WorldWideScience

Sample records for current ion differential

  1. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    OpenAIRE

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents....

  2. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  3. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  4. Two outward potassium current types are expressed during the neural differentiation of neural stem cells**

    Institute of Scientific and Technical Information of China (English)

    Ruiying Bai; Guowei Gao; Ying Xing; Hong Xue

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vitro that expressed high levels of nestin. The differentiated neurons were shown to express neuron-specific enolase. Flow cytometric analysis revealed that the neural stem cells were actively dividing and the percentage of cells in the S + G2/M phase was high. However, the ratio of cells in the S + G2/M phase decreased obviously as differentiation proceeded. Whole-cellpatch-clamp re-cordings revealed apparent changes in potassium ion currents as the neurons differentiated. The potassium ion currents consisted of one transient outward potassium ion current and one delayed rectifier potassium ion current, which were blocked by 4-aminopyridine and tetraethylammonium, respectively. The experimental findings indicate that neural stem cells from newborn rat hippo-campus could be cultured and induced to differentiate into functional neurons under defined condi-tions in vitro. The differentiated neurons expressed two types of outward potassium ion currents similar to those of mature neurons in vivo.

  5. Observation of burst frequency in extracted ECR ion current

    NARCIS (Netherlands)

    Taki, G. S.; Sarma, P. R.; Drentje, A. G.; Nakagawa, T.; Ray, P. K.; Bhandari, R. K.

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC, Kolkata. In a recent experiment with neon ions, we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz r

  6. Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors.

    Science.gov (United States)

    Ortuño, J A; Serna, C; Molina, A; Gil, A

    2006-12-01

    The ion transfer across the water-solvent polymeric membrane interface is investigated by using a new device based on a modification of a commercial ion-selective electrode body that permits the accommodation of a platinum counter electrode inside the inner filling solution compartment and, therefore, use of a four-electrode potentiostat with ohmic drop compensation. This device is used here to apply two different double potential pulse techniques--differential pulse voltammetry and additive differential pulse voltammetry--which are more advantageous than other voltammetric techniques, such as normal pulse voltammetry or cyclic voltammetry, for the determination of the characteristic electrochemical parameters of the system. This is due to the concurrence of two factors in these double potential pulse techniques, the peak-shaped response together with a considerable reduction of undesirable current contributions.

  7. Ion Concentration Polarization by Bifurcated Current Path.

    Science.gov (United States)

    Kim, Junsuk; Cho, Inhee; Lee, Hyomin; Kim, Sung Jae

    2017-07-11

    Ion concentration polarization (ICP) is a fundamental electrokinetic process that occurs near a perm-selective membrane under dc bias. Overall process highly depends on the current transportation mechanisms such as electro-convection, surface conduction and diffusioosmosis and the fundamental characteristics can be significantly altered by external parameters, once the permselectivity was fixed. In this work, a new ICP device with a bifurcated current path as for the enhancement of the surface conduction was fabricated using a polymeric nanoporous material. It was protruded to the middle of a microchannel, while the material was exactly aligned at the interface between two microchannels in a conventional ICP device. Rigorous experiments revealed out that the propagation of ICP layer was initiated from the different locations of the protruded membrane according to the dominant current path which was determined by a bulk electrolyte concentration. Since the enhancement of surface conduction maintained the stability of ICP process, a strong electrokinetic flow associated with the amplified electric field inside ICP layer was significantly suppressed over the protruded membrane even at condensed limit. As a practical example of utilizing the protruded device, we successfully demonstrated a non-destructive micro/nanofluidic preconcentrator of fragile cellular species (i.e. red blood cells).

  8. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  9. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  10. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  11. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2016-11-15

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  12. Effect ion ofcurrent transformer’s accuracy error on current differential protection%电流互感器误差对电流差动保护精确性的影响

    Institute of Scientific and Technical Information of China (English)

    华静; 艾莉; 程加堂

    2013-01-01

      为了提高电流差动保护的精确性,从参考量的采集、传送装置电流互感器入手,通过分析电流互感器的等效电路、饱和电流波形、饱和电流的谐波波形以及单相接地故障时电流互感器二次回路分流,提出可能导致误差的影响因素,并根据电流波形及参数的特征提出相应解决方法和措施。%In order to improve the accuracy of the current differential protection ,we can detect from the current transformer which can collect reference amount and transfer current .By analysis of the equivalent circuit of the current transformer ,the saturation current waveform ,the saturation current of harmonic waveform and current transformer secondary circuit shunt of single - phase ground fault . Proposed impact factors ,may lead to errors and corresponding solutions and measures ,based on the characteristics of the current wave-form and parameter has a certain value .

  13. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry.

    Science.gov (United States)

    Yan, Yu; Wang, Lin; Xue, Jianming; Chang, Hsueh-Chia

    2013-01-28

    We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as defined by a normalized density of the surface charge, significantly affects ion current rectification across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves through the tip, respectively), which is responsible for current rectification. For strongly selective negatively charged pores under positive bias, the current can be reduced by external field focusing and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These external phenomena produce a rectification inversion for highly selective pores at high (low) voltage (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we derive simple scaling laws to quantitatively capture empirical and numerical data for ion current rectification and rectification inversion of conic nanopores.

  14. High-current ion beam from a moving plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.; Ponomarenko, A.G.

    1979-05-01

    High-current ion beams in the 10--20-keV range are extracted from a moving plasma. Current densities up to 2.5 A/cm/sup 2/ are obtained at the plasma boundary, which is almost an order of magnitude larger than the Bohm current. Total currents of over 100 A are obtained from the plasma. Simple geometric focusing gives current densities approx.200 A/cm/sup 2/ at the focus.

  15. Ionic currents and ion channels of lobster olfactory receptor neurons

    OpenAIRE

    1989-01-01

    The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at ...

  16. Current differential diagnosis of hypereosinophilic syndrome

    Directory of Open Access Journals (Sweden)

    Dinić-Uzurov Vera

    2007-01-01

    syndrome is a subcategory of idiopathic eosinophilia. If the differential diagnosis of hypereosinophilia fails to resolve the etiology succesfully, the diagnosis of idiopathic HES remains.

  17. Differential Thermostimulated Discharge Current Method for Studying Electrets

    Science.gov (United States)

    Mekishev, G. A.; Yovcheva, T. A.; Viraneva, A. P.; Gencheva, E. A.

    2010-01-01

    The thermostimulated discharge current method (TSDC) is widely used for the study of charge storage mechanisms in electrets. A new discharged technique, called differential, which consists in discharging a charged sample through an otherwise identical but uncharged one, has been proposed by J.-P. Reboul and A. Toureille. In the present paper a new version of the differential thermostimulated discharge current method is advanced. In contrast to the differential technique described earlier, the measuring cell allows to realize typical differential technique. In this case the measuring system records the difference of the thermostimulated currents of two samples which have been preliminary charged (or thermally treated) under the same or different conditions. Samples of 0.85 mm thick polymethylmethacrylate are used to demonstrate an operation of the developed differential TSDC method.

  18. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  19. Current Status of the Daejeon Ion Accelerator Complex at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sung-Ryul; Chang, Dae-Sik; Hwang, Churl-Kew; Lee, Seok-Kwan; Jin, Jeong-Tae; Oh, Byung-Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Daejeon ion accelerator complex (DIAC) is being constructed at Korea atomic energy research institute (KAERI) in order to fulfill an increasing demand for heavy ion beam facilities for various purposes including structural material study, biological research and nanomaterial treatment. The accelerators in the DIAC are designed to produce heavy ion beams with energies up to 1 MeV/u and beam currents up to 300 μA. [1–4] In this article, current status of the DIAC construction is presented and discussed. The DIAC facilities are designed to handle stable non-radioactive beams. According to user demand, the separated two ECR sources (i.e., an 18 GHz KEK – the high energy accelerator research organization ECR ion source with a metal oven and a 14.5 GHz KAERI ECR ion source) together with low energy beam transport line (LEBT) can supply linacs with both metal and non-metal ions. From the successful full-power test results, we confirmed that the IH and RFQ linacs work properly and then they are ready to accelerate heavy ions up to 1.09 MeV/nucleon. Since all tests and reorganization of the integrated control system were successful, it is supposed that the DIAC is now ready for beam tuning. Presently, construction of radiation shielded walls and radiation safety licensing are now in progress.

  20. Gridless, very low energy, high-current, gaseous ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2010-02-15

    We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

  1. Tight junction regulates epidermal calcium ion gradient and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya [Pola Chemical Industries Inc., 560 Kashio-cho, Totsuka-ku, Yokohama 244-0812 (Japan); Sasaki, Hiroyuki, E-mail: sasakih@jikei.ac.jp [Division of Fine Morphology, Core Research Facilities, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461 (Japan); The Center for Advanced Medical Engineering and Infomatics, Osaka University, Osaka 565-0871 (Japan)

    2011-03-25

    Research highlights: {yields} We disrupted epidermal tight junction barrier in reconstructed epidermis. {yields} It altered Ca{sup 2+} distribution and consequentially differentiation state as well. {yields} Tight junction should affect epidermal homeostasis by maintaining Ca{sup 2+} gradient. -- Abstract: It is well known that calcium ions (Ca{sup 2+}) induce keratinocyte differentiation. Ca{sup 2+} distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca{sup 2+} gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca{sup 2+} gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca{sup 2+} flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca{sup 2+} gradient.

  2. Differential Mobility Spectrometer with Spatial Ion Detector and Methods Related Thereto

    Science.gov (United States)

    Duong, Tuan A. (Inventor); Kanik, Isik (Inventor); Duong, Vu A. (Inventor)

    2013-01-01

    Differential mobility spectrometer with spatial ion detector and methods related thereto are disclosed. The use of one or more spatial detector within differential mobility spectrometry can provide for the identification and separation of ions with similar mobility and mass.

  3. Variables Affecting the Internal Energy of Peptide Ions During Separation by Differential Ion Mobility Spectrometry

    Science.gov (United States)

    Santiago, Brandon G.; Campbell, Matthew T.; Glish, Gary L.

    2017-10-01

    Differential ion mobility spectrometry (DIMS) devices separate ions on the basis of differences in ion mobility in low and high electric fields, and can be used as a stand-alone analytical method or as a separation step before further analysis. As with other ion mobility separation techniques, the ability of DIMS separations to retain the structural characteristics of analytes has been of concern. For DIMS separations, this potential loss of ion structure originates from the fact that the separations occur at atmospheric pressure and the ions, during their transit through the device, undergo repeated collisions with the DIMS carrier gas while being accelerated by the electric field. These collisions have the ability to increase the internal energy distribution of the ions, which can cause isomerization or fragmentation. The increase in internal energy of the ions is based on a number of variables, including the dispersion field and characteristics of the carrier gas such as temperature and composition. The effects of these parameters on the intra-DIMS fragmentation of multiply charged ions of the peptides bradykinin (RPPGFSPFR) and GLISH are discussed herein. Furthermore, similarities and differences in the internal energy deposition that occur during collisional activation in tandem mass spectrometry experiments are discussed, as the fragmentation pathways accessed by both are similar. [Figure not available: see fulltext.

  4. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  5. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  6. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Science.gov (United States)

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  7. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuna [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Yeong-Shin [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  8. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  9. Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

    Directory of Open Access Journals (Sweden)

    V.I. Voznyi

    2012-10-01

    Full Text Available A radio-frequency (RF inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calculated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

  10. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  11. Differential Proteomic Analysis of Carbon Ion Radiation in Sheep Sperm

    Institute of Scientific and Technical Information of China (English)

    HE Yu-xuan; LI Hong-yan; ZHANG Yong; HE Jian-hua; ZHANG Hong; ZHAO Xing-xu

    2013-01-01

    This study is first to investigate proteomic changes in sheep sperm induced by carbon ion radiation using two-dimensional electrophoresis (2-DE) analysis in the project of breeding a new variety of sheep. Differential expression proteins were detected using the PDQuest 8.0 software after staining with Coomassie blue. Valid spots were then analyzed through liquid chromatography tandem mass spectrometry (LC-MS/MS). Among the 480 total protein spots displayed in 2-D gels, 6 specific protein spots were observed in sperm gels. A search against protein sequences in the National Center for Biotechnology Information databases (NCBI) indicated that differentially expressed proteins correspond to two proteins, identified to be enolase and transcription factor AP-2-alpha (TFAP-2α). The two proteins were up-regulated in the irradiated sperm. To the best of our knowledge, this study is the first to identify proteomic changes induced by carbon ion radiation in sheep sperm. The analysis of differential expression protein may be useful in identifying new breeding markers in sheep reproduction and in clarifying the mechanisms involved in irradiation or space breeding.

  12. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  13. Ion cyclotron harmonics in the Saturn downward current auroral region

    Science.gov (United States)

    Menietti, J. D.; Schippers, P.; Santolík, O.; Gurnett, D. A.; Crary, F.; Coates, A. J.

    2011-12-01

    Observations of intense upgoing electron beams and diffuse ion beams have been reported during a pass by Cassini in a downward current auroral region, nearby a source region of Saturn kilometric radiation. Using the Cassini Radio and Plasma Wave Science (RPWS) instrument low frequency waveform receiver and the Cassini Plasma Spectrometer Investigation (CAPS) instrument we have been able to identify ion cyclotron harmonic waves associated with the particle beams. These observations indicate similarities with terrestrial auroral emissions, and may be a source of wave-particle interactions. We fit the observed plasma electron distribution with drifting Maxwellians and perform a linear numerical analysis of plasma wave growth. The results are relevant to ion heating and possibly to electron acceleration.

  14. Ion energy spread and current measurements of the rf-driven multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Sun, L.; Vujic, J.; Williams, M.D.; Wutte, D. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm{sup 2} can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges. {copyright} {ital 1997 American Institute of Physics.}

  15. Ion energy spread and current measurements of the rf-driven multicusp ion source

    Science.gov (United States)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  16. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  17. Lithium-ion batteries modeling involving fractional differentiation

    Science.gov (United States)

    Sabatier, Jocelyn; Merveillaut, Mathieu; Francisco, Junior Mbala; Guillemard, Franck; Porcelatto, Denis

    2014-09-01

    With hybrid and electric vehicles development, automobile battery monitoring systems (BMS) have to meet the new requirements. These systems have to give information on state of health, state of charge, available power. To get this information, BMS often implement battery models. Accuracy of the information manipulated by the BMS thus depends on the model accuracy. This paper is within this framework and addresses lithium-ion battery modeling. The proposed fractional model is based on simplifications of an electrochemical model and on resolution of some partial differential equations used in its description. Such an approach permits to get a simple model in which electrochemical variables and parameters still appear.

  18. Lipid bilayer microarray for parallel recording of transmembrane ion currents.

    Science.gov (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji

    2008-01-01

    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  19. Backside calibration chronopotentiometry: using current to perform ion measurements by zeroing the transmembrane ion flux.

    Science.gov (United States)

    Xu, Yida; Ngeontae, Wittaya; Pretsch, Ernö; Bakker, Eric

    2008-10-01

    A recent new direction in ion-selective electrode (ISE) research utilizes a stir effect to indicate the disappearance of an ion concentration gradient across a thin ion-selective membrane. This zeroing experiment allows one to evaluate the equilibrium relationship between front and backside solutions contacting the membrane by varying the backside solution composition. This method is attractive since the absolute potential during the measurement is not required, thus avoiding standard recalibrations from the sample solution and a careful control of the reference electrode potential. We report here on a new concept to alleviate the need to continuously vary the composition of the backside solution. Instead, transmembrane ion fluxes are counterbalanced at an imposed critical current. A theoretical model illustrates the relationship between the magnitude of this critical current and the concentration of analyte and countertransporting ions and is found to correspond well with experimental results. The approach is demonstrated with lead(II)-selective membranes and protons as dominating interference ions, and the concentration of Pb(2+) was successfully measured in tap water samples. The principle was further evaluated with calcium-selective membranes and magnesium as counterdiffusing species, with good results. Advantages and limitations arising from the kinetic nature of the perturbation technique are discussed.

  20. Evaluation of ion current density distribution on an extraction electrode of a radio frequency ion thruster

    Science.gov (United States)

    Masherov, P.; Riaby, V.; Abgaryan, V.

    2017-01-01

    The radial distributions of ion current density on an ion extracting electrode of a radio frequency (RF) ion thruster (RIT) with an inductive plasma source were obtained using probe diagnostics of the RF xenon plasma. Measurements were carried out using a plane wall probe simulator and the VGPS-12 Probe System of Plasma Sensors Co. At xenon flow rate q  =  2 sccm plasma pressure was 2 · 10-3 Torr, incident RF generator power varied in the range P g  =  50-250 W with RF power absorbed by plasma up to P p  =  220 W. Ion current densities were determined using semi- and double-logarithmic probe characteristics by linear extrapolations of their ion branches to probe floating potentials. The same parameters were also measured in undisturbed plasma by a classic cylindrical probe. They exceeded plane probe data by more than two times, showing the effectiveness of plasma sheath reproduction of the RIT ion extracting electrode by the plane wall probe simulator. Slight non-uniformity of the resulting plasma distributions and simplified RIT model design showed that the studied device with flat antenna coil and ferrite core could be considered as a promising prospect for RITs of new generation.

  1. Stormtime transport of ring current and radiation belt ions

    Science.gov (United States)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  2. New progress of high current gasdynamic ion source (invited)

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  3. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  4. The Effects of the Reverse Current Caused by the Series Compensation on the Current Differential Protection

    Directory of Open Access Journals (Sweden)

    Cui Tang

    2014-01-01

    Full Text Available The series capacitor compensation is one of the key technologies in the EHV and UHV long distance power transmission lines. This paper analyzes the operation characteristics of the main protection combined with the engineering practice when the transmission line overcompensation due to the series compensation system is modified and analyzes the influence of the transition resistance and the system operation mode on the current differential protection. According to the simulation results, it presents countermeasure on improving the sensitivity of differential current protection.

  5. Patch electrode glass composition affects ion channel currents.

    OpenAIRE

    Furman, R E; Tanaka, J C

    1988-01-01

    The influence of patch electrode glass composition on macroscopic IV relations in inside-out patches of the cGMP-activated ion channel from rod photoreceptors was examined for a soda lime glass, a Kovar sealing glass, a borosilicate glass, and several soft lead glasses. In several glasses the shape or magnitude of the currents changed as the concentration of EGTA or EDTA was increased from 200 microM to 10 mM. The changes in IV response suggest that, at low concentrations of chelator, divalen...

  6. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    National Research Council Canada - National Science Library

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O’Connor, Peter B

    2015-01-01

    ...) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated...

  7. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  8. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  9. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    Science.gov (United States)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  10. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  11. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  12. Sinusoidal current and stress evolutions in lithium-ion batteries

    Science.gov (United States)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  13. Robust ion current oscillations under a steady electric field: An ion channel analog

    Science.gov (United States)

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1 /f power spectrum.

  14. Ion-counting nanodosimetry: current status and future applications.

    Science.gov (United States)

    Schulte, R; Bashkirov, V; Garty, G; Leloup, C; Shchemelinin, S; Breskin, A; Chechik, R; Milligan, J; Grosswendt, B

    2003-12-01

    There is a growing interest in the study of interactions of ionizing radiation with condensed matter at the nanometer level. The motivation for this research is the hypothesis that the number of ionizations occurring within short segments of DNA-size subvolumes is a major factor determining the biological effectiveness of ionizing radiation. A novel dosimetry technique, called nanodosimetry, measures the spatial distribution of individual ionizations in an irradiated low-pressure gas model of DNA. The measurement of nanodosimetric event size spectra may enable improved characterization of radiation quality, with applications in proton and charged-particle therapy, radiation protection, and space research. We describe an ion-counting nanodosimeter developed for measuring radiation-induced ionization clusters in small, wall-less low-pressure gas volumes, simulating short DNA segments. It measures individual radiation-induced ions, deposited in 1 Torr propane within a tissue-equivalent cylindrical volume of 2-4 nm diameter and up to 100 nm length. We present first ionization cluster size distributions obtained with 13.6 MeV protons, 4.25 MeV alpha particles and 24.8 MeV carbon nuclei in propane; they correspond to a wide LET range of 4-500 keV/microm. We are currently developing plasmid-based assays to characterize the local clustering of DNA damage with biological methods. First results demonstrate that there is increasing complexity of DNA damage with increasing LET. Systematic comparison of biological and nanodosimetric data will help us to validate biophysical models predicting radiation quality based on nanodosimetric spectra. Possible applications for charged particle radiation therapy planning are discussed.

  15. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  16. Macroscopic strain controlled ion current in an elastomeric microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael, E-mail: mdennin@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Li, Yongxue [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Esser-Kahn, Aaron P. [Department of Chemistry, University of California, Irvine, California 92697 (United States); Valdevit, Lorenzo [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697-3975 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Sun, Lizhi [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Siwy, Zuzanna [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  17. Current approach to the problem of nitrenium ions

    Science.gov (United States)

    Simonova, T. P.; Nefedov, V. D.; Toropova, M. A.; Kirillov, N. F.

    1992-06-01

    This review is devoted to the chemistry of nitrenium ions, which are highly reactive species whose bivalent nitrogen atom has an incomplete (sextet) electron shell and bears a formal positive charge. All known methods for generating these ions, including a nuclear chemical method developed by the authors, their reactions, structure, and also the role of nitrenium ions in the chemistry of nitrogen-containing compounds are examined. The bibliography includes 159 references.

  18. Fractioning electrodialysis: a current induced ion exchange process

    NARCIS (Netherlands)

    Galama, A.H.; Daubaras, G.; Burheim, O.S.; Rijnaarts, H.; Post, J.W.

    2014-01-01

    In desalination often multi ionic compositions are encountered. A preferential removal of multivalent ions over monovalent ions can be of interest to prevent scaling in the desalination process. Recently, a novel fractionating electrodialysis stack is described by Zhang et al., 2012 (in Sep. purify.

  19. Fractioning electrodialysis : a current induced ion exchange process

    NARCIS (Netherlands)

    Galama, A. H.; Daubaras, G.; Burheim, O. S.; Rijnaarts, H. H. M.; Post, J. W.

    2014-01-01

    In desalination often multi ionic compositions are encountered. A preferential removal of multivalent ions over monovalent ions can be of interest to prevent scaling in the desalination process. Recently, a novel fractionating electrodialysis stack is described by Zhang et al., 2012 (in Sep. purify.

  20. Extending the dynamic range of the ion trap by differential mobility filtration.

    Science.gov (United States)

    Hall, Adam B; Coy, Stephen L; Kafle, Amol; Glick, James; Nazarov, Erkinjon; Vouros, Paul

    2013-09-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation.

  1. Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration

    Science.gov (United States)

    Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon

    2013-01-01

    A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861

  2. Phase Current Differential Protection for Transformers in Wye-delta Mode

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2012-10-01

    Full Text Available For the current transformers (CTs on the delta side measure the line current instead of the phase current, line current differential protection is adopted in transformers connected in wye-delta mode currently. However, the symmetry feature of inrush current in line current differential protection may invalidate the inrush current restrained criterion. A calculating method of current through delta windings according the measured current from CT is proposed in this paper. Using this calculated current, phase current differential protection can be realized. Based on the method an adaptive second harmonic restrained scheme for magnetizing inrush current is presented. The scheme not only adaptively adjusts the secondary harmonic ratio of restrained current but also guarantees the fast action when transformers with internal faults are no-load energized. Consequently the performance of transformer differential protection is greatly improved. Simulation results in Matlab/Simulink validate the proposed method.

  3. Calculation of the ionization differential effective cross sections in fast ion-atom collisions

    CERN Document Server

    Kaminskij, A K

    2002-01-01

    The method of the calculations of the ionization effective cross sections d sigma/d OMEGA differential in the incident ion scattering angle is described in fast collisions of light ions and atoms. The calculated values of angular distributions of the ions Al, Mg (for the different values of charge and energy of ions) after their collisions with the Ne, Mg atoms being ionized are reported. The dependence of such angular distributions on the incident ion charge and energy and the initial state of ejected electron is investigated

  4. Two outward potassium current types are expressed during the neural differentiation of neural stem cells

    OpenAIRE

    Bai, Ruiying; Gao, Guowei; Xing, Ying; Xue, Hong

    2013-01-01

    The electrophysiological properties of potassium ion channels are regarded as a basic index for determining the functional differentiation of neural stem cells. In this study, neural stem cells from the hippocampus of newborn rats were induced to differentiate with neurotrophic growth factor, and the electrophysiological properties of the voltage-gated potassium ion channels were observed. Immunofluorescence staining showed that the rapidly proliferating neural stem cells formed spheres in vi...

  5. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    Science.gov (United States)

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar.

  6. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  7. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Y.; Tsumori, K.; Kaneko, O. [National Inst. for Fusion Science, Nagoya (Japan)] [and others

    1997-12-31

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H{sup -} current was obtained with a current density of 31 mA/cm{sup 2}. The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H{sup -} current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  8. Development of heating device / development of the high current ion source for neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Dong Gyu; Lee, Kyong Jin; Ko Tae Kyong [Cheju National Univ., Cheju (Korea)

    1998-08-01

    The design and fabrication of a high current ion source for NBI was carried out. The scale of an ion source was reduced for mock-up test. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If fabricated ion source would be tested, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the ion beam technology in the field of new material synthesis and semiconductor industry. 24 refs., 22 figs., 13 tabs. (Author)

  9. Correlation character of ionic current fluctuations: analysis of ion current through a voltage-dependent potassium single channel.

    Science.gov (United States)

    Tong-Han, Lan; Huang, Xi; Jia-Rui, Lin

    2005-10-03

    The gating of ion channels has widely been modeled by assuming the transition between open and closed states is a memoryless process. Nevertheless, the statistical analysis of an ionic current signal recorded from voltage dependence K(+) single channel is presented. Calculating the sample auto-correlation function of the ionic current based on the digitized signals, rather than the sequence of open and closed states duration time. The results provide evidence for the existence of memory. For different voltages, the ion channel current fluctuation has different correlation attributions. The correlations in data generated by simulation of two Markov models, on one hand, auto-correlation function of the ionic current shows a weaker memory, after a delayed period of time, the attribute of memory does not exist; on the other hand, the correlation depends on the number of states in the Markov model. For V(p)=-60 mV pipette potential, spectral analysis of ion channel current was conducted, the result indicates that the spectrum is not a flat spectrum, the data set from ionic current fluctuations shows considerable variability with a broad 1/f -like spectrum, alpha=1.261+/-0.24. Thus the ion current fluctuations give information about the kinetics of the channel protein, the results suggest the correlation character of ion channel protein nonlinear kinetics regardless of whether the channel is in open or closed state.

  10. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  11. The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process

    Institute of Scientific and Technical Information of China (English)

    王庆; 王永富; 巴德纯; 岳向吉

    2012-01-01

    The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.

  12. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  13. Backside Calibration Chronopotentiometry: Using Current to Perform Ion Measurements by Zeroing the Transmembrane Ion Flux

    OpenAIRE

    Xu, Yida; Ngeontae, Wittaya; Pretsch, Ernö; Bakker, Eric

    2008-01-01

    A recent new direction in ion-selective electrode (ISE) research utilizes a stir effect to indicate the disappearance of an ion concentration gradient across a thin ion-selective membrane. This zeroing experiment allows one to evaluate the equilibrium relationship between front and backside solutions contacting the membrane by varying the backside solution composition. This method is attractive since the absolute potential during the measurement is not required, thus avoiding standard recalib...

  14. Differential Sputtering Correction for Ion Microscopy Using Image Depth Profiling.

    Science.gov (United States)

    1982-09-22

    Tissue, Raphanus sativus , Radish 20. AUSTRACT (Continue an reee side If neceeesry and Identif by block numb.) >A first-order correction for...chosen on the basis of the primary ion beam species and sample thickness. Sample Preparation: Root tips of Raphanus sativus (radish) seedlings were

  15. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  16. Stabilized current source for lithium ion drift in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, I.T.; Sinitsyn, V.I.

    1976-01-01

    A proposal is made for designing a device for stabilizing current for the purpose of sustaining drift current within given limits in the production of Si(p-i-n) detectors. A diagram illustrates the main circuitry of a stabilized current source for one detector. 3 references, 1 figure.

  17. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Science.gov (United States)

    van Agthoven, Maria A.; Barrow, Mark P.; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A.; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B.

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules.

  18. A flowing atmospheric pressure afterglow as an ion source coupled to a differential mobility analyzer for volatile organic compound detection.

    Science.gov (United States)

    Bouza, Marcos; Orejas, Jaime; López-Vidal, Silvia; Pisonero, Jorge; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-05-23

    Atmospheric pressure glow discharges have been widely used in the last decade as ion sources in ambient mass spectrometry analyses. Here, an in-house flowing atmospheric pressure afterglow (FAPA) has been developed as an alternative ion source for differential mobility analysis (DMA). The discharge source parameters (inter-electrode distance, current and helium flow rate) determining the atmospheric plasma characteristics have been optimized in terms of DMA spectral simplicity with the highest achievable sensitivity while keeping an adequate plasma stability and so the FAPA working conditions finally selected were: 35 mA, 1 L min(-1) of He and an inter-electrode distance of 8 mm. Room temperature in the DMA proved to be adequate for the coupling and chemical analysis with the FAPA source. Positive and negative ions for different volatile organic compounds were tested and analysed by FAPA-DMA using a Faraday cup as a detector and proper operation in both modes was possible (without changes in FAPA operational parameters). The FAPA ionization source showed simpler ion mobility spectra with narrower peaks and a better, or similar, sensitivity than conventional UV-photoionization for DMA analysis in positive mode. Particularly, the negative mode proved to be a promising field of further research for the FAPA ion source coupled to ion mobility, clearly competitive with other more conventional plasmas such as corona discharge.

  19. Differential genotoxicity mechanisms of silver nanoparticles and silver ions.

    Science.gov (United States)

    Li, Yan; Qin, Taichun; Ingle, Taylor; Yan, Jian; He, Weiwei; Yin, Jun-Jie; Chen, Tao

    2017-01-01

    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.

  20. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  1. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  2. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  3. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  4. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  5. Mapping the ion current distribution in nanopore/electrode devices.

    Science.gov (United States)

    Rutkowska, Agnieszka; Edel, Joshua B; Albrecht, Tim

    2013-01-22

    Solid-state nanopores with integrated electrodes have interesting prospects in next-generation single-molecule biosensing and sequencing. These include "gated" nanopores with a single electrode integrated into the membrane, as well as two-electrode designs, such as a transversal tunneling junction. Here we report the first comprehensive analysis of current flow in a three-electrode device as a model for this class of sensors. As a new feature, we observe apparent rectification in the pore current that is rooted in the current distribution of the cell, rather than the geometry or electrostatics of the pore. We benchmark our results against a recently developed theoretical model and define operational parameters for nanopore/electrode structures. Our findings thus facilitate the rational design of such sensor devices.

  6. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, P C; Ellingboe, A R; Turner, M M [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2004-03-07

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance.

  7. Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in

    2008-10-15

    The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.

  8. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  9. New methods for high current fast ion beam production by laser-driven acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B. [Institute of Physics, ASCR, v.v.i., PALS Centre, Prague (Czech Republic); Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F. [INFN-Laboratori Nazionali del Sud, Catania, Messina University (Italy); Picciotto, A.; Serra, E. [Fondazione Bruno Kessler - IRST, Trento (Italy); Giuffrida, L. [CELIA, Centre Lasers Intenses et Applications (France); Mangione, A. [ITA - Istituto Tecnologie Avanzate, Trapani (Italy); Rosinski, M.; Parys, P. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  10. New methods for high current fast ion beam production by laser-driven accelerationa)

    Science.gov (United States)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  11. New methods for high current fast ion beam production by laser-driven acceleration.

    Science.gov (United States)

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  12. Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM

    Science.gov (United States)

    Hermosura, Meredith C; Monteilh-Zoller, Mahealani K; Scharenberg, Andrew M; Penner, Reinhold; Fleig, Andrea

    2002-01-01

    Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca2+ release-activated Ca2+ current (ICRAC) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 mm BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of ICRAC. Differential suppression of ICRAC was achieved by buffering free [Ca2+]i to 90 nm and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 mm Mg.ATP, 1.2 mm free [Mg2+]i or 100 μm GTP-γ-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca2+ and Mg2+ caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg2+]i, ICRAC carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of ICRAC, these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both ICRAC and MagNuM are activated. PMID:11882677

  13. Detection and clearing of trapped ions in the high current Cornell photoinjector

    CERN Document Server

    Full, Steven; Bazarov, Ivan; Dobbins, John; Dunham, Bruce; Hoffstaetter, Georg

    2015-01-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates...

  14. Neonatal cholestasis – differential diagnoses, current diagnostic procedures and treatment

    Directory of Open Access Journals (Sweden)

    Thomas eGötze

    2015-06-01

    Full Text Available Cholestatic jaundice in early infancy is a complex diagnostic problem. Misdiagnosis of cholestasis as physiologic jaundice delays the identification of severe liver diseases. In the majority of infants it may represent benign cases of breast milk jaundice, but few among them are masked and caused by neonatal cholestasis that requires a prompt diagnosis and treatment. Therefore, a prolonged neonatal jaundice longer than two weeks after birth must always be scrutinized because an early diagnosis is essential for appropriate management. To rapidly identify the cholestatic cases, the conjugated bilirubin needs to be determined in any infant presenting with prolonged jaundice at 14 days of age with or without depigmented stool. Once neonatal cholestasis is confirmed, a systematic approach is the key to reliably achieve the diagnosis in order to promptly initiate the specific, and in many cases, life saving therapy. This strategy is most important to promptly identify and treat infants with biliary atresia, the most common cause of neonatal cholestasis that requires a hepatoportoenterostomy as soon as possible.Here, we provide a detailed work-up approach including initial treatment recommendations and a clinically oriented overview of possible differential diagnoses in order to facilitate an early recognition and a timely diagnosis. This warrants a broad spectrum of diagnostic procedures and investigations including new methods that are described in this review.

  15. Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers.

    Science.gov (United States)

    Campbell, J Larry; Zhu, Mabel; Hopkins, W Scott

    2014-09-01

    Differential mobility spectrometry (DMS) can distinguish ions based upon the differences in their high- and low-field ion mobilities as they experience the asymmetric waveform applied to the DMS cell. These mobilities are known to be influenced by the ions' structure, m/z, and charge distribution (i.e., resonance structures) within the ions themselves, as well as by the gas-phase environment of the DMS cell. While these associations have been developed over time through empirical observations, the exact role of ion structures or their interactions with clustering molecules remains generally unknown. In this study, that relationship is explored by observing the DMS behaviors of a series of tetraalkylammonium ions as a function of their structures and the gas-phase environment of the DMS cell. To support the DMS experiments, the basin-hopping search strategy was employed to identify candidate cluster structures for density functional theory treatment. More than a million cluster structures distributed across 72 different ion-molecule cluster systems were sampled to determine global minimum structures and cluster binding energies. This joint computational and experimental approach suggests that cluster geometry, in particular ion-molecule intermolecular separation, plays a critical role in DMS.

  16. Differential kinetic dynamics and heating of ions in the turbulent solar wind

    CERN Document Server

    Valentini, F; Stabile, S; Pezzi, O; Servidio, S; De Marco, R; Marcucci, F; Bruno, R; Lavraud, B; De Keyser, J; Consolini, G; Brienza, D; Sorriso-Valvo, L; Retinò, A; Vaivads, A; Salatti, M; Veltri, P

    2016-01-01

    The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas w...

  17. Electroosmotic flow can generate ion current rectification in nano- and micropores.

    Science.gov (United States)

    Yusko, Erik C; An, Ran; Mayer, Michael

    2010-01-26

    This paper introduces a strategy for generating ion current rectification through nano- and micropores. This method generates ion current rectification by electroosmotic-driven flow of liquids of varying viscosity (and hence varying conductance) into or out of the narrowest constriction of a pore. The magnitude of current rectification was described by a rectification factor, R(f), which is defined by the ratio of the current measured at a positive voltage divided by the current measured at a negative voltage. This method achieved rectification factors in the range of 5-15 using pores with diameters ranging from 10 nm to 2.2 microm. These R(f) values are similar to the rectification factors reported in other nanopore-based methods that did not employ segmented surface charges. Interestingly, this work showed that in cylindrical nanopores with diameters of 10 nm and a length of at least 275 nm, electroosmotic flow was present and could generate ion current rectification. Unlike previous methods for generating ion current rectification that require nanopores with diameters comparable to the Debye length, this work demonstrated ion current rectification in micropores with diameters 500 times larger than the Debye length. Thus this method extends the concept of fluidic diodes to the micropore range. Several experiments designed to alter or remove electroosmotic flow through the pore demonstrated that electroosmotic flow was required for the mode of ion current rectification reported here. Consequently, the magnitude of current rectification could be used to indicate the presence of electroosmotic flow and the breakdown of electroosmotic flow with decreasing ionic strength and hence increasing electric double layer overlap inside nanopores.

  18. Nondissipative currents link graphene and heavy ion physics

    CERN Document Server

    Mizher, Ana Julia; Villavicencio, Cristian

    2013-01-01

    Monolayer graphite films, or graphene, have quasiparticle excitations that can be effectively described by (2+1)-dimensional quantum electrodynamics. Such a theory resembles more to quantum chromodynamics in some aspects, in particular, allowing for a non-trivial topological term in the gauge sector of the corresponding Lagrangian, the Chern-Simons term. In analogy to the chiral magnetic effect, proposed for quantum chromodynamics, we show that the presence of such topological gauge configurations associated to an external -in plane -magnetic field in a planar quantum elecrodynamical system, generates an electrical current along the magnetic field direction. This result is unexpected from the point of view of Maxwell equations and is uniquely due to the interaction of the gauge sector with the fermions.

  19. Ion properties in a Hall current thruster operating at high voltage

    Science.gov (United States)

    Garrigues, L.

    2016-04-01

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.

  20. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  1. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  2. Enhanced Ion Current Rectification in 2D Graphene‐Based Nanofluidic Devices

    OpenAIRE

    MIANSARI, Morteza; Friend, James R.; Yeo, Leslie Y.

    2015-01-01

    Furthering the promise of graphene‐based planar nanofluidic devices as flexible, robust, low cost, and facile large‐scale alternatives to conventional nanochannels for ion transport, we show how the nonlinear current–voltage (I–V) characteristics and ion current rectification in these platforms can be enhanced by increasing the system asymmetry. Asymmetric cuts made to the 2D multilayered graphene oxide film, for example, introduces further asymmetry to that natively inherent in the structura...

  3. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  4. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    Science.gov (United States)

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  5. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    Science.gov (United States)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  6. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity

    CERN Document Server

    Qu, Hang; Tang, Yufeng; Semenikihin, Oleg; Skorobogatiy, Maksim

    2015-01-01

    A flexible, light weight and high conductivity current collector is the key element that enables fabrication of high performance flexible lithium ion battery. Here we report a thin, light weight and flexible lithium ion battery that uses graphite paper enhanced with a nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, and PE membrane soaked in LiPF6 as a separator. Using thin and flexible graphite paper as a substrate for the current collector instead of a rigid and heavy metal foil enables us to demonstrate a very thin Lithium-Ion Battery into ultra-thin (total thickness including encapsulation layers of less than 250 {\\mu}m) that is also light weight and highly flexible.

  7. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  8. Systematic measurements of ion-proton differential streaming in the solar wind.

    Science.gov (United States)

    Berger, L; Wimmer-Schweingruber, R F; Gloeckler, G

    2011-04-15

    The small amount of heavy ions in the highly rarefied solar wind are sensitive tracers for plasma-physics processes, which are usually not accessible in the laboratory. We have analyzed differential streaming between heavy ions and protons in the solar wind at 1 AU. 3D velocity vector and magnetic field measurements from the Solar Wind Electron Proton Alpha Monitor and the Magnetometer aboard the Advanced Composition Explorer were used to reconstruct the ion-proton difference vector v(ip) = v(i) - v(p) from the 12 min 1D Solar Wind Ion Composition Spectrometer observations. We find that all 44 analyzed heavy ions flow along the interplanetary magnetic field at velocities which are smaller than, but comparable to, the local Alfvén speed C(A). The flow speeds of 35 of the 44 ion species lie within the range of ±0.15C(A) around 0.55C(A), the flow speed of He(2+).

  9. Vertical blow-up in a low-current, stored, laser-cooled ion beam

    CERN Document Server

    Madsen, N; Siegfried, L E; Hangst, J S; Nielsen, J

    2003-01-01

    Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored, laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents we observe an abrupt change in this behavior: the vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser- cooling. (12 refs).

  10. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  11. Design of a low voltage, high current extraction system for the ITER Ion Source

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; de Esch, H. P. L.; Fubiani, G.; Marcuzzi, D.; Petrenko, S.; Pilan, N.; Rigato, W.; Serianni, G.; Singh, M.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2009-03-01

    A Test Facility is planned to be built in Padova to assemble and test the Neutral Beam Injector for ITER. In the same Test Facility the Ion Source will be tested in a dedicated facility planned to operate in parallel to the main 1 MV facility. Purpose of the full size Ion Source is to optimize the Ion Source performance by maximizing the extracted negative ion current density and its spatial uniformity and by minimizing the ratio of co-extracted electrons. In this contribution the design of the extractor and accelerator grids for a 100 kV, 60 A system is presented. The trajectories of the negative ions, calculated with the SLACCAD code [1], have been benchmarked by a new 2D code (BYPO [2]) which solves in a self consistent way the electric fields in presence of electric charge and magnetic fields. The energy flux intercepted by the grids is estimated by using the Montecarlo code EAMCC [3] and the grids designed according to the constraints set by the permanent magnets and by the cooling channels. The interaction of backstreaming ions due to the ionization process with the grids and the Ion Source backplate is investigated and its impact on the project and performance discussed.

  12. Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    João Barbosa Martins

    2013-01-01

    Full Text Available Paraquat (PQ, a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson’s disease in laboratory settings. Other compounds like rotenone (ROT, a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP+ have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aiming to elucidate their differential effects. PQ-induced neurotoxicity was shown to be concentration and time dependent, being mitochondrial dysfunction followed by neuronal death. On the other hand, cells exposure to MPP+ induced mitochondrial dysfunction, but not cellular lyses. Meanwhile, ROT promoted both mitochondrial dysfunction and neuronal death, revealing a biphasic pattern. To further elucidate PQ neurotoxic mechanism, several protective agents were used. SH-SY5Y cells pretreatment with tiron (TIR and 2-hydroxybenzoic acid sodium salt (NaSAL, both antioxidants, and Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, partially protected against PQ-induced cell injury. Additionally, 1-(2-[bis(4-fluorophenylmethoxy]ethyl-4-(3-phenyl-propylpiperazine (GBR 12909, a dopamine transporter inhibitor, and cycloheximide (CHX, a protein synthesis inhibitor, also partially protected against PQ-induced cell injury. In conclusion, we demonstrated that PQ, MPP+, and ROT exerted differential toxic effects on dopaminergic cells. PQ neurotoxicity occurred through exacerbated oxidative stress, with involvement of uptake through the dopamine transporter and protein synthesis.

  13. Differential kinetic dynamics and heating of ions in the turbulent solar wind

    Science.gov (United States)

    Valentini, F.; Perrone, D.; Stabile, S.; Pezzi, O.; Servidio, S.; De Marco, R.; Marcucci, F.; Bruno, R.; Lavraud, B.; De Keyser, J.; Consolini, G.; Brienza, D.; Sorriso-Valvo, L.; Retinò, A.; Vaivads, A.; Salatti, M.; Veltri, P.

    2016-12-01

    The solar wind plasma is a fully ionized and turbulent gas ejected by the outer layers of the solar corona at very high speed, mainly composed by protons and electrons, with a small percentage of helium nuclei and a significantly lower abundance of heavier ions. Since particle collisions are practically negligible, the solar wind is typically not in a state of thermodynamic equilibrium. Such a complex system must be described through self-consistent and fully nonlinear models, taking into account its multi-species composition and turbulence. We use a kinetic hybrid Vlasov-Maxwell numerical code to reproduce the turbulent energy cascade down to ion kinetic scales, in typical conditions of the uncontaminated solar wind plasma, with the aim of exploring the differential kinetic dynamics of the dominant ion species, namely protons and alpha particles. We show that the response of different species to the fluctuating electromagnetic fields is different. In particular, a significant differential heating of alphas with respect to protons is observed. Interestingly, the preferential heating process occurs in spatial regions nearby the peaks of ion vorticity and where strong deviations from thermodynamic equilibrium are recovered. Moreover, by feeding a simulator of a top-hat ion spectrometer with the output of the kinetic simulations, we show that measurements by such spectrometer planned on board the Turbulence Heating ObserveR (THOR mission), a candidate for the next M4 space mission of the European Space Agency, can provide detailed three-dimensional ion velocity distributions, highlighting important non-Maxwellian features. These results support the idea that future space missions will allow a deeper understanding of the physics of the interplanetary medium.

  14. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  15. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  16. Generation of electric currents in the chromosphere via neutral-ion drag

    CERN Document Server

    Krasnoselskikh, V; Hudson, H S; Bale, S D; Abbett, W P; 10.1088/0004-637X/724/2/1542

    2010-01-01

    We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes f...

  17. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    Science.gov (United States)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  18. The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T.; Tarvainen, O.; Toivanen, V.; Peura, P.; Jones, P.; Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae FI-40014 (Finland); Noland, J.; Leitner, D. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-02-15

    Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount of bremsstrahlung radiation is significantly decreased.

  19. Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects.

    Science.gov (United States)

    Rosentsvit, Leon; Wang, Wei; Schiffbauer, Jarrod; Chang, Hsueh-Chia; Yossifon, Gilad

    2015-12-14

    Ion current rectification inversion is observed in a funnel-shaped nanochannel above a threshold voltage roughly corresponding to the under-limiting to over-limiting current transition. Previous experimental studies have examined rectification at either low-voltages (under-limiting current region) for conical nanopores/funnel-shaped nanochannels or at high-voltages (over-limiting region) for straight nanochannels with asymmetric entrances or asymmetric interfacing microchannels. The observed rectification inversion occurs because the system resistance is shifted, beyond a threshold voltage, from being controlled by intra-channel ion concentration-polarization to that controlled by external concentration-polarization. Additionally, strong hysteresis effects, due to residual concentration-polarization, manifest themselves through the dependence of the transient current rectification on voltage scan rate.

  20. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  1. A Correlation Based Method for Discriminating Inrush Current from Short Circuit Current Using Wavelet Transform in Power Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    M. Rasoulpoor

    2013-09-01

    Full Text Available This paper presents a new approach for power transformer differential protection. The Wavelet Transform is applied to discriminate between inrush currents and internal fault currents in power transformers. Discrete wavelet transform decomposes the current signal into sub-bands that give more information about the properties of the signals in different frequency bands. Also, this transform is used to investigate the energy distribution of the signal on the different time and frequency scales. Recognition method is based on the correlation factors between energy percentage vectors of the Wavelet coefficients. Discrete Wavelet transform is used for decomposing the current signals to different frequency coefficients. After that, by constituting the energy percentage vectors of wavelet transform coefficients and calculating the correlation factors between these vectors, it is possible to form a recognition criterion to distinguish between inrush and internal fault current in the proposed method. The proposed algorithm is tested for several conditions by simulated inrush and internal fault currents. Simulation of current signals is performed using electromagnetic transient program PSCAD/EMTDC software that is a powerful program for the investigation of transient signals. Simulation results show that the proposed scheme accurately identifies inrush and fault currents in the distance of the power transformer protection in less than quarter of power frequency cycle. Also, beside the sensitivity and high reliability, the proposed method has low computation content and unlike the common methods does not require to determine the threshold for each new power system.

  2. The Effects of Chemical Reaction, Hall, and Ion-Slip Currents on MHD Micropolar Fluid Flow with Thermal Diffusivity Using a Novel Numerical Technique

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2012-01-01

    Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.

  3. Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry.

    Science.gov (United States)

    Willems, Jamie L; Khamis, Mona M; Mohammed Saeid, Waleed; Purves, Randy W; Katselis, George; Low, Nicholas H; El-Aneed, Anas

    2016-08-24

    Chlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization. All proposed structures of the observed product ions were confirmed with second-generation MS(3) experiments. Similarities and differences between the dissociation pathways in the positive and negative ion modes are discussed, confirming the proposed structures and the established MS/MS fingerprints. MS/MS dissociation was primarily driven via the cleavage of the ester bond linking the quinic acid moiety to the caffeic acid moiety within tested molecules. Despite being structural isomers with the same m/z values and dissociation behaviors, the MS/MS data in the negative ion mode was able to differentiate the three isomers based on ion intensity for the major product ions, observed at m/z 191, 179 and 173. This differentiation was consistent among various MS instruments. In addition, ESI coupled with high-field asymmetric waveform ion mobility spectrometry-mass spectrometry (ESI-FAIMS-MS) was employed for the separation of these compounds for the first time. By combining MS/MS data and differential ion mobility, a method for the separation and identification of mono-caffeoylquinic in apple/pear juice samples was developed with a run time of less than 1 min. It is envisaged that this methodology could be used to identify pure juices based on their chlorogenic acid profile (i.e., metabolomics), and could also be used to detect juice-to-juice adulteration (e.g., apple juice addition to pear juice).

  4. Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art

    OpenAIRE

    Kunze, Herb E.; Davide La Torre; Franklin Mendivil; Manuel Ruiz Galán; Rachad Zaki

    2014-01-01

    We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on ...

  5. Development of a universal serial bus interface circuit for ion beam current integrators.

    Science.gov (United States)

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation.

  6. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    Science.gov (United States)

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells.

  7. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.

    Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  8. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  9. Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity.

    Science.gov (United States)

    Kidgell, Dawson J; Daly, Robin M; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22-45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  10. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Dawson J. Kidgell

    2013-01-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1. Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI. Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  11. The role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail

    CERN Document Server

    Dalena, S; Zimbardo, G; Veltri, P

    2010-01-01

    Cluster observations in the near-Earth magnetotail have shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. The influence of magnetic turbulence on ion motion in this region is investigated by numerical simulation, taking into account the presence of both protons and oxygen ions. The magnetotail current sheet is modeled as a magnetic field reversal with a normal magnetic field component $B_n$, plus a three-dimensional spectrum of magnetic fluctuations $\\delta {\\bf B}$, which represents the observed magnetic turbulence. The dawn-dusk electric field E$_y$ is also included. A test particle simulation is performed using different values of $\\delta {\\bf B}$, E$_y$ and injecting two different species of particles, O$^+$ ions and protons. O$^+$ ions can support the formation of a double current layer both in the absence and for large values of magnetic fluctuations ($\\delta B/B_0 = 0.0$ and $\\delta B/B_0 \\geq 0.4$, where B$_0$ is the constant magnetic field in the magnetospheric l...

  12. Determining the mobility of ions by transient current measurements at high voltages.

    Science.gov (United States)

    Kohn, Peter; Schröter, Klaus; Thurn-Albrecht, Thomas

    2007-08-24

    We present polarization and transient current experiments that allow an independent determination of the charge carrier density and the mobility of ions in polymer electrolytes at low charge carrier density. The method relies on a complete depletion of ions in the bulk electrolyte achieved by applying high voltages. Based on a qualitative model for the charge dynamics in this nonlinear regime, the method is exemplarily applied to a system of polymethylmethacrylate doped with small amounts of a lithium salt. The independently obtained values for the ionic mobility, the charge carrier density, and the conductivity are consistent for all salt concentrations studied. Criteria for the applicability of the method are discussed.

  13. Triple differential cross sections for ionization of some heliumlike ions by electron impact

    Science.gov (United States)

    Nath, B.; Sinha, C.

    2000-11-01

    Triple differential cross sections (TDCS) have been studied for ionization of some heliumlike ions by fast electron impact in the coplanar geometry using a final-state correlated wave function that satisfies the asymptotic three-body boundary condition. The electron exchange effect between the two outgoing electrons in the final channel has also been incorporated properly. The initial channel wave function involves a Coulomb wave due to long-range Coulomb attraction between the incident electron and the screened ionic nucleus. TDCS have been computed in asymmetric geometry for a Li+ ion at different incident energies (Ei) 150-1000 eV for fixed values of the ejected energies (Eb=5 and 10 eV) and scattering angles (θ1=4° and 10°). Symmetric geometry has also been studied for a Li+ ion for incident energies (Ei=150-500 eV) for fixed scattering angle 45°. The behavior of the scaled TDCS (Z4tσ) with respect to the variation of the ionic charge (Zt) for different ions in the helium isoelectronic series has been studied for asymmetric geometry at different incident energies in units of respective thresholds (3, 6, and 10) for a scaled ejected energy (Ebsc) and a fixed scattering angle (4°), while for the symmetric geometry, scaled TDCS have been studied only at three times the respective threshold. The binary to recoil peak ratio (b/r) is studied against the momentum transfer \\|q\\| in the asymmetric geometry for all the ionic targets. A strong recoil peak is noted at low incident energy for all the ions except for the ions of high charge (e.g., Zt=20).

  14. Flapping current sheet motions in magnetotail excited by non-adiabatic ions: case study

    Science.gov (United States)

    Wei, X., Jr.

    2015-12-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. Three type of current sheet flapping event in this paper will be discussed. This current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  15. The current sheet tiled and non-adiabatic ions effect on the flapping motion in magnetotail

    Science.gov (United States)

    Wei, XinHua

    2016-04-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. These flapping motion current sheet cases often observed tiled. The current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  16. Differential Ion Mobility Separations in up to 100% Helium Using Microchips

    Energy Technology Data Exchange (ETDEWEB)

    Shvartsburg, Alexandre A.; Ibrahim, Yehia M.; Smith, Richard D.

    2014-01-09

    The performance of differential IMS (FAIMS) analyzers is much enhanced by gases comprising He, especially He/N2 buffers. However, electrical breakdown has limited the He fraction in those mixtures to ~50 - 75%, depending on the field strength. By Paschen law, the threshold field for breakdown increases at shorter distances. This allows FAIMS using chips with microscopic channels to utilize much stronger field intensities (E) than “full-size” analyzers with wider gaps. Here we show that those chips can employ higher He fractions up to 100%. Use of He-rich gases improves the resolution and resolution/sensitivity balance substantially, although less than for full-size analyzers. The optimum He fraction is ~80%, in line with first-principles theory. Hence one can now measure the dependences of ion mobility on E in pure He, where ion-molecule cross section calculations are much more tractable than in other gases that form deeper and more complex interaction potentials. This capability may facilitate quantitative modeling of high-field ion mobility behavior and thus FAIMS separation properties, which would enable a priori extraction of structural information about the ions from FAIMS data.

  17. Differential ion mobility separations in up to 100% helium using microchips.

    Science.gov (United States)

    Shvartsburg, Alexandre A; Ibrahim, Yehia M; Smith, Richard D

    2014-03-01

    The performance of differential IMS (FAIMS) analyzers is much enhanced by gases comprising He, especially He/N2 mixtures. However, electrical breakdown has limited the He fraction to ~50%-75%, depending on the field strength. By the Paschen law, the threshold field for breakdown increases at shorter distances. This allows FAIMS using chips with microscopic channels to utilize much stronger field intensities (E) than "full-size" analyzers with wider gaps. Here we show that those chips can employ higher He fractions up to 100%. Use of He-rich gases improves the resolution and resolution/sensitivity balance substantially, although less than for full-size analyzers. The optimum He fraction is ~80%, in line with first-principles theory. Hence, one can now measure the dependences of ion mobility on E in pure He, where ion-molecule cross section calculations are much more tractable than in other gases that form deeper and more complex interaction potentials. This capability may facilitate quantitative modeling of high-field ion mobility behavior and, thus, FAIMS separation properties, which would enable a priori extraction of structural information about the ions.

  18. Development of a high-current hydrogen-negative ion source for LHD-NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Oka, Yoshihide; Kaneko, Osamu; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Masanobu

    1998-08-01

    We have developed a high-current hydrogen-negative ion source for a negative-ion-based NBI system in Large Helical Device (LHD). The ion source is a cesium-seeded volume-production source equipped with an external magnetic filter. An arc chamber is rectangular, the dimensions of which are 35 cm x 145 cm in cross section and 21 cm in depth. A three-grid single-stage accelerator is divided into five sections longitudinally, each of which has 154(14 x 11) apertures in an area of 25 cm x 25 cm. The ion source was tested in the negative-NBI teststand, and 25 A of the negative ion beam is incident on a beamdump 13 m downstream with an energy of 104 keV for 1 sec. Multibeamlets of 770 are focused on a focal point 13 m downstream with an averaged divergence angle of 10 mrad by the geometrical arrangement of five sections of grid and the aperture displacement technique of the grounded grid. A uniform beam in the vertical direction over 125 cm is obtained with uniform plasma production in the arc chamber by balancing individual arc currents flowing through each filament. Long-pulse beam production was performed, and 1.3 MW of the negative ion beam is incident on the beamdump for 10 sec, and the temperature rise of the cooling water is almost saturated for the extraction and the grounded grids. These results satisfy the first-step specification of the LHD-NBI system. (author)

  19. Activation of Reactive MALDI Adduct Ions Enables Differentiation of Dihydroxylated Vitamin D Isomers

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam J.; Volmer, Dietrich A.

    2017-08-01

    Vitamin D compounds are secosteroids, which are best known for their role in bone health. More recent studies have shown that vitamin D metabolites and catabolites such as dihydroxylated species (e.g., 1,25- and 24,25-dihydroxyvitamin D3) play key roles in the pathologies of various diseases. Identification of these isomers by mass spectrometry is challenging and currently relies on liquid chromatography, as the isomers exhibit virtually identical product ion spectra under collision induced dissociation conditions. Here, we developed a simple MALDI-CID method that utilizes ion activation of reactive analyte/matrix adducts to distinguish isomeric dihydroxyvitamin D3 species, without the need for chromatography separation or chemical derivatization techniques. Specifically, reactive 1,5-diaminonaphthalene adducts of dihydroxyvitamin D3 compounds formed during MADI were activated and specific cleavages in the secosteroid's backbone structure were achieved that produced isomer-diagnostic fragment ions. [Figure not available: see fulltext.

  20. Hypertrophic pachymeningitis: Current criteria for diagnosis and differentiation (Clinical case and review of literature

    Directory of Open Access Journals (Sweden)

    E. G. Mendelevich

    2015-01-01

    Full Text Available The paper describes a 44-year-old male patient with an about 6-year history of hypertrophic pachymeningitis. The major clinical symptoms were characterized by headache, exophthalmos, and blindness in one eye. The data for differential diagnosis of the disease are given. The current literature on the clinical manifestations of hypertrophic pachymeningitis, its differential diagnosis, and the results of magnetic resonance imaging (MRI is reviewed. Diagnostic difficulties at the stage of a clinical observation are due to the nonspecificity of neurological manifestations and the need for a comprehensive examination to detect a somatic disease. MRI can diagnose the disease-specific phenomenon of damage to the meninges, which calls for further careful differentiation. Clinicians must be familiar with alternative differential diagnosis, as a rapid specific therapeutic approach will help avoid long-term or irreversible neurological complications.

  1. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    Science.gov (United States)

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  2. Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  3. Simulations and experiments of intense ion beam current density compression in space and timea)

    Science.gov (United States)

    Sefkow, A. B.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Anders, A.; Coleman, J. E.; Leitner, M.; Lidia, S. M.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Yu, S. S.; Welch, D. R.

    2009-05-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ˜300 keV K+ beam and have separately achieved transverse and longitudinal focusing to a radius 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  4. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. Angular Differential Cross-Section for Ionization of Helium in C6+ Ion Collision

    Institute of Scientific and Technical Information of China (English)

    A.C.Gagyi-Pálffy; I.F.Barna; L.Gulyás; K.T(o)kési

    2004-01-01

    With the help of the density operator, the angular differential cross-section for ionization of helium is calculated within the framework of the one-centre atomic-orbital close-coupling method. We consider a naked C6+ ion as projectile with an energy of 2.5 MeV/a.u. Our result agrees well with the experimental data and the other theoretical calculations such as the first Born approximation, various Distorted Wave models and the classical trajectory Monte Carlo simulation.

  6. THE TRANSFER OF TMA+ ION AT THE WATERN NITROBENZENE INTERFACE USING SEMI-DIFFERENTIAL CYCLIC VOLTAMMETRY

    Institute of Scientific and Technical Information of China (English)

    范瑞溪; 王小平

    1990-01-01

    This paper describes the investigation of the electrochemical phenomena of TMA+ transfer at the w/nb interface using semi-differential cyclic voltammetry. The expressions for the peak potential, half-wave width and peak current are derived. All the experimental results are in good agreement with the theoretical ones.

  7. EFFECT OF COXSACKIEVIRUS B3 ON ION CHANNEL CURRENTS IN RAT VENTRICULAR MYOCYTES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To investigate the effects of coxsackievims B3 (CVB3) on ion channel currents in rat ventricular my-Methods. Rat hearts were isolated with collagenase to acquire single ventricular myocytes, L-type voltnge-depen-dent calcium channel( VDCC)current (Ica), Na + current (INa), outward potassium current (Iout), inwardly rectifying potassium current(IKI) were recorded using whole cell patch clamp techniques. Results. CVB3 infection increased Ica and Iout, while decreased IKI; but it had no obvious effect on INa. Conclusion. Tne effects of CVB3 on Ica、 Iout、 IKI may be one of the mechanisms of myocytes damage and the oc-currence of abnormal electroactivities induced by CVB3 infection.

  8. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  9. Fully differential cross sections for the single ionization of He by C{sup 6+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, NM 87545 (United States); Pindzola, M S; Robicheaux, F [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Ciappina, M F [ICFO-Institut de Ciences Fotoniques, 08860 Castelldefels (Barcelona) (Spain)

    2011-09-14

    We present fully differential cross sections for the single ionization of He by C{sup 6+} ions. A time-dependent close-coupling approach is used to describe the two-electron wavefunction in the field of the projectile for a range of impact parameters, and a Fourier transform approach is used to extract fully differential cross sections for a specific momentum transfer. Our calculations are compared to the measurements of Schulz et al (2003 Nature 422 48) and we find very good agreement in the scattering plane and good qualitative agreement in the perpendicular plane. In particular, our calculations in the perpendicular plane find a similar 'double-peak' structure in the angular distributions to those seen experimentally. We also discuss the various checks made on our calculations by comparing to a one-electron time-dependent calculation.

  10. Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2000-01-01

    Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.

  11. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  12. A differential low-voltage high gain current-mode integrated RF receiver front-end

    Science.gov (United States)

    Chunhua, Wang; Minglin, Ma; Jingru, Sun; Sichun, Du; Xiaorong, Guo; Haizhen, He

    2011-02-01

    A differential low-voltage high gain current-mode integrated RF front end for an 802.11b WLAN is proposed. It contains a differential transconductance low noise amplifier (Gm-LNA) and a differential current-mode down converted mixer. The single terminal of the Gm-LNA contains just one MOS transistor, two capacitors and two inductors. The gate-source shunt capacitors, Cx1 and Cx2, can not only reduce the effects of gate-source Cgs on resonance frequency and input-matching impedance, but they also enable the gate inductance Lg1,2 to be selected at a very small value. The current-mode mixer is composed of four switched current mirrors. Adjusting the ratio of the drain channel sizes of the switched current mirrors can increase the gain of the mixer and accordingly increase the gain of RF receiver front-end. The RF front-end operates under 1 V supply voltage. The receiver RFIC was fabricated using a chartered 0.18 μm CMOS process. The integrated RF receiver front-end has a measured power conversion gain of 17.48 dB and an input referred third-order intercept point (IIP3) of -7.02 dBm. The total noise figure is 4.5 dB and the power is only 14 mW by post-simulations.

  13. Prior doctor shopping resulting from differential treatment correlates with differences in current patient-provider relationships.

    Science.gov (United States)

    Gudzune, Kimberly A; Bennett, Wendy L; Cooper, Lisa A; Clark, Jeanne M; Bleich, Sara N

    2014-09-01

    To determine the prevalence of doctor shopping resulting from differential treatment and to examine associations between this shopping and current primary care relationships. In 2012, a national internet-based survey of 600 adults receiving primary care in the past year with a BMI ≥ 25 kg/m(2) was conducted. Our independent variable was "switching doctors because I felt treated differently because of my weight." Logistic regression models to examine the association of prior doctor shopping with characteristics of current primary care relationships: duration, trust in primary care provider (PCP), and perceived PCP weight-related judgment, adjusted for patient factors were used. Overall, 13% of adults with overweight/obesity reported previously doctor shopping resulting from differential treatment. Prior shoppers were more likely to report shorter durations of their current relationships [73% vs. 52%; p = 0.01] or perceive that their current PCP judged them because of their weight [74% vs. 11%; p shop resulting from perceived differential treatment. These prior negative experiences have no association with trust in current relationships, but our results suggest that patients may remain sensitive to provider weight bias. © 2014 The Obesity Society.

  14. Development of membrane ion channels during neural differentiation from human embryonic stem cells.

    Science.gov (United States)

    Mirsadeghi, Sara; Shahbazi, Ebrahim; Hemmesi, Katayoun; Nemati, Shiva; Baharvand, Hossein; Mirnajafi-Zadeh, Javad; Kiani, Sahar

    2017-09-09

    For human embryonic stem cells (hESCs) to differentiate into neurons, enormous changes has to occur leading to trigger action potential and neurotransmitter release. We attempt to determine the changes in expression of voltage gated channels (VGCs) and their electrophysiological properties during neural differentiation. The relative expressions of α-subunit of voltage gated potassium, sodium and calcium channels were characterized by qRT-PCR technique. Patch clamp recording was performed to characterize the electrophysiological properties of hESCs during their differentiation into neuron-like cells. Relative expression of α-subunit of channels changed significantly. 4-AP and TEA sensitive outward currents were observed in all stages, although TEA sensitive currents were recorded once in rosette structure. Nifedipine and QX314 sensitive inward currents were recorded only in neuron-like cells. K(+) currents were recorded in hESCs and rosette structure cells. Inward currents, sensitive to Nifedipine and QX314, were recorded in neuron-like cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  16. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinzhen; Li, Gang; Lin, Ling, E-mail: linling@tju.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, People' s Republic of China, and Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin (China); Qiao, Xiaoyan [College of Physics and Electronic Engineering, Shanxi University, Shanxi (China); Wang, Mengjun [School of Information Engineering, Hebei University of Technology, Tianjin (China); Zhang, Weibo [Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences, Beijing (China)

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  17. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system.

    Science.gov (United States)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  18. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  19. ANALYSIS OF A COMMERCIAL PORTABLE LITHIUM-ION BATTERY UNDER LOW CURRENT CHARGE-DISCHARGE CYCLES

    Directory of Open Access Journals (Sweden)

    Stephany Pires da Silva

    Full Text Available The dependence between the transferred charge and the corresponding transference time to charge and discharge a portable cell phone Li-ion battery (LiCoO2/C under cycles of low intensity currents was studied in detail. The voltage curve profile between 3.0 and 4.2 V and the charging and discharging time are strongly influenced by the applied current intensity. A linear dependence between the stored and extracted charges, into and from the battery, with the intensity of applied current was also observed. Allometric equations were found to describe the correlation between the charge transference time and the applied current intensity to charge and discharge the battery.

  20. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries.

    Science.gov (United States)

    Rana, Kuldeep; Singh, Jyoti; Lee, Jeong-Taik; Park, Jong Hyeok; Ahn, Jong-Hyun

    2014-07-23

    The electrodes in lithium-ion batteries (LIBs) are typically films that are arranged on metal foil current collectors with a thickness of several tens of μm. Here, we report on the preparation of a thick free-standing graphene film synthesized by CVD as an alternative to Cu foil as an anode current collector. As a model system, MoS2 anodes with a flower-like morphology were anchored onto the surface of the thick graphene film. A hybrid and binder free anode without a conventional metal current collector exhibited an excellent capacity value of around 580 mAh/g (@50 mA/g) and reasonable charge/discharge cyclability. The work presented here may stimulate the use of graphene films as replacements for conventional current collectors and additive free electrode in LIBs.

  1. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  2. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    Science.gov (United States)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  3. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Comparison of Measurement And Modeling Of Current Profile Changes Due To Neutral Bean Ion Redistribution During TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Douglas

    2013-07-09

    Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function

  5. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  6. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  7. Differentiation of the pyridine radical cation from its distonic isomers by ion-molecule reactions with dioxygen

    Science.gov (United States)

    Jobst, Karl J.; de Winter, Julien; Flammang, Robert; Terlouw, Johan K.; Gerbaux, Pascal

    2009-09-01

    In a previous study on the pyridine ion (1) and the pyridine-2-ylid isomer (2), we reported that ions 2 readily react with H2O to produce 2-pyridone ions at m/z 95, by O-atom abstraction. The mechanism for this intriguing reaction, however, was not established. This prompted us to use model chemistry calculations (CBS-QB3) to probe various mechanistic scenarios and to perform complementary experiments with the new, more versatile, ion-molecule reaction chamber of the Mons Autospec 6F mass spectrometer. It appears that H2O is not reacting neutral that produces the 2-pyridone ion of the above reaction, but rather O2 from air co-introduced with the water vapour. Theory and experiment agree that the exothermic reaction of O2 with the pyridine-2-ylid ion leads to loss of 3O from a stable peroxide-type adduct ion at m/z 111. Similarly, pyridine-3-ylid ions (3) generate 3-pyridone ions, but the reaction in this case is thermoneutral. The m/z 111:95 peak intensity ratios in the spectra of the ion-molecule products from ions 2 and 3 may serve to differentiate the isomers.

  8. Measurement of ion species in high current ECR H{sup +}/D{sup +} ion source for IFMIF (International Fusion Materials Irradiation Facility)

    Energy Technology Data Exchange (ETDEWEB)

    Shinto, K., E-mail: shinto.katsuhiro@jaea.go.jp; Ichimiya, R.; Ihara, A.; Ikeda, Y.; Kasugai, A.; Kitano, T.; Kondo, K.; Takahashi, H. [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Senée, F.; Bolzon, B.; Chauvin, N.; Gobin, R.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Ayala, J.-M.; Marqueta, A.; Okumura, Y. [IFMIF/EVEDA Project Team, Rokkasho, Aomori 039-3212 (Japan)

    2016-02-15

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H{sup +}) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D{sup +}) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H{sup +} ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H{sup +}/D{sup +} ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  9. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  10. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  11. Sub-ion scale intermittency and the development of filamentary current structures from the Hall effect

    Science.gov (United States)

    Chapman, S. C.; Kiyani, K. H.; Meyrand, R.; Sahraoui, F.; Osman, K.

    2014-12-01

    The distinct quantitative nature of the intermittency seen on fluid and kinetic scales in solar wind plasma turbulence is now well documented from an observational point of view. The classic high-order statistical signature rapidly transitions to a monoscaling signature as one crosses to sub-ion scales. How this scaling depends upon plasma conditions, and the underlying physical implications have yet to be fully explored. We present a study focusing on 28 intervals of solar wind magnetic field data from the Cluster spacecraft sampling a broad range of plasma parameters. We show how the scaling properties vary between these intervals and more importantly, if there are any correlations between the scaling exponents and the plasma parameter variations. We supplement this observational study with a computational investigation where we study spatial samples from an 1024^3 EMHD simulation -- a model for sub-ion scale magnetic field dynamics consisting solely of the Hall effect. From this, we show that the Hall-term can generate a topological change from current sheets at fluid scales to current filaments at sub-ion scales. We conjecture that this fundamental change in the coherent structures comprising the turbulence is also responsible for the change in the intermittency that we see from our observations; and which could also be responsible for dissipation at these scales.

  12. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    Science.gov (United States)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-10-01

    Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals "mud cracks" within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  13. Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries

    Science.gov (United States)

    Lee, Dongkyoung; Patwa, Rahul; Herfurth, Hans; Mazumder, Jyotirmoy

    2012-07-01

    Sizing electrodes is an important step during Lithium-ion battery manufacturing processes since poor cut edge affects battery performance significantly and sometime leads to fire hazard. Mechanical cutting could result in a poor cut quality with defects. The cutting quality can be improved by using a laser, due to its high energy concentration, fast processing time, small heat-affected zone, and high precision. The cutting quality is highly influenced by operating parameters such as laser power and scanning speed. Thus, we studied a numerical simulation to provide a guideline for achieving clear edge quality. In order to simulate electrodes laser cutting for Lithium-Ion batteries, understanding the behavior of current collectors is crucial. This study focuses on current collectors, such as pure copper and aluminium. Numerical studies utilized a 3D self-consistent mathematical model for laser-material interaction. Observations of penetration time, depth, and threshold during laser cutting processes of current collectors are described. The model is validated experimentally by cutting current collectors and single side-coated electrodes with a single mode fiber laser. The copper laser cutting is laser intensity and interaction time dependent process. The aluminium laser cutting depends more on laser intensity than the interaction time. Numerical and experimental results show good agreement.

  14. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  15. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  16. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  17. Measurement of the Neutrino Neutral-Current Elastic Differential Cross Section

    CERN Document Server

    ,

    2010-01-01

    We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH$_2$) as a function of four-momentum transferred squared. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50~MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass, $M_{A}$, that provides a best fit for $M_A= 1.39\\pm0.11$~GeV. Additionally, single protons with kinetic energies above 350 MeV can be distinguished from neutrons and multiple nucleon events. Using this marker, the strange quark contribution to the neutral-current axial vector form factor at $Q^2 = 0$, $\\Delta s$, is found to be $\\Delta s=0.08\\pm0.26$.

  18. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    Science.gov (United States)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  19. Internal-short-mitigating current collector for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu

    2017-05-01

    Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.

  20. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    CERN Document Server

    Aguilar-Arevalo, A A; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Mauger, C; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Mousseau, J; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Pavlovic, Z; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R G; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D

    2010-01-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($\\frac{d^2\\sigma}{dT_\\mu d\\cos\\theta_\\mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($\\sigma[E_\

  1. Minimum Mismatch of Current in Fully Differential Charge Pump for Integer N- DPLL

    Directory of Open Access Journals (Sweden)

    Rajeshwari D S

    2017-06-01

    Full Text Available Fully Differential ended charge pump (FDCP are proven to have advantages over single ended charge pump at the cost of complexity and required more power for implementation for digital phase locked loop(DPLL. Wide swing cascodebias voltage with the rail to rail operational amplifier(opamp as common mode feedback(CMFB provides efficient solutions for current mismatch due to its non-idealities. The FDCP is simulated across process corners using 65nm technology with tsmc foundry for10Ghz DPLL. The power consumption of FDCP is 23mW with 100uA as Charge Pump (CP current.

  2. Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Directory of Open Access Journals (Sweden)

    M. Kumngern

    2013-06-01

    Full Text Available This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory.

  3. Reproducible ion-current-based approach for 24-plex comparison of the tissue proteomes of hibernating versus normal myocardium in swine models.

    Science.gov (United States)

    Qu, Jun; Young, Rebeccah; Page, Brian J; Shen, Xiaomeng; Tata, Nazneen; Li, Jun; Duan, Xiaotao; Fallavollita, James A; Canty, John M

    2014-05-02

    Hibernating myocardium is an adaptive response to repetitive myocardial ischemia that is clinically common, but the mechanism of adaptation is poorly understood. Here we compared the proteomes of hibernating versus normal myocardium in a porcine model with 24 biological replicates. Using the ion-current-based proteomic strategy optimized in this study to expand upon previous proteomic work, we identified differentially expressed proteins in new molecular pathways of cardiovascular interest. The methodological strategy includes efficient extraction with detergent cocktail; precipitation/digestion procedure with high, quantitative peptide recovery; reproducible nano-LC/MS analysis on a long, heated column packed with small particles; and quantification based on ion-current peak areas. Under the optimized conditions, high efficiency and reproducibility were achieved for each step, which enabled a reliable comparison of 24 the myocardial samples. To achieve confident discovery of differentially regulated proteins in hibernating myocardium, we used highly stringent criteria to define "quantifiable proteins". These included the filtering criteria of low peptide FDR and S/N > 10 for peptide ion currents, and each protein was quantified independently from ≥2 distinct peptides. For a broad methodological validation, the quantitative results were compared with a parallel, well-validated 2D-DIGE analysis of the same model. Excellent agreement between the two orthogonal methods was observed (R = 0.74), and the ion-current-based method quantified almost one order of magnitude more proteins. In hibernating myocardium, 225 significantly altered proteins were discovered with a low false-discovery rate (∼3%). These proteins are involved in biological processes including metabolism, apoptosis, stress response, contraction, cytoskeleton, transcription, and translation. This provides compelling evidence that hibernating myocardium adapts to chronic ischemia. The major metabolic

  4. Application of differential scanning calorimetry to measure the differential binding of ions, water and protons in the unfolding of DNA molecules.

    Science.gov (United States)

    Olsen, Chris M; Shikiya, Ronald; Ganugula, Rajkumar; Reiling-Steffensmeier, Calliste; Khutsishvili, Irine; Johnson, Sarah E; Marky, Luis A

    2016-05-01

    The overall stability of DNA molecules globally depends on base-pair stacking, base-pairing, polyelectrolyte effect and hydration contributions. In order to understand how they carry out their biological roles, it is essential to have a complete physical description of how the folding of nucleic acids takes place, including their ion and water binding. To investigate the role of ions, water and protons in the stability and melting behavior of DNA structures, we report here an experimental approach i.e., mainly differential scanning calorimetry (DSC), to determine linking numbers: the differential binding of ions (Δnion), water (ΔnW) and protons (ΔnH(+)) in the helix-coil transition of DNA molecules. We use DSC and temperature-dependent UV spectroscopic techniques to measure the differential binding of ions, water, and protons for the unfolding of a variety of DNA molecules: salmon testes DNA (ST-DNA), one dodecamer, one undecamer and one decamer duplexes, nine hairpin loops, and two triplexes. These methods can be applied to any conformational transition of a biomolecule. We determined complete thermodynamic profiles, including all three linking numbers, for the unfolding of each molecule. The favorable folding of a DNA helix results from a favorable enthalpy-unfavorable entropy compensation. DSC thermograms and UV melts as a function of salt, osmolyte and proton concentrations yielded releases of ions and water. Therefore, the favorable folding of each DNA molecule results from the formation of base-pair stacks and uptake of both counterions and water molecules. In addition, the triplex with C(+)GC base triplets yielded an uptake of protons. Furthermore, the folding of a DNA duplex is accompanied by a lower uptake of ions and a similar uptake of four water molecules as the DNA helix gets shorter. In addition, the oligomer duplexes and hairpin thermodynamic data suggest ion and water binding depends on the DNA sequence rather than DNA composition. Copyright

  5. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  6. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  7. The effectiveness of using the calculated braking current for longitudinal differential protection of 110 - 750 kV shunt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, S. A. [JSC ' E and E' (Russian Federation); Shalimov, A. S. [LLC Selekt Co. (Russian Federation)

    2013-05-15

    The use of the function of effective current braking of the longitudinal differential protection of shunt reactors to offset current surges, which enables the sensitivity of differential protection to be increased when there are short circuits with low damage currents, is considered. It is shown that the use of the calculated braking characteristic enables the reliability of offset protection from transients to be increased when the reactor is connected, which is accompanied by the flow of asymmetric currents containing an aperiodic component.

  8. Wound-Induced Changes of Membrane Voltage, Endogenous Currents, and Ion Fluxes in Primary Roots of Maize.

    Science.gov (United States)

    Meyer, A. J.; Weisenseel, M. H.

    1997-07-01

    The effects of mechanical wounding on membrane voltage, endogenous ion currents, and ion fluxes were investigated in primary roots of maize (Zea mays) using intracellular microelectrodes, a vibrating probe, and ion-selective electrodes. After a wedge-shaped wound was cut into the proximal elongation zone of the roots, a large inward current of approximately 60 [mu]A cm-2 was measured, together with a change in the current pattern along the root. The changes of the endogenous ion current were accompanied by depolarization of the membrane voltage of cortex cells up to 5 mm from the wound. Neither inhibitors of ion channels nor low temperature affected the large, wound-induced inward current. The fluxes of H+, K+, Ca2+, and Cl- contributed only about 7 [mu]A cm-2 to the wound-induced ion current. This suggests the occurrence of a large mass flow of negatively charged molecules, such as proteins, sulfated polysaccharides, and galacturonic acids, from the wound. Natural wounding of the root cortex by developing lateral roots caused an outwardly directed current, which was clearly different in magnitude and direction from the current induced by mechanical injury.

  9. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  10. Statistical measures of genetic differentiation of populations:Rationales, history and current states

    Institute of Scientific and Technical Information of China (English)

    Liang MA; Ya-Jie JI; De-Xing ZHANG

    2015-01-01

    Population differentiation is a fundamental process of evolution, and many evolutionary studies, such as population genetics, phylogeography and conservation biology, all require the inference of population differentiation. Recently, there has been a lot of debate over the validity ofFST (and its analogueGST) as a measure for population genetic differentiation, notably since the proposal of the new indexD in 2008. Although several papers reviewed or explored specific features of these statistical measures, a succinct account of this bewildering issue with an overall update appears to be desirable. This is the purpose of the present review. The available statistics generally fall into two categories, represented byFST andD, respectively. None of them is perfect in measuring population genetic differentiation. Nevertheless, they each have advantages and are valuable for current re-search. In practice, both indices should be calculated and a comparison of them can generate useful insights into the evolutionary processes that influence population differentiation.FST (GST) has some unique irreplaceable characteristics assuring its standing as the default measure for the foreseeable near future. Also, it will continue to serve as the standard for any alternative measures to contrast with. Instead of being anxious about making choice between these indices, one should pay due attention to the equili-brium status and the level of diversity (especiallyHS) of the populations, since they largely sway the power of a given statistic to address a specific question. We provide a multi-faceted comparative summary of the various statistics, which can serve as a basic reference for readers to guide their applications [Current Zoology 61 (5): 886–897, 2015].

  11. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  12. Double-differential cross sections for single ionization of helium by bare ion impact

    Science.gov (United States)

    Jana, S.; Samanta, R.; Purkait, M.

    2013-11-01

    Double-differential cross sections (DDCS) for single ionization of helium by impact of proton and highly charged carbon ion have been calculated in the framework of four-body formalism using the three-Coulomb wave model (3C-4B) and first Born approximation (FBA-4B), respectively. The correlated motion of the particles interacting through long-range Coulomb potential is properly taken into account in the final state. In this paper, the energy and angular distributions of DDCS of low- and high-energy electron emission for ground-state helium atoms have been investigated. The ejected electrons are affected by the two-center field of the target and the projectile ion. The two-center effects are confined to comparison with other theoretical results. The results obtained, both from the 3C-4B and FBA-4B models, are compared with other theoretical and experimental findings. The present results are found to reproduce the peak structure of the experimental observations. Large discrepancy occurs between the present two theories at forward and backward angles except about the emission angle 90°. The present computed results obtained by the 3C-4B model are in good agreement with the available experimental findings.

  13. Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    Science.gov (United States)

    Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael

    1995-01-01

    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in

  14. Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics.

    Science.gov (United States)

    Coy, Stephen L; Krylov, Evgeny V; Nazarov, Erkinjon G; Fornace, Albert J; Kidd, Richard D

    2013-09-01

    Electrospray ionization (ESI) is an important tool in chemical and biochemical survey and targeted analysis in many applications. For chemical detection and identification electrospray is usually used with mass spectrometry (MS). However, for screening and monitoring of chemicals of interest in light, low power field-deployable instrumentation, an alternative detection technology with chemical selectivity would be highly useful, especially since small, lightweight, chip-based gas and liquid chromatographic technologies are being developed. Our initial list of applications requiring portable instruments includes chemical surveys on Mars, medical diagnostics based on metabolites in biological samples, and water quality analysis. In this report, we evaluate ESI-Differential Mobility Spectrometry (DMS) as a compact, low-power alternative to MS detection. Use of DMS for chemically-selective detection of ESI suffers in comparison with mass spectrometry because portable MS peak capacity is greater than that of DMS by 10X or more, but the development of light, fast chip chromatography offers compensating resolution. Standalone DMS provides the chemical selectivity familiar from DMS-MS publications, and exploits the sensitivity of ion detection. We find that sub-microliter-per-minute flows and a correctly-designed interface prepare a desolvated ion stream that enables DMS to act as an effective ion filter. Results for a several small organic biomarkers and metabolites, including citric acid, azelaic acid, n-hexanoylglycine, thymidine, and caffeine, as well as compounds such as dinitrotoluene and others, have been characterized and demonstrate selective detection. Water-quality-related halogen-containing anions, fluoride through bromate, contained in liquid samples are also isolated by DMS. A reaction-chamber interface is highlighted as most practical for portable ESI-DMS instrumentation.

  15. Experimental study of the dependence of beam current on injection magnetic field in 6.4 GHz ECR ion source

    Indian Academy of Sciences (India)

    G S Taki; P R Sarma; D K Chakraborty; R K Bhandari; P K Ray

    2006-09-01

    The ion current from an electron cyclotron resonance (ECR) heavy ion source depends on the confining axial and radial magnetic fields. Some efforts were made by earlier workers to investigate magnetic field scaling on the performance of the ECR source. In order to study the dependence of the ion current on the injection magnetic field in the 6.4 GHz ECR source, we have measured the current by varying the peak injection field and have inferred that the variation of the current is exponential up to our maximum design injection field of 7.5 kG. An attempt has been made to understand this exponential nature on the basis of ion confinement time.

  16. Differential regulation of potassium currents by FGF-1 and FGF-2 in embryonic Xenopus laevis myocytes.

    Science.gov (United States)

    Chauhan-Patel, R; Spruce, A E

    1998-10-01

    1. Fibroblast growth factors (FGFs) are involved in the regulation of many aspects of muscle development. This study investigated their role in regulating voltage-dependent K+ currents in differentiating Xenopus laevis myocytes. Both FGF-1 and FGF-2 are expressed by developing muscle cells, so their actions were compared. Experiments were performed on cultured myocytes isolated from stage 15 embryos. 2. Long-term exposure of the embryonic myocytes to FGF-1 downregulated inward rectifier K+ current (IK(IR)) density as well as both sustained and inactivating voltage-dependent outward K+ currents (IK,S and IK,I, respectively) and their densities. In contrast, FGF-2 upregulated these currents, although, because of an increase in capacitance caused by FGF-2, current density did not change with this factor. 3. The regulation of IK(IR) by FGF-1 was prevented by the cytoplasmic tyrosine kinase inhibitor herbimycin A, but that of IK,S and IK,I was unaffected, indicating that FGF-1 achieves its regulatory effects on electrical development via separate signalling pathways. The receptor tyrosine kinase inhibitor genistein in isolation suppressed K+ currents, but this may have occurred through a channel-blocking mechanism. 4. In many cells, IK, S was found to be composed of two components with differing voltage dependencies of activation. The FGFs brought about an alteration in the amount of total IK,S by equal effects on each component. Conversely, herbimycin A increased the proportion of low voltage-activated current without affecting total current amplitude. Therefore, we suggest that a single species of channel whose voltage dependence is shifted by tyrosine phosphorylation generates IK,S. 5. In summary, FGF-1 and FGF-2 exert opposite effects on voltage-dependent K+ currents in embryonic myocytes and, furthermore, FGF-1 achieves its effects on different K+ currents via separate second messenger pathways.

  17. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan

    2009-01-01

    We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (~100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ~10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.

  18. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  19. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H.; Zapol, Peter; Curtiss, Larry A.; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-02-20

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  20. Porous graphene-based membranes for water purification from metal ions at low differential pressures.

    Science.gov (United States)

    Park, Jaewoo; Bazylewski, Paul; Fanchini, Giovanni

    2016-05-14

    A new generation of membranes for water purification based on weakly oxidized and nanoporous few-layer graphene is here introduced. These membranes dramatically decrease the high energy requirements of water purification by reverse osmosis. They combine the advantages of porous and non-oxidized single-layer graphene, offering energy-efficient water filtration at relatively low differential pressures, and highly oxidized graphene oxide, exhibiting high performance in terms of impurity adsorption. In the reported fabrication process, leaks between juxtaposed few-layer graphene flakes are sealed by thermally annealed colloidal silica, in a treatment that precedes the opening of (sub)nanometre-size pores in graphene. This process, explored for the first time in this work, results in nanoporous graphene flakes that are water-tight at the edges without occluding the (sub)nanopores. With this method, removal of impurities from water occurs through a combination of size-based pore rejection and pore-edge adsorption. Thinness of graphene flakes allows these membranes to achieve water purification from metal ions in concentrations of few parts-per-million at differential pressures as low as 30 kPa, outperforming existing graphene or graphene oxide purification systems with comparable flow rates.

  1. Current density distributions and sputter marks in electron cyclotron resonance ion sources.

    Science.gov (United States)

    Panitzsch, Lauri; Peleikis, Thies; Böttcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F

    2013-01-01

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  2. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    OpenAIRE

    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.

    2013-01-01

    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  3. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    Science.gov (United States)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  4. Ion Current Collection Diagnostic for the Triggered Plasma Opening Switch Experiment

    Science.gov (United States)

    Jackson, D. P.; Gilmore, M. A.

    2005-10-01

    The novel Triggered Plasma Opening Switch (TPOS) is a unique device that exploits the high conductivity and low mass properties of plasma. The TPOS's objective is to take the initial ˜.8 MA (˜250 ns rise time) storage inductor current and deliver ˜.5 MA at ˜2.5 MV (˜10ns rise time) to a load of ˜5-10 φ. Study of the TPOS characteristics is in progress via an Ion Current Collection Diagnostic (ICCD). The ICCD has been designed, fabricated, tested, and is in use on the TPOS in order to explore the main switch opening profile. The ICCD utilizes 12 charge collectors (biased faraday cups) that are positioned perpendicularly to the main switch stage in order to collect radially traveling ions emitted from the plasma surface via the Child-Langmuir law. Magnetostatic simulations with self consistent space charge emitting surfaces of the main switch using the Trak static 2D finite element code have been conducted as well. Finally, ICCD experimental data have been recorded, and hopefully these data will provide evidence that support both theory and simulation.

  5. Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets.

    Science.gov (United States)

    He, Xiulan; Zhang, Kailin; Li, Ting; Jiang, Yanan; Yu, Ping; Mao, Lanqun

    2017-02-01

    Here we report for the first time that ion current rectification (ICR) can be observed at the micrometer scale in symmetric electrolyte solution with polyimidazolium brush (PimB)-modified micropipets, which we call micrometer-scale ion current rectification (MICR). To qualitatively understand MICR, a three-layer model including a charged layer, an electrical double layer, and a bulk layer is proposed, which could also be extended to understanding ICR at the nanoscale. Based on this model, we propose that when charges in the charged layer are comparable with those in the bulk layer, ICR would occur regardless of whether the electrical double layers are overlapped. Finite element simulations based on the solution of Poisson and Nernst-Planck equations and in situ confocal laser scanning microscopy results qualitatively validate the experimental observations and the proposed three-layer model. Moreover, possible factors influencing MICR, including the length of PimB, electrolyte concentration, and the radius of the pipet, are investigated and discussed. This study successfully extends ICR to the micrometer scale and thus opens a new door to the development of ICR-based devices by taking advantage of ease-in-manipulation and designable surface chemistry of micropipets.

  6. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, K J [Materials Performance Technologies, Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Trompetter, W J [Rafter Laboratory, Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hutt (New Zealand)

    2004-02-07

    Nuclear reaction analysis using a {sup 12}C(d, p{sub 0}){sup 13}C reaction and a {sup 16}O(d, p{sub 1}){sup 17}O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  7. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Science.gov (United States)

    Stevens, K. J.; Trompetter, W. J.

    2004-02-01

    Nuclear reaction analysis using a 12C(d, p0)13C reaction and a 16O(d, p1)17O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  8. Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas with Anisotropic Temperatures: A Comparative Study

    Science.gov (United States)

    2011-09-26

    in the solar wind and in many space plasmas often exhibit non - Maxwellian suprathermal tails that decrease as a power-law of the velocity.1 Such...AFRL-RV-PS- AFRL-RV-PS- TR-2011-0164 TR-2011-0164 ION-CYCLOTRON INSTABILITY IN CURRENT- CARRYING LORENTZIAN (KAPPA) AND MAXWELLIAN PLASMAS...1 Oct 2007 – 9 Sep 2011 4. TITLE AND SUBTITLE Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas 5a. CONTRACT

  9. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    Science.gov (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  10. Effects of ring current ions on the ULF waves in the inner magnetosphere based on a 5-D drift kinetic ring current model

    Science.gov (United States)

    Seki, K.; Amano, T.; Saito, S.; Kamiya, K.; Miyoshi, Y.; Keika, K.; Matsumoto, Y.

    2016-12-01

    Terrestrial inner magnetosphere is the region where different plasma regimes over a wide range of energy such as the plasmasphere, ring current, and radiation belt coexist. Among them, the ring current carries most of plasma pressure and is thus responsible for deformation of the magnetic field. Since the deformation changes drift paths of charged particles including the ring current ions, it is important to describe this coupling between the ring current and electric/magnetic fields self-consistently. It is known that short-timescale phenomena such as ULF waves and substorm related ion injections from the plasma sheet play important roles in the inner magnetospheric dynamics during magnetic storms. While ULF waves contribute to the radial transport of relativistic electrons to form the radiation belt, the ion injections contribute to excitation of storm-time Pc5 ULF waves as well as to plasma supply to the ring current from the magnetotail. Aiming at a self-consistent description of the coupling between ring current ions and electric/magnetic fields, we have developed a global ring current model (GEMSIS-RC model). The model is a self-consistent and kinetic numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions coupled with Maxwell equations. Without assuming a force-balanced equilibrium, the GEMSIS-RC model allows the force-imbalance to exist, which generates induced electric field through the polarization current. In this study, we applied the GEMSIS-RC model for simulation of ULF waves in the inner magnetosphere with a focus on the short-timescale phenomena described above. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform and amplify the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in high plasma beta cases. It is also shown that

  11. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  12. Ion Currents Induced by ATP and Angiotensin II in Cultured Follicular Cells of Xenopus laevis

    Science.gov (United States)

    Montiel-Herrera, Marcelino; Zaske, Ana María; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2011-01-01

    Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at -60 mV revealed that ATP (20-250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ∼60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ∼5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at -60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known Fin and Sin-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using wholecell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ∼16% of the FC held at -60 mV. The net Ang II response, mediated by the activation of the AT1 receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes. PMID:22083304

  13. Investigation of iron current measurement to detect combustion quality; Ion denryu ni yoru nensho jotai kenshutsu no kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, K.; Mogi, K. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The possibility and problems were investigated in detecting the combustion quality by means of ion current measured at the spark plug. The ion current has two peaks during one combustion stroke; first peak is generated by flame around the spark plug just after ignition and second one appears with the rise in temperature of burned gases. As the result of investigations, it was confirmed that the first ion peak might be useful to forecast the combustion quality, but it would be hard to practice owing to the spark duration. And the second peak offered the information of combustion chamber pressure. 4 refs., 12 figs., 1 tab.

  14. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    Science.gov (United States)

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-08

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

  15. Novel Low Voltage CMOS Current Controlled Floating Resistor Using Differential Pair

    Directory of Open Access Journals (Sweden)

    S. A. Tekin

    2013-06-01

    Full Text Available In this paper, a low voltage CMOS current controlled floating resistor which is convenient for integrated circuit implementation is designed by using differential pair. The proposed resistor has a simple circuit structure and low power dissipation. This circuit is required ± 0.75 V as a power supply. The basic advantages of this circuit are wide tuning range of the resistance value, satisfied frequency performance and worthwhile dynamic range. As well as the proposed circuit has floating structure, it is able to be used both positive and negative resistor. The performances of the proposed circuit are simulated with SPICE to justify the presented theory.

  16. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Directory of Open Access Journals (Sweden)

    Yongjuan Chen

    Full Text Available Zirconium (Zr is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2 or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV oxynitrate (ZrO(NO32 at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  17. Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts.

    Science.gov (United States)

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling.

  18. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts

    Science.gov (United States)

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473

  19. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  20. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J [Harvard School of Engineering and Applied Sciences, Cambridge MA 02138 (United States)

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  1. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    Science.gov (United States)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  2. Current-Controlled Negative Differential Resistance Due to Joule Heating In Tio2

    Science.gov (United States)

    Bratkovsky, A. M.; Alexandrov, A. S.; Savel'Ev, S. E.; Strukov, D. B.; Williams, R. S.

    2012-02-01

    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 memristive systems by constructing an analytical model of the current-voltage characteristics based on polaronic transport for Ohm's law and Newton's law of cooling and fitting this model to experimental data. This threshold switching is he ``soft breakdown'' observed during electroforming in TiO2 and other transition-metal oxide based memristors, as well as a precursor to ``ON'' or ``SET'' switching of unipolar memristors from their high to their low resistance states. The shape of the V-I curves is a sensitive indicator of the nature of the polaronic conduction, which apparently follows an adiabatic regime [1]. [4pt] [1] A.S. Alexandrov, A.M.Bratkovsky, B.Bridle, S.E.Savel'ev, D. Strukov, and R.S.Williams, Appl. Phys. Lett. 99, xxx (2011).

  3. The electric properties and the current-controlled differential negative resistance of cBN crystal

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electric properties of nonintentionally doped n-cubic boron nitride(cBN) crystal are investigated.The cBN crystal was transformed from hexagonal-boron nitride(h-BN) under high pressure(HP) and high temperature(HT) using magnesium powder as catalyst.At room temperature,the current-voltage(I-V) characteristics of cBN crystal are measured and found to be nonlinear.When the electric field is in the range of(1―1.5)×105 V/cm,the avalanche breakdown occurs inside the whole cBN crystal.At this same time,the bright blue-violet with the wavelength of 380―400 nm from the cBN crystal is observed.When measuring the I-V curve after breakdown of cBN crystal,the current-controlled differential negative resistance phenomenon is observed.The breakdown is repeatable.

  4. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    Directory of Open Access Journals (Sweden)

    Jialong Wu

    2014-01-01

    Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.

  5. Ictal epileptic headache: a review of current literature and differentiation from migralepsy and other epilepsies.

    Science.gov (United States)

    Saitowitz, Zacharry; Flamini, Robert; Berenson, Frank

    2014-10-01

    Ictal headaches are increasingly becoming the focus of research as more data demonstrate headaches existing as a sole manifestation of an epileptic event. Due to the difficulty in diagnosing the event as an epileptic phenomenon as opposed to a migraine, the condition is often misdiagnosed. This paper seeks to review the current published literature on ictal epileptic headaches as well as provide differentiation between ictal headaches and similarly presenting conditions. In doing so, we hope to improve the diagnosis of ictal headaches and thus improve patient care. We review two case studies that exemplify the potential of multiple conditions with comparable symptoms to ictal headaches, and discuss how to differentiate the variable diagnoses. As of the writing of this paper, there is no universally agreed upon set of features of ictal headaches; however, reviewing the current literature, there do seem to be several features that should be noted when treating patients. More research on the pathophysiology of ictal epileptic headaches needs to be done before the condition can be fully understood.

  6. Research on the Equivalence Between Double Differential-mode Current Injection and Radiation Test Method

    Institute of Scientific and Technical Information of China (English)

    PAN Xiaodong; WEI Guanghui; FAN Lisi; LU Xinfu; YANG Zhe

    2013-01-01

    There are the application scope limits for single differential-mode current injection test method,so in order to carry out injection susceptibility test for two-pieces equipment interconnected with both ends of a cable simultaneously,a double differential-mode current injection test method (DDMCI) is proposed.The method adopted the equivalence source wave theorem and Baum-Liu-Tesche (BLT)equation as its theory foundation.The equivalent corresponding relation between injection voltage and radiation electric field intensity is derived,and the phase relation between the two injection voltage sources is confirrned.The results indicate that the amplitude and phase of the equivalent injection voltage source is closely related to the S parameter of directional coupling device,the transmission line length,and the source vector in BLT equation,but has nothing to do with the reflection coefficient between the two equipment pieces.Therefore,by choosing the right amplitude and phase of the double injection voltage sources,the DDMCI test is equivalent to the radiation test for two interconnected equipment of a system.

  7. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V.; Sidorov, A. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Strelkov, A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  8. Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Dong, Can; Wang, Weiguo; Li, Haiyang

    2008-05-15

    A new atmospheric pressure air direct current glow discharge (DCGD) ionization source has been developed for ion mobility spectrometry (IMS) to overcome the regularity problems associated with the conventional (63)Ni source and the instability of the negative corona discharge. Its general electrical characteristics were experimentally investigated. By equipping it to IMS, a higher sensitivity was obtained compared to that of a (63)Ni source and corona discharge, and a linear dynamic range from 20 ppb to 20 ppm was obtained for m-xylene. Primary investigations showed that alkanes, such as pentane, which are nondetectable or insensitively detectable with (63)Ni-IMS, can be efficiently detected by DCGD-IMS and the detection limit of 10 ppb can be reached. The preliminary results have shown that the new DCGD ionization source has great potential applications in IMS, such as online monitoring of environment pollutants and halogenated compounds.

  9. MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk

    Directory of Open Access Journals (Sweden)

    Faiza M. N. El-Fayez

    2013-01-01

    Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.

  10. A Novel Current-Mode Differential Transconductance LNA for IEEE 802.11a Application

    Science.gov (United States)

    Tu, Yuxiang; Wang, Chunhua; Chen, Lei; Wu, Zhangbin; Zhang, Guangxiang

    2012-03-01

    In this paper, a novel current-mode differential transconductance low noise amplifier (LNA) designed in the chartered 0.18 μm CMOS technology is proposed to realize the receiver front-end. The proposed LNA frequency ranges from 4.7 GHz to 6 GHz,mainly targeting at IEEE802.11a application. It utilizes two stage structure, with a PMOS current-mirrorr using inductive series peaking technique to achieve optimized current output. The noise performance is improved through the use of a gm-boosting technique, while the gain performance is improved and power consumption is saved by using current-reused technique. Measured results demonstrate that the circuit provides flat transconductance gain higher than 17.0 dB, noise figure lower than 2.31 dB and low operating voltage of 0.85 V in frequency band. A comparison with other LNAs in similar and nearby frequency bands shows the proposed LNA has advantages of higher gain, lower noise figure and better other performances.

  11. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    Science.gov (United States)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  12. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  13. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  14. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  15. Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes

    Science.gov (United States)

    Arakel, Eric C.; Brandenburg, Sören; Uchida, Keita; Zhang, Haixia; Lin, Yu-Wen; Kohl, Tobias; Schrul, Bianca; Sulkin, Matthew S.; Efimov, Igor R.; Nichols, Colin G.; Lehnart, Stephan E.; Schwappach, Blanche

    2014-01-01

    ABSTRACT The copy number of membrane proteins at the cell surface is tightly regulated. Many ion channels and receptors present retrieval motifs to COPI vesicle coats and are retained in the early secretory pathway. In some cases, the interaction with COPI is prevented by binding to 14-3-3 proteins. However, the functional significance of this antagonism between COPI and 14-3-3 in terminally differentiated cells is unknown. Here, we show that ATP-sensitive K+ (KATP) channels, which are composed of Kir6.2 and SUR1 subunits, are stalled in the Golgi complex of ventricular, but not atrial, cardiomyocytes. Upon sustained β-adrenergic stimulation, which leads to activation of protein kinase A (PKA), SUR1-containing channels reach the plasma membrane of ventricular cells. We show that PKA-dependent phosphorylation of the C-terminus of Kir6.2 decreases binding to COPI and, thereby, silences the arginine-based retrieval signal. Thus, activation of the sympathetic nervous system releases this population of KATP channels from storage in the Golgi and, hence, might facilitate the adaptive response to metabolic challenges. PMID:24569881

  16. ECR离子源引出束流周期性波动研究%Observation of Burst Frequency in Extracted ECR Ion Current

    Institute of Scientific and Technical Information of China (English)

    G.S.Taki; P.R.Sarma; A.G.Drentje; T.Nakagawa; P.K.Ray; R.K.Bhandari

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC,Kolkata.In a recent experiment with neon ions.we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz range.This frequency shows a correlated jump with the ion current jump described above.Another interesting feature is that the observed burst frequency shows a good linear correlation with the extracted ion current.The higher the ion current,the higher is the burst frequency.This means that current per burst is a constant factor;when there are more number of bursts,the current also increases.

  17. Surface Crack Detection for Carbon Fiber Reinforced Plastic Materials Using Pulsed Eddy Current Based on Rectangular Differential Probe

    OpenAIRE

    Jialong Wu; Deqiang Zhou; Jun Wang

    2014-01-01

    Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed ed...

  18. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons

    OpenAIRE

    Sutherland, Stephani P.; Christopher J. Benson; Adelman, John P.; McCleskey, Edwin W.

    2000-01-01

    Cardiac afferents are sensory neurons that mediate angina, pain that occurs when the heart receives insufficient blood supply for its metabolic demand (ischemia). These neurons display enormous acid-evoked depolarizing currents, and they fire action potentials in response to extracellular acidification that accompanies myocardial ischemia. Here we show that acid-sensing ion channel 3 (ASIC3), but no other known acid-sensing ion channel, reproduces the functional featur...

  19. A HIGH PERFORMANCE FULLY DIFFERENTIAL PURE CURRENT MODE OPERATIONAL AMPLIFIER AND ITS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    SEYED JAVAD AZHARI

    2012-08-01

    Full Text Available In this paper a novel high performance all current-mode fully-differential (FD Current mode Operational Amplifier (COA in BIPOLAR technology is presented. The unique true current mode simple structure grants the proposed COA the largest yet reported unity gain frequency while providing low voltage low power operation. Benefiting from some novel ideas, it also exhibits high gain, high common mode rejection ratio (CMRR, high power supply rejection ratio (PSRR, high output impedance, low input impedance and most importantly high current drive capability. Its most important parameters are derived and its performance is proved by PSPICE simulations using 0.8 μm BICMOS process parameters at supply voltage of ±1.2V indicating the values of 82.4 dB,52.3º, 31.5 Ω, 31.78 MΩ, 179.2 dB, 2 mW and 698 MHz for gain, phase margin, input impedance, output impedance, CMRR, power and unity gain frequency respectively. Its CMRR also shows very high frequency of 2.64 GHz at zero dB. Its very high PSRR+/PSRR- of 182 dB/196 dB makes the proposed COA a highly suitable block in Mixed-Mode (SOC chips. Most favourably it can deliver up to ±1.5 mA yielding a high current drive capability exceeding 25. To demonstrate the performance of the proposed COA, it is used to realize a constant bandwidth voltage amplifier and a high performance Rm amplifier.

  20. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  1. Component development for the ITER Ion Cyclotron Heating and Current Drive Transmission Line and Matching System

    Science.gov (United States)

    Goulding, R. H.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.

    2013-10-01

    The transmission line and matching network for the ITER Ion Cyclotron Heating and Current Drive System feeds two equatorial launchers, each with 24 phased current straps combined into groups of three, and each designed to couple up to 20 MW into ELMy H-mode plasmas in the frequency range 40-55 MHz, for pulse lengths up to 3600 s. The network includes > 1 km of 50 Ohm 300 mm diameter transmission line carrying up to 6 MW net power per line at VSWR = 1.5. In addition, there are 8 power splitters, 32 hybrid phase shifters incorporating 64 tuning stubs, 32 additional tuning stubs, and 36 vacuum capacitors, which are configured to provide pre-matching in the port cell region adjacent to the antenna, final matching, decoupling of mutual inductances between antenna elements, and passive ELM resilience. The development and design of the various system components will be discussed. High power tests of components have begun, and the latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  2. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  3. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have been varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.

  4. Current signal of silicon detectors facing charged particles and heavy ions; Reponse en courant des detecteurs silicium aux particules chargees et aux ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  5. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  6. Lithium-ion battery materials and engineering current topics and problems from the manufacturing perspective

    CERN Document Server

    Gulbinska, Malgorzata K

    2014-01-01

    Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batterie

  7. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    Science.gov (United States)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  8. The differentiation inducer, dimethyl sulfoxide, transiently increases the intracellular calcium ion concentration in various cell types.

    Science.gov (United States)

    Morley, P; Whitfield, J F

    1993-08-01

    Dimethyl sulfoxide (DMSO) initiates a coordinated differentiation program in various cell types but the mechanism(s) by which DMSO does this is not understood. In this study, the effect of DMSO on intracellular calcium ion concentration ([Ca2+]i) was determined in primary cultures of chicken ovarian granulosa cells from the two largest preovulatory follicles of laying hens, and in three cell lines: undifferentiated P19 embryonal carcinoma cells, 3T3-L1 fibroblasts, and Friend murine erythroleukemia (MEL) cells. [Ca2+]i was measured in cells loaded with the Ca(2+)-specific fluoroprobe Fura-2. There was an immediate (i.e., within 5 sec), transient, two to sixfold increase in [Ca2+]i after exposing all cell types to 1% DMSO. DMSO was effective between 0.2 and 1%. The prompt DMSO-induced [Ca2+]i spike in all of the cell types was not prevented by incubating the cells in Ca(2+)-free medium containing 2 mM EGTA or by pretreating them with the Ca(2+)-channel blockers methoxyverapamil (D600; 100 microM), nifedipine (20 microM), or cobalt (5 mM). However, when granulosa cells, 3T3-L1 cells, or MEL cells were pretreated with lanthanum (La3+; 1 mM), which blocks both Ca2+ channels and membrane Ca2+ pumps, there was a sustained increase in [Ca2+]i in response to 1% DMSO. By contrast, pretreating P19 cells with La3+ (1 mM) did not prolong the DMSO-triggered [Ca2+]i transient. In all cases, the DMSO-induced [Ca2+]i surge was unaffected by pretreating the cells with the inhibitors of inositol phospholipid hydrolysis, neomycin (1.5 mM) or U-73, 122 (2.5 microM). These results suggest that DMSO almost instantaneously triggers the release of Ca2+ from intracellular stores through a common mechanism in cells in primary cultures and in cells of a variety of established lines, but this release is not mediated through phosphoinositide breakdown. This large, DMSO-induced Ca2+ spike may play a role in the induction of cell differentiation by DMSO.

  9. Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Ohsawa, Mitaka, Tokyo 181-8588 (Japan); Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 114-0015 (Japan)

    2016-01-15

    We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modified around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.

  10. Differential proteome and gene expression for testis of mice exposed to carbon ion radiation

    Science.gov (United States)

    Zhang, Hong; Li, Hongyan

    Objective To investigate the effect and mechanism of high linear energy transfer (LET) carbon ion irradiation (CIR) on reproduction in the testis of male Swiss Webster mice, and assess the risk associated with space environment. Methods Male mice underwent whole-body irradiation with CIR (0.5, 1 and 4Gy), and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF) analysis was used to determine the alteration in protein expression in 2-DE (two-dimensional gel electrophoresis) gels of testes caused by irradiation after 7, 14 days. Results 15 differentially expressed proteins, such as glucose-regulated protein(GRP78), aconitate hydratase-mitochondrial precursor (ACO), pyruvate kinase isozymes M1/M2 (PKM1/M2), glutathione-S-transferaseA3 (GSTA3), glutathione S-transferase Pi 1 (GSTP1), Cu/Zn super-oxide dismutase (SOD1), Peptidyl-prolyl cis-trans isomerase (Pin1) and Heat shock 70 kDa protein 4L (HSPa4L), were identified and these proteins were mainly involved in energy supply, the endoplasmic reticulum, cell proliferation, cell cycle, antioxidant capacity and mitochondrial respiration, which play important roles in the inhibition of testicular function in response to CIR. Furthermore, we confirmed the relationship between transcription of mRNA and the abundance of proteins. Conclusion The findings of the present study demonstrated that these proteins may lead to new insights into the molecular mechanism of CIR toxicity, and suggested that the gene expression response to CIR involves diverse regulatory mechanisms from transcription of mRNA to the formation of functional proteins. These data also may provide a scientific basis for protecting astronauts and space traveler’s health and safety.

  11. Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry.

    Science.gov (United States)

    Varesio, Emmanuel; Le Blanc, J C Yves; Hopfgartner, Gérard

    2012-03-01

    The liquid chromatography-mass spectrometry (LC-MS) analysis of complex samples such as biological fluid extracts is widespread when searching for new biomarkers as in metabolomics. The success of this hyphenation resides in the orthogonality of both separation techniques. However, there are frequent cases where compounds are co-eluting and the resolving power of mass spectrometry (MS) is not sufficient (e.g., isobaric compounds and interfering isotopic clusters). Different strategies are discussed to solve these cases and a mixture of eight compounds (i.e., bromazepam, chlorprothixene, clonapzepam, fendiline, flusilazol, oxfendazole, oxycodone, and pamaquine) with identical nominal mass (i.e., m/z 316) is taken to illustrate them. Among the different approaches, high-resolution mass spectrometry or liquid chromatography (i.e., UHPLC) can easily separate these compounds. Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to their size-to-charge ratio. Detailed investigations of the addition of different polar modifiers (i.e., methanol, ethanol, and isopropanol) into the transport gas (nitrogen) to enhance the peak capacity of the technique were carried out. Finally, a complex urine sample fortified with 36 compounds of various chemical properties was analyzed by real-time 2D separation LC×DMS-MS(/MS). The addition of this orthogonal gas-phase separation technique in the LC-MS(/MS) hyphenation greatly improved data quality by resolving composite MS/MS spectra, which is mandatory in metabolomics when performing database generation and search.

  12. Differential Bystander Signaling Between Radioresistant Chondrosarcoma Cells and Fibroblasts After X-Ray, Proton, Iron Ion and Carbon Ion Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Wakatsuki, Masaru, E-mail: wa@mbe.nifty.com [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts (United States); Magpayo, Nicole; Kawamura, Hidemasa; Held, Kathryn D. [Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts (United States)

    2012-09-01

    Purpose: Chondrosarcoma is well known as a radioresistant tumor, but the mechanisms underlying that resistance are still unclear. The bystander effect is well documented in the field of radiation biology. We investigated the bystander response induced by X-rays, protons, carbon ions, and iron ions in chondrosarcoma cells using a transwell insert co-culture system that precludes physical contact between targeted and bystander cells. Methods and Materials: Human chondrosarcoma cells were irradiated with 0.1-, 0.5-, 1-, and 2-Gy X-rays, protons, carbon ions or iron ions using a transwell insert co-culture system. Formation of micronuclei and p53 binding protein 1 staining in bystander and irradiated cells were analyzed and bystander signaling between mixed cultures of chondrosarcoma cells, and normal human skin fibroblasts was investigated. Results: In this study, we show that the fraction of cells with DNA damages in irradiated chondrosarcoma cells showed dose-dependent increases with all beams. However, the fraction of cells with DNA damages in all bystander chondrosarcoma cells did not show any change from the levels in control cells. In the bystander signaling between mixed cultures of chondrosarcoma cells and fibroblasts, the amount of micronucleus formation in all bystander chondrosarcoma cells co-cultured with irradiated fibroblasts were the same as the levels for control cells. However, all bystander fibroblasts co-cultured with irradiated chondrosarcoma cells showed significant increases in the fraction of micronucleated cells compared to the rate of control cells. Conclusions: We conclude that chondrosarcoma cells in the transwell insert co-culture system could release bystander stimulations but could not develop bystander responses.

  13. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cheng-Kuan, E-mail: chengkuan@ntou.edu.tw [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, ROC (China); Hsieh, Meng-Hsuan [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China); Sun, Yuh-Chang, E-mail: ycsun@mx.nthu.edu.tw [Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan, ROC (China)

    2016-03-31

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag{sup +}) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag{sup +} ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag{sup +} ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L{sup −1} when determining Ag{sup +} ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L{sup −1} when determining Ag{sup +} ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag{sup +}/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag{sup +} ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. - Highlights: • 3D printed knotted reactors are utilized to differentiate AgNPs and Ag{sup +} ions. • Xanthan/phosphate-buffered saline is used for stabilizing the two silver species. • Extraction efficiency up to 54.5% is

  14. Charge effects controlling the current hysteresis and negative differential resistance in periodical nanosize Si/CaF sub 2 structures

    CERN Document Server

    Berashevich, Y A; Kholod, A N; Borisenko, V E

    2002-01-01

    A kinetic model of charge carrier transport in nanosize periodical Si/CaF sub 2 structures via localized states in dielectric is proposed. Computer simulation of the current-voltage characteristics of such structures has shown that the built-in field arises in a dielectric due to polarization of the trapped charge by localized centers. This results in current hysteresis and negative differential resistance region at the current-voltage characteristics when the bias polarity is changed. At temperature below 250 K, the portion of negative differential resistance vanishes

  15. Ion milling coupled field emission scanning electron microscopy reveals current misunderstanding of morphology of polymeric nanoparticles.

    Science.gov (United States)

    Francis, Donny; Mouftah, Samiha; Steffen, Robert; Beduneau, Arnaud; Pellequer, Yann; Lamprecht, Alf

    2015-01-01

    Nanoparticles (NPs) are currently used as drug delivery systems for numerous therapeutic macromolecules, e.g. proteins or DNA. Based on the preparation by double emulsion solvent evaporation a sponge-like structure was postulated entrapping hydrophilic drugs inside an internal aqueous phase. However, a direct proof of this hypothesized structure is still missing today. NPs were prepared from different polymers using a double-emulsion method and characterized for their physicochemical properties. Combining ion milling with field emission scanning electron microscopy allowed to cross section single NP and to visualize their internal morphology. The imaging procedure permitted cross-sectioning of NPs and visualization of the internal structure as well as localizing drugs associated with NPs. It was observed that none of the model actives was encapsulated inside the polymeric matrix when particle diameters were below around 470 nm but predominantly adsorbed to the particle surface. Even at larger diameters only a minority of particles of a diameter below 1 μm contained an internal phase. The properties of such drug loaded NPs, i.e. drug release or the observations in cellular uptake or even drug targeting needs to be interpreted carefully since in most cases NP surface properties are potentially dominated by the 'encapsulated' drug characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode

    Science.gov (United States)

    Wu, Cheng-Yu; Chang, Chun-Chi; Duh, Jenq-Gong

    2016-09-01

    Silicon nitride coated silicon (N-Si) has been synthesized by two-step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. From the potential window of 1.2 V-0.05 V, high rate charge-discharge and long cycle test have been executed to investigate the electrochemical performances of various N-Si coated Si-based lithium ion batteries anode materials. Higher specific capacity can be obtained after 200 cycles. The cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N-Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability. It is expected that N-Si is a potential candidate for batteries that can work effectively under high power.

  17. The penetration of ions into the magnetosphere through the magnetopause turbulent current sheet

    Directory of Open Access Journals (Sweden)

    A. Taktakishvili

    Full Text Available This paper reports the results of numerical modeling of magnetosheath ion motion in the magnetopause current sheet (MCS in the presence of magnetic fluctuations. Our model of magnetic field turbulence has a power law spectrum in the wave vector space, reaches maximum intensity in the center of MCS, and decreases towards the magnetosheath and magnetosphere boundaries. We calculated the density profile across the MCS. We also calculated the number of particles entering the magnetosphere, reflected from the magnetopause and escaping from the flanks, as a function of the fluctuation level of the turbulence and magnetic field shear parameter. All of these quantities appeared to be strongly dependent on the fluctuation level, but not on the magnetic field shear parameter. For the highest fluctuation levels the number of particles entering the magnetosphere does not exceed 15% of the total number of particles launched from the magnetosheath side of the MCS; the modeling also reproduced the effective reflection of the magnetosheath flow from very high levels of magnetic fluctuations.

    Key words. Magnetospheric physics (magnetosheath; magnetospheric configuration and dynamics; turbulence

  18. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Giacomin, M. [Physics Department, Università di Padova, via F. Marzolo 8, 35131 Padova (Italy); Bonomo, F.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  19. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  20. Low-voltage large-current ion gel gated polymer transistors fabricated by a "cut and bond" process.

    Science.gov (United States)

    Shao, Xianyi; Bao, Bei; Zhao, Jiaqing; Tang, Wei; Wang, Shun; Guo, Xiaojun

    2015-03-04

    A "cut and bond" process using a commercial die bonder was developed for fabricating ion gel gated organic thin-film transistors (OTFTs). It addresses the issues of damaging or contaminating the channel layer when depositing the ion gel layer on top in conventional fabrication processes. The formed isolated dielectric regions can help to eliminate possible lateral electric field coupling through the dielectric layer when several devices are integrated to construct functional circuits. The fabricated OTFTs provide mA-level ON current, and an ON/OFF current ratio higher than 10(5) with the gate swing voltage of less than 3 V. With the developed process, the ion gel OTFTs are integrated with inorganic light emitting diodes (LEDs) of different colors on plastic substrate using the same die bonder, and the light emission of the LEDs can be modulated in a wide range from dark to high brightness with change of the gate voltage less than 3 V.

  1. MeV-SIMS yield measurements using a Si-PIN diode as a primary ion current counter

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, Valentin; Bogdanović Radović, Iva [Ruđer Bošković Institute, Zagreb (Croatia); Demarche, Julien [University of Surrey, Surrey (United Kingdom); Jakšić, Milko [Ruđer Bošković Institute, Zagreb (Croatia); Matjačić, Lidija [University of Surrey, Surrey (United Kingdom); Siketić, Zdravko [Ruđer Bošković Institute, Zagreb (Croatia); Webb, Roger [University of Surrey, Surrey (United Kingdom)

    2016-03-15

    Megaelectronvolt-Secondary Ion Mass Spectrometry (MeV-SIMS) is an emerging Ion Beam Analysis technique for molecular speciation and submicron imaging. Various setups have been constructed in the recent years. Still a systematic investigation on the dependence of MeV-SIMS yields on different ion beam parameters is missing. A reliable measurement method of the beam current down to the attoampere range is needed for this investigation. Therefore, a new detector has been added to the MeV-SIMS setup at the Ruđer Bošković Institute (RBI), which measures the current directly using a Si PIN-diode. In this work, we present the constructed system, its characteristics, and results of the first yield measurements. These measurements have already identified important factors that have to be considered while constructing a MeV SIMS setup.

  2. Current progress of the biological single-ion microbeam at FUDAN.

    Science.gov (United States)

    Wang, X F; Li, J Q; Wang, J Z; Zhang, J X; Liu, A; He, Z J; Zhang, W; Zhang, B; Shao, C L; Shi, L Q

    2011-08-01

    A biological microbeam for precisely positioned single-ion/single cell irradiation is built in the Institute of Modern Physics in Fudan University, Shanghai, China, based on the tandem accelerator (2 × 3MV) in the laboratory. In this paper, the developing progress of the FUDAN microbeam is reported, including the newly constructed beam line, the microbeam collimator, the ion detection system, and the cell-imaging and targeting systems. Statistical models are proposed for evaluating the spatial resolution and dosage precision of the microbeam. By taking the collimated ions as a Gaussian beam, the spatial resolution can be evaluated by the full width at half maximum of the 2-D Gaussian distribution, which is determined by fitting the proportions of peripheral pits outside specific radii in the pit clusters etched on ion track detectors to a 2-D Gaussian distribution. In the preset hitting of defined ion number, by taking the real delivered number of ions as an independent identically distributed random variable (iidrv), according to the Law of Large Numbers and Central Limit Theorem, the expected value μ and standard deviation σ of the real delivered ion number in a preset N-ion hitting can be determined by approaching the normal distribution of N (μ, σ (2)/n) with the proportions of the mean counts of pits in multiple pit clusters on ion track detectors. By the values of μ, σ and additional assumptions, statistical dosage precision evaluations can be made on the preset hitting. From the linear fit curve of μ(N) and the power function fit curve of σ(N) on different preset ion numbers, characteristic factors k, b, A, p can be extracted for a precision evaluation independent of the specific preset ion number.

  3. Ion current behaviors of mesoporous zeolite-polymer composite nanochannels prepared by water-assisted self-assembly.

    Science.gov (United States)

    Zhang, Wenjuan; Meng, Zheyi; Zhai, Jin; Heng, Liping

    2014-04-07

    Inspired by the asymmetry of biological ion channels in structure and composition, we designed a novel type of artificial asymmetric nanochannels based on mesoporous zeolite (MCM-41) and polyimide (PI) by water-assisted self-assembly. Meanwhile, we studied ionic current behaviors and rectifying characteristics of the mesoporous zeolite-polymer composite nanochannels.

  4. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Yan, Yu; Chang, Hsueh-Chia

    2013-07-02

    The physisorption of negatively charged single-stranded DNA (ssDNA) of different lengths onto the surface of anion-exchange membranes is sensitively shown to alter the anion flux through the membrane. At low surface concentrations, the physisorbed DNAs act to suppress an electroconvection vortex instability that drives the anion flux into the membrane and hence reduce the overlimiting current through the membrane. Beyond a critical surface concentration, determined by the total number of phosphate charges on the DNA, the DNA layer becomes a cation-selective membrane, and the combined bipolar membrane has a lower net ion flux, at low voltages, than the original membrane as a result of ion depletion at the junction between the cation- (DNA) and anion-selective membranes. However, beyond a critical voltage that is dependent on the ssDNA coverage, water splitting occurs at the junction to produce a larger overlimiting current than that of the original membrane. These two large opposite effects of polyelectrolyte counterion sorption onto membrane surfaces may be used to eliminate limiting current constraints of ion-selective membranes for liquid fuel cells, dialysis, and desalination as well as to suggest a new low-cost membrane surface assay that can detect and quantify the number of large biomolecules captured by probes functionalized on the membrane surface.

  5. Current instabilities under HF electron gas heating in semiconductors with negative differential conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, Yu. G.; Logvinov, G. N. [Instituto Politecnico Nacional, Mexico, D.F. (Mexico); Laricheva, N. [Datmouth College, New Hampshire (United States); Mashkevich, O. L. [Kharkov University, Kharkov (Ukraine)

    2001-10-01

    A nonlinear temperature dependence of the kinetic coefficients of semiconductor plasma can result in the appearance of regions of negative differential conductivity (NDC) in both the high-frequency (HF) and static current-voltage characteristics (CVC). In the present paper the formation of the static NDC under simultaneous electron gas heating by HF and static electric field is studied. As is shown below, in this case the heating electromagnetic wave has a pronounced effect on the appearance of NDC caused by the overheating mechanisms and the type of the static CVC as a whole. [Spanish] Una dependencia no lineal de la temperatura de los coeficientes cineticos del plasma del semiconductor puede llevar a la aparicion de regiones con conductividad diferencial negativa (CDN) en las caracteristicas corriente voltaje (CCV) de alta frecuencia (AF) y estatica. En este articulo se estudia la formacion de la CDN estatica bajo la accion simultanea del calentamiento del gas de electrones por AF y el campo electrico estatico. Como se muestra mas adelante, en este caso la onda electromagnetica que calienta a los electrones ejerce un fuerte efecto en la aparicion de la CDN; que se obtiene por mecanismos de sobrecalentamiento, y en el tipo de CCV estatica.

  6. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations

    CERN Document Server

    Zorkot, Mira; Bonthuis, Douwe Jan

    2015-01-01

    We calculate the power spectrum of electric-field-driven ion transport through cylindrical nanometer-scale pores using both linearized mean-field theory and Langevin dynamics simulations. With the atom-sized cutoff radius as the only fitting parameter, the linearized mean-field theory accurately captures the dependence of the simulated power spectral density on the pore radius and the applied electric field. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ${\\omega}$, which is confirmed by the Langevin dynamics simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the $1/{\\omega}^{\\alpha}$ dependence found experimentally at low frequency. Based on simulations with and without ion-ion interactions, we attribute the low-frequency power law dependence to ion-ion correlations. Finally, we show that the surface charge density has no effect on the frequency dependen...

  7. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    Science.gov (United States)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  8. Low-energy, high-current, ion source with cold electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-02-15

    An ion source based on a two-stage discharge with electron injection from a cold emitter is presented. The first stage is the emitter itself, and the second stage provides acceleration of injected electrons for gas ionization and formation of ion flow (<20 eV, 5 A dc). The ion accelerating system is gridless; acceleration is accomplished by an electric field in the discharge plasma within an axially symmetric, diverging, magnetic field. The hollow cathode electron emitter utilizes an arc discharge with cathode spots hidden inside the cathode cavity. Selection of the appropriate emitter material provides a very low erosion rate and long lifetime.

  9. Analysis on Differential Protection of Transformer Inrush Current%变压器差动保护涌流分析

    Institute of Scientific and Technical Information of China (English)

    陈浙; 吕天光

    2012-01-01

    分析了变压器励磁涌流产生的原因、励磁涌流的特点及对差动保护的影响,对目前采用的几种励磁涌流制动差动保护方案进行比较、分析,提出一种改进的制动方案。%This paper analyzed the causes of the inrush current of transformer,and its characteristic and influence on differential protection.Compared and analyzed several inrush current restraint differential protection schemes.This paper also presented an improved braking scheme.

  10. Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    CERN Document Server

    Crozier, P S; Rowley, R L; Busath, D D; Crozier, Paul S.; Henderson, Douglas; Rowley, Richard L.; Busath, David D.

    2001-01-01

    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.

  11. Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: A multienzyme differential ion mobility mass spectrometry approach.

    Science.gov (United States)

    Ulasi, Gloria N; Creese, Andrew J; Hui, Sam Xin; Penn, Charles W; Cooper, Helen J

    2015-08-01

    Glycosylation of flagellin is essential for the virulence of Campylobacter jejuni, a leading cause of bacterial gastroenteritis. Here, we demonstrate comprehensive mapping of the O-glycosylation of flagellin from Campylobacter jejuni 11168 by use of a bottom-up proteomics approach that incorporates differential ion mobility spectrometry (also known as high field asymmetric waveform ion mobility spectrometry or FAIMS) together with proteolysis with proteinase K. Proteinase K provides complementary sequence coverage to that achieved following trypsin proteolysis. The use of FAIMS increased the number of glycopeptides identified. Novel glycans for this strain were identified (pseudaminic acid and either acetamidino pseudaminic acid or legionaminic acid), as were novel glycosylation sites: Thr208, Ser343, Ser348, Ser349, Ser395, Ser398, Ser423, Ser433, Ser436, Ser445, Ser448, Ser451, Ser452, Ser454, Ser457 and Thr465. Multiply glycosylated peptides were observed, as well as variation at individual residues in the nature of the glycan and its presence or absence. Such extreme heterogeneity in the pattern of glycosylation has not been reported previously, and suggests a novel dimension in molecular variation within a bacterial population that may be significant in persistence of the organism in its natural environment. These results demonstrate the usefulness of differential ion mobility in proteomics investigations of PTMs.

  12. Differential effects of irradiation with carbon ions and x-rays on macrophage function.

    Science.gov (United States)

    Conrad, Sandro; Ritter, Sylvia; Fournier, Claudia; Nixdorff, Kathryn

    2009-05-01

    Macrophages are potent elicitors of inflammatory reactions that can play both positive and negative roles in radiotherapy. While several studies have investigated the effects of X-rays or gamma-rays on macrophages, virtually no work has been done on the responses of these cells to irradiation with carbon ions. Investigations into the effects of carbon ion irradiation are of particular interest in light of the fact that this type of radiation is being used increasingly for cancer therapy. In the present investigation we compared the effects of 250 kV X-rays with those of 9.8 MeV/u carbon ions on RAW 264.7 macrophages over a wide range of radiation doses. Macrophage functions including vitality, phagocytic activity, production of the proinflammatory cytokines IL-1beta and TNFalpha and production of nitric oxide (NO) were measured. In comparison to lymphocytes and fibroblasts, macrophages showed only a small decrease in vitality after irradiation with either X-rays or carbon ions. Proinflammatory cytokines and NO were induced in macrophages by LPS but not by irradiation alone. X-rays or carbon ions had little modulating effect on LPS-induced TNFalpha production. However, LPS-induced NO increased in a dose dependent manner up to 6-fold after carbon ion irradiation, while X-ray irradiation did not have this effect. Carbon ion irradiation mediated a concomitant decrease in IL-1beta production. Carbon ions also had a greater effect than X-rays in enhancing the phagocytic activity of macrophages. These results underscore the greater potential of carbon ion irradiation with regard to radiobiological effectiveness.

  13. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodgkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system. It was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  14. Some effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Romero, Fernando; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2008-10-31

    A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 microg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at -60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes.

  15. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodξkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    GONG YuBing; XIE YanHang; XU Bo; MA XiaoGuang

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system, it was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  16. Double differential distribution of electron emission in the ionization of water molecules by fast bare oxygen ions

    Science.gov (United States)

    Bhattacharjee, Shamik; Biswas, Shubhadeep; Bagdia, Chandan; Roychowdhury, Madhusree; Nandi, Saikat; Misra, Deepankar; Monti, J. M.; Tachino, C. A.; Rivarola, R. D.; Champion, C.; Tribedi, Lokesh C.

    2016-03-01

    The doubly differential distributions of low-energy electron emission in the ionization of water molecules under the impact of fast bare oxygen ions with energy of 48 MeV are measured. The measured data are compared with two quantum-mechanical models, i.e. the post and prior versions of the continuum distorted wave-eikonal initial state (CDW-EIS) approximation, and the first-order Born approximation with initial and final wavefunctions verifying correct boundary conditions (CB1). An overall excellent qualitative agreement is found between the data and the CDW-EIS models whereas the CB1 model showed substantial deviation. However, the detailed angular distributions display some discrepancies with both CDW-EIS models. The single differential and total cross-sections exhibit good agreement with the CDW-EIS models. The present detailed data set could also be used as an input for modeling highly charged ion induced radiation damage in living tissues, whose most abundant component is water. Similar measurements are also carried out for a projectile energy of 60 MeV. However, since the double differential cross-section data show similar results the details are not provided here, except for the total ionization cross-sections results.

  17. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oberreit, Derek [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110 (United States); Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J., E-mail: hogan108@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-09-14

    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  18. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  19. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  20. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  1. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    Science.gov (United States)

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Correlational and Differential Influence of Historical Cost and Current Cost Profits on the Operating Capabilities of the Firm

    OpenAIRE

    S. A. Effiong; J. O. Udoayang; A. I. Asuquo

    2011-01-01

    The study investigated the correlation and differential influence of historical cost and current cost profits on the operating capabilities of the firm. The financial statements of thirty-one Nigerian Companies were surveyed and adjusted for effects of price changes using the Consumers¡¯ Price Index (CPI). Correlation influence between the historical cost profits on the operating ability of the firm was measured and established on one hand and that of current cost profit on the other hand. Di...

  3. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells

    Science.gov (United States)

    Sit, Kevin; Li, P. K. C.; Ip, C. W.; Li, C. W.; Wan, Levin; Lam, Y. F.; Lai, P. Y.; Fan, Jiang; Magnuson, Doug

    We studied the specific energy, energy density, specific power, and power density of current commercial 18650 cylindrical and 103450 prismatic Li-ion cells. It was found that the specific energy, energy density, specific power, and power density have been increased dramatically since 1999. The highest specific energy obtained in this study is 193 Wh/kg, which is 90% more than that reported in 1999 and is only 5% lower than 200 Wh/kg, the long-term DOE goal [The International Energy Agency Implementing Agreement for Electric Vehicle Technologies and Programs, Annex V, Outlook Document, 1996-1997, p. 16.]. The cell energy density has also doubled since 1999 and is as much as about 70% more than 300 Wh/l, the long-term DOE goal. The cells studied here can deliver over 80% of their designed energy at the specific power 200 W/kg while the 18650 cell studied previously could only deliver 10% of their designed energy at the same specific power. Various kinds of the factors in the cell-specific energy and energy density were studied. It seems that the geometric difference can cause as much as a 9% difference in the specific energy and a 12% difference in the energy density between 18650 cylindrical and 103450 prismatic cells. Use of an aluminum can seems to lead to about a 16% improvement in the specific energy of 103450 cells compared with steel can. The decrease in the cell discharge voltage can cause as much as a 9% decrease in the cell energy at the 2 C rate while it has a relatively small effect on the cell energy or specific energy at the 0.2 C rate. Compared with what has been obtained at room temperature, there are 17-35% at -20 °C, 43-76% at -30 °C, and 78-100% decreases at -40 °C, respectively, in the cell discharge energy and specific energy depending on the cell manufacturer. The decrease in the cell average discharge voltage during the cycling test can contribute as much as a 6% decrease in the cell energy at the 1 C rate after 300 cycles, which is 21% of

  4. Post-prior discrepancies in CDW-EIS calculations for ion impact ionization fully differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F; Cravero, W R [CONICET and Departamento de Fisica, Av Alem 1253 (8000) BahIa Blanca (Argentina)

    2006-03-14

    In this work we present fully differential cross sections (FDCSs) calculations using post and prior versions of CDW-EIS theory for helium single ionization by 100 MeV C{sup 6+} amu{sup -1} and 3.6 MeV amu{sup -1} Au{sup 24+} and Au{sup 53+} ions. We performed our calculations for different momentum transfer and ejected electron energies. The influence of internuclear potential on the ejected electron spectra is taken into account in all cases. We compare our calculations with absolute experimental measurements. It is shown that prior version calculations give better agreement with experiments in almost all studied cases.

  5. Post-Prior discrepancies in CDW-EIS calculations for ion impact ionization fully differential cross sections

    CERN Document Server

    Ciappina, M F

    2005-01-01

    In this work we present fully differential cross sections (FDCSs) calculations using post and prior version of CDW--EIS theory for helium single ionization by 100 MeV C$^{6+}$ amu$^{-1}$ and 3.6 MeV amu$^{-1}$ Au$^{24+}$ and Au$^{53+}$ ions. We performed our calculations for different momentum transfer and ejected electron energies. The influence of internuclear potential on the ejected electron spectra is taken into account in all cases. We compare our calculations with absolute experimental measurements. It is shown that prior version calculations give better agreement with experiments in almost all studied cases.

  6. Fully differential cross sections for ion-atom impact ionization in the presence of a laser field

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str 38, D-01187, Dresden (Germany)

    2007-11-14

    We study fully differential cross sections (FDCS) for single ionization of helium by ion impact in the presence of a laser field. The field is assumed to have linear polarization, to be weak compared to the typical atomic field, and we use a frequency corresponding to a CO{sub 2} laser. We employ the continuum distorted wave-eikonal initial state (CDW-EIS) to describe our FDCS in the laser background. Analysing our numerical results we explore the dependence of the FDCS on the laser field properties as well as on the ionized electron parameters.

  7. Fully differential cross sections in single ionization of helium by ion impact: Assessing the role of correlated wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M.F. [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D-01187, Dresden (Germany)], E-mail: ciappi@pks.mpg.de; Cravero, W.R. [CONICET and Departamento de Fisica, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB, Bahia Blanca (Argentina)

    2008-02-15

    We study the effect of final state dynamic correlation in single ionization of atoms by ion impact analyzing fully differential cross sections (FDCS). We use a distorted wave model where the final state is represented by a {phi}{sub 2} type correlated function, solution of a non-separable three body continuum Hamiltonian. This final state wave function partially includes the correlation of electron-projectile and electron-recoil relative motion as coupling terms of the wave equation. A comparison of fully differential results using this model with other theories and experimental data reveals that inclusion of dynamic correlation effects have little influence on FDCS, and do not contribute to a better description of available data in the case of electronic emission out-of scattering plane.

  8. Current Transformers for GSI's KeV/u to GeV/u Ion Beams an Overview

    CERN Document Server

    Reeg, H

    2001-01-01

    At GSI's accelerator facilities ion beam intensities usually are observed and measured with various types of current transformers (CT), matched to the special requirements at their location in the machines. In the universal linear accelerator (UNILAC), and the high charge state injector (HLI) as well, active transformers with 2nd-order feedback are used, while passive pulse CTs and two DC-CTs based on the magnetic modulator principle are implemented in the heavy ion synchrotron (SIS) and the experimental storage ring (ESR). In the high energy beam transfer lines (HEBT) the particle bunch extraction/reinjection is monitored with resonant charge-integrating types. Since more than 10 years number and significance of beam current transformers for operating GSI's accelerators have grown constantly. Due to increased beam intensities following the last UNILAC upgrade, transmission monitoring and beam loss supervision with CTs have become the main tools for machine protection and radiation security purposes. All CTs ...

  9. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds.

    Science.gov (United States)

    Han, Pingping; Wu, Chengtie; Chang, Jiang; Xiao, Yin

    2012-09-01

    Lithium (Li) has been widely used as a long-term mood stabilizer in the treatment of bipolar and depressive disorders. Li(+) ions are thought to enhance the remyelination of peripheral nerves and also stimulate the proliferation of neural progenitor cells and retinoblastoma cells via activation of the Wnt/β-catenin signalling pathway. Until now there have been no studies reporting the biological effects of released Li(+) in bioactive scaffolds on cemetogenesis in periodontal tissue engineering applications. In this study, we incorporated parts of Li(+) ions into the mesoporous bioactive glass (MBG) scaffolds and showed that this approach yielded scaffolds with a favourable composition, microstructure and mesopore properties for cell attachment, proliferation, and cementogenic differentiation of human periodontal ligament-derived cells (hPDLCs). We went on to investigate the biological effects of Li(+) ions themselves on cell proliferation and cementogenic differentiation. The results showed that 5% Li(+) ions incorporated into MBG scaffolds enhanced the proliferation and cementogenic differentiation of hPDLCs on scaffolds, most likely via activation of Wnt/β-catenin signalling pathway. Further study demonstrated that Li(+) ions by themselves significantly enhanced the proliferation, differentiation and cementogenic gene expression of PDLCs. Our results indicate that incorporation of Li(+) ions into bioactive scaffolds is a viable means of enhancing the Wnt canonical signalling pathway to stimulate cementogenic differentiation of PDLCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A novel algorithm for discrimination between inrush current and internal faults in power transformer differential protection based on discrete wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Eldin, A.A. Hossam; Refaey, M.A. [Electrical Engineering Department, Alexandria University, Alexandria (Egypt)

    2011-01-15

    This paper proposes a novel methodology for transformer differential protection, based on wave shape recognition of the discriminating criterion extracted of the instantaneous differential currents. Discrete wavelet transform has been applied to the differential currents due to internal fault and inrush currents. The diagnosis criterion is based on median absolute deviation (MAD) of wavelet coefficients over a specified frequency band. The proposed algorithm is examined using various simulated inrush and internal fault current cases on a power transformer that has been modeled using electromagnetic transients program EMTDC software. Results of evaluation study show that, proposed wavelet based differential protection scheme can discriminate internal faults from inrush currents. (author)

  11. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Catarelli, Samantha Raisa; Lonsdale, Daniel; Cheng, Lei; Syzdek, Jaroslaw; Doeff, Marca

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting...

  12. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Samantha Raisa Catarelli; Daniel eLonsdale; Lei eCheng; Jaroslaw S Syzdek; Marca eDoeff

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then a dense pellet of an electronically insulating but Li-ion conducting ...

  13. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  14. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  15. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  16. Prospects for Charged Current Deep-Inelastic Scattering off Polarized Nucleons at a Future Electron-Ion Collider

    CERN Document Server

    Aschenauer, Elke C; Martini, Till; Spiesberger, Hubert; Stratmann, Marco

    2013-01-01

    We present a detailed phenomenological study of charged-current-mediated deep-inelastic scattering off longitudinally polarized nucleons at a future Electron-Ion Collider. A new version of the event generator package DJANGOH, extended by capabilities to handle processes with polarized nucleons, is introduced and used to simulate charged current deep-inelastic scattering including QED, QCD, and electroweak radiative effects. We carefully explore the range of validity and the accuracy of the Jacquet-Blondel method to reconstruct the relevant kinematic variables from the measured hadronic final state in charged current events, assuming realistic detector performance parameters. Finally, we estimate the impact of the simulated charged current single-spin asymmetries on determinations of helicity parton distributions in the context of a global QCD analysis at next-to-leading order accuracy.

  17. Concentration polarization with monopolar ion exchange membranes: current-voltage curves and water dissociation

    NARCIS (Netherlands)

    Krol, J.J.; Wessling, M.; Strathmann, H.

    1999-01-01

    Concentration polarization is studied using a commercial anion and cation exchange membrane. Current¿voltage curves show the occurrence of an overlimiting current. The nature of this overlimiting current is investigated in more detail, especially with respect to the contribution of water dissociatio

  18. Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny

    Directory of Open Access Journals (Sweden)

    Leonhard Linta

    2013-01-01

    Full Text Available Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. Additionally, iPSCs express a much higher number of ion channels compared to keratinocytes. Further, to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny, namely, neurons and cardiomyocytes derived from iPS cells. To conclude, hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.

  19. Penetration Depths of Energetic Electrons and Ions into the Inner Magnetosphere and Their Contributions to the Ring Current Energy Content

    Science.gov (United States)

    Li, Xinlin; Zhao, Hong; Baker, Daniel; Claudepierre, Seth; Fennell, Joe; Blake, J. Bernard; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Friedel, Reiner; Reeves, Geoff; Spence, Harlan; Mitchell, Donald; Lanzerotti, Louis

    2016-04-01

    Deep injections of energetic electrons and ions into the inner magnetosphere occur frequently, but the depths of the injections strongly depend on the species and energies. Electrons with energies of 10s to 100s of keV are injected into the inner belt (Linner belt but lost quickly. Ions with higher energies have much longer lifetime but cannot be injected as deep. For similar energies (100s of keV), Oxygen are injected a little deeper than Hydrogen and also decayed faster. Those results are obtained based on the measurements from the Van Allen Probes mission. The underline physics mechanisms responsible for these observations are still not clear. The relative contributions of these energetic particles to the ring current energy content have been calculated. Electrons contribute much less than the ions (~10%) with <35 keV electrons dominating the electron energy content during the main phases of a storm. The enhancement of electron energy content during a storm can get to ~30% of that of ions, indicating a more dynamic feature of the electrons.

  20. Ion current extracted from a self ignition plasma around the target immersed in a pulsed rf ICP methane plasma

    Science.gov (United States)

    Tanaka, Takeshi; Watanabe, Satoshi; Mizuno, Giichiro; Takagi, Toshinori; Yoshida, Mitsuhiro; Horibe, Hiroshi; Yukimura, Ken

    2003-05-01

    When a pulsed voltage is applied to a target immersed in plasma, the surrounding medium of the target is self-ignited under an appropriate discharge condition. For a three-dimensional substrate, ion implantation and deposition of the plasma species are promising to be uniformly attained by the self-ignition plasma. A retained dose of conformal ion implantation may increase with the self-ignition plasma generated in the target-immersed plasma. Ion are extracted from both the target-immersed plasma and the self-ignition plasma. In this research, a stainless steel target with a diameter of 140 mm and a thickness of 18 mm was immersed in a pulsed inductively coupled methane plasma to which a pulse voltage of -400 V to -10 kV with a width of 12 μs was repeatedly applied. The self-ignition plasma was generated at the voltage higher than about -1.2 kV. It was found that the shape of the current waveform changes by varying the applied voltage due to the change of the current from the self-ignition plasma.

  1. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets.

    Science.gov (United States)

    Han, Linjie; Ruotolo, Brandon T

    2015-07-01

    Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.

  2. Long-term differential changes in mouse intestinal metabolomics after γ and heavy ion radiation exposure.

    Directory of Open Access Journals (Sweden)

    Amrita K Cheema

    Full Text Available Tissue consequences of radiation exposure are dependent on radiation quality and high linear energy transfer (high-LET radiation, such as heavy ions in space is known to deposit higher energy in tissues and cause greater damage than low-LET γ radiation. While radiation exposure has been linked to intestinal pathologies, there are very few studies on long-term effects of radiation, fewer involved a therapeutically relevant γ radiation dose, and none explored persistent tissue metabolomic alterations after heavy ion space radiation exposure. Using a metabolomics approach, we report long-term metabolomic markers of radiation injury and perturbation of signaling pathways linked to metabolic alterations in mice after heavy ion or γ radiation exposure. Intestinal tissues (C57BL/6J, female, 6 to 8 wks were analyzed using ultra performance liquid chromatography coupled with electrospray quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS two months after 2 Gy γ radiation and results were compared to an equitoxic ⁵⁶Fe (1.6 Gy radiation dose. The biological relevance of the metabolites was determined using Ingenuity Pathway Analysis, immunoblots, and immunohistochemistry. Metabolic profile analysis showed radiation-type-dependent spatial separation of the groups. Decreased adenine and guanosine and increased inosine and uridine suggested perturbed nucleotide metabolism. While both the radiation types affected amino acid metabolism, the ⁵⁶Fe radiation preferentially altered dipeptide metabolism. Furthermore, ⁵⁶Fe radiation caused upregulation of 'prostanoid biosynthesis' and 'eicosanoid signaling', which are interlinked events related to cellular inflammation and have implications for nutrient absorption and inflammatory bowel disease during space missions and after radiotherapy. In conclusion, our data showed for the first time that metabolomics can not only be used to distinguish between heavy ion and γ radiation exposures, but

  3. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields

    Directory of Open Access Journals (Sweden)

    Kaplan David L

    2011-01-01

    Full Text Available Abstract Background Electric fields are integral to many biological events, from maintaining cellular homeostasis to embryonic development to healing. The application of electric fields offers substantial therapeutic potential, while optimal dosing regimens and the underlying mechanisms responsible for the positive clinical impact are poorly understood. Methods The purpose of this study was to track the differentiation profile and stress response of human bone marrow derived mesenchymal stem cells (hMSCs undergoing osteogenic differentiation during exposure to a 20 mV/cm, 60 kHz electric field. Morphological and biochemical changes were imaged using endogenous two-photon excited fluorescence (TPEF and quantitatively assessed through eccentricity calculations and extraction of the redox ratio from NADH, FAD and lipofuscin contributions. Real time reverse transcriptase-polymerase chain reactions (RT-PCR were used to track osteogenic differentiation markers, namely alkaline phosphatase (ALP and collagen type 1 (col1, and stress response markers, such as heat shock protein 27 (hsp27 and heat shock protein 70 (hsp70. Comparisons of collagen deposition between the stimulated hMSCs and controls were examined through second harmonic generation (SHG imaging. Results Quantitative differences in cell morphology, as described through an eccentricity ratio, were found on days 2 and days 5 (p Conclusions Electrical stimulation is a useful tool to improve hMSC osteogenic differentiation, while heat shock proteins may reveal underlying mechanisms, and optical non-invasive imaging may be used to monitor the induced morphological and biochemical changes.

  4. Current Challenges in Development of Differentially Expressed and Prognostic Prostate Cancer Biomarkers

    Directory of Open Access Journals (Sweden)

    Steven M. Lucas

    2012-01-01

    Full Text Available Introduction. Predicting the aggressiveness of prostate cancer at biopsy is invaluable in making treatment decisions. In this paper we review the differential expression of genes and microRNAs identified through microarray analysis as potentially useful markers for prostate cancer prognosis and discuss some of the challenges associated with their development. Methods. A review of the literature was conducted through Medline. Articles were identified through searches of the following terms: “prostate cancer AND differential expression”, “prostate cancer prognosis”, and “prostate cancer AND microRNAs”. Results. Though numerous differentially expressed genes and microRNAs were identified as possible prognostic markers, the significance of several of these genes is either debated due to conflicting results or is not validated in other study populations. A few of the articles constructed predictive nomograms using a panel of biomarkers which require further validation. Challenges to the development of useful markers include different methodology, cancer heterogeneity, and sampling error. These can be overcome by categorizing prognostic factors into particular gene pathways or by supplementing biopsy information with blood or urine-based biomarkers. Conclusion. Though biomarkers based on differential expression offer the potential to improve decision making concerning prostate cancer, further validation of their utility and accuracy at the biopsy level is needed.

  5. Magnetorheological elastomer with stiffness-variable characteristics based on induced current applied to differential mount of vehicles

    Science.gov (United States)

    Jeong, Un-Chang; Yoon, Ji-Hyun; Yang, In-Hyung; Jeong, Jae-Eun; Kim, Jin-Su; Chung, Kyung-Ho; Oh, Jae-Eung

    2013-11-01

    A differential mount with elastomers is installed to insulate vibration transmitted from the engine to the body through the propeller shaft. Since existing differential mounts adopt an elastomer of uniform stiffness, it is difficult to meet both the requirements for steering performance and driving comfort at the same time. In order to overcome this limitation, this study suggests a magnetorheological elastomer (MRE)-based stiffness-variable differential mount which allows the mount’s stiffness to vary reversibly or instantly. The stiffness-variable differential mount was designed with a new inner structure where a magnetic field can be induced in the MRE. Further, the geometry of the MRE was optimized by means of the response surface method to achieve a targeted level of stiffness. The variable performance of the stiffness-variable differential mount was evaluated with the dynamic stiffness when a current of 3 A (0.287 T) was applied. As a result, it was found that the average increase in dynamic stiffness was 4.41 kgf mm-1 over an excitation frequency range of 60-100 Hz, a critical point of variation for dynamic stiffness, and 3.60 kgf mm-1 over an excitation frequency range of less than 100 Hz.

  6. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation.

    Science.gov (United States)

    García, L; Castillo, C; Carballo, J; Rodríguez, Y; Forsyth, P; Medina, R; Martínez, J C; Longart, M

    2013-04-16

    Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.

  7. A new theoretical model for transmembrane potential and ion currents induced in a spherical cell under low frequency electromagnetic field.

    Science.gov (United States)

    Zheng, Yu; Gao, Yang; Chen, Ruijuan; Wang, Huiquan; Dong, Lei; Dou, Junrong

    2016-10-01

    Time-varying electromagnetic fields (EMF) can induce some physiological effects in neuronal tissues, which have been explored in many applications such as transcranial magnetic stimulation. Although transmembrane potentials and induced currents have already been the subjects of many theoretical studies, most previous works about this topic are mainly completed by utilizing Maxwell's equations, often by solving a Laplace equation. In previous studies, cells were often considered to be three-compartment models with different electroconductivities in different regions (three compartments are often intracellular regions, membrane, and extracellular regions). However, models like that did not take dynamic ion channels into consideration. Therefore, one cannot obtain concrete ionic current changes such as potassium current change or sodium current change by these models. The aim of the present work is to present a new and more detailed model for calculating transmembrane potentials and ionic currents induced by time-varying EMF. Equations used in the present paper originate from Nernst-Plank equations, which are ionic current-related equations. The main work is to calculate ionic current changes induced by EMF exposure, and then transmembrane potential changes are calculated with Hodgkin-Huxley model. Bioelectromagnetics. 37:481-492, 2016. © 2016 Wiley Periodicals, Inc.

  8. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  9. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  10. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  11. Differential regulation of proton-sensitive ion channels by phospholipids: a comparative study between ASICs and TRPV1.

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    Full Text Available Protons are released in pain-generating pathological conditions such as inflammation, ischemic stroke, infection, and cancer. During normal synaptic activities, protons are thought to play a role in neurotransmission processes. Acid-sensing ion channels (ASICs are typical proton sensors in the central nervous system (CNS and the peripheral nervous system (PNS. In addition to ASICs, capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1 channels can also mediate proton-mediated pain signaling. In spite of their importance in perception of pH fluctuations, the regulatory mechanisms of these proton-sensitive ion channels still need to be further investigated. Here, we compared regulation of ASICs and TRPV1 by membrane phosphoinositides, which are general cofactors of many receptors and ion channels. We observed that ASICs do not require membrane phosphatidylinositol 4-phosphate (PI(4P or phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 for their function. However, TRPV1 currents were inhibited by simultaneous breakdown of PI(4P and PI(4,5P2. By using a novel chimeric protein, CF-PTEN, that can specifically dephosphorylate at the D3 position of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3, we also observed that neither ASICs nor TRPV1 activities were altered by depletion of PI(3,4,5P3 in intact cells. Finally, we compared the effects of arachidonic acid (AA on two proton-sensitive ion channels. We observed that AA potentiates the currents of both ASICs and TRPV1, but that they have different recovery aspects. In conclusion, ASICs and TRPV1 have different sensitivities toward membrane phospholipids, such as PI(4P, PI(4,5P2, and AA, although they have common roles as proton sensors. Further investigation about the complementary roles and respective contributions of ASICs and TRPV1 in proton-mediated signaling is necessary.

  12. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration.

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-04-27

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.

  13. Trpc1 Ion Channel Modulates Phosphatidylinositol 3-Kinase/Akt Pathway during Myoblast Differentiation and Muscle Regeneration*

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T.; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-01-01

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1−/− and Trpc1+/+ murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1−/− muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1−/− mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1−/− muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1−/− primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca2+ or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca2+ through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca2+-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration. PMID:22399301

  14. Fasting and 17β-estradiol differentially modulate the M-current in NPY neurons

    Science.gov (United States)

    Roepke, Troy A.; Qiu, Jian; Smith, Arik W.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2011-01-01

    Multiple K+ conductances are targets for many peripheral and central signals involved in the control of energy homeostasis. Potential K+ channel targets are the KCNQ subunits that form the channels underlying the M-current, a sub-threshold, non-inactivating K+ current that is a common target for G-protein coupled receptors. Whole-cell recordings were made from GFP (Renilla)-tagged NPY neurons from the arcuate nucleus of the hypothalamus using protocols to isolate and characterize the M-current in these orexigenic neurons. We recorded robust K+ currents in the voltage range of the M-current, which were inhibited by the selective KCNQ channel blocker XE991 (40 µM), in both intact males and ovariectomized, 17β-estradiol (E2)-treated females. Since NPY neurons are orexigenic and are active during fasting, the M-current was measured in fed and fasted male mice. Fasting attenuated the XE991-sensitive current by 3-fold which correlated with decreased expression of the KCNQ2 and KCNQ3 subunits as measured with quantitative real-time PCR. Furthermore, E2 treatment augmented the XE991-sensitive M-current by 3-fold in ovariectomized (vs. oil-treated) female mice. E2-treatment increased the expression of the KCNQ5 subunit in females but not KCNQ2 or KCNQ3 subunits. Fasting in females abrogated the effects of E2 on M-current activity, at least in part, by decreasing KCNQ2 and KCNQ3 expression. In summary, these data suggest that the M-current plays a pivotal role in the modulation of NPY neuronal excitability and may be an important cellular target for neurotransmitter and hormonal signals in the control of energy homeostasis in both males and females. PMID:21849543

  15. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    Science.gov (United States)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  16. Enhancement in field emission current density of Ni nanoparticles embedded in thin silica matrix by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Debalaya; Patra, Rajkumar; Srivastava, P.; Ghosh, S., E-mail: santanu1@physics.iitd.ac.in [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, H. [Nanostech Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Instituto de Física, Universidade de São Paulo, USP, 05508-090 São Paulo, SP (Brazil); Kabiraj, D.; Avasthi, D. K. [Inter University Accelerator Centre, New Delhi 110067 (India); Vayalil, Sarathlal K.; Roth, S. V. [DESY, Petra III, Hamburg (Germany)

    2014-05-07

    The field emission (FE) properties of nickel nanoparticles embedded in thin silica matrix irradiated with 100 MeV Au{sup +7} ions at various fluences are studied here. A large increase in FE current density is observed in the irradiated films as compared to their as deposited counterpart. The dependence of FE properties on irradiation fluence is correlated with surface roughness, density of states of valence band and size distribution of nanoparticles as examined with atomic force microscope, X-ray photoelectron spectroscopy, and grazing incidence small angle x-ray scattering. A current density as high as 0.48 mA/cm{sup 2} at an applied field 15 V/μm has been found for the first time for planar field emitters in the film irradiated with fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. This significant enhancement in the current density is attributed to an optimized size distribution along with highest surface roughness of the same. This new member of field emission family meets most of the requirements of cold cathodes for vacuum micro/nanoelectronic devices.

  17. Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

    Directory of Open Access Journals (Sweden)

    Yuan Hung Lo

    2013-01-01

    Full Text Available Little is known about how small variations in ionic currents and Ca2+ and Na+ diffusion coefficients impact action potential and Ca2+ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004 to 5%–10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca2+ peaks are highly sensitive to 10% increase in L-type Ca2+ current; moderately influenced by 10% increase in Na+-Ca2+ exchanger, Na+-K+ pump, rapid delayed and slow transient outward K+ currents, and Cl− background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca2+ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca2+ channels and Na+-Ca2+ exchanger in between junctional and submembrane spaces while Ca2+-activated Cl−-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca2+, but not in Na+ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca2+ signaling.

  18. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Gallegos, Janneth; Arce, Cristina; Jordano, Rafael; Arce, Lourdes; Medina, Luis M

    2017-04-01

    The purpose of this work was to study the potential of gas chromatography-ion mobility spectrometry (GC-IMS) to differentiate lactic acid bacteria (LAB) through target identification and fingerprints of volatile metabolites. The LAB selected were used as reference strains for their influence in the flavour of cheese. The four strains of LAB can be distinguished by the fingerprints generated by the volatile organic compounds (VOCs) emitted. 2-butanone, 2-pentanone, 2-heptanone and 3-methyl-1-butanol were identified as relevant VOCs for Lactobacillus casei and Lactobacillus paracasei subsp. paracasei. 2-Butanone and 3-methyl-1-butanol were identified in Lactococcus lactis subsp. lactis and Lactococcus cremoris subsp. cremoris. The IMS signals monitoring during a 24-30h period showed the growth of the LAB in vitro. The results demonstrated that GC-IMS is a useful technology for bacteria recognition and also for screening the aromatic potential of new isolates of LAB.

  19. Broad Separation of Isomeric Lipids by High-Resolution Differential Ion Mobility Spectrometry with Tandem Mass Spectrometry

    Science.gov (United States)

    Bowman, Andrew P.; Abzalimov, Rinat R.; Shvartsburg, Alexandre A.

    2017-08-01

    Maturation of metabolomics has brought a deeper appreciation for the importance of isomeric identity of lipids to their biological role, mirroring that for proteoforms in proteomics. However, full characterization of the lipid isomerism has been thwarted by paucity of rapid and effective analytical tools. A novel approach is ion mobility spectrometry (IMS) and particularly differential or field asymmetric waveform IMS (FAIMS) at high electric fields, which is more orthogonal to mass spectrometry. Here we broadly explore the power of FAIMS to separate lipid isomers, and find a 75% success rate across the four major types of glycero- and phospho- lipids ( sn, chain length, double bond position, and cis/ trans). The resolved isomers were identified using standards, and (for the first two types) tandem mass spectrometry. These results demonstrate the general merit of incorporating high-resolution FAIMS into lipidomic analyses.

  20. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  1. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries

    Science.gov (United States)

    Park, Hyeji; Um, Ji Hyun; Choi, Hyelim; Yoon, Won-Sub; Sung, Yung-Eun; Choe, Heeman

    2017-03-01

    A Novel 3D porous Sn-Cu architecture is prepared as an anode material for use in an advanced lithium-ion battery. Micro-lamellar-structured 3D porous Cu foam, which is electroless-plated with Sn as an active material, is used as anode current collector. Compared to Sn-coated Cu foil, the 3D Sn-Cu foam exhibits superior Li-ion capacity and stable capacity retention, demonstrating the advantage of 3D porous architecture by preserving its structural integrity. In addition, the effect of heat-treatment after Sn plating is investigated. Sn/Sn6Cu5 and SnO2/Cu10Sn3 were formed on and in the 3D Sn-Cu foam under the heat-treatment at 150 °C and 500 °C, respectively. The development of Cu10Sn3 in the 3D Sn-Cu foam heat-treated at 500 °C can be a key factor for the enhanced cyclic stability because the Cu10Sn3 inactively reacts with Li-ion and alleviates the volume expansion of SnO2 as an inactive matrix.

  2. Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon.

    Science.gov (United States)

    Lim, Jae Kyu; Mayer, Florian; Kang, Sung Gyun; Müller, Volker

    2014-08-05

    Thermococcus onnurineus NA1 is known to grow by the anaerobic oxidation of formate to CO2 and H2, a reaction that operates near thermodynamic equilibrium. Here we demonstrate that this reaction is coupled to ATP synthesis by a transmembrane ion current. Formate oxidation leads to H(+) translocation across the cytoplasmic membrane that then drives Na(+) translocation. The ion-translocating electron transfer system is rather simple, consisting of only a formate dehydrogenase module, a membrane-bound hydrogenase module, and a multisubunit Na(+)/H(+) antiporter module. The electrochemical Na(+) gradient established then drives ATP synthesis. These data give a mechanistic explanation for chemiosmotic energy conservation coupled to formate oxidation to CO2 and H2. Because it is discussed that the membrane-bound hydrogenase with the Na(+)/H(+) antiporter module are ancestors of complex I of mitochondrial and bacterial electron transport these data also shed light on the evolution of ion transport in complex I-like electron transport chains.

  3. Positron production in heavy ion collisions: Current status of the problem - II

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.W.; Last, J.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.H. [Argonne National Lab., IL (United States)] [and others

    1994-08-01

    Narrow peaks have been observed at GSI Darmstadt in the energy spectra of positrons and sum-energy spectra of positron-electron pairs, produced in collisions of very heavy ions. To date, there is no satisfactory explanation of the origin of these lines although many differing models have been proposed. In this contribution, the authors describe the features of a new experiment aimed at the study of the line phenomenon and present the results of their first experiments. The specific goals of their experiment are to clarify the experimental situation regarding the lines through high-resolution, high-statistics data and, by direct measurement of the vector momenta of the peak pairs, to determine their kinematics.

  4. A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jens F. Peters

    2016-12-01

    Full Text Available Resource depletion aspects are repeatedly used as an argument for a shift towards new battery technologies. However, whether serious shortages due to the increased demand for traction and stationary batteries can actually be expected is subject to an ongoing discussion. In order to identify the principal drivers of resource depletion for battery production, we assess different lithium-ion battery types and a new lithium-free battery technology (sodium-ion under this aspect, applying different assessment methodologies. The findings show that very different results are obtained with existing impact assessment methodologies, which hinders clear interpretation. While cobalt, nickel and copper can generally be considered as critical metals, the magnitude of their depletion impacts in comparison with that of other battery materials like lithium, aluminum or manganese differs substantially. A high importance is also found for indirect resource depletion effects caused by the co-extraction of metals from mixed ores. Remarkably, the resource depletion potential per kg of produced battery is driven only partially by the electrode materials and thus depends comparably little on the battery chemistry itself. One of the key drivers for resource depletion seems to be the metals (and co-products in electronic parts required for the battery management system, a component rather independent from the actual battery chemistry. However, when assessing the batteries on a capacity basis (per kWh storage capacity, a high-energy density also turns out to be relevant, since it reduces the mass of battery required for providing one kWh, and thus the associated resource depletion impacts.

  5. Differential cross sections for single ionization of Li in collisions with fast protons and O$^{8+}$ ions

    CERN Document Server

    Gulyás, L; Kirchner, T

    2015-01-01

    We study the process of single ionization of Li in collisions with H$^+$ and O$^{8+}$ projectile ions at 6 MeV and 1.5-MeV/amu impact energies, respectively. Using the frameworks of the independent-electron model and the impact parameter picture, fully (FDCS) and doubly (DDCS) differential cross sections are evaluated in the continuum distorted-wave with eikonal initial-state approximation. Comparisons are made with the recent measurements of LaForge \\textit{et al} [J. Phys. B \\textbf{46} 031001 (2013)] for the DDCS and Hubele \\textit{et al} [Phys. Rev. Lett. \\textbf{110} 133201 (2013)] for the FDCS, respectively. For O$^{8+}$ impact inclusion of the heavy particle (NN) interaction in the calculations is crucial and effects of polarization due to the presence of the projectile ion have also to be taken into account for getting very good agreement with the measured data. Our calculation reproduces the satellite peak structure seen in the FDCS for the Li(2s) measurement, which we explain as being formed by a co...

  6. A detector based on silica fibers for ion beam monitoring in a wide current range

    Science.gov (United States)

    Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Nesteruk, K. P.; Scampoli, P.

    2016-03-01

    A detector based on doped silica and optical fibers was developed to monitor the profile of particle accelerator beams of intensity ranging from 1 pA to tens of μA. Scintillation light produced in a fiber moving across the beam is measured, giving information on its position, shape and intensity. The detector was tested with a continuous proton beam at the 18 MeV Bern medical cyclotron used for radioisotope production and multi-disciplinary research. For currents from 1 pA to 20 μA, Ce3+ and Sb3+ doped silica fibers were used as sensors. Read-out systems based on photodiodes, photomultipliers and solid state photomultipliers were employed. Profiles down to the pA range were measured with this method for the first time. For currents ranging from 1 pA to 3 μA, the integral of the profile was found to be linear with respect to the beam current, which can be measured by this detector with an accuracy of ~1%. The profile was determined with a spatial resolution of 0.25 mm. For currents ranging from 5 μA to 20 μA, thermal effects affect light yield and transmission, causing distortions of the profile and limitations in monitoring capabilities. For currents higher than ~1 μA, non-doped optical fibers for both producing and transporting scintillation light were also successfully employed.

  7. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael, E-mail: e.parsai@utoledo.edu [Department of Radiation Oncology, University of Toledo Medical Center, 1325 Conference Drive, Toledo, Ohio 43614 (United States); Holmes, Shannon [Standard Imaging, 3120 Deming Way, Middleton, Wisconsin 53562 (United States)

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  8. MEMS electrostatic inductive transformer using potassium ion electrets for up- or down-conversion of AC current

    Science.gov (United States)

    Suzuki, Masato; Moriyama, Takashi; Toshiyoshi, Hiroshi; Hashiguchi, Gen

    2016-10-01

    In this paper, we report on a novel MEMS electrostatic inductive transformer using potassium ion electrets on mechanically movable silicon microelectrodes. The device consists of a pair of electrostatic comb drive actuators that share a common mass in the middle part of a spring-mass-spring system. When an excitation AC voltage is applied to the electrode of the input-port comb drive at its mechanical resonant frequency, the mass in the middle oscillates to generate electrostatic inductive charges on the electrodes of the output-port comb drive, which could be read out as an output current. By appropriately designing the ratio of force factors of input- and output-port comb drives, the device operates as a transformer to amplify the current at a high efficiency over of 90% under the optimal load condition.

  9. Ion motion in the current sheet with sheared magnetic field – Part 1: Quasi-adiabatic theory

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-02-01

    Full Text Available We present a theory of trapped ion motion in the magnetotail current sheet with a constant dawn–dusk component of the magnetic field. Particle trajectories are described analytically using the quasi-adiabatic invariant corresponding to averaging of fast oscillations around the tangential component of the magnetic field. We consider particle dynamics in the quasi-adiabatic approximation and demonstrate that the principal role is played by large (so called geometrical jumps of the quasi-adiabatic invariant. These jumps appear due to the current sheet asymmetry related to the presence of the dawn–dusk magnetic field. The analytical description is compared with results of numerical integration. We show that there are four possible regimes of particle motion. Each regime is characterized by certain ranges of values of the dawn–dusk magnetic field and particle energy. We find the critical value of the dawn–dusk magnetic field, where jumps of the quasi-adiabatic invariant vanish.

  10. Structure effect of molybdenum (5) complexes on its activity in appearance of catalytic polarographic currents of chlorate- and perchlorate ions

    Energy Technology Data Exchange (ETDEWEB)

    Zajtsev, P.M.; Zhdanov, S.I.; Dergacheva, E.N.; Savchenko, E.N.; Nikolaeva, T.D. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow (USSR))

    1982-08-01

    Polarographic behaviour and reactivity of synthesized molybdenum (5) in reactions, conditioning catalytic currents of ClO/sub 3//sup -/ and ClO/sub 4//sup -/ have been studied. Their comparison with similar characteristics for molybdenum (5) appearing in the process of Mo (6) solution polarography is made. For the purpose a salt of molybdenum (5) in H/sub 2/SO/sub 4/, HCl and HClO/sub 4/ solutions have been synthesized by electrochemical and chemical ways. It has been established that in reactions conditioning catalytic currents of chlorate- and perchlorate-ions the preservation of structure of Mo (6) complex in the Mo (5) complex formed, i.e. processes of Mo (5) complex ageing, plays a very significant role.

  11. Determining the maximum charging currents of lithium-ion cells for small charge quantities

    Science.gov (United States)

    Grimsmann, F.; Gerbert, T.; Brauchle, F.; Gruhle, A.; Parisi, J.; Knipper, M.

    2017-10-01

    In order to optimize the operating parameters of battery management systems for electric and hybrid vehicles, great interest has been shown in achieving the maximum permissible charging currents during recuperation, without causing a cell damage due to lithium plating, in relation to the temperature, charge quantity and state of charge. One method for determining these recuperation currents is measuring the cell thickness, where excessively high charging currents can be detected by an irreversible increase in thickness. It is not possible to measure particularly small charge quantities by employing mechanic dial indicators, which have a limited resolution of 1 μm. This is why we developed a measuring setup that has a resolution limit of less than 10 nm using a high-resolution contactless inductance sensor. Our results show that the permissible charging current I can be approximated in relation to the charge quantity x by a correlating function I =a /√{(x) } which is compliant with the Arrhenius law. Small charge quantities therefore have an optimization potential for energy recovery during recuperation.

  12. Differential effects of the transient outward K(+) current activator NS5806 in the canine left ventricle

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Soltysinska, Ewa; Jespersen, Thomas

    2009-01-01

    To examine the electrophysiological and molecular properties of the transient outward current (I(to)) in canine left ventricle using a novel I(to) activator, NS5806, I(to) was measured in isolated epicardial (Epi), midmyocardial (Mid) and endocardial (Endo) cells using whole-cell patch-clamp tech...

  13. Current progress in developing the nonlinear ionization theory of atoms and ions

    Science.gov (United States)

    Karnakov, B. M.; Mur, V. D.; Popruzhenko, S. V.; Popov, V. S.

    2015-01-01

    We review the status of the theory of ionization of atoms and ions by intense laser radiation (Keldysh's theory). We discuss the applicability of the theory, its relation to the Landau-Dykhne method, and its application to the ionization of atoms by ultrashort nonmonochromatic laser pulses of an arbitrary shape. The semiclassical imaginary time method is applied to describe electron sub-barrier motion using classical equations of motion with an imaginary time t\\to i t for an electron in the field of an electromagnetic wave. We also discuss tunneling interference of transition amplitudes, a phenomenon occurring due to the existence of several saddle points in the complex time plane and leading to fast oscillations in the momentum distribution of photoelectrons. Nonperturbatively taking the Coulomb interaction between an outgoing electron and the atomic residual into account causes significant changes in the photoelectron momentum distribution and in the level ionization rates, the latter usually increasing by orders of magnitude for both tunneling and multiquantum ionization. The effect of a static magnetic field on the ionization rate and the magnetic cumulation process is examined. The theory of relativistic tunneling is discussed, relativistic and spin corrections to the ionization rate are calculated, and the applicability limits of the nonrelativistic Keldysh theory are determined. Finally, the application of the Fock method to the covariant description of nonlinear ionization in the relativistic regime is discussed.

  14. Differential voltage analyses of high-power, lithium-ion cells. 1. Technique and application

    Science.gov (United States)

    Bloom, Ira; Jansen, Andrew N.; Abraham, Daniel P.; Knuth, Jamie; Jones, Scott A.; Battaglia, Vincent S.; Henriksen, Gary L.

    The C/25 discharge data from 18650-size cells containing LiNi 0.8Co 0.1Al 0.1O 2 cathode and graphite anode laminates were analyzed through the use of the differential voltage, d V/d Q, curves. Using half-cell data, the peaks in the d V/d Q curve of the full cell data were assigned. Analysis of the relative peak shifts allowed for the determination of the source of capacity fade. For cells formed and aged at 45 °C for 40 weeks (capacity fade = 7.5%), the analysis indicated negligible loss of accessible material at the anode and at the cathode. Capacity loss of the cell could be accounted for, largely, by side reactions at the anode. This type of analysis can be used when the introduction of a reference electrode is difficult or impractical.

  15. Simulation of ion beam induced current in radiation detectors and microelectronic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Vizkelethy, Gyorgy

    2009-10-01

    Ionizing radiation is known to cause Single Event Effects (SEE) in a variety of electronic devices. The mechanism that leads to these SEEs is current induced by the radiation in these devices. While this phenomenon is detrimental in ICs, this is the basic mechanism behind the operation of semiconductor radiation detectors. To be able to predict SEEs in ICs and detector responses we need to be able to simulate the radiation induced current as the function of time. There are analytical models, which work for very simple detector configurations, but fail for anything more complex. On the other end, TCAD programs can simulate this process in microelectronic devices, but these TCAD codes costs hundreds of thousands of dollars and they require huge computing resources. In addition, in certain cases they fail to predict the correct behavior. A simulation model based on the Gunn theorem was developed and used with the COMSOL Multiphysics framework.

  16. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade.

    OpenAIRE

    COULTER, D. A.; Huguenard, J. R.; PRINCE, D. A.

    1990-01-01

    1. Currents evoked by applications of gamma-aminobutyric acid (GABA) to acutely dissociated thalamic neurones were analysed by voltage-clamp techniques, and the effects of the anticonvulsant succinimides ethosuximide (ES) and alpha-methyl-alpha-phenylsuccinimide (MPS) and the convulsants tetramethylsuccinimide (TMS), picrotoxin, pentylenetetrazol (PTZ), and bicuculline methiodide were assessed. 2. TMS (1 microM-10 microM) reduced responses to iontophoretically applied GABA, as did picrotoxin ...

  17. Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents.

    Science.gov (United States)

    Hoyda, Ted D; Ferguson, Alastair V

    2010-07-01

    The adipocyte-derived hormone adiponectin acts at two seven-transmembrane domain receptors, adiponectin receptor 1 and adiponectin receptor 2, present in the paraventricular nucleus of the hypothalamus to regulate neuronal excitability and endocrine function. Adiponectin depolarizes rat parvocellular preautonomic neurons that secrete either thyrotropin releasing hormone or oxytocin and parvocellular neuroendocrine corticotropin releasing hormone neurons, leading to an increase in plasma adrenocorticotropin hormone concentrations while also hyperpolarizing a subgroup of neurons. In the present study, we investigate the ionic mechanisms responsible for these changes in excitability in parvocellular paraventricular nucleus neurons. Patch clamp recordings of currents elicited from slow voltage ramps and voltage steps indicate that adiponectin inhibits noninactivating delayed rectifier potassium current (I(K)) in a majority of neurons. This inhibition produced a broadening of the action potential in cells that depolarized in the presence of adiponectin. The depolarizing effects of adiponectin were abolished in cells pretreated with tetraethyl ammonium (0/15 cells depolarize). Slow voltage ramps performed during adiponectin-induced hyperpolarization indicate the activation of voltage-independent potassium current. These hyperpolarizing responses were abolished in the presence of glibenclamide [an ATP-sensitive potassium (K(ATP)) channel blocker] (0/12 cells hyperpolarize). The results presented in this study suggest that adiponectin controls neuronal excitability through the modulation of different potassium conductances, effects which contribute to changes in excitability and action potential profiles responsible for peptidergic release into the circulation.

  18. On radio frequency current drive in the ion cyclotron range of frequencies in DEMO and large ignited plasmas

    Science.gov (United States)

    Brambilla, Marco; Bilato, Roberto

    2015-02-01

    To explore the possibility of efficient fast wave current drive in an ignited plasma in the ion cyclotron (IC) range of frequency in spite of competition from absorption by ions, we have added to the full-wave toroidal code TORIC a set of subroutines which evaluate absorption by these particles at IC harmonic resonances, using a realistic ‘slowing-down’ distribution function, and taking into account that their Larmor radius is comparable or even larger than the fast wave wavelength. The thermalized population of α-particles is not a serious competitor for power absorption as long as their number density is compatible with maintenance of ignition. By contrast, the energetic slowing down fraction, in spite of its even greater dilution, can absorb from the waves a substantial amount of power at the cyclotron resonance and its harmonics. An extensive exploration both in frequency and in toroidal wavenumbers using the parameters of one of the European versions of DEMO shows that three frequency windows exist in which damping is nevertheless predominantly on the electrons. Designing an antenna capable of shaping the launched spectrum to optimize current drive, however, will not be straightforward. Only in a narrow range when the first IC harmonic of tritium is deep inside the plasma on the high-field side of the magnetic axis, and that of deuterium and helium is still outside on the low-field side, it appears possible to achieve a satisfactory current drive efficiency with a conventional multi-strap antenna, preferentially located in the upper part of the vessel. Exploiting the other two windows at quite low and quite high frequencies is either impossible on first principles, or will demand novel ideas in antenna design.

  19. He 2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.

    Science.gov (United States)

    Vikas

    2011-08-01

    The He 2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He 2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He 2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD.

  20. Current concepts of hair cell differentiation and planar cell polarity in inner ear sensory organs.

    Science.gov (United States)

    Sienknecht, Ulrike J

    2015-07-01

    Phylogenetically and ontogenetically, vertebrate development led to the generation of several inner ear sensory organs. During embryogenesis, cell fate specification determines whether each progenitor cell differentiates into a sensory hair cell or a supporting cell within the common sensory primordium. Finally, all sensory epithelia of the inner ear consist of a hair cell/supporting cell mosaic, albeit with anatomical differences depending on the sensory organ type. Hair cells develop a polarized bundle of stereovilli that is of functional importance for mechanotransduction. After initiating stereovillar development, hair cells align their bundles in a coordinated fashion, generating a characteristic hair cell orientation pattern, a process referred to as planar cell polarity (PCP). The pathway that controls PCP in the inner ear needs both to establish the development of a polarized morphology of the stereovillar bundle of the hair cell and to organize a systematic hair cell alignment. Because the hair cell orientation patterns of the various inner ear organs and vertebrate species differ fundamentally, it becomes apparent that in vertebrates, different aspects of PCP need to be independently controlled. In spite of important progress recently gained in the field of PCP research, we still need to identify the mechanisms (1) that initiate molecular asymmetries in cells, (2) that guide the transmission of polarity information from cell to cell, and (3) that consistently translate such polarity information into morphological asymmetries of hair cells.

  1. Ettects of simvastatin on ion channel currents in ventricular myocytes from rabbit with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Chao Ding; Xianghua Fu; Li Yang; Huixiao Chen; Junxia Li; Yuying Zhao; Jie Li; Jie Wang

    2008-01-01

    Objective To investigate the effects of simvastatin on membrane ionic currents in left ventricular myocytes after acutemyocardial infarction(AML.so as to explore the ionic mechanism of statin treatment for antiarrhythmia.Methods Fourty-five NewZeland rabbits were randomly divided into three groups:AMI group,simvastatin intervention group(statin group)and sham-operatedcontrol group (CON).Rabbits were infarcted by ligation of the left anterior descending coronary artery after administration of oralisolated enzymatically from the epicardial zone of the infractcd region.Whole cell patch clamp technique was used to record mmbranewas significantly decreased in AMI group(-23.26+5.1 8)compared with CON(-42.78±5.48,P<0.05),while it was significantlyincreased in Stating roup(-39.23±5.45)compared with AMI group(P<0.01);The peak Ica-L current density(at 0 mV) was significantlydecreased in AMI group(-3.23±0.91)compared with CON(-4.56±1.01,P<0.05),while it was significantly increased in Statin group(-4.18±0.95)compared with AMI group(P<0.05);The Ito current density(at+60 mV)was significantly decreased in AMI group(10.41±1.93)compared with CON(17.41±3.13,P<0.01),while it was significantly increased in Statin group(16.21±2.42)compared withattenuate this change without lowering the serum cholesterol level,suggesting that simvastatin reverse this electrical remodeling thuscontributing to the ionic mechanism of statin treatment for antiarrhythmia.

  2. Differential Response of Floating and Submerged Leaves of Longleaf Pondweed to Silver Ions

    Directory of Open Access Journals (Sweden)

    Nisha Shabnam

    2017-06-01

    Full Text Available In this study, we have investigated variations in the potential of floating and submerged leaves of longleaf pondweed (Potamogeton nodosus to withstand silver ion (Ag+-toxicity. Both floating and submerged leaves changed clear colorless AgNO3 solutions to colloidal brown in the presence of light. Transmission electron microscopy revealed the presence of distinct crystalline Ag-nanoparticles (Ag-NPs in these brown solutions. Powder X-ray diffraction pattern showed that Ag-NPs were composed of Ag0 and Ag2O. Photosystem (PS II efficiency of leaves declined upon exposure to Ag+ with a significantly higher decline in the submerged leaves than in the floating leaves. Similarly, Ag+ treatment caused a significant reduction in the carboxylase activity of the ribulose bisphosphate carboxylase/oxygenase in leaves. The reduction in this carboxylase activity was significantly higher in the submerged than in the floating leaves. Ag+ treatment also resulted in a significant decline in the levels of non-enzymatic and enzymatic antioxidants; the decline was significantly lower in the floating than in submerged leaves. X-ray photoelectron spectroscopy revealed the presence of Ag2O in these leaves. Inductively coupled plasma mass spectrometry analysis revealed a three-fold higher Ag content in the submerged than in floating leaves. Our study demonstrates that floating leaves of longleaf pondweed have a superior potential to counter Ag+-toxicity compared with submerged leaves, which could be due to superior potential of floating leaves to reduce Ag+ to less/non-toxic Ag0/Ag2O-nanoparticles/nanocomplexes. We suggest that modulating the genotype of longleaf pondweed to bear higher proportion of floating leaves would help in cleaning fresh water bodies contaminated with ionic forms of heavy metals.

  3. A 2.45GHz High Current Ion Source for Neutron Production%一台2.45GHz强流中子源

    Institute of Scientific and Technical Information of China (English)

    J.W.Kwan; R.Gough; R.Keller; B.A.Ludewigt; M.Regis; R.P.Wells; J.H.Vainionpaa

    2007-01-01

    A 2.45GHz microwave-driven ion source is being used to provide 40mA of deuterium ion beam (peak current)for an RFQ accelerator as part of a neutron source system.We have also designed a 60kV electrostatic LEBT using computer simulations.In our experiment,we measured the hydrogen and deuterium ion beam currents as functions of discharge power,gas flow,and magnetic field strength.The required beam current was obtained using less than 700W of net microwave power with a gas flow of less than 1.5sccm.From the rise time data,it Was determined that in order to obtain a high percentage of atomic ions in the beam,the beam extraction should start after lms of switching on the microwave power.At steady state,the proton fraction Was above 90%.

  4. Galvanostatic electrodeposition of aluminium nano-rods for Li-ion three-dimensional micro-battery current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oltean, Gabriel, E-mail: gabriel.oltean@mkem.uu.s [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Nyholm, Leif; Edstroem, Kristina [Department of Materials Chemistry, Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden)

    2011-03-30

    Research highlights: {yields} Galvanostatic electrodeposition of aluminium nano-rods. {yields} Electrodeposition in ionic liquid electrolyte. {yields} Commercial alumina membrane used as template. {yields} Current pulses allow better diffusion into the pores of the membrane. {yields} Short nucleation potential pulses result in improved homogeneity of the deposit. - Abstract: Constant current and pulsed current electrodeposition of aluminium nano-rods, for use as three-dimensional (3D) Li-ion micro-battery current collectors, have been studied using an ionic liquid electrolyte (1-ethyl-3-methylimidazolium chloride/aluminium chloride) and a template consisting of a commercial alumina membrane. It is shown that the homogeneity of the height of the rods can be improved significantly by inclusion of a short (i.e. 50 ms) potential pulse prior to the controlled current deposition step. The latter potential step increased the number of aluminium nuclei on the aluminium substrate and the best results were obtained for a potential of -0.9 V vs. Al/Al{sup 3+}. The obtained nanostructured surfaces, which were characterized using electron microscopy and X-ray diffraction, consisted of parallel aligned aluminium nano-rods homogeneously distributed over the entire surface of the substrate. A narrower height distribution for the rods was obtained using a pulsed galvanostatic approach then when using a constant current, most likely due to the less favourable diffusion conditions in the latter case. The results also indicate that depletion and iR drop effects within the nano-pores result in a more homogeneous height distribution. It is concluded that the height distribution of the nano-rods is controlled by a combination of the nucleation probability in each pore at the start of the experiment, and the homogeneity of the diameters of the pores within the commercial alumina membranes employed as the electrodeposition template.

  5. Brivaracetam Differentially Affects Voltage-Gated Sodium Currents Without Impairing Sustained Repetitive Firing in Neurons

    Science.gov (United States)

    Niespodziany, Isabelle; André, Véronique Marie; Leclère, Nathalie; Hanon, Etienne; Ghisdal, Philippe; Wolff, Christian

    2015-01-01

    Aims Brivaracetam (BRV) is an antiepileptic drug in Phase III clinical development. BRV binds to synaptic vesicle 2A (SV2A) protein and is also suggested to inhibit voltage-gated sodium channels (VGSCs). To evaluate whether the effect of BRV on VGSCs represents a relevant mechanism participating in its antiepileptic properties, we explored the pharmacology of BRV on VGSCs in different cell systems and tested its efficacy at reducing the sustained repetitive firing (SRF). Methods Brivaracetam investigations on the voltage-gated sodium current (INa) were performed in N1E-155 neuroblastoma cells, cultured rat cortical neurons, and adult mouse CA1 neurons. SRF was measured in cultured cortical neurons and in CA1 neurons. All BRV (100–300 μM) experiments were performed in comparison with 100 μM carbamazepine (CBZ). Results Brivaracetam and CBZ reduced INa in N1E-115 cells (30% and 40%, respectively) and primary cortical neurons (21% and 47%, respectively) by modulating the fast-inactivated state of VGSCs. BRV, in contrast to CBZ, did not affect INa in CA1 neurons and SRF in cortical and CA1 neurons. CBZ consistently inhibited neuronal SRF by 75–93%. Conclusions The lack of effect of BRV on SRF in neurons suggests that the reported inhibition of BRV on VGSC currents does not contribute to its antiepileptic properties. PMID:25444522

  6. Saturation Ion Current Densities in Inductively Coupled Hydrogen Plasma Produced by Large-Power Radio Frequency Generator

    Science.gov (United States)

    Wang, Songbai; Lei, Guangjiu; Bi, Zhenhua; Ghomi, H.; Yang, Size; Liu, Dongping

    2016-09-01

    An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then some reasonable explanations are given out. With the increase of RF power, the experimental results show three stages: in the first stage (2-14 kW), the electron temperature will rise with the increase of RF power in the ICP, thus, the Jions increases continually as the electron temperature rises in the ICP. In the second stage (14-20 kW), as some H- ions lead to the mutual neutralization (MN), the slope of Jions variation firstly decreases then increases. In the third stage (20-32 kW), both the electronic detachment (ED) and the associative detachment (AD) in the ICP result in the destruction of H- ions, therefore, the increased amplitude of the Jions in the third stage is weaker than the one in the first stage. In addition, with the equivalent transformer model, we successfully explain that the Jions at different radial locations in ICP has the same rule. Finally, it is found that the Jions has nothing to do with the outer/inner puffing gas pressure ratio, which is attributed to the high-speed movement of hydrogen molecules. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB108011 and 2010GB103001), the Major International (Regional) Project Cooperation and Exchanges of China (No. 11320101005) and the Startup Fund from Fuzhou University (No. 510071)

  7. Differential fragmentation patterns of pectin oligogalacturonides observed by nanoelectrospray quadrupole ion-trap mass spectrometry using automated spectra interpretation

    DEFF Research Database (Denmark)

    Mutenda, Kudzai E; Matthiesen, Rune; Roepstorff, Peter

    2007-01-01

    ' (VEMS) for structural annotation. In the analyzed oligogalacturonides of lower DP, the generation of C/Y ions, i.e. ions retaining the glycosidic oxygen, was higher than that of B/Z ions. In general, with oligogalacturonides of higher DP, the B/Z ions were generated more abundantly. Oligogalacturonides...

  8. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

    Science.gov (United States)

    Momotenko, Dmitry; Girault, Hubert H

    2011-09-21

    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.

  9. Acceleration and transport of ions in turbulent current sheets: formation of non-maxwelian energy distribution

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2009-11-01

    Full Text Available The paper is devoted to particle acceleration in turbulent current sheet (CS. Our results show that the mechanism of CS particle interaction with electromagnetic turbulence can explain the formation of power law energy distributions. We study the ratio between adiabatic acceleration of particles in electric field in the presence of stationary turbulence and acceleration due to electric field in the case of dynamic turbulence. The correlation between average energy gained by particles and average particle residence time in the vicinity of the neutral sheet is discussed. It is also demonstrated that particle velocity distributions formed by particle-turbulence interaction are similar in essence to the ones observed near the far reconnection region in the Earth's magnetotail.

  10. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  11. Amyloid-β-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia.

    Science.gov (United States)

    Schilling, Tom; Eder, Claudia

    2011-12-01

    Production of reactive oxygen species (ROS) by microglial cells and subsequent oxidative stress are strongly implicated in the pathogenesis of Alzheimer's disease. Although it is recognized that amyloid-β (Aβ) plays a major role in inducing and regulating microglial ROS production in Alzheimer's disease, to date little is known about cellular mechanisms underlying Aβ-stimulated ROS production. Here, we identified ion channels involved in Aβ-induced microglial ROS production and in Aβ-induced microglial priming. Acute stimulation of microglial cells with either fibrillar Aβ(1-42) (fAβ(1-42) ) or soluble Aβ(1-42) (sAβ(1-42) ) caused significant increases in microglial ROS production, which were abolished by inhibition of TRPV1 cation channels with 5-iodo-resiniferatoxin (I-RTX), but were unaffected by inhibition of K(+) channels with charybdotoxin (CTX). Furthermore, pretreatment with either fAβ(1-42) or sAβ(1-42) induced microglial priming, that is, increased ROS production upon secondary stimulation with the phorbol ester PMA. Microglial priming induced by fAβ(1-42) or sAβ(1-42) remained unaffected by TRPV1 channel inhibition with I-RTX. However, sAβ(1-42) -induced priming was inhibited by CTX and margatoxin, but not by TRAM-34 or paxilline, indicating a role of Kv1.3 voltage-gated K(+) channels, but not of Ca(2+) -activated K(+) channels, in the priming process. In summary, our data suggest that in microglia Aβ-induced ROS production and priming are differentially regulated by ion channels, and that TRPV1 cation channels and Kv1.3 K(+) channels may provide potential therapeutic targets to reduce microglia-induced oxidative stress in Alzheimer's disease.

  12. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  13. Current Management of Low Risk Differentiated Thyroid Cancer and Papillary Microcarcinoma.

    Science.gov (United States)

    Tarasova, V D; Tuttle, R M

    2017-01-10

    Each year, the proportion of thyroid cancer patients presenting with low risk disease is increasing. Moreover, the definition of low risk thyroid cancer is expanding and several histological subtypes beyond papillary microcarcinomas are now classified as low risk disease. This shift in the landscape of thyroid cancer presentation is forcing clinicians to critically re-evaluate whether or not traditional management paradigms that were effective in treating intermediate and high risk disease are applicable to these low risk patients. Here we review the definition of low risk disease, examine the various histological subtypes that are considered low risk in the 2015 American Thyroid Association guidelines for the management of thyroid nodules and thyroid cancer, and review our current approach to the management of these low risk tumours.

  14. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain

    Science.gov (United States)

    Zhang, Jianbo; Ge, Hao; Li, Zhe; Ding, Zhanming

    2015-01-01

    This study develops a method to internally preheat lithium-ion batteries at low temperatures with sinusoidal alternating current (AC). A heat generation rate model in frequency domain is developed based on the equivalent electrical circuit. Using this model as the source term, a lumped energy conservation model is adopted to predict the temperature rise. These models are validated against the experimental results of preheating an 18650 cell at different thermal insulation conditions. The effects of current amplitude and frequency on the heating rate are illustrated with a series of simulated contours of heating time. These contours indicate that the heating rate increases with higher amplitude, lower frequency and better thermal insulation. The cell subjected to an alternating current with an amplitude of 7 A (2.25 C) and a frequency of 1 Hz, under a calibrated heat transfer coefficient of 15.9 W m-2 K-1, can be heated from -20 °C to 5 °C within 15 min and the temperature distribution remains essentially uniform. No capacity loss is found after repeated AC preheating tests, indicating this method incurs little damage to the battery health. These models are computationally-efficient and can be used in real time to control the preheating devices in electric vehicles.

  15. Iontophoretic transdermal delivery of glycyrrhizin: effects of pH, drug concentration, co-ions, current intensity, and chemical enhancers.

    Science.gov (United States)

    Yamamoto, Rie; Takasuga, Shinri; Kominami, Katsuya; Sutoh, Chiyo; Kinoshita, Mine; Kanamura, Kiyoshi; Takayama, Kozo

    2013-01-01

    The aim of the present study was to evaluate the feasibility of transdermal delivery of glycyrrhizin, an agent used in the treatment of chronic hepatitis C, by cathodal iontophoresis using Ag/AgCl electrodes in vitro. The effects of donor pH (pH 4-7), concentration of drug (0.025-0.2% (w/v)), concentration of external chloride ions (Cl(-)) (0-133 mM), current strength (0-0.5 mA/cm(2)), and permeation enhancers (urea and Tween 80) on the skin permeability of glycyrrhizin were examined in in vitro skin permeation studies using porcine ear skin as the membrane. The cumulative amount of permeated glycyrrhizin and the steady-state skin permeation flux of glycyrrhizin across porcine skin increased in a pH-dependent manner. The skin permeability of glycyrrhizin was independent of the concentration of drug and competed only with a high external Cl(-) concentration. The skin permeation flux of glycyrrhizin increased with the current (R(2)=0.8955). The combination of iontophoresis and enhancers provided an additive or synergistic effect, and a skin permeation flux of about 60 µg/h/cm(2) was achieved. The plasma concentration of glycyrrhizin in humans, extrapolated from the in vitro steady-state permeation flux across porcine skin, was within the therapeutic level. These results suggest that cathodal iontophoresis can be used as a transdermal drug delivery system for glycyrrhizin using reasonable patch sizes and acceptable levels of current intensity.

  16. Metal Foam as Positive Electrode Current Collector for LiFePO4-Based Li-Ion Battery

    Science.gov (United States)

    Yang, Gui Fu; Song, Jae Sun; Kim, Hyung Yoon; Joo, Seung Ki

    2013-10-01

    In order to improve the kinetic performance of LiFePO4-based Li-ion batteries, three dimensional metal foams were used as positive current collector. In the case of conventional Ni foam, the organic electrolyte of the cell was decomposed with the ionization of Ni during charge and discharge. The low tolerance of Ni was solved by using NiCrAl foam which was manufactured by alloying NiCrAl powder with Ni foam. From the electrochemical analysis, it shows that the kinetic performance of the cell by using a three dimensional NiCrAl foam was much superior to that in the case of conventional foil type.

  17. Relativistic electron's butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

    Science.gov (United States)

    Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin

    2017-05-01

    Dayside modulated relativistic electron's butterfly pitch angle distributions (PADs) from ˜200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60-100 keV proton and 60-200 keV helium and oxygen) injections. We reproduce the electron's butterfly PADs at satellite's location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron's butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron's butterfly PADs in the Earth's radiation belts.

  18. [Cation ions modulate the ACh-sensitive current in type II vestibular hair cells of guinea pigs].

    Science.gov (United States)

    Guo, Chang-Kai; Zhang, Song; Kong, Wei-Jia; Li, Qing-Tian; Li, Zhi-Wang

    2006-04-25

    Molecular biological studies and electrophysiological data have demonstrated that acetylcholine (ACh) is the principal cochlear and vestibular efferent neurotransmitter among mammalians. However, the functional roles of ACh in type II vestibular hair cells among mammalians are still unclear, with the exception of the well-known alpha9-containing nicotinic ACh receptor (alpha9-nAChR) in cochlear hair cells and frog saccular hair cells. In this study, the properties of the ACh-sensitive current were investigated by whole-cell patch clamp technique in isolated type II vestibular hair cells of guinea pigs. The direct effect of extracellular ACh was to induce a hyperpolarization effect in type II vestibular hair cells. Type II vestibular hair cells displayed a sustained outward current in response to the perfusion of ACh. It took about 60 s for the ACh-sensitive current to get a complete re-activation. The reversal potential of the ACh-sensitive current was (-66 +/- 8) mV, which indicated that potassium ion was the main carrier of this current. The blocking effect by the submillimolar concentration of tetraethylammonium (TEA) further indicated that extracellular ACh stimulated the calcium-dependent potassium current. Following replacement of the compartment of NaCl in the normal external solution with TrisCl, LiCl or saccharose respectively, the amplitude of the ACh-sensitive current was not affected. Blocking of the release of intracellular Ca(2+) stores by intracellular application of heparin failed to inhibit the ACh-sensitive current. Therefore, extracellular Na(+)and the inositol 1,4,5-trisphosphate (IP(3))-dependent intracellular Ca(2+)release were not involved in the activation of the ACh-sensitive current. However, the ACh-sensitive current was strongly affected by the concentration of the extracellular K(+), extracellular Ca(2+) and intracellular Mg(2+). The amplitude of the ACh- sensitive current was strongly inhibited by high concentration of extracellular K

  19. Current and historical hybridization with differential introgression among three species of cyprinid fishes (genus Cyprinella).

    Science.gov (United States)

    Broughton, Richard E; Vedala, Krishna C; Crowl, Tessa M; Ritterhouse, Lauren L

    2011-05-01

    Hybridization is common among freshwater fishes, particular among the Cyprinidae. We used two mitochondrial genes and one nuclear gene to characterize hybridization among two species pairs of Cyprinella in southwestern North America. Genalogical patterns revealed that C. lutrensis and C. venusta are currently hybridizing in several localities producing apparent F(1), F(2) and backcross generations, yet there was no evidence for introgression outside of local hybrid zones. Alternatively, mitochondrial haplotypes from C. lutrensis appear to have introgressed into a C. lepida population in the Nueces River completely replacing the native C. lepida haplotype. There was no evidence of introgression of nuclear DNA and there does not appear to be ongoing hybridization. The population of C. lepida from the nearby Frio River exhibits no evidence of hybridization with C. lutrensis. Thus, contact between C. lutrensis and C. venusta results in the formation of localized hybrid swarms, while contact between C. lutrensis and C. lepida has resulted in complete mitochondrial introgression in the Nueces River or no apparent hybridization in the Frio River. The three different outcomes of contact between these species illustrate the variable nature of interspecific reproductive interactions and provide an excellent system in which to better understand the factors influencing hybridization among freshwater fishes.

  20. The three-dimensional evolution of ion-scale current sheets: tearing and drift-kink instabilities in the presence of proton temperature anisotropy

    CERN Document Server

    Gingell, Peter; Matteini, Lorenzo

    2014-01-01

    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of...

  1. Determination of benzene, toluene and xylene concentration in humid air using differential ion mobility spectrometry and partial least squares regression.

    Science.gov (United States)

    Maziejuk, M; Szczurek, A; Maciejewska, M; Pietrucha, T; Szyposzyńska, M

    2016-05-15

    Benzene, toluene and xylene (BTX compounds) are chemicals of greatest concern due to their impact on humans and the environment. In many cases, quantitative information about each of these compounds is required. Continuous, fast-response analysis, performed on site would be desired for this purpose. Several methods have been developed to detect and quantify these compounds in this way. Methods vary considerably in sensitivity, accuracy, ease of use and cost-effectiveness. The aim of this work is to show that differential ion mobility spectrometry (DMS) may be applied for determining concentration of BTX compounds in humid air. We demonstrate, this goal is achievable by applying multivariate analysis of the measurement data using partial least squares (PLS) regression. The approach was tested at low concentrations of these compounds in the range of 5-20 ppm and for air humidity in a range 0-12 g/kg. These conditions correspond to the foreseeable application of the developed approach in occupational health and safety measurements. The average concentration assessment error was about 1 ppm for each: benzene, toluene and xylene. We also successfully determined water vapor content in air. The error achieved was 0.2 g/kg. The obtained results are very promising regarding further development of DMS technique as well as its application.

  2. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Sakakita, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki (Japan)

    2014-02-15

    Spontaneous self-focusing of ion beam with high current density (J{sub c} ∼ 2 mA/cm{sup 2}, I{sub b} ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135–150 eV, and the J{sub c} jumps up from 0.7 to 2 mA/cm{sup 2}. Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  3. Negative differential conductivity induced current instability in two-dimensional electron gas system in high magnetic fields

    Science.gov (United States)

    Lee, Ching-Ping; Komiyama, Susumu; Chen, Jeng-Chung

    2015-03-01

    High mobility two-dimensional electron gas (2DEG) formed in the interface of a GaAs/AlGaAs hetero-structure in high magnetic field (B) exhibits interring nonlinear response either under microwave radiation or to a dc electric field (E). It is general believed that this kind nonlinear behavior is closely related to the occurrence of negative-differential conductance (NDC) in the presence of strong B and E. We observe a new type NDC state driven by a direct current above a threshold value (Ith) applied to a 2DEG as a function of B at relatively high temperatures (T). A current instability is observed in 2DEG system at high B ~6-8 T and at high T ~ 20- 30 K while the applied current is over Ith. The longitudinal voltage Vxx shows sub-linear behavior with the increase of I. As the current exceed Ith, Vxx suddenly drops a ΔVxx and becomes irregular associated with the appearance of hysteresis with sweeping I. We find that Ith increases with the increase of B and of T; meanwhile, ΔVxx is larger at higher B but lower T. Data analysis suggest that the onset of voltage fluctuation can be described by a NDC model proposed by Kurosawa et al. in 1976. The general behaviors of T and B dependence of current instability are analog to those recently reported at lower both T and B. This consistence suggests the same genuine mechanism of NDC phenomena observed in 2DEG system.

  4. Differential geometry based model for eddy current inspection of U-bend sections in steam generator tubes

    Science.gov (United States)

    Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello

    2017-02-01

    The modeling of U-Bend segment in steam generator tubes for predicting eddy current probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the eddy current field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and current distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.

  5. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures

    Science.gov (United States)

    Liu, Xingtao; Wu, Ji; Zhang, Chenbin; Chen, Zonghai

    2014-12-01

    The state of energy (SOE) of Li-ion batteries is a critical index for energy optimization and management. In the applied battery system, the fact that the discharge current and the temperature change due to the dynamic load will result in errors in the estimation of the residual energy for the battery. To address this issue, a new method based on the Back-Propagation Neural Network (BPNN) is presented for the SOE estimation. In the proposed approach, in order to take into account the energy loss on the internal resistance, the electrochemical reactions and the decrease of the open-circuit voltage (OCV), the SOE is introduced to replace the state of charge (SOC) to describe the residual energy of the battery. Additionally, the discharge current and temperature are taken as the training inputs of the BPNN to overcome their interference on the SOE estimation. The simulation experiments on LiFePO4 batteries indicate that the proposed method based on the BPNN can estimate the SOE much more reliably and accurately.

  6. Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries

    KAUST Repository

    Choi, Jang Wook

    2010-12-15

    Although current collectors take up more weight than active materials in most lithium ion battery cells, so far research has been focused mainly on improving gravimetric capacities of active materials. To address this issue of improving gravimetric capacities based on overall cell components, we develop freestanding nanocomposites made of carbon nanofibers (CNFs) and silicon nanowires (SiNWs) as metal current collector-free anode platforms. Intrinsically large capacities of SiNWs as active materials in conjunction with the light nature of freestanding CNF films allow the nanocomposites to achieve 3-5 times improved gravimetric capacities compared to what have been reported in the literature. Moreover, three-dimensional porous structures in the CNF films facilitate increased mass loadings of SiNWs when compared to flat substrates and result in good cycle lives over 40 cycles. This type of nanocomposite cell suggests that 3D porous platforms consisting of light nanomaterials can provide for higher gravimetric and areal capacities when compared to conventional battery cells based on flat, heavy metal substrates. © 2010 Elsevier B.V. All rights reserved.

  7. Strategy for copper speciation in white wine by differential pulse anodic stripping voltammetry, potentiometry with an ion-selective electrode and kinetic photometric determination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, C. [Inst. fuer Anorganische und Analytische Chemie, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Schwedt, G. [Inst. fuer Anorganische und Analytische Chemie, Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany)

    1997-07-01

    Differential pulse anodic stripping voltammetry (DPASV), potentiometry with a copper ion-selective electrode and a kinetic photometric method were used to determine copper species in white wines. The kinetic method is based on the catalytic effect of labile copper(II) species on the oxidation of 3-hydroxybenzaldehyde azine by potassium peroxidisulfate in an ammonical medium at room temperature. The total copper concentrations were determined by flame atomic absorption spectrometry. Free copper(II) ions, labile and tightly bound copper species could be quantified in 16 non pre-treated wine samples. (orig.). With 3 figs., 5 tabs.

  8. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  9. An extended polarization model to study the influence of current collector geometry of large-format lithium-ion pouch cells

    Science.gov (United States)

    Kosch, Stephan; Rheinfeld, Alexander; Erhard, Simon V.; Jossen, Andreas

    2017-02-01

    In this work, depth-of-discharge and temperature distribution of a large-format lithium-ion pouch cell are examined by means of a two-dimensional electro-thermal polarization model. A method of improving the dynamic behavior of the model while maintaining its accuracy under constant current loads by applying intermittent charge and discharge data is given. The model is validated with the aid of experimental data gained from dynamic and constant current discharge profiles applied to a commercial 40 Ah Li-ion pouch cell. Two major design studies are carried out focusing on a variation of geometrical parameters, namely the size and the positioning of the cell tabs. For each design, the influence of current collector thickness on the uniformity of the temperature and depth-of-discharge distribution is investigated during a 4C constant current discharge operation. Simulation results show that reducing the current collector thickness results in a moderate increase of 3 °C in maximum temperature and 1.5% in depth-of-discharge imbalance if the tab size is increased. In consequence, lowering the share of inactive components within a lithium-ion cell by optimizing the thickness of the current collector foils should be further considered to enhance the performance of typical lithium-ion cell designs.

  10. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    Science.gov (United States)

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  11. Reply to "Comment on 'A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitation Fluxes' and 'Self-Consistent Model of the Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere' by Khazanov et al. et al."

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.

    2007-01-01

    It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in

  12. Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots.

    Science.gov (United States)

    Henderson, Sam W; Baumann, Ute; Blackmore, Deidre H; Walker, Amanda R; Walker, Rob R; Gilliham, Matthew

    2014-10-25

    Salt tolerance in grapevine is associated with chloride (Cl-) exclusion from shoots; the rate-limiting step being the passage of Cl- between the root symplast and xylem apoplast. Despite an understanding of the physiological mechanism of Cl- exclusion in grapevine, the molecular identity of membrane proteins that control this process have remained elusive. To elucidate candidate genes likely to control Cl- exclusion, we compared the root transcriptomes of three Vitis spp. with contrasting shoot Cl- exclusion capacities using a custom microarray. When challenged with 50 mM Cl-, transcriptional changes of genotypes 140 Ruggeri (shoot Cl- excluding rootstock), K51-40 (shoot Cl- including rootstock) and Cabernet Sauvignon (intermediate shoot Cl- excluder) differed. The magnitude of salt-induced transcriptional changes in roots correlated with the amount of Cl- accumulated in shoots. Abiotic-stress responsive transcripts (e.g. heat shock proteins) were induced in 140 Ruggeri, respiratory transcripts were repressed in Cabernet Sauvignon, and the expression of hypersensitive response and ROS scavenging transcripts was altered in K51-40. Despite these differences, no obvious Cl- transporters were identified. However, under control conditions where differences in shoot Cl- exclusion between rootstocks were still significant, genes encoding putative ion channels SLAH3, ALMT1 and putative kinases SnRK2.6 and CPKs were differentially expressed between rootstocks, as were members of the NRT1 (NAXT1 and NRT1.4), and CLC families. These results suggest that transcriptional events contributing to the Cl- exclusion mechanism in grapevine are not stress-inducible, but constitutively different between contrasting varieties. We have identified individual genes from large families known to have members with roles in anion transport in other plants, as likely candidates for controlling anion homeostasis and Cl- exclusion in Vitis species. We propose these genes as priority candidates

  13. Differentiation of Protonated Aromatic Regioisomers Related to Lignin by Reactions with Trimethylborate in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Science.gov (United States)

    Somuramasami, Jayalakshmi; Duan, Penggao; Amundson, Lucas M.; Archibold, Enada; Winger, Brian E.; Kenttämaa, Hilkka I.

    2011-06-01

    Several lignin model compounds were examined to test whether gas-phase ion-molecule reactions of trimethylborate (TMB) in a FTICR can be used to differentiate the ortho-, meta-, and para-isomers of protonated aromatic compounds, such as those formed during degradation of lignin. All three regioisomers could be differentiated for methoxyphenols and hydroxyphenols. However, only the differentiation of the ortho-isomer from the meta- and para-isomers was possible for hydroxyacetophenones and hydroxybenzoic acids. Consideration of the previously reported proton affinities at all basic sites in the isomeric hydroxyphenols, and the calculated proton affinities at all basic sites in the three methoxyphenol isomers, revealed that the proton affinities of the analytes relative to that of TMB play an important role in determining whether and how they react with TMB. The loss of two methanol molecules (instead of one) from the adducts formed with TMB either during ion-molecule reactions, or during sustained-off resonance irradiated collision-activated dissociation of the ion-molecule reaction products, revealed the presence of two functionalities in almost all the isomers. This finding supports earlier results suggesting that TMB can be used to count the functionalities in unknown oxygen-containing analytes.

  14. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region: The Magnetic Storm May 1-7 1998

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.

    2003-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  15. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  16. Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes.

    Science.gov (United States)

    Zhang, Kailin; He, Xiulan; Liu, Yang; Yu, Ping; Fei, Junjie; Mao, Lanqun

    2017-06-20

    Development of new principles and methods for cerebral ATP assay is highly imperative not only for determining ATP dynamics in brain but also for understanding physiological and pathological processes related to ATP. Herein, we for the first time demonstrate that micrometer scale ion current rectification (MICR) at a polyimidazolium brush-modified micropipette can be used as the signal transduction output for the cerebral ATP assay with a high selectivity. The rationale for ATP assay is essentially based on the competitive binding ability between positively charged polyimidazolium and ATP toward negatively charged ATP aptamer. The method is well responsive to ATP with a good linearity within a concentration range from 5 nM to 100 nM, and high selectivity toward ATP. These properties essentially enable the method to determine the cerebral ATP by combining in vivo microdialysis. The basal dialysate level of ATP in rat brain cortex is determined to be 11.32 ± 2.36 nM (n = 3). This study demonstrates that the MICR-based sensors could be potentially used for monitoring neurochemicals in cerebral systems.

  17. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    Directory of Open Access Journals (Sweden)

    Samantha Raisa Catarelli

    2016-03-01

    Full Text Available Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then a dense pellet of an electronically insulating but Li-ion conducting garnet phase, Al-substituted Li7La3Zr2O12 (LLZO, was characterized using the same technique. The polycrystalline pellet was prepared by classical ceramic sintering techniques and was comprised of large (~150 μm grains. Critical information regarding the contributions of grain and grain boundary resistances to the total conductivity of the garnet phase was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-SECM technique allowed spatially resolved information regarding local conductivities to be measured directly. Impedance mapping of the pellet showed that the grain boundary resistance, while generally higher than that of grains, varied considerably, revealing the complex nature of the LLZO sample.

  18. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    CERN Document Server

    Chapman, I T; Sauter, O; Zucca, C; Asunta, O; Buttery, R J; Coda, S; Goodman, T; Igochine, V; Johnson, T; Jucker, M; La Haye, R J; Lennholm, M; Contributors, JET-EFDA

    2013-01-01

    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes sig...

  19. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Thomas M., E-mail: baumannt@nscl.msu.edu; Lapierre, Alain, E-mail: lapierre@nscl.msu.edu; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan, 48824 (United States)

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  20. Differential Mobility Spectrometry Coupled with Multiple Ion Monitoring in Regulated LC-MS/MS Bioanalysis of a Therapeutic Cyclic Peptide in Human Plasma.

    Science.gov (United States)

    Fu, Yunlin; Xia, Yuan-Qing; Flarakos, Jimmy; Tse, Francis L S; Miller, Jeffrey D; Jones, Elliott B; Li, Wenkui

    2016-04-05

    A differential mobility spectrometry (DMS) in combination with a multiple ion monitoring (MIM) method was developed and validated for quantitative LC-MS/MS bioanalysis of pasireotide (SOM230) in human plasma. Pasireotide, a therapeutic cyclic peptide, exhibits poor collision-induced dissociation (CID) efficiency for multiple reaction monitoring (MRM) detection. Therefore, in an effort to increase the overall sensitivity of the assay, a DMS-MIM approach was explored. By selecting the most abundant doubly charged precursor ion in both the Q1 and Q3 of the mass analyzer in MIM and combining the DMS capability to significantly reduce the high matrix/chemical background noise, this new LC-DMS-MIM method overcomes the sensitivity challenge in the typical MRM method due to poor CID fragmentation of the analyte. Human plasma was spiked with pasireotide with concentrations in the range 0.01-50 ng/mL. Weak cation-exchange solid-phase extraction was employed for sample preparation. The sample extracts were analyzed with a SCIEX QTRAP 6500 system equipped with an ESI source and DMS device. The separation voltage and compensation voltage of the DMS and other parameters of the MS system were optimized to maximize signal responses. The performance of the LC-DMS-MIM assay for quantitative analysis of pasireotide in human plasma was evaluated and compared to those obtained via LC-MRM and LC-MIM without DMS. Overall, the assay sensitivity with DMS-MIM was approximately 5-fold better than that observed in MRM or MIM without DMS. The assay was validated with accuracy (% bias) and precision (% CV) of the QC results at eight concentration levels (0.01, 0.02, 0.05, 0.15, 0.3, 1.5, 15, and 37.5 ng/mL) evaluated ranging from -4.8 to 5.0% bias and 0.7 to 8.6% CV for the intraday and interday runs. The current LC-DMS-MIM workflow can be expanded to quantitative analysis of other molecules that have poor fragmentation efficiency in CID.

  1. ION GUN

    Science.gov (United States)

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  2. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm.

  3. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam productiona)

    Science.gov (United States)

    Tanaka, M.; Hara, S.; Seki, T.; Iga, T.

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65mA (high current density of 330mA/cm2, proton ratio of 87%, and beam energy of 30keV) with a 5mm diameter extraction aperture, pulse width of 400μs, and 20Hz repetition rate at 1.3kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5mm radius) and the lens was 36mA and the 90% focused beam half-width was 1-2mm.

  4. Chemical and biological differentiation of three human breast cancer cell types using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kulp, K S; Berman, E F; Knize, M G; Shattuck, D L; Nelson, E J; Wu, L; Montgomery, J L; Felton, J S; Wu, K J

    2006-01-09

    We use Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) to image and classify individual cells based on their characteristic mass spectra. Using statistical data reduction on the large data sets generated during TOF-SIMS analysis, similar biological materials can be differentiated based on a combination of small changes in protein expression, metabolic activity and cell structure. We apply this powerful technique to image and differentiate three carcinoma-derived human breast cancer cell lines (MCF-7, T47D and MDA-MB-231). In homogenized cells, we show the ability to differentiate the cell types as well as cellular compartments (cytosol, nuclear and membrane). These studies illustrate the capacity of TOF-SIMS to characterize individual cells by chemical composition, which could ultimately be applied to detect and identify single aberrant cells within a normal cell population. Ultimately, we anticipate characterizing rare chemical changes that may provide clues to single cell progression within carcinogenic and metastatic pathways.

  5. EMIC-wave-moderated flux limitations of ring current energetic ion intensities in the multi-species plasmas of Earth's inner magnetosphere

    Science.gov (United States)

    Mauk, B.

    2013-12-01

    One of the early sophisticated integrations of theory and observations of the space age was the development in 1966 of the integral Kennel-Petschek flux limit for trapped energetic electrons and ions within Earth's inner magnetosphere. Specifically, it was proposed that: 1) trapped particle distributions in the magnetic bottle configuration of the inner magnetosphere are intrinsically unstable to the generation various plasma waves and 2) ionospheric reflection of some waves back into the trapped populations leads to runaway growth of the waves and dramatic loss of particles for particle integral intensities that rise above a fairly rigidly specified upper limit. While there has been a long hiatus in utilization of the KP limit in inner magnetospheric research, there have been recent highly successful reconsiderations of more general forms of the KP limit for understanding radiation belt electron intensities and spectral shapes, resulting from improvements in theoretical tools. Such a reconsideration has not happened for energetic trapped ions, perhaps due to the perceived immense complexity of the generation of the Electromagnetic Ion Cyclotron (EMIC) waves, that scatter the energetic ions, for plasmas containing multiple ionic species (H, He, O). Here, a differential Kennel-Petschek (KP) flux limit for magnetospheric energetic ions is devised taking into account multiple ion species effects on the EMIC waves. This new theoretical approach is applied to measured Earth magnetosphere energetic ion spectra (~ keV to ~ 1 MeV) for radial positions (L) 3 to 6.7 RE. The flatness of the most intense spectral shapes for mechanism, but modifications of traditional KP parameters are needed to account for maximum intensities up to 5 times greater than expected. Future work using the Van Allen Probes mission will likely resolve outstanding uncertainties.

  6. Ion transport in thin cell electrodeposition: modelling three-ion electrolytes in dense branched morphology under constant voltage and current conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G. [Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States) and Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)]. E-mail: marshalg@mail.retina.ar; Molina, F.V. [INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Soba, A. [Laboratorio de Sistemas Complejos, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)

    2005-05-30

    Electrochemical deposition (ECD) and spatially coupled bipolar electrochemistry (SCBE) experiments in thin-layer cells are known to produce complex ion transport patterns concomitantly with the growth of dendrite-like structures. Here we present a macroscopic model of ECD and SCBE with a three-ion electrolyte in conditions of dense branched morphology. The model describes ion transport and deposit growth through the one-dimensional Nernst-Planck equations for ion transport, the Poisson equation for the electric field and, for ECD, a growth law for deposit evolution. We present numerical simulations for typical electrochemical deposition experiments: dense branched morphology in ECD and the incubation period in SCBE. In ECD the model predicts cation, anion and proton concentration profiles, electric field variations and deposit growth speed, that are in qualitative agreement with experiments; the predicted evolution and collision of the deposit and proton fronts reveal a time scaling close to those observed in experiments. In SCBE, the model predicts that the inverse of the incubation time scales linearly with the applied voltage. Such behaviour was observed in experiments.

  7. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  8. Enhanced stability against spin torque noise in current perpendicular to the plane self-biased differential dual spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Chandra Sekhar, M. [Data Storage Institute, A*STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, DSI Building, Singapore 117608 (Singapore); School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Tran, M., E-mail: Michael_TRAN@dsi.a-star.edu.sg [Data Storage Institute, A*STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, DSI Building, Singapore 117608 (Singapore); Wang, L.; Han, G.C. [Data Storage Institute, A*STAR (Agency for Science Technology and Research), 5 Engineering Drive 1, DSI Building, Singapore 117608 (Singapore); Lew, W.S. [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)

    2015-01-15

    We present a detailed study of spin-transfer torque induced noise in self-biased differential dual spin valves (DDSV) which could be potentially used as magnetic read-heads for hard-disk drives. Micromagnetics studies of DDSV were performed in all the major magnetic configurations experienced by read-heads and we show that in every case, self-biased DDSV provide a much stronger stability against spin-transfer torque noise than conventional spin valves. Provided are also insights on the influence of the dipolar interlayer coupling, shape anisotropy, exchange bias and relative orientation between the 2 free layers. Our results demonstrate the viability of DDSV read-heads for future hard disk drives generations. - Highlights: • DDSVs show better stability against STT noise as compared to single spin valves. • Flux-closure configuration plays a key role in stabilizing the DDSV against STT noise. • Anti-ferromagnetic interlayer coupling shifts the critical current density for onset of noise. • Gap layer thickness has to be controlled carefully to avoid ferromagnetic coupling.

  9. Phase, current, absorbance, and photoluminescence of double and triple metal ion-doped synthetic and salmon DNA thin films

    Science.gov (United States)

    Chopade, Prathamesh; Reddy Dugasani, Sreekantha; Reddy Kesama, Mallikarjuna; Yoo, Sanghyun; Gnapareddy, Bramaramba; Lee, Yun Woo; Jeon, Sohee; Jeong, Jun-Ho; Park, Sung Ha

    2017-10-01

    We fabricated synthetic double-crossover (DX) DNA lattices and natural salmon DNA (SDNA) thin films, doped with 3 combinations of double divalent metal ions (M2+)-doped groups (Co2+–Ni2+, Cu2+–Co2+, and Cu2+–Ni2+) and single combination of a triple M2+-doped group (Cu2+–Ni2+–Co2+) at various concentrations of M2+ ([M2+]). We evaluated the optimum concentration of M2+ ([M2+]O) (the phase of M2+-doped DX DNA lattices changed from crystalline (up to ([M2+]O) to amorphous (above [M2+]O)) and measured the current, absorbance, and photoluminescent characteristics of multiple M2+-doped SDNA thin films. Phase transitions (visualized in phase diagrams theoretically as well as experimentally) from crystalline to amorphous for double (Co2+–Ni2+, Cu2+–Co2+, and Cu2+–Ni2+) and triple (Cu2+–Ni2+–Co2+) dopings occurred between 0.8 mM and 1.0 mM of Ni2+ at a fixed 0.5 mM of Co2+, between 0.6 mM and 0.8 mM of Co2+ at a fixed 3.0 mM of Cu2+, between 0.6 mM and 0.8 mM of Ni2+ at a fixed 3.0 mM of Cu2+, and between 0.6 mM and 0.8 mM of Co2+ at fixed 2.0 mM of Cu2+ and 0.8 mM of Ni2+, respectively. The overall behavior of the current and photoluminescence showed increments as increasing [M2+] up to [M2+]O, then decrements with further increasing [M2+]. On the other hand, absorbance at 260 nm showed the opposite behavior. Multiple M2+-doped DNA thin films can be used in specific devices and sensors with enhanced optoelectric characteristics and tunable multi-functionalities.

  10. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  11. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Science.gov (United States)

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  12. Effect of Graphene Modified Cu Current Collector on the Performance of Li4Ti5O12 Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Jiang, Jiangmin; Nie, Ping; Ding, Bing; Wu, Wenxin; Chang, Zhi; Wu, Yuting; Dou, Hui; Zhang, Xiaogang

    2016-11-16

    Interface design between current collector and electroactive materials plays a key role in the electrochemical process for lithium-ion batteries. Here, a thin graphene film has been successfully synthesized on the surface of Cu current collector by a large-scale low-pressure chemical vapor deposition (LPCVD) process. The modified Cu foil was used as a current collector to support spinel Li4Ti5O12 anode directly. Electrochemical test results demonstrated that graphene coating Cu foil could effectively improve overall Li storage performance of Li4Ti5O12 anode. Especially under high current rate (e.g., 10 C), the Li4Ti5O12 electrode using modified current collector maintained a favorable capacity, which is 32% higher than that electrode using bare current collector. In addition, cycling performance has been improved using the new type current collector. The enhanced performance can be attributed to the reduced internal resistance and improved charge transfer kinetics of graphene film by increasing electron collection and decreasing lithium ion interfacial diffusion. Furthermore, the graphene film adhered on the Cu foil surface could act as an effective protective film to avoid oxidization, which can effectively improve chemical stability of Cu current collector.

  13. Differential Amplifier with Current-Mirror Load: Influence of Current Gain, Early Voltage, and Supply Voltage on the DC Output Voltage

    Science.gov (United States)

    Paulik, G. F.; Mayer, R. P.

    2012-01-01

    A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…

  14. Stability of the lower hybrid instability excited by longitudinal currents in a collisional, multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Chandu [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Kurian, M J [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Antony, S [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam-686 560, Kerala (India); Anilkumar, C P [Indian Institute of Geomagnetism, Tirunelveli-627 011, Tamil Nadu (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram-695 581, Kerala (India)

    2007-05-15

    We have investigated the stability of the lower hybrid wave in a collisional plasma containing hydrogen and positively and negatively charged oxygen ions. The collisions of all the species in the plasma have been considered. The electrons, streaming parallel to the magnetic field, can excite the instability if their drift velocity exceeds the parallel phase velocity of the wave. This is true for both the weakly as well as the strongly collisional cases. If the ion collisions are neglected, the growth/damping rate depends on the electron collision frequency and is modified by a factor dependent directly on the number densities and square of the charges on the oxygen ions and inversely on the masses of these ions. Ion collisions, however only damp the wave; this damping being dependent also on the ion collision frequencies, in addition to the above dependencies. We find that the dispersion relation in the low collisional limit can account for lower hybrid waves in the observed frequency range.

  15. The modulatory effect of zinc ions on voltage-gated potassium currents in cultured rat hippocampal neurons is not related to Kv1.3 channels.

    Science.gov (United States)

    Teisseyre, A; Mercik, K; Mozrzymas, J W

    2007-12-01

    We applied the whole-cell patch-clamp technique to study the influence of zinc ions (Zn(2+)) and extracellular protons at acidic pH (pH(o)) on voltage-gated potassium currents in cultured rat hippocampal neurons. The first goal of the study was to estimate whether Kv1.3 currents significantly contributed to voltage-gated potassium currents in examined cells. Then, the influence of both ions on the activity of other voltage-gated potassium currents in the neurons was examined. We examined both the total current and the delayed - rectifier component. Results obtained in both cases were not significantly different from each other. Available data argued against any significant contribution of Kv1.3 currents to the recorded currents. Nevertheless, application of Zn(2+) in the concentration range from 100 microM to 5 mM reversibly modulated the recorded currents. The activation midpoint was shifted by about 40 mV (total current) and 30 mV (delayed-rectifier current) towards positive membrane potentials and the activation kinetics were slowed significantly (2 - 3 fold) upon application of Zn(2+). The inactivation midpoint was also shifted towards positive membrane potentials, but less significantly (about 14 mV). The current amplitudes were reduced in a concentration-dependent manner to about 0.5 of the control value. The effects of Zn(2+) were saturated at the concentration of 1 mM. Raising extracellular proton concentration by lowering the pH(o) from 7.35 to 6.4 did not affect significantly the currents. Possible mechanisms underlying the observed phenomena and their possible physiological significance are discussed.

  16. The Potential of Gait Analysis to Contribute to Differential Diagnosis of Early Stage Dementia: Current Research and Future Directions

    Science.gov (United States)

    Morgan, Debra; Funk, Melanie; Crossley, Margaret; Basran, Jenny; Kirk, Andrew; Bello-Haas, Vanina Dal

    2007-01-01

    Early differential diagnosis of dementia is becoming increasingly important as new pharmacologic therapies are developed, as these treatments are not equally effective for all types of dementia. Early detection and differential diagnosis also facilitates informed family decision making and timely access to appropriate services. Information about…

  17. A Systemic View of the Learning and Differentiation of Scientific Concepts: The Case of Electric Current and Voltage Revisited

    Science.gov (United States)

    Koponen, Ismo T.; Kokkonen, Tommi

    2014-01-01

    In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…

  18. On the differentiability of depth distribution function of deposited energy, momentum and ion range--a reply to Dr L. G. Glazov

    Institute of Scientific and Technical Information of China (English)

    张竹林

    2002-01-01

    Based on the translational invariance of a medium, a new theorem has been proposed and proved rigorously: the depth distributions of the deposited energy, momentum and ion range must be infinitely differentiable functions in amorphous or polycrystalline infinite targets by ion bombardment, if these functions exist. The origin of the "discontinuity",derived by Dr Glazov in 1995 in J. Phys.: Condens. Matter 7 6365, has been analysed in detail. For the power cross section, neglecting electronic stopping, the linear transport equations determining the depth distribution functions of the deposited energy and momentum (by taking the threshold energy into account) have been solved asymptotically. An important formula derived by Dr Glazov has been confirmed and generalized. The results agree with the new theorem.

  19. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  20. Effects of ion-slip current on MHD free convection flow in a temperature stratified porous medium in a rotating system

    Science.gov (United States)

    Hossain, Delowar; Samad, Abdus; Alam, Mahmud

    2017-06-01

    The ion-slip effects on unsteady MHD free convection flow past an infinite vertical porous plate with the effect of temperature stratified porous medium in a rotating system with viscous dissipation and Joule heating has been studied numerically. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. The governing differential equations are transformed by introducing usual similarity variables. The resultant equations are solved numerically using Runge-Kutta method along with shooting technique. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters entering into the problem.

  1. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  2. Localization of Post-Translational Modifications in Peptide Mixtures via High-Resolution Differential Ion Mobility Separations Followed by Electron Transfer Dissociation

    Science.gov (United States)

    Baird, Matthew A.; Shvartsburg, Alexandre A.

    2016-12-01

    Precise localization of post-translational modifications (PTMs) on proteins and peptides is an outstanding challenge in proteomics. While electron transfer dissociation (ETD) has dramatically advanced PTM analyses, mixtures of localization variants that commonly coexist in cells often require prior separation. Although differential or field asymmetric waveform ion mobility spectrometry (FAIMS) achieves broad variant resolution, the need for standards to identify the features has limited the utility of approach. Here we demonstrate full a priori characterization of variant mixtures by high-resolution FAIMS coupled to ETD and the procedures to systematically extract the FAIMS spectra for all variants from such data.

  3. Localization of Post-Translational Modifications in Peptide Mixtures via High-Resolution Differential Ion Mobility Separations Followed by Electron Transfer Dissociation

    Science.gov (United States)

    Baird, Matthew A.; Shvartsburg, Alexandre A.

    2016-09-01

    Precise localization of post-translational modifications (PTMs) on proteins and peptides is an outstanding challenge in proteomics. While electron transfer dissociation (ETD) has dramatically advanced PTM analyses, mixtures of localization variants that commonly coexist in cells often require prior separation. Although differential or field asymmetric waveform ion mobility spectrometry (FAIMS) achieves broad variant resolution, the need for standards to identify the features has limited the utility of approach. Here we demonstrate full a priori characterization of variant mixtures by high-resolution FAIMS coupled to ETD and the procedures to systematically extract the FAIMS spectra for all variants from such data.

  4. SUB-ACUTE TREATMENT WITH METHYLMERCURY DURING DIFFERENTIATION OF PHEOCHROMOCYTOMA (PC12) CELLS DOES NOT ALTER BINDING OF ION CHANNEL LIGANDS OR CELL MORPHOLOGY.

    Science.gov (United States)

    We demonstrated recently that 6 days of exposure to nanomolar concentrations (3-10 nM) of methylmercury (MeHg) during nerve growth factor (NGF) induced PC12 cell differentiation reduced the amplitude and density of voltage-gated sodium and calcium currents. In the present study,...

  5. Trapped Ring Current Ion Dynamics During the 17-18 March 2015 Geomagnetic Storm Obtained from TWINS ENA Images

    Science.gov (United States)

    Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.

    2015-12-01

    On 17-18 March 2015, there was a large (minimum SYM/H ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.

  6. Interaction of cardiac sodium current with other ion channel currents and its clinical significance%心脏钠电流与其他离子流的相互作用及其临床意义

    Institute of Scientific and Technical Information of China (English)

    吴志娟; 李泱

    2014-01-01

    Various ion currents on the myocardial cell membranetakepart in cardiac electric activity under both physiological and pathological conditions. Cardiac sodiumcurrent (INa)is involved in thedepolarization and repolarizationof cardiomyocyte action potential (AP), and exerts an important effect onthe conduction ofAP. So, it is of great importance to explore the interactions, effects, and especially, clinical significance ofINawith other ion channel currents. This studyreviewedthe interaction ofINa with other cardiac currents, andelucidated the mechanism of cardiac arrhythmias fromthe perspective of ion flow interaction.%心肌细胞膜上的离子流共同参与心脏在生理及病理下的电活动。钠离子流(INa)参与心肌细胞动作电位(AP)的除极和复极过程,对AP的传导有重要作用。故研究心脏钠通道与各离子通道的离子流相互关系及影响,意义尤为重要。本文综述了钠离子流与心脏其他离子流间的相互作用关系,试图从离子流相互作用的角度解释心律失常的发生机制。

  7. HCCI Misfire Control Based on Ion Current Integral Signal%基于离子电流积分信号的HCCI失火控制

    Institute of Scientific and Technical Information of China (English)

    张栖玉; 张志永; 李从跃; 李理光

    2011-01-01

    A test bench for HCCI gasoline engine is built, in which the proper parameters of ion current detection system and its signal integral circuit are determined through tests. The features of ion current integral signal and its correlation with combustion are then analyzed. Finally an experimental study is conducted for the misfire cycle of HCCI engine in low-speed light load condition on the closed-loop control of in-cycle re-ignition based on ion current integral signal feedback. The results show that ion current integral signal can be taken as misfire criterion, and in-cycle re-ignition can effectively ignite mixture and hence reduce HC emission.%搭建了HCCI汽油机试验台,并通过试验为其离子电流检测系统及其信号积分电路选定合适的参数.分析了不同燃烧工况下的离子电流积分信号特征及其与燃烧的相关性,最后对低速小负荷工况HCCI失火循环进行了基于离子电流积分信号反馈的循环内补火闭环控制的试验研究,结果表明,离子电流积分信号可作为失火的判断标准,而循环内补火可有效地引燃混合气,降低HC排放.

  8. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    Science.gov (United States)

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characteristics of ring current protons and oxygen ions during the 7 January 2015 and 17 March 2015 storms: Van Allen Probes/RBSPICE observations

    Science.gov (United States)

    Keika, K.; Seki, K.; Nose, M.; Machida, S.; Miyoshi, Y.; Lanzerotti, L. J.; Mitchell, D. G.; Gkioulidou, M.; Gerrard, A. J.; Manweiler, J. W.

    2015-12-01

    We investigate enhancements and losses of energetic (~50-~500 keV) protons and oxygen ions during two intense storms on January 7 and March 17 in 2015. We use proton and oxygen ion data from RBSPICE onboard Van Allen Probes. During the January 7 storm (Dstmin = -99 nT), Van Allen Probes explored the inner magnetosphere on the night side, with both spacecraft located around midnight at apogee. Their orbits were in opposite phase. RBSPICE data are available from both spacecraft during the rapid recovery of the storm. We analyze energy spectra of both species to identify whether the ring current is symmetric or not, and determine the dominant loss process. During the March 17 storm (Dstmin = -223 nT), Van Allen Probes traveled in the pre-midnight sector during the outbound paths and around midnight during the inbound path. The orbits of the two spacecraft were in opposite phase. The Dst index during the storm showed a two-step decrease with the first minimum at 9 UT and the second at 22 UT. Enhancements of ring current ions began at RBSPICE-B at ~7 UT, and RBSPICE-A entered the ring current region at ~9 UT. The RBSPICE data show penetration of energetic protons (μ~0.1 keV/nT) down to L~4 during the first storm development. Protons penetrated more deeply (as low as L~3) during the second enhancement. The protons, which we confirmed made a dominant contribution to energy density at L = 3-4, are more enhanced in flux around the storm maximum. The flux of 200-400 keV oxygen ions was enhanced and localized around midnight near the end of the first storm development. Oxygen ion enhancements during the second development were seen in a wide range of MLT (pre-midnight to midnight). We examine the evolution of ion energy spectra to identify whether each phase of the multi-step storm development was due to deep penetration of transport/injections, density enhancements, or/and non-adiabatic acceleration of protons and oxygen ions.

  10. Mitigation of ion-induced drift instability in electron plasma by a transverse current through the Landau-resonant layer

    Science.gov (United States)

    Kabantsev, A. A.; Driscoll, C. F.

    2016-10-01

    Experiments and theory on electron columns have characterized an algebraic damping of diocotron modes, caused by a flux of electrons through the resonance (critical) layer. This flux-driven damping also eliminates the ion-induced exponential instability of diocotron modes. Our plasmas rotate at rate ωE × B, and the (nominally stable) diocotron modes are described by amplitude Ad ,kz = 0 ,mθ = 1 , 2 , . . , frequency ωd(mθ) , and a wave/plasma critical radius rc(mθ) , where ωE × B(rc) =ωd/mθ mθ. External fields produce a low density (1/100) halo of electrons moving radially outward from the plasma core, with flux rate F ≡(- 1/-1Ne) dNe/dt) dNe dt. We find that algebraicdamping of the diocotron modes begins when the halo reaches the critical radius rc(mθ) , proceeding as Ad(Δt) =Ad(0) - γΔt , with γ = β(mθ) F . We also investigated the diocotron instability which occurs when a small number of ions are transiting the electron plasma. Dissimilar bounce-averaged drifts of electrons and ions polarize the diocotron mode density perturbations, developing instability analogous to the classical flute instability. The exponential growth rate Γ is proportional to the fractional neutralization (Ni/Ne) and to the separation between electrons and ions in the wave perturbation. We have found that the algebraic damping can suppress the exponential ion-induced instability only for amplitudes satisfying Ad <= βF/Γ. Supported by NSF Grant PHY-1414570, DOE Grants DE-SC0002451.

  11. Classification of biodiesel and fuel blends using gas chromatography - differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering.

    Science.gov (United States)

    Pasupuleti, Dedeepya; Eiceman, Gary A; Pierce, Karisa M

    2016-08-01

    Fatty acid alkyl esters (FAAEs) were determined at 10-100mg/L in biodiesel and blends with petrodiesel without sample pre-treatment using gas chromatography with a tandem differential mobility detector. Selectivity was provided through chromatographic separations and atmospheric pressure chemical ionization reactions in the detector with mobility characterization of gas ions. Limits of detection were ~0.5ng with an average of 2.98% RSD for peak area precision, ≤1.3% RSD for retention time precision, and ≤9.2% RSD for compensation voltage precision. Biodiesel blends were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Unsupervised cluster analysis captured 52.72% of variance in a single PC while supervised analysis captured 71.64% of variance using Fisher ratio feature selection. Test set predictions showed successful clustering according to source or feedstock when regressed onto the training set model. Detection of the regulated substance methyl linolenate (C18:3 me) was achieved in 6-10s with a 1m long capillary column using dual ion filtering in the tandem differential mobility detector. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  13. Intracellular detection of Cu(2+) and S(2-) ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Guedes da Silva, M Fátima C; Koch, Biplob; Pombeiro, Armando J L

    2015-10-14

    A new quinazoline functionalized benzimidazole-based fluorogenic chemosensor H3L is synthesized and fully characterized by conventional techniques including single crystal X-ray analysis. It acts as a highly selective colorimetric and fluorescence sensor for Cu(2+) ions in DMF/0.02 M HEPES (1 : 1, v/v, pH = 7.4) medium. Reaction of H3L with CuCl2 forms a mononuclear copper(ii) [Cu(Cl)(H2L)(H2O)] (H2L-Cu(2+)) complex which is characterized by conventional techniques and quantum chemical calculations. Electronic absorption and fluorescence titration studies of H3L with different metal cations show a distinctive recognition only towards Cu(2+) ions even in the presence of other commonly coexisting ions such as Li(+), Na(+), K(+), Mg(2+), Ca(2+), Fe(2+), Fe(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+) and Hg(2+). Moreover, H2L-Cu(2+) acts as a metal based highly selective and sensitive chemosensor for S(2-) ions even in the presence of other commonly coexisting anions such as F(-), Cl(-), Br(-), I(-), SO4(2-), SCN(-), AcO(-), H2PO4(-), PO4(3-), NO3(-), ClO4(-), NO2(-), HSO4(-), HSO4(2-), S2O3(2-), S2O8(2-), CN(-), CO3(2-) and HCO3(-) in DMF/0.02 M HEPES (1 : 1, v/v, pH = 7.4) medium. Quantification analysis indicates that these receptors, H3L and H2L-Cu(2+), can detect the presence of Cu(2+) and S(2-) ions at very low concentrations of 1.6 × 10(-9) M and 5.2 × 10(-6) M, respectively. The propensity of H3L as a bio-imaging fluorescent probe for detection of Cu(2+) ions and sequential detection of S(2-) ions by H2L-Cu(2+) in Dalton lymphoma (DL) cancer cells is also shown.

  14. Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species.

    Science.gov (United States)

    Barott, Katie L; Perez, Sidney O; Linsmayer, Lauren B; Tresguerres, Martin

    2015-08-01

    Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed that mitochondria, an essential source of ATP for energetically costly ion transporters, were abundant throughout the tissues of A. yongei. Additionally, transmission electron microscopy revealed septate junctions in all cell layers of A. yongei, as previously reported for S. pistillata, as well as evidence for transcellular vesicular transport in calicoblastic cells. Antibodies against the alpha subunit of Na(+)/K(+)-ATPase (NKA) and plasma membrane Ca(2+)-ATPase (PMCA) immunolabeled cells in the calicoblastic epithelium of both species, suggesting conserved roles in calcification. However, NKA was abundant in the apical membrane of the oral epithelium in A. yongei but not S. pistillata, while PMCA was abundant in the gastroderm of S. pistillata but not A. yongei. These differences indicate that these two coral species utilize distinct pathways to deliver ions to the sites of calcification and photosynthesis. Finally, antibodies against mammalian sodium bicarbonate cotransporters (NBC; SLC4 family) resulted in strong immunostaining in the apical membrane of oral epithelial cells and in calicoblastic cells in A. yongei, a pattern identical to NKA. Characterization of ion transport mechanisms is an essential step toward understanding the cellular mechanisms of coral physiology and will help predict how different coral species respond to environmental stress. Copyright © 2015 the American Physiological Society.

  15. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature.

    Science.gov (United States)

    Chatakun, P; Núñez-Toldrà, R; Díaz López, E J; Gil-Recio, C; Martínez-Sarrà, E; Hernández-Alfaro, F; Ferrés-Padró, E; Giner-Tarrida, L; Atari, M

    2014-01-01

    Bone-tissue engineering is a therapeutic target in the field of dental implant and orthopedic surgery. It is therefore essential to find a microenvironment that enhances the growth and differentiation of osteoblasts both from mesenchymal stem cells (MSCs) and those derived from dental pulp. The aim of this review is to determine the relationship among the proteins fibronectin (FN), osteopontin (OPN), tenascin (TN), bone sialoprotein (BSP), and bone morphogenetic protein (BMP2) and their ability to coat different types of biomaterials and surfaces to enhance osteoblast differentiation. Pre-treatment of biomaterials with FN during the initial phase of osteogenic differentiation on all types of surfaces, including slotted titanium and polymers, provides an ideal microenvironment that enhances adhesion, morphology, and proliferation of pluripotent and multipotent cells. Likewise, in the second stage of differentiation, surface coating with BMP2 decreases the diameter and the pore size of the scaffold, causing better adhesion and reduced proliferation of BMP-MSCs. Coating oligomerization surfaces with OPN and BSP promotes cell adhesion, but it is clear that the polymeric coating material BSP alone is insufficient to induce priming of MSCs and functional osteoblastic differentiation in vivo. Finally, TN is involved in mineralization and can accelerate new bone formation in a multicellular environment but has no effect on the initial stage of osteogenesis.

  16. Mechanistic investigation of the interaction between bisquaternary antimicrobial agents and phospholipids by liquid secondary ion mass spectrometry and differential scanning calorimetry.

    Science.gov (United States)

    Pashynskaya, V A; Kosevich, M V; Gömöry, A; Vashchenko, O V; Lisetski, L N

    2002-01-01

    Mechanisms of interaction between the antimicrobial drugs decamethoxinum and aethonium, which are based on bisquaternary ammonium compounds, and a phospholipid component of biological membranes, dipalmitoylphosphatidylcholine, were studied by means of liquid secondary ion mass spectrometry (LSIMS) and differential scanning calorimetry (DSC). Supramolecular complexes of the drugs with this phospholipid were recorded under secondary ion mass spectrometric conditions. The dependence of the structures of these complexes on structural parameters of the dications of the bisquaternary ammonium compounds was demonstrated. Tandem mass spectrometric investigations of the metastable decay of doubly charged ions of decamethoxinum and aethonium complexes with dipalmitoylphosphatidylcholine allowed estimation of structural parameters of these complexes in the gas phase. Interactions of decamethoxinum and aethonium with model membrane assemblies built from hydrated dipalmitoylphosphatidylcholine were studied using DSC. It was shown that while both drugs can interact with model membranes, the mechanisms of such interactions for decamethoxinum and aethonium differ. The correlation between the nature of these interactions and structural and electronic parameters of the dications of the two bisquaternary agents is discussed. Interpretation of combined mass spectrometric and calorimetric experimental data led to proposals that the molecular mechanisms of antimicrobial action of bisquaternary ammonium compounds are related to their effect on the membrane phospholipid components of microbial cells.

  17. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile☆

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. PMID:23707769

  18. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: a study to assess the drug's cardiac ion channel profile.

    Science.gov (United States)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

    Science.gov (United States)

    Tarvainen, O; Orpana, J; Kronholm, R; Kalvas, T; Laulainen, J; Koivisto, H; Izotov, I; Skalyga, V; Toivanen, V

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O(3+)-O(7+) were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  20. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Tarvainen, O.; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O3+-O7+ were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  1. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H. [Department of Physics (JYFL), University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Toivanen, V. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  2. Differentiation of compact and extended conformations of di-ubiquitin conjugates with lysine-specific isopeptide linkages by ion mobility-mass spectrometry.

    Science.gov (United States)

    Jung, Ji Eun; Pierson, Nicholas A; Marquardt, Andreas; Scheffner, Martin; Przybylski, Michael; Clemmer, David E

    2011-08-01

    Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS-MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS-MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.

  3. Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening--current concepts.

    Science.gov (United States)

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis

    2009-12-15

    Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.

  4. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shichuang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Fu, Kai, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-04

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10{sup 14} cm{sup −2}) and 90 keV (dose: 1 × 10{sup 14} cm{sup −2}), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I{sub DSmax} at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g{sub mmax} was 83 mS/mm.

  5. Ion Mobility Measurements of Nondenatured 12-150 kDa Proteins and Protein Multimers by Tandem Differential Mobility Analysis-Mass Spectrometry (DMA-MS)

    Science.gov (United States)

    Hogan, Christopher J.; de la Mora, Juan Fernández

    2011-01-01

    The mobilities of electrosprayed proteins and protein multimers with molecular weights ranging from 12.4 kDa (cytochrome C monomers) to 154 kDa (nonspecific concanavalin A hexamers) were measured in dry air by a planar differential mobility analyzer (DMA) coupled to a time-of-flight mass spectrometer (TOF-MS). The DMA determines true mobility at atmospheric pressure, without perturbing ion structure from that delivered by the electrospray. A nondenaturing aqueous 20 mM triethylammonium formate buffer yields compact ions with low charge states, moderating polarization effects on ion mobility. Conversion of mobilities into cross-sections involves a reduction factor ξ for the actual mobility relative to that associated with elastic specular collisions with smooth surfaces. ξ is known to be 1.36 in air from Millikan's oil drop experiments. A similar enhancement effect ascribed to atomic-scale surface roughness has been found in numerical simulations. Adopting Millikan's value ξ = 1.36 and assuming a spherical geometry yields a gas-phase protein density ρ p = 0.949 ± 0.053 g cm-3 for all our protein data. This is substantially higher than the 0.67 g cm-3 found in recent low-resolution DMA measurements of singly charged proteins. DMA-MS can distinguish nonspecific protein aggregates formed during the electrospray process from those formed preferentially in solution. The observed charge versus diameter relation is compatible with a protein charge reduction mechanism based on the evaporation of triethylammonium ions from electrosprayed drops.

  6. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Calvo-Gallardo, Enrique; de Pascual, Ricardo; Fernández-Morales, José-Carlos; Arranz-Tagarro, Juan-Alberto; Maroto, Marcos; Nanclares, Carmen; Gandía, Luis; de Diego, Antonio M G; Padín, Juan-Fernando; García, Antonio G

    2015-01-01

    Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.

  7. Total Born cross section of $e^+e^-$-pair production in relativistic ion collisions from differential equations

    CERN Document Server

    Lee, Roman N

    2016-01-01

    We apply the differential equation method to the calculation of the total Born cross section of the process $Z_1Z_2\\to Z_1Z_2e^+e^-$. We obtain explicit expression for the cross section exact in the relative velocity of the nuclei.

  8. The differential equations defining deflection of particles of ion beam from axial trajectory in electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A.; Doskeyev, T.G. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: spivakif@rambler.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    The exact differential equations defining deviations of the paths of charged particles from the axial trajectory are derived in curvilinear coordinates. These equations are in a form suited for carrying out relativistically correct numerical calculations of the dynamics of charged particle beams.

  9. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells of rabbit ear artery.

    Science.gov (United States)

    Wang, Q; Hogg, R C; Large, W A

    1993-04-01

    Membrane currents were recorded with the perforated-patch method with a low-chloride (35 mM) pipette solution in isolated smooth muscle cells of the rabbit ear artery. At a holding potential of -50 mV in potassium-free conditions spontaneous inward single-channel currents were observed and noradrenaline evoked a noisy inward current, which appeared to be comprised of the spontaneous currents. The reversal potential (Vr) of the spontaneous channel and noradrenaline-induced current was not affected in anion-substitution experiments but Vr was altered when external Na+ was replaced with choline or TRIS. The relationship between clamp potential and spontaneous single-channel current amplitude was linear and the mean unitary conductance was 28 pS. Caffeine, which releases calcium from the sarcoplasmic reticulum, and the calcium ionophore ionomycin activated the cation current and also blocked the response to noradrenaline. Spontaneous channel current activity and the noradrenaline-induced current were blocked when external NaCl was replaced with 89 mM CaCl2. The response to noradrenaline was blocked by prazosin but was not affected by yohimbine and therefore the response is mediated by alpha 1-adrenoceptors. It is concluded that in rabbit ear artery smooth muscle cells there is a calcium-activated cation channel of 28 pS conductance, which is relatively impermeable to calcium but can be activated by noradrenaline.

  10. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  11. Adult Subependymal Neural Precursors, but Not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields

    OpenAIRE

    Robart Babona-Pilipos; Droujinine, Ilia A.; Popovic, Milos R.; Morshead, Cindi M.

    2011-01-01

    BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells) in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory age...

  12. Differentiation of motor cortical representation of hand muscles by navigated mapping of optimal TMS current directions in healthy subjects.

    Science.gov (United States)

    Bashir, Shahid; Perez, Jennifer M; Horvath, Jared C; Pascual-Leone, Alvaro

    2013-08-01

    The precision of navigated transcranial magnetic stimulation (TMS) to map the human primary motor cortex may be effected by the direction of TMS-induced current in the brain as determined by the orientation of the stimulation coil. In this study, the authors investigated the effect of current directionality on motor output mapping using navigated brain stimulation. The goal of this study was to determine the optimal coil orientation (and, thus, induced brain current) to activate hand musculature representations relative to each subject's unique neuroanatomical landmarks. The authors studied motor output maps for the first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles in 10 normal volunteers. Monopolar current pulses were delivered through a figure-of-eight-shaped TMS coil, and motor evoked potentials were recorded using electromyography. At each targeted brain region, the authors systematically rotated the TMS coil to determine the direction of induced current in the brain for induction of the largest motor evoked potentials. These optimal current directions were expressed as an angle relative to each subject's central sulcus. Consistency of the optimal current direction was assessed by repeating the entire mapping procedure on two different occasions across subjects. The authors demonstrate that systematic optimization of current direction as guided by MRI-based neuronavigation improves the resolution of cortical output motor mapping with TMS.

  13. Scaling of triple differential cross-sections for asymmetric (, 2) process on helium isoelectronic ions by fast electrons

    Indian Academy of Sciences (India)

    M K Srivastava

    2005-01-01

    A simple scaling law is obtained for asymmetric (, 2) process on helium isoelectronic ions by fast electrons. It is based on treating the targets as having one active electron moving in the effective Coulomb field of the atomic core with an effective charge ' = − 5/8. This effective charge is also used in the description of the scattered and ejected electrons. The model has been tested against other available (, 2) results on helium in asymmetric geometry. The scaling law is found to work reasonably well for fast incident electrons and becomes increasingly accurate as target increases.

  14. Differential-output B-dot and D-dot monitors for current and voltage measurements on a 20-MA, 3-MV pulsed-power accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Wagoner

    2008-10-01

    Full Text Available We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator’s 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator’s 4 outer magnetically insulated transmission lines (MITLs, and 2 current monitors on the accelerator’s inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator’s power pulse. A model of flux penetration has been developed and is used to correct (to first order the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-Ω balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-Ω cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample, numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two

  15. Differential B-dot and D-dot monitors for current and voltage measurements on a 20-MA 3-MV pulsed-power accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Shoup, Roy Willlam (ITT Industries, Albuquerque, NM); Gilliland, Terrance Leo (Ktech Corporation, Albuquerque, NM); Lee, James R.; Speas, Christopher Shane; Kim, Alexandre A. (High Current Electronic Institute, Russian Academy of Sciences, Tomsk, Russia); Struve, Kenneth William; York, Mathew William; Leifeste, Gordon T.; Rochau, Gregory Alan; Sharpe, Arthur William; Stygar, William A.; Porter, John Larry Jr.; Wagoner, Tim C. (Ktech Corporation, Albuquerque, NM); Reynolds, Paul Gerard (Team Specialty Products Corporation, Albuquerque, NM); Slopek, Jeffrey Scott (Ktech Corporation, Albuquerque, NM); Moore, William B. S.; Dinwoodie, Thomas Albert (Ktech Corporation, Albuquerque, NM); Woodring, R. M. (Ktech Corporation, Albuquerque, NM); Broyles, Robin Scott (Ktech Corporation, Albuquerque, NM); Mills, Jerry Alan; Melville, J. A. (Prodyn Technologies Incorporated, Albuquerque, NM); Dudley, M. E. (Ktech Corporation, Albuquerque, NM); Androlewicz, K. E. (Ktech Corporation, Albuquerque, NM); Mourning, R. W. (Ktech Corporation, Albuquerque, NM); Moore, J. K. (Ktech Corporation, Albuquerque, NM); Serrano, Jason Dimitri (Ktech Corporation, Albuquerque, NM); Ives, H. C. (EG& G, Albuquerque, NM); Johnson, M. F. (Team Specialty Products Corporation, Albuquerque, NM); Peyton, B. P. (Ktech Corporation, Albuquerque, NM); Leeper, Ramon Joe; Savage, Mark Edward; Donovan, Guy Louis; Spielman, R. B. (Ktech Corporation, Albuquerque, NM); Seamen, Johann F.

    2007-12-01

    We have developed a system of differential-output monitors that diagnose current and voltage in the vacuum section of a 20-MA 3-MV pulsed-power accelerator. The system includes 62 gauges: 3 current and 6 voltage monitors that are fielded on each of the accelerator's 4 vacuum-insulator stacks, 6 current monitors on each of the accelerator's 4 outer magnetically insulated transmission lines (MITLs), and 2 current monitors on the accelerator's inner MITL. The inner-MITL monitors are located 6 cm from the axis of the load. Each of the stack and outer-MITL current monitors comprises two separate B-dot sensors, each of which consists of four 3-mm-diameter wire loops wound in series. The two sensors are separately located within adjacent cavities machined out of a single piece of copper. The high electrical conductivity of copper minimizes penetration of magnetic flux into the cavity walls, which minimizes changes in the sensitivity of the sensors on the 100-ns time scale of the accelerator's power pulse. A model of flux penetration has been developed and is used to correct (to first order) the B-dot signals for the penetration that does occur. The two sensors are designed to produce signals with opposite polarities; hence, each current monitor may be regarded as a single detector with differential outputs. Common-mode-noise rejection is achieved by combining these signals in a 50-{Omega} balun. The signal cables that connect the B-dot monitors to the balun are chosen to provide reasonable bandwidth and acceptable levels of Compton drive in the bremsstrahlung field of the accelerator. A single 50-{omega} cable transmits the output signal of each balun to a double-wall screen room, where the signals are attenuated, digitized (0.5-ns/sample), numerically compensated for cable losses, and numerically integrated. By contrast, each inner-MITL current monitor contains only a single B-dot sensor. These monitors are fielded in opposite-polarity pairs. The two

  16. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  17. Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice.

    Science.gov (United States)

    Connaughton, V P; Maguire, G

    1998-04-01

    Whole-cell voltage-gated currents were recorded from bipolar cells in the zebrafish retinal slice. Two physiological populations of bipolar cells were identified. In the first, depolarizing voltage steps elicited a rapidly activating A-current that reached peak amplitude or = 10 ms after step onset and did not inactivate. IK was antagonized by internal caesium and external tetraethylammonium. Bipolar cells expressing IK also expressed a time-dependent h-current at membrane potentials calcium-dependent potassium current (IK(Ca)) were identified. Depolarizing voltage steps > -50 mV activated ICa, which reached peak amplitude between -20 and -10 mV. ICa was eliminated in Ca+2-free Ringer and blocked by cadmium and cobalt, but not tetrodotoxin. In most cells, Ica was transient, activating rapidly at -50 mV. This current was antagonized by nickel. The remaining bipolar cells expressed a nifedipine-sensitive sustained current that activated between -40 and -30 mV, with both slower kinetics and smaller amplitude than transient ICa. IK(Ca) was elicited by membrane depolarizations > -20 mV. Bipolar cells in the zebrafish retinal slice preparation express an array of voltage-gated currents which contribute to non-linear I-V characteristics. The zebrafish retinal slice preparation is well-suited to patch clamp analyses of membrane mechanisms and provides a suitable model for studying genetic defects in visual system development.

  18. Low resistivity Ga-doped ZnO thin films of less than 100 nm thickness prepared by ion plating with direct current arc discharge

    OpenAIRE

    2007-01-01

    Low resistivity Ga-doped ZnO films were prepared on a glass substrate by ion plating with direct current arc discharge. Thickness dependent changes in the electrical properties of the films are reported, focusing on the thin films of less than 100 nm thickness. Structural analyses showed that the thinnest film of 30 nm thickness consists of well-oriented columnar grains normal to the substrate, and the resistivity was as low as 4.4×10−4 Ω cm. The changes in lattice strain and c-axis fluctuati...

  19. Indication of a Differential Freeze-out in Proton-Proton and Heavy-Ion Collisions at RHIC and LHC energies

    CERN Document Server

    Thakur, Dhananjaya; Garg, Prakhar; Sahoo, Raghunath; Cleymans, Jean

    2016-01-01

    The experimental data from the RHIC and LHC experiments of invariant pT spectra in A+A and p + p collisions are analysed with Tsallis distributions in different approaches. The information about the freeze-out surface in terms of freeze-out volume, temperature, chemical potential and radial flow velocity for different particle species are obtained. Further, these parameters are studied as a function of the mass of the secondary particles. A mass-dependent differential freeze-out is observed which does not seem to distinguish between particles and their antiparticles. Further a mass-hierarchy in the radial flow is observed, meaning heavier particles suffer lower radial flow. Tsallis distribution function at finite chemical potential is used to study the mass dependence of chemical potential. The peripheral heavy-ion and proton-proton collisions at the same energies seem to be equivalent in terms of the extracted thermodynamic parameters.

  20. Evaluation of agonist selectivity for the NMDA receptor ion channel in bilayer lipid membranes based on integrated single-channel currents.

    Science.gov (United States)

    Hirano, A; Sugawara, M; Umezawa, Y; Uchino, S; Nakajima-Iijima, S

    2000-06-01

    A new method for evaluating chemical selectivity of agonists to activate the N-methyl-D-aspartate (NMDA) receptor was presented by using typical agonists NMDA, L-glutamate and (2S, 3R, 4S)-2-(carboxycyclopropyl)glycine (L-CCG-IV) and the mouse epsilon1/zeta1 NMDA receptor incorporated in bilayer lipid membranes (BLMs) as an illustrative example. The method was based on the magnitude of an agonist-induced integrated single-channel current corresponding to the number of total ions passed through the open channel. The very magnitudes of the integrated single-channel currents were compared with the different BLMs as a new measure of agonist selectivity. The epsilon1/zeta1 NMDA receptor was partially purified from Chinese hamster ovary (CHO) cells expressing the epsilon1/zeta1 NMDA receptor and incorporated in BLMs formed by the tip-dip method. The agonist-induced integrated single-channel currents were obtained at 50 microM agonist concentration, where the integrated current for NMDA was shown to reach its saturated value. The obtained integrated currents were found to be (4.5 +/- 0.55) x 10(-13) C/s for NMDA, (5.8 +/- 0.72) x 10(-13) C/s for L-glutamate and (6.6 +/- 0.61) x 10(-13) C/s for L-CCG-IV, respectively. These results suggest that the agonist selectivity in terms of the total ion flux through the single epsilon1/zeta1 NMDA receptor is in the order of L-CCG-IV approximately = L-glutamate > NMDA.

  1. Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes

    Science.gov (United States)

    Waller, Gordon Henry; Lai, Samson Yuxiu; Rainwater, Ben Harris; Liu, Meilin

    2014-04-01

    Concerns over the safety and high cost of lithium ion batteries, especially those containing cobalt-based active materials, limit their use to applications where energy density requirements cannot be met by any other materials. Manganese-spinel based positive electrode materials represent a promising candidate for lithium ion batteries because of their lower cost, lower toxicity, and greater resistance to thermal runaway than cobalt-based active materials. Although LiMn2O4 has a well-known issue of capacity fading, investigations into nanostructured composites composed of surface modified spinel phases have demonstrated outstanding performance, suggesting that LiMn2O4 has potential to be a viable positive electrode for safe, inexpensive, high power, and long lifetime lithium-ion batteries. Here we report a low-temperature hydrothermal process for growth of conformal coatings of highly crystalline LiMn2O4 directly onto a carbon fiber current collector, completely eliminating the process steps and materials associated with the conventional tape casting approach (binders, solvents, and metal foils). The prepared electrodes tested at a rate of 1 C showed an initial discharge capacity of 125 mAh g-1 and an average energy efficiency of 92.4% over 100 cycles.

  2. Amplification of the discharge current density of lithium-ion batteries with spinel phase Li(PtAu)0.02Mn1.98O4 nano-materials

    CSIR Research Space (South Africa)

    Ross, N

    2014-05-01

    Full Text Available capacity retention of 99% after 50 cycles. Faster charge transportation at high current rates proved to prevent the pronounced pile-up of Li(sup+) ions and undesired Mn(sup3+) ions on the surfaces. The electrochemical impedance spectroscopy (EIS) results...

  3. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  4. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries

    Science.gov (United States)

    Merla, Yu; Wu, Billy; Yufit, Vladimir; Brandon, Nigel P.; Martinez-Botas, Ricardo F.; Offer, Gregory J.

    2016-03-01

    Understanding and tracking battery degradation mechanisms and adapting its operation have become a necessity in order to enhance battery durability. A novel use of differential thermal voltammetry (DTV) is presented as an in-situ state-of-health (SOH) estimator for lithium-ion batteries. Accelerated ageing experiments were carried on 5Ah commercial lithium-ion polymer cells operated and stored at different temperature and loading conditions. The cells were analysed regularly with various existing in-situ diagnosis methods and the novel DTV technique to determine their SOH. The diagnosis results were used collectively to elaborate the degradation mechanisms inside the cells. The DTV spectra were decoupled into individual peaks, which each represent particular phases in the negative and positive electrode combined. The peak parameters were used to quantitatively analyse the battery SOH. A different cell of the same chemistry with unknown degradation history was then analysed to explore how the cell degraded. The DTV technique was able to diagnose the cell degradation without relying on supporting results from other methods nor previous cycling data.

  5. ROLE OF SERUM AND ION CHANNEL BLOCK ON GROWTH AND HORMONALLY-INDUCED DIFFERENTIATION OF Spodoptera frugiperda (Sf21) INSECT CELLS.

    Science.gov (United States)

    Jenson, Lacey J; Bloomquist, Jeffrey R

    2015-11-01

    A neuronal morphological phenotype can be induced in cultured Spodoptera frugiperda insect cells (Sf21) by supplementing serum-containing media with 20-hydroxyecdysone (20-HE) and/or insulin. In this study, the primary objectives were to determine any role of ion channels in mediating the morphological change in cells treated with 20-HE and insulin, and whether serum was required to observe this effect. Results showed serum-free media also induced growth of processes in Sf21 cells, but at a lower percentage than that found previously in cells bathed in serum-containing media. Veratridine, a sodium channel activator, increased cell survival when applied in combination with 20-HE to Sf21 cells, and the effect was blocked by tetrodotoxin (1 μM) a known sodium channel blocker. Cobalt, a calcium channel blocker, showed significant inhibition of cell process growth when applied in combination with both 20-HE and 20-HE plus veratridine. Cobalt also showed significant inhibition of cell process growth when applied in combination with insulin. Thus, some type of sodium channel, as well as a mechanism for transmembrane calcium ion movement, are apparently expressed in Sf21 cells and are involved in the differentiation process. These cell lines may be used in a wide variety of endeavors, including the screening of insecticides, as well as foster basic studies of neurodevelopment and ecdysone action.

  6. Characterization of detergent compatible protease of a halophilic Bacillus sp. EMB9: differential role of metal ions in stability and activity.

    Science.gov (United States)

    Sinha, Rajeshwari; Khare, S K

    2013-10-01

    A moderately halophilic protease producer, Bacillus sp. strain isolated from sea water is described. The protease is purified to homogeneity by ammonium sulphate precipitation and CM cellulose chromatography. The serine protease has a molecular mass of 29 kDa. Enzymatic characterization of protease revealed K(m) 2.22 mg mL(-1), Vmax 1111.11 U mL(-1), pH optimum 9.0, t1/2 190 min at 60°C and salt optima 1% (w/v) NaCl. The protease is remarkably stable in hydrophilic and hydrophobic solvents at high concentrations. The purified preparation is unstable at room temperature. Ca(2+) ions are required for preventing this loss of activity. Interestingly, the activity and stability are modulated differentially. Whereas, divalent cation Ca(2+) are involved in maintaining stability in solution at room temperature by preventing unfolding, monovalent Na(+) and K(+) ions participate in regulating the activity and assist in refolding of the enzyme. Application of the protease is shown in efficient removal of blood stain.

  7. Simulation and analysis of transformer inrush current and its impact on current differential protection%变压器励磁涌流及其对差动保护影响的仿真分析

    Institute of Scientific and Technical Information of China (English)

    王慧; 闫坤; 高厚磊; 陈学伟

    2013-01-01

    An accurate transformer model is built by using PSCAD package . The generation mechanism , waveform characteristics and influencing factors of transformer inrush current are simulated and analyzed . Combining the transformer differential protection ,this paper discusses the conventional methods to identify inrush current and the operation logic to prevent mis-operation of the protection caused by inrush current .The typical operating criteria of the transformer differential protection are also simulated under different fault conditions .The results show that the digital simulation technique is able to properly generate waveform characteristics of inrush current ,different kinds of transformer fault status and the influence of inrush current on differential protection .Therefore ,this technique can be used as an aided tool for the development ,teaching and training of transformer differential protection .%利用仿真软件PSCAD准确搭建变压器模型,对变压器励磁涌流的产生机制、波形特征和影响因素进行了仿真与分析。结合变压器差动保护,对常用励磁涌流识别方法、防止励磁涌流引起差动保护误动的动作逻辑等进行了分析,并在不同故障条件下对变压器差动保护的典型动作判据进行了仿真验证。结果表明,数字仿真技术能够形象地再现励磁涌流的波形特征,反映变压器的不同故障和励磁涌流对差动保护的影响,可以作为辅助工具用于变压器差动保护的设计开发与教学培训。

  8. 差动保护不平衡电流的产生机理及措施%Mechanism and Countermeasure of Unbalanced Current for Differential Protection

    Institute of Scientific and Technical Information of China (English)

    甘辉霞

    2014-01-01

    差动保护是变压器的主保护,具有选择性好、灵敏度高等一系列优点。从差动保护的基本原理入手,深入分析了几类差动保护不平衡电流的产生的原因,结合差动保护在实际案例中的应用,探讨避免不平衡电流的技术措施及对策,具有一定的理论和实用价值。%Differential protection is the main protection of the main transformer, has the good selectivity, high sensitivity and a series of advantages. Starting from the basic principle of differential protection, the article analyzed reasons of several classes of unbalanced current for differential protection, combined with the application in the actual case, and discussed how to avoid unbalanced current. It has a certain theoretical and practical value.

  9. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    Science.gov (United States)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  10. Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    Uddin Ziya

    2014-01-01

    Full Text Available In this paper a numerical model is developed to examine the effect of thermal radiation on magnetohydrodynamic heat transfer flow of a micropolar fluid past a non-conducting wedge in presence of heat source/sink. In the model it is assumed that the fluid is viscous, incompressible and electrically conducting. The Hall and ion slip effects have also been taken into consideration. The model contains highly non-linear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. These equations are then solved numerically by Shooting technique along with the Runge-Kutta-Fehlberg integration scheme for entire range of parameters with appropriate boundary conditions. The effects of various parameters involved in the problem have been studied with the help of graphs. Numerical values of skin friction coefficients and Nusselt number are presented in tabular form. The results showed that the micropolar fluids are better to reduce local skin drag as compared to Newtonian fluids and the presence of heat sink increases the heat transfer rate.

  11. Effects of Simvastatin on Ion Channel Currents in Ventricular Myocytes from Acute Infarcted Heart of Normocholesterolemic Rabbits

    Institute of Scientific and Technical Information of China (English)

    Chao Ding; Xianghua Fu; Li Yang; Huixiao Chen; Junxia Li; Yuying Zhao; Jie Li; Jie Wang

    2008-01-01

    Objectives To investigate the effects of simvastatin on membrane ionic currents in left ventricular myocytes of rab-bit heart suffering from acute myocardial infarction (AMI), so as to explore the ionic mechanism of statin treatment for antiarrhythmia. Methods Forty-five New Zealand rabbits were randomly divided into three groups: AMI group, simv-astatin intervention group (Statin group) and sham-operated control group (CON). Rabbits were infarcted by ligation of the left anterior descending coronary artery after administration of oral simvastatin 5 mg · kg-1 · d-1 (Statin group) or placebo (AMI group) for 3 days. Single ventricular myocytes were isolated enzymatically from the epicardial zone of the infracted region 72 h later. Whole cell patch clamp technique was used to record membrane ionic currents, inclu-ding sodium current (Ina), L-type calcium current (Ica-L) and transient outward potassium current (Ito). Results ① There was not significant difference in serum cholesterol concentration among three groups. ② The peak Ina current den-sity (at -30 mV) was significantly decreased in AMI group (-25.26±5. 28, n = 13), comparing with CON (-42. 78±5.48, n = 16), P < 0. 05, while it was significantly increased in Statin group (-39. 83±5. 65 pA/pF, n = 12) comparing with AMI group, P <0. 01; The peak I Ca-L current density (at 0 mV) was significantly decreased in AMI group (- 3.43±0. 92 pA/pF, n = 13) comparing with CON (- 4. 56±1.01 pA/pF, n = 15), P < 0. 05, while it was significantly increased in Statin group (-4. 18±0. 96 pA/pF, n = 12) comparing with AMI group, P <0. 05; The Ito current density (at + 60 mV) was significantly decreased in AMI group (11.41±1.94 pA/pF, n = 13) compa-ring with CON (17. 41±3. 13 pA/pF, n = 15), P <0. 01, while it was significantly increased in Statin group (16. 11±2. 43 pA/pF, n = 14) comparing with AMI group, P < 0. 01. Conclusions AMI induces significant down-regula-tion of Ina, I Ca-L and Ito. Pretreatment with

  12. Gyrotropic Guiding-Center Fluid Theory for the Turbulent Heating of Magnetospheric Ions in Downward Birkeland Current Regions

    Science.gov (United States)

    2006-11-20

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From...ensemble-averaged E field must vary on a time lence must also be weak; and (7) the Fokker-Planck separa- scle th e oprd to we have sh tion of length...Earth’s surface. 32 The electrons Birkeland current system in the guiding-center and gy- are accelerated upward by the downward pointing, self - rotropic

  13. Comparison of H-mode plasma simulations using toroidal velocity models depending on plasma current density and ion temperature in presence of an ITB

    Directory of Open Access Journals (Sweden)

    Boonyarit Chatthong

    2014-06-01

    Full Text Available Two different approaches for predicting plasma toroidal velocity (v are developed and used in self-consistent simulations of H-mode plasmas with the presence of ITB using BALDUR integrated predictive modelling code. In the first approach, the toroidal velocity depends on the plasma current density; while in the second approach the toroidal velocity is directly proportional to the ion temperature. The profile of v is used to calculate the ExB flow shear which is a main mechanism for plasma transport suppression, leading to the ITB formation. In all simulations, the core transport model is a combination of NCLASS neoclassical transport and semi-empirical Mixed Bohm/gyro-Bohm model that includes the ITB effects. The boundary condition is set at top of the pedestal and is estimated using a pedestal model based on a combination of magnetic and flow shear stabilization pedestal width scaling and an infinite-n ballooning pressure gradient. Two toroidal velocity models are used to simulate the time evolution of plasma temperature and density profiles of 10 JET discharges. The root mean square error (RMSE is used to compare simulation results of those 10 JET discharges with experimental data. It is found that RMSE of Ti , Te , ne are 28.1%, 31.8%, and 15.0% for the first toroidal velocity model and 25.5%, 30.2%, and 15.1% for the second toroidal velocity model, respectively. Furthermore, this suite of codes is used to predict the ITER performance under standard type I ELMy H-mode. It is found that the simulation yields formation of a narrow ITB near r/a = 0.7 in the simulation using the current density dependent model and a wide ITB from r/a = 0.5 to 0.8 in the simulation using the ion temperature dependent model. The average of central ion temperature, total fusion power output and alpha power are predicted to be 36 keV, 159 MW and 492 MW for the current density dependent model and 49 keV, 218 MW and 786 MW for the ion temperature dependent

  14. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    Science.gov (United States)

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-07

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results

  15. Ion induced intermixing and consequent effects on the leakage currents in HfO{sub 2}/SiO{sub 2}/Si systems

    Energy Technology Data Exchange (ETDEWEB)

    Manikanthababu, N.; Saikiran, V.; Pathak, A.P.; Rao, S.V.S.N. [University of Hyderabad, School of Physics, Hyderabad (India); Chan, T.K.; Vajandar, S.; Osipowicz, T. [National University of Singapore, Department of Physics, Centre for Ion Beam Applications (CIBA), Singapore (Singapore)

    2017-05-15

    Atomic layer deposited (ALD) samples with layer stacks of HfO{sub 2} (3 nm)/SiO{sub 2} (0.7 nm)/Si were subjected to 120 MeV Au ion irradiation at different fluences to study intermixing effects across the HfO{sub 2}/SiO{sub 2} interface. High-resolution Rutherford backscattering spectrometry (HRBS) and X-ray reflectivity (XRR) measurements confirm an increase in the interlayer thickness as a result of SHI induced intermixing effects. Current-voltage (I-V) measurements reveal an order of magnitude difference in the leakage current density between the pristine and irradiated samples. This can be explained by considering the increased physical thickness of interlayer (HfSiO). Furthermore, the samples were subjected to rapid thermal annealing (RTA) process to analyze annealing kinetics. (orig.)

  16. Role of magnetic shear on the electrostatic current driven ion-cyclotron instability in the presence of parallel electric field

    Indian Academy of Sciences (India)

    Harsha Jalori; A K Gwal

    2001-06-01

    Recent observation and theoretical investigations have led to the significance of electrostatic ion cyclotron (EIC) waves in the electrodynamics of acceleration process. The instability is one of the fundamental of a current carrying magnetized plasma. The EIC instability has the lowest threshold current among the current driven instabilities. On the basis of local analysis where inhomogeneities like the magnetic shear and the finite width current channel, have been ignored which is prevalent in the magnetospheric environment. On the basis of non-local analysis interesting modification has been incorporated by the inclusion of magnetic shear. In this paper we provide an analytical approach for the non-local treatment of current driven electrostatic waves in presence of parallel electric field. The growth rate is significantly influenced by the field aligned electron drift. The presence of electric field enhances the growth of EIC waves while magnetic shear stabilizes the system.

  17. Doubly differential distribution of electron emission in ionization of uracil in collisions with 3.5-MeV/u bare C ions

    Science.gov (United States)

    Agnihotri, A. N.; Nandi, S.; Kasthurirangan, S.; Kumar, A.; Galassi, M. E.; Rivarola, R. D.; Champion, C.; Tribedi, L. C.

    2013-03-01

    We report the energy and angular distribution of the electron emission from an RNA base molecule uracil in collisions with 3.5-MeV/u bare C ions. The absolute double differential cross sections (DDCS) are measured for emission energy between a few to 600 eV. The angular distributions are compared to those obtained for the O2 molecule in the same experiment. The single differential cross sections (SDCS) are also deduced. The energy and angular distributions of the DDCS and SDCS are compared with the state-of-the-art quantum-mechanical models based on continuum distorted wave-eikonal initial state (CDW-EIS) and correct boundary first Born (CB1) approximations which use a suitable molecular wave function for uracil. The models, however, give substantial deviations from the observed energy and angular distributions of the DDCS as well as SDCS. The CDW-EIS calculations are closer to the data compared to the CB1. In the case of uracil a large difference in the forward-backward emission of electrons was observed in comparison to that in collisions with an oxygen molecule.

  18. Amyloid β-protein differentially affects NMDA receptor- and GABAA receptor-mediated currents in rat hippocampal CA1 neurons

    Institute of Scientific and Technical Information of China (English)

    Junfang Zhang; Lei Hou; Xiuping Gao; Fen Guo; Wei Jing; Jinshun Qi; Jiantian Qiao

    2009-01-01

    Although the aggregated amyloid β-protein (Aβ) in senile plaques is one of the key neuropathological features of Alzheimer's disease (AD), soluble forms of Aβ also interfere with synaptic plasticity at the early stage of AD. The suppressive action of acute application of Aβ on hippocampal long-term potentiation (LTP) has been reported widely, whereas the mechanism underlying the effects of Aβ is still mostly unknown. The present study, using the whole-cell patch clamp technique, investigated the effects of Aβ fragments (Aβ25-35 and Aβ31-35) on the LTP induction-related postsynaptic ligand-gated channel currents in isolated hippocampal CA1 neurons. The results showed a rapid but opposite action of both peptides on excitatory and inhibitory receptor currents. Glutamate application-induced currents were suppressed by A β25-35 in a dose-dependent manner, and further N-methyl-I>aspartate (NMDA) receptor-mediated currents were selec-tively inhibited. In contrast, pretreatment with Aβ fragments potentiated γ-aminobutyric acid (GABA)-induced whole-cell currents. As a control, Aβ35-31 the reversed sequence of Aβ35-31 showed no effect on the currents induced by glutamate, NMDA or GABA. These results may partly explain the impaired effects of Aβ on hippocampal LTP, and suggest that the functional down-regulation of N M DA receptors and up-regulation of GABAA receptors may play an important role in remodeling the hippocampal synaptic plasticity in early AD.

  19. Doubly-differential cross section calculations for $K$-shell vacancy production in lithium by fast O$^{8+}$ ion impact

    CERN Document Server

    Śpiewanowski, M D; Horbatsch, M; Kirchner, T

    2016-01-01

    Inner-shell vacancy production for the O$^{8+}$-Li collision system at 1.5 MeV/amu is studied theoretically. The theory combines single-electron amplitudes for each electron in the system to extract multielectron information about the collision process. Doubly-differential cross sections obtained in this way are then compared with the recent experimental data by LaForge et al. [J. Phys. B 46, 031001 (2013)] yielding good resemblance, especially for low outgoing electron energy. A careful analysis of the processes that contribute to inner-shell vacancy production shows that the improvement of the results as compared to single-active-electron calculations can be attributed to the leading role of two-electron excitation-ionization processes.

  20. Effect of yttrium ion on the proliferation,differentiation and mineralization function of primary mouse osteoblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    张金超; 刘翠莲; 李亚平; 孙静; 王鹏; 邸科前; 陈航; 赵燕燕

    2010-01-01

    A series of experimental methods including MTT test,alkaline phosphatase(ALP) activity measurement,oil red O stain and measurement and mineralized function were employed to assess the effects of Y3+ on the proliferation,differentiation,adipogenic transdifferentiation and mineralization function of primary mouse osteoblasts(OBs) in vitro.The results indicated that Y3+(1×10-9,1×10-8,1×10-7,1×10-6,1×10-5,and 1×10-4 mol/L) promoted the proliferation of OBs on day 1,2 and 3.Y3+ had no effect on the differentiati...

  1. Emittance of short-pulsed high-current ion beams formed from the plasma of the electron cyclotron resonance discharge sustained by high-power millimeter-wave gyrotron radiation

    Science.gov (United States)

    Razin, S.; Zorin, V.; Izotov, I.; Sidorov, A.; Skalyga, V.

    2014-02-01

    We present experimental results on measuring the emittance of short-pulsed (≤100 μs) high-current (80-100 mA) ion beams of heavy gases (Nitrogen, Argon) formed from a dense plasma of an ECR source of multiply charged ions (MCI) with quasi-gas-dynamic mode of plasma confinement in a magnetic trap of simple mirror configuration. The discharge was created by a high-power (90 kW) pulsed radiation of a 37.5-GHz gyrotron. The normalized emittance of generated ion beams of 100 mA current was (1.2-1.3) π mm mrad (70% of ions in the beams). Comparing these results with those obtained using a cusp magnetic trap, it was concluded that the structure of the trap magnetic field lines does not exert a decisive influence on the emittance of ion beams in the gas-dynamic ECR source of MCI.

  2. Electrochemical Stability of Carbon Fibers Compared to Metal Foils as Current Collectors for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Kiggans, Jim [ORNL; Nanda, Jagjit [ORNL

    2012-01-01

    The electrochemical behaviors of highly conductive, fully-graphitic, semi-graphitic and non-graphitic carbon fibers were studied as the cathode current collectors of lithium batteries in standard electrolyte (alkyl carbonate/LiPF6) solutions and compared to bare aluminum (Al). All of these current collectors demonstrate a stable electrochemical behavior within the potential range of 2.5 to 5 V, due to passivation by surface films. Carbon fibers have comparable electrochemical stability of Al and may be used in place Al foil. While the carbon fibers do not contribute any irreversible or extra capacity when they are cycled below 4.5 V, for fully-graphitic and semi-graphitic fibers PF6 intercalation and deintercalation into the carbon fiber may occur when they are cycled at high potentials >4.5 V.

  3. Up-regulation of the transient A-type K+ current (IA) in the differentiation of neural stem cells of the early postnatal rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    GUO Hong-bo; HUANG Lian-yan; ZOU Yu-xi; ZOU Fei

    2010-01-01

    Background Neural stem cells (NSCs) not only are essential to cell replacement therapy and transplantation in clinical settings, but also provide a unique model for the research into neurogenesis and epigenesis. However, little attention has been paid to the electrophysiological characterization of NSC development. This work aimed to identify whether the morphological neuronal differentiation process in NSCs included changes in the electrophysiological properties of transient A-type K+ currents (IA).Methods NSCs were isolated from early postnatal rat hippocampus and were multiplied in basic serum-free medium containing basic fibroblast growth factor. Potassium currents were investigated and compared using whole-cell patch-clamp techniques and one-way analysis of variance (ANOVA), respectively.Results Compared with NSC-derived neurons, cloned NSCs (cNSCs) had a more positive resting membrane potential, a higher input resistance, and a lower membrane capacitance. Part of cNSCs and NSC-derived neurons possessed both delayed-rectifier K+ currents (IDR) and IA, steady-state activation of IA in cNSCs (half-maximal activation at (21.34±4.37) mV) occurred at a more positive voltage than in NSC-derived neurons at 1-6 days in vitro (half-maximal activation at (12.85±4.19) mV).Conclusions Our research revealed a developmental up-regulation of the IA component during differentiation of postnatal NSCs. Together with the marked developmental up-regulation of IDR in vitro neuronal differentiation we have previously found, the voltage-gated potassium channels may participate in neuronal maturation process.

  4. 强流ECR离子源引出系统研究%Study on Extraction System for High Current ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    王云; 张文慧; 张子民; 张雪珍; 刘占稳; 陈志; 赵红卫; 赵阳阳; 孙良亭; 杨尧; 钱程; 武启; 马鸿义

    2013-01-01

      为了提高强流ECR离子源的引出束流品质,分别设计了1#和2#引出系统,利用束流引出模拟软件PBGUNS对1#和2#引出系统进行了质子束流引出与传输的模拟计算,结合实际测得的发射度数据分析引出系统,发现2#引出系统比1#引出系统引出束流品质高。对ECR离子源引出系统的电势等位线分布等参数引起的球差进行了简单数学推导及MATLAB绘图,并结合1#和2#引出系统束流相图模拟结果证明了球差会使引出束流品质有效发射度增长,通过适当加大电极孔径可改善束流聚焦情况,得到了束流光学聚焦较好的束流引出系统设计。%  To improve the quality of extracted ion beam from a high current ECR ion source, 1# and 2# extraction systems were designed and tested. The PBGUNS code was used to simulate the 1# and 2# extraction systems of proton ion beam. The emittance measurement results with the two different extraction systems were compared and analyzed with the simulation, the conclusion that more high quality beam extracted from 2# system than 1# system was got. The formula derivation of ECR ion source extraction system spherical aberration and MATLAB drawing was done by the analyzing on the distribution of extraction field equipotentials, effective emittance increasing caused by spherical aberration was proved by 1# and 2# extraction systems beam phase space simulation result, beam focusing would be improved if electrode hole size increasing appropriately and a general concept on good optics focusing of ion beam extraction system was proposed finally.

  5. Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries

    Science.gov (United States)

    Wang, Ke; Wu, Yang; Wu, Hengcai; Luo, Yufeng; Wang, Datao; Jiang, Kaili; Li, Qunqing; Li, Yadong; Fan, Shoushan; Wang, Jiaping

    2017-05-01

    Cross-stacked super-aligned carbon nanotube (SACNT) films are promising for use as current collectors in lithium-ion batteries because of their outstanding capability to decrease the weight and thickness of inactive material and strong adhesion to the electrodes. However, the relatively poor conductivity of SACNT films may limit their application to large-size electrodes or at high current rate. Herein, a facile approach is proposed to improve the conductivity of SACNT films by electron-beam deposition of a thin metal film on their surface. Such modification lowers the sheet resistance by three orders of magnitude while keeping the extremely small fraction of SACNT current collectors. The metal-coated SACNT films strongly inhibit polarization during the electrochemical reaction, resulting in improved cell performance compared with that of metal and uncoated CNT current collectors. The improvement in conductivity and cell performance achieved by this approach is so large that the effect of the increase of inactive material is overwhelmed, leading to increased gravimetric energy density.

  6. Simultaneous recording of the action potential and its whole-cell associated ion current on NG108-15 cells cultured over a MWCNT electrode

    Science.gov (United States)

    Morales-Reyes, I.; Seseña-Rubfiaro, A.; Acosta-García, M. C.; Batina, N.; Godínez-Fernández, R.

    2016-08-01

    It is well known that, in excitable cells, the dynamics of the ion currents (I i) is extremely important to determine both the magnitude and time course of an action potential (A p). To observe these two processes simultaneously, we cultured NG108-15 cells over a multi-walled carbon nanotubes electrode (MWCNTe) surface and arranged a two independent Patch Clamp system configuration (Bi-Patch Clamp). The first system was used in the voltage or current clamp mode, using a glass micropipette as an electrode. The second system was modified to connect the MWCNTe to virtual ground. While the A p was recorded through the micropipette electrode, the MWCNTe was used to measure the underlying whole-cell current. This configuration allowed us to record both the membrane voltage (V m) and the current changes simultaneously. Images acquired by atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that cultured cells developed a complex network of neurites, which served to establish the necessary close contact and strong adhesion to the MWCNTe surface. These features were a key factor to obtain the recording of the whole-cell I i with a high signal to noise ratio (SNR). The experimental results were satisfactorily reproduced by a theoretical model developed to simulate the proposed system. Besides the contribution to a better understanding of the fundamental mechanisms involved in cell communication, the developed method could be useful in cell physiology studies, pharmacology and diseases diagnosis.

  7. Direct laser interference patterning and ultrafast laser-induced micro/nano structuring of current collectors for lithium-ion batteries

    Science.gov (United States)

    Zheng, Y.; An, Z.; Smyrek, P.; Seifert, H. J.; Kunze, T.; Lang, V.; Lasagni, A.-F.; Pfleging, W.

    2016-03-01

    Laser-assisted modification of metals, polymers or ceramics yields a precise adjustment of wettability, biocompatibility or tribological properties for a broad range of applications. Due to a specific change of surface topography on micro- and nanometer scale, new functional properties can be achieved. A rather new scientific and technical approach is the laserassisted surface modification and structuring of metallic current collector foils for lithium-ion batteries. Prior to the thick film electrode coating processes, the formation of micro/nano-scaled surface topographies on current collectors can offer better interface adhesion, mechanical anchoring, electrical contact and reduced mechanical stress during cycling. These features in turn impact on the battery performance and the battery life-time. In order to generate the 3D surface architectures on metallic current collectors, two advanced laser processing structuring technologies: direct laser interference patterning (DLIP) and ultrafast laser-induced periodic surface structuring (LIPSS) were applied in this study. After laser structuring via DLIP and LIPSS, composite electrode materials were deposited by tape-casting on the modified current collectors. The electrode film adhesion was characterized by tensile strength measurements. The impact of various surface structures on the improvement of adhesive strength was discussed.

  8. Genetic differentiation among Parastichopus regalis populations from Western Mediterranean Sea: potential effects of its fishery and current connectivity.

    Directory of Open Access Journals (Sweden)

    C. MAGGI

    2015-11-01

    Full Text Available Parastichopus regalis (Cuvier, 1817 is the most expensive seafood product on the catalonian market (NE Spain, with prices around 130 €/Kg (fresh weight. Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. We provided the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI and 16S genes, as well as a morphological description of its populations. Individuals were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia. We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed on COI gene. Population pairwise fixation index (FST, AMOVA and correspondence analysis (CA based on COI, revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g. microsatellites would be necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with decrease of the size and weight average and lower genetic diversity compared to locations without fishery pressure. For an appropriate management of this species, we suggest: 1 an accurate assessment of the stocks status along the Spanish coasts; 2 the study of the reproductive cycle of this target species and the establishment of a closed fishery season according to it; 3 the founding of protected areas (i.e. not take zones to conserve healthy populations and favour the recruitment on the nearby areas.

  9. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  10. Gate-controlled negative differential resistance in drain current characteristics of AlGaAs/InGaAs/GaAs pseudomorphic MODFET's

    Science.gov (United States)

    Laskar, J.; Ketterson, A. A.; Baillargeon, J. N.; Brock, T.; Adesida, Ilesanmi

    1989-12-01

    The observation of negative differential resistance (NDR) and negative transconductance at high drain and gate fields in depletion-mode AlGaAs/InGaAs/GaAs MODFETs with gate lengths Lg of about 250 nm is discussed. Under high bias voltage conditions, the device drain current characteristic switches from a high-current to a low-current state, resulting in reflection gain in the drain circuit of the MODFET. The decrease in the drain current of the device corresponds to a sudden increase in the gate current. The device can be operated in two regions: (1) standard MODFET operation for Vgs less than 0 V, resulting in f(max) values greater than 120 GHz, and (2) an NDR region which yields operation as a reflection gain amplifier for Vgs greater than 0 V and Vds greater than 2.5 V, resulting in 2-dB reflection gain at 26.5 GHz. The NDR is attributed to the redistribution of charge and voltage in the channel caused by electrons crossing the heterobarrier under high-field conditions.

  11. Radioactive iodine (131I) therapy for differentiated thyroid cancer in Japan: current issues with historical review and future perspective.

    Science.gov (United States)

    Higashi, Tatsuya; Kudo, Takashi; Kinuya, Seigo

    2012-02-01

    Radioactive iodine (RAI, (131)I) has been used as a therapeutic agent for differentiated thyroid cancer (DTC) with over 50 years of history. Recently, it is now attracting attention in medical fields as one of the molecular targeting therapies, which is known as targeted radionuclide therapy. Radioactive iodine therapy (RIT) for DTC, however, is now at stake in Japan, because Japan is confronting several problems, including the recent occurrence of the Great East Japan Disaster (GEJD) in March 2011. RIT for DTC is strictly limited in Japan and requires hospitalization. Because of strict regulations, severe lack of medical facilities for RIT has become one of the most important medical problems, which results in prolonged waiting time for Japanese patients with DTC, including those with distant metastasis, who wish to receive RIT immediately. This situation is also due to various other factors, such as prolonged economic recession, super-aging society, and subsequent rapidly changing medical environment. In addition, due to the experience of atomic bombings in Hiroshima and Nagasaki, Japanese people have strong feeling of "radiophobia". There is fear that GEJD and related radiation contamination may worsen this feeling, which might be reflected in more severe regulation of RIT. To overcome these difficulties, it is essential to collect and disclose all information about the circumstances around this therapy in Japan. In this review, we would like to look at this therapy through several lenses, including historical, cultural, medical, and socio-economic points of view. We believe that clarifying the problems is sure to lead to the resolution of this complicated situation. We have also included several recommendations for future improvements.

  12. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel Robert [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ~0.2 μC/m) over long pulse durations (4 μs) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K+ ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (~80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress.

    Science.gov (United States)

    Luo, Qingyun; Yu, Bingjun; Liu, Youliang

    2005-09-01

    High Na+ and Cl- concentrations in soil cause hyperionic and hyperosmotic stress effects, the consequence of which can be plant demise. Ion-specific stress effects of Na+ and Cl- on seedlings of cultivated (Glycine max (L.) Merr) and wild soybean (Glycine soja Sieb. Et Zucc.) were evaluated and compared in isoosmotic solutions of Cl-, Na+ and NaCl. Results showed that under NaCl stress, Cl- was more toxic than Na+ to seedlings of G. max. Injury of six G. max cultivars, including 'Jackson' (salt sensitive) and 'Lee 68' (salt tolerant), was positively correlated with the content of Cl- in the leaves, and negatively with that in the roots. In subsequent research, seedlings of two G. max cultivars (salt-tolerant Nannong 1138-2, and salt-sensitive Zhongzihuangdou-yi) and two G. soja populations (BB52 and N23232) were subjected to isoosmotic solutions of 150mM Na+, Cl- and NaCl, respectively. G. max cv. Nannong 1138-2 and Zhongzihuangdou-yi were damaged much more heavily in the solution of Cl- than in that of Na+. Their Leaves were found to be more sensitive to Cl- than to Na+, and salt tolerance of these two G. max cultivars was mainly due to successful withholding of Cl- in the roots and stems to decrease its content in the leaves. The reverse response to isoosmotic stress of 150 mM Na+ and Cl- was shown in G. soja populations of BB52 and N23232; their leaves were not as susceptible to toxicity of Cl- as that of Na+. Salt tolerance of BB52 and N23232 was mainly due to successful withholding of Na+ in the roots and stems to decrease its content in the leaves. These results indicate that G. soja have advantages over G. max in those traits associated with the mechanism of Cl-tolerance, such as its withholding in roots and vacuoles of leaves. It is possible to use G. soja to improve the salt tolerance of G. max.

  14. Differential gene expression patterns and colocalization of ATP-gated P2X6/P2X4 ion channels during rat small intestine ontogeny.

    Science.gov (United States)

    Padilla, Karla; Gonzalez-Mendoza, David; Berumen, Laura C; Escobar, Jesica E; Miledi, Ricardo; García-Alcocer, Guadulupe

    2016-07-01

    Gene coding for ATP-gated receptor ion channels (P2X1-7) has been associated with the developmental process in various tissues; among these ion channel subtypes, P2X6 acts as a physiological regulator of P2X4 receptor functions when the two receptors form heteroreceptors. The P2X4 receptor is involved in pain sensation, the inflammatory process, and body homeostasis by means of Mg(2+) absorption through the intestine. The small intestine is responsible for the absorption and digestion of nutrients; throughout its development, several gene expressions are induced that are related to nutrients received, metabolism, and other intestine functions. Previous work has shown a differential P2X4 and P2X6 protein distribution in the small intestine of newborn and adult rats; however, it is not well-known at what age the change in the relationship between the gene and protein expression occurs and whether or not these receptors are colocalized. In this work, we evaluate P2X4 and P2X6 gene expression patterns by qPCR from embryonic (E18, P0, P7, P17, P30) to adult age in rat gut, as well as P2X6/P2X4 colocalization using qRT-PCR and confocal immunofluorescence in proximal and distal small intestine sections. The results showed that P2X6 and P2X4 gene expression levels of both receptors decreased at the embryonic-perinatal transition, whereas from ages P17 to P30 (suckling-weaning transition) both receptors increased their gene expression levels. Furthermore, P2X4 and P2X6 proteins were expressed in a different way during rat small intestine development, showing a higher colocalization coefficient at age P30 in both intestine regions. Those results suggest that purinergic receptors may play a role in intestinal maturation, which is associated with age and intestinal region.

  15. Energy losses produced by differential currents in the metallic ducts of electric installations; Perdidas de energia producidas por corrientes diferenciales en la tuberia metalica de instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Campero L, Eduardo; Bratu S, Neagu; Marquez M, Luis; Caballero R, Rafael [Universidad Autonoma Metropolitana Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1994-12-31

    In this article it is explained what is known as differential currents and the conditions in which they appear in the electrical installations. A short outline is made on the magnetic induction phenomenon that appears in metallic conduits, due to the circulation of differential currents along the inside of the tube and that in turn produces energy losses in the form of heat, that is dissipated in the tube surrounding environment. The results of the measurements performed in the laboratory are shown in order to quantify the energy losses in the metallic conduit. It was found that for certain conditions these losses are significant. [Espanol] En este articulo se explica lo que se entiende por corrientes diferenciales y se describen las condiciones en las que estas aparecen en las instalaciones electricas. Se plantea brevemente el fenomeno de induccion magnetica que aparece en las tuberias metalicas, debido a la circulacion de corrientes diferenciales por el interior del tubo y que a su vez produce perdidas de energia en forma de calor, que se disipa en el ambiente que rodea al tubo. Se muestran los resultados de las mediciones que se llevaron a cabo en laboratorio para poder cuantificar las perdidas en tuberia metalica conduit. Se encontro que para ciertas condiciones estas perdidas son significativas.

  16. A Comparison between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes within Battery Management Systems

    Science.gov (United States)

    Pastor-Fernández, Carlos; Uddin, Kotub; Chouchelamane, Gael H.; Widanage, W. Dhammika; Marco, James

    2017-08-01

    Degradation of Lithium-ion batteries is a complex process that is caused by a variety of mechanisms. For simplicity, ageing mechanisms are often grouped into three degradation modes (DMs): conductivity loss (CL), loss of active material (LAM) and loss of lithium inventory (LLI). State of Health (SoH) is typically the parameter used by the Battery Management System (BMS) to quantify battery degradation based on the decrease in capacity and the increase in resistance. However, the definition of SoH within a BMS does not currently include an indication of the underlying DMs causing the degradation. Previous studies have analysed the effects of the DMs using incremental capacity and differential voltage (IC-DV) and electrochemical impedance spectroscopy (EIS). The aim of this study is to compare IC-DV and EIS on the same data set to evaluate if both techniques provide similar insights into the causes of battery degradation. For an experimental case of parallelized cells aged differently, the effects due to LAM and LLI were found to be the most pertinent, outlining that both techniques are correlated. This approach can be further implemented within a BMS to quantify the causes of battery ageing which would support battery lifetime control strategies and future battery designs.

  17. An investigation of the role of the time averaged ion beam current density upon the defect densities in thin film SIMOX

    Science.gov (United States)

    Nejim, A.; Marsh, C. D.; Giles, L. F.; Hemment, P. L. F.; Li, Y.; Chater, RJ.; Kilner, J. A.; Booker, G. R.

    1994-02-01

    The effect of the time averaged ion beam current density on the material quality of thin film SIMOX has been investigated. Thin film SOI/SIMOX material has been produced by 200 keV oxygen implantation into 3 in. Fz wafers with a background temperature of 680°C. The dose range of 5 × 10 17-7 × 10 17O+/ cm2 was selected to be near the dose threshold for the formation of a continuous buried oxide after implantation and annealing which is thought to be between 5 × 10 17 and 6 × 10 17 O +/cm 2 for 200 keV [A.E. White et al., Appl. Phys. Lett. 50 (1987) 19; P.L.F. Hemment et al., Vacuum 36 (1986) 877; Y. Li et al., in: Proc. V Int. Symp. on SOI Technology and Devices (The Electrochemical Society, 1992) p. 368 [1-3

  18. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    CERN Document Server

    Auluck, S K H

    2014-01-01

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally-unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of ...

  19. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B

    Directory of Open Access Journals (Sweden)

    Shen WB

    2013-11-01

    Full Text Available Wei-Bin Shen,1,2 Celine Plachez,2,3 Amanda Chan,4 Deborah Yarnell,1 Adam C Puche,3 Paul S Fishman,1,5 Paul Yarowsky1,21Research Service, VA Maryland Health Care System, Baltimore, MD, USA; 2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; 3Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; 4Notre Dame of Maryland School of Pharmacy, Baltimore, MD, USA; 5Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USAAbstract: Ultrasmall superparamagnetic iron-oxide particles (USPIOs loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA (MIRB has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy.Keywords: ferumoxides, USPIO, MION, neural stem cells, SC121 antibody, human, toxicology

  20. Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

    Directory of Open Access Journals (Sweden)

    Young Ah Goo

    2008-01-01

    Full Text Available Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.

  1. Genome-wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of Candida albicans and Candida dubliniensis to osmotic stress.

    LENUS (Irish Health Repository)

    Enjalbert, Brice

    2009-04-01

    Candida albicans is more pathogenic than Candida dubliniensis. However, this disparity in virulence is surprising given the high level of sequence conservation and the wide range of phenotypic traits shared by these two species. Increased sensitivity to environmental stresses has been suggested to be a possible contributory factor to the lower virulence of C. dubliniensis. In this study, we investigated, in the first comparison of C. albicans and C. dubliniensis by transcriptional profiling, global gene expression in each species when grown under conditions in which the two species exhibit differential stress tolerance. The profiles revealed similar core responses to stresses in both species, but differences in the amplitude of the general transcriptional responses to thermal, salt and oxidative stress. Differences in the regulation of specific stress genes were observed between the two species. In particular, ENA21, encoding a sodium ion transporter, was strongly induced in C. albicans but not in C. dubliniensis. In addition, ENA21 was identified in a forward genetic screen for C. albicans genomic sequences that increase salt tolerance in C. dubliniensis. Introduction of a single copy of CaENA21 was subsequently shown to be sufficient to confer salt tolerance upon C. dubliniensis.

  2. Differential effects of central and peripheral fat tissues on the delayed rectifier K(+) outward currents in cardiac myocytes.

    Science.gov (United States)

    Lee, Kun-Tai; Tang, Paul Wei-Hua; Tsai, Wei-Chung; Liu, I-Hsin; Yen, Hsueh-Wei; Voon, Wen-Chol; Wu, Bin-Nan; Sheu, Sheng-Hsiung; Lai, Wen-Ter

    2013-01-01

    The amount of fat tissue is associated with an increasing incidence of cardiac arrhythmias. The purpose of this study was to investigate effects of adipocytokines from different body fat on delayed rectifier K(+) outward currents (IK). H9c2 cells were treated with adipocytokine-free medium (the Adipo-free group) and with adipocytokines from epicardial (central fat group) and limb (peripheral fat group) rat fat tissues. IK, as well as expressions of Kv2.1 and Kv2.1 mRNA in H9c2 cells, were measured and compared between different groups. IK measured in H9c2 cells immediately after treatment with adipocytokines were not significantly different from those treated with adipocytokine-free medium. After H9c2 cells were treated with adipocytokines for 18 h, IK were significantly decreased in the peripheral and central fat groups in comparison with the Adipo-free group. Compared with the peripheral fat group, IK were more significantly decreased in the central fat group. Expressions of Kv2.1 and Kv2.1 mRNA in H9c2 cells were not significantly different among the three groups. Adipocytokines significantly decreased IK in H9c2 cells, and IK was more prominently decreased by adipocytokines from epicardial fat than from limb fat tissues. The decrease in IK by adipocytokines may partially contribute to the mechanisms of arrhythmogenesis by fat tissues. Copyright © 2013 S. Karger AG, Basel.