACM measurements are described. At frequencies less than 0.3 cph, the differences between the VACM and ACM or the VMCM records were not significant with 95% confidence limits, were always positive, and above 80 m depth were less than 20%. At frequencies above 4 cph, the VACM-VMCM differences were about 5 times larger than the VACM-ACM differences.

  20. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  1. SPEED ROLLER STAND MEASUREMENT SYSTEM CHECKING TECHNIQUE

    OpenAIRE

    Zybtsev, Y.; I. Marmut

    2011-01-01

    The study has shown that the accuracy of brakes checking by inertial stands depends upon the applied methods of measurement of braking parameters (stand slowing down, braking distance, brakes triggering time, current speed) as well as the methods of metrological checking of measuring system canals.

  2. Microminiature Inertial Measurement System and Its Applications

    Institute of Scientific and Technical Information of China (English)

    毛刚; 顾启泰

    2001-01-01

    The microminiature inertial measurement system, a new style of inertial measurement system, hasmany advantages compared with traditional systems, such as small size, Iow mass, low cost, low powerconsumption, high bearing capacity, and long life. Undoubtedly, it will have wide applications in military andcommercial fields. However, current micro inertial sensors do not have sufficient accuracy, so, its applicationsare limited to some extent. This paper describes a microminiature inertial measurement system and its design,operating theory and error control techniques. In addition, its performance and applications are evaluated.``

  3. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  4. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  5. Tethered acoustic doppler current profiler platforms for measuring streamflow

    Science.gov (United States)

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    The U.S. Geological Survey tested and refined tethered-platform designs for measuring streamflow. Platform specifications were developed, radio-modem telemetry of acoustic Doppler current profiler (ADCP) data and potential platform-hull sources were investigated, and hulls were tested and evaluated.

  6. Catalytic currents in dithiophosphate-iodide systems

    Energy Technology Data Exchange (ETDEWEB)

    Gabdullin, M.G.; Garifzyanov, A.R.; Toropova, V.F.

    1986-01-01

    Catalytic currents of oxidizing agents are used to determinerate constants of simultaneous chemical reactions. In the present paper, the authors investigated electrochemical oxidation of iodide ions in the presence of a series of dithiophosphates (RO)/sub 2/PSS/sup -/ at a glassy carbon electrode n that (R=CH/sub 3/, C/sub 2/H/sub 5/, n-C/sub 3/H/sub 7/, n-C/sub 4/H/sub 9/, iso-C/sub 4/H/sub 9/, and sec-C/sub 4/H/sub 9/). It is know n that dithiophosphates (DTP) are strong reducing agents and are oxidized by iodine. At the same time, as shown previously, electrochemical oxidation of DTP occurs at more positive potentials in comparision with the oxidation potential of iodide ions. This suggested that it is possible for a catalytic effect to be manifested in DTP-I/sup -/ systems. Current-voltage curves are shown for solutions of I/sup -/ in the absence and in the presence of DTP. All data indicate a catalytic nature of the electrode process. The obtained data show that the rates of reactions of DTP with iodine decrease with increasing volume and branching of the substituents at the phosphorus atom.

  7. Measurement Systems Advisory Group

    Science.gov (United States)

    1974-04-01

    noted with the aluminum wire used in the lacing. For these reasons the tests were concluded and deemed unsatisfactory. The second system tested was an...vehicle for "bringing many particulate pollutants into contact with the tape or magnetic heads, e.g., from deodorant spray powders, face powder and

  8. Measuring name system health

    NARCIS (Netherlands)

    Casalicchio, Emiliano; Caselli, M.; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet

    2012-01-01

    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  9. Measuring name system health

    NARCIS (Netherlands)

    Casalicchio, Emiliano; Caselli, Marco; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet

    2012-01-01

    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  10. Development of BSCCO persistent current system

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jin Ho; Nah, Wan Soo; Kang, Hyung Koo; Yoo, Jung Hoon [Sungkyunkwan University, Seoul (Korea)

    1998-05-01

    We have developed temperature-variable critical current measurement device for high Tc superconducting wires. For this end, vacuum shroud was designed and fabricated, and that both signal lines and power lines into the vacuum shroud were installed on it. Secondly, the design procedures for the PCS were established for the high Tc superconducting wires based on the electrical circuit analyses during energizations. We have also evaluated mechanical properties such as hardness, strength and elongation of sheath alloys made by addition of Cu, Mg, Ti, Zr and Ni to Ag matrix using induction melting furnace. It was observed that hardness and strength were improved by increasing additive contents from 0.05 to 0.2 at.%. Specifically, the increment of strength was relatively higher for alloys made by addition of Mg, Cu and Zr elements than that made by Ni and Ti addition. On the other hand, elongation was measured to be significantly reduced for former sheath alloy materials. (author). 12 refs., 13 figs., 4 tabs.

  11. Simulation of leakage current measurement on medical devices using helmholtz coil configuration with different current flow

    Science.gov (United States)

    Sutanto, E.; Chandra, F.; Dinata, R.

    2017-05-01

    Leakage current measurement which can follow IEC standard for medical device is one of many challenges to be answered. The IEC 60601-1 has defined that the limit for a leakage current for Medical Device can be as low as 10 µA and as high as 500 µA, depending on which type of contact (applied part) connected to the patient. Most people are using ELCB (Earth-leakage circuit breaker) for safety purpose as this is the most common and available safety device in market. One type of ELCB devices is RCD (Residual Current Device) and this RCD type can measure the leakage current directly. This work will show the possibility on how Helmholtz Coil Configuration can be made to be like the RCD. The possibility is explored by comparing the magnetic field formula from each device, then it proceeds with a simulation using software EJS (Easy Java Simulation). The simulation will make sure the concept of magnetic field current cancellation follows the RCD concept. Finally, the possibility of increasing the measurement’s sensitivity is also analyzed. The sensitivity is needed to see the possibility on reaching the minimum leakage current limit defined by IEC, 0.01mA.

  12. Classification of methods for measuring current-voltage characteristics of semiconductor devices

    Directory of Open Access Journals (Sweden)

    Iermolenko Ia. O.

    2014-06-01

    Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.

  13. An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.

    2014-01-01

    An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight

  14. Eddy Correlation Flux Measurement System

    Data.gov (United States)

    Oak Ridge National Laboratory — The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat,...

  15. Normalized velocity profiles of field-measured turbidity currents

    Science.gov (United States)

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  16. LLNL current meter array--concept and system description

    Energy Technology Data Exchange (ETDEWEB)

    Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  17. Measures of Autonomic Nervous System

    Science.gov (United States)

    2011-04-01

    Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana) Postures X X Breathing Practices...MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...measuring oxygen saturation of blood. The Doppler radar cardiopulmonary remote sensing unit and the wearable reflectance pulse oximeter have the benefit

  18. Bayesian flaw characterization from eddy current measurements with grain noise

    Science.gov (United States)

    McMahan, Jerry A.; Aldrin, John C.; Shell, Eric; Oneida, Erin

    2017-02-01

    The Bayesian approach to inference from measurement data has the potential to provide highly reliable characterizations of flaw geometry by quantifying the confidence in the estimate results. The accuracy of these confidence estimates depends on the accuracy of the model for the measurement error. Eddy current measurements of electrically anisotropic metals, such as titanium, exhibit a phenomenon called grain noise in which the measurement error is spatially correlated even with no flaw present. We show that the most commonly used statistical model for the measurement error, which fails to account for this correlation, results in overconfidence in the flaw geometry estimates from eddy current data, thereby reducing the effectiveness of the Bayesian approach. We then describe a method of modeling the grain noise as a Gaussian process (GP) using spectral mixture kernels, a type of non-parametric model for the covariance kernel of a GP This provides a broadly applicable, data-driven way of modeling correlation in measurement error. Our results show that incorporation of this noise model results in a more reliable estimate of the flaw and better agreement with the available validation data.

  19. Dynamics of the southern California current system

    Science.gov (United States)

    di Lorenzo, Emanuele

    The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local

  20. AN INDUCTION SENSOR FOR MEASURING CURRENTS OF NANOSECOND RANGE

    Directory of Open Access Journals (Sweden)

    S. P. Shalamov

    2016-11-01

    Full Text Available Purpose. A current meter based on the principle of electromagnetic induction is designed to register the current flowing in the rod lightning. The aim of the article is to describe the way of increasing the sensitivity of the converter by means of their serial communication. Methodology. The recorded current is in the nanosecond range. If compared with other methods, meters based on the principle of electromagnetic induction have several advantages, such as simplicity of construction, reliability, low cost, no need in a power source, relatively high sensitivity. Creation of such a meter is necessary, because in some cases there is no possibility to use a shunt. Transient properties of a meter are determined by the number of turns and the constant of integration. Sensitivity is determined by measuring the number of turns, the coil sectional area, the core material and the integration constant. For measuring the magnetic field pulses with a rise time of 5 ns to 50 ns a meter has turns from 5 to 15. The sensitivity of such a meter is low. When the number of turns is increased, the output signal and the front increase. Earlier described dependencies were used to select the main parameters of the converter. It was based on generally accepted and widely known equivalent circuit. The experience of created earlier pulse magnetic field meters was considered both for measuring the magnetic fields, and large pulse current. Originality. Series connection of converters has the property of a long line. The level of the transient response of the meter is calculated. The influence of parasitic parameters on the type of meter transient response is examined. The shown construction was not previously described. Practical value. The results of meter implementation are given. The design peculiarities of the given measuring instruments are shown.

  1. Measurement of axial injection displacement with trim coil current unbalance

    Science.gov (United States)

    Covo, Michel Kireeff

    2014-08-01

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  2. Current-potential characteristics of electrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, V.S.

    1993-07-01

    This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.

  3. 一种恒流源驱动的高精度温度测量系统设计%Design of a high-precision temperature measurement system driven by constant current source

    Institute of Scientific and Technical Information of China (English)

    薛风国

    2012-01-01

    In order to improve the precision of temperature measurement, a high precision temperature measuring system is designed in this paper. REF200 which can provide 0.4mA constant current is applied to drive four wires temperature sensor of PT1000 and precise resistance. The voltage at both sides of PT1000 and precise resistance is extracted respectively and then conditioning the circuit. The voltage is amplified and A/D converted by high precision AD7712. The digital signal is processed by least square method on upper computer to reduce the error which is caused by nonlinear property of PT1000. The test result shows that the system is stable and reliable. And the random error and system error of system is both less than 0. 1℃. It means that this design realizes the high precise temperature measurement.%为提高温度测量精度,利用REF200提供的0.4mA恒定电流驱动串联的四线制温度传感器PT1000和精密电阻,在传感器和精密电阻两端分别提取电压信号并对其进行调理,通过高精度AD7712对所得到的电压信号进行放大和A/D转换,设计了一种高精度温度测量系统.为了减小高精度温度测量中铂电阻非线性所引起的误差,在上位机中对数字信号进行了最小二乘法算法处理.测试结果表明,该系统稳定可靠,其随机误差和系统误差均小于0.1℃,实现了高精度温度测量.

  4. Designing velocity modulation and measuring system of direct current motor based on the DSP%基于DSP的直流电机调速、测速系统设计

    Institute of Scientific and Technical Information of China (English)

    王惠平

    2011-01-01

    To realize the control function of velocity modulation and measuring of direct current motor,the platform of TMS320LF2407A model DSP was used to develop a 24V control system based on digital PWM principle.The system can be connected to a computer with simple serial port software.The electrical circuit is simple,reliable and practical.%为了精确实现直流电机调速、测速等控制功能,文中利用TMS320LF2407A型号的DSP实验平台,以数字PWM对直流电机调速为控制原理,构建了一个24V直流电机控制系统,且可通过一个简单的串口软件实现电脑输入调节,通过设计本系统较精确的实现了电机调速、测速和串口通信显示等功能,该设计方案电路简单、可靠性强,具有较高的应用价值。

  5. Comparison of shipboard acoustic Doppler current profiler and moored current measurements in the Equatorial Pacific

    Science.gov (United States)

    Chereskin, T. K.; Regier, L. A.; Halpern, D.

    1987-01-01

    Depth-averaged current shears computed from shipboard acoustic Doppler current profiler (ADCP) and moored Savonius rotor and vane vector-averaging current meter (VACM) measurements are compared at 35, 62.5, 100 and 140 m depths within 7 km of each other near 0 deg, 140 deg W during a 12-day interval in November 1984. The agreement between the VACM and ADCP shears was excellent. The average root-mean-square difference of hourly shear values was small, approximately 0.0021/s, and the average correlation coefficient was 0.90. Spectral estimates were equivalent to within a 95 percent significance level and the VACM and ADCP shears were 95 percent statistically coherent with zero phase difference for frequencies below 0.2 cycles per hour.

  6. High-temperature strain measurement techniques: Current developments and challenges

    Science.gov (United States)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  7. Self-Organizing Maps-based ocean currents forecasting system

    Science.gov (United States)

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  8. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  9. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  10. Resonant Strip Line BPM for Ultra Low Current Measurements

    CERN Document Server

    Dehler, M

    2005-01-01

    Proton beams used in proton therapy facilities like PROSCAN have extremely small currents of an order of 1 nA, which create a challenge for a precise beam position measurements due to their extremely low signal level und subsequent bad signal per noise ratios. For suitable power levels with thse currents, pickups need to have a high shunt impedance, something, which is difficult to design for wide band devices. So for a new stripline bpm design, the coupling of the signal outputs to the electrode was deliberately mismatched to create a resonance at the second harmonic of the RF frequency at 150 MHz. The optimum Q-factor to use is given by the coupling between the bpm electrodes leading to to a Q of 100, an overall shunt impedance of 4 kΩ and power output levels of an order of -120 dBm at the design current of 1 nA. A prototype of the devicehas been manufactured, first measurement results will be presented.

  11. Comparative radiopacity of six current adhesive systems.

    Science.gov (United States)

    de Moraes Porto, Isabel Cristina Celerino; Honório, Naira Cândido; Amorim, Dayse Annie Nicácio; de Melo Franco, Aurea Valéria; Penteado, Luiz Alexandre Moura; Parolia, Abhishek

    2014-01-01

    The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images. This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin. To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software. The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05). Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel. This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.

  12. Nausea: current knowledge of mechanisms, measurement and clinical impact.

    Science.gov (United States)

    Kenward, Hannah; Pelligand, Ludovic; Savary-Bataille, Karine; Elliott, Jonathan

    2015-01-01

    Nausea is a subjective sensation, which often acts as a signal that emesis is imminent. It is a widespread problem that occurs as a clinical sign of disease or as an adverse effect of a drug therapy or surgical procedure. The mechanisms of nausea are complex and the neural pathways are currently poorly understood. This review summarises the current knowledge of nausea mechanisms, the available animal models for nausea research and the anti-nausea properties of commercially available anti-emetic drugs. The review also presents subjective assessment and scoring of nausea. A better understanding of the underlying mechanisms of nausea might reveal potential clinically useful biomarkers for objective measurement of nausea in species of veterinary interest.

  13. Superconducting Current Leads for Cryogenic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...

  14. Exact temporal eddy current compensation in magnetic resonance imaging systems.

    Science.gov (United States)

    Morich, M A; Lampman, D A; Dannels, W R; Goldie, F D

    1988-01-01

    A step-response method has been developed to extract the properties (amplitudes and decay time constants) of intrinsic-eddy-current-sourced magnetic fields generated in whole-body magnetic resonance imaging systems when pulsed field gradients are applied. Exact compensation for the eddy-current effect is achieved through a polynomial rooting procedure and matrix inversion once the 2 N properties of the N-term decay process are known. The output of the inversion procedure yields the required characteristics of the filter for spectrum magnitude and phase equalization. The method is described for the general case along with experimental results for one-, two-, and three-term inversions. The method's usefulness is demonstrated for the usually difficult case of long-term (200-1000-ms) eddy-current compensation. Field-gradient spectral flatness measurements over 30 mHz-100 Hz are given to validate the method.

  15. Carbon Dioxide Flux Measurement Systems

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  16. TID-dependent current measurements of IBL readout chips

    Energy Technology Data Exchange (ETDEWEB)

    Dette, Karola [TU Dortmund, Experimentelle Physik IV (Germany); CERN (Switzerland); Collaboration: ATLAS Pixel-Collaboration

    2016-07-01

    The ATLAS detector consists of several subsystems with a hybrid pixel detector as the innermost component of the tracking system. The pixel detector has been composed of three layers of silicon sensor assemblies during the first data taking run of the LHC and has been upgraded with a new 4th layer, the so-called Insertable B-Layer (IBL), in summer 2014. Each silicon sensor of the IBL is connected to a Front End readout chip (FE-I4) via bump bonds. During the first year of data taking an increase of the LV current produced by the readout chips was observed. This increase could be traced back to radiation damage inside the silicon. The dependence of the current on the Total Ionizing Dose (TID) and temperature has been tested with X-ray irradiations and will be presented in this talk.

  17. The bias in current measures of gestational weight gain.

    Science.gov (United States)

    Hutcheon, Jennifer A; Bodnar, Lisa M; Joseph, K S; Abrams, Barbara; Simhan, Hyagriv N; Platt, Robert W

    2012-03-01

    Conventional measures of gestational weight gain (GWG), such as average rate of weight gain, are likely to be correlated with gestational duration. Such a correlation could introduce bias to epidemiological studies of GWG and adverse perinatal outcomes because many perinatal outcomes are also correlated with gestational duration. This study aimed to quantify the extent to which currently used GWG measures may bias the apparent relationship between maternal weight gain and risk of preterm birth. For each woman in a provincial perinatal database registry (British Columbia, Canada, 2000-2009), a total GWG was simulated such that it was uncorrelated with risk of preterm birth. The simulation was based on serial antenatal GWG measurements from a sample of term pregnancies. Simulated GWGs were classified using three approaches: total weight gain (kg), average rate of weight gain (kg/week) or adequacy of GWG in relation to Institute of Medicine recommendations. Their association with preterm birth ≤32 weeks was explored using logistic regression. All measures of GWG induced an apparent association between GWG and preterm birth ≤32 weeks even when, by design, none existed. Odds ratios in the lowest fifths of each GWG measure compared with the middle fifths ranged from 4.4 [95% confidence interval (CI) 3.6, 5.4] (total weight gain) to 1.6 [95% CI 1.3, 2.0] (Institute of Medicine adequacy ratio). Conventional measures of GWG introduce serious bias to the study of maternal weight gain and preterm birth. A new measure of GWG that is uncorrelated with gestational duration is needed. © 2012 Blackwell Publishing Ltd.

  18. The Current Economic Crisis: Effects, Consequences, Measures and Solutions

    Directory of Open Access Journals (Sweden)

    Liana-Antonela BONTA (cas. MITEA

    2012-09-01

    Full Text Available The main objective of the present research project is the current economiccrisis, its effects, consequences but especially the measures and the solutions that we can find to resolve this situation. A key problem preoccupying developing countries today is the global economic crisis and how they can address it. The epicenter of the crisis is in the developed countries, especially the USA. But the developing countries that have no role in causing the crisis have suffered the most severe “collateral damage”. I will try to present the similarities with other periods of recession that we have crossed-over time. I will propose a few measures to remedy this situation, both long-term and short-term, referring of course to Romania and EU as well.

  19. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  20. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  1. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  2. SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    Science.gov (United States)

    Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.

    1990-01-01

    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.

  3. Current status of outcome measure development in vasculitis.

    Science.gov (United States)

    Merkel, Peter A; Aydin, Sibel Z; Boers, Maarten; Cornell, Christina; Direskeneli, Haner; Gebhart, Don; Hatemi, Gulen; Luqmani, Raashid; Matteson, Eric L; Milman, Nataliya; Robson, Joanna; Seo, Philip; Tomasson, Gunnar

    2014-03-01

    The conduct of randomized controlled trials for vasculitis, especially for the antineutrophil cytoplasmic antibody-associated vasculitides [AAV, granulomatosis with polyangiitis (Wegener's) and microscopic polyangiitis], has been greatly advanced by the development, use, and acceptance of validated outcome measures. Trials have subsequently provided the opportunity to validate and refine reliable, valid outcome measures for these multisystemic and relapsing rare diseases. The Outcome Measures in Rheumatology (OMERACT) Vasculitis Working Group was formed in 2004 to foster development of validated and widely accepted outcomes in vasculitis using data-driven analyses, a dedication to building consensus, and adherence to, and guidance by, the principles of the OMERACT approach. This work led to the endorsement by OMERACT of the core set of domains and associated outcome measures for AAV. Next steps for the study of existing outcome tools in AAV include better definition of response criteria through development of more data-driven weighting of the elements of activity and damage assessment. The Working Group is now also embarking on a series of linked projects to develop validated patient-reported outcomes for use in clinical research in vasculitis. Additionally, the Working Group is studying how current methods of disease assessment and plans for new outcomes can be informed by the conceptual framework of the International Classification of Function of the World Health Organization. The success of the Group's work in AAV has also led to a formal process for developing outcomes for the large vessel vasculitides (Takayasu arteritis and giant cell arteritis) and Behçet disease.

  4. Current trends in health insurance systems: OECD countries vs. Japan.

    Science.gov (United States)

    Sasaki, Toshiyuki; Izawa, Masahiro; Okada, Yoshikazu

    2015-01-01

    Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients' visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing.

  5. Current Trends in Health Insurance Systems: OECD Countries vs. Japan

    Science.gov (United States)

    SASAKI, Toshiyuki; IZAWA, Masahiro; OKADA, Yoshikazu

    2015-01-01

    Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients’ visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing. PMID:25797778

  6. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  7. System for measuring electric resistance skin

    Directory of Open Access Journals (Sweden)

    V. P. Kutsenko

    2015-09-01

    Full Text Available Introduction. To measure the electrical resistance of leather frequently used system for applying testing signals from external current sources or voltage. Power testing signals the maximum limit, when they Electro studies still have a negative impact on the human body. Formulation of the problem. To achieve this task the authors conducted research and developed a system, which is based to measure electrical skin resistance (ESR responsible allocation and measurement noise variance bioelectric signal is proportional to the resistance area of research. Main body. The paper studied and developed a system, based on measuring electrical skin resistance on the identification and measurement of the noise variance from the BAP bioelectric signal that is proportional to the resistance of the investigation. A functional block diagram of an automated algorithm for converting the useful and noise signal BAP, whose range does not differ fundamentally from those of the intrinsic noise of the input elements in ESR. The proposed method will improve the accuracy of the measurements ESR without the use of test pacing signal. The simulation results and experimental studies correlate that confirms the adequacy of this method the results of experimental measurements. Conclusions. For noise voltage BAT can measure their electrical resistance without signals tested, external sources of electric current or voltage and thereby completely eliminate the harmful effect of probing. Thanks to one of the Inverting periodic noise voltages multiplied and simultaneous detection variable component switching frequency, provided the allocation and measurement noise voltage acupuncture points, which is proportional to the resistance, and the intensity of the same order or less than the intrinsic noise of the measuring system. Use as medical acupuncture needle electrodes allows to measure not only the skin but also deep resistivity, which reflects the physiological state of internal

  8. Current Mode Data Converters for Sensor Systems

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger

    This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods to...

  9. DAQ System of Current Based on MNSR

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The flux or power should be acquired using the detector in the operation of MNSR. As usual, the signal of detector is current, and it is very width range with 10-11-10-6 A. It is hard to satisfy the linearity to amplify this signal by using fix gain

  10. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  11. Atmospheric Point Discharge Currents measured with a bi-polar logarithmic current amplifier

    Science.gov (United States)

    Marlton, G.; Harrison, R. G.; Nicoll, K. A.

    2013-09-01

    Point Discharge Currents (PDC) flow in conductors exposed to the atmosphere when strong ambient electric fields cause breakdown of air. This can occur because of field intensification around a sharp point. In some cases point discharge can even become visible, known as St Elmo's fire, one of the longest recognized phenomena in atmospheric electricity. Due to the wide range of magnitudes of currents of both polarities encountered in measuring PDCs, a bipolar logarithmic current amplifier is used here for atmospheric investigations. During an installation at the Reading Atmospheric observatory, it was able to detect PDC of magnitude 0.5μA during periods of strong electric fields, in disturbed weather. Two useful attributes for planetary applications have been suggested by these experiments. Firstly, it is sufficiently compact and light-weight that it seems appropriate for planetary exploration of the electrical properties of atmospheres. Secondly its wide bi polar logarithmic range (~ pA to uA) makes it robust enough to provide useful data despite the environment in which it is deployed being poorly quantified.

  12. Note: Development of 9 A current source for precise resistance measurement method.

    Science.gov (United States)

    Štambuk, Igor; Malarić, Roman

    2012-10-01

    In this Note, design of voltage controlled current source intended to be used in precise resistance measurement system in the range from 0.1 mΩ to 10 Ω is presented. The design specifications of current source include gross-tuning of current in the range from 0.1 mA to 9 A, low noise, low temperature coefficient, and short term stability better than 50 ppm. The realized current source has achieved better short term stability than comparable commercial devices.

  13. Inversion of thicknesses of multi-layered structures from eddy current testing measurements

    Institute of Scientific and Technical Information of China (English)

    黄平捷; 吴昭同

    2004-01-01

    Luquire et al. ' s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.

  14. Inversion of thicknesses of multi-layered structures from eddy current testing measurements

    Institute of Scientific and Technical Information of China (English)

    HUANG Ping-jie(黄平捷); WU Zhao-tong(吴昭同)

    2004-01-01

    Luquire et al.'s impedance change model of a rectangular cross section probe coil above a structure with an arbitrary number of parallel layers was used to study the principle of measuring thicknesses of multi-layered structures in terms of eddy current testing voltage measurements. An experimental system for multi-layered thickness measurement was developed and several fitting models to formulate the relationships between detected impedance/voltage measurements and thickness are put forward using least square method. The determination of multi-layered thicknesses was investigated after inversing the voltage outputs of the detecting system. The best fitting and inversion models are presented.

  15. Low-noise pulsed current source for magnetic-field measurements of magnets for accelerators

    Science.gov (United States)

    Omelyanenko, M. M.; Borisov, V. V.; Donyagin, A. M.; Khodzhibagiyan, H. G.; Kostromin, S. A.; Makarov, A. A.; Shemchuk, A. V.

    2017-01-01

    The schematic diagram, design, and technical characteristics of the pulsed current source developed and produced for the magnetic-field measurement system of superconducting magnets for accelerators are described. The current source is based on the current regulator with pass transistor bank in the linear mode. Output current pulses (0-100 A) are produced by utilizing the energy of the preliminarily charged capacitor bank (5-40 V), which is additionally charged between pulses. The output current does not have the mains frequency and harmonics ripple. The relative noise level is less than-100 dB (or 10-5) of RMS value (it is defined as the ratio of output RMS noise current to a maximal output current of 100 A within the operating bandwidth, expressed in dB). The work was performed at the Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research (JINR).

  16. Information Systems: Current Developments and Future Expansion.

    Science.gov (United States)

    1970

    On May 20, 1970, a one-day seminar was held for Congressional members and staff. The papers given at this seminar and included in the proceedings are: (1) "Understanding Information Systems" by J. D. Aron, (2) "Computer Applications in Political Science" by Kenneth Janda, (3) "Who's the Master of Your Information System?" by Marvin Kornbluh, (4)…

  17. Spin Seebeck measurements of current-induced switching in YIG

    Science.gov (United States)

    Bartell, Jason; Jermain, Colin; Aradhya, Sriharsha; Wang, Hailong; Buhrman, Robert; Yang, Fengyuan; Ralph, Daniel; Fuchs, Gregory

    Quantifying spin torques generated at the interface between a normal metal (NM) and a ferromagnetic insulator (FI) is an important step in understanding the spin hall effect without charge transport. Measuring magnetization in NM/FI devices is challenging, however, because both magnetoresistive and magneto-optical signals are tiny in thin-film bilayers. We show that a promising alternative measurement approach is the use of picosecond thermal gradients to study spin torques in Pt/Yttrium Iron Garnet (YIG) bilayers. Recently, we demonstrated the application of heat to stroboscopically transduce a local magnetic moment into an electrical signal via the time resolved anomalous Nernst effect (TRANE) in ferromagnetic metals. Using a similar geometry the spin Seebeck effect of YIG combined with the inverse spin Hall effect of Pt enables measurement of local magnetization. Here we describe our study using this technique to study current-induced switching in Pt/YIG with sub-10 nm thick YIG films We acknowledge support from AFOSR.

  18. Foot Plantar Pressure Measurement System: A Review

    Directory of Open Access Journals (Sweden)

    Yufridin Wahab

    2012-07-01

    Full Text Available Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis.

  19. Research on Low Power Marine Current Power Generation System

    Directory of Open Access Journals (Sweden)

    Dongkai Peng

    2013-09-01

    Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.

  20. Analysis of Sqp current systems by using corrected geomagneticcoordinates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Spq equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field-aligned current. Spq is unsymmetrical in both polar regions. In this paper, the Spq current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the Spq current indifferent systems are compared. Then the causes of Spq asymmetry in the GM coordinates are discussed; the effects of each component in Spq are determined.

  1. Measurement of charm in charged current at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Tobias

    2008-12-15

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e{sup +}p and 6253 in e{sup -}p data are selected in the kinematic range Q{sup 2}>223 GeV{sup 2} and 0.03measured CC cross sections are {sigma}{sub CC}=(28.9{+-} 1.4)+P{sub e}.(28.6{+-}4.7) pb for e{sup +}p and {sigma}{sub CC}=(49.2{+-}2.3)-P{sub e}.(42.5 {+-}6.8) pb for e{sup -}p, where P{sub e} is the lepton beam polarization. While the measured cross section for e{sup +}p data is in agreement with the theoretical prediction, the cross section for e{sup -}p data shows a weaker dependence on P{sub e} than predicted. The charm fractions in the selected CC candidate event samples are extracted using the muon charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F{sub c}=9.5{+-}8.9{+-}3.0 % for e{sup +}p and F{sub c}=4.4{+-}6.9{+-}2.6 % for e{sup -}p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  2. Dual-frequency ferromagnetic resonance to measure spin current coupling in multilayers

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Wang, Hailong; Manuilov, Sergei A.; Yang, Fengyuan; Hammel, P. Chris

    2014-08-01

    Spin pumping is a method for injecting a pure spin current into a non-magnetic metal (NM) by inducing precession of a neighboring ferromagnet (FM) at its ferromagnetic resonance frequency. A popular method to detect spin current uses the Inverse Spin Hall Effect (ISHE) to convert the spin current to a detectable charge current and hence a voltage. In order to better understand the role of time independent and high frequency contributions to spin pumping, we sought to detect we attempt to detect spin currents by using a second microwave frequency to detect changes in linewidth of a second ferromagnet due to the spin-torque induced by the spin current from the first ferromagnet. This dual resonance is achieved by pairing a custom broadband coplanar transmission line with the high-Q resonant cavity of a commercial electron paramagnetic resonance spectrometer. This technique is general enough that it should enable the investigation of spin currents in any FM-NM-FM system, for any orientation of external field, and is not sensitive to voltage artifacts often found in ISHE measurements. We find that the condition for simultaneous resonance generates a dc spin current that is too small to produce a measurable change in linewidth of the second ferromagnet, confirming the dominance of ac spin currents in linewidth enhancement measurements.

  3. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  4. Instrumentation for Gate Current Noise Measurements on sub-100 nm MOS Transistors

    CERN Document Server

    Gaioni, L; Ratti, L; Re, V; Speziali, V; Traversi, G

    2008-01-01

    This work describes a measuring system that was developed to characterize the gate current noise performances of CMOS devices with minimum feature size in the 100 nm span. These devices play an essential role in the design of present daymixedsignal integrated circuits, because of the advantages associated with the scaling process. The reduction in the gate oxide thickness brought about by CMOS technology downscaling leads to a non-negligible gate current due to direct tunneling phenomena; this current represents a noise source which requires an accurate characterization for optimum analog design. In this paper, two instruments able to perform measurements in two different ranges of gate current values will be discussed. Some of the results of gate current noise characterization will also be presented.

  5. Diamagnetic measurements based on the compensation of TF current diffusion in J-TEXT

    Science.gov (United States)

    Zhu, L. Z.; Chen, Z. P.; Li, F. M.; Liu, H.; Chen, Z. Y.; Zhuang, G.

    2016-11-01

    Due to the existence both of toroidal ripples and toroidal field (TF) current diffusion, the toroidal flux changes with time when the TF current is at the flat-top. A diamagnetic measurement based on the compensation of TF current diffusion has been built in J-TEXT to solve this problem. The measurement system includes a double-loop installed in the vacuum vessel and an array of small printed circuit board (PCB) magnetic probes placed on the mid-plane of one TF coil. A model was proposed to analyze and compensate the effect of TF current diffusion. Experiment results show that the residual flux is about 1 × 10-4 Wb after the compensation and it can meet the need of diamagnetic measurement in J-TEXT.

  6. Upward electron beams measured by DE-1 - A primary source of dayside region-1 Birkeland currents

    Science.gov (United States)

    Burch, J. L.; Reiff, P. H.; Sugiura, M.

    1983-01-01

    Measurements made by the High Altitude Plasma Instrument on DE-1 have shown that intense upward electron beams with energies from about 20 eV to about 200 eV are a common feature of the region just equatorward of the morning-side polar cusp. Computations of the currents carried by these beams and by the precipitating cusp electrons show excellent agreement with the simultaneous DE-1 magnetometer measurements for both upward and downward Birkeland currents. The data indicate that cold ionospheric electrons, which carry the downward region-1 Birkeland currents on the morning side, are accelerated upward by potential drops of a few tens of eV at altitudes of several thousand kilometers. This acceleration process allows spacecraft above those altitudes to measure routinely the charge carriers of both downward and upward current systems.

  7. Current dental adhesives systems. A narrative review.

    Science.gov (United States)

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  8. Current trends on knowledge-based systems

    CERN Document Server

    Valencia-García, Rafael

    2017-01-01

    This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used...

  9. 空间电荷限制电流法测量共混体系中空穴的迁移率%Measurement of the hole mobility in the blend system by space charge limited current

    Institute of Scientific and Technical Information of China (English)

    於黄忠

    2012-01-01

    The measurement of carrier mobility in organic semiconductor material and device is one of important study contents. The hole- only devices based on the different solvent blends of poly (3-hexylthiophene) (P3HT) and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) as acceptor are fabricated, the structures of the devices are all ITO/PEDOT:PSS/P3HT:PCBM/Au. The hole mobilities in the blend systems with different solvents and various annealing treatments are measured by the space charge limited current method. The results show that the J-V curves of charge transfer in the devices meet Mott-Gurney equation, the hole mobilities in the active layer with different solvents are different, the active layer formed with high boiling point solvent 1, 2-dichlorobenzene possesses higher hole mobility, heat treatment contributes to the improvement of the hole mobility in the devices. The reason of change of hole mobility is analyzed.%载流子迁移率测量是有机半导体材料与器件研究中的重要内容之一.以聚噻吩为电子给体材料,C60的衍生物为电子受体材料,制备了一种单电荷传输器件.用空间电荷限制电流法测出了不同溶剂形成的活性层及不同温度热处理后器件中空穴的迁移率.结果表明:器件中电荷的传输J-y曲线符合Mott-Gurney方程,不同溶剂形成活性层中空穴具有不同的迁移率,高沸点的溶剂1,2-二氯苯形成的活性层具有较高的空穴迁移率,热处理有利于器件中空穴迁移率的提高.同时还进一步分析了空穴迁移率变化的原因.

  10. Determination of the electronics transfer function for current transient measurements

    CERN Document Server

    Scharf, Christian

    2014-01-01

    We describe a straight-forward method for determining the transfer function of the readout of a sensor for the situation in which the current transient of the sensor can be precisely simulated. The method relies on the convolution theorem of Fourier transforms. The specific example is a planar silicon pad diode connected with a 50 $\\Omega $ cable to an amplifier followed by a 5 GS/s sampling oscilloscope. The charge carriers in the sensor were produced by picosecond lasers with light of wavelengths of 675 and 1060 nm. The transfer function is determined from the 1060 nm data with the pad diode biased at 1000 V. It is shown that the simulated sensor response convoluted with this transfer function provides an excellent description of the measured transients for the laser light of both wavelengths, at voltages 50 V above the depletion voltage of about 90 V up to the maximum applied voltage of 1000 V. The method has been developed for the precise measurement of the dependence of the drift velocity of electrons an...

  11. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  12. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit

  13. Current status of the TSensor systems roadmap

    NARCIS (Netherlands)

    Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.

    2014-01-01

    We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple

  14. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    CERN Document Server

    Yamaguchi, T; Nakamura, K; Yamaguchi, S; Hasegawa, Y

    2002-01-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/pi time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  15. Reduction of the heat leak in superconducting system at half-wave-rectified current mode by peltier current lead

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takayuki; Ohtaki, Naohiro; Nakamura, Keiji; Yamaguchi, Satarou [Chubu Univ., Kasugai, Aichi (Japan); Hasegawa, Yasuhiro [Saitama Univ., Saitama (Japan)

    2002-09-01

    Experiments of Peltier current lead (PCL) were performed by the way of half-wave-rectified current (HWRC) for an evaluation of the PCL system in the drive with the large-rippled current. The current ripple of the HWRC is large, and we discussed the cooling capability of the current ripple. The experimental results revealed that the temperature difference of the thermoelectric-element (TE) increased with the magnitude of the current in the PCL system, despite the large current ripple. Calorimetric measurements revealed that the PCL reduced the heat leak of 60% for the peak current 90A. We compared the PCL systems of the direct current (dc) mode and the HWRC mode. The results showed that the current dependence of the temperature difference in the HWRC mode did not match that of the dc mode, but those of the heat leak matched well. The performance of the Peltier cooling in the HWRC mode is reduced to be 2/{pi} time of the Seebeck coefficient for the dc mode by using the time-average method. (author)

  16. Current status of dentin adhesive systems.

    Science.gov (United States)

    Leinfelder, K F

    1998-12-01

    Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.

  17. NADIR: A Flexible Archiving System Current Development

    Science.gov (United States)

    Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.

    2014-05-01

    The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.

  18. Bunch Current Measurement Using a High-Speed Photodetector at HLS II

    Science.gov (United States)

    Zhou, Tianyu; Yang, Yongliang; Sun, Baogen; Lu, Ping; Wu, Fangfang; Wang, Jigang; Zhou, Zeran; Luo, Qing; Wang, Qian; Li, Hao

    2017-07-01

    This paper presents a novel bunch current measurement system based on an ultrafast photodetector and a high-speed digitizer at Hefei light source II (HLS II). We use a metal-semiconductor-metal photodetector to measure the emitted optical synchrotron radiation intensity directly, representing the bunch current intensity. To achieve bunch-by-bunch resolution, the sampling rate of the system is nearly 225 GS/s, which is achieved via a dedicated equivalent sampling algorithm. The detailed description of the experimental setup and the equivalent sampling algorithm are presented. According to preliminary tests of the daily operation mode and single-bunch mode, the measured root-mean-square of the beam current is 1%, which shows that the new system satisfies the requirements for high-precision bunch current measurements. In addition, experimental results of the “HLS” Morse-code fill pattern mode demonstrate that this system could also be a convenient and robust tool for beam top-up modes in the future.

  19. NKS MOMS. Final report. [Mobile Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)

    2013-02-15

    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  20. Ultra-Thin Flexible Eddy Current Sensor Array for Gap Measurements

    Institute of Scientific and Technical Information of China (English)

    丁天怀; 陈祥林; 黄毅平

    2004-01-01

    An ultra-thin flexible eddy current proximity sensor array was developed for online measurements of tiny gaps between large smooth metallic and nonmetallic surfaces of arbitrary shapes. The probe of the flexible eddy current sensor array, which includes a set of sensor coils, is fabricated on a thin flexible substrate using the flexible printed circuit board process which allows the probe to be very thin and flexible so that it can conform to the surface geometry of the measured objects. The sensor coils are connected to an inductance-capacitance oscillator, which converts the distance between the sensor coil and the metallic target to a frequency output. Experimental results show that the measurement accuracy of the sensor system can reach ±0.5% for a 2-mm gap and the sensor system is suitable for online gap measurements.

  1. CURRENT VIEWS OF THE GLEASON GRADING SYSTEM

    Directory of Open Access Journals (Sweden)

    N. A. Gorban

    2014-07-01

    Full Text Available The authors provide the proceedings of the 2005 First International Society of Urological Pathology Consensus Conference and the basic provisions that differ the modified Gleason grading system from its original interpretation. In particular, we should do away with Gleason grade 1 (or 1 + 1 = 2 while assessing the needle biopsy specimens. Contrary to the recommendations by Gleason himself, the conference decided to apply stringent criteria for using Gleason grades 3 and 4. This is due to the fact that these grades are of special prognostic value so it is important to have clear criteria in defining each Gleason grade. Notions, such as secondary and tertiary Gleason patterns, are considered; detailed recommendations are given on the lesion extent sufficient to diagnose these components.

  2. System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    Science.gov (United States)

    Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)

    1993-01-01

    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.

  3. A Primary and Backup Protection Algorithm based on Voltage and Current Measurements for HVDC Grids

    OpenAIRE

    Abedrabbo, Mudar; Van Hertem, Dirk

    2016-01-01

    DC grids are susceptible to DC side faults, which lead to a rapid rise of the DC side currents. DC side faults should be detected in a very short time before fault currents cause damage to the system or equipment, e.g., exceed the maximum interruptible limits of DC circuit breaker. This paper presents a primary and backup protective data-based algorithm. The proposed algorithm depends on the local voltage and current measurements to detect and identify various kinds of faults in the HVDC grid...

  4. Comparing current cluster, massively parallel, and accelerated systems

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Kevin J [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Hoisie, Adolfy [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  5. A compact analytical formalism for current transients in electrochemical systems

    CERN Document Server

    Nair, Pradeep R

    2011-01-01

    Micro and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecule detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained to the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the response of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detai...

  6. Virtual smile design systems: a current review.

    Science.gov (United States)

    Zimmermann, Moritz; Mehl, Albert

    2015-01-01

    In the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. Thanks to new technological advances in the computer- assisted design and computer-assisted manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using the backward planning approach appears useful and feasible. Today, a virtual smile design can be used as the basis for creating an esthetic virtual setup of the desired final result. The virtual setup, in turn, is used to plan further treatment steps in an interdisciplinary team approach, and communicate the results to the patient. The smile design concept and the esthetic analyses required for it are described in this article. We include not only a step-by-step description of the virtual smile design workflow, but also describe and compare the several available smile design options and systems. Subsequently, a brief discussion of the advantages and limitations of virtual smile design is followed by a section on different ways to integrate a two-dimensional (2D) smile design into the digital three-dimensional (3D) workflow. New technological developments are also described, such as the integration of smile designs in digital face scans, and 3D diagnostic follow-up using intraoral scanners.

  7. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  8. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  9. Assessing the Current State of Cognitive Frailty: Measurement Properties.

    Science.gov (United States)

    Sargent, L; Brown, R

    2017-01-01

    Currently, an estimated 25-30% of people ages 85 or older have dementia, with a projected 115 million people worldwide living with dementia by 2050. With this worldwide phenomenon fast approaching, early detection of at-risk older adults and development of interventions focused on preventing loss in quality of life are increasingly important. A new construct defined by the International Consensus Group (I.A.N.A/I.A.G.G) as «cognitive frailty» combines domains of physical frailty with cognitive impairment and provides a framework for research that may provide a means to identify individuals with cognitive impairment caused by nonneurodegenerative conditions. Using the integrative review method of Whittemore and Knafl., 2005 this study examines and appraises the optimal measures for detecting cognitive frailty in clinical populations of older adults. The integrative review was conducted using PubMed, CINAHL, Web of Science, PsycInfo, and ProQuest Dissertations and Theses. From the total 185 articles retrieved, review of titles and key words were conducted. Following the initial review, 168 articles did not meet the inclusion criteria for association of frailty and cognition. Of the 18 fulltext articles reviewed, 11 articles met the inclusion criteria; these articles were reviewed in-depth to determine validity and reliability of the cognitive frailty measures. Predictive validity was established by the studies reviewed in four main areas: frailty and type of dementia MCI (OR 7.4, 95% CI 4.2-13.2), vascular dementia (OR 6.7, 95% CI 1.6-27.4) and Alzheimer's dementia (OR 3.2, 95% CI 1.7-6.2), frailty and vascular dementia (VaAD) is further supported by the rate of change in frailty x macroinfarcts (r = 0.032, p < 0.001); frailty and the individual domains of cognitive function established with the relationship of neurocognitive speed and change in cognition using regression coefficients; individual components of frailty and individual domains of cognitive function

  10. DC Magnetics Measurement System Design

    Science.gov (United States)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  11. High Dynamic Magnetic Beam Current Measurements by Means of Optimised Magneto-Resistance (MR) Sensor Engineering

    CERN Document Server

    Hape, M; Ricken, W

    2005-01-01

    The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...

  12. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization through Dark Current Measurement

    CERN Document Server

    Amaudruz, Pierre-André; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retière, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D; Thompson, Christopher J

    2013-01-01

    PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure...

  13. Design of BEPC Ⅱ bunch current monitor system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MA Hui-Zhou; YUE Jun-Hui; LEI Ge; CAO Jian-She; MA Li

    2008-01-01

    BEPC Ⅱ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM)system is built on BEPC Ⅱ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC Ⅱ timing system can also use the bunch current database to decide which bucket needs to refill to implement "top-off" injection.

  14. Wireless sap flow measurement system

    Science.gov (United States)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  15. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available velocities for oceanographic research in the Agulhas Current are assessed. Comparisons between radar, altimetry and surface drifters observations of the surface currents show that accurate wind fields are a strong pre-requisite to the derivation of meaningful...

  16. Food parenting: a selective review of current measurement and an empirical examination to inform future measurement.

    Science.gov (United States)

    Musher-Eizenman, Dara R; Kiefner, Allison

    2013-08-01

    Interactions between parents and children in regard to food are an important part of the development of food preferences and intake patterns for children. The measurement of this complex and multidimensional construct is very challenging. This article examines the current status of measurement in this domain in a selective review, considers qualitative input from parents and adolescents in an empirical examination of the topic, and makes concrete recommendations for the future. Qualitatively, there were important differences between what the adolescents reported that their parents did to impact their eating habits, what parents of younger children report they currently do, and what researchers typically measure in research on parental feeding practices. On the basis of these empirical findings and our review of the literature, we recommend that food parenting be measured on three levels: Feeding styles (e.g., authoritative), food parenting practices (e.g., restriction), and specific feeding behaviors (e.g., putting food out of the child's reach). Specific recommendations for future study are given for each level of measurement.

  17. Wave-current interactions in deep water conditions: field measurements and analyses

    Science.gov (United States)

    Rougier, Gilles; Rey, Vincent; Molcard, Anne

    2015-04-01

    The study of wave - current interaction has drawn interest in oceanography, ocean engineering, maritime navigation and for tides or waves power device design. In the context of the hydrodynamics study along the French Mediterranean coast, a current profiler was deployed near Toulon at the south of the "Port Cros" island. This coastal zone is characterized by a steep slope, the water depth varying from tens meters to several thousand meters over few kilometers from the coast. An ambient current, the "Northern Current", coming from the Ligurian sea (area of Genoa, Italy) and following the coast up to Toulon, is present all over the year. Its mean surface velocity is of about 0.30 m/s, its flow rate of about 1.5 Sv. The region is exposed to two dominating winds: the Mistral, coming from North-West, and Eastern winds. Both generate swell and/or wind waves in either following or opposing current conditions with respect to the Northern Current. A current profiler equipped with a wave tracking system (ACPD workhorse from RDI) was deployed from July to October 2014 in deep water conditions (depth of about 500m). The mooring system allowed the ADCP to measure the current profile from the sea surface down to 25m depth, which corresponds more or less to the depth of influence of waves of periods up to 10s. The collected data include energetic wave conditions in either following or opposing current conditions. The current intensity and its vertical profiles have shown a significant temporal variability according to the meteorological conditions. Effects of the wave conditions on the current properties are discussed. ACKNOWLEDGEMENTS This work was supported by the program BOMBYX and the ANR grant No ANR-13-ASTR-0007.

  18. Probing other solar systems with current and future adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  19. Probing other solar systems with current and future adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Macintosh, B; Marois, C; Phillion, D; Poyneer, L; Graham, J; Zuckerman, B; Gavel, D; Veran, J; Wilhelmsen-Evans, J; Mellis, C

    2008-09-08

    Over the past decade, the study of extrasolar planets through indirect techniques--primarily Doppler measurements--has revolutionized our understanding of other solar systems. The next major step in this field will be the direct detection and characterization, via imaging and spectroscopy, of the planets themselves. To achieve this, we must separate the light from the faint planet from the extensive glare of its parent star. We pursued this goal using the current generation of adaptive optics (AO) systems on large ground-based telescopes, using infrared imaging to search for the thermal emission from young planets and developing image processing techniques to distinguish planets from telescope-induced artifacts. Our new Angular Differential Imaging (ADI) technique, which uses the sidereal rotation of the Earth and telescope, is now standard for ground-based high-contrast imaging. Although no young planets were found in our surveys, we placed the strongest limits yet on giant planets in wide orbits (>30 AU) around young stars and characterized planetary companion candidates. The imaging of planetary companions on solar-system-like scales (5-30 AU) will require a new generation of advanced AO systems that are an order of magnitude more powerful than the LLNL-built Keck AO system. We worked to develop and test the key technologies needed for these systems, including a spatially-filtered wavefront sensor, efficient and accurate wavefront reconstruction algorithms, and precision AO wavefront control at the sub-nm level. LLNL has now been selected by the Gemini Observatory to lead the construction of the Gemini Planet Imager, a $24M instrument that will be the most advanced AO system in the world.

  20. Four classification schemes of adult motivation: current views and measures.

    Science.gov (United States)

    Barbuto, John E

    2006-04-01

    Classification of perspectives on motivation and recommendations for measurement are provided. Motivation is classified into four broad categories: content theories, process theories, decision-making theories, and sustained-effort theories--drawing from different theories and measures. Recommendations on measurement are developed for each classification scheme of motivation.

  1. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  2. Multidirectional four-dimensional shape measurement system

    Science.gov (United States)

    Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin

    2012-03-01

    Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.

  3. Parameter Estimation of Inverter and Motor Model at Standstill using Measured Currents Only

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Knudsen, Morten; Tønnes, M.

    1996-01-01

    to the system is the reference values for the stator voltages given as duty cycles for the Pulse With Modulated power device. The system output is the measured stator currents. Three experiments are describedgiving respectively 1) the stator resistance and inverter parameters, 2) the stator transient inductance...... and 3) the referred rotor rotor resistance and magnetizing inductance. The method developed in the two last experiments is independent of the inverter nonlinearity. New methods for system identification concerning saturation of the magnetic flux are given and a reference value for the flux level...

  4. Design and Measurement Methodology for a Sub-picoampere Current Digitiser

    CERN Document Server

    Voulgari, Evgenia; Anghinolfi, Francis; Krummenacher, François; Kayal, Maher

    2015-01-01

    This paper introduces some design and measurement techniques that were used in the design and the testing of an ASIC for ultra-low current sensing. The idea behind this paper is to present the limitations in sub-picoampere current measurements and demonstrate an ASIC that can accurately measure the different sources of leakage currents and the methodology of measuring. Then the leakage current can be subtracted or compensated in order to accurately measure the ultra-low current that is generated from a sensor/detector. The proposed ASIC can measure currents as low as -50 fA, a value well below similar ASIC implementations.

  5. The current interruption process in vacuum analysis of the currents and voltages of current-zero measurements

    NARCIS (Netherlands)

    van Lanen, E.P.A.

    2008-01-01

    The circuit breaker helps protecting vulnerable equipment in a power network from hazardous short-circuit currents by isolating a fault, when it occurs. They perform this task by extinguishing a plasma arc that appears as soon as the breaker's contacts separate, and through which the short-circuit c

  6. The current interruption process in vacuum analysis of the currents and voltages of current-zero measurements

    NARCIS (Netherlands)

    van Lanen, E.P.A.

    2008-01-01

    The circuit breaker helps protecting vulnerable equipment in a power network from hazardous short-circuit currents by isolating a fault, when it occurs. They perform this task by extinguishing a plasma arc that appears as soon as the breaker's contacts separate, and through which the short-circuit

  7. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  8. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    Science.gov (United States)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    Precipitation Measuring Mission (PMM) Science Team (JPST) before the release. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. At-launch code was developed in December 2012. In addition, JAXA and NASA have provided synthetic DPR L1 data and tests have been performed using them. Japanese Global Rainfall Map algorithm for the GPM mission has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007. The GSMaP near-real-time version and reanalysis version have been in operation at JAXA, and browse images and binary data available at the GSMaP web site (http://sharaku.eorc.jaxa.jp/GSMaP/). The GSMaP algorithm for GPM is developed in collaboration with AMSR2 standard algorithm for precipitation product, and their validation studies are closely related. As JAXA GPM product, we will provide 0.1-degree grid and hourly product for standard and near-realtime processing. Outputs will include hourly rainfall, gauge-calibrated hourly rainfall, and several quality information (satellite information flag, time information flag, and gauge quality information) over global areas from 60°S to 60°N. At-launch code of GSMaP for GPM is under development, and will be delivered to JAXA GPM Mission Operation System by April 2013. At-launch code will include several updates of microwave imager and sounder algorithms and databases, and introduction of rain-gauge correction.

  9. A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.

    Science.gov (United States)

    Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K

    2016-10-01

    An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.

  10. Current Consumption Measurements with a Carrier Aggregation Smartphone

    DEFF Research Database (Denmark)

    Sanchez-Mejias, Rafael; Guo, Yu; Lauridsen, Mads

    2014-01-01

    Carrier Aggregation (CA) is introduced in LTE release 10 to improve data rates by allowing the User Equipment (UE) to receive data on more than one LTE carrier. The related increased complexity is expected to affect the UE current consumption, but yet no empirical evaluation has been published on...

  11. Performance measurements of superconducting current leads having low helium boiloff rates

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.

    1992-08-01

    We have created a performance-measurement facility for current leads as a part of our Laboratory's program to develop applications for high-temperature superconductors. The facility measures the rate of helium vapor boil-off due to current-lead heat input to liquid helium and the pressure drop across a current lead for a pair of leads operating at currents to 100 A. The facility's major components are a liquid-helium dewar having low background heat input; a dewar insert which incorporates the current leads and associated instrumentation or connections for flow, pressure, level, temperature and voltage measurements; and a computer-driven data-acquisition system. The background beat input is small enough so that boiloff rates one-tenth that of an optimized conventional lead can be characterized. The facility has been operated with both conventional; i.e., vapor-cooled copper leads and with leads incorporating high-temperature superconductors at their cold ends. Details of the facility design, construction and operating experiences are presented.

  12. Halo current diagnostic system of experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P., E-mail: jpqian@ipp.ac.cn; Wang, Y.; Xiao, B. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Granetz, R. S. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  13. Halo current diagnostic system of experimental advanced superconducting tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  14. Surfzone currents at Candolim and Miramar beaches of Goa, India: measurements and comparisons

    Digital Repository Service at National Institute of Oceanography (India)

    Yadhunath, E.M.; JayaKumar, S.; Jishad, M.; Gowthaman, R.; Rajasekaran, C.; Pednekar, P.S.

    Measurements in the surfzone current are often carried out using Acoustic Doppler Velocimeters, Electromagnetic current meters, as well as visual observations based on floats A simple approach is used to install an Aanderaa current meter in water...

  15. Diffusion current in a system of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Rahmonov, I. R.

    2012-08-01

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  16. Diffusion current in a system of coupled Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)

    2012-08-15

    The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.

  17. Spin currents and magnetization dynamics in multilayer systems

    NARCIS (Netherlands)

    van der Bijl, E.

    2014-01-01

    In this Thesis the interplay between spin currents and magnetization dynamics is investigated theoretically. With the help of a simple model the relevant physical phenomena are introduced. From this model it can be deduced that in systems with small spin-orbit coupling, current-induced torques on

  18. West Coast Observing System (WCOS) ADCP Currents Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  19. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  20. Population vulnerability of marine birds within the California Current System

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...

  1. The methodologies and instruments of vehicle particulate emission measurement for current and future legislative regulations

    Science.gov (United States)

    Otsuki, Yoshinori; Nakamura, Hiroshi; Arai, Masataka; Xu, Min

    2015-09-01

    Since the health risks associated with fine particles whose aerodynamic diameters are smaller than 2.5 μm was first proven, regulations restricting particulate matter (PM) mass emissions from internal combustion engines have become increasingly severe. Accordingly, the gravimetric method of PM mass measurement is facing its lower limit of detection as the emissions from vehicles are further reduced. For example, the variation in the adsorption of gaseous components such as hydrocarbons from unburned fuel and lubricant oil and the presence of agglomerated particles, which are not directly generated in engine combustion but re-entrainment particulates from walls of sampling pipes, can cause uncertainty in measurement. The PM mass measurement systems and methodologies have been continuously refined in order to improve measurement accuracy. As an alternative metric, the particle measurement programme (PMP) within the United Nations Economic Commission for Europe (UNECE) developed a solid particle number measurement method in order to improve the sensitivity of particulate emission measurement from vehicles. Consequently, particle number (PN) limits were implemented into the regulations in Europe from 2011. Recently, portable emission measurement systems (PEMS) for in-use vehicle emission measurements are also attracting attention, currently in North America and Europe, and real-time PM mass and PN instruments are under evaluation.

  2. 'Leak Current' correction for critical current measurement of no-insulation HTS coil

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jung Bin [Laboratoire National des Champs Magnétiques Intenses, CNRS, Grenoble (France); Hahn, Seung Yong [Dept. of Electrical and Computer Engineering, Seoul National University, Seoul (Korea, Republic of)

    2017-06-15

    Discrepancy between a power supply current and an actual “spiral” coil current makes the conventional 4-probe measurement of a critical current (I{sub c}) of a no-insulation (NI) high temperature superconductor (HTS) coil inaccurate and time-consuming. This paper presents a fast and accurate approach for I{sub c} measurement of NI HTS coils. With an NI HTS coil energized at a constant ramping rate, a complete analytic expression for the spiral coil current was obtained from a first-order partial differential equation that derived from an equivalent circuit model of the NI coil. From the analytic solution, both spiral coil current and radial leak current can be obtained simultaneously, which enables fast and accurate measurement of the NI coil I{sub c}. To verify the proposed approach, an NI double-pancake (DP) coil, wound with GdBCO tapes of 6 mm × 0.1 mm, was constructed and its Ic was repeatedly measured with various ramping rates in a bath of liquid nitrogen at 77 K. The measured results agreed well with the calculated ones, which validates the proposed approach to measure I{sub c} of an NI HTS coil.

  3. SNAPSHOT: A MODERN, SUSTAINABLE HOLDUP MEASUREMENT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Smith, Steven E [ORNL; Chapman, Jeffrey Allen [ORNL; Dunn, Michael E [ORNL; Stewart, Scott L [ORNL

    2016-01-01

    SNAPSHOT is a software platform designed to eventually replace Holdup Measurement System 4 (HMS 4), which is the current state-of-the-art for acquisition and analysis of nondestructive assay measurement data for in situ nuclear materials, holdup, in support of criticality safety and material control and accounting. HMS 4 is over 10 years old and is currently unsustainable due to hardware and software incompatibilities that have arisen from advances in detector electronics, primarily updates to multi-channel analyzers (MCAs), and both computer and handheld operating systems. SNAPSHOT is a complete redesign of HMS 4 that addresses the issue of compatibility with modern MCAs and operating systems and that is designed with a flexible architecture to support long-term sustainability. It also provides an updated and more user friendly interface and is being developed under an NQA 1 software quality assurance (SQA) program to facilitate site acceptance for safety-related applications. This paper provides an overview of the SNAPSHOT project including details of the software development process, the SQA program, and the architecture designed to support sustainability.

  4. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  5. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    M P Janawadkar; R Baskaran; R Nagendran; K Gireesan; N Harishkumar; Rita Saha; L S Vaidhyanathan; J Jayapandian; Y Hariharan; T S Radhakrishnan

    2002-05-01

    A program has been developed and initiated at the Indira Gandhi Centre for Atomic Research (IGCAR) for the utilization of SQUID sensors in various application areas. DC SQUID sensors based on Nb–AlO–Nb Josephson junctions have been designed and developed inhouse along with associated flux-locked loop (FLL) electronics. A compact low field SQUID magnetometer insertible in a liquid helium storage dewar has also been developed inhouse and is in use. Efforts to build a high field SQUID magnetometer, SQUID-DAC system, are in progress. A planar gradiometric DC SQUID sensor for non-destructive evaluation (NDE) application to be used in relatively unshielded environment has been designed and developed. An easily portable NDE cryostat with a small lift-off distance, to be used in external locations has been designed and tested. The magnetic field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique.

  6. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    Science.gov (United States)

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  7. Air Flow Measurements During Medium-Voltage Load Current Interruptions

    OpenAIRE

    Aanensen, Nina Sasaki; Runde, Magne

    2015-01-01

    Air has been considered a good alternative to SF6 as arc quenching medium for load break switchgear at medium voltage ratings. In this work, the air flow characteristics and influence from the electric arc have been studied for typical currents and over-pressures. The cooling air velocity is typically in the range 150 - 200 m/s and thus well below supersonic speed. The arc and the surrounding hot air severely affect the air flow pattern by causing clogging in the contact and nozzle region.

  8. Current assessment practice, personality measurement, and rorschach usage by psychologists.

    Science.gov (United States)

    Musewicz, John; Marczyk, Geoffrey; Knauss, Linda; York, David

    2009-09-01

    In this study, we investigated current personality assessment practice and attitudes toward Rorschach (Exner, 2003) usage by 215 psychologists. We administered an Internet survey to members of the Society for Personality Assessment (SPA) and the American Psychological Association. Results were similar to those of past surveys, but the importance of using tests with strong psychometric properties was greater in this study. The majority of respondents reported using the Rorschach and supporting efforts to standardize and psychometrically validate the test. However, SPA members agreed more strongly than non-SPA members that the Rorschach is an effective test. Implications and directions for future research are discussed.

  9. Site Selection of Ocean Current Power Generation from Drifter Measurements

    Science.gov (United States)

    2014-12-01

    Peter C. Chu2, Ruo-Shan Tseng3 4 5 1 Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 6 Kaohsiung 80424, Taiwan...Besides 105 Kuroshio, there is a strong current with a velocity of 1.2 m s-1 in the South China Sea 106 along the coast of Vietnam. Fig. 4 shows the...more 128 than 500 m is also being developed for Kuroshio power plant near Taitung [9]. The sea 129 depth near Taitung is often more than 500 m. Thus

  10. Smart Technique for Induction Motors Diagnosis by Monitoring the Power Factor Using Only the Measured Current

    Science.gov (United States)

    Shnibha, R. A.; Albarabar, A. S.

    2012-05-01

    This paper is concerned with accurate, early and reliable induction motor IM fault detection and diagnosis using an enhanced power parameter measurement technique. IM protection devices typically monitor the motor current and/or voltage to provide the motor protection from e.g. current overload, over/under voltage, etc. One of the interesting parameters to monitor is the operating power factor (PF) of the IM which provides better under-load protection compared to the motor current based approaches. The PF of the motor is determined by the level of the current and voltage that are drawn, and offers non-intrusive monitoring. Traditionally, PF estimation would require both voltage and the current measurements to apply the displacement method. This paper will use a method of determining the operating PF of the IM using only the measured current and the manufacturer data that are typically available from the nameplate and/or datasheet for IM monitoring. The novelty of this work lies in detecting very low phase imbalance related faults and misalignment. Much of the previous work has dealt with detecting phase imbalance faults at higher degrees of severity, i.e. voltage drops of 10% or more. The technique was tested by empirical measurements on test rig comprised a 1.1 kW variable speed three phase induction motor with varying output load (No load, 25%, 50%, 75% and 100% load). One common faults was introduced; imbalance in one phase as the electrical fault The experimental results demonstrate that the PF can be successfully applied for IM fault diagnosis and the present study shows that severity fault detection using PF is promising. The proposed method offers a potentially reliable, non-intrusive, and inexpensive CM tool which can be implemented with real-time monitoring systems

  11. A compact analytical formalism for current transients in electrochemical systems.

    Science.gov (United States)

    Nair, Pradeep R; Alam, Muhammad A

    2013-01-21

    Micro- and nanostructured electrodes form an integral part of a wide variety of electrochemical systems for biomolecular detection, batteries, solar cells, scanning electrochemical microscopy, etc. Given the complexity of the electrode structures, the Butler-Volmer formalism of redox reactions, and the diffusion transport of redox species, it is hardly surprising that only a few problems are amenable to closed-form, compact analytical solutions. While numerical solutions are widely used, it is often difficult to integrate the insights gained into the design and optimization of electrochemical systems. In this article, we develop a comprehensive analytical formalism for current transients that not only anticipate the responses of complex electrode structures to complicated voltammetry measurements, but also intuitively interpret diverse experiments such as redox detection of molecules at nanogap electrodes, scanning electrochemical microscopy, etc. The results from the analytical model, well supported through detailed numerical simulations and experimental data from the literature, have broad implications in the design and optimization of nanostructured electrodes for healthcare and energy storage applications.

  12. Radiographic measurements of hallux angles: a review of current techniques.

    Science.gov (United States)

    Srivastava, Subodh; Chockalingam, N; El Fakhri, Tarek

    2010-03-01

    Radiographic angles are commonly used in patients with hallux valgus deformity to assess the severity, plan surgery, assess outcome and compare results. Many different manual methods have been used, but are prone to error. More recently computer-assisted methods using software have become available. To review the different methods that have been used to measure radiographic angles in hallux valgus. A general literature search using relevant key words was undertaken using databases such as Medline, Embase, Cinahl and Cochrane Library. REVIEW FINDINGS AND DISCUSSION: The manual methods used are prone to errors. The reliability can be improved by using standardised radiographic technique and measurement technique using specific reference points. Computer-assisted methods using software, might improve reliability of measurements. Further studies are needed to assess if these methods are easy to use, and to compare different software's that are available. Specifically designed software for the foot might further improve the reliability of radiographic measurements in hallux valgus. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  14. Measurement of bubble and pellet size distributions: past and current image analysis technology.

    Science.gov (United States)

    Junker, Beth

    2006-08-01

    Measurements of bubble and pellet size distributions are useful for biochemical process optimizations. The accuracy, representation, and simplicity of these measurements improve when the measurement is performed on-line and in situ rather than off-line using a sample. Historical and currently available measurement systems for photographic methods are summarized for bubble and pellet (morphology) measurement applications. Applications to cells, mycelia, and pellets measurements have driven key technological developments that have been applied for bubble measurements. Measurement trade-offs exist to maximize accuracy, extend range, and attain reasonable cycle times. Mathematical characterization of distributions using standard statistical techniques is straightforward, facilitating data presentation and analysis. For the specific application of bubble size distributions, selected bioreactor operating parameters and physicochemical conditions alter distributions. Empirical relationships have been established in some cases where sufficient data have been collected. In addition, parameters and conditions with substantial effects on bubble size distributions were identified and their relative effects quantified. This information was used to guide required accuracy and precision targets for bubble size distribution measurements from newly developed novel on-line and in situ bubble measurement devices.

  15. PCB current identification based on near-field measurements using preconditioning and regularization

    Science.gov (United States)

    Rinas, Denis; Ahl, Patrick; Frei, Stephan

    2016-09-01

    Radiated electromagnetic fields from a PCB can be estimated when the source current distribution is known. From a measured near-field distribution, the PCB source current distribution can be found. Accuracy depends on the measurement method and its limitations, the radiation model and the choice of the observation area. Many known methods are based on optimization algorithms for inverse problems that vary a set of elementary radiation sources and create a radiation model. However, apart from the time-consuming optimization process, such methods find one possible solution for a near-field distribution. As this distribution might not reflect the real current distribution, accuracy outside of near-field scan area can be low. Furthermore numerical problems can often be observed. Solving the given inverse problem with a system of linear equations and complex near-field data it can be very sensitive to noise. Regularization methods and an adjusted preconditioning can increase the accuracy. In this paper, an improved radiation model creation approach based on complex near-field data is presented. This approach is based on regularization methods and extended by current estimations from near-field data. Preconditioning is done considering some physical properties of the PCB and its possible current paths. Accuracy and stability of the method are investigated in the presence of noisy data.

  16. Rating PV Power and Energy: Cell, Module, and System Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, Keith

    2016-06-02

    A summary of key points related to research-level measurements of current vs. voltage measurement theory including basic PV operation, equivalent circuit, and concept of spectral error; PV power performance including PV irradiance sensors, simulators and commercial and generic I-V systems; PV measurement artifacts, intercomparisons, and alternative rating methods.

  17. The Current Methods of Measurement of Market Orientation

    OpenAIRE

    Ing. Eva Tomaskova

    2009-01-01

    The article deals with the new trends in measurement of market orientation. Market orientation is one of the most investigated methods founded on marketing conception. Market orientation comes back in 90th of 20th century by workers Kohli and Jaworski and Narver and Slater. It is described as a method to contribute better managing of company by many researchers. These research studies involved definition of market orientation, impact market orientation on business performance, methods for mea...

  18. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  19. Tidal current turbine based on hydraulic transmission system

    Institute of Scientific and Technical Information of China (English)

    Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA

    2011-01-01

    Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.

  20. Weak measurement from the electron displacement current: new path for applications

    Science.gov (United States)

    Marian, D.; Colomés, E.; Zanghì, N.; Oriols, X.

    2015-10-01

    The interest on weak measurements is rapidly growing during the last years as a unique tool to better understand and predict new quantum phenomena. Up to now many theoretical and experimental weak-measurement techniques deal with (relativistic) photons or cold atoms, but there is much less investigation on (non-relativistic) electrons in up-to-date electronics technologies. We propose a way to perform weak measurements in nanoelectronic devices through the measurement of the total current (particle plus displacement component) in such devices. We study the interaction between an electron in the active region of a electron device with a metal surface working as a sensing electrode by means of the (Bohmian) conditional wave function. We perform numerical (Monte Carlo) simulations to reconstruct the Bohmian trajectories in the iconic double slit experiment. This work opens new paths for understanding the quantum properties of an electronic system as well as for exploring new quantum engineering applications in solid state physics.

  1. Drift chamber electronics with multi-hit capability for time and current division measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manarin, A.; Pregernig, L.; Rabany, M.; Saban, R.; Vismara, G.

    1983-11-15

    Drift chambers have been installed for luminosity measurements in intersection 5 of the SPS accelerator working in panti p colliding mode. The required electronics is described. The system is able to process up to 16 hits per wire with a double pulse resolution of 40 ns; drift time and current division, with 1.25 ns and 1.6% resolution respectively, are recorded. Transconductance preamplifiers and discriminators are directly mounted on the chamber; 160 m of twisted-apir cable bring the signals to the digitizer unit. Coarse time is measured using RAM techniques, while fine time is obtained by means of a microstrip delay associated with a 100 K ECL priority encoder. Current division used a single 50 MHz Flash ADC which alows 26 dB dynamic range with 6 bit resolution. First operational results are reported.

  2. Current international intercomparison measurement on radon and its progeny

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Keizo [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1996-12-01

    The international intercomparison measurement on radon and its progeny was held between the EML of USDOE and several Japanese organisations, using the radon test chamber installed in EML. Japanese results of radon concentration by the active method using the ionization chamber or scintillation cell and the passive method using the solid track detector were about 5% small compared to that of EML. On the results of radon progeny, there were not any large systematic differences between EML and Japanese participants in spite of wide range of deviation except for the results at the condition of low aerosol density. (author)

  3. Directional spectral emissivity measurement system

    Science.gov (United States)

    Halyo, Nesim (Inventor); Pandey, Dhirendra K. (Inventor)

    1992-01-01

    Apparatus and process for determining the emissivity of a test specimen including an integrated sphere having two concentric walls with a coolant circulating therebetween, and disposed within a chamber which may be under ambient, vacuum or inert gas conditions. A reference sample is disposed within the sphere with a monochromatic light source in optical alignment therewith. A pyrometer is in optical alignment with the test sample for obtaining continuous test sample temperature measurements during a test. An arcuate slit port is provided through the spaced concentric walls of the integrating sphere with a movable monochromatic light source extending through and movable along the arcuate slit port. A detector system extends through the integrating sphere for continuously detecting an integrated signal indicative of all radiation within its field of view, as a function of the emissivity of the test specimen at various temperatures and various angle position of the monochromatic light source. A furnace for heating the test sample to approximately 3000 K. and control mechanism for transferring the heated sample from the furnace to the test sample port in the integrating sphere is also contained within the chamber.

  4. Indicators System for Poverty Measurement

    Directory of Open Access Journals (Sweden)

    Constantin Mitrut

    2006-10-01

    Full Text Available Poverty represents a life aspect which is focusing the attention of both the macroeconomic analysis and the international comparisons. In order to measure the level being recorded by this phenomenon, there is a system of indicators which are used in order to underline, in a correlated manner, a number of aspects which are characterizing, quality and quantity wise, the evolution of the poverty in a specific country or, to a larger extent, through comparative surveys, at international level. Despite the fact that they are not the only instrument being used within the process of comparison of the stages of social and economic development at the international level, however the poverty indicators are providing a clear significance to the worked out surveys. In fact, the very purpose of the economic activity consists of increasing welfare and, as much as possible, at least reducing, if not eradicating, the poverty. The present work is broadly presenting the methodology as well as, both theoretical and practical, the way of computing the poverty, making a synthesis of the specific used indicators.

  5. Feasibility Implementation of Voltage-Current Waveform Telemetry System in Power Delivery System

    Science.gov (United States)

    Furukawa, Tatsuya; Akagi, Keita; Fukumoto, Hisao; Itoh, Hideaki; Wakuya, Hiroshi; Hirata, Kenji; Ohchi, Masashi

    The electric power is indispensable for modern life. However, there is a problem of harmonic disturbance when the harmonic power runs into electronic devices. To overcome the problem and realize a stable supply of the electric power is an important issue. In this study, we have developed a voltage-current waveform telemetry system for the remote measurement of the harmonics in the power delivery lines. The system consists of sensors, preamplifiers, a single board computer, and power collectors. Improvements are made on all of these components except the sensors. The power collector is a coil that can be placed around the same power line that we measure. We have designed the power collector by a finite element method(FEM) so that it can provide enough electricity for the computer to work properly. Thus, no other power source such as a battery except the secondary rechargeable battery for the recovery is necessary at the measurement place. The preamplifier in the new system is a single-supply differential amplifier circuit, and the single board computer has an inexpensive SH-3 CPU. Through experiments, we have confirmed that the power collector can provide sufficient electricity and that the new system can successfully measure the waveforms and the harmonics in power delivery systems.

  6. Society for Maternal-Fetal Medicine (SMFM) Special Report: Current approaches to measuring quality of care in obstetrics.

    Science.gov (United States)

    Bailit, Jennifer L; Gregory, Kimberly D; Srinivas, Sindhu; Westover, Thomas; Grobman, William A; Saade, George R

    2016-09-01

    Heath care measurement and evaluation is an integral piece of the health care system. The creation and assessment of care performance metrics are important and relevant for the obstetric community including both clinicians and patients. Careful deliberation is required to create a measurement system that results in optimal care for women and families. This article reviews the current approaches to measuring quality in obstetrics. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. A Loop Current experiment: Field and remote measurements

    Science.gov (United States)

    Hamilton, Peter; Lugo-Fernández, Alexis; Sheinbaum, Julio

    2016-12-01

    An overview of a new comprehensive observational study of the Loop Current (LC) in the eastern Gulf of Mexico that encompassed full-depth and near-bottom moorings, pressure-equipped inverted echo sounders (PIES) and remote sensing is presented. The study array was designed to encompass the LC from the Campeche Bank to the west Florida escarpment. This overview centers about principal findings as they pertain to mesoscale dynamics. Two companion papers provide in-depth analyses. Three LC anticyclonic eddy separation events were observed with good 3D spatial coverage over the 2½ year extent of the field study; the three separations exhibited similar processes after the LC had extended into the eastern Gulf. Large scale (∼300 km wavelength, 40-60 day periods) southward propagating meanders developed on the eastern side of the LC over deep (∼3000 m) water that were the result of baroclinic instability between the upper layer meandering jet and lower layer cyclones and anticyclones. The lower layer was only highly energetic during relatively short (∼2-3 months) intervals just prior to or during eddy detachments because of baroclinic instability. The steepening of the meanders lead to a pinch-off of LC eddies. The deep lower-layer eddies, constrained by the closed topography of the southeastern Gulf, propagated westward across the detachment zone and appear to assist in achieving separation. Small scale (∼50-100 km, periods ∼10 days) frontal eddies, observed on the western side of the LC along the Campeche Bank slope, decay over the deep water of the northern part of an extended LC, and have little influence on lower layer eddies, the east side meanders and the eddy detachment processes.

  8. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  9. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  10. Anesthesia information management systems marketplace and current vendors.

    Science.gov (United States)

    Stonemetz, Jerry

    2011-09-01

    This article addresses the brief history of anesthesia information management systems (AIMS) and discusses the vendors that currently market AIMS. The current market penetration based on the information provided by these vendors is presented and the rationale for the purchase of AIMS is discussed. The considerations to be evaluated when making a vendor selection are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION

    Institute of Scientific and Technical Information of China (English)

    Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie

    2005-01-01

    A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.

  12. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  13. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  14. Output Current Ripple Reduction Algorithms for Home Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Jin-Hyuk Park

    2013-10-01

    Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.

  15. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  16. The Applications of Measurement System for Crankshaft

    Institute of Scientific and Technical Information of China (English)

    DAI Shangping; GAO Li; GAO Kai

    2006-01-01

    This paper will introduce two types of multi-parameter co-measuring system and their application in the production. The first is crankshaft bent deformation measuring machine system. The second is the crankshaft pneumatic-electric measuring system. They have been used in final inspection procedure of automation line for crankshaft of automobie engine with good results, the structure principle and soft clash technological process of the measurement system are presented.

  17. What are we assessing when we measure food security? A compendium and review of current metrics.

    Science.gov (United States)

    Jones, Andrew D; Ngure, Francis M; Pelto, Gretel; Young, Sera L

    2013-09-01

    The appropriate measurement of food security is critical for targeting food and economic aid; supporting early famine warning and global monitoring systems; evaluating nutrition, health, and development programs; and informing government policy across many sectors. This important work is complicated by the multiple approaches and tools for assessing food security. In response, we have prepared a compendium and review of food security assessment tools in which we review issues of terminology, measurement, and validation. We begin by describing the evolving definition of food security and use this discussion to frame a review of the current landscape of measurement tools available for assessing food security. We critically assess the purpose/s of these tools, the domains of food security assessed by each, the conceptualizations of food security that underpin each metric, as well as the approaches that have been used to validate these metrics. Specifically, we describe measurement tools that 1) provide national-level estimates of food security, 2) inform global monitoring and early warning systems, 3) assess household food access and acquisition, and 4) measure food consumption and utilization. After describing a number of outstanding measurement challenges that might be addressed in future research, we conclude by offering suggestions to guide the selection of appropriate food security metrics.

  18. Critical report of current fisheries management measures implemented for the North Sea mixed demersal fisheries

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Ulrich, Clara; Hegland, Troels J.

    The present report is an EU-FP7-SOCIOEC Report giving an overview and critical evaluation of the current management measures implemented for the North Sea mixed demersal fisheries and the fish stocks involved in this. Also, this involves review and critical evaluation of the scientific advice sup...... to distinguish specific effects and impacts of each individual measures implemented. Accordingly, it is also very difficult to make scientific management evaluation and advice associated to the individual measures......The present report is an EU-FP7-SOCIOEC Report giving an overview and critical evaluation of the current management measures implemented for the North Sea mixed demersal fisheries and the fish stocks involved in this. Also, this involves review and critical evaluation of the scientific advice....... The prevailing management system and principle has been landing quotas (TAC, Total Allowable Catch) mainly based on the EU principle of relative stability in the international sharing of the TAC. Also, general effort limitations and technical measures are set for the EU and Norwegian fisheries on top of the TAC...

  19. Evaluation of Current Controllers for Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Timbus, Adrian; Liserre, Marco; Teodorescu, Remus

    2009-01-01

    This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...

  20. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system...... coils if the screen currents contain the necessary information for accurate fault location. In this paper, this is examined by analysis of field measurements and through a study of simulations. The wavelet transform and visual inspection methods are used and the accuracy is compared. Field measurements...... and simulations are compared for testing the reliability of using simulations for studying fault location methods....

  1. Space Weather Effects on Current and Future Electric Power Systems

    Science.gov (United States)

    Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.

    2016-12-01

    This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.

  2. Monitoring tidal currents with a towed ADCP system

    Science.gov (United States)

    Sentchev, Alexei; Yaremchuk, Max

    2016-01-01

    The tidal circulation in the semi-enclosed Boulogne harbour (eastern English Channel) is measured during the various stages of the tidal cycle with a low-cost towed Acoustic Doppler Current Profiler (ADCP) system for the first time. The system is equipped with an interpolation algorithm which allows reconstructing space-time evolution of the velocity field for surveys whose duration is comparable or larger than the typical time of tidal variation (1-2 h). The method employs space-time velocity covariances derived from a numerical simulation of the surveyed area by a high-resolution relocatable model "Model for Applications on Regional Scale" (MARS). The covariances are utilized by the optimal interpolation algorithm to obtain the most likely evolution of the velocity field under the constraints provided by the ADCP observations and their error statistics. Technically, the MARS model run provides the first guess (background) evolution of the velocity field in the surveyed area which is then corrected by the data in a statistically consistent manner as it explicitly takes into the account both observational and modeling errors. The quality of the velocity reconstruction was validated against independent bottom-mounted ADCP data, the background model evolution, and against the results of spatial interpolation by Kriging technique. All tests demonstrated significant (30 to 60 %) reduction of the model-data misfit for the velocity field obtained as a result of space-time optimal interpolation. Although the method was applied to recover surface circulation, it can be extended for assessment of the full 4D tidal flow dynamics using the data recorded throughout the entire water column.

  3. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA

    Science.gov (United States)

    Betancourt, M.; Ghosh, A.; Walton, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Bodek, A.; Bravar, A.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Patrick, C. E.; Perdue, G. N.; Ramírez, M. A.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Sobczyk, J. T.; Solano Salinas, C. J.; Sánchez Falero, S.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Yaeggy, B.; Minerva Collaboration

    2017-08-01

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  4. Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt, M.; et al.

    2017-08-25

    Charged-current νμ interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielasticlike interactions. The transferred four-momentum squared to the target nucleus, Q2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2 and the cross-section ratios of iron, lead, and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on the atomic number. While the quasielasticlike scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments.

  5. Alternating Current All-electrical Gun Control System in Tanks

    Directory of Open Access Journals (Sweden)

    Zang Kemao

    2004-07-01

    Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.

  6. Oceanography of Wadge bank - current measurements over a tidal cycle off the south coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    RamaRaju, V.S.; RameshBabu, V.; Anto, A.F.

    Direct current measurements made during the onset and termination of SW monsoon indicate wide fluctuations in space and time. The nearshore current decreases in magnitude from the onset to the termination of the monsoon. The resultant surface...

  7. Current fluctuations in stochastic systems with long-range memory

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R J; Touchette, H [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)], E-mail: rosemary.harris@qmul.ac.uk, E-mail: h.touchette@qmul.ac.uk

    2009-08-28

    We propose a method to calculate the large deviations of current fluctuations in a class of stochastic particle systems with history-dependent rates. Long-range temporal correlations are seen to alter the speed of the large deviation function in analogy with long-range spatial correlations in equilibrium systems. We give some illuminating examples and discuss the applicability of the Gallavotti-Cohen fluctuation theorem. (fast track communication)

  8. Online Fault Location on AC Cables in Underground Transmission Systems using Sheath Currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkarab, Kasun; Rajapakse, Athula

    2014-01-01

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using sheath currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  9. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  10. Measuring nu(mu) charged-current muon neutrino interactions in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Wascko, M.O.; /Louisiana State U.

    2004-12-01

    MiniBooNE seeks to confirm or refute the LSND {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillation signal with high statistical significance and different systematics. MiniBooNE has accumulated the world's largest {approx} 1 GeV neutrino data set. MiniBooNE employs a cosmic muon calibration system to study the reconstruction of the energies and directions of muons in the detector. Progress of measurements of the {nu}{sub {mu}} charged-current quasi-elastic and single pion production cross sections are presented.

  11. 3-dimensional current collection model. [of Tethered Satellite System 1

    Science.gov (United States)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  12. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  13. Parameter Estimation of Inverter and Motor Model at Standstill using Measured Currents Only

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Knudsen, Morten; Tønnes, M.

    1996-01-01

    Methods for estimation of the parameters in the electrical equivalent diagram for the induction motor, based on special designed experiments, are given. In all experriments two of the three phases are given the same potential, i.e., no net torque is generatedand the motor is at standstill. Input...... to the system is the reference values for the stator voltages given as duty cycles for the Pulse With Modulated power device. The system output is the measured stator currents. Three experiments are describedgiving respectively 1) the stator resistance and inverter parameters, 2) the stator transient inductance...... and 3) the referred rotor rotor resistance and magnetizing inductance. The method developed in the two last experiments is independent of the inverter nonlinearity. New methods for system identification concerning saturation of the magnetic flux are given and a reference value for the flux level...

  14. Current Strategic Business Plan for the Implementation of Digital Systems.

    Science.gov (United States)

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…

  15. Design of a mobile hydrological data measurement system

    Science.gov (United States)

    Liu, Yunping; Wang, Tianmiao; Dai, Fenfen

    2017-06-01

    The current hydrological data acquisition is mainly used in the instrument measurement. Instrument measurement equipment is mainly fixed in a certain water area and the device is easy to be lost. In view of a series of problems, the dynamic measurement system is established by the method of unmanned surface vessel and embedded technology, which can realize any positions measurement of a lake. This method has many advantages, such as mobile convenience, saving money and so on.

  16. Molten pool surface height measurement proj ection system of small current tungsten electrode argon arc welding%小电流钨极氩弧焊熔池表面高度测量投影系统

    Institute of Scientific and Technical Information of China (English)

    范定环; 魏昇; 刘南生

    2013-01-01

    The molten pool deformed grating stripe with enough quantity and good modulation degree was demand when we measured the molten pool surface by Fourier transform profilometry.The area of tung-sten electrode argon arc welding molten pool is small and reflecting property of liquid metal surface is com-plexity that company with strong electric arc interference.The proj ection system with good performance had designed by the overall consideration about the relationship of grating pitch,molten pool surface reflec-tion,arc interference and optical system parameters.Our study had demonstrated that the molten pool con-cussion had caused the dynamic change of normal direction of liquid metal tiny surface element that has the scattering effect on light beam.Therefore,the molten pool images can be captured by use of surface scatter-ing randomly of specular reflection light.The rectangular raster with pitch of 0.4 mm had projected on welding pool surface out of focus with angle of 30 degree.The obtained deformed laser stripes had pro-cessed by computer to acquire pool surface height preliminary.%利用傅里叶变换轮廓术的基本原理测量小电流钨极氩弧焊熔池表面高度,需要获得数量足够,调制度好的熔池变形光栅条纹。钨极氩弧焊熔池面积小,液态金属表面反射性能复杂,有强烈电弧光干扰,要综合考虑光栅节距、熔池表面反射、弧光干扰与光学系统参数之间的关系,设计好投影系统。研究表明,小电流钨极氩弧焊熔池振荡造成液态金属表面各微面元法线方向动态变化,对光束有散射效应,对于投射的结构光束,可以通过随机表面散射的镜面反射光拍摄熔池图像。将节距为0.4 mm的矩形光栅以30°左右的掠射角离焦投射到钨极氩弧焊熔池表面,可获得较好的熔池变形光栅条纹,经后续处理,可初步测量出熔池表面高度。

  17. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  18. Simulation of Current Measurement Using Magnetic Sensor Arrays and Its Error Model

    Institute of Scientific and Technical Information of China (English)

    WANGJing; YAOJian-jun; WANGJian-hua

    2004-01-01

    Magnetic sensor arrays are proposed to measure electric current in a non-contac tway. In order to achieve higher accuracy, signal processing techniques for magnetic sensor arrays are utilized. Simulation techniques are necessary to study the factors influencing the accuracy of current measurement. This paper presents a simulation method to estimate the impact of sensing area and position of sensors on the accuracy of current measurement. Several error models are built up to support computer-aided design of magnetic sensor arrays.

  19. Current status and Future Works in Dynamic Control Rod Worth Measurement Method in KOREA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-ki; Shin, Ho-chul [Korea Hydro Nuclear Power Co. Central Research Inst, Daejeon (Korea, Republic of)

    2015-10-15

    Actually all ex-core detector signal data processing and extracting the final conclusion about the single control bank was performed by the 3rd generation of Digital Reactivity Computer System (DRCS). From 2006 to 2016, about 250 control bank worths were measured and the difference between measured and calculated worth of individual bank were several % and total rod worth differences of each cycle were less than 3%. However there were a few odd cases showing the individual difference greater than 15% which is the criteria. And some OPR1000 nuclear power plants built recently use fission chambers instead of traditional uncompensated ion chambers. To consider those conditions, any modification of the DCRM method and DRCS were requested. In this paper, short description about DCRM method, current status of DCRM modification and future works are discussed. About 10 cases among about 250 control bank worth measurement with original DCRM method with UIC signals result in very heavy fluctuation on reactivity curve and the difference approaches 15%, the individual limit. The electrometer signals processing method were the main cause. To overcome this problem, a modified reactivity computer system using own current treatment logic was designed. It shows the reactivity fluctuation can be reduced dramatically in case of UIC signal. Recently the modified DRCS coupled INVESE code applied Westinghouse 2 Loop plant and gave very good results except a control bank whose measured rod worth was shown of 18% difference from the estimated value. The results were same for three repeat tests. All possible causes are examined from computer codes to detail data acquisition system.

  20. Low Temperature Emissivity Measurement System

    Directory of Open Access Journals (Sweden)

    Jignesh A. Patel

    2014-05-01

    Full Text Available The emissivity of a material is the relative ability of its surface to emit energy by radiation. It is the ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature. Knowledge about the low temperature emissivity of materials and coatings can be essential to the design of fusion cryoplants and in the thermal modeling for space satellite missions. The emittance of materials at cryogenics temperatures often cannot be predicted from room temperature data, but for computing radiative loads and infrared backgrounds this cryogenic data is often required. Measurement of the cryogenic emissivity of a highly reflective surface is a significant challenge: little thermal power is radiated from the sample, and the background radiation. However some researchers have measured emissivity at various low temperature ranges. Present work reports, the various emissivity measurement setup and their considerations.

  1. Challenges for the Romanian Public Pensions System in the Current Economic and Financial Crisis

    Directory of Open Access Journals (Sweden)

    Anca Sava

    2010-12-01

    Full Text Available This paper aims to address the challenges for the Romanian public pensions system in the current economic and financial crisis. Firstly, are presented the defining indicators of the Romanian public pension system, such as number of pensioners, the number of taxpayers, the dependency ratio pensioners/contributors, public pension expenditure as a percentage of GDP, etc. The article illustrates the challenges regarding the sustainability of the pension system to the aging population and the main predictions of specialized financial institutions on public pension expenditure for the next period. It also presents the current abuses of public pension system and the measures taken by the Romanianauthorities to reform it.

  2. Quality assurance and control issues for HF radar wave and current measurements

    Science.gov (United States)

    Wyatt, Lucy

    2015-04-01

    HF radars are now widely used to provide surface current measurements over wide areas of the coastal ocean for scientific and operational applications. In general data quality is acceptable for these applications but there remain issues that impact on the quantity and quality of the data. These include problems with calibration and interference which impact on both phased array (e.g. WERA, Pisces) and direction-finding (e.g. SeaSonde) radars. These same issues and others (e.g. signal-to-noise, in-cell current variability, antenna sidelobes) also impact on the quality and quantity of wave data that can be obtained. These issues will be discussed in this paper, illustrated with examples from deployments of WERA, Pisces and SeaSonde radars in the UK, Europe, USA and Australia. These issues involve both quality assurance (making sure the radars perform to spec and the software is fully operational) and in quality control (identifying problems with the data due to radar hardware or software performance issues and flagging these in the provided data streams). Recommendations for the former, and current practice (of the author and within the Australian Coastal Ocean Radar Network, ACORN*) for the latter, will be discussed. The quality control processes for wave measurement are not yet as well developed as those for currents and data from some deployments can be rather noisy. Some new methods, currently under development by SeaView Sensing Ltd and being tested with ACORN data, will be described and results presented. *ACORN is a facility of the Australian Integrated Marine Observing System, IMOS. IMOS is a national collaborative research infrastructure, supported by Australian Government. It is led by University of Tasmania in partnership with the Australian marine and climate science community.

  3. Visual Peoplemeter: A Vision-based Television Audience Measurement System

    Directory of Open Access Journals (Sweden)

    SKELIN, A. K.

    2014-11-01

    Full Text Available Visual peoplemeter is a vision-based measurement system that objectively evaluates the attentive behavior for TV audience rating, thus offering solution to some of drawbacks of current manual logging peoplemeters. In this paper, some limitations of current audience measurement system are reviewed and a novel vision-based system aiming at passive metering of viewers is prototyped. The system uses camera mounted on a television as a sensing modality and applies advanced computer vision algorithms to detect and track a person, and to recognize attentional states. Feasibility of the system is evaluated on a secondary dataset. The results show that the proposed system can analyze viewer's attentive behavior, therefore enabling passive estimates of relevant audience measurement categories.

  4. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    Science.gov (United States)

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  5. Breathing detection with a portable impedance measurement system: first measurements.

    Science.gov (United States)

    Cordes, Axel; Foussier, Jerome; Leonhardt, Steffen

    2009-01-01

    For monitoring the health status of individuals, detection of breathing and heart activity is important. From an electrical point of view, it is known that breathing and heart activity change the electrical impedance distribution in the human body over the time due to ventilation (high impedance) and blood shifts (low impedance). Thus, it is possible to detect both important vital parameters by measuring the impedance of the thorax or the region around lung and heart. For some measurement scenarios it is also essential to detect these parameters contactless. For instance, monitoring bus drivers health could help to limit accidents, but directly connected systems limit the drivers free moving space. One measurement technology for measuring the impedance changes in the chest without cables is the magnetic impedance tomography (MIT). This article describes a portable measurement system we developed for this scenario that allows to measure breathing contactless. Furthermore, first measurements with five volunteers were performed and analyzed.

  6. Remote forcing of subsurface currents and temperatures near the northern limit of the California Current System

    Science.gov (United States)

    Engida, Zelalem; Monahan, Adam; Ianson, Debby; Thomson, Richard E.

    2016-10-01

    Local and remote wind forcing of upwelling along continental shelves of coastal upwelling regions play key roles in driving biogeochemical fluxes, including vertical net fluxes of carbon and nutrients. These fluxes are responsible for high primary productivity, which in turn supports a lucrative fishery in these regions. However, the relative contributions of local versus remote wind forcing are not well quantified or understood. We present results of coherence analyses between currents at a single mooring site (48.5°N, 126°W) in the northern portion of the California Current System (CalCS) from 1989 to 2008 and coincident time series of North America Regional Reanalysis (NARR) 10 m wind stress within the CalCS (36-54°N, 120-132°W). The two-decade-long current records from the three shallowest depths (35, 100, and 175 m) show a remote response to winds from south as far as 36°N. In contrast, only temperatures at the deepest depth (400 m) show strong coherences with remote winds. Weaker local wind influence is observed in both the currents and 400 m temperatures but is mostly due to the large spatial coherence within the wind field itself. Lack of coherence between distal winds and the 400 m currents suggests that the temperature variations at that depth are driven by vertical motion resulting from poleward travelling coastal trapped waves (CTWs). Understanding the effects of remote forcing in coastal upwelling regions is necessary for determining the occurrence and timing of extreme conditions in coastal oceans, and their subsequent impact on marine ecosystems.

  7. Accounting System and Financial Performance Measurements

    OpenAIRE

    Halíř, Zbyněk

    2011-01-01

    The paper concerns measuring and reporting of financial performance of an enterprise. Currently increasing emphasis is placed on performance measurement and management. Within performance measurement and management in general the role of financial performance is becoming increasingly important. The paper is concerned with measuring and reporting of financial performance of an enterprise primarily from manager’s point of view. In its first part it deals primarily with the connection between th...

  8. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance of th...

  9. Field measurement on longshore current variation between Ratnagiri and Mangalore, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Anand, N.M.; SanilKumar, V.

    The daily measurements on longshore current velocity and direction were carried out at selected 12 stations along the coast between Ratnagiri and Mangalore, India. The directional wave data measured at Karwar were used to theoretically estimate...

  10. A microbeam slit system for high beam currents

    Science.gov (United States)

    Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.

    2015-04-01

    A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.

  11. MSE measurements for sawtooth and non-inductive current drive studies in KSTAR

    Science.gov (United States)

    Ko, J.; Park, H.; Bea, Y. S.; Chung, J.; Jeon, Y. M.

    2016-10-01

    Two major topics where the measurement of the magnetic-field-line rotational transform profiles in toroidal plasma systems include the long-standing issue of complete versus incomplete reconnection model of the sawtooth instability and the issue with future reactor-relevant tokamak devices in which non-inductive steady state current sustainment is essential. The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach is one of the most reliable means to measure the internal magnetic pitch, and thus the rotational transform, or its reciprocal (q), profiles. The MSE system has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR) along with the development of various techniques to minimize systematic offset errors such as Faraday rotation and mis-alignment of the bandpass filters. The diagnostic has revealed the central q is well correlated with the sawtooth oscillation, maintaining its value above unity during the MHD quiescent period and that the response of the q profile to external current drive such as electron cyclotron wave injection not only involves the local change of the pitch angle gradient but also a significant shift of the magnetic topology due to the wave energy transport. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  12. Analysis of errors induced by λ/4 wave plate in fiber-optic current sensor system

    Institute of Scientific and Technical Information of China (English)

    杨瑞峰

    2008-01-01

    1/4λ wave plate is a key element in the fiber-optic current sensor system. When a retardation error or an orientation error of birefringence axes of 1/4λ wave plate with respect to the hi-bi fiber axes occurs in the 1/4λ wave plate, the sensor system will output a wrong result of the measured current. The contributions of these two errors to the final result of the whole system were studied and the errors functions were deduced by establishing the measurement function of the current sensor system with Jones matrixes of the optical elements. The results show that that the greater the orientation error or the retardation error, the larger the final error, and that these two errors cannot be compensated each other.

  13. Asymmetry-induced electric current rectification in permselective systems.

    Science.gov (United States)

    Green, Yoav; Edri, Yaron; Yossifon, Gilad

    2015-09-01

    For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.

  14. Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-08-15

    The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic ep scattering using an integrated luminosity of 45 pb{sup -1} taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data. (Orig.)

  15. Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA

    CERN Document Server

    Chekanov, S; Magill, S; Miglioranzi, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Pavel, N; Yagues-Molina, A G; Antonelli, S; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Bindi, M; Boscherini, D; Bruni, A; Bruni, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Rinaldi, L; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Kind, O M; Paul, E; Rautenberg, J; Renner, R; Samson, U; Schonberg, V; Wang, M; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Namsoo, T; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ma, K J; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zaw, I; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycien, M B; Suszycki, L; Kotanski, A; Slominski, W; Adler, V; Behrens, U; Bloch, I; Bonato, A; Borras, K; Coppola, N; Fourletova, J; Geiser, A; Gladkov, D; Göttlicher, P; Gregor, I; Gutsche, O; Haas, T; Hain, W; Horn, C; Kahle, B; Kötz, U; Kowalski, H; Lim, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer--, I A; Pellmann; Montanari, A; Nguyen, C N; Notz, D; Nuncio-Quiroz, A E; Santamarta, R; Schneekloth, U; Spiridonov, A A; Stadie, H; Stösslein, U; Szuba, D; Szuba, J; Theedt, T; Watt, G; Wolf, G; Wrona, K; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Ferrando, J; Saxon, D H; Skillicorn, I O; Gialas, I; Gosau, T; Holm, U; Klanner, Robert; Lohrmann, E; Salehi, H; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Wichmann, K; Wick, K; Foudas, C; Fry, C; Long, K R; Tapper, A D; Kataoka, M; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Dossanov, A; Pokrovskiy, N S; Zhautykov, B O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Terron, J; Zambrana, M; Corriveau, F; Liu, C; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Rubinsky, I; Sosnovtsev, V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Katkov, I I; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Zotkin, S A; Abt, I; Büttner, C; Caldwell, A; Kollar, D; Schmidke, W B; Sutiak, J; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H G; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Foster, B; Gwenlan, C; Korcsak-Gorzo, K; Patel, S; Roberfroid, V; Robertson, A; Straub, P B; Uribe-Estrada, C; Walczak, R; Bellan, P M; Bertolin, A; Brugnera, R; Carlin, R; Ciesielski, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Stanco, L; Turcato, M; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Cole, J E; Hart, J C; Abramowicz, H; Gabareen, A; Ingbir, R; Kananov, S; Levy, A; Kuze, M; Hori, R; Kagawa, S; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Ri, Y D; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Boutle, S K; Butterworth, J M; Hall-Wilton, R; Jones, T W; Loizides, J H; Sutton, M R; Targett-Adams, C; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luzniak, P; Malka, J; Nowak, R J; Pawlak, J M; Tymieniecka, T; Ukleja, A; Adamus, M; Plucinsky, P P; Eisenberg, Y; Giller, I; Hochman, D; Karshon, U; Rosin, M; Brownson, E; Danielson, T; Everett, A; Kcira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Soares, M; Standage, J; Whyte, J

    2006-01-01

    The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic $ep$ scattering using an integrated luminosity of 45 pb-1 taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data.

  16. IMF Bx effects on the ionospheric current system

    Science.gov (United States)

    Laundal, K.; Reistad, J.; Ostgaard, N.; Tenfjord, P.; Snekvik, K.; Finlay, C. C.

    2016-12-01

    A statistical analysis of UV images have shown a weak but significant difference in auroral intensity at the dusk side for different signs of the IMF Bx component (Reistad et al., 2014). This difference was interpreted as an effect of stronger upward Region 1 currents in the north (south) when Bx is negative (positive). The different Region 1 currents are due to the different field line curvature on newly opened field lines, which leads to more efficient conversion of solar wind kinetic energy to electromagnetic energy. However, the aurora is only an indirect measurement of the Region 1 current, and the relationship between the two quantities is not one-to-one. To our knowledge, the Bx effect has never been reported in direct studies of currents. In this study we use the high precision magnetic field instruments on the CHAMP and Swarm satellites to model global field-aligned and ionospheric currents. By binning the data with respect to sunlight conditions and IMF orientation, we test the explanation of the results by Reistad et al.

  17. Comparison between morphometric measurements os current herd Mangalarga Marchador males and breed champions

    Directory of Open Access Journals (Sweden)

    Juliano Martins Santiago

    2013-01-01

    Full Text Available Equines morphometric analysis is an important method of selection related to functionality of the species. Mangalarga Marchador is the most important horse Brazilian breed and its evolution can be observed in specialized exhibition where owners expase their herd with the breed exponents, adopting them as selection parameters. In this context the study aimed to compare the morphometric measures of Mangalarga Marchador males herd with the champions of breed, using as parameters breed standards and Eclectic System of Proportions for saddle horse. Experimental design was completely randomized and treatments were the Mangalarga Marchador male herd, represented by all horses registered from 2000 to 2012, wich had measurements stored in Associação Brasileira de Criadores do Cavalo Mangalarga Marchador (ABCCMM service studbook database, totaling 15,482 animals, and the champions of breed, represented by 222 horses champions who participated of the 29th, 30th or 31th Exposição Nacional do Cavalo Mangalarga Marchador. Variables evaluated were height at withers and at rump, length of the head, neck, dorse, rump, shoulder and body, width of head and of rump, thoracic perimeter and cannon perimeter. Average linear measurements were related to length of head, according to Eclectic System of Proportions for saddle horse. Results were submitted to variance analysis and averages were compared by Fisher test (p<0.05. Regarding the current herd of males Mangalarga Marchador, the champions of the race showed greater length of neck, dorse, rump and body, height at withers and at rump, width of rump, cannon perimeter and shorter length of the shoulder. It was concluded that although larger, the champions horses Mangalarga Marchador are proportionally similar to current herd. Mangalarga Marchador horses have not yet reached the height considered ideal by breed standard and their proportions are different from those recommended by Eclectic System of Proportions for

  18. Measurements of current speed using an Aanderaa RCM4 current meter in the presence of surface waves

    Science.gov (United States)

    Sherwin, T. J.

    1988-02-01

    It is shown that the Aanderaa RCM4 with Savonius rotor integrates motions that have a period significantly smaller than the recording interval, thus causing a quantifiable amplification of the observed mean speed. The minimum speed that can be recorded is 2ν/;π, where ν is the amplitude of the speed of the oscillating motion. In general, the amplification factor decreases as the ratio of mean speed over ν increases. The theory appears to explain the difference in observations made by an Aanderaa RCM4 and a neighbouring EG&G VMCM when particle velocities due to swell are included. It is recommended that vector averaging current meters should be used for current measurement in the upper 50-100 m of shelf sea regions that experience small tidal currents and a large oceanic swell.

  19. Current Practice in Measuring the Quality of Conceptual Models:Challenges and Research%Current Practice in Measuring the Quality of Conceptual Models:Challenges and Research

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; WU Yu-feng; LI Xiao-jun

    2012-01-01

    How to measure the quality of conceptual models is an important issue in the IS field and related research. This paper conducts a review of research in measuring conceptual model quality and identifies the major theoretical and practical issues that need to be addressed in future studies. We review current classification frameworks for conceptual model quality and practice of measuring conceptual model quality. Based on the review, challenges for studies of measuring the quality of conceptual models are proposed and these challenges are also research points which should be strengthened in future studies.

  20. Proposed hybrid superconducting fault current limiter for distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)

    2009-11-15

    In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)

  1. Symmetry and the thermodynamics of currents in open quantum systems

    Science.gov (United States)

    Manzano, Daniel; Hurtado, Pablo I.

    2014-09-01

    Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.

  2. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  3. The Optimal Taxation and the Current Tax System

    OpenAIRE

    Ioannis N. Kallianiotis

    2015-01-01

    Purpose:The paper discusses the current U.S. tax system, which reduces the disposable income and makes savings negative (dissaving or borrowing). This has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. Methodology:People are borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit...

  4. Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle

    Science.gov (United States)

    Bodineau, T.; Derrida, B.

    2004-05-01

    We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.

  5. 75 FR 9232 - Measuring Progress on Food Safety: Current Status and Future Directions; Public Workshop

    Science.gov (United States)

    2010-03-01

    ... HUMAN SERVICES Food and Drug Administration Measuring Progress on Food Safety: Current Status and Future... about current and potential measurements for assessing progress in food safety and associated... workshop, contact Juanita Yates, Center for Food Safety and Applied Nutrition (HFS-009), Food and...

  6. Partial discharge measurements on 110kV current transformers. Setting the control value. Case study

    Science.gov (United States)

    Dan, C.; Morar, R.

    2017-05-01

    The case study presents a series of partial discharge measurements, reflecting the state of insulation of 110kV CURRENT TRANSFORMERS located in Sibiu county substations. Measurements were performed based on electrical method, using MPD600: an acquisition and analysis toolkit for detecting, recording, and analyzing partial discharges. MPD600 consists of one acquisition unit, an optical interface and a computer with dedicated software. The system allows measurements of partial discharge on site, even in presence of strong electromagnetic interferences because it provides synchronous acquisition from all measurement points. Therefore, measurements, with the ability to be calibrated, do render: - a value subject to interpretation according to IEC 61869-1:2007 + IEC 61869-2:2012 + IEC 61869-3:2011 + IEC 61869-5:2011 and IEC 60270: 2000; - the possibility to determine the quantitative limit of PD (a certain control value) to which the equipment can be operated safely and repaired with minimal costs (relative to the high costs implied by eliminating the consequences of a failure) identified empirically (process in which the instrument transformer subjected to the tests was completely destroyed).

  7. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  8. Current status and challenges in PEMFC stacks, systems and commercialization

    Institute of Scientific and Technical Information of China (English)

    任远; 曹广益; 朱新坚

    2006-01-01

    The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ~ 100 000h, basic research in PEMFC was indispensable.

  9. Fast isolation of faults in transmission systems using current transients

    Energy Technology Data Exchange (ETDEWEB)

    Perera, N.; Rajapakse, A.D. [University of Manitoba, Department of Electrical and Computer Engineering, Engineering Building, 15 Gillson Street, Winnipeg, Manitoba (Canada)

    2008-09-15

    This paper presents a protection scheme that is capable of very fast isolation of faults in high voltage transmission systems. Proposed scheme comprises set of relays connected through a telecommunication network, located at different nodes of the system. Relays use wavelet coefficients of current signals to identify the fault directions relative to their location. Fault directions identified at different locations in the system can be combined to determine the faulted line (or busbar) and isolate it. A robust single ended traveling wave based fault distance estimation approach is proposed as a backup in case of communication failure. Investigations were carried out using time domain simulations in PSCAD/EMTDC for a high voltage transmission system. (author)

  10. 600-GHz Electronically Tunable Vector Measurement System

    Science.gov (United States)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  11. A System for Measurement of Convection Aboard Space Station

    Science.gov (United States)

    Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.

    1996-01-01

    A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.

  12. Methodology for simulation of geomagnetically induced currents in power systems

    Directory of Open Access Journals (Sweden)

    Boteler David

    2014-07-01

    Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.

  13. Measurement and interpretation of current transmission in a crossed-field diode below cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vanderberg, B.H.; Eninger, J.E. [Department of Industrial Electrotechnology, Royal Institute of Technology, S-100 44 Stockholm (Sweden)

    1997-02-01

    Measurements on the current-voltage-magnetic field characteristics of a space-charge-limited cylindrical cross-field diode below cutoff are presented. The measured current is found to be lower than predicted by simple cold-fluid theory. This reduction combined with observed oscillations in the current can be explained by secondary electron emission from the anode, leading to an increase of space charge in the diode. {copyright} {ital 1997 American Institute of Physics.}

  14. Measurement of Neutrino-Nucleon Neutral Current Elastic Scattering in MiniBooNE

    CERN Document Server

    Perevalov, Denis

    2009-01-01

    Using a high-statistics sample of neutral current elastic neutrino interactions, MiniBooNE measured the flux-averaged neutral current elastic differential cross-section on mineral oil ($CH_2$). Using the latter, a $\\chi^2$ test of MC with different values of the axial vector mass has been performed. Also, a possibility of using a sample of neutral current elastic proton-enriched events above Cherenkov threshold to measure the ratio $\

  15. Measuring the corrosion rate of steel in concrete – effect of measurement technique, polarisation time and current

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica

    2012-01-01

    Both on-site investigations and laboratory studies have shown that different corrosion rates are obtained when different commercially available corrosion rate instruments are used. The different electrochemical techniques and the measurement parameters used, i.e. polarisation current and time......, are in some studies considered the main reasons for the variations. This paper presents an experimental study on the quantitative effect of polarisation time and current on the measured polarisation resistance – and thus the corrosion current density – of passively and actively corroding steel. Two...... electrochemical techniques often used in instruments for on-site corrosion rate measurements are investigated. On passively corroding reinforcement the measured polarisation resistance was for both techniques found to be highly affected by the polarisation time and current and no plateaus at either short or long...

  16. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    Science.gov (United States)

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  17. A regional climatology of the Humboldt Current System

    Science.gov (United States)

    Grados Quispe, M.; Chaigneau, A.; Blanco, J.; Vasquez, L.; Dominguez, N.

    2009-12-01

    A 3-dimensional, high-resolution, regional climatology of the Humboldt Current System (HCS) north of 25°S is presented. The methodology is based on a four-dimensional ocean interpolation scheme using locally weighted least square fitting, as developed by Dunn and Ridgway [2001] and Ridgway et al. [2002] in the Australian Seas. The method is applied to all the available historical profiles from the National Oceanographic Data Center [WOD05, Boyer et al., 2006], ARGO buoy profiles [http://www.argo.ucsd.edu] for 2000-2007 and historical in situ long-term information from the Peruvian Marine Research Institute (IMARPE) and Fisheries Development Institute (IFOP) for the period 1960-2008. The regional climatology, which extends from the equator to 25°S and from the coast to 8° offshore with a resolution of 0.1°x0.1°, is thus constructed from more than 70 000 temperature profiles, 38 000 salinity profiles and 43 000 oxygen profiles to form a seasonal climatology of temperature and salinity along Peru and northern Chile. The resulting maps depict interesting small-scales coastal properties such as clear distinct upwelling centers and frontal zones. Geostrophic currents relative to 500 m depth are also computed from the density field, highlighting new circulation features. This study provides a contemporaneous view of the circulation and the water masses characteristics in the Humboldt Current System at seasonal scales. This regional climatology represents coastal boundary features (upwelling cells, frontal regions) better than other climatologies. In view of on-going international research efforts to understand the coastal upwelling and coastal currents in the southern ocean off Peru, the main characteristics of the upwelling cell, currents and coastal winds variability of the Pisco (13°S)-San Juan (15°S) region are presented. This improved gridded product is expected to be used for initializing and validating high resolution regional numerical models.

  18. CRISPR system in filamentous fungi: Current achievements and future directions.

    Science.gov (United States)

    Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie

    2017-09-05

    As eukaryotes, filamentous fungi share many features with humans, and they produce numerous active metabolites, some of which are toxic. Traditional genetic approaches are generally inefficient, but the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system that has been widely used for basic research on bacteria, mammals and plants offers a simple, fast, versatile technology for systemic research on filamentous fungi. In this review, we summarized the current knowledge on Cas9 and its variants, various selective markers used to screen positive clones, different ways used to detect off-target mutations, and different approaches used to express and transform the CRISPR complex. We also highlight several methods that improve the nuclease specificity and efficiency, and discuss current and potential applications of CRISPR/Cas9 system in filamentous fungi for pathogenesis decoding, confirmation of the gene and pathway, bioenergy process, drug discovery, and chromatin dynamics. We also describe how the synthetic gene circuit of CRISPR/Cas9 systems has been used in the response to various complex environmental signals to redirect metabolite flux and ensure continuous metabolite biosynthesis. Copyright © 2017. Published by Elsevier B.V.

  19. The current situation of treatment systems for alcoholism in Korea.

    Science.gov (United States)

    Kim, Jee Wook; Lee, Boung Chul; Kang, Tae-Cheon; Choi, Ihn-Geun

    2013-02-01

    Alcoholism is becoming one of the most serious issues in Korea. The purpose of this review article was to understand the present status of the treatment system for alcoholism in Korea compared to the United States and to suggest its developmental direction in Korea. Current modalities of alcoholism treatment in Korea including withdrawal treatment, pharmacotherapy, and psychosocial treatment are available according to Korean evidence-based treatment guidelines. Benzodiazepines and supportive care including vitamin and nutritional support are mainly used to treat alcohol withdrawal in Korea. Naltrexone and acamprosate are the drugs of first choice to treat chronic alcoholism. Psychosocial treatment methods such as individual psychotherapy, group psychotherapy, family therapy, cognitive behavior therapy, cue exposure therapy, 12-step facilitation therapy, self-help group therapy, and community-based treatment have been carried out to treat chronic alcoholism in Korea. However, current alcohol treatment system in Korea is not integrative compared to that in the United States. To establish the treatment system, it is important to set up an independent governmental administration on alcohol abuse, to secure experts on alcoholism, and to conduct outpatient alcoholism treatment programs and facilities in an open system including some form of continuing care.

  20. Mid-latitude solar eclipses and their influence on ionospheric current systems

    Directory of Open Access Journals (Sweden)

    A. T. Tomás

    2009-12-01

    Full Text Available Using CHAMP magnetic field data we study the behaviour of the geomagnetic field during two mid latitude eclipses on 21 June 2001 and 22 September 2006. The possible influence of the eclipses on different ionospheric current systems, as seen in the magnetic field measured by CHAMP, is discussed. It is expected that the blocking of solar radiation during an eclipse causes a reduction of the ionospheric conductivity and therefore has an effect on the different current systems. We address in particular the effects of the eclipses on the inter-hemispheric field-aligned currents and on the Sq current system. The two events studied occur under different seasonal conditions, e.g. June solstice and September equinox, therefore quite different aspects can be investigated. We find that the eclipses might affect the direction and intensity of the inter-hemispheric currents and possibly influence the direction of zonal winds, therefore changing the direction of the prevailing F-region dynamo currents. The eclipse in the Southern Hemisphere during September equinox caused inter-hemispheric currents similar to those observed in northern summer. Reverse inter-hemispheric currents were recorded after the end of the eclipse. A large variety of atypical currents was observed during the June event. Most of them might be related to a reversed F-region dynamo in the morning sector and an enhanced conductivity difference between the hemispheres. The eclipse in the south seems to enhance the June solstice conditions considerably.

  1. Current measurement in high-performance frequency converters; Strommessung in Hochleistungsumrichtern

    Energy Technology Data Exchange (ETDEWEB)

    Marien, Jan; Hetzler, Ullrich [Isabellenhuette Heusler GmbH und Co. KG, Dillenburg (Germany); Hornung, Hans-Georg; Zwinger, Stefan [Sensor-Technik Wiedemann GmbH, Kaufbeuren (Germany)

    2011-04-15

    The load cycles (raising, lowering, accelerating, braking) of cranes, lift trucks and other off-road vehicles are ideally suited for the efficient deployment of hybrid or full electrical drive technology. Current measurement is a key technology for advancing electrification. Sensor Technik Wiedemann places by her frequency converters on a shunt-based current measurement module from Isabellenhuette Heusler which permits highly accurate measurements. (orig.)

  2. Patterns and processes in the California Current System

    Science.gov (United States)

    Checkley, David M., Jr.; Barth, John A.

    2009-12-01

    The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.

  3. Measurement of SIFT operating system overhead

    Science.gov (United States)

    Palumbo, D. L.; Butler, R. W.

    1985-01-01

    The overhead of the software implemented fault tolerance (SIFT) operating system was measured. Several versions of the operating system evolved. Each version represents different strategies employed to improve the measured performance. Three of these versions are analyzed. The internal data structures of the operating systems are discussed. The overhead of the SIFT operating system was found to be of two types: vote overhead and executive task overhead. Both types of overhead were found to be significant in all versions of the system. Improvements substantially reduced this overhead; even with these improvements, the operating system consumed well over 50% of the available processing time.

  4. The Current State and Perspectives of Systems Biology

    Institute of Scientific and Technical Information of China (English)

    Tielui Shi; Yixue Li

    2006-01-01

    Emerging as a new field in biology recently, Systems Biology provides a branch new way to study the biological activities in organisms. In order to decode the complexity of life systematically,systems biology integrates the "-omics" and uses the high throughput methods from transcriptomics,protomics and metabonomics to detect the dynamic activities in cell; and then, it incorporates bioinformatics methods to integrate and analyze those data, and simulate the biological processes based on the model built from those integrated data. In this paper, the current state, the research field and the methods for the Systems Biology are introduced briefly, and then, several ideas about future development in this field are also proposed.

  5. Reconstruction of conductivity and current density images using only one component of magnetic field measurements.

    Science.gov (United States)

    Seo, Jin Keun; Yoon, Jeong-Rock; Woo, Eung Je; Kwon, Ohin

    2003-09-01

    Magnetic resonance current density imaging (MRCDI) is to provide current density images of a subject using a magnetic resonance imaging (MRI) scanner with a current injection apparatus. The injection current generates a magnetic field that we can measure from MR phase images. We obtain internal current density images from the measured magnetic flux densities via Ampere's law. However, we must rotate the subject to acquire all of the three components of the induced magnetic flux density. This subject rotation is impractical in clinical MRI scanners when the subject is a human body. In this paper, we propose a way to eliminate the requirement of subject rotation by careful mathematical analysis of the MRCDI problem. In our new MRCDI technique, we need to measure only one component of the induced magnetic flux density and reconstruct both cross-sectional conductivity and current density images without any subject rotation.

  6. Extending the GMR Current Measurement Range with a Counteracting Magnetic Field

    Directory of Open Access Journals (Sweden)

    Tin Yan Poon

    2013-06-01

    Full Text Available Traditionally, current transformers are often used for current measurement in low voltage (LV electrical networks. They have a large physical size and are not designed for use with power electronic circuits. Semiconductor-based current sensing devices such as the Hall sensor and Giant Magnetoresistive (GMR sensor are advantageous in terms of small size, high sensitivity, wide frequency range, low power consumption, and relatively low cost. Nevertheless, the operational characteristics of these devices limit their current measurement range. In this paper, a design based on using counteracting magnetic field is introduced for extending the GMR current measurement range from 9 A (unipolar to ±45 A. A prototype has been implemented to verify the design and the linear operation of the circuit is demonstrated by experimental results. A microcontroller unit (MCU is used to provide an automatic scaling function to optimize the performance of the proposed current sensor.

  7. Correcting acoustic Doppler current profiler discharge measurements biased by sediment transport

    Science.gov (United States)

    Mueller, D.S.; Wagner, C.R.

    2007-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) is attributed to the movement of sediment on or near the streambed, and is an issue widely acknowledged by the scientific community. The integration of a differentially corrected global positioning system (DGPS) to track the movement of the ADCP can be used to avoid the systematic bias associated with a moving bed. DGPS, however, cannot provide consistently accurate positions because of multipath errors and satellite signal reception problems on waterways with dense tree canopy along the banks, in deep valleys or canyons, and near bridges. An alternative method of correcting for the moving-bed bias, based on the closure error resulting from a two-way crossing of the river, is presented. The uncertainty in the mean moving-bed velocity measured by the loop method is shown to be approximately 0.6cm/s. For the 13 field measurements presented, the loop method resulted in corrected discharges that were within 5% of discharges measured utilizing DGPS to compensate for moving-bed conditions. ?? 2007 ASCE.

  8. Electro-optical imaging system performance measurement

    NARCIS (Netherlands)

    Bijl, P.; Toet, A.; Valeton, J.M.

    2003-01-01

    The minimum resolvable temperature difference (MRTD), the minimum resolvable contrast (MRC), and the triangle orientation discrimination (TOD) are end-to-end EO system performance measures; that is, laboratory measures that characterize EO system performance with a human observer in the loop. Such s

  9. Simple Augmented Current Controller with OHC Technique for grid current compensation in the Distribution System

    Directory of Open Access Journals (Sweden)

    S. Rajalingam

    2014-05-01

    Full Text Available This paper presents a novel control technique on four leg inverter with which the distribution grid is interconnected with the domestic houses. Most of the houses in the distribution side possess inverter for the usage of Electricity. With the advancement in Solar & wind, it will become easy to see houses, often with solar & a small Wind power system. The excess power generated can be exchanged with the Electricity Board for providing uninterruptible power supply. During this exchange there may be a deterioration in the quality of power, most often the grid current gets affected with a large harmonic distortion, and also there exists unbalanced grid currents. Thus, it is necessary to provide uninterruptible power supply with good quality of power. In spite of several controllers, the proposed augmented controller has its own reliability & quick response with Overall Harmonic Compensation (OHC technique which relies on DSP based filter. This Augmented based control technique with OHC is demonstrated extensively with MATLAB/Simulink simulation.

  10. [Wireless ECG measurement system with capacitive coupling].

    Science.gov (United States)

    Aleksandrowicz, Adrian; Walter, Marian; Leonhardt, Steffen

    2007-04-01

    This paper describes a measurement system that captures an electrocardiogram (ECG) using capacitively coupled electrodes. The measurement system was integrated into an off-the-shelf office chair (so-called "Aachen SmartChair"). Whereas for classical ECG measurement adhesive is used to attach conductively coupled electrodes to bare skin, the system presented allows ECG measurement through clothing without direct skin contact. Furthermore, a ZigBee communication module was integrated to allow wireless transmission of ECG data to a PC or an ICU patient monitor. For system validation, classical ECG using conductive electrodes was obtained simultaneously. First measurement results, including variations of cloth thickness and material, are presented and some of the system-specific problems of this approach are discussed.

  11. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads

    Science.gov (United States)

    Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  12. Radio frequency current-voltage probe for impedance and power measurements in multi-frequency unmatched loads.

    Science.gov (United States)

    Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S

    2013-01-01

    A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.

  13. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2017-02-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  14. Quantum Q systems: from cluster algebras to quantum current algebras

    Science.gov (United States)

    Di Francesco, Philippe; Kedem, Rinat

    2016-11-01

    This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.

  15. Fuzzy Controller based Neutral Current Harmonic Suppression in Distribution System

    Directory of Open Access Journals (Sweden)

    T.Guna Sekar

    2013-10-01

    Full Text Available Recent surveys of three-phase four-wire electric systems, buildings and industrial plants with computers and non-linear loads shows the excessive currents in the neutral conductor. This is mainly due to unbalancing system and non-linear loads. Third order harmonics are much dominant in the neutral conductor due to the presence of zero sequence components. In response to this concern, this paper presents a concept of series active filter scheme to suppress the neutral current harmonics to reduce the burden of the secondary of the distribution transformer. In this scheme, the series active filteris connected in series with the neutral conductor to eliminate the zero sequence components in the neutral conductor. In this paper, Fuzzy based controller is used to extract the harmonic component in the neutral conductor. The proposed method improves the overall performance of the system and eliminates the burden of the neutral conductor. To validate the proposed simulation results, a scale-down prototype experimental model is developed.

  16. New turbidity current model based on high-resolution monitoring of the longest flow ever measured

    Science.gov (United States)

    Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed

    2016-04-01

    Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting

  17. Measurement of weak magnetic field of corrosion current of isolated corrosion center

    Directory of Open Access Journals (Sweden)

    I. V. Bardin

    2015-01-01

    Full Text Available A very small magnetic field of corrosion current, of the order of 10−4 Oe, generated by isolated zinc inclusion in a copper platelet placed in electrolyte has been measured for the first time with a highly sensitive giant magneto-impedance magnetometer. The total corrosion current of the inclusion is estimated comparing the measured magnetic field distribution with corresponding theoretical calculation. The estimated value of the total corrosion current turns out to be in reasonable agreement with that one obtained in the standard gravimetric measurement.

  18. Current approach for urinary system stone disease in pregnant women

    Directory of Open Access Journals (Sweden)

    Orcun Celik

    2016-01-01

    Full Text Available Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  19. Eddy current system for inspection of train hollow axles

    Energy Technology Data Exchange (ETDEWEB)

    Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)

    2014-02-18

    The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.

  20. Current approach for urinary system stone disease in pregnant women.

    Science.gov (United States)

    Celik, Orcun; Türk, Hakan; Cakmak, Ozgur; Budak, Salih; Ekin, Rahmi Gokhan; Keskin, Mehmet Zeynel; Yildiz, Guner; Ilbey, Yusuf Ozlem

    2016-01-14

    Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.

  1. Ocular microtremor measurement system: design and performance.

    Science.gov (United States)

    Sheahan, N F; Coakley, D; Hegarty, F; Bolger, C; Malone, J

    1993-05-01

    The frequency of ocular microtremor (OMT) is related to the functional status of the brain stem, and thus OMT may be useful in the diagnosis and management of brain stem disorders. The paper discusses the design of an OMT measurement system and reports quantitative specifications for three portable systems. All systems use a piezo-electric element as the transducer, which measures the displacement of the sclera during eye rotations. The systems differ in the manner in which the signal is recorded. All systems can detect eye movements corresponding to displacements of the sclera ranging from 12 to over 3000 nm. The frequency responses of all systems are flat (< 2 dB deviation from peak response) between 20 and 150 Hz. The phase response shows deviations (< pi) at the extremes of this range, but qualitative comparison of input and measured signals demonstrates that phase distortion is not excessive. Thus all systems are acceptable for clinical studies involving OMT.

  2. LOCAL ANAESTHETIC SYSTEMIC TOXICITY: CURRENT CONCEPTS AND MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Lakshmi

    2014-03-01

    Full Text Available Local anesthetics are one of the most commonly used drugs in the field of medicine. Local anesthetics are widely used to induce anesthesia and analgesia for surgical procedures and pain management. Local an aesthetic systemic toxicity (LAST is a rare but potentially fatal complication of regional anesthesia and has been recognized and reported since the late1800s. This narrative review summarizes the pharmacology of local anesthetics, clinical manifestations of systemic toxicity associated with these agents, necessary preventive measures and recent treatment strategies

  3. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  4. Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts

    Directory of Open Access Journals (Sweden)

    Raphael Hernando Parrado

    2015-01-01

    Full Text Available Introduction. Gastric antral vascular ectasia (GAVE is a rare entity with unique endoscopic appearance described as “watermelon stomach.” It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were “Gastric antral vascular ectasia,” “Watermelon Stomach,” “GAVE,” “Scleroderma,” and “Systemic Sclerosis.” Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.

  5. Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts.

    Science.gov (United States)

    Parrado, Raphael Hernando; Lemus, Hernan Nicolas; Coral-Alvarado, Paola Ximena; Quintana López, Gerardo

    2015-01-01

    Introduction. Gastric antral vascular ectasia (GAVE) is a rare entity with unique endoscopic appearance described as "watermelon stomach." It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were "Gastric antral vascular ectasia," "Watermelon Stomach," "GAVE," "Scleroderma," and "Systemic Sclerosis." Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.

  6. Multiple planetary systems: Properties of the current sample

    Science.gov (United States)

    Hobson, Melissa J.; Gomez, Mercedes

    2017-08-01

    We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.

  7. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  8. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  9. A new on-line leakage current monitoring system of ZnO surge arresters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bok-Hee [Research Center for Next-Generation High Voltage and Power Technology, Inha University, 253 Yonghyun-dong, Nam-ku, Incheon 402-751 (Korea, Republic of)]. E-mail: bhlee@inha.ac.kr; Kang, Sung-Man [Research Center for Next-Generation High Voltage and Power Technology, Inha University, 253 Yonghyun-dong, Nam-ku, Incheon 402-751 (Korea, Republic of)

    2005-05-15

    This paper presents a new on-line leakage current monitoring system of zinc oxide (ZnO) surge arresters. To effectively diagnose the deterioration of ZnO surge arresters, a new algorithm and on-line leakage current detection device, which uses the time-delay addition method, for discriminating the resistive and capacitive currents was developed to use in the aging test and durability evaluation for ZnO arrester blocks. A computer-based measurement system of the resistive leakage current, the on-line monitoring device can detect accurately the leakage currents flowing through ZnO surge arresters for power frequency ac applied voltages. The proposed on-line leakage current monitoring device of ZnO surge arresters is more highly sensitive and gives more linear response than the existing devices using the detection method of the third harmonic leakage currents. Therefore, the proposed leakage current monitoring device can be useful for predicting the defects and performance deterioration of ZnO surge arresters in power system applications.

  10. Measuring Fiscal Capacity of School Systems.

    Science.gov (United States)

    Green, Harry A.

    Ways of measuring the fiscal capacity of school systems are examined in this paper, which presents a representative tax system model. Fiscal capacity is influenced by factors other than tax base size; the "ideal" model should address adjustments for variations in cost across communities and school systems. The first section examines the…

  11. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.

    Science.gov (United States)

    Shao, Chenren; Devoe, Don L

    2013-01-01

    Electroosmotic flow (EOF) is an electrokinetic flow control technique widely used in microfluidic systems for applications including direct electrokinetic pumping, hydrodynamic pressure generation, and counterflow for microfluidic separations. During EOF, an electric field is applied along the length of a microchannel containing an electrolyte, with mobile ions near the charged microchannel walls experiencing a Coulomb force due to electrostatic interactions with the applied electric field that leads to bulk solution movement. The goal of this laboratory is to experimentally determine the fixed channel surface charge (zeta potential) and electroosmotic mobility associated with a given microchannel substrate material and buffer solution, using a simple current monitoring method to measure the average flow velocity within the microchannel. It is a straightforward experiment designed to help students understand EOF physics while gaining hands-on experience with basic world-to-chip interfacing. It is well suited to a 90-min laboratory session for up to 12 students with minimal infrastructure requirements.

  12. Russian language as a state language: current status and measures for its strengthening and development

    Directory of Open Access Journals (Sweden)

    Verbitskaya L. A.

    2015-01-01

    Full Text Available The focus of the article is the role of the Russian language in the world system of languages, the current status of the Russian language and the language policy measures that should be taken to preserve the Russian language and for the strengthening of its positions. The law “On the state language of the Russian Federation” adopted in 2005 should be supplemented by the list of grammar books and dictionaries of various types as listed in the appendixes to the article. The main actions aimed at ensuring the effective functioning of the law “On the state language of the Russian Federation” are also enlisted in the article.

  13. Non-Axisymmetric Disruption SOL Current Measurement In DIII-D Plasmas

    Science.gov (United States)

    Cabrera, Joshua; Hanson, J.; Navratil, G.; Bialek, J.

    2016-10-01

    J. Cabrera, J. Hanson, G. Navratil, J. Bialek, Columbia U-During tokamak disruptions known as vertical displacement events (VDEs) currents which flow between the plasma core and plasma facing components can reach nearly 20% of the total plasma current. These scrape off layer (SOL) currents are thought to affect the dynamics of plasma disruption. We have made use of an array of tile current monitors installed on the DIII-D tokamak to perform low toroidal mode number (n VDEs. In all cases examined (over 30 shots) currents exhibited toroidal asymmetry with toroidal peaking factor 2. Strong initial peaking in n=1 current measurements are correlated with n=1 magnetic fluctuations during VDEs. Following the peak SOL current and after observation of the final last closed flux surface (LCFS), n=1 mode activity 20% of n=0 peak amplitude persists for 10ms. Predictions from the VALEN-IVB simulation code utilizing current profile reconstructions from magnetic sensor array measurements will be compared with SOL current measurements. Possible effects of these SOL currents on plasma dynamics during disruption are considered. Supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.

  14. The NIST Primary Radon-222 Measurement System

    OpenAIRE

    Collé, R.; Hutchinson, J. M. R.; Unterweger, M. P.

    1990-01-01

    Within the United States, the national standard for radon measurements is embodied in a primary radon measurement system that has been maintained for over 50 years to accurately measure radon (222Rn) against international and national radium (226Ra) standards. In turn, all of the radon measurements made at the National Institute of Standards and Technology (NIST) and the radon transfer calibration standards and calibration services provided by NIST are directly related to this national radon ...

  15. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    Science.gov (United States)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  16. Influence of the optical fiber type on the performances of fiber-optics current sensor dedicated to plasma current measurement in ITER.

    Science.gov (United States)

    Aerssens, Matthieu; Descamps, Frédéric; Gusarov, Andrei; Mégret, Patrice; Moreau, Philippe; Wuilpart, Marc

    2015-07-01

    In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.

  17. Biogeochemical properties of eddies in the California Current System

    Science.gov (United States)

    Chenillat, Fanny; Franks, Peter J. S.; Combes, Vincent

    2016-06-01

    The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1 year (800 km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their ~6 month lifetime as they propagate 400 km offshore. At any given time ~8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain ~50 and 20% of the transport of nitrate and plankton, respectively.

  18. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  19. Spin-current Seebeck effect in quantum dot systems.

    Science.gov (United States)

    Yang, Zhi-Cheng; Sun, Qing-Feng; Xie, X C

    2014-01-29

    We first bring up the concept of the spin-current Seebeck effect based on a recent experiment (Vera-Marun et al 2012 Nature Phys. 8 313), and investigate the spin-current Seebeck effect in quantum dot (QD) systems. Our results show that the spin-current Seebeck coefficient S is sensitive to different polarization states of the QD, and therefore can be used to detect the polarization state of the QD and monitor the transitions between different polarization states of the QD. The intradot Coulomb interaction can greatly enhance S due to the stronger polarization of the QD. By using the parameters for a typical QD whose intradot Coulomb interaction U is one order of magnitude larger than the linewidth Γ, we demonstrate that the maximum value of S can be enhanced by a factor of 80. On the other hand, for a QD whose Coulomb interaction is negligible, we show that one can still obtain a large S by applying an external magnetic field.

  20. Quadrature laser interferometer for in-line thickness measurement of glass panels using a current modulation technique.

    Science.gov (United States)

    Kim, Jong-Ahn; Kang, Chu-Shik; Eom, Tae Bong; Jin, Jonghan; Suh, Ho Suhng; Kim, Jae Wan

    2014-07-10

    A thickness measurement system is proposed for in-line inspection of thickness variation of flat glass panels. Multi-reflection on the surfaces of glass panel generates an interference signal whose phase is proportional to the thickness of the glass panel. For accurate and stable calculation of the phase value, we obtain quadrature interference signals using a current modulation technique. The proposed system can measure a thickness profile with high speed and nanometric resolution, and obtain higher accuracy through real-time nonlinear error compensation. The thickness profile, measured by a transmissive-type experimental setup, coincided with a comparative result obtained using a contact-type thickness measurement system within the range of ±40  nm. The standard deviations of the measured thickness profiles and their waviness components were less than 3 nm with a scanning speed of 300  mm/s.

  1. [Magnetoreception systems in birds: a review of current research].

    Science.gov (United States)

    Kishkinev, D A; Chernetsov, N S

    2014-01-01

    Currently at least two independent systems of magnetoreception are believed to exist in birds, based on different biophysical principles, located in different parts of their bodies, and having different innervation. One magnetoreceptory system is located in the retina and may be based on photo-induced biradical chemical reactions on the basis of cryptochrome. Information from these receptors is processed in a specialized part of visual Wulst, the so-called Cluster N. There are good reasons to believe that this visual magnetoreceptor processes compass magnetic information which is necessary for migratory orientation. The second magnetoreceptory system is probably iron-based (biogenic magnetite), is located somewhere in the upper beak (its exact location and ultrastructure of receptors remain unknown), and is innervated by the ophthalmic branch of trigeminal nerve. It cannot be ruled out that this system participates in spatial representation and helps forming either a kind of map or more primitive signposts, based on regular spatial variation of the geomagnetic field. The magnetic map probably governs navigation of migrating birds across hundreds and thousands of kilometers. Apart from these two systems whose existence may be considered to be convincingly shown (even if their details are not yet fully clear), there are data on the existence of magnetoreceptors based on the vestibular system. It cannot be ruled out that iron-based magnetoreception takes place in lagena (a structure homologous to cochlea of marsupials and eutherians), and the information perceived is processes in vestibular nuclei. The very existence of this magnetoreception system needs verification, and its function remains completely open.

  2. Method and system for a gas tube-based current source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  3. Study of transient zero-module current measurement of single-phase earth fault in neutral non-effective grounding system%中性点非有效接地系统单相接地故障暂态零模电流获取方法研究

    Institute of Scientific and Technical Information of China (English)

    季涛; 孙波; 苑倩倩

    2011-01-01

    提出利用空间磁场感应原理获取中性点非有效接地系统架空线路单相接地故障暂态零模电流分量.详细分析了单相接地故障时架空线路周围故障磁场的特征,分析发现,架空线路下方磁场与零模电流基本成线性关系,通过感应该处的磁场变化就可以获取单相接地故障暂态零模电流分量.提出利用霍尔传感器感应架空线路周围空间磁场,并阐述了实际应用中诸多关键技术问题的解决办法.最后通过仿真及实验验证了上述方法可行有效.%A new method using magnetic field induction to measure transient zero-module current of single phase earth fault in neutral non-effective grounding system overhead lines is proposed. The paper analyses the characteristics of magnetic field around the overhead lines in detail, and the results show that the relationship of magnetic field under overhead lines and the transient zero-module current is linear, so transient zero-module current can be measured by inducting the magnetic field. Using a Hall probe magnetometer to induct magnetic field for fault transient current measurements is proposed, and some key techniques of practical application are expatiated. Simulation and experimental tests verify the correctness and feasibility of the proposed method.

  4. Mediterranea Forecasting System: a focus on wave-current coupling

    Science.gov (United States)

    Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina

    2016-04-01

    The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully

  5. 脉冲涡流测厚技术%Thickness Measurement Technique by Pulsed Eddy Current

    Institute of Scientific and Technical Information of China (English)

    吴鑫; 李方奇; 石坤; 谢基龙; 李浩

    2009-01-01

    脉冲涡流检测技术具有频谱宽、信号穿透能力强以及精确度好等优点.对脉冲涡流测厚技术进行了仿真,即针对脉冲涡流测厚系统,建立了有限元分析模型,仿真分析了检测线圈上的电压的衰减规律,得到了检测线圈上的电压随被测体厚度的变化规律,确定了两者之间的定量关系.分析了提离距离、检测线圈参数和脉冲涡流频率对检测结果的影响.该研究为将来进行脉冲涡流测厚仪的研制提供了理论依据和数学模型.%Pulsed eddy current technique had quite a few advantages such as wide spectrum, strong penetration,high accuracy. The experiment was carried out to study the metal thickness measurement of PEC, and a finite element model for the system of the metal thickness measurement of PEC was established. Based on the finite element model established, this thesis analyzed the attenuation law of the voltage in receiving coil By changing the thickness of tested bodies, the relationship between the voltage of receiving coil and the thickness of the testedbodies was analyzed, and also the factors that affected the measuring results such as lift-off distance, parameters of testing coil and frequency of pulsed eddy current were analyzed in detail It provided a theoretical basis and mathematical models for the future development of the PEC gage.

  6. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A; Anthonis, T; Antunovic, B; Aplin, S; Asmone, A; Astvatsatourov, A; Babaev, A; Backovic, S; Bähr, J; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baudrand, S; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bracinik, J; Brandt, G; Brisson, V; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Contreras, J G; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; De Boer, Y; Delcourt, B; Del Degan, M; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dodonov, V; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Elsen, E; Erdmann, W; Essenov, S; Falkewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Feltesse, J; Ferencei, J; Finke, L; Fleischer, M; Fleischmann, P; Flucke, G; Fomenko, A; Foresti, I; Franke, G; Frisson, T; Gabathuler, E; Garutti, E; Gayler, J; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Glazov, A; Glushkov, I; Görlich, L; Goettlich, M; Gogitidze, N; Gorbounov, S; Goyon, C; Grab, C; Greenshaw, T; Gregori, M; Grell, B R; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Herrera-Corral, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Hreus, T; Hussain, S; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Korbel, V; Kostka, P; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Lastoviicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; Liptaj, A; List, B; List, J; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mladenov, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nankov, K; Naroska, Beate; Naumann, T; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Papadopoulou, T D; Pascaud, C; Patel, G D; Peng, H; Pérez, E; Perez-Astudillo, D; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Portheault, B; Povh, B; Prideaux, P; Rahmat, A J; Raicevic, N; Reisert, B; Reimer, P; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S; Salvaire, F; Sankey, D P C; Sauvan, E; Schatzel, S; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schultz-Coulon, H C; Sedlak, K; Sefkow, F; Shaw-West, R N; Shevyakov, I; Shtarkov, L N; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Steder, M; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Sunar, D; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsakov, I; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, K; Urban, M; Usik, A; Utkin, D; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Wessels, M; Wessling, B; Wigmore, C; Wissing, C; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zhu, Y C; Zimmermann, J; Zimmermann, T; Zohrabyan, H; Zomer, F

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  7. EAST equilibrium current profile reconstruction using polarimeter-interferometer internal measurement constraints

    Science.gov (United States)

    Qian, J. P.; Lao, L. L.; Liu, H. Q.; Ding, W. X.; Zeng, L.; Luo, Z. P.; Ren, Q. L.; Huang, Y.; Huang, J.; Brower, D. L.; Hanada, K.; Chen, D. L.; Sun, Y. W.; Shen, B.; Gong, X. Z.; Xiao, B. J.; Wan, B. N.

    2017-03-01

    The first equilibrium reconstruction of EAST current-density profile based on internal Faraday rotation measurements provided by the POlarimeter-INTerferometer (POINT) diagnostic is demonstrated using the EFIT equilibrium reconstruction code. EFIT incorporates 11 simultaneous line-integrated density and Faraday effect measurements from POINT to self-consistently reconstruct the equilibrium toroidal current density profile using a Faraday rotation reconstruction algorithm. It is shown that the POINT measurements can be applied to improve the accuracy of core plasma current density and q profile on EAST. Comparisons of magnetic surfaces and the q profile reconstructed using external magnetic data against those using magnetic and POINT data are presented. Equilibrium reconstructions using POINT data are found to be consistent with sawtooth phenomena. The sensitivity of equilibrium reconstruction to POINT measurements indicates Faraday rotation provides important constraints for determining the current profile.

  8. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    Science.gov (United States)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  9. Upgrade of PV Lab and Implementation of Automatic Measurement System : Photovoltaic Monitoring System

    OpenAIRE

    Qureshi, Yasir Karim

    2012-01-01

    The report is focused on the implementation of a data acquisition system that will be used for measuring different parameters which are needed in solar panel behavior analysis. To accomplish the DAQ system a DAQ board has been designed and implemented. This DAQ board acquires measured climatic parameters that affect the PV module behavior and voltage and current of a PV module. The DAQ board may take measurements of multiple analog and digital signals that come from various sensors including ...

  10. Development of wide range current signal data acquisition system for reactivity meter using Keithley electrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. H.; Kim, H. K.; Chio, Y. S.; Kim, M. J.; Woo, J. S. [KAERI, Taejon (Korea, Republic of)

    2001-05-01

    The reactivity worth of control rods is measured to ensure safety every refueling phase in HANARO, the research reactor in KAERI. Two compensated ion chambers are installed around the outer core to measure the reactor power. The signals from CICs enter the reactivity computer system. The reactivity computer system operated on MS-DOS was developed during the commissioning phase. But it is not so user-friendly, is so outdated and difficult to aquire spare parts. Hence we decided to upgrade the system to utilize MS-Windows {sup TM} operating system and object oriented visual program language. This paper describes the data acquisition system developed for the new reactivity computer system operated on MS-Windows{sup TM} operating system. This data acquisition system uses electrometers for converting low current signal to voltage and measures the current signal accurately even though the electrometer change the range of the output automatically. We verified that the system was stable and acquired the input signals accurately.

  11. Extending the GMR Current Measurement Range with a Counteracting Magnetic Field

    OpenAIRE

    Tin Yan Poon; Ricky Wing Hong Lau; Norman Chung Fai Tse

    2013-01-01

    Traditionally, current transformers are often used for current measurement in low voltage (LV) electrical networks. They have a large physical size and are not designed for use with power electronic circuits. Semiconductor-based current sensing devices such as the Hall sensor and Giant Magnetoresistive (GMR) sensor are advantageous in terms of small size, high sensitivity, wide frequency range, low power consumption, and relatively low cost. Nevertheless, the operational characteristics of th...

  12. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current

    DEFF Research Database (Denmark)

    Baker, Nick; Dupont, Laurent; Munk-Nielsen, Stig

    2017-01-01

    Infra-red measurements are used to assess the measurement accuracy of the Peak Gate Current (IGPeak) method for IGBT junction temperature measurement. Single IGBT chips with the gate pad in both the centre and the edge are investigated, along with paralleled chips, as well as chips suffering part...... between chips, the IGPeak method delivers a measurement based on the average temperature of the gate pads....

  13. MEASURING RESULTS NUMERAL TREATMENT OF IMPULSIVE CURRENTS BY MEANS OF ROGOVSKY BELT APPLICATION

    Directory of Open Access Journals (Sweden)

    U. Batygin

    2009-01-01

    Full Text Available The technique of numerical processing of measurement results of pulse currents by means of Rogovsky belt application is offered in the given work. It is shown that at measurement of signals by digital oscillographs and further numerical transformation of target signals, the possibilities of Rogovsky belt without the application of additional devices that in turn allows to define parameters of pulse currents with any peak-time characteristics essentially expand.

  14. Protons as the prime contributors to the storm time ring current. [measured from Explorer 45

    Science.gov (United States)

    Berko, F. W.; Cahill, L. J., Jr.; Fritz, T. A.

    1974-01-01

    Following a large magnetic storm (17 June 1972), Explorer 45 measured the equatorial particle populations and magnetic field. Using data obtained during the symmetic recovery phase, it is shown that through a series of self-consistent calculations, the measured protons with energies from 1 to 872 keV, can account for the observed ring current magnetic effects within experimental uncertainities. This enables an upper limit to be set for the heavy ion contribution to the storm time ring current.

  15. Current Status and Control Measures of Ecological Restoration in Karst Rocky Desertification Area of Guizhou

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to analyze the current status and control measures of ecological restoration in Karst rocky desertification area of Guizhou.[Method] The current status and existing problems of ecological restoration in Karst rocky desertification area of Guizhou were studied firstly,and main control measures were put forward according to existing problems.[Result] At present,Karst rocky desertification area in Guizhou has suitable ecological environment,obvious control results and rich control exper...

  16. Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode

    OpenAIRE

    Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.

    2010-01-01

    Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...

  17. Patient reported outcomes measures in neurogenic bladder and bowel: A systematic review of the current literature.

    Science.gov (United States)

    Patel, Darshan P; Elliott, Sean P; Stoffel, John T; Brant, William O; Hotaling, James M; Myers, Jeremy B

    2016-01-01

    To describe existing bladder and bowel specific quality of life (QoL) measurement tools, QoL in patients with multiple sclerosis (MS), spinal cord injury (SCI), Parkinson's Disease (PD), stroke, or spina bifida (SB) affected by bladder or bowel dysfunction, and the impact of specific bladder and bowel management on QoL. We performed a systematic review in PubMed/Medline databases in accordance with the PRISMA statement for English publications between January 1, 2000 and January 1, 2014. Articles were first screened based on their abstract and select full-text articles were then reviewed for eligibility. Articles with no QoL or PROM assessing urinary or bowel dysfunction were excluded. Risk of bias assessment included randomization, incomplete outcomes data, selective outcomes reporting, and other biases. All articles were graded using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system as per the Cochrane Handbook for Systematic Reviews of Interventions. The most common QoL measurement tool for urinary and bowel dysfunction was the Medical Outcomes Study SF-36. Twelve (24%) studies used only non-validated QoL questionnaires. Only three urinary or bowel specific QoL measures were found: the Qualiveen questionnaire, the FICQoL, and the QoL-BM. Several studies identified instances were clinical and patient-reported outcomes were inconsistent particularly with indwelling urinary catheter usage and reconstructive surgery. Additionally, certain clinical outcomes surrogates commonly used as primary outcomes measures may not correlate with the patient reported outcomes (PRO). Current PRO measures (PROM) and QoL assessments are heterogeneous and several inconsistencies in clinical and PRO for various management options exist. Standardized PROM will help identify optimal bladder and bowel management for patients with neurologic conditions. © 2014 Wiley Periodicals, Inc.

  18. Pico amp measurement circuit with high system isolation

    Energy Technology Data Exchange (ETDEWEB)

    Akins, J.H.

    1980-06-01

    An increase in sensitivity of 2000 can be achieved by modifying a Tektronics P6042 Hall Effect probe to accept 2000 turns as opposed to the standard single turn current input line. This increase in sensitivity coupled with a special self-zeroing amplifier allows the measurement of Pico-amps while maintaining high system isolation.

  19. AVNG SYSTEM SOFTWARE - ATTRIBUTE VERIFICATION SYSTEM WITH INFORMATION BARRIERS FOR MASS AND ISOTOPICS MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Modenov, A; Bulatov, M; Livke, A; Morkin, A; Razinkov, S; Safronov, S; Elmont, T; Langner, D; MacArthur, D; Mayo, D; Smith, M; Luke, S J

    2005-06-10

    This report describes the software development for the plutonium attribute verification system--AVNG. A brief synopsis of the technical solution for the measurement system is presented. The main tasks for the software development that is underway are formulated. The development tasks are shown in software structural flowcharts, measurement system state diagram and a description of the software. The current status of the AVNG software development is elucidated.

  20. An Improved Ocean Observing System for Coastal Louisiana: WAVCIS (WAVE-CURRENT-SURGE Information System )

    Science.gov (United States)

    Zhang, X.; Stone, G. W.; Gibson, W. J.; Braud, D.

    2005-05-01

    WAVCIS is a regional ocean observing and forecasting system. It was designed to measure, process, forecast, and distribute oceanographic and meteorological information. WAVCIS was developed and is maintained by the Coastal Studies Institute at Louisiana State University. The in-situ observing stations are distributed along the central Louisiana and Mississippi coast. The forecast region covers the entire Gulf of Mexico with emphasis on offshore Louisiana. By using state-of-the-art instrumentation, WAVCIS measures directional waves, currents, temperature, water level, conductivity, turbidity, salinity, dissolved oxygen, chlorophyll, Meteorological parameters include wind speed and direction, air pressure and temperature visibility and humidity. Through satellite communication links, the measured data are transmitted to the WAVCIS laboratory. After processing, they are available to the public via the internet on a near real-time basis. WAVCIS also includes a forecasting capability. Waves, tides, currents, and winds are forecast daily for up to 80 hours in advance. There are a number of numerical wave and surge models that can be used for forecasts. WAM and SWAN are used for operational purposes to forecast sea state. Tides at each station are predicted based on the harmonic constants calculated from past in-situ observations at respective sites. Interpolated winds from the ETA model are used as input forcing for waves. Both in-situ and forecast information are available online to the users through WWW. Interactive GIS web mapping is implemented on the WAVCIS webpage to visualize the model output and in-situ observational data. WAVCIS data can be queried, retrieved, downloaded, and analyzed through the web page. Near real-time numerical model skill assessment can also be performed by using the data from in-situ observing stations.

  1. Measures of Autonomic Nervous System Regulation

    Science.gov (United States)

    2011-04-01

    Tension-Release Practices Trauma Resiliency Model (TRM)* X* X* Trauma and Tension Releasing Exercises (TRE) Yoga (Asana...Mindfulness Based Stress Reduction (MBSR) Yoga Nidra (iRest) X X *Study currently in progress utilizing these measures 7...pulse oximeter have the benefit of being more portable; they do not require a trained technician and are more durable than the traditional EKG. The

  2. Analysis of measurement system as the mechatronics system

    Science.gov (United States)

    Giniotis, V.; Grattan, K. T. V.; Rybokas, M.; Bručas, D.

    2010-07-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  3. Analysis of measurement system as the mechatronics system

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V [Institute of Geodesy, Vilnius Gediminas Technical University, Vilnius, Lithuania, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Grattan, K T V [School of Engineering and Mathematical Sciences Electrical, Electronic and Information Eng, City University, Northampton Square, London EC1V 0HB (United Kingdom); Rybokas, M [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Brucas, D, E-mail: gi@ap.vtu.l, E-mail: k.t.v.grattan@city.ac.u, E-mail: MRybokas@gama.l, E-mail: domka@ktv.l, E-mail: vg@ai.vgtu.l [Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Vilnius, Lithuania Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania)

    2010-07-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  4. Dynamic Properties of Impulse Measuring Systems

    DEFF Research Database (Denmark)

    Pedersen, A.; Lausen, P.

    1971-01-01

    After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason the intera......After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...

  5. Preparation Measurements and Assessment of Roof Systems

    Directory of Open Access Journals (Sweden)

    Baláž Richard

    2014-11-01

    Full Text Available The Institute of Architectural Engineering at the Civil Engineering Faculty TU of Kosice, in its ongoing research, aims to monitor the physical properties of building envelope structures with emphasis placed on hydrothermal problems, at present. The research focuses on the assembly of equipment in climate chambers with their respective sample envelopes and fenestration systems, which are involved in a measuring experiment. The prime aim is to design a logical and transparent system for gathering, evaluating and storing hydrothermal related data. This contribution further illustrates the embedding system of measurement points in installed samples and the system of monitoring their physical properties over an annual period.

  6. Preparation Measurements and Assessment of Roof Systems

    Science.gov (United States)

    Baláž, Richard; Bagoňa, Miloslav

    2014-11-01

    The Institute of Architectural Engineering at the Civil Engineering Faculty TU of Kosice, in its ongoing research, aims to monitor the physical properties of building envelope structures with emphasis placed on hydrothermal problems, at present. The research focuses on the assembly of equipment in climate chambers with their respective sample envelopes and fenestration systems, which are involved in a measuring experiment. The prime aim is to design a logical and transparent system for gathering, evaluating and storing hydrothermal related data. This contribution further illustrates the embedding system of measurement points in installed samples and the system of monitoring their physical properties over an annual period.

  7. Three-component laser anemometer measurement systems

    Science.gov (United States)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  8. SIMS: The SLAC Industrial Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Bell, B.; /SLAC

    2005-08-12

    The development of electronic sensors and of small powerful computers, and their integration together have led to the development of what has come to be known as Industrial Measurement Technology (IMT). Industrial Measurement Systems feature one or more electronic sensors and a computer with powerful software. The software has three essential components: data collection, data reduction and data analysis. In the field of industrial surveying, the IMT system is the automated theodolite system, but other systems such as the laser tracker are on the horizon.

  9. Measurement system as a subsystem of the quality management system

    Directory of Open Access Journals (Sweden)

    Ľubica Floreková

    2006-12-01

    Full Text Available Each measurement system and a control principle must be based on certain facts about the system behaviour (what, operation (how and structure (why. Each system is distributed into subsystems that provide an input for the next subsystem. For each system, start is important the begin, that means system characteristics, collecting of data, its hierarchy and the processes distribution.A measurement system (based on the chapter 8 of the standard ISO 9001:2000 Quality management system, requirements defines the measurement, analysis and improvement for each organization in order to present the products conformity, the quality management system conformity guarantee and for the continuously permanent improvement of effectivity, efficiency and economy of quality management system.

  10. RF leakage current in electrosurgical units: Influence of the layout in taking measurements

    Science.gov (United States)

    Gentile, L.; Palacios, P.

    2007-11-01

    The RF leakage current in electrosurgical units is a critical parameter to measure, because it may cause accidental burns in patients. The particular standard for electrosurgical units IEC 60601-2-2 indicates the maximum RF leakage levels and defines the elements and their layout to do these measurements. On this paper we show the RF leakage current values of 6 electrosurgical units. We did these measurements in two different ways: in the first one we measured in normal conditions of use in the operating rooms and in the second we followed the mentioned Standard. The results shows differences between one group and the other, observing higher RF leakage current values in the measurements that we did without following the standard's layout.

  11. RF leakage current in electrosurgical units: Influence of the layout in taking measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, L; Palacios, P [Cardiology and Cardiovascular Surgery Institute, Favaloro Foundation Biomedical Engineering Department, Av. Belgrano 1746. Bs. As. (Argentina)

    2007-11-15

    The RF leakage current in electrosurgical units is a critical parameter to measure, because it may cause accidental burns in patients. The particular standard for electrosurgical units IEC 60601-2-2 indicates the maximum RF leakage levels and defines the elements and their layout to do these measurements. On this paper we show the RF leakage current values of 6 electrosurgical units. We did these measurements in two different ways: in the first one we measured in normal conditions of use in the operating rooms and in the second we followed the mentioned Standard. The results shows differences between one group and the other, observing higher RF leakage current values in the measurements that we did without following the standard's layout.

  12. Coordination of Passive Systems under Quantized Measurements

    NARCIS (Netherlands)

    De Persis, Claudio; Jayawardhana, Bayu

    2012-01-01

    In this paper we investigate a passivity approach to collective coordination and synchronization problems in the presence of quantized measurements and show that coordination tasks can be achieved in a practical sense for a large class of passive systems.

  13. Measurement of photometric characteristics of daylighting systems

    Energy Technology Data Exchange (ETDEWEB)

    Aydinli, S.; Kaase, H. [Technical Univ., Berlin (Germany); Kischkoweit-Lopin, M. [Institut fuer Licht- und Bautechnik an der FH Koln, Cologne (Germany); Scartezzini, J. L.; Michel, L. [Ecole Poytechnuque Federale de Lausanne (Switzerland); Wienold, J.; Apian-Bennewitz, P. [Frauenhofer Institute for Solar Energy Systems, Freiburg (Germany)

    1998-09-01

    The photometric properties of daylighting systems determine the quality of the daylighting in the interior of a building, as well as the possible energy savings by the daylight responsive artificial lighting control systems. Photometric characteristics of daylighting systems and the principles of their measurements in laboratory facilities are described. Characteristics that depend on light incidence and observation of radiation can be measured using integrating sphere photometers or goniophotometers. Luminous transmittance measurements are usually carried out using integrating sphere photometers (cheaper and less time -consuming than measurements with a goniometer). Although the principles involved in the measurement are well understood, results frequently show certain deviations. The various errors that might be responsible for these deviations, whether attributable to the method, or the instrument, or the sample, are also discussed. 10 refs., 8 figs.

  14. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, K J [Materials Performance Technologies, Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Trompetter, W J [Rafter Laboratory, Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hutt (New Zealand)

    2004-02-07

    Nuclear reaction analysis using a {sup 12}C(d, p{sub 0}){sup 13}C reaction and a {sup 16}O(d, p{sub 1}){sup 17}O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  15. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Science.gov (United States)

    Stevens, K. J.; Trompetter, W. J.

    2004-02-01

    Nuclear reaction analysis using a 12C(d, p0)13C reaction and a 16O(d, p1)17O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  16. Navigational and Environmental Measurement System (NEMS)

    Science.gov (United States)

    Clem, T. D.

    1988-01-01

    The NEMS concept and design were initiated from the need to measure and record positional and environmental information during aircraft flights of developmental science research instrumentation. The unit was designed as a stand-alone system which could serve the needs of instruments whose developmental nature did not justify the cost and complexity of including these measurements within the instrument data system. Initially, the system was comprised of a Loran-C receiver and a portable IBM compatible computer recording position and time. Later, the system was interfaced with the Wallops aircraft inertial navigation system (INS), and various other sensors were supplied and shared by the Goddard science users. Real-time position mapping on video monitors was added for investigator's use and information. In 1987, the use of a Global Positioning System (GPS) receiver was included in some missions. A total configuration of the system and the various sensors which can be incorporated are shown.

  17. Ionospheric current system accompanied by auroral vortex streets

    CERN Document Server

    Hiraki, Yasutaka

    2016-01-01

    High resolution optical measurements have revealed that a sudden brightening of aurora and its deformation from an arc-like to a vortex street structure appear just at the onset of substorm. The instability of Alfv$\\acute{\\rm e}$n waves reflected from the ionosphere has been studied by means of magnetohydrodynamic simulations in order to comprehend the formation of auroral vortex streets. Our previous work reported that an initially placed arc intensifies, splits, and deforms into a vortex street during a couple of minutes, and the prime key is an enhancement of the convection electric field. This study elaborated physics of the ionospheric horizontal currents related to the vortex street in the context of so-called Cowling polarization. One component is due to the perturbed electric field by Alfv$\\acute{\\rm e}$n waves, and the other is due to the perturbed electron density (or polarization) in the ionosphere. It was found that, when a vortex street develops, upward/downward pair currents in its leading/trail...

  18. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    -magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  19. Systemic Sclerosis and Malignancy: A Review of Current Data

    Science.gov (United States)

    Zeineddine, Nabil; Khoury, Lara El; Mosak, Joseph

    2016-01-01

    Systemic sclerosis (SSc) is associated with increased risk of malignancy. The organ systems most commonly affected are the lungs, the breasts and the hematological system. Risk factors predisposing a SSc patient for development of malignancy are not well defined, and the pathogenic basis of the association is yet to be explained. The incidence of malignancies in SSc patients is variable from one report to another, but most importantly, questions regarding the role of immunosuppressive therapies and the effect of autoantibodies have weak or sometimes contradictory answers in most of the currently available literature and physicians have no available guidelines to screen their SSc patients for malignancies. The lack of a concretely defined high-risk profile and the absence of malignancy screening guidelines tailored for SSc patients raise the importance of the need for more studies on the association of SSc and cancer and should incite rheumatology colleges to develop specific recommendations for the clinician to follow while approaching patients with SSc. PMID:27540435

  20. Review on the current trends in tongue diagnosis systems

    Directory of Open Access Journals (Sweden)

    Chang Jin Jung

    2012-12-01

    Full Text Available Tongue diagnosis is an essential process to noninvasively assess the condition of a patient's internal organs in traditional medicine. To obtain quantitative and objective diagnostic results, image acquisition and analysis devices called tongue diagnosis systems (TDSs are required. These systems consist of hardware including cameras, light sources, and a ColorChecker, and software for color correction, segmentation of tongue region, and tongue classification. To improve the performance of TDSs, various types TDSs have been developed. Hyperspectral imaging TDSs have been suggested to acquire more information than a two-dimensional (2D image with visible light waves, as it allows collection of data from multiple bands. Three-dimensional (3D imaging TDSs have been suggested to provide 3D geometry. In the near future, mobile devices like the smart phone will offer applications for assessment of health condition using tongue images. Various technologies for the TDS have respective unique advantages and specificities according to the application and diagnostic environment, but this variation may cause inconsistent diagnoses in practical clinical applications. In this manuscript, we reviewed the current trends in TDSs for the standardization of systems. In conclusion, the standardization of TDSs can supply the general public and oriental medical doctors with convenient, prompt, and accurate information with diagnostic results for assessing the health condition.

  1. Distance and Cable Length Measurement System

    Directory of Open Access Journals (Sweden)

    Jonay Toledo

    2009-12-01

    Full Text Available A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement.

  2. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  3. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  4. Measurement of toroidal vessel eddy current during plasma disruption on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. J.; Yu, K. X.; Zhang, M., E-mail: zhangming@hust.edu.cn; Zhuang, G.; Li, X.; Yuan, T.; Rao, B.; Zhao, Q. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-15

    In this paper, we have employed a thin, printed circuit board eddy current array in order to determine the radial distribution of the azimuthal component of the eddy current density at the surface of a steel plate. The eddy current in the steel plate can be calculated by analytical methods under the simplifying assumptions that the steel plate is infinitely large and the exciting current is of uniform distribution. The measurement on the steel plate shows that this method has high spatial resolution. Then, we extended this methodology to a toroidal geometry with the objective of determining the poloidal distribution of the toroidal component of the eddy current density associated with plasma disruption in a fusion reactor called J-TEXT. The preliminary measured result is consistent with the analysis and calculation results on the J-TEXT vacuum vessel.

  5. Current views on etiopathogenesis of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Agnieszka Klonowska-Szymczyk

    2011-11-01

    Full Text Available The article is a review of information concerning etiopathogenesis of systemic lupus erythematosus (SLE. Due to the risk of serious complications, including death, the clarification of etiology could result in substantial improvement or even complete cure of the disease. Progress in scientific research of observed disorder mechanisms together with implementation of appropriate therapies contributed to a higher detection rate, improved course and decreased mortality in SLE. However, there are still many doubts, which legitimate the need of further research. A significant role in development of the disease and further exacerbations is played by environmental factors. Therefore, decreased exposure to UV light, female sex hormone and microbial antigens is associated with improved course and decreased frequency of exacerbations. Less is known about the genetic basis of SLE, which results from a multigene disease background and complex hereditary mechanisms. It is estimated that the disease may be conditioned by around 100 genes, that only in part are functionally determined. Only part of them is already functionally characterized. The role played by most of them is still unknown. Research currently being conducted is aimed at detecting genetic polymorphism in large and genetically diverse populations. It will allow evaluation of the role of a particular gene in protein biosynthesis, which is responsible for development of regulatory process disturbances, commonly observed in the course of SLE. The article presents current directions of research and the latest advances in epidemiology as well as environmental and genetic risk factors of SLE.

  6. Current Source Converter Based Wind Energy Conversion Systems

    Institute of Scientific and Technical Information of China (English)

    Samir Kouro; Jing-ya DAI; Bin WU

    2011-01-01

    The increase in the installed capacity of wind energy conversion systems (WECS) has triggered the development of more demanding grid codes and additional requirements on performance.In order to meet these requirements the industry trend has shifted to full-scale power converter interfaces in modern multi-megawatt WECS.As consequence,a wide variety of new power converter topologies and WECS configurations have been introduced in recent years.Among them,current source converter(CSC) based configurations have attracted attention due to a series of advantages like:simple structure,grid friendly waveforms,controllable power factor,and reliable grid short-circuit protection.This paper presents the latest developments in CSC interfaces for WECS and related technologies such as modulation methods,control schemes and grid code compatibility.

  7. The PPTN-02 new-generation current-voltage transducers for measuring of photosignals

    Directory of Open Access Journals (Sweden)

    Butenko V. K.

    2008-02-01

    Full Text Available The measurement results of technical characteristics of new-generation current-voltage transducers which have low input resistance (<10 Оhm and providing ptotodiodes photocurrent measurement from 1·10-12 to 1·10-3 A are presented.

  8. Design and construction of a Faraday cup for measurement of small electronic currents

    Science.gov (United States)

    Veyssiere, A.

    1985-01-01

    The design of a device to measure and integrate very small currents generated by the impact of a charged particle beam upon a Faraday cut is described. The main component is a graphite block capable of stopping practically all the incident changes. The associated electronic apparatus required to measure better than 10/13 ampere with a precision of 10/0 is described.

  9. Particle image velocimetry measurements and numerical modeling of a saline density current

    CSIR Research Space (South Africa)

    Gerber, G

    2011-03-01

    Full Text Available Particle image velocimetry scalar measurements were carried out on the body of a stably stratified density current with an inlet Reynolds number of 2,300 and bulk Richardson number of 0.1. These measurements allowed the mass and momentum transport...

  10. Measurement of Muon Neutrino Charged Current Single $\\pi^0$ Production on Hydrocarbon using MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Altinok, Ozgur [Tufts Univ., Medford, MA (United States)

    2017-01-01

    A sample of charged-current single pion production events for the semi- exclusive channel νµ + CH → µ-π0 + nucleon(s) has been obtained using neutrino exposures of the MINERvA detector. Differential cross sections for muon momentum, muon production angle, pion momentum, pion production angle, and four-momentum transfer square Q2 are reported and are compared to a GENIE-based simulation. The cross section versus neutrino energy is also re- ported. The effects of pion final-state interactions on these cross sections are investigated. The effect of baryon resonance suppression at low Q2 is examined and an event re-weight used by two previous experiments is shown to improve the data versus simulation agreement. The differential cross sections for Q2 for Eν < 4.0 GeV and Eν ≥ 4.0 GeV are examined and the shapes of these distributions are compared to those from the experiment’s $\\bar{v}$µ-CC (π0) measurement. The polarization of the pπ0 system is measured and compared to the simulation predictions. The hadronic invariant mass W distribution is examined for evidence of resonance content, and a search is reported for evidence of a two-particle two-hole (2p2h) contribution. All of the differential cross-section measurements of this Thesis are compared with published MINERvA measurements for νµ-CC (π+) and \\bar{v}$µ-CC (π0) processes.

  11. The Study of the Geomagnetic Variation for Sq current System

    Science.gov (United States)

    Zhao, X.; Du, A.

    2012-04-01

    The solar quiet variation (Sq) with a period of 24 hrs is a typical one of the quiet variations. Sq is generally caused by atmospheric tide-dynamo in ionosphere and it is controlled by the electric field, electric conductivity in ionosphere and neutral wind in middle-high altitude atmosphere. In our work, the geomagnetic field data observed by 90 ground-based observatories is used to analyze the local time variation of Sq. Sq is derived from five quiet-day geomagnetic data in every month by the FFT method. According to the pattern of geomagnetic X component in Sq, there is a prenoon-postnoon (before noon and after noon) asymmetry. This asymmetry is obvious in spring, summer and winter. The X component at 12:00-13:00 LT is about 5 nT larger than it at 11:00-12:00 LT. The ratio between the X component of daily variable amplitude and Y component of daily variable amplitude in middle and low (high) latitude regions in summer is greater (smaller) than that in winter. Used the sphere harmonic analysis method, the Sq equivalent current system is obtained. From the pattern of Sq current system, the prenoon-postnoon asymmetry may be caused by the electric field in the high latitude region. This electric field has two effects: the one is that the electric field from high latitude maps to the low latitude region; the other is this electric field penetrate to the middle latitude region directly. The combined action of these two effects makes the prenoon-postnoon asymmetry of Sq. The asymmetry also has an obvious seasonal effect. It may relate to the polar Sq and DP2 in the high latitude region.

  12. Development and evaluation of an automated system for testing current meters

    Directory of Open Access Journals (Sweden)

    Ezequiel Saretta

    2016-02-01

    Full Text Available ABSTRACT Current meters are equipment widely used for estimating flow velocity in rivers and streams. Periodic calibrations of current meters are important to ensure the quality of measurements, but the required testing facilities are complex and only available in a few institutions. However, advances in electronics and automation may contribute to developing simple and reliable calibration systems. Thus, this study aimed to develop an automated system for testing current meters, which consisted of a trapezoidal channel, a step motor, a tow car and a management system, composed of a supervisory application and microprocessed modules to control the motor and the data acquisition. Evaluations of the displacement velocity showed that it matched the reference value up to 1.85 m s-1 for a vertical-axis current meter and 2.3 m s-1 for a horizontal-axis one. The developed system showed reliability during tests, for both current meter movement and data acquisition. The management of the system based on the developed modules and the supervisory application improved its user interface, turning all the procedure into a simple task.

  13. The Financial System of the New EU Member States: Experiences and Current Challenges

    Directory of Open Access Journals (Sweden)

    Angela ROMAN

    2011-12-01

    Full Text Available The current financial crisis has had a severe impact on the European financial systems, reinforcing the ongoing discussion about the scale, scope, performance, safety and soundness of the financial system and its institutions. In this context, the purpose of this research is to highlight, using an empirical approach and a quantitative analysis, the vulnerabilities accumulated by the financial systems from the new EU member states (Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania during the period before the current global economic crisis broke out and to emphasize the extremely serious consequences of the current crisis on their financial systems, the interaction between the financial sector and the real economy, the measures taken by the authorities in order to avoid the collapse of financial systems, as well as the new challenges aroused for the authorities in the current context. Finally, we argue then that building a safer financialsystem with better crisis management and a compelling solution forburden‐sharing should be the current priority.

  14. Time measurment system at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yasuo [National Laboratory for High Energy Physics, Ibaraki (Japan)

    1989-04-01

    A proposal of time measurement system at the SSC experiment is described. An example of a possible scheme for central tracking chambers is shown. Designs of a preamp/shaper/discri chip and a time digitizer chip are described. A method to distribute system clock and power/cooling problems are also discussed.

  15. Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents%Design and Performance of a Novel Pancake Rogowski Coil for Measuring Pulse Currents

    Institute of Scientific and Technical Information of China (English)

    王春杰; 汲胜昌; 聂济宇; 欧小波; 韩钟健; 张乔根

    2011-01-01

    A novel pancake Rogowski coil without magnetic core is introduced in this paper. Owing to its special pancake winding structure, the coil is of low self-resistance and high self-inductance, and thus has excellent low frequency characteristic in the self-integral mode. Moreover, because of its unique installation method, the coil has a flexible sensitivity and can be applied under situations where toroidal air-core Rogowski coils or printed aircuit board (PCB) coils are not available. The parameters and performance of the pancake Rogowski coil are presented, and the principle of shielding is given. Measurements of step pulse current and oscillating pulse current by the coil are studied experimentally to illustrate its good linearity, reliable and flexible sensitivity and excellent frequency characteristic, especially its advantage in low frequency characteristic. The pancake Rogowski coil can be designed to assume round, square or rectangle shape, and has thus broad prospects in its application to the current measurement in such areas as plasma physics and pulsed power technology.

  16. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down

    Science.gov (United States)

    Martin, Simon; Baboux, Nicolas; Albertini, David; Gautier, Brice

    2017-02-01

    In this paper, we propose a new procedure which aims at measuring the polarisation switching current at the nanoscale on ferroelectric thin films with the atomic force microscope tip used as a top electrode. Our technique is an adaptation of the so-called positive up negative down method commonly operated on large electrodes. The main obstacle that must be overcome to implement such measurement is the enhancement of the signal to noise ratio, in a context where the stray capacitance of the sample/tip/lever/lever holder system generates a dielectric displacement current several orders of magnitude higher than the current to be measured. This problem is solved by the subtraction of the displacement current through a reference capacitance. For the first time, we show an example of nanoscale positive up negative down measurement of the polarisation charge on a PbZrTiO3 thin film and compare the measured value with paraelectric samples. From the comparison with macroscopic measurement, we deduce the effective area of contact between the tip and the sample.

  17. Research on Measurement of Bed Shear Stress Under WaveCurrent Interaction

    Institute of Scientific and Technical Information of China (English)

    徐华; 夏云峰; 张世钊马炳和; 郝思禹; 杜德军

    2015-01-01

    The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.

  18. Where should Momma go? Current nursing home performance measurement strategies and a less ambitious approach

    OpenAIRE

    Lieberman Trudy; Hawes Catherine; Phillips Charles D; Koren Mary

    2007-01-01

    Abstract Background Nursing home performance measurement systems are practically ubiquitous. The vast majority of these systems aspire to rank order all nursing homes based on quantitative measures of quality. However, the ability of such systems to identify homes differing in quality is hampered by the multidimensional nature of nursing homes and their residents. As a result, the authors doubt the ability of many nursing home performance systems to truly help consumers differentiate among ho...

  19. Internal Performance Measurement Systems: Problems and Solutions

    DEFF Research Database (Denmark)

    Jakobsen, Morten; Mitchell, Falconer; Nørreklit, Hanne

    2010-01-01

    . The analysis uses and extends N rreklit's (2000) critique of the BSC by applying the concepts developed therein to contemporary research on the BSC and to the development of practice in performance measurement. The analysis is of relevance for many companies in the Asia-Pacific area as an increasing numbers......This article pursues two aims: to identify problems and dangers related to the operational use of internal performance measurement systems of the Balanced Scorecard (BSC) type and to provide some guidance on how performance measurement systems may be designed to overcome these problems...

  20. A Leakage Current-based Measurement of the Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Gorelov, Igor; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module measurement of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  1. Fronts and Thermohaline Structure of the Brazil Current Confluence System

    Science.gov (United States)

    Severov, Dimitri

    and Thermohaline Structure of the Brazil Current Confluence System (BCCS) are stud-ied from climatic data, "Marathon Exp. Leg.8, 1984"data, and two Sea surface temperature (SST) data bases: "Meteor satellite"(1989-1994) and "ds277-Reynolds" (1981-2000).The South Atlantic Central Water (SACW) is divided in two main types: tropical (TW) and subtropical water (ST). Water masses, fronts, inter-frontal and frontal zones are analysed and classified: a) the water masses: Tropical Low-Salinity Water, Tropical Surface Water, Tropical Tropospheric Water, Subtropical Low-Salinity Water, Subtropical Surface Water, Subtropical Tropospheric Water. T,S characteristics of intermediate, deep and bottom water defined by different authors are confirmed and completed; b) the Inter-frontal Zones: Tropical/Brazil Current Zone, Sub-tropical Zone and Subantarctic Zone; c) the Frontal Zones: Subtropical, Subantarctic and Polar, and d) the Fronts: Subtropical Front of the Brazil Current, Principal Subtropical Front, North Subtropical Front, Subtropical Surface Front, South Subtropical Front, Subantarctic Surface Front, Subantarctic Front and Polar Front. Several stable T-S relationships are found below the friction layer and at the Fronts. The maximum gradient of the oceanographic characteris-tics occurs at the Brazil Current Front, which can be any of the subtropical fronts, depending on season. Minimum mean depth of the pycnocline coincides with the fronts of the BCCS, indicating the paths of low-salinity shelf waters into the open ocean. D. N. Severov (a) , V. Pshennikov (b) and A.V. Remeslo (c) a -Sección Oceanologé Facultad de Ciencia, Universidad de la Republica, Igué 4225, 11400 ıa, a Montevideo, Uruguay. Tel. (598-2) 525-8618, Fax (598-2) 525-8617, mail: dima@fcien.edu.uy b -Instituto de Física, Facultad de Ciencias, Universidad de la Republica, Igué 4225, 11400 Mon-a tevideo, Uruguay, mail: seva@fisica.edu.uy c -Atlantic Research Inst. For Fisheries Oceanology (Atlant

  2. Measurement of fragmentation properties of charmed particle production in charged-current neutrino interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun,, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events which was based on the data acquired by new automatic scanning systems, 1048 D0 events were selected by a pattern recognition program. They were confirmed as neutral-particle decays through visual inspection. Fragmentation properties of deep-inelastic charm production were measured using these events. Distributions of the D0 momentum, Feynman x(x_F), z and tan thetaôut, the transverse angle out of the leptonic plane defined by the muon and the neutrino, are presented. The mean value of z was measured to be (z) = 0.63 +- 0.03(stat) +- 0.01(syst). From fits to the z distribution, values for the Peterson parameter epsilon_p = 0.108 +- 0.017(stat) +- 0.013(syst) and the Collins-Spiller parameter epsilon_CS = 0.21^+0.05_-0.04(stat) +...

  3. Measuring Vulnerability in the Food System

    OpenAIRE

    Paloviita, Ari; Puupponen, Antti; Kortetmäki, Teea; Silvasti, Tiina

    2015-01-01

    Food system vulnerability is an emerging concept for food security policies and food supply chain management. Hence, measuring food system vulnerability is necessary for developing appropriate food security policies and managing food supply chain vulnerabilities. In this paper, we aim to clarify the development process of food system vulnerability indicators. We conducted an abducted qualitative content analysis based on public documents of various Finnish organizations, including mi...

  4. Volatility Measurements Applied to Information Systems

    Science.gov (United States)

    2013-09-01

    LISI Levels of Information Systems Integration NPV Net Present Value OEP Organizational Execution Plans ROI Return on Investment SIGINT Signals...IT system (Stikeleather, 2013). The interoperability performance can be measured with the Levels of Information Systems Interoperability ( LISI ), which...support (DoD CIO, 2012). There are several IT evaluation methods including net present value (NPV), ROI, information economics, cost benefit analysis, and

  5. Systems and methods for measuring component matching

    Science.gov (United States)

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)

    2006-01-01

    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  6. MeV-SIMS yield measurements using a Si-PIN diode as a primary ion current counter

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, Valentin; Bogdanović Radović, Iva [Ruđer Bošković Institute, Zagreb (Croatia); Demarche, Julien [University of Surrey, Surrey (United Kingdom); Jakšić, Milko [Ruđer Bošković Institute, Zagreb (Croatia); Matjačić, Lidija [University of Surrey, Surrey (United Kingdom); Siketić, Zdravko [Ruđer Bošković Institute, Zagreb (Croatia); Webb, Roger [University of Surrey, Surrey (United Kingdom)

    2016-03-15

    Megaelectronvolt-Secondary Ion Mass Spectrometry (MeV-SIMS) is an emerging Ion Beam Analysis technique for molecular speciation and submicron imaging. Various setups have been constructed in the recent years. Still a systematic investigation on the dependence of MeV-SIMS yields on different ion beam parameters is missing. A reliable measurement method of the beam current down to the attoampere range is needed for this investigation. Therefore, a new detector has been added to the MeV-SIMS setup at the Ruđer Bošković Institute (RBI), which measures the current directly using a Si PIN-diode. In this work, we present the constructed system, its characteristics, and results of the first yield measurements. These measurements have already identified important factors that have to be considered while constructing a MeV SIMS setup.

  7. Measurement of the muon-neutrino charged-current cross section on water with zero pions

    CERN Document Server

    Yuan, Tianlu

    2016-01-01

    The Tokai to Kamioka (T2K) experiment is a 295-km long-baseline neutrino experiment aimed towards the measurement of neutrino oscillation parameters ${\\theta}_{13}$ and ${\\theta}_{23}$. Precise measurement of these parameters requires accurate knowledge of neutrino cross sections. We present a flux-averaged double differential measurement of the charged-current cross section on water with zero pions in the final state using the T2K off-axis near detector, ND280. A selection of $\

  8. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  9. Telerobotic system performance measurement: motivation and methods

    Science.gov (United States)

    Kondraske, George V.; Khoury, George J.

    1992-11-01

    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  10. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  11. Linear systems a measurement based approach

    CERN Document Server

    Bhattacharyya, S P; Mohsenizadeh, D N

    2014-01-01

    This brief presents recent results obtained on the analysis, synthesis and design of systems described by linear equations. It is well known that linear equations arise in most branches of science and engineering as well as social, biological and economic systems. The novelty of this approach is that no models of the system are assumed to be available, nor are they required. Instead, a few measurements made on the system can be processed strategically to directly extract design values that meet specifications without constructing a model of the system, implicitly or explicitly. These new concepts are illustrated by applying them to linear DC and AC circuits, mechanical, civil and hydraulic systems, signal flow block diagrams and control systems. These applications are preliminary and suggest many open problems. The results presented in this brief are the latest effort in this direction and the authors hope these will lead to attractive alternatives to model-based design of engineering and other systems.

  12. Thermoelectric property measurements with computer controlled systems

    Science.gov (United States)

    Chmielewski, A. B.; Wood, C.

    1984-01-01

    A joint JPL-NASA program to develop an automated system to measure the thermoelectric properties of newly developed materials is described. Consideration is given to the difficulties created by signal drift in measurements of Hall voltage and the Large Delta T Seebeck coefficient. The benefits of a computerized system were examined with respect to error reduction and time savings for human operators. It is shown that the time required to measure Hall voltage can be reduced by a factor of 10 when a computer is used to fit a curve to the ratio of the measured signal and its standard deviation. The accuracy of measurements of the Large Delta T Seebeck coefficient and thermal diffusivity was also enhanced by the use of computers.

  13. A Critique of Health System Performance Measurement.

    Science.gov (United States)

    Lynch, Thomas

    2015-01-01

    Health system performance measurement is a ubiquitous phenomenon. Many authors have identified multiple methodological and substantive problems with performance measurement practices. Despite the validity of these criticisms and their cross-national character, the practice of health system performance measurement persists. Theodore Marmor suggests that performance measurement invokes an "incantatory response" wrapped within "linguistic muddle." In this article, I expand upon Marmor's insights using Pierre Bourdieu's theoretical framework to suggest that, far from an aberration, the "linguistic muddle" identified by Marmor is an indicator of a broad struggle about the representation and classification of public health services as a public good. I present a case study of performance measurement from Alberta, Canada, examining how this representational struggle occurs and what the stakes are.

  14. Current systemic treatment of hepatocellular carcinoma: Areview of the literature

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth mostcommon form of human cancer worldwide and the thirdmost common cause of cancer-related deaths. Thestrategies of various treatments for HCC depend onthe stage of tumor, the status of patient's performanceand the reserved hepatic function. The Barcelona ClinicLiver Cancer (BCLC) staging system is currently usedmost for patients with HCC. For example, for patientswith BCLC stage 0 (very early stage) and stage A (earlystage) HCC, the curable treatment modalities, includingresection, transplantation and radiofrequency ablation,are taken into consideration. If the patients are in BCLCstage B (intermediate stage) and stage C (advancedstage) HCC, they may need the palliative transarterialchemoembolization and even the target medicationof sorafenib. In addition, symptomatic treatment isalways recommended for patients with BCLC stage D(end stage) HCC. In this review, we will attempt tosummarize the historical perspective and the currentdevelopments of systemic therapies in BCLC stage Band C in HCC.

  15. Integration of optical measurement methods with flight parameter measurement systems

    Science.gov (United States)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  16. Performance test of current lead cooled by a cryocooler in low temperature superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr; Kim, Myung Su

    2013-11-15

    Highlights: •The current lead with multi-contact connector in the joint was fabricated for performance test. •The electrical contact resistance in the joint was measured during magnet charging. •The resistances of the joint were 0.4–0.9 mΩ for 40–80 K. •The heat generation due to electrical contact resistance was reduced below 1 W by multiple spring louvers. -- Abstract: In a low temperature superconducting magnet system, heat leakage through current leads is one of the major factors in cryogenic load. The semi-retractable current lead is a good option because the conductive heat leakage can be eliminated after the excitation of the magnet. It is composed of a normal metal element, conducting the current from room temperature to intermediate temperature, and an HTS element, conducting the current down to liquid helium temperature. The normal metal element is disengaged from the HTS element through the multi-contact connector without disturbance to the insulating vacuum space and without requiring complete removal of the normal metal element. The intermediate block with a lockable set point is thermally connected to the first stage of cryocooler and carries current through a strip of louvered material. The electrical contact resistance of multi-contact connector in the intermediate block is measured during magnet charging process. The effects of current level as well as operating temperature on the heat generation in the joint block are also discussed.

  17. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents

    Science.gov (United States)

    Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John

    2014-03-01

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  18. Conductive shield for ultra-low-field magnetic resonance imaging: Theory and measurements of eddy currents.

    Science.gov (United States)

    Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John

    2014-03-14

    Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.

  19. High Speed Laser 3D Measurement System

    Institute of Scientific and Technical Information of China (English)

    SONG Yuan-he; FAN Chang-zhou; GUO Ying; LI Hong-wei; ZHAO Hong

    2003-01-01

    Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the improvement of the measurement speed.A double CCD compensation technology is used to improve the measurement precision. An easy and effective calibration method of the least squares to fit the parameter of system structure is used to get the relative coordinate relationship of objects and images of light section in the directions of height and axis. Sensor scanning segment by segment and layer by layer makes the measurement range expand greatly.

  20. Measurement of induced magnetic flux density using injection current nonlinear encoding (ICNE) in MREIT.

    Science.gov (United States)

    Park, Chunjae; Lee, Byung Il; Kwon, Ohin; Woo, Eung Je

    2007-02-01

    Magnetic resonance electrical impedance tomography (MREIT) measures induced magnetic flux densities subject to externally injected currents in order to visualize conductivity distributions inside an electrically conducting object. Injection currents induce magnetic flux densities that appear in phase parts of acquired MR image data. In the conventional current injection method, we inject currents during the time segment between the end of the first RF pulse and the beginning of the reading gradient in order to ensure the gradient linearity. Noting that longer current injections can accumulate more phase changes, we propose a new pulse sequence called injection current nonlinear encoding (ICNE) where the duration of the injection current pulse is extended until the end of the reading gradient. Since the current injection during the reading gradient disturbs the gradient linearity, we first analyze the MR signal produced by the ICNE pulse sequence and suggest a novel algorithm to extract the induced magnetic flux density from the acquired MR signal. Numerical simulations and phantom experiments show that the new method is clearly advantageous in terms of the reduced noise level in measured magnetic flux density data. The amount of noise reduction depends on the choice of the data acquisition time and it was about 24% when we used a prolonged data acquisition time of 10.8 ms. The ICNE method will enhance the clinical applicability of the MREIT technique when it is combined with an appropriate phase artefact minimization method.

  1. Giant streaming currents measured in a gold sputtered glass microchannel array

    Science.gov (United States)

    Mansouri, Abraham; Kostiuk, Larry W.

    2016-02-01

    Pressure-driven-flow of a dilute aqueous solution in a microchannel with charged walls generates streaming currents (ionic current) and streaming potentials across the microchannel. While generation of streaming currents can be performed in network of parallel circular microchannels or unstructured porous media, accurate measurements of such currents remain a challenge. In this study a gigantic amount of streaming current was successfully generated and measured using a glass microchannel array with special gold sputtered coatings on both its ends. Streaming current as high as 0.7 mA was obtained with moderate pressure drop (124 kPa) across the glass microchannel array that consists of approximately 11 250 000 parallel microchannels with radii of 2.5 μm. Higher streaming currents are also possible to generate (scaled to 142 μA/cm2 of frontal area at a flow rate of 12 cm3/s) with potential applications in surface charge characterizations and electrokinetic power generation. In addition, apparent ζ potential of glass microchannel array surface was estimated with the aid of streaming current data and Levine-Olivare theories and an apparent ζ potential of -65 mV (0 M KCl, κa = 8) is reported.

  2. Current density imaging using directly measured harmonic Bz data in MREIT.

    Science.gov (United States)

    Park, Chunjae; Kwon, Oh In

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) measures magnetic flux density signals through the use of a magnetic resonance imaging (MRI) in order to visualize the internal conductivity and/or current density. Understanding the reconstruction procedure for the internal current density, we directly measure the second derivative of Bz data from the measured k-space data, from which we can avoid a tedious phase unwrapping to obtain the phase signal of Bz . We determine optimal weighting factors to combine the derivatives of magnetic flux density data, [Symbol: see text](2) Bz , measured using the multi-echo train. The proposed method reconstructs the internal current density using the relationships between the induced internal current and the measured [Symbol: see text](2) Bz data. Results from a phantom experiment demonstrate that the proposed method reduces the scanning time and provides the internal current density, while suppressing the background field inhomogeneity. To implement the real experiment, we use a phantom with a saline solution including a balloon, which excludes other artifacts by any concentration gradient in the phantom.

  3. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael, E-mail: e.parsai@utoledo.edu [Department of Radiation Oncology, University of Toledo Medical Center, 1325 Conference Drive, Toledo, Ohio 43614 (United States); Holmes, Shannon [Standard Imaging, 3120 Deming Way, Middleton, Wisconsin 53562 (United States)

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  4. SPECTRON, a neutron noise measurement system in frequency domain.

    Science.gov (United States)

    de Izarra, G; Jammes, C; Geslot, B; Di Salvo, J; Destouches, C

    2015-11-01

    This paper is dedicated to the presentation and validation of SPECTRON, a novel neutron noise measurement system developed at CEA Cadarache. The device is designed for the measurement of the β(eff) parameter (effective fraction of delayed neutrons) of experimental nuclear reactors using the Cohn-α method. An integrated electronic system is used to record the current from fission chambers. Spectra computed from measurement data are processed by a dedicated software in order to estimate the reactor transfer function and then the effective fraction of delayed neutrons as well as the prompt neutron generation time. After a review of the pile noise measurement method in current mode, the SPECTRON architecture is presented. Then, the validation procedure is described and experimental results are shown, supporting the proper functioning of this new measurement system. It is shown that every technical requirement needed for correct measurement of neutron noise is fulfilled. Measurements performed at MINERVE and EOLE, two experimental nuclear reactors at CEA Cadarache, in real conditions allowed us to validate SPECTRON.

  5. The Optimal Interest Rates and the Current Interest Rate System

    Directory of Open Access Journals (Sweden)

    Ioannis N. Kallianiotis

    2014-12-01

    Full Text Available The paper discusses the current target interest rate, which is closed to zero with the new experiment of quantitative easing since 2009 and has reduced the rate of return and the income and has made the real savings rate negative. This target rate has not reduced unemployment and has not improved growth (it is not optimal, but has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. People were borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit cards. The current monetary system needs to be changed and an interest rate floor on deposits (savings and an interest rate ceiling on individuals‟ loans (borrowings is necessary to improve social welfare, fairness, and justice in our society and not to support only disintermediation (financial markets. The middle class cannot work only to pay taxes and interest on its debt (redistribution of their wealth to government and banks or worse to be in chronic unemployment. Many home owners defaulted on their loans payments and their homes are foreclosed. They will end up without property (real assets. The unconcern towards the middle class will affect negatively the entire socio-economic structure of the nation and after losing its productive power, it will start declining, as history has shown to us with so many empires that do not exist anymore. We hope the leaders (the democratic governments to improve public policies, to regulate the financial market and institutions, and to satisfy their policy ultimate objective, which is citizens‟ perfection and the nation‟s highest point of prosperity.

  6. Fluid-filled blood pressure measurement systems.

    Science.gov (United States)

    Li, J K; van Brummelen, A G; Noordergraaf, A

    1976-05-01

    The performance of catheter-manometer systems for the measurement of pulsatile pressure has been evaluated by both experimental techniques and theoretical considerations. The former approach has shown, on occasion, multiple maxima in the amplitude response. The latter has been approached in a variety of ways, ranging from extreme lumping to application of transmission line theory while employing different configurations in the system's representation. Multiple maxima have also been seen, The present paper identifies the sources of the differences found and compares the relative merits of various theoretical approaches. It introduces the compliance of the system as a figure of merit and provides a simple first-order approximation formula for evaluation of the quality of a system. Damping and impedance matching to improve the system's frequency response were studied. It was found that they were not needed in a very stiff or a very compliant system, nor should one worry about the representation of such a system.

  7. Coordinate metrology accuracy of systems and measurements

    CERN Document Server

    Sładek, Jerzy A

    2016-01-01

    This book focuses on effective methods for assessing the accuracy of both coordinate measuring systems and coordinate measurements. It mainly reports on original research work conducted by Sladek’s team at Cracow University of Technology’s Laboratory of Coordinate Metrology. The book describes the implementation of different methods, including artificial neural networks, the Matrix Method, the Monte Carlo method and the virtual CMM (Coordinate Measuring Machine), and demonstrates how these methods can be effectively used in practice to gauge the accuracy of coordinate measurements. Moreover, the book includes an introduction to the theory of measurement uncertainty and to key techniques for assessing measurement accuracy. All methods and tools are presented in detail, using suitable mathematical formulations and illustrated with numerous examples. The book fills an important gap in the literature, providing readers with an advanced text on a topic that has been rapidly developing in recent years. The book...

  8. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  9. Nonideal Quantum Measurement Effects on the Switching Currents Distribution of Josephson Junctions

    CERN Document Server

    Pierro, Vincenzo

    2016-01-01

    The quantum character of Josephson junctions is ordinarily revealed through the analysis of the switching currents, i.e. the current at which a finite voltage appears: A sharp rise of the voltage signals the passage (tunnel) from a trapped state (the zero voltage solution) to a running state (the finite voltage solution). In this context, we investigate the probability distribution of the Josephson junctions switching current taking into account the effect of the bias sweeping rate and introducing a simple nonideal quantum measurements scheme. The measurements are modelled as repeated voltage samplings at discrete time intervals, that is with repeated projections of the time dependent quantum solutions on the static or the running states, to retrieve the probability distribution of the switching currents. The distribution appears to be immune of the quantum Zeno effect, and it is close to, but distinguishable from, the Wentzel-Kramers-Brillouin approximation. For energy barriers comparable to the quantum fund...

  10. Drone based measurement system for radiofrequency exposure assessment.

    Science.gov (United States)

    Joseph, Wout; Aerts, Sam; Vandenbossche, Matthias; Thielens, Arno; Martens, Luc

    2016-03-10

    For the first time, a method to assess radiofrequency (RF) electromagnetic field (EMF) exposure of the general public in real environments with a true free-space antenna system is presented. Using lightweight electronics and multiple antennas placed on a drone, it is possible to perform exposure measurements. This technique will enable researchers to measure three-dimensional RF-EMF exposure patterns accurately in the future and at locations currently difficult to access. A measurement procedure and appropriate measurement settings have been developed. As an application, outdoor measurements are performed as a function of height up to 60 m for Global System for Mobile Communications (GSM) 900 MHz base station exposure. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc.

  11. Measuring system of high polymers’ pyromagnetic effect

    Institute of Scientific and Technical Information of China (English)

    张永忠; 罗迎社; 粟建新; 马敏伟; 杨占宇; 张亮

    2008-01-01

    The measurement system is the main equipment of the project.Based on the characteristic of experiment system,a sensor array is designed,and used to continually acquire the global magnetic field.A scientific scheme is developed to get the signal processing and temperature compensation for nondirective weak magnetic field.The software of sampling control system is given,which is complied using C language in Labwindows/CVI.Taking computer as main engine,the system can acquire the nondirective weak magnetic field automatically and continuously use the sensor array,the change of magnetic field can be shown in real-time and intuitively.

  12. Non-invasively measured cardiac magnetic field maps improve the estimation of the current distribution

    OpenAIRE

    Kosch, Olaf; Steinhoff, Uwe; Trahms, Lutz; Trontelj, Zvonko; Jazbinšek, Vojko

    2015-01-01

    Comprehensive body surface potential mapping (BSPM) and magnetic field mapping (MFM) measurements have been carried out in order to improve the estimation of the current distribution generated by the human heart. Electric and magnetic fields and also the planar gradient of the magnetic field during the QRS complex were imaged as a time series of field maps. A model of the current distribution should explain the features of both BSPM and MFM. Simulated maps generated by a single dipole or a st...

  13. Characterization of dielectric barrier discharge in air applying current measurement, numerical simulation and emission spectroscopy

    CERN Document Server

    Rajasekaran, Priyadarshini; Awakowicz, Peter

    2012-01-01

    Dielectric barrier discharge (DBD) in air is characterized applying current measurement, numerical simulation and optical emission spectroscopy (OES). For OES, a non-calibrated spectrometer is used. This diagnostic method is applicable when cross-sectional area of the active plasma volume and current density can be determined. The nitrogen emission in the spectral range of 380 nm- 406 nm is used for OES diagnostics. Electric field in the active plasma volume is determined applying the measured spectrum, well-known Frank-Condon factors for nitrogen transitions and numerically- simulated electron distribution functions. The measured electric current density is used for determination of electron density in plasma. Using the determined plasma parameters, the dissociation rate of nitrogen and oxygen in active plasma volume are calculated, which can be used by simulation of the chemical kinetics.

  14. Surgical site infections in dermatologic surgery: etiology, pathogenesis, and current preventative measures.

    Science.gov (United States)

    Saleh, Karim; Schmidtchen, Artur

    2015-05-01

    Surgical site infections (SSIs) after dermatologic surgery continue to represent undesirable complications that affect patients in several aspects. The etiology and pathogenesis of SSIs are not completely understood, and as a result, current preventative measures are debatable. To review and summarize the current available literature specific to SSIs in dermatologic surgery. The pathogenesis of SSIs, factors contributing to SSIs, current preventative guidelines, and evidence supporting their use are explored. A review of the medical literature. Most measures used to prevent SSIs in dermatologic surgery are based on studies of wounds in general surgery. Evidence specific to dermatologic surgery is scarce. More research related to the pathogenesis of SSIs is needed to establish effective preventative measures that are key to reducing incidences of SSIs.

  15. A compact x-ray beam intensity monitor using gas amplified sample current measurement

    Science.gov (United States)

    Hayakawa, Shinjiro; Kobayashi, Kazuo; Gohshi, Yohichi

    2000-01-01

    Development of a compact beam intensity monitor using gas amplified sample current measurement is described. The monitor can be a powerful tool for x-ray spectroscopy and microscopy when the beam is defined by a small pinhole or slits and when the workspace around the sample is limited. The thickness of the monitor is as small as approximately 3 mm, and the dimension is 10 mm square. The photon flux is monitored by measuring x-ray excited current from an Al foil under atmospheric conditions. Emitted electrons from the Al foil can ionize surrounding air molecules, and the gas amplified current can be measured with the use of a biased grid that prevents created ion pairs from recombination.

  16. Defining pharmaceutical systems strengthening: concepts to enable measurement.

    Science.gov (United States)

    Hafner, Tamara; Walkowiak, Helena; Lee, David; Aboagye-Nyame, Francis

    2017-05-01

    Pharmaceutical products are indispensable for improving health outcomes. An extensive body of work on access to and use of medicines has resulted in an assortment of tools measuring various elements of pharmaceutical systems. Until now however, there has been little attempt to conceptualize a pharmaceutical system as an entity and define its strengthening in a way that allows for measuring systems strengthening. The narrow focus of available tools limits their value in ascertaining which interventions result in stronger, more resilient systems. We sought to address this shortcoming by revisiting the current definitions, frameworks and assessment tools related to pharmaceutical systems. We conducted a comprehensive literature review and consulted with select pharmaceutical experts. On the basis of our review, we propose that a pharmaceutical system consists of all structures, people, resources, processes, and their interactions within the broader health system that aim to ensure equitable and timely access to safe, effective, quality pharmaceutical products and related services that promote their appropriate and cost-effective use to improve health outcomes. We further propose that pharmaceutical systems strengthening is the process of identifying and implementing strategies and actions that achieve coordinated and sustainable improvements in the critical components of a pharmaceutical system to make it more responsive and resilient and to enhance its performance for achieving better health outcomes. Finally, we established that, in addition to system performance and resilience, seven components of the pharmaceutical system are critical for measuring pharmaceutical systems strengthening: pharmaceutical products and related services; policy, laws and governance; regulatory systems; innovation, research and development, manufacturing, and trade; financing; human resources; and information. This work adds clarity to the concept of pharmaceutical systems and their

  17. Video integrated measurement system. [Diagnostic display devices

    Energy Technology Data Exchange (ETDEWEB)

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  18. Development of limb volume measuring system

    Science.gov (United States)

    Bhagat, P. K.; Kadaba, P. K.

    1983-01-01

    The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.

  19. Differential Measurement Periodontal Structures Mapping System

    Science.gov (United States)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  20. Entanglement in continuous variable systems: Recent advances and current perspectives

    CERN Document Server

    Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio

    2007-01-01

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization, and the scaling o...