WorldWideScience

Sample records for current fmri study

  1. The different faces of one's self: an fMRI study into the recognition of current and past self-facial appearances.

    Science.gov (United States)

    Apps, Matthew A J; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2012-11-15

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one's own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one's face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one's self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one's own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The different faces of one’s self: an fMRI study into the recognition of current and past self-facial appearances

    Science.gov (United States)

    Apps, Matthew A. J.; Tajadura-Jiménez, Ana; Turley, Grainne; Tsakiris, Manos

    2013-01-01

    Mirror self-recognition is often considered as an index of self-awareness. Neuroimaging studies have identified a neural circuit specialised for the recognition of one’s own current facial appearance. However, faces change considerably over a lifespan, highlighting the necessity for representations of one’s face to continually be updated. We used fMRI to investigate the different neural circuits involved in the recognition of the childhood and current, adult, faces of one’s self. Participants viewed images of either their own face as it currently looks morphed with the face of a familiar other or their childhood face morphed with the childhood face of the familiar other. Activity in areas which have a generalised selectivity for faces, including the inferior occipital gyrus, the superior parietal lobule and the inferior temporal gyrus, varied with the amount of current self in an image. Activity in areas involved in memory encoding and retrieval, including the hippocampus and the posterior cingulate gyrus, and areas involved in creating a sense of body ownership, including the temporo-parietal junction and the inferior parietal lobule, varied with the amount of childhood self in an image. We suggest that the recognition of one’s own past or present face is underpinned by different cognitive processes in distinct neural circuits. Current self-recognition engages areas involved in perceptual face processing, whereas childhood self-recognition recruits networks involved in body ownership and memory processing. PMID:22940117

  3. An fMRI study

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 38; Issue 5 ... Alcoholism; brain; fMRI; language processing; lexical; semantic judgment ... alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual ...

  4. An fMRI study of Agency

    DEFF Research Database (Denmark)

    Charalampaki, Angeliki

    2017-01-01

    Motor area has a distinct directionality, depending on the stage of the volitional movement. In this study, we were interested in assessing the neuronal mechanism underlying this phenomenon. We therefore performed an fMRI study of Agency, to exploit the high spatial resolution this imaging technique...... displays. For the purposes of our study twenty participants were recruited. The experimental procedure we considered appropriate to study the Sense of Agency, involved participants laying inside the fMRI scanner and while they had no visual feedback of their hand, they were instructed to draw straight...... lines on a tablet with a digital pen. They could only see the consequences of their movement as a cursor’s movement on a screen. After finishing their movement, participants were requested to make a judgment over whether they felt they were the Agent of the observed movement or not. The analysis of our...

  5. Understanding others' regret: a FMRI study.

    Directory of Open Access Journals (Sweden)

    Nicola Canessa

    Full Text Available Previous studies showed that the understanding of others' basic emotional experiences is based on a "resonant" mechanism, i.e., on the reactivation, in the observer's brain, of the cerebral areas associated with those experiences. The present study aimed to investigate whether the same neural mechanism is activated both when experiencing and attending complex, cognitively-generated, emotions. A gambling task and functional-Magnetic-Resonance-Imaging (fMRI were used to test this hypothesis using regret, the negative cognitively-based emotion resulting from an unfavorable counterfactual comparison between the outcomes of chosen and discarded options. Do the same brain structures that mediate the experience of regret become active in the observation of situations eliciting regret in another individual? Here we show that observing the regretful outcomes of someone else's choices activates the same regions that are activated during a first-person experience of regret, i.e. the ventromedial prefrontal cortex, anterior cingulate cortex and hippocampus. These results extend the possible role of a mirror-like mechanism beyond basic emotions.

  6. Modulation of brain response to emotional conflict as a function of current mood in bipolar disorder: preliminary findings from a follow-up state-based fMRI study.

    Science.gov (United States)

    Rey, Gwladys; Desseilles, Martin; Favre, Sophie; Dayer, Alexandre; Piguet, Camille; Aubry, Jean-Michel; Vuilleumier, Patrik

    2014-08-30

    We used functional magnetic resonance imaging (fMRI) to examine affective control longitudinally in a group of patients with bipolar disorder (BD). Participants comprised 12 BD patients who underwent repeated fMRI scans in euthymic (n=11), depressed (n=9), or hypomanic (n=9) states, and were compared with 12 age-matched healthy controls. During fMRI, participants performed an emotional face-word interference task with either low or high attentional demands. Relative to healthy controls, patients showed decreased activation of the cognitive control network normally associated with conflict processing, more severely during hypomania than during depression, but regardless of level of task demand in both cases. During euthymia, a decreased response to conflict was observed only during the high load condition. Additionally, unlike healthy participants, patients exhibited deactivation in several key areas in response to emotion-conflict trials - including the rostral anterior cingulate cortex during euthymia, the hippocampus during depression, and the posterior cingulate cortex during hypomania. Our results indicate that the ability of BD patients to recruit control networks when processing affective conflict, and the abnormal suppression of activity in distinct components of the default mode network, may depend on their current clinical state and attentional demand. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Evidence for bilateral involvement in idiom comprehension : An fMRI study

    NARCIS (Netherlands)

    Zempleni, Monika-Zita; Haverkort, Marco; Renken, Remco; Stowe, Laurie A.

    2007-01-01

    The goal of the current study was to identify the neural substrate of idiom comprehension using fMRI. Idioms are familiar, fixed expressions whose meaning is not dependent on the literal interpretation of the component words. We presented literally plausible idioms in a sentence forcing a figurative

  8. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...

  9. Assessment of abstract reasoning abilities in alcohol-dependent subjects: an fMRI study

    International Nuclear Information System (INIS)

    Bagga, Deepika; Singh, Namita; Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Bhattacharya, D.; Garg, Mohan L.; Khushu, Subash

    2014-01-01

    Chronic alcohol abuse has been traditionally associated with impaired cognitive abilities. The deficits are most evident in higher order cognitive functions, such as abstract reasoning, problem solving and visuospatial processing. The present study sought to increase current understanding of the neuropsychological basis of poor abstract reasoning abilities in alcohol-dependent subjects using functional magnetic resonance imaging (fMRI). An abstract reasoning task-based fMRI study was carried out on alcohol-dependent subjects (n = 18) and healthy controls (n = 18) to examine neural activation pattern. The study was carried out using a 3-T whole-body magnetic resonance scanner. Preprocessing and post processing was performed using SPM 8 software. Behavioral data indicated that alcohol-dependent subjects took more time than controls for performing the task but there was no significant difference in their response accuracy. Analysis of the fMRI data indicated that for solving abstract reasoning-based problems, alcohol-dependent subjects showed enhanced right frontoparietal neural activation involving inferior frontal gyrus, post central gyrus, superior parietal lobule, and occipito-temporal gyrus. The extensive activation observed in alcohol dependents as compared to controls suggests that alcohol dependents recruit additional brain areas to meet the behavioral demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting decreased neural efficiency of relevant brain networks or compensatory mechanisms for the execution of task for showing an equivalent performance. (orig.)

  10. Assessment of abstract reasoning abilities in alcohol-dependent subjects: an fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Bagga, Deepika; Singh, Namita; Singh, Sadhana; Modi, Shilpi; Kumar, Pawan [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); Bhattacharya, D. [Base Hospital, Department of Psychiatry, Delhi Cantt (India); Garg, Mohan L. [Panjab University, Department of Biophysics, Chandigarh (India); Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Centre, Delhi (India); INMAS, DRDO, NMR Research Centre, Delhi (India)

    2014-01-15

    Chronic alcohol abuse has been traditionally associated with impaired cognitive abilities. The deficits are most evident in higher order cognitive functions, such as abstract reasoning, problem solving and visuospatial processing. The present study sought to increase current understanding of the neuropsychological basis of poor abstract reasoning abilities in alcohol-dependent subjects using functional magnetic resonance imaging (fMRI). An abstract reasoning task-based fMRI study was carried out on alcohol-dependent subjects (n = 18) and healthy controls (n = 18) to examine neural activation pattern. The study was carried out using a 3-T whole-body magnetic resonance scanner. Preprocessing and post processing was performed using SPM 8 software. Behavioral data indicated that alcohol-dependent subjects took more time than controls for performing the task but there was no significant difference in their response accuracy. Analysis of the fMRI data indicated that for solving abstract reasoning-based problems, alcohol-dependent subjects showed enhanced right frontoparietal neural activation involving inferior frontal gyrus, post central gyrus, superior parietal lobule, and occipito-temporal gyrus. The extensive activation observed in alcohol dependents as compared to controls suggests that alcohol dependents recruit additional brain areas to meet the behavioral demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting decreased neural efficiency of relevant brain networks or compensatory mechanisms for the execution of task for showing an equivalent performance. (orig.)

  11. Imaging gait analysis: An fMRI dual task study.

    Science.gov (United States)

    Bürki, Céline N; Bridenbaugh, Stephanie A; Reinhardt, Julia; Stippich, Christoph; Kressig, Reto W; Blatow, Maria

    2017-08-01

    In geriatric clinical diagnostics, gait analysis with cognitive-motor dual tasking is used to predict fall risk and cognitive decline. To date, the neural correlates of cognitive-motor dual tasking processes are not fully understood. To investigate these underlying neural mechanisms, we designed an fMRI paradigm to reproduce the gait analysis. We tested the fMRI paradigm's feasibility in a substudy with fifteen young adults and assessed 31 healthy older adults in the main study. First, gait speed and variability were quantified using the GAITRite © electronic walkway. Then, participants lying in the MRI-scanner were stepping on pedals of an MRI-compatible stepping device used to imitate gait during functional imaging. In each session, participants performed cognitive and motor single tasks as well as cognitive-motor dual tasks. Behavioral results showed that the parameters of both gait analyses, GAITRite © and fMRI, were significantly positively correlated. FMRI results revealed significantly reduced brain activation during dual task compared to single task conditions. Functional ROI analysis showed that activation in the superior parietal lobe (SPL) decreased less from single to dual task condition than activation in primary motor cortex and in supplementary motor areas. Moreover, SPL activation was increased during dual tasks in subjects exhibiting lower stepping speed and lower executive control. We were able to simulate walking during functional imaging with valid results that reproduce those from the GAITRite © gait analysis. On the neural level, SPL seems to play a crucial role in cognitive-motor dual tasking and to be linked to divided attention processes, particularly when motor activity is involved.

  12. Humor comprehension and appreciation: an FMRI study.

    Science.gov (United States)

    Bartolo, Angela; Benuzzi, Francesca; Nocetti, Luca; Baraldi, Patrizia; Nichelli, Paolo

    2006-11-01

    Humor is a unique ability in human beings. Suls [A two-stage model for the appreciation of jokes and cartoons. In P. E. Goldstein & J. H. McGhee (Eds.), The psychology of humour. Theoretical perspectives and empirical issues. New York: Academic Press, 1972, pp. 81-100] proposed a two-stage model of humor: detection and resolution of incongruity. Incongruity is generated when a prediction is not confirmed in the final part of a story. To comprehend humor, it is necessary to revisit the story, transforming an incongruous situation into a funny, congruous one. Patient and neuroimaging studies carried out until now lead to different outcomes. In particular, patient studies found that right brain-lesion patients have difficulties in humor comprehension, whereas neuroimaging studies suggested a major involvement of the left hemisphere in both humor detection and comprehension. To prevent activation of the left hemisphere due to language processing, we devised a nonverbal task comprising cartoon pairs. Our findings demonstrate activation of both the left and the right hemispheres when comparing funny versus nonfunny cartoons. In particular, we found activation of the right inferior frontal gyrus (BA 47), the left superior temporal gyrus (BA 38), the left middle temporal gyrus (BA 21), and the left cerebellum. These areas were also activated in a nonverbal task exploring attribution of intention [Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage, 11, 157-166, 2000]. We hypothesize that the resolution of incongruity might occur through a process of intention attribution. We also asked subjects to rate the funniness of each cartoon pair. A parametric analysis showed that the left amygdala was activated in relation to subjective amusement. We hypothesize that the amygdala plays a key role in giving humor an emotional dimension.

  13. Current stage of fMRI applications in newborns and children during the first year of life

    International Nuclear Information System (INIS)

    Boecker, H.; Scheef, L.; Jankowski, J.; Zimmermann, N.; Born, M.; Heep, A.

    2008-01-01

    Currently, a paradigm shift towards expanded early use of cranial MRI in newborns at risk and infants in the first year of life can be observed in neonatology. Beyond clinical MRI applications, there is progressive use of functional MRI (fMRI) in this age group. On the one hand, fMRI allows monitoring of functional developmental processes depending on maturational stage; on the other hand, this technique may provide the basis for early detection of pathophysiological processes as a prerequisite for functionally guided therapeutic interventions. This article provides a comprehensive review of current fMRI applications in neonates and infants during the first year of life and focuses on the associated methodological issues (e.g. signal physiology, sedation, safety aspects). (orig.)

  14. Cognitive dissonance induction in everyday life: An fMRI study.

    Science.gov (United States)

    de Vries, Jan; Byrne, Mark; Kehoe, Elizabeth

    2015-01-01

    This functional magnetic resonance imaging (fMRI) study explored the neural substrates of cognitive dissonance during dissonance "induction." A novel task was developed based on the results of a separate item selection study (n = 125). Items were designed to generate dissonance by prompting participants to reflect on everyday personal experiences that were inconsistent with values they had expressed support for. One experimental condition (dissonance) and three control conditions (justification, consonance, and non-self-related inconsistency) were used for comparison. Items of all four types were presented to each participant (n = 14) in a randomized design. The fMRI analysis used a whole-brain approach focusing on the moments dissonance was induced. Results showed that in comparison with the control conditions the dissonance experience led to higher levels of activation in several brain regions. Specifically dissonance was associated with increased neural activation in key brain regions including the anterior cingulate cortex (ACC), anterior insula, inferior frontal gyrus, and precuneus. This supports current perspectives that emphasize the role of anterior cingulate and insula in dissonance processing. Less extensive activation in the prefrontal cortex than in some previous studies is consistent with this study's emphasis on dissonance induction, rather than reduction. This article also contains a short review and comparison with other fMRI studies of cognitive dissonance.

  15. Intrusive Memories of Distressing Information: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Eva Battaglini

    Full Text Available Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42 viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13 demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13. Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC and dorsolateral prefrontal cortex (dlPFC, inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories.

  16. Memory Deficits in Schizophrenia: A Selective Review of Functional Magnetic Resonance Imaging (fMRI Studies

    Directory of Open Access Journals (Sweden)

    Adrienne C. Lahti

    2013-06-01

    Full Text Available Schizophrenia is a complex chronic mental illness that is characterized by positive, negative and cognitive symptoms. Cognitive deficits are most predictive of long-term outcomes, with abnormalities in memory being the most robust finding. The advent of functional magnetic resonance imaging (fMRI has allowed exploring neural correlates of memory deficits in vivo. In this article, we will give a selective review of fMRI studies probing brain regions and functional networks that are thought to be related to abnormal memory performance in two memory systems prominently affected in schizophrenia; working memory and episodic memory. We revisit the classic “hypofrontality” hypothesis of working memory deficits and explore evidence for frontotemporal dysconnectivity underlying episodic memory abnormalities. We conclude that fMRI studies of memory deficits in schizophrenia are far from universal. However, the current literature does suggest that alterations are not isolated to a few brain regions, but are characterized by abnormalities within large-scale brain networks.

  17. Altered affective response in marijuana smokers: an FMRI study.

    Science.gov (United States)

    Gruber, Staci A; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A

    2009-11-01

    More than 94 million Americans have tried marijuana, and it remains the most widely used illicit drug in the nation. Investigations of the cognitive effects of marijuana report alterations in brain function during tasks requiring executive control, including inhibition and decision-making. Endogenous cannabinoids regulate a variety of emotional responses, including anxiety, mood control, and aggression; nevertheless, little is known about smokers' responses to affective stimuli. The anterior cingulate and amygdala play key roles in the inhibition of impulsive behavior and affective regulation, and studies using PET and fMRI have demonstrated changes within these regions in marijuana smokers. Given alterations in mood and perception often observed in smokers, we hypothesized altered fMRI patterns of response in 15 chronic heavy marijuana smokers relative to 15 non-marijuana smoking control subjects during the viewing of masked happy and fearful faces. Despite no between-group differences on clinical or demographic measures, smokers demonstrated a relative decrease in both anterior cingulate and amygdalar activity during masked affective stimuli compared to controls, who showed relative increases in activation within these regions during the viewing of masked faces. Findings indicate that chronic heavy marijuana smokers demonstrate altered activation of frontal and limbic systems while viewing masked faces, consistent with autoradiographic studies reporting high CB-1 receptor density in these regions. These data suggest differences in affective processing in chronic smokers, even when stimuli are presented below the level of conscious processing, and underscore the likelihood that marijuana smokers process emotional information differently from those who do not smoke, which may result in negative consequences.

  18. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-01-01

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition. PMID:24961428

  19. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition

    Directory of Open Access Journals (Sweden)

    John Wright

    2013-05-01

    Full Text Available BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1 already proficient in at least two languages; or (2 are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1 longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2 statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  20. Multilingualism and fMRI: Longitudinal Study of Second Language Acquisition.

    Science.gov (United States)

    Andrews, Edna; Frigau, Luca; Voyvodic-Casabo, Clara; Voyvodic, James; Wright, John

    2013-05-28

    BOLD fMRI is often used for the study of human language. However, there are still very few attempts to conduct longitudinal fMRI studies in the study of language acquisition by measuring auditory comprehension and reading. The following paper is the first in a series concerning a unique longitudinal study devoted to the analysis of bi- and multilingual subjects who are: (1) already proficient in at least two languages; or (2) are acquiring Russian as a second/third language. The focus of the current analysis is to present data from the auditory sections of a set of three scans acquired from April, 2011 through April, 2012 on a five-person subject pool who are learning Russian during the study. All subjects were scanned using the same protocol for auditory comprehension on the same General Electric LX 3T Signa scanner in Duke University Hospital. Using a multivariate analysis of covariance (MANCOVA) for statistical analysis, proficiency measurements are shown to correlate significantly with scan results in the Russian conditions over time. The importance of both the left and right hemispheres in language processing is discussed. Special attention is devoted to the importance of contextualizing imaging data with corresponding behavioral and empirical testing data using a multivariate analysis of variance. This is the only study to date that includes: (1) longitudinal fMRI data with subject-based proficiency and behavioral data acquired in the same time frame; and (2) statistical modeling that demonstrates the importance of covariate language proficiency data for understanding imaging results of language acquisition.

  1. Alternation learning in pathological gamblers: an fMRI Study.

    Science.gov (United States)

    Dannon, Pinhas N; Kushnir, Tammar; Aizer, Anat; Gross-Isseroff, Ruth; Kotler, Moshe; Manor, David

    2011-03-01

    We have previously reported that pathological gamblers have impaired performance on the Stroop color word naming task, go-no-go task and speed accuracy tradeoff performance, tasks used to assess executive function and interference control. The aim of the present neuroimaging study was to explore the relationship between frontal cortex function and gambling severity in pathological gamblers. Functional MRI (fMRI) was used to estimate brain activity of ten male medication-free pathological gamblers during performance of an alternation learning task. Performance of this task has been shown to depend on the function of regions in the frontal cortex. The executive functions needed to perform the alternation learning task were expressed as brain activation in lateral and medial frontal as well as parietal and occipital regions. By correlating the level of local brain activation to task performance, parietal regions and lateral frontal and orbitofrontal regions were demonstrated. A higher score in SOGS was associated with intrusion on the task-specific activation in the left hemisphere, to some extant in parietal regions and even more pronouncedly in left frontal and orbitofrontal regions. Our preliminary data suggests that pathological gambling may be characterized by specific neuro-cognitive changes related to the frontal cortex.

  2. Integrating fMRI with psychophysiological measurements in the study of decision-making

    OpenAIRE

    Wong, Savio W.H.; Xue, Gui; Bechara, Antoine

    2011-01-01

    Neuroimaging techniques have recently been used to examine the neural mechanism of decision-making. Nevertheless, most of the neuroimaging studies overlook the importance of emotion and autonomic response in modulating the process of decision-making. In this paper, we discussed how to integrating fMRI with psychophysiological measurements in studying decision-making. We suggested that psychophysiological data would complement with fMRI findings in providing a more comprehensive understanding ...

  3. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    OpenAIRE

    Fabri, Mara; Polonara, Gabriele

    2013-01-01

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and moto...

  4. Brain activity modification produced by a single radioelectric asymmetric brain stimulation pulse: a new tool for neuropsychiatric treatments. Preliminary fMRI study

    Directory of Open Access Journals (Sweden)

    Castagna A

    2011-10-01

    Full Text Available Salvatore Rinaldi1,2, Vania Fontani1, Alessandro Castagna1 1Department of Neuro-Psycho-Physio Pathology, Rinaldi Fontani Institute, Florence, Italy; 2Medical School of Occupational Medicine, University of Florence, Florence, Italy Purpose: Radioelectric asymmetric brain stimulation technology with its treatment protocols has shown efficacy in various psychiatric disorders. The aim of this work was to highlight the mechanisms by which these positive effects are achieved. The current study was conducted to determine whether a single 500-millisecond radioelectric asymmetric conveyor (REAC brain stimulation pulse (BSP, applied to the ear, can effect a modification of brain activity that is detectable using functional magnetic resonance imaging (fMRI. Methods: Ten healthy volunteers, six females and four males, underwent fMRI during a simple finger-tapping motor task before and after receiving a single 500-millisecond REAC-BSP. Results: The fMRI results indicate that the average variation in task-induced encephalic activation patterns is lower in subjects following the single REAC pulse. Conclusion: The current report demonstrates that a single REAC-BSP is sufficient to modulate brain activity in awake subjects, able to be measured using fMRI. These initial results open new perspectives into the understanding of the effects of weak and brief radio pulses upon brain activity, and provide the basis for further indepth studies using REAC-BSP and fMRI. Keywords: fMRI, brain stimulation, brain modulation, REAC, neuropsychiatric treatments

  5. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians

    OpenAIRE

    Malinda J. McPherson; Frederick S. Barrett; Monica Lopez-Gonzalez; Patpong Jiradejvong; Charles J. Limb

    2016-01-01

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvise...

  6. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    OpenAIRE

    Vasiliki eFolia; Vasiliki eFolia; Karl Magnus ePetersson; Karl Magnus ePetersson; Karl Magnus ePetersson

    2014-01-01

    In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results ...

  7. Collective Correlations of Brodmann Areas fMRI Study with RMT-Denoising

    OpenAIRE

    Burda, Zdzislaw; Kornelsen, Jennifer; Nowak, Maciej A.; Porebski, Bartosz; Sboto-Frankenstein, Uta; Tomanek, Boguslaw; Tyburczyk, Jacek

    2013-01-01

    We study collective behavior of Brodmann regions of human cerebral cortex using functional Magnetic Resonance Imaging (fMRI) and Random Matrix Theory (RMT). The raw fMRI data is mapped onto the cortex regions corresponding to the Brodmann areas with the aid of the Talairach coordinates. Principal Component Analysis (PCA) of the Pearson correlation matrix for 41 different Brodmann regions is carried out to determine their collective activity in the idle state and in the active state stimulated...

  8. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents

    OpenAIRE

    Sanganahalli, Basavaraju G.; Bailey, Christopher J.; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD...

  9. Cerebral Blood Flow Measurement Using fMRI and PET: A Cross-Validation Study

    Directory of Open Access Journals (Sweden)

    Jean J. Chen

    2008-01-01

    Full Text Available An important aspect of functional magnetic resonance imaging (fMRI is the study of brain hemodynamics, and MR arterial spin labeling (ASL perfusion imaging has gained wide acceptance as a robust and noninvasive technique. However, the cerebral blood flow (CBF measurements obtained with ASL fMRI have not been fully validated, particularly during global CBF modulations. We present a comparison of cerebral blood flow changes (ΔCBF measured using a flow-sensitive alternating inversion recovery (FAIR ASL perfusion method to those obtained using H2O15 PET, which is the current gold standard for in vivo imaging of CBF. To study regional and global CBF changes, a group of 10 healthy volunteers were imaged under identical experimental conditions during presentation of 5 levels of visual stimulation and one level of hypercapnia. The CBF changes were compared using 3 types of region-of-interest (ROI masks. FAIR measurements of CBF changes were found to be slightly lower than those measured with PET (average ΔCBF of 21.5±8.2% for FAIR versus 28.2±12.8% for PET at maximum stimulation intensity. Nonetheless, there was a strong correlation between measurements of the two modalities. Finally, a t-test comparison of the slopes of the linear fits of PET versus ASL ΔCBF for all 3 ROI types indicated no significant difference from unity (P>.05.

  10. Test-retest reliability of an fMRI paradigm for studies of cardiovascular reactivity.

    Science.gov (United States)

    Sheu, Lei K; Jennings, J Richard; Gianaros, Peter J

    2012-07-01

    We examined the reliability of measures of fMRI, subjective, and cardiovascular reactions to standardized versions of a Stroop color-word task and a multisource interference task. A sample of 14 men and 12 women (30-49 years old) completed the tasks on two occasions, separated by a median of 88 days. The reliability of fMRI BOLD signal changes in brain areas engaged by the tasks was moderate, and aggregating fMRI BOLD signal changes across the tasks improved test-retest reliability metrics. These metrics included voxel-wise intraclass correlation coefficients (ICCs) and overlap ratio statistics. Task-aggregated ratings of subjective arousal, valence, and control, as well as cardiovascular reactions evoked by the tasks showed ICCs of 0.57 to 0.87 (ps reliability. These findings support using these tasks as a battery for fMRI studies of cardiovascular reactivity. Copyright © 2012 Society for Psychophysiological Research.

  11. Processes in arithmetic strategy selection: A fMRI study.

    Directory of Open Access Journals (Sweden)

    Julien eTaillan

    2015-02-01

    Full Text Available This neuroimaging (fMRI study investigated neural correlates of strategy selection. Young adults performed an arithmetic task in two different conditions. In both conditions, participants had to provide estimates of two-digit multiplication problems like 54 x 78. In the choice condition, participants had to select the better of two available rounding strategies, rounding-up strategy (RU (i.e., doing 60x80 = 4,800 or rounding-down strategy (RD (i.e., doing 50x70=3,500 to estimate product of 54x78. In the no-choice condition, participants did not have to select strategy on each problem but were told which strategy to use; they executed RU and RD strategies each on a series of problems. Participants also had a control task (i.e., providing correct products of multiplication problems like 40x50. Brain activations and performance were analyzed as a function of these conditions. Participants were able to frequently choose the better strategy in the choice condition; they were also slower when they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain activations in right anterior cingulate cortex (ACC, dorso-lateral prefrontal cortex (DLPFC, and angular gyrus (ANG, when selecting (relative to executing the better strategy on each problem. Moreover, RU was associated with more parietal cortex activation than RD. These results suggest an important role of fronto-parietal network in strategy selection and have important implications for our further understanding and modelling cognitive processes underlying strategy selection.

  12. Holding Biological Motion in Working Memory: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Xiqian eLu

    2016-06-01

    Full Text Available Holding biological motion (BM, the movements of animate entities, in working memory (WM is important to our daily life activities. However, the neural substrates underlying the WM processing of BM remain largely unknown. Employing the functional magnetic resonance imaging (fMRI technique, the current study directly investigated this issue. We used point-light BM animations as the tested stimuli, and explored the neural substrates involved in encoding and retaining BM information in WM. Participants were required to remember two or four BM stimuli in a change-detection task. We first defined a set of potential brain regions devoted to the BM processing in WM in one experiment. We then conducted the second fMRI experiment, and performed time-course analysis over the pre-defined regions, which allowed us to differentiate the encoding and maintenance phases of WM. The results showed that a set of brain regions were involved in encoding BM into WM, including the middle frontal gyrus, inferior frontal gyrus, superior parietal lobule, inferior parietal lobule, superior temporal sulcus, fusiform gyrus, and middle occipital gyrus. However, only the middle frontal gyrus, inferior frontal gyrus, superior parietal lobule, and inferior parietal lobule were involved in retaining BM into WM. These results suggest that an overlapped network exists between the WM encoding and maintenance for BM; however, retaining BM in WM predominately relies on the mirror neuron system.

  13. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  14. Effects of prior information on decoding degraded speech: an fMRI study.

    Science.gov (United States)

    Clos, Mareike; Langner, Robert; Meyer, Martin; Oechslin, Mathias S; Zilles, Karl; Eickhoff, Simon B

    2014-01-01

    Expectations and prior knowledge are thought to support the perceptual analysis of incoming sensory stimuli, as proposed by the predictive-coding framework. The current fMRI study investigated the effect of prior information on brain activity during the decoding of degraded speech stimuli. When prior information enabled the comprehension of the degraded sentences, the left middle temporal gyrus and the left angular gyrus were activated, highlighting a role of these areas in meaning extraction. In contrast, the activation of the left inferior frontal gyrus (area 44/45) appeared to reflect the search for meaningful information in degraded speech material that could not be decoded because of mismatches with the prior information. Our results show that degraded sentences evoke instantaneously different percepts and activation patterns depending on the type of prior information, in line with prediction-based accounts of perception. Copyright © 2012 Wiley Periodicals, Inc.

  15. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2014-07-01

    Full Text Available Background: A growing body of research has identified abnormal visual information processing in ADHD. In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association to several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association to large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left lateralized visual cortical activity in controls but right lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN. We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic.

  16. Brain Activity Associated with Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.

  17. Brain Network Response to Acupuncture Stimuli in Experimental Acute Low Back Pain: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yu Shi

    2015-01-01

    Full Text Available Most neuroimaging studies have demonstrated that acupuncture can significantly modulate brain activation patterns in healthy subjects, while only a few studies have examined clinical pain. In the current study, we combined an experimental acute low back pain (ALBP model and functional magnetic resonance imaging (fMRI to explore the neural mechanisms of acupuncture analgesia. All ALBP subjects first underwent two resting state fMRI scans at baseline and during a painful episode and then underwent two additional fMRI scans, once during acupuncture stimulation (ACUP and once during tactile stimulation (SHAM pseudorandomly, at the BL40 acupoint. Our results showed that, compared with the baseline, the pain state had higher regional homogeneity (ReHo values in the pain matrix, limbic system, and default mode network (DMN and lower ReHo values in frontal gyrus and temporal gyrus; compared with the OFF status, ACUP yielded broad deactivation in subjects, including nearly all of the limbic system, pain status, and DMN, and also evoked numerous activations in the attentional and somatosensory systems; compared with SHAM, we found that ACUP induced more deactivations and fewer activations in the subjects. Multiple brain networks play crucial roles in acupuncture analgesia, suggesting that ACUP exceeds a somatosensory-guided mind-body therapy for ALBP.

  18. Abnormal regional homogeneity in Parkinson's disease: a resting state fMRI study

    International Nuclear Information System (INIS)

    Li, Y.; Liang, P.; Jia, X.; Li, K.

    2016-01-01

    Aim: To examine the functional brain alterations in Parkinson's disease (PD) by measuring blood oxygenation level dependent (BOLD) functional MRI (fMRI) signals at rest while controlling for the structural atrophy. Materials and methods: Twenty-three PD patients and 20 age, gender, and education level matched normal controls (NC) were included in this study. Resting state fMRI and structural MRI data were acquired. The resting state brain activity was measured by the regional homogeneity (ReHo) method and the grey matter (GM) volume was attained by the voxel-based morphology (VBM) analysis. Two-sample t-test was then performed to detect the group differences with structural atrophy as a covariate. Results: VBM analysis showed GM volume reductions in the left superior frontal gyrus, left paracentral lobule, and left middle frontal gyrus in PD patients as compared to NC. There were widespread ReHo differences between NC and PD patients. Compared to NC, PD patients showed significant alterations in the motor network, including decreased ReHo in the right primary sensory cortex (S1), while increased ReHo in the left premotor area (PMA) and left dorsolateral prefrontal cortex (DLPFC). In addition, a cluster in the left superior occipital gyrus (SOG) also showed increased ReHo in PD patients. Conclusion: The current findings indicate that significant changes of ReHo in the motor and non-motor cortices have been detected in PD patients, independent of age, gender, education level, and structural atrophy. The present study thus suggests ReHo abnormalities as a potential biomarker for the diagnosis of PD and further provides insights into the biological mechanism of the disease. - Highlights: • Functional changes were found in PD patients independent of structural atrophy. • Both increased and decreased ReHo were observed in motor network regions in PD. • Increased ReHo was detected in visual association cortex for PD patients.

  19. Processing and regulation of negative emotions in anorexia nervosa: An fMRI study

    Directory of Open Access Journals (Sweden)

    Maria Seidel

    Full Text Available Theoretical models and recent advances in the treatment of anorexia nervosa (AN have increasingly focused on the role of alterations in the processing and regulation of emotions. To date, however, our understanding of these changes is still limited and reports of emotional dysregulation in AN have been based largely on self-report data, and there is a relative lack of objective experimental evidence or neurobiological data.The current functional magnetic resonance imaging (fMRI study investigated the hemodynamic correlates of passive viewing and voluntary downregulation of negative emotions by means of the reappraisal strategy detachment in AN patients. Detachment is regarded as adaptive regulation strategy associated with a reduction in emotion-related amygdala activity and increased recruitment of prefrontal brain regions associated with cognitive control processes. Emotion regulation efficacy was assessed via behavioral arousal ratings and fMRI activation elicited by an established experimental paradigm including negative images. Participants were instructed to either simply view emotional pictures or detach themselves from feelings triggered by the stimuli.The sample consisted of 36 predominantly adolescent female AN patients and a pairwise age-matched healthy control group. Behavioral and neuroimaging data analyses indicated a reduction of arousal and amygdala activity during the regulation condition for both patients and controls. However, compared with controls, individuals with AN showed increased activation in the amygdala as well as in the right dorsolateral prefrontal cortex (dlPFC during the passive viewing of aversive compared with neutral pictures.These results extend previous findings indicative of altered processing of salient emotional stimuli in AN, but do not point to a general deficit in the voluntary regulation of negative emotions. Increased dlPFC activation in AN during passive viewing of negative stimuli is in line with

  20. Age-related functional changes in gustatory and reward processing regions: An fMRI study.

    Science.gov (United States)

    Jacobson, Aaron; Green, Erin; Murphy, Claire

    2010-11-01

    Changes in appetite in older adults may result in unhealthy weight change and negatively affect overall nutrition. Research examining gustatory processing in young adults has linked changes in patterns of the hemodynamic response of gustatory and motivation related brain regions to the physiological states of hunger and satiety. Whether the same brain regions are involved in taste processing in older adults is unknown. The current study used functional magnetic resonance imaging (fMRI) to examine age-related changes in gustatory processing during hedonic assessment. Caffeine, citric acid, sucrose, and NaCl were administered orally during two event-related fMRI sessions, one during hunger and one after a pre-load. Participants assessed the pleasantness of the solutions in each session. Increased activity of the insula was seen in both age groups during hunger. Activity of secondary and higher order taste processing and reward regions such as the orbitofrontal cortex, amygdala, hippocampus, thalamus, and caudate nucleus was also observed. Hunger and satiety differentially affected the hemodynamic response, resulting in positive global activation during hunger and negative during satiety in both age groups. While in a state of hunger, the frequency and consistency of positive activation in gustatory and reward processing regions was greater in older adults. Additional regions not commonly associated with taste processing were also activated in older adults. Investigating the neurological response of older adults to taste stimuli under conditions of hunger and satiety may aid in understanding appetite, health, and functional changes in this population. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Brain Correlates of Aesthetic Expertise: A Parametric fMRI Study

    Science.gov (United States)

    Kirk, Ulrich; Skov, Martin; Christensen, Mark Schram; Nygaard, Niels

    2009-01-01

    Several studies have demonstrated that acquired expertise influences aesthetic judgments. In this paradigm we used functional magnetic resonance imaging (fMRI) to study aesthetic judgments of visually presented architectural stimuli and control-stimuli (faces) for a group of architects and a group of non-architects. This design allowed us to test…

  2. Brain correlates of aesthetic expertise: A parametric fMRI study

    DEFF Research Database (Denmark)

    Kirk, Ulrich; Skov, Martin; Christensen, Mark Schram

    2009-01-01

    Several studies have demonstrated that acquired expertise influences aesthetic judgments. In this paradigm we used functional magnetic resonance imaging (fMRI) to study aesthetic judgments of visually presented architectural stimuli and control-stimuli (faces) for a group of architects and a grou...

  3. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    OpenAIRE

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the c...

  4. Cortical control of gait in healthy humans: an fMRI study

    International Nuclear Information System (INIS)

    ChiHong, Wang; YauYau, Wai; BoCheng, Kuo; Yei-Yu, Yeh; JiunJie Wang

    2008-01-01

    This study examined the cortical control of gait in healthy humans using functional magnetic resonance imaging (fMRI). Two block-designed fMRI sessions were conducted during motor imagery of a locomotor-related task. Subjects watched a video clip that showed an actor standing and walking in an egocentric perspective. In a control session, additional fMRI images were collected when participants observed a video clip of the clutch movement of a right hand. In keeping with previous studies using SPECT and NIRS, we detected activation in many motor-related areas including supplementary motor area, bilateral precentral gyrus, left dorsal premotor cortex, and cingulate motor area. Smaller additional activations were observed in the bilateral precuneus, left thalamus, and part of right putamen. Based on these findings, we propose a novel paradigm to study the cortical control of gait in healthy humans using fMRI. Specifically, the task used in this study - involving both mirror neurons and mental imagery - provides a new feasible model to be used in functional neuroimaging studies in this area of research. (author)

  5. An fMRI Study of the Social Competition in Healthy Subjects

    Science.gov (United States)

    Polosan, M.; Baciu, M.; Cousin, E.; Perrone, M.; Pichat, C.; Bougerol, T.

    2011-01-01

    Social interaction requires the ability to infer another person's mental state (Theory of Mind, ToM) and also executive functions. This fMRI study aimed to identify the cerebral correlates activated by ToM during a specific social interaction, the human-human competition. In this framework, we tested a conflict resolution task (Stroop) adapted to…

  6. Perceiving Age and Gender in Unfamiliar Faces: An fMRI Study on Face Categorization

    Science.gov (United States)

    Wiese, Holger; Kloth, Nadine; Gullmar, Daniel; Reichenbach, Jurgen R.; Schweinberger, Stefan R.

    2012-01-01

    Efficient processing of unfamiliar faces typically involves their categorization (e.g., into old vs. young or male vs. female). However, age and gender categorization may pose different perceptual demands. In the present study, we employed functional magnetic resonance imaging (fMRI) to compare the activity evoked during age vs. gender…

  7. Current Research Studies

    Science.gov (United States)

    ... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...

  8. Emotion-motion interactions in conversion disorder: an FMRI study.

    Science.gov (United States)

    Aybek, Selma; Nicholson, Timothy R; O'Daly, Owen; Zelaya, Fernando; Kanaan, Richard A; David, Anthony S

    2015-01-01

    To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients. An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups. We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the 'freeze response' to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area). In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD.

  9. Contradictory Reasoning Network: An EEG and fMRI Study

    Science.gov (United States)

    Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. PMID:24667491

  10. Contradictory reasoning network: an EEG and FMRI study.

    Science.gov (United States)

    Porcaro, Camillo; Medaglia, Maria Teresa; Thai, Ngoc Jade; Seri, Stefano; Rotshtein, Pia; Tecchio, Franca

    2014-01-01

    Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication.

  11. Contradictory reasoning network: an EEG and FMRI study.

    Directory of Open Access Journals (Sweden)

    Camillo Porcaro

    Full Text Available Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG and functional magnetic resonance imaging (fMRI in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO. The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11 activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47 activation. Right medial frontal gyrus (rMeFG, BA10 and anterior cingulate cortex (ACC, BA32 contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication.

  12. Implicit Structured Sequence Learning: An FMRI Study of the Structural Mere-Exposure Effect

    Directory of Open Access Journals (Sweden)

    Vasiliki eFolia

    2014-02-01

    Full Text Available In this event-related FMRI study we investigated the effect of five days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the FMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45 and the medial prefrontal regions (centered on BA 8/32. Importantly, and central to this study, the inclusion of a naive preference FMRI baseline measurement allowed us to conclude that these FMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax in unsupervised AGL paradigms with proper learning designs.

  13. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    Science.gov (United States)

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs.

  14. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  15. Music and Language Syntax Interact in Broca's Area: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Richard Kunert

    Full Text Available Instrumental music and language are both syntactic systems, employing complex, hierarchically-structured sequences built using implicit structural norms. This organization allows listeners to understand the role of individual words or tones in the context of an unfolding sentence or melody. Previous studies suggest that the brain mechanisms of syntactic processing may be partly shared between music and language. However, functional neuroimaging evidence for anatomical overlap of brain activity involved in linguistic and musical syntactic processing has been lacking. In the present study we used functional magnetic resonance imaging (fMRI in conjunction with an interference paradigm based on sung sentences. We show that the processing demands of musical syntax (harmony and language syntax interact in Broca's area in the left inferior frontal gyrus (without leading to music and language main effects. A language main effect in Broca's area only emerged in the complex music harmony condition, suggesting that (with our stimuli and tasks a language effect only becomes visible under conditions of increased demands on shared neural resources. In contrast to previous studies, our design allows us to rule out that the observed neural interaction is due to: (1 general attention mechanisms, as a psychoacoustic auditory anomaly behaved unlike the harmonic manipulation, (2 error processing, as the language and the music stimuli contained no structural errors. The current results thus suggest that two different cognitive domains-music and language-might draw on the same high level syntactic integration resources in Broca's area.

  16. An fMRI study of perception and action in deaf signers.

    Science.gov (United States)

    Okada, Kayoko; Rogalsky, Corianne; O'Grady, Lucinda; Hanaumi, Leila; Bellugi, Ursula; Corina, David; Hickok, Gregory

    2016-02-01

    Since the discovery of mirror neurons, there has been a great deal of interest in understanding the relationship between perception and action, and the role of the human mirror system in language comprehension and production. Two questions have dominated research. One concerns the role of Broca's area in speech perception. The other concerns the role of the motor system more broadly in understanding action-related language. The current study investigates both of these questions in a way that bridges research on language with research on manual actions. We studied the neural basis of observing and executing American Sign Language (ASL) object and action signs. In an fMRI experiment, deaf signers produced signs depicting actions and objects as well as observed/comprehended signs of actions and objects. Different patterns of activation were found for observation and execution although with overlap in Broca's area, providing prima facie support for the claim that the motor system participates in language perception. In contrast, we found no evidence that action related signs differentially involved the motor system compared to object related signs. These findings are discussed in the context of lesion studies of sign language execution and observation. In this broader context, we conclude that the activation in Broca's area during ASL observation is not causally related to sign language understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    Science.gov (United States)

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  18. Feasibility of using fMRI to study mothers responding to infant cries.

    Science.gov (United States)

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  19. An fMRI Study of Risky Decision Making: The Role of Mental Preparation and Conflict.

    Science.gov (United States)

    Sohrabi, Ahmad; Smith, Andra M; West, Robert L; Cameron, Ian

    2015-10-01

    The current study aimed to elucidate the role of preparatory cognitive control in decision making and its neural correlates using functional Magnetic Resonance Imaging (fMRI). To this effect, by employing a series of new cognitive tasks, we assessed the role of preparatory cognitive control in monetary (risky) decision making. The participants had to decide between a risky and a safe gamble based on their chance of winning (high or low). In the 2-phase gambling task (similar to Cambridge gambling task), the chance and the gamble were presented at the same time (i.e. in a single phase), but in a new 3-phase gambling task, the chance is presented before the gamble. The tasks ended with a feedback phase. In the 3-phase task, holding the chance in memory to guide their decision enabled the participants to have more control on their risk taking behaviors as shown by activation in a network of brain areas involved in the control and conflict, including dorsal Anterior Cingulate Cortex (dACC), indexed by faster reaction times and better performance in the gambling task, and the temporal lobe, which has a role in holding contextual information. Holding information in memory to guide decision presumably enables the participants to have more control on their risk taking behaviors. The conflict and uncertainty resulting from this risky decision was indexed by the activation of dACC, known to be activated in conflict and cognitive control.

  20. Memory-related hippocampal functioning in ecstasy and amphetamine users: a prospective fMRI study.

    Science.gov (United States)

    Becker, Benjamin; Wagner, Daniel; Koester, Philip; Bender, Katja; Kabbasch, Christoph; Gouzoulis-Mayfrank, Euphrosyne; Daumann, Jörg

    2013-02-01

    Recreational use of ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) has been associated with memory impairments. Functional neuroimaging studies with cross-sectional designs reported altered memory-related hippocampal functioning in ecstasy-polydrug users. However, differences might be pre-existing or related to the concomitant use of amphetamine. To prospectively investigate the specific effects of ecstasy on memory-related hippocampal functioning. We used an associative memory task and functional magnetic resonance imaging (fMRI) in 40 ecstasy and/or amphetamine users at baseline (t1) and after 12 months (t2). At t1, all subjects had very limited amphetamine and/or ecstasy experience (less than 5 units lifetime dose). Based on the reported drug use at t2, subjects with continued ecstasy and/or amphetamine use (n = 17) were compared to subjects who stopped use after t1 (n = 12). Analysis of repeated measures revealed that encoding-related activity in the left parahippocampal gyrus changed differentially between the groups. Activity in this region increased in abstinent subjects from t1 to t2, however, decreased in subjects with continued use. Decreases within the left parahippocampal gyrus were associated with the use of ecstasy, but not amphetamine, during the follow-up period. However, there were no significant differences in memory performance. The current findings suggest specific effects of ecstasy use on memory-related hippocampal functioning. However, alternative explanations such as (sub-)acute cannabis effects are conceivable.

  1. Mechanism of case processing in the brain: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Satoru Yokoyama

    Full Text Available In sentence comprehension research, the case system, which is one of the subsystems of the language processing system, has been assumed to play a crucial role in signifying relationships in sentences between noun phrases (NPs and other elements, such as verbs, prepositions, nouns, and tense. However, so far, less attention has been paid to the question of how cases are processed in our brain. To this end, the current study used fMRI and scanned the brain activity of 15 native English speakers during an English-case processing task. The results showed that, while the processing of all cases activates the left inferior frontal gyrus and posterior part of the middle temporal gyrus, genitive case processing activates these two regions more than nominative and accusative case processing. Since the effect of the difference in behavioral performance among these three cases is excluded from brain activation data, the observed different brain activations would be due to the different processing patterns among the cases, indicating that cases are processed differently in our brains. The different brain activations between genitive case processing and nominative/accusative case processing may be due to the difference in structural complexity between them.

  2. The insula is not specifically involved in disgust processing: an fMRI study.

    Science.gov (United States)

    Schienle, A; Stark, R; Walter, B; Blecker, C; Ott, U; Kirsch, P; Sammer, G; Vaitl, D

    2002-11-15

    fMRI studies have shown that the perception of facial disgust expressions specifically activates the insula. The present fMRI study investigated whether this structure is also involved in the processing of visual stimuli depicting non-mimic disgust elicitors compared to fear-inducing and neutral scenes. Twelve female subjects were scanned while viewing alternating blocks of 40 disgust-inducing, 40 fear-inducing and 40 affectively neutral pictures, shown for 1.5 s each. Afterwards, affective ratings were assessed. The disgust pictures, rated as highly repulsive, induced activation in the insula, the amygdala, the orbitofrontal and occipito-temporal cortex. Since during the fear condition the insula was also involved, our findings do not fit the idea of the insula as a specific disgust processor.

  3. Reducing Individual Variation for fMRI Studies in Children by Minimizing Template Related Errors.

    Directory of Open Access Journals (Sweden)

    Jian Weng

    Full Text Available Spatial normalization is an essential process for group comparisons in functional MRI studies. In practice, there is a risk of normalization errors particularly in studies involving children, seniors or diseased populations and in regions with high individual variation. One way to minimize normalization errors is to create a study-specific template based on a large sample size. However, studies with a large sample size are not always feasible, particularly for children studies. The performance of templates with a small sample size has not been evaluated in fMRI studies in children. In the current study, this issue was encountered in a working memory task with 29 children in two groups. We compared the performance of different templates: a study-specific template created by the experimental population, a Chinese children template and the widely used adult MNI template. We observed distinct differences in the right orbitofrontal region among the three templates in between-group comparisons. The study-specific template and the Chinese children template were more sensitive for the detection of between-group differences in the orbitofrontal cortex than the MNI template. Proper templates could effectively reduce individual variation. Further analysis revealed a correlation between the BOLD contrast size and the norm index of the affine transformation matrix, i.e., the SFN, which characterizes the difference between a template and a native image and differs significantly across subjects. Thereby, we proposed and tested another method to reduce individual variation that included the SFN as a covariate in group-wise statistics. This correction exhibits outstanding performance in enhancing detection power in group-level tests. A training effect of abacus-based mental calculation was also demonstrated, with significantly elevated activation in the right orbitofrontal region that correlated with behavioral response time across subjects in the trained group.

  4. Effects of haloperidol and aripiprazole on the human mesolimbic motivational system: A pharmacological fMRI study.

    Science.gov (United States)

    Bolstad, Ingeborg; Andreassen, Ole A; Groote, Inge; Server, Andres; Sjaastad, Ivar; Kapur, Shitij; Jensen, Jimmy

    2015-12-01

    The atypical antipsychotic drug aripiprazole is a partial dopamine (DA) D2 receptor agonist, which differentiates it from most other antipsychotics. This study compares the brain activation characteristic produced by aripiprazole with that of haloperidol, a typical D2 receptor antagonist. Healthy participants received an acute oral dose of haloperidol, aripiprazole or placebo, and then performed an active aversive conditioning task with aversive and neutral events presented as sounds, while blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) was carried out. The fMRI task, targeting the mesolimbic motivational system that is thought to be disturbed in psychosis, was based on the conditioned avoidance response (CAR) animal model - a widely used test of therapeutic potential of antipsychotic drugs. In line with the CAR animal model, the present results show that subjects given haloperidol were not able to avoid more aversive than neutral task trials, even though the response times were shorter during aversive events. In the aripiprazole and placebo groups more aversive than neutral events were avoided. Accordingly, the task-related BOLD-fMRI response in the mesolimbic motivational system was diminished in the haloperidol group compared to the placebo group, particularly in the ventral striatum, whereas the aripiprazole group showed task-related activations intermediate of the placebo and haloperidol groups. The current results show differential effects on brain function by aripiprazole and haloperidol, probably related to altered DA transmission. This supports the use of pharmacological fMRI to study antipsychotic properties in humans. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  5. Collective Correlations of Brodmann Areas fMRI Study with RMT-Denoising

    Science.gov (United States)

    Burda, Z.; Kornelsen, J.; Nowak, M. A.; Porebski, B.; Sboto-Frankenstein, U.; Tomanek, B.; Tyburczyk, J.

    We study collective behavior of Brodmann regions of human cerebral cortex using functional Magnetic Resonance Imaging (fMRI) and Random Matrix Theory (RMT). The raw fMRI data is mapped onto the cortex regions corresponding to the Brodmann areas with the aid of the Talairach coordinates. Principal Component Analysis (PCA) of the Pearson correlation matrix for 41 different Brodmann regions is carried out to determine their collective activity in the idle state and in the active state stimulated by tapping. The collective brain activity is identified through the statistical analysis of the eigenvectors to the largest eigenvalues of the Pearson correlation matrix. The leading eigenvectors have a large participation ratio. This indicates that several Broadmann regions collectively give rise to the brain activity associated with these eigenvectors. We apply random matrix theory to interpret the underlying multivariate data.

  6. Modelling large motion events in fMRI studies of patients with epilepsy

    DEFF Research Database (Denmark)

    Lemieux, Louis; Salek-Haddadi, Afraim; Lund, Torben E

    2007-01-01

    -positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG-fMRI data acquired in 34 cases with focal epilepsy. Signal changes...... associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include 'scan nulling' regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95......% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential...

  7. Probing the Interoceptive Network by Listening to Heartbeats: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Nina I Kleint

    Full Text Available Exposure to cues of homeostatic relevance (i.e. heartbeats is supposed to increase the allocation of attentional resources towards the cue, due to its importance for self-regulatory, interoceptive processes. This functional magnetic resonance imaging (fMRI study aimed at determining whether listening to heartbeats is accompanied by activation in brain areas associated with interoception, particularly the insular cortex. Brain activity was measured with fMRI during cue-exposure in 36 subjects while listening to heartbeats vs. sinus tones. Autonomic markers (skin conductance and subjective measures of state and trait anxiety were assessed. Stimulation with heartbeat sounds triggered activation in brain areas commonly associated with the processing of interoceptive information, including bilateral insular cortices, the inferior frontal operculum, and the middle frontal gyrus. A psychophysiological interaction analysis indicated a functional connectivity between the middle frontal gyrus (seed region and bilateral insular cortices, the left amygdala and the supplementary motor area. The magnitude of neural activation in the right anterior insular cortex was positively associated with autonomic arousal. The present findings indicate that listening to heartbeats induced activity in areas of the interoception network as well as changes in psychophysiological arousal and subjective emotional experience. As this approach constitutes a promising method for studying interoception in the fMRI environment, a clinical application in anxiety prone populations should be addressed by future studies.

  8. Test-retest and between-site reliability in a multicenter fMRI study.

    Science.gov (United States)

    Friedman, Lee; Stern, Hal; Brown, Gregory G; Mathalon, Daniel H; Turner, Jessica; Glover, Gary H; Gollub, Randy L; Lauriello, John; Lim, Kelvin O; Cannon, Tyrone; Greve, Douglas N; Bockholt, Henry Jeremy; Belger, Aysenil; Mueller, Bryon; Doty, Michael J; He, Jianchun; Wells, William; Smyth, Padhraic; Pieper, Steve; Kim, Seyoung; Kubicki, Marek; Vangel, Mark; Potkin, Steven G

    2008-08-01

    In the present report, estimates of test-retest and between-site reliability of fMRI assessments were produced in the context of a multicenter fMRI reliability study (FBIRN Phase 1, www.nbirn.net). Five subjects were scanned on 10 MRI scanners on two occasions. The fMRI task was a simple block design sensorimotor task. The impulse response functions to the stimulation block were derived using an FIR-deconvolution analysis with FMRISTAT. Six functionally-derived ROIs covering the visual, auditory and motor cortices, created from a prior analysis, were used. Two dependent variables were compared: percent signal change and contrast-to-noise-ratio. Reliability was assessed with intraclass correlation coefficients derived from a variance components analysis. Test-retest reliability was high, but initially, between-site reliability was low, indicating a strong contribution from site and site-by-subject variance. However, a number of factors that can markedly improve between-site reliability were uncovered, including increasing the size of the ROIs, adjusting for smoothness differences, and inclusion of additional runs. By employing multiple steps, between-site reliability for 3T scanners was increased by 123%. Dropping one site at a time and assessing reliability can be a useful method of assessing the sensitivity of the results to particular sites. These findings should provide guidance toothers on the best practices for future multicenter studies.

  9. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Matthew P. Kirschen

    2010-01-01

    Full Text Available Verbal working memory (VWM engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters and modality (auditory and visual dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44, insular, cingulate (BA 32, and bilateral inferior parietal/supramarginal (BA 40 regions, as well as in bilateral superior (HVI and right inferior (HVIII cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI cerebellum, bilateral occipital (BA19 and left parietal (BA7/40 cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22. In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  10. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  11. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  12. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    Science.gov (United States)

    Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061

  13. Integration of fMRI, NIROT and ERP for studies of human brain function.

    Science.gov (United States)

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  14. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study

    OpenAIRE

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-01-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural high-resolution T1-weighted MRI; fMRI image...

  15. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  16. [fMRI study of the dominant hemisphere for language in patients with brain tumor].

    Science.gov (United States)

    Buklina, S B; Podoprigora, A E; Pronin, I N; Shishkina, L V; Boldyreva, G N; Bondarenko, A A; Fadeeva, L M; Kornienko, V N; Zhukov, V Iu

    2013-01-01

    Paper describes a study of language lateralization of patients with brain tumors, measured by preoperative functional magnetic resonance imaging (fMRI) and comparison results with tumor histology and profile of functional asymmetry. During the study 21 patient underwent fMRI scan. 15 patients had a tumor in the left and 6 in the right hemisphere. Tumors were localized mainly in the frontal, temporal and fronto-temporal regions. Histological diagnosis in 8 cases was malignant Grade IV, in 13 cases--Grade I-III. fMRI study was perfomed on scanner "Signa Exite" with a field strength of 1.5 As speech test reciting the months of the year in reverse order was used. fMRI scan results were compared with the profile of functional asymmetry, which was received with the results of questionnaire Annette and dichotic listening test. Broca's area was found in 7 cases in the left hemisphere, 6 had a tumor Grade I-III. And one patient with glioblastoma had a tumor of the right hemisphere. Broca's area in the right hemisphere was found in 3 patients (2 patients with left sided tumor, and one with right-sided tumor). One patient with left-sided tumor had mild motor aphasia. Bilateral activation in both hemispheres of the brain was observed in 6 patients. All of them had tumor Grade II-III of the left hemisphere. Signs of left-handedness were revealed only in half of these patients. Broca's area was not found in 4 cases. All of them had large malignant tumors Grade IV. One patient couldn't handle program of the research. Results of fMRI scans, questionnaire Annette and dichotic listening test frequently were not the same, which is significant. Bilateral activation in speech-loads may be a reflection of brain plasticity in cases of long-growing tumors. Thus it's important to consider the full range of clinical data in studying the problem of the dominant hemisphere for language.

  17. Conflict anticipation in alcohol dependence - A model-based fMRI study of stop signal task.

    Science.gov (United States)

    Hu, Sien; Ide, Jaime S; Zhang, Sheng; Sinha, Rajita; Li, Chiang-Shan R

    2015-01-01

    Our previous work characterized altered cerebral activations during cognitive control in individuals with alcohol dependence (AD). A hallmark of cognitive control is the ability to anticipate changes and adjust behavior accordingly. Here, we employed a Bayesian model to describe trial-by-trial anticipation of the stop signal and modeled fMRI signals of conflict anticipation in a stop signal task. Our goal is to characterize the neural correlates of conflict anticipation and its relationship to response inhibition and alcohol consumption in AD. Twenty-four AD and 70 age and gender matched healthy control individuals (HC) participated in the study. fMRI data were pre-processed and modeled with SPM8. We modeled fMRI signals at trial onset with individual events parametrically modulated by estimated probability of the stop signal, p(Stop), and compared regional responses to conflict anticipation between AD and HC. To address the link to response inhibition, we regressed whole-brain responses to conflict anticipation against the stop signal reaction time (SSRT). Compared to HC (54/70), fewer AD (11/24) showed a significant sequential effect - a correlation between p(Stop) and RT during go trials - and the magnitude of sequential effect is diminished, suggesting a deficit in proactive control. Parametric analyses showed decreased learning rate and over-estimated prior mean of the stop signal in AD. In fMRI, both HC and AD responded to p(Stop) in bilateral inferior parietal cortex and anterior pre-supplementary motor area, although the magnitude of response increased in AD. In contrast, HC but not AD showed deactivation of the perigenual anterior cingulate cortex (pgACC). Furthermore, deactivation of the pgACC to increasing p(Stop) is positively correlated with the SSRT in HC but not AD. Recent alcohol consumption is correlated with increased activation of the thalamus and cerebellum in AD during conflict anticipation. The current results highlight altered proactive

  18. Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis - insights from a longitudinal FMRI study.

    Directory of Open Access Journals (Sweden)

    Marisa Loitfelder

    Full Text Available BACKGROUND: Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS, but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. METHODS: 13 MS patients and 15 healthy controls (HC underwent MRI including fMRI (go/no-go task, neurological and neuropsychological exams at baseline (BL and follow-up (FU; minimum 12, median 20 months. We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA plots served to assess fMRI signal variability. RESULTS: Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. CONCLUSIONS: Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and

  19. Brain activity changes in cognitive networks in relapsing-remitting multiple sclerosis - insights from a longitudinal FMRI study.

    Science.gov (United States)

    Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian

    2014-01-01

    Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for

  20. The potential of infant fMRI research and the study of early life stress as a promising exemplar

    Directory of Open Access Journals (Sweden)

    Alice M. Graham

    2015-04-01

    Full Text Available Functional magnetic resonance imaging (fMRI research with infants and toddlers has increased rapidly over the past decade, and provided a unique window into early brain development. In the current report, we review the state of the literature, which has established the feasibility and utility of task-based fMRI and resting state functional connectivity MRI (rs-fcMRI during early periods of brain maturation. These methodologies have been successfully applied beginning in the neonatal period to increase understanding of how the brain both responds to environmental stimuli, and becomes organized into large-scale functional systems that support complex behaviors. We discuss the methodological challenges posed by this promising area of research. We also highlight that despite these challenges, early work indicates a strong potential for these methods to influence multiple research domains. As an example, we focus on the study of early life stress and its influence on brain development and mental health outcomes. We illustrate the promise of these methodologies for building on, and making important contributions to, the existing literature in this field.

  1. Importance of punishment frequency in the Iowa gambling task: an fMRI study.

    Science.gov (United States)

    Ma, Shuangye; Zang, Yufeng; Cheung, Vinci; Chan, Chetwyn C H

    2015-12-01

    It has been widely found that in the Iowa Gambling Task (IGT; Bechara et al. Cognition, 50(1), 7-15 1994) normal subjects would gradually learn to prefer obtaining rewards for long-term benefits than seeking immediate rewards to maximize the overall profit. The current study aimed to gain an understanding of how punishment frequency in the IGT would be processed and its association with subjects' reward preferences. In this study, we employed the clinical version of the IGT, in which response options are not only different in the long-term outcome, but also associated with different punishment frequencies. Event-related functional Magnetic Resonance Imaging (fMRI) was used to capture the subjects' brain activity when performing the IGT. A total of 24 male subjects (mean age = 21.7 years, SD = 1.8 years), who were university students, participated in the experiment. It is found that subjects learned to select more from the decks that were advantageous in the long-term, but they were more sensitive to the effect of long-term outcome under the condition of high punishment frequency. The corresponding brain activation showed that the Anterior Cingulate Cortex (ACC) had significantly higher activation during the disadvantageous choices than the advantageous choices. Such activity difference between the two conditions of long-term outcome was more prominent with high punishment frequency than low punishment frequency; and this brain activity difference was significantly correlated with the behavioral performance under the condition of high punishment frequency. The results suggested that only in the context with high punishment frequency, there would be increased neural activity in ACC when subjects intended to select from the disadvantageous choices so that these choices would be inhibited and advantageous choices would be selected.

  2. Pain empathy in schizophrenia: an fMRI study

    OpenAIRE

    Horan, William P.; Jimenez, Amy M.; Lee, Junghee; Wynn, Jonathan K.; Eisenberger, Naomi I.; Green, Michael F.

    2016-01-01

    Although it has been proposed that schizophrenia is characterized by impaired empathy, several recent studies found intact neural responses on tasks measuring the affective subdomain of empathy. This study further examined affective empathy in 21 schizophrenia outpatients and 21 healthy controls using a validated pain empathy paradigm with two components: (i) observing videos of people described as medical patients who were receiving a painful sound stimulation treatment; (ii) listening to th...

  3. A predictive coding account of bistable perception - a model-based fMRI study.

    Directory of Open Access Journals (Sweden)

    Veith Weilnhammer

    2017-05-01

    Full Text Available In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model's predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants' perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together

  4. Phonological ambiguity modulates resolution of semantic ambiguity during reading: An fMRI study of Hebrew.

    Science.gov (United States)

    Bitan, Tali; Kaftory, Asaf; Meiri-Leib, Adi; Eviatar, Zohar; Peleg, Orna

    2017-10-01

    The current fMRI study examined the role of phonology in the extraction of meaning from print in each hemisphere by comparing homophonic and heterophonic homographs (ambiguous words in which both meanings have the same or different sounds respectively, e.g., bank or tear). The analysis distinguished between the first phase, in which participants read ambiguous words without context, and the second phase in which the context resolves the ambiguity. Native Hebrew readers were scanned during semantic relatedness judgments on pairs of words in which the first word was either a homophone or a heterophone and the second word was related to its dominant or subordinate meaning. In Phase 1 there was greater activation for heterophones in left inferior frontal gyrus (IFG), pars opercularis, and more activation for homophones in bilateral IFG pars orbitalis, suggesting that resolution of the conflict at the phonological level has abolished the semantic ambiguity for heterophones. Reduced activation for all ambiguous words in temporo-parietal regions suggests that although ambiguity enhances controlled lexical selection processes in frontal regions it reduces reliance on bottom-up mapping processes. After presentation of the context, a larger difference between the dominant and subordinate meaning was found for heterophones in all reading-related regions, suggesting a greater engagement for heterophones with the dominant meaning. Altogether these results are consistent with the prominent role of phonological processing in visual word recognition. Finally, despite differences in hemispheric asymmetry between homophones and heterophones, ambiguity resolution, even toward the subordinate meaning, is largely left lateralized. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. A predictive coding account of bistable perception - a model-based fMRI study.

    Science.gov (United States)

    Weilnhammer, Veith; Stuke, Heiner; Hesselmann, Guido; Sterzer, Philipp; Schmack, Katharina

    2017-05-01

    In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model's predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants' perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together, our current work

  6. Pain empathy in schizophrenia: an fMRI study.

    Science.gov (United States)

    Horan, William P; Jimenez, Amy M; Lee, Junghee; Wynn, Jonathan K; Eisenberger, Naomi I; Green, Michael F

    2016-05-01

    Although it has been proposed that schizophrenia is characterized by impaired empathy, several recent studies found intact neural responses on tasks measuring the affective subdomain of empathy. This study further examined affective empathy in 21 schizophrenia outpatients and 21 healthy controls using a validated pain empathy paradigm with two components: (i) observing videos of people described as medical patients who were receiving a painful sound stimulation treatment; (ii) listening to the painful sounds (to create regions of interest). The observing videos component incorporated experimental manipulations of perspective taking (instructions to imagine 'Self' vs 'Other' experiencing pain) and cognitive appraisal (information about whether treatment was 'Effective' vs 'Not Effective'). When considering activation across experimental conditions, both groups showed similar dorsal anterior cingulate cortex (dACC) and anterior insula (AI) activation while merely observing others in pain. However, there were group differences associated with perspective taking: controls showed relatively greater dACC and AI activation for the Self vs Other contrast whereas patients showed relatively greater activation in these and additional regions for the Other vs Self contrast. Although patients demonstrated grossly intact neural activity while observing others in pain, they showed more subtle abnormalities when required to toggle between imagining themselves vs others experiencing pain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Positive Emotion Facilitates Cognitive Flexibility: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yanmei Wang

    2017-10-01

    Full Text Available Cognitive flexibility is the ability to switch rapidly between multiple goals. By using a task-switching paradigm, the present study investigated how positive emotion affected cognitive flexibility and the underlying neural mechanisms. After viewing pictures of different emotional valence (positive, negative, or neutral, participants discriminated whether a target digit in a specific color was odd or even. After a series of trials, the color of target stimuli was changed, i.e., the switch condition. Switch costs were measured by the increase of reaction times (RTs in the switch trials compared to those in the repeat trials. Behavior results indicated that switch costs significantly decreased in the positive emotional condition, and increased in the negative emotional condition, compared with those in the neutral condition. Imaging data revealed enhanced activation in the dorsal anterior cingulate cortex (dACC in switch trials than those in repeat trials. Moreover, the interaction between emotion (positive, negative, neutral and trial type (repeat vs. switch was significant. For switch trials, the activation of dACC decreased significantly in the positive condition, while increased significantly in the negative condition compared to neutral condition. By contrast, for repeat trials, no significant difference was observed for the activation of dACC among three emotional conditions. Our results showed that positive emotions could increase the cognitive flexibility and reduce the conflict by decreasing the activation of dACC.

  8. The neural basis of event simulation: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Yukihito Yomogida

    Full Text Available Event simulation (ES is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference. Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture-word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.

  9. Processes in arithmetic strategy selection: a fMRI study.

    Science.gov (United States)

    Taillan, Julien; Ardiale, Eléonore; Anton, Jean-Luc; Nazarian, Bruno; Félician, Olivier; Lemaire, Patrick

    2015-01-01

    This neuroimaging (functional magnetic resonance imaging) study investigated neural correlates of strategy selection. Young adults performed an arithmetic task in two different conditions. In both conditions, participants had to provide estimates of two-digit multiplication problems like 54 × 78. In the choice condition, participants had to select the better of two available rounding strategies, rounding-up (RU) strategy (i.e., doing 60 × 80 = 4,800) or rounding-down (RD) strategy (i.e., doing 50 × 70 = 3,500 to estimate product of 54 × 78). In the no-choice condition, participants did not have to select strategy on each problem but were told which strategy to use; they executed RU and RD strategies each on a series of problems. Participants also had a control task (i.e., providing correct products of multiplication problems like 40 × 50). Brain activations and performance were analyzed as a function of these conditions. Participants were able to frequently choose the better strategy in the choice condition; they were also slower when they executed the difficult RU than the easier RD. Neuroimaging data showed greater brain activations in right anterior cingulate cortex (ACC), dorso-lateral prefrontal cortex (DLPFC), and angular gyrus (ANG), when selecting (relative to executing) the better strategy on each problem. Moreover, RU was associated with more parietal cortex activation than RD. These results suggest an important role of fronto-parietal network in strategy selection and have important implications for our further understanding and modeling cognitive processes underlying strategy selection.

  10. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians.

    Science.gov (United States)

    McPherson, Malinda J; Barrett, Frederick S; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2016-01-04

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state.

  11. Say it with flowers! An fMRI study of object mediated communication

    DEFF Research Database (Denmark)

    Tylén, Kristian; Wallentin, Mikkel; Roepstorff, Andreas

    2009-01-01

    Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event......-related fMRI to study the brain activity caused by everyday material objects when they are perceived as signals. We found that comprehension of material signals activates bilaterally areas of the ventral stream and pars triangularis of the inferior frontal cortex, that is, areas traditionally associated...

  12. Distinguishing the processing of gestures from signs in deaf individuals: an fMRI study.

    Science.gov (United States)

    Husain, Fatima T; Patkin, Debra J; Thai-Van, Hung; Braun, Allen R; Horwitz, Barry

    2009-06-18

    Manual gestures occur on a continuum from co-speech gesticulations to conventionalized emblems to language signs. Our goal in the present study was to understand the neural bases of the processing of gestures along such a continuum. We studied four types of gestures, varying along linguistic and semantic dimensions: linguistic and meaningful American Sign Language (ASL), non-meaningful pseudo-ASL, meaningful emblematic, and nonlinguistic, non-meaningful made-up gestures. Pre-lingually deaf, native signers of ASL participated in the fMRI study and performed two tasks while viewing videos of the gestures: a visuo-spatial (identity) discrimination task and a category discrimination task. We found that the categorization task activated left ventral middle and inferior frontal gyrus, among other regions, to a greater extent compared to the visual discrimination task, supporting the idea of semantic-level processing of the gestures. The reverse contrast resulted in enhanced activity of bilateral intraparietal sulcus, supporting the idea of featural-level processing (analogous to phonological-level processing of speech sounds) of the gestures. Regardless of the task, we found that brain activation patterns for the nonlinguistic, non-meaningful gestures were the most different compared to the ASL gestures. The activation patterns for the emblems were most similar to those of the ASL gestures and those of the pseudo-ASL were most similar to the nonlinguistic, non-meaningful gestures. The fMRI results provide partial support for the conceptualization of different gestures as belonging to a continuum and the variance in the fMRI results was best explained by differences in the processing of gestures along the semantic dimension.

  13. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Bailey, Christopher J; Herman, Peter; Hyder, Fahmeed

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably

  14. Age differences in the motor control of speech: An fMRI study of healthy aging.

    Science.gov (United States)

    Tremblay, Pascale; Sato, Marc; Deschamps, Isabelle

    2017-05-01

    Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Adult Attachment Affects Neural Response to Preference-Inferring in Ambiguous Scenarios: Evidence From an fMRI Study

    Directory of Open Access Journals (Sweden)

    Xing Zhang

    2018-03-01

    Full Text Available Humans are highly social animals, and the ability to cater to the preferences of other individuals is encouraged by society. Preference-inferring is an important aspect of the theory of mind (TOM. Many previous studies have shown that attachment style is closely related to TOM ability. However, little is known about the effects of adult attachment style on preferences inferring under different levels of certainty. Here, we investigated how adult attachment style affects neural activity underlying preferences inferred under different levels of certainty by using functional magnetic resonance imaging (fMRI. The fMRI results demonstrated that adult attachment influenced the activation of anterior insula (AI and inferior parietal lobule (IPL in response to ambiguous preference-inferring. More specifically, in the ambiguous preference condition, the avoidant attached groups exhibited a significantly enhanced activation than secure and anxious attached groups in left IPL; the anxious attached groups exhibited a significantly reduced activation secure attached group in left IPL. In addition, the anxious attached groups exhibited a significantly reduced activation than secure and avoidant attached groups in left AI. These results were also further confirmed by the subsequent PPI analysis. The results from current study suggest that, under ambiguous situations, the avoidant attached individuals show lower sensitivity to the preference of other individuals and need to invest more cognitive resources for preference-reasoning; while compared with avoidant attached group, the anxious attached individuals express high tolerance for uncertainty and a higher ToM proficiency. Results from the current study imply that differences in preference-inferring under ambiguous conditions associated with different levels of individual attachment may explain the differences in interpersonal interaction.

  16. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    Science.gov (United States)

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  17. Aging affects the interaction between attentional control and source memory: an fMRI study.

    Science.gov (United States)

    Dulas, Michael R; Duarte, Audrey

    2014-12-01

    Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.

  18. Language Lateralization in Children Aged 10 to 11 Years: A Combined fMRI and Dichotic Listening Study

    Science.gov (United States)

    Norrelgen, Fritjof; Lilja, Anders; Ingvar, Martin; Gisselgård, Jens; Fransson, Peter

    2012-01-01

    Objective The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL). The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. Methods In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1st, 4th and the 7th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10–11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. Results The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88%) a conclusion could be reached about hemispheric language dominance. In 2 cases (12%) DL provided critical data. Conclusions The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually. PMID:23284796

  19. Language lateralization in children aged 10 to 11 years: a combined fMRI and dichotic listening study.

    Directory of Open Access Journals (Sweden)

    Fritjof Norrelgen

    Full Text Available OBJECTIVE: The aims of this study were to develop and assess a method to map language networks in children with two auditory fMRI protocols in combination with a dichotic listening task (DL. The method is intended for pediatric patients prior to epilepsy surgery. To evaluate the potential clinical usefulness of the method we first wanted to assess data from a group of healthy children. METHODS: In a first step language test materials were developed, intended for subsequent implementation in fMRI protocols. An evaluation of this material was done in 30 children with typical development, 10 from the 1(st, 4(th and the 7(th grade, respectively. The language test material was then adapted and implemented in two fMRI protocols intended to target frontal and posterior language networks. In a second step language lateralization was assessed in 17 typical 10-11 year olds with fMRI and DL. To reach a conclusion about language lateralization, firstly, quantitative analyses of the index data from the two fMRI tasks and the index data from the DL task were done separately. In a second step a set of criteria were applied to these results to reach a conclusion about language lateralization. The steps of these analyses are described in detail. RESULTS: The behavioral assessment of the language test material showed that it was well suited for typical children. The results of the language lateralization assessments, based on fMRI data and DL data, showed that for 15 of the 17 subjects (88% a conclusion could be reached about hemispheric language dominance. In 2 cases (12% DL provided critical data. CONCLUSIONS: The employment of DL combined with language mapping using fMRI for assessing hemispheric language dominance is novel and it was deemed valuable since it provided additional information compared to the results gained from each method individually.

  20. The Neurobiological Mechanism of Chemical Aversion (Emetic Therapy for Alcohol Use Disorder: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ralph L. Elkins

    2017-09-01

    Full Text Available A recent NIH epidemiology study found the lifetime prevalence of alcohol use disorder in the United States to be 29%. Alcohol drinking behavior is strongly “learned” via pleasure center activation/reinforcement. Alcohol craving is a powerful desire to drink alcoholic beverages. Craving was added as one of the defining criteria for alcohol use disorder in DSM5, and craving reduction is becoming an increasingly important treatment goal. In the current study, patients with alcohol use disorder received 10 days of inpatient multi-modal treatments at Schick Shadel Hospital (SSH of Seattle. The treatments included five chemical aversion conditioning sessions that associated alcohol cues (and alcohol with nausea and emesis. All patients met DSM4 criteria for alcohol use disorder, were heavy drinkers, and reported craving alcohol pre-treatment. Craving reduction was one of the primary treatment goals. This is the first fMRI study to measure the effects of chemical aversion therapy on alcohol craving-related brain activity. Patients were recruited as subjects for the University of Washington (UW brain scan study following SSH admission but before treatment onset. Prior to treatment, patients reported craving/desire for alcohol. After treatment (after four SSH chemical aversion treatments, again after five SSH chemical treatments, 30 and 90-days post-discharge, these same patients reported avoidance/aversion to alcohol. Most of the participants (69% reported being still sober 12 months post-treatment. Consistent with a craving reduction mechanism of how chemical aversion therapy facilitates sobriety, results of the UW fMRI brain scans showed significant pre- to post-treatment reductions in craving-related brain activity in the occipital cortex. Additional fMRI brain scan studies are needed to further explore the neurobiological mechanism of chemical aversion therapy treatment for alcohol use disorder, and other substance use disorders for which

  1. Framing deductive reasoning with emotional content: an fMRI study.

    Science.gov (United States)

    Brunetti, M; Perrucci, M G; Di Naccio, M R; Ferretti, A; Del Gratta, C; Casadio, C; Romani, G L

    2014-06-01

    In the literature concerning the study of emotional effect on cognition, several researches highlight the mechanisms of reasoning ability and the influence of emotions on this ability. However, up to now, no neuroimaging study was specifically devised to directly compare the influence on reasoning performance of visual task-unrelated with semantic task-related emotional information. In the present functional fMRI study, we devised a novel paradigm in which emotionally negative vs. neutral visual stimuli (context) were used as primes, followed by syllogisms composed of propositions with emotionally negative vs. neutral contents respectively. Participants, in the MR scanner, were asked to assess the logical validity of the syllogisms. We have therefore manipulated the emotional state and arousal induced by the visual prime as well as the emotional interference exerted by the syllogism content. fMRI data indicated a medial prefrontal cortex deactivation and lateral/dorsolateral prefrontal cortex activation in conditions with negative context. Furthermore, a lateral/dorsolateral prefrontal cortex modulation caused by syllogism content was observed. Finally, behavioral data confirmed the influence of emotional task-related stimuli on reasoning ability, since the performance was worse in conditions with syllogisms involving negative emotions. Therefore, on the basis of these data, we conclude that emotional states can impair the performance in reasoning tasks by means of the delayed general reactivity, whereas the emotional content of the target may require a larger amount of top-down resources to be processed. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Lying about the valence of affective pictures: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Tatia M C Lee

    Full Text Available The neural correlates of lying about affective information were studied using a functional magnetic resonance imaging (fMRI methodology. Specifically, 13 healthy right-handed Chinese men were instructed to lie about the valence, positive or negative, of pictures selected from the International Affective Picture System (IAPS while their brain activity was scanned by a 3T Philip Achieva scanner. The key finding is that the neural activity associated with deception is valence-related. Comparing to telling the truth, deception about the valence of the affectively positive pictures was associated with activity in the inferior frontal, cingulate, inferior parietal, precuneus, and middle temporal regions. Lying about the valence of the affectively negative pictures, on the other hand, was associated with activity in the orbital and medial frontal regions. While a clear valence-related effect on deception was observed, common neural regions were also recruited for the process of deception about the valence of the affective pictures. These regions included the lateral prefrontal and inferior parietal regions. Activity in these regions has been widely reported in fMRI studies on deception using affectively-neutral stimuli. The findings of this study reveal the effect of valence on the neural activity associated with deception. Furthermore, the data also help to illustrate the complexity of the neural mechanisms underlying deception.

  3. Specificity of Esthetic Experience for Artworks: An fMRI Study

    Science.gov (United States)

    Di Dio, Cinzia; Canessa, Nicola; Cappa, Stefano F.; Rizzolatti, Giacomo

    2011-01-01

    In a previous functional magnetic resonance imaging (fMRI) study, where we investigated the neural correlates of esthetic experience, we found that observing canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a network that included the lateral occipital gyrus, precuneus, prefrontal areas, and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning hedonic response during esthetic experience. With the aim of exploring whether this specific hedonic response is also present during the observation of non-art biological stimuli, in the present fMRI study we compared the activations associated with viewing masterpieces of classical sculpture with those produced by the observation of pictures of young athletes. The two stimulus-categories were matched on various factors, including body postures, proportion, and expressed dynamism. The stimuli were presented in two conditions: observation and esthetic judgment. The two stimulus-categories produced a rather similar global activation pattern. Direct comparisons between sculpture and real-body images revealed, however, relevant differences, among which the activation of right antero-dorsal insula during sculptures viewing only. Along with our previous data, this finding suggests that the hedonic state associated with activation of right dorsal anterior insula underpins esthetic experience for artworks. PMID:22121344

  4. Assessment of lexical semantic judgment abilities in alcohol-dependent subjects: an fMRI study.

    Science.gov (United States)

    Bagga, D; Singh, N; Modi, S; Kumar, P; Bhattacharya, D; Garg, M L; Khushu, S

    2013-12-01

    Neuropsychological studies have shown that alcohol dependence is associated with neurocognitive deficits in tasks requiring memory, perceptual motor skills, abstraction and problem solving, whereas language skills are relatively spared in alcoholics despite structural abnormalities in the language-related brain regions. To investigate the preserved mechanisms of language processing in alcohol-dependents, functional brain imaging was undertaken in healthy controls (n=18) and alcohol-dependents (n=16) while completing a lexical semantic judgment task in a 3 T MR scanner. Behavioural data indicated that alcohol-dependents took more time than controls for performing the task but there was no significant difference in their response accuracy. fMRI data analysis revealed that while performing the task, the alcoholics showed enhanced activations in left supramarginal gyrus, precuneus bilaterally, left angular gyrus, and left middle temporal gyrus as compared to control subjects. The extensive activations observed in alcoholics as compared to controls suggest that alcoholics recruit additional brain areas to meet the behavioural demands for equivalent task performance. The results are consistent with previous fMRI studies suggesting compensatory mechanisms for the execution of task for showing an equivalent performance or decreased neural efficiency of relevant brain networks. However, on direct comparison of the two groups, the results did not survive correction for multiple comparisons; therefore, the present findings need further exploration.

  5. An fMRI Study of Intra-Individual Functional Topography in the Human Cerebellum

    Directory of Open Access Journals (Sweden)

    Catherine J. Stoodley

    2010-01-01

    Full Text Available Neuroimaging studies report cerebellar activation during both motor and non-motor paradigms, and suggest a functional topography within the cerebellum. Sensorimotor tasks activate the anterior lobe, parts of lobule VI, and lobule VIII, whereas higher-level tasks activate lobules VI and VII in the posterior lobe. To determine whether these activation patterns are evident at a single-subject level, we conducted functional magnetic resonance imaging (fMRI during five tasks investigating sensorimotor (finger tapping, language (verb generation, spatial (mental rotation, working memory (N-back, and emotional processing (viewing images from the International Affective Picture System. Finger tapping activated the ipsilateral anterior lobe (lobules IV-V as well as lobules VI and VIII. Activation during verb generation was found in right lobules VII and VIIIA. Mental rotation activated left-lateralized clusters in lobules VII-VIIIA, VI-Crus I, and midline VIIAt. The N-back task showed bilateral activation in right lobules VI-Crus I and left lobules VIIB-VIIIA. Cerebellar activation was evident bilaterally in lobule VI while viewing arousing vs. neutral images. This fMRI study provides the first proof of principle demonstration that there is topographic organization of motor execution vs. cognitive/emotional domains within the cerebellum of a single individual, likely reflecting the anatomical specificity of cerebro-cerebellar circuits underlying different task domains. Inter-subject variability of motor and non-motor topography remains to be determined.

  6. Counterfactual thinking: an fMRI study on changing the past for a better future

    Science.gov (United States)

    Ma, Ning; Ampe, Lisa; Baetens, Kris; Van Overwalle, Frank

    2013-01-01

    Recent studies suggest that a brain network mainly associated with episodic memory has a more general function in imagining oneself in another time, place or perspective (e.g. episodic future thought, theory of mind, default mode). If this is true, counterfactual thinking (e.g. ‘If I had left the office earlier, I wouldn’t have missed my train.’) should also activate this network. Present functional magnetic resonance imaging (fMRI) study explores the common and distinct neural activity of counterfactual and episodic thinking by directly comparing the imagining of upward counterfactuals (creating better outcomes for negative past events) with the re-experiencing of negative past events and the imagining of positive future events. Results confirm that episodic and counterfactual thinking share a common brain network, involving a core memory network (hippocampal area, temporal lobes, midline, and lateral parietal lobes) and prefrontal areas that might be related to mentalizing (medial prefrontal cortex) and performance monitoring (right prefrontal cortex). In contrast to episodic past and future thinking, counterfactual thinking recruits some of these areas more strongly and extensively, and additionally activates the bilateral inferior parietal lobe and posterior medial frontal cortex. We discuss these findings in view of recent fMRI evidence on the working of episodic memory and theory of mind. PMID:22403155

  7. Resting-state fMRI study of patients with fragile X syndrome

    Science.gov (United States)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (pright inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  8. Glucose and caffeine effects on sustained attention: an exploratory fMRI study.

    Science.gov (United States)

    Serra-Grabulosa, Josep M; Adan, Ana; Falcón, Carles; Bargalló, Núria

    2010-11-01

    Caffeine and glucose can have beneficial effects on cognitive performance. However, neural basis of these effects remain unknown. Our objective was to evaluate the effects of caffeine and glucose on sustained attention, using functional magnetic resonance imaging (fMRI). Forty young right-handed, healthy, low caffeine-consuming subjects participated in the study. In a double-blind, randomised design, subjects received one of the following beverages: vehicle (water, 150 ml); vehicle plus 75 g of glucose; vehicle plus 75 mg of caffeine; vehicle plus 75 g of glucose and 75 mg of caffeine. Participants underwent two scanning fMRI sessions (before and 30 min after of the administration of the beverage). A continuous performance test was used to assess sustained attention. Participants who received combined caffeine and glucose had similar performance to the others but had a decrease in activation in the bilateral parietal and left prefrontal cortex. Since these areas have been related to the sustained attention and working memory processes, results would suggest that combined caffeine and glucose could increase the efficiency of the attentional system. However, more studies using larger samples and different levels of caffeine and glucose are necessary to better understand the combined effects of both substances. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Ageing differentially affects neural processing of different conflict types – an fMRI study

    Directory of Open Access Journals (Sweden)

    Margarethe eKorsch

    2014-04-01

    Full Text Available Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, (e.g. stimulus-stimulus (S-S or stimulus-response (S-R conflicts trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI study, we used a combined Flanker and Stimulus Response Conflict (SRC task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions (caudate nucleus, cingulate gyrus and middle occipital gyrus during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  10. Ageing differentially affects neural processing of different conflict types-an fMRI study.

    Science.gov (United States)

    Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred

    2014-01-01

    Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.

  11. An fMRI study of caring vs self-focus during induced compassion and pride.

    Science.gov (United States)

    Simon-Thomas, Emiliana R; Godzik, Jakub; Castle, Elizabeth; Antonenko, Olga; Ponz, Aurelie; Kogan, Aleksander; Keltner, Dacher J

    2012-08-01

    This study examined neural activation during the experience of compassion, an emotion that orients people toward vulnerable others and prompts caregiving, and pride, a self-focused emotion that signals individual strength and heightened status. Functional magnetic resonance images (fMRI) were acquired as participants viewed 55 s continuous sequences of slides to induce either compassion or pride, presented in alternation with sequences of neutral slides. Emotion self-report data were collected after each slide condition within the fMRI scanner. Compassion induction was associated with activation in the midbrain periaqueductal gray (PAG), a region that is activated during pain and the perception of others' pain, and that has been implicated in parental nurturance behaviors. Pride induction engaged the posterior medial cortex, a region that has been associated with self-referent processing. Self-reports of compassion experience were correlated with increased activation in a region near the PAG, and in the right inferior frontal gyrus (IFG). Self-reports of pride experience, in contrast, were correlated with reduced activation in the IFG and the anterior insula. These results provide preliminary evidence towards understanding the neural correlates of important interpersonal dimensions of compassion and pride. Caring (compassion) and self-focus (pride) may represent core appraisals that differentiate the response profiles of many emotions.

  12. Learning by strategies and learning by drill--evidence from an fMRI study.

    Science.gov (United States)

    Delazer, M; Ischebeck, A; Domahs, F; Zamarian, L; Koppelstaetter, F; Siedentopf, C M; Kaufmann, L; Benke, T; Felber, S

    2005-04-15

    The present fMRI study investigates, first, whether learning new arithmetic operations is reflected by changing cerebral activation patterns, and second, whether different learning methods lead to differential modifications of brain activation. In a controlled design, subjects were trained over a week on two new complex arithmetic operations, one operation trained by the application of back-up strategies, i.e., a sequence of arithmetic operations, the other by drill, i.e., by learning the association between the operands and the result. In the following fMRI session, new untrained items, items trained by strategy and items trained by drill, were assessed using an event-related design. Untrained items as compared to trained showed large bilateral parietal activations, with the focus of activation along the right intraparietal sulcus. Further foci of activation were found in both inferior frontal gyri. The reverse contrast, trained vs. untrained, showed a more focused activation pattern with activation in both angular gyri. As suggested by the specific activation patterns, newly acquired expertise was implemented in previously existing networks of arithmetic processing and memory. Comparisons between drill and strategy conditions suggest that successful retrieval was associated with different brain activation patterns reflecting the underlying learning methods. While the drill condition more strongly activated medial parietal regions extending to the left angular gyrus, the strategy condition was associated to the activation of the precuneus which may be accounted for by visual imagery in memory retrieval.

  13. Functional network centrality in obesity: A resting-state and task fMRI study.

    Science.gov (United States)

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Brain Activities Associated with Graphic Emoticons: An fMRI Study

    Science.gov (United States)

    Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki

    In this paper, we describe the brain activities that are associated with graphic emoticons by using functional MRI (fMRI). We use various types of faces from abstract to photorealistic in computer network applications. A graphics emoticon is an abstract face in communication over computer network. In this research, we created various graphic emoticons for the fMRI study and the graphic emoticons were classified according to friendliness and level of arousal. We investigated the brain activities of participants who were required to evaluate the emotional valence of the graphic emoticons (happy or sad). The experimental results showed that not only the right inferior frontal gyrus and the cingulate gyrus, but also the inferior and middle temporal gyrus and the fusiform gyrus, were found to be activated during the experiment. Forthermore, it is possible that the activation of the right inferior frontal gyrus and the cingulate gyrus is related to the type of abstract face. Since the inferior and middle temporal gyrus were activated, even though the graphic emoticons are static, we may perceive graphic emoticons as dynamic and living agents. Moreover, it is believed that text and graphics emoticons play an important role in enriching communication among users.

  15. Gender differences in the cognitive control of emotion: An fMRI study.

    Science.gov (United States)

    Koch, Kathrin; Pauly, Katharina; Kellermann, Thilo; Seiferth, Nina Y; Reske, Martina; Backes, Volker; Stöcker, Tony; Shah, N Jon; Amunts, Katrin; Kircher, Tilo; Schneider, Frank; Habel, Ute

    2007-09-20

    The interaction of emotion and cognition has become a topic of major interest. However, the influence of gender on the interplay between the two processes, along with its neural correlates have not been fully analysed so far. In this functional magnetic resonance imaging (fMRI) study we induced negative emotion using negative olfactory stimulation while male (n=21) and female (n=19) participants performed an n-back verbal working memory task. Based on findings indicating increased emotional reactivity in women, we expected the female participants to exhibit stronger activation in characteristically emotion-associated areas during the interaction of emotional and cognitive processing in comparison to the male participants. Both groups were found to be significantly impaired in their working memory performance by negative emotion induction. However, fMRI analysis revealed distinct differences in neuronal activation between groups. In men, cognitive performance under negative emotion induction was associated with extended activation patterns in mainly prefrontal and superior parietal regions. In women, the interaction between emotion and working memory yielded a significantly stronger response in the amygdala and the orbitofrontal cortex (OFC) compared to their male counterparts. Our data suggest that in women the interaction of verbal working memory and negative emotion is associated with relative hyperactivation in more emotion-associated areas whereas in men regions commonly regarded as important for cognition and cognitive control are activated. These results provide new insights in gender-specific cerebral mechanisms.

  16. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    Science.gov (United States)

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  17. Auditory processing in the brainstem and audiovisual integration in humans studied with fMRI

    NARCIS (Netherlands)

    Slabu, Lavinia Mihaela

    2008-01-01

    Functional magnetic resonance imaging (fMRI) is a powerful technique because of the high spatial resolution and the noninvasiveness. The applications of the fMRI to the auditory pathway remain a challenge due to the intense acoustic scanner noise of approximately 110 dB SPL. The auditory system

  18. Incidental Retrieval of Emotional Contexts in Post-Traumatic Stress Disorder and Depression: An fMRI Study

    Science.gov (United States)

    Whalley, Matthew G.; Rugg, Michael D.; Smith, Adam P. R.; Dolan, Raymond J.; Brewin, Chris R.

    2009-01-01

    In the present study, we used fMRI to assess patients suffering from post-traumatic stress disorder (PTSD) or depression, and trauma-exposed controls, during an episodic memory retrieval task that included non-trauma-related emotional information. In the study phase of the task neutral pictures were presented in emotional or neutral contexts.…

  19. Parahippocampal activation during successful recognition of words: a self-paced event-related fMRI study

    NARCIS (Netherlands)

    Daselaar, S. M.; Rombouts, S. A.; Veltman, D. J.; Raaijmakers, J. G.; Lazeron, R. H.; Jonker, C.

    2001-01-01

    In this study, we investigated retrieval from verbal episodic memory using a self-paced event-related fMRI paradigm, similar to the designs typically used in behavioral studies of memory function. We tested the hypothesis that the medial temporal lobe (MTL) is involved in the actual recovery of

  20. Regional differences in the CBF and BOLD responses to hypercapnia: a combined PET and fMRI study

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, I; Blinkenberg, M

    2000-01-01

    Previous fMRI studies of the cerebrovascular response to hypercapnia have shown signal change in cerebral gray matter, but not in white matter. Therefore, the objective of the present study was to compare (15)O PET and T *(2)-weighted MRI during a hypercapnic challenge. The measurements were perf...

  1. Close relationship between fMRI signals and transient heart rate changes accompanying K-complex. Simultaneous EEG/fMRI study

    International Nuclear Information System (INIS)

    Kan, Shigeyuki; Koike, Takahiko; Miyauchi, Satoru; Misaki, Masaya

    2009-01-01

    Combining functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allows the investigation of spontaneous activities in the human brain. Recently, by using this technique, increases in fMRI signal accompanying transient EEG activities such as sleep spindles and slow waves were reported. Although these fMRI signal increases appear to arise as a result of the neural activities being reflected in the EEG, when the influence of physiological activities upon fMRI signals are taken into consideration, it is highly controversial that fMRI signal increases accompanying transient EEG activities reflect actual neural activities. In the present study, we conducted simultaneous fMRI and polysomnograph recording of 18 normal adults, to study the effect of transient heart rate changes after a K-complex on fMRI signals. Significant fMRI signal increase was observed in the cerebellum, the ventral thalamus, the dorsal part of the brainstem, the periventricular white matter and the ventricle (quadrigeminal cistern). On the other hand, significant fMRI signal decrease was observed only in the right insula. Moreover, intensities of fMRI signal increase that was accompanied by a K-complex correlated positively with the magnitude of heart rate changes after a K-complex. Previous studies have reported that K-complex is closely related with sympathetic nervous activity and that the attributes of perfusion regulation in the brain differ during wakefulness and sleep. By taking these findings into consideration, our present results indicate that a close relationship exists between a K-complex and the changes in cardio- and neurovascular regulations that are mediated by the autonomic nervous system during sleep; further, these results indicate that transient heart rate changes after a K-complex can affect the fMRI signal generated in certain brain regions. (author)

  2. Human amygdala activation by the sound produced during dental treatment: A fMRI study

    Directory of Open Access Journals (Sweden)

    Jen-Fang Yu

    2015-01-01

    Full Text Available During dental treatments, patients may experience negative emotions associated with the procedure. This study was conducted with the aim of using functional magnetic resonance imaging (fMRI to visualize cerebral cortical stimulation among dental patients in response to auditory stimuli produced by ultrasonic scaling and power suction equipment. Subjects (n = 7 aged 23-35 years were recruited for this study. All were right-handed and underwent clinical pure-tone audiometry testing to reveal a normal hearing threshold below 20 dB hearing level (HL. As part of the study, subjects initially underwent a dental calculus removal treatment. During the treatment, subjects were exposed to ultrasonic auditory stimuli originating from the scaling handpiece and salivary suction instruments. After dental treatment, subjects were imaged with fMRI while being exposed to recordings of the noise from the same dental instrument so that cerebral cortical stimulation in response to aversive auditory stimulation could be observed. The independent sample confirmatory t-test was used. Subjects also showed stimulation in the amygdala and prefrontal cortex, indicating that the ultrasonic auditory stimuli elicited an unpleasant response in the subjects. Patients experienced unpleasant sensations caused by contact stimuli in the treatment procedure. In addition, this study has demonstrated that aversive auditory stimuli such as sounds from the ultrasonic scaling handpiece also cause aversive emotions. This study was indicated by observed stimulation of the auditory cortex as well as the amygdala, indicating that noise from the ultrasonic scaling handpiece was perceived as an aversive auditory stimulus by the subjects. Subjects can experience unpleasant sensations caused by the sounds from the ultrasonic scaling handpiece based on their auditory stimuli.

  3. Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: An FMRI study

    Science.gov (United States)

    Pardini, Matteo; Samson, Rebecca S.; D'Angelo, Egidio; Friston, Karl J.; Toosy, Ahmed T.; Gandini Wheeler‐Kingshott, Claudia A.M.

    2015-01-01

    Abstract Motor fMRI studies, comparing dominant (DH) and nondominant (NDH) hand activations have reported mixed findings, especially for the extent of ipsilateral (IL) activations and their relationship with task complexity. To date, no study has directly compared DH and NDH activations using an event‐related visually guided dynamic power‐grip paradigm with parametric (three) forces (GF) in healthy right‐handed subjects. We implemented a hierarchical statistical approach aimed to: (i) identify the main effect networks engaged when using either hand; (ii) characterise DH/NDH responses at different GFs; (iii) assess contralateral (CL)/IL‐specific and hemisphere‐specific activations. Beyond confirming previously reported results, this study demonstrated that increasing GF has an effect on motor response that is contextualised also by the use of DH or NDH. Linear analysis revealed increased activations in sensorimotor areas, with additional increased recruitments of subcortical and cerebellar areas when using the NDH. When looking at CL/IL‐specific activations, CL sensorimotor areas and IL cerebellum were activated with both hands. When performing the task with the NDH, several areas were also recruited including the CL cerebellum. Finally, there were hand‐side‐independent activations of nonmotor‐specific areas in the right and left hemispheres, with the right hemisphere being involved more extensively in sensori‐motor integration through associative areas while the left hemisphere showing greater activation at higher GF. This study shows that the functional networks subtending DH/NDH power‐grip visuomotor functions are qualitatively and quantitatively distinct and this should be taken into consideration when performing fMRI studies, particularly when planning interventions in patients with specific impairments. Hum Brain Mapp 36:5079–5100, 2015. © 2015 Wiley Periodicals, Inc. PMID:26415818

  4. The processing of syntactic islands – an fMRI study

    DEFF Research Database (Denmark)

    Christensen, Ken Ramshøj; Kizach, Johannes; Nyvad, Anne Mette

    2013-01-01

    The aim of this study was to investigate whether LIFG activation was sensitive to increases in syntactic working memory load triggered by multiple extractions from an embedded clause, so-called island violations, and whether there was any difference between argument and adjunct extraction. Event......-related fMRI (n=30) was used to measure the cortical effects of the differences in acceptability between ungrammatical sentences and three types of wh-movement in Danish: short movement (to the front of an embedded clause), long movement (to the beginning of the matrix clause), and movement across another...... wh-phrase. The neural activation in LIFG was predicted to correlate negatively with the level of acceptability. Ungrammatical sentences were predicted to engage LIFG, potentially overlapping with the effects of acceptability. The behavioral results replicated the findings from an earlier study...

  5. Posterior midline activation during symptom provocation in acute stress disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Jan Christopher Cwik

    2014-05-01

    Full Text Available Functional imaging studies of patients with Posttraumatic Stress Disorder showed wide-spread activation of mid-line cortical areas during symptom provocation i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with Acute Stress Disorder (ASD shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in mid-line cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.

  6. Psychophysiological interaction between superior temporal gyrus (STG) and cerebellum: An fMRI study

    Science.gov (United States)

    Yusoff, A. N.; Teng, X. L.; Ng, S. B.; Hamid, A. I. A.; Mukari, S. Z. M.

    2016-03-01

    This study aimed to model the psychophysiological interaction (PPI) between the bilateral STG and cerebellum (lobule VI and lobule VII) during an arithmetic addition task. Eighteen young adults participated in this study. They were instructed to solve single-digit addition tasks in quiet and noisy backgrounds during an fMRI scan. Results showed that in both hemispheres, the response in the cerebellum was found to be linearly influenced by the activity in STG (vice-versa) for both in-quiet and in-noise conditions. However, the influence of the cerebellum on STG seemed to be modulated by noise. A two-way PPI model between STG and cerebellum is suggested. The connectivity between the two regions during a simple addition task in a noisy condition is modulated by the participants’ higher attention to perceive.

  7. The integration of prosodic speech in high functioning autism: a preliminary FMRI study.

    Directory of Open Access Journals (Sweden)

    Isabelle Hesling

    2010-07-01

    Full Text Available Autism is a neurodevelopmental disorder characterized by a specific triad of symptoms such as abnormalities in social interaction, abnormalities in communication and restricted activities and interests. While verbal autistic subjects may present a correct mastery of the formal aspects of speech, they have difficulties in prosody (music of speech, leading to communication disorders. Few behavioural studies have revealed a prosodic impairment in children with autism, and among the few fMRI studies aiming at assessing the neural network involved in language, none has specifically studied prosodic speech. The aim of the present study was to characterize specific prosodic components such as linguistic prosody (intonation, rhythm and emphasis and emotional prosody and to correlate them with the neural network underlying them.We used a behavioural test (Profiling Elements of the Prosodic System, PEPS and fMRI to characterize prosodic deficits and investigate the neural network underlying prosodic processing. Results revealed the existence of a link between perceptive and productive prosodic deficits for some prosodic components (rhythm, emphasis and affect in HFA and also revealed that the neural network involved in prosodic speech perception exhibits abnormal activation in the left SMG as compared to controls (activation positively correlated with intonation and emphasis and an absence of deactivation patterns in regions involved in the default mode.These prosodic impairments could not only result from activation patterns abnormalities but also from an inability to adequately use the strategy of the default network inhibition, both mechanisms that have to be considered for decreasing task performance in High Functioning Autism.

  8. Sequential neural processes in abacus mental addition: an EEG and FMRI case study.

    Science.gov (United States)

    Ku, Yixuan; Hong, Bo; Zhou, Wenjing; Bodner, Mark; Zhou, Yong-Di

    2012-01-01

    Abacus experts are able to mentally calculate multi-digit numbers rapidly. Some behavioral and neuroimaging studies have suggested a visuospatial and visuomotor strategy during abacus mental calculation. However, no study up to now has attempted to dissociate temporally the visuospatial neural process from the visuomotor neural process during abacus mental calculation. In the present study, an abacus expert performed the mental addition tasks (8-digit and 4-digit addends presented in visual or auditory modes) swiftly and accurately. The 100% correct rates in this expert's task performance were significantly higher than those of ordinary subjects performing 1-digit and 2-digit addition tasks. ERPs, EEG source localizations, and fMRI results taken together suggested visuospatial and visuomotor processes were sequentially arranged during the abacus mental addition with visual addends and could be dissociated from each other temporally. The visuospatial transformation of the numbers, in which the superior parietal lobule was most likely involved, might occur first (around 380 ms) after the onset of the stimuli. The visuomotor processing, in which the superior/middle frontal gyri were most likely involved, might occur later (around 440 ms). Meanwhile, fMRI results suggested that neural networks involved in the abacus mental addition with auditory stimuli were similar to those in the visual abacus mental addition. The most prominently activated brain areas in both conditions included the bilateral superior parietal lobules (BA 7) and bilateral middle frontal gyri (BA 6). These results suggest a supra-modal brain network in abacus mental addition, which may develop from normal mental calculation networks.

  9. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  10. Cognitive control and unusual decisions about beauty: An fMRI study

    Directory of Open Access Journals (Sweden)

    Albert eFlexas

    2014-07-01

    Full Text Available Studies of visual aesthetic preference have shown that people without art training generally prefer representational paintings to abstract paintings. This, however, is not always the case: preferences can sometimes go against this usual tendency. We aimed to explore this issue, investigating the relationship between ‘unusual responses’ and reaction time in an aesthetic appreciation task. Results of a behavioural experiment confirmed the trend for laypeople to consider as beautiful mostly representational stimuli and as not beautiful mostly abstract ones (‘usual response’. Furthermore, when participants gave unusual responses, they needed longer time, especially when considering abstract stimuli as beautiful. We interpreted this longer time as greater involvement of the cognitive mastering and evaluation stages during the unusual responses. Results of an fMRI experiment indicated that the anterior cingulate, orbitofrontal cortex and insula were the main structures involved in this effect. We discuss the possible role of these areas in an aesthetic appreciation task.

  11. Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder : a critical review of fMRI studies

    NARCIS (Netherlands)

    van Zutphen, Linda; Siep, Nicolette; Jacob, Gitta A; Goebel, R.; Arntz, Arnoud

    Emotional sensitivity, emotion regulation and impulsivity are fundamental topics in research of borderline personality disorder (BPD). Studies using fMRI examining the neural correlates concerning these topics is growing and has just begun understanding the underlying neural correlates in BPD.

  12. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study

    NARCIS (Netherlands)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard Jack Anton; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F.

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state

  13. Differential parietal and temporal contributions to music perception in improvising and score-dependent musicians, an fMRI study

    NARCIS (Netherlands)

    Robert Harris; Bauke M. de Jong

    2015-01-01

    Using fMRI, cerebral activations were studied in 24 classically-trained keyboard performers and 12 musically unskilled control subjects. Two groups of musicians were recruited: improvising (n=12) and score-dependent (non-improvising) musicians (n=12). While listening to both familiar and unfamiliar

  14. Mental Time Travel into the Past and the Future in Healthy Aged Adults: An fMRI Study

    Science.gov (United States)

    Viard, Armelle; Chetelat, Gael; Lebreton, Karine; Desgranges, Beatrice; Landeau, Brigitte; de La Sayette, Vincent; Eustache, Francis; Piolino, Pascale

    2011-01-01

    Remembering the past and envisioning the future rely on episodic memory which enables mental time travel. Studies in young adults indicate that past and future thinking share common cognitive and neural underpinnings. No imaging data is yet available in healthy aged subjects. Using fMRI, we scanned older subjects while they remembered personal…

  15. The supraspinal neural correlate of bladder cold sensation--an fMRI study.

    Science.gov (United States)

    Mehnert, Ulrich; Michels, Lars; Zempleni, Monika-Zita; Schurch, Brigitte; Kollias, Spyros

    2011-06-01

    In recent years, functional imaging studies have revealed a supraspinal network, which is involved in perception and processing of bladder distention. Very little information exists on the cortical representation of C-fiber transmitted temperature sensation of the human bladder, although C-fibers seem to be involved in the pathomechanisms of bladder dysfunctions. Our aim was, therefore, to evaluate the outcome of bladder cold stimulation on supraspinal activity using functional magnetic resonance imaging (fMRI). A block design fMRI study was performed in 14 healthy females at the MR-center of the University of Zurich. After catheterization, all subjects were investigated in a 3.0-Tesla Scanner. The scanning consisted of 10 repetitive cycles. Each cycle consisted of five conditions: REST, INFUSION, SENSATION, DRAIN 1, and DRAIN 2. Cold saline was passively infused at 4-8°C during scanning. Not more than 100 ml were infused per cycle. Blood-oxygen-level-dependent (BOLD) signal analysis of the different conditions was compared to REST. All activations were evaluated on a random effects level at P = 0.001. Activation of brain regions for bladder cold stimulation (DRAIN 1 period) was found bilaterally in the inferior parietal lobe [Brodmann area (BA) 40], the right insula (BA 13), the right cerebellar posterior lobe, the right middle temporal gyrus (BA 20), and the right postcentral gyrus (BA 3). In conclusion, bladder cooling caused a different supraspinal activation pattern compared to what is known to occur during bladder distention. This supports our hypothesis that cold sensation is processed differently from bladder distension at the supraspinal level. Copyright © 2010 Wiley-Liss, Inc.

  16. Decision Making under Risk Condition in Patients with Parkinson’s Disease: A Behavioural and fMRI Study

    Directory of Open Access Journals (Sweden)

    Kirsten Labudda

    2010-01-01

    Full Text Available We aimed to study whether previously described impairment in decision making under risky conditions in patients with Parkinson's disease (PD is affected by deficits in using information about potential incentives or by processing feedback (in terms of fictitious gains and losses following each decision. Additionally, we studied whether the neural correlates of using explicit information in decision making under risk differ between PD patients and healthy subjects. We investigated ten cognitively intact PD patients and twelve healthy subjects with the Game of Dice Task (GDT to assess risky decision making, and with an fMRI paradigm to analyse the neural correlates of information integration in the deliberative decision phase. Behaviourally, PD patients showed selective impairment in the GDT but not on the fMRI task that did not include a feedback component. Healthy subjects exhibited lateral prefrontal, anterior cingulate and parietal activations when integrating decision-relevant information. Despite similar behavioural patterns on the fMRI task, patients exhibited reduced parietal activation. Behavioural results suggest that PD patients’ deficits in risky decision making are dominated by impaired feedback utilization not compensable by intact cognitive functions. Our fMRI results suggest similarities but also differences in neural correlates when using explicit information for the decision process, potentially indicating different strategy application even if the interfering feedback component is excluded.

  17. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Lee, Soo Yeol

    2006-01-01

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  18. Image artifacts in concurrent transcranial magnetic stimulation (TMS) and fMRI caused by leakage currents: modeling and compensation.

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-05-01

    To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary.

  19. Image Artifacts in Concurrent Transcranial Magnetic Stimulation (TMS) and fMRI Caused by Leakage Currents: Modeling and Compensation

    Science.gov (United States)

    Weiskopf, Nikolaus; Josephs, Oliver; Ruff, Christian C; Blankenburg, Felix; Featherstone, Eric; Thomas, Anthony; Bestmann, Sven; Driver, Jon; Deichmann, Ralf

    2009-01-01

    Purpose To characterize and eliminate a new type of image artifact in concurrent transcranial magnetic stimulation and functional MRI (TMS-fMRI) caused by small leakage currents originating from the high-voltage capacitors in the TMS stimulator system. Materials and Methods The artifacts in echo-planar images (EPI) caused by leakage currents were characterized and quantified in numerical simulations and phantom studies with different phantom-coil geometries. A relay-diode combination was devised and inserted in the TMS circuit that shorts the leakage current. Its effectiveness for artifact reduction was assessed in a phantom scan resembling a realistic TMS-fMRI experiment. Results The leakage-current-induced signal changes exhibited a multipolar spatial pattern and the maxima exceeded 1% at realistic coil-cortex distances. The relay-diode combination effectively reduced the artifact to a negligible level. Conclusion The leakage-current artifacts potentially obscure effects of interest or lead to false-positives. Since the artifact depends on the experimental setup and design (eg, amplitude of the leakage current, coil orientation, paradigm, EPI parameters), we recommend its assessment for each experiment. The relay-diode combination can eliminate the artifacts if necessary. J. Magn. Reson. Imaging 2009;29:1211–1217. © 2009 Wiley-Liss, Inc. PMID:19388099

  20. The language of future-thought: an fMRI study of embodiment and tense processing.

    Science.gov (United States)

    Gilead, Michael; Liberman, Nira; Maril, Anat

    2013-01-15

    The ability to comprehend and represent the temporal properties of an occurrence is a crucial aspect of human language and cognition. Despite advances in neurolinguistic research into semantic processing, surprisingly little is known regarding the mechanisms which support the comprehension of temporal semantics. We used fMRI to investigate neural activity associated with processing of concrete and abstract sentences across the three temporal categories: past, present, and future. Theories of embodied cognition predict that concreteness-related activity would be evident in sensory and motor areas regardless of tense. Contrastingly, relying upon construal level theory we hypothesized that: (1) the neural markers associated with concrete language processing would appear for past and present tense sentences, but not for future sentences; (2) future tense sentences would activate intention-processing areas. Consistent with our first prediction, the results showed that activation in the parahippocampal gyrus differentiated between concrete and abstract sentences for past and present tense sentences, but not for future sentences. Not consistent with our second prediction, future tense sentences did not activate most of the regions that are implicated in the processing of intentions, but only activated the vmPFC. We discuss the implications of the current results to theories of embodied cognition and tense semantics. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Chemosensory anxiety cues enhance the perception of fearful faces - An fMRI study.

    Science.gov (United States)

    Wudarczyk, Olga A; Kohn, Nils; Bergs, Rene; Goerlich, Katharina S; Gur, Raquel E; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2016-12-01

    Recent evidence suggests that humans can communicate emotion via chemosensory signals. Olfactory cues signaling anxiety can bias the perception of ambiguous stimuli, but the underlying neurobiological mechanisms of this effect are currently unknown. Here, we investigated the brain responses to subtle changes in facial expressions in response to anxiety chemosensory cues. Ten healthy individuals donated their sweat in two situations: while anticipating an important oral examination (anxiety condition) and during physical exercise (control condition). Subsequently, 24 participants completed a parametrically morphed (neutral to fearful) emotion recognition task under exposure to the olfactory cues of anxiety and sports, in the fMRI scanner. Behaviorally, the participants rated more discernible fearful faces as more fearful and neutral faces as more neutral under exposure to the anxiety cues. For brain response, under exposure to the anxiety cues, increased fearfulness of the face corresponded to increased activity in the left insula and the left middle occipital gyrus extending into fusiform gyrus. Moreover, with higher subjective ratings of facial fearfulness, participants additionally showed increased activity in the left hippocampus. These results suggest that chemosensory anxiety cues facilitate processing of socially relevant fearful stimuli and boost memory retrieval due to enhanced emotional context. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Are batterers different from other criminals? An fMRI study

    Science.gov (United States)

    Verdejo-Román, Juan; Contreras-Rodríguez, Oren; Carmona-Perera, Martina; Pérez-García, Miguel; Hidalgo-Ruzzante, Natalia

    2016-01-01

    Abstract Intimate partner violence (IPV) is a complex and global phenomenon that requires a multi-perspective analysis. Nevertheless, the number of neuroscientific studies conducted on this issue is scarce as compared with studies of other types of violence, and no neuroimaging studies comparing batterers to other criminals have been conducted. Thus, the main aim of this study was to compare the brain functioning of batterers to that of other criminals when they are exposed to IPV or general violence pictures. An fMRI study was conducted in 21 batterers and 20 other criminals while they observed IPV images (IPVI), general violence images (GVI) and neutral images (NI). Results demonstrated that batterers, compared with other criminals, exhibited a higher activation in the anterior and posterior cingulate cortex and in the middle prefrontal cortex and a decreased activation in the superior prefrontal cortex to IPVI compared to NI. The paired t-test comparison between IPVI and GVI for each group showed engagement of the medial prefrontal cortex, the posterior cingulate and the left angular cortices to IPVI in the batterer group only. These results could have important implications for a better understanding of the IPV phenomenon. PMID:26884544

  3. Neural Correlates of Consumer Buying Motivations: A 7T functional Magnetic Resonance Imaging (fMRI Study

    Directory of Open Access Journals (Sweden)

    Adam M. Goodman

    2017-09-01

    Full Text Available Consumer buying motivations can be distinguished into three categories: functional, experiential, or symbolic motivations (Keller, 1993. Although prior neuroimaging studies have examined the neural substrates which enable these motivations, direct comparisons between these three types of consumer motivations have yet to be made. In the current study, we used 7 Tesla (7T functional magnetic resonance imaging (fMRI to assess the neural correlates of each motivation by instructing participants to view common consumer goods while emphasizing either functional, experiential, or symbolic values of these products. The results demonstrated mostly consistent activations between symbolic and experiential motivations. Although, these motivations differed in that symbolic motivation was associated with medial frontal gyrus (MFG activation, whereas experiential motivation was associated with posterior cingulate cortex (PCC activation. Functional motivation was associated with dorsolateral prefrontal cortex (DLPFC activation, as compared to other motivations. These findings provide a neural basis for how symbolic and experiential motivations may be similar, yet different in subtle ways. Furthermore, the dissociation of functional motivation within the DLPFC supports the notion that this motivation relies on executive function processes relatively more than hedonic motivation. These findings provide a better understanding of the underlying neural functioning which may contribute to poor self-control choices.

  4. Personality modulates amygdala and insula connectivity during humor appreciation: An event-related fMRI study.

    Science.gov (United States)

    Berger, Philipp; Bitsch, Florian; Nagels, Arne; Straube, Benjamin; Falkenberg, Irina

    2017-11-12

    Previous research and theory implicate that personality traits, such as extraversion and neuroticism, influence the processing of humor, as indicated by alterations in the activation of fronto-temporal and mesocorticolimbic brain regions during humor processing. In the current study, we sought to complement these findings by testing whether inter-individual differences in functional connectivity of humor-related brain regions are modulated by stable personality characteristics during humor processing. Using fMRI techniques, we studied 19 healthy subjects during the processing of standardized humorous and neutral cartoons. In order to isolate the specific effects of humor appreciation, subjective funniness ratings, collected during the scanning procedure, were implemented in the analysis as parametric modulation. Two distinct clusters in the right amygdala and the left insula were identified. Seed-to-voxel connectivity analysis investigating the effects of personality on inter-individual differences in functional connectivity revealed that amygdala and insula connectivity with brain areas previously related to humor comprehension (e.g. middle temporal gyrus) and appreciation (e.g. caudate nucleus) were significantly modulated by personality dimensions. These results underscore the sensitivity of humor processing to moderating influences, such as personality, and call attention to the importance of brain connectivity measures for the investigation of inter-individual differences in the processing of humor.

  5. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: A fMRI study

    International Nuclear Information System (INIS)

    Yan, B.; Shan, B.C.; Zhi, L.H.; Li, K.; Lu, N.; Li, L.; Liu, H.

    2005-01-01

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result, In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  6. 'Visual' cortical activation induced by acupuncture at vision-related acupoint: a fMRI study

    International Nuclear Information System (INIS)

    Yan, B.; Shan, B.C.; Zhi, L.H.; Li, K.; Lu, N.; Li, L.; Liu, H.

    2005-01-01

    It has attracted attention recently that acupuncture at vision-related acupoints, which are used to treat eye diseases according to Traditional Chinese Medicine (TCM), could activate the visual cortex. Cho and colleagues have reported that acupuncture at vision-related acupoints in the foot, activate the visual cortex bilaterally. Similar results were reported by Siedentopf and coworkers using laser acupuncture. However, Gareus et al. did not get the result. In this study, manual acupuncture was used to examine the response of central nervous system (CNS) to acupuncture at Liv3, one of important acupoints used to treat eye-related disease in clinic. To avoid the non-specific factors such as pain and anxiety, a sham acupoint which is approximately 10 mm anterior to Liv3 and innervated by the same spinal segment was selected as control. The CNS response was obtained by subtracting fMRI brain images evoked by nearby 'sham' acupoint from that evoked by the 'real' acupoint. 17 healthy right handed volunteers were comprised in the study. The images were got on 1.5T MR with EPI sequence. After 62 baseline scans, a silver needle 0.30 mm in diameter and 25 mm long was inserted and twirled for 60 scans; then the needle was withdrawn while fMRI scanning continued, until a total of 402 scans were acquired. During acupuncture, the needle was twirled manually clockwise and anticlockwise at 1 Hz with 'even reinforcing and reducing' needle manipulation. The depth of needle insertion at the sham acupoint was approximately 15 mm, the same as at the real acupoint. All the points in this study were on the right foot. The data were analyzed with spm99 using random effects analysis, discrepancies in the activation areas between Liv3 and the sham acupoint were obtained at p<0.01. Acupuncture at Liv3 significantly activated Brodmann Area 19 (BA 19) bilaterally, middle temporal gyrus, cerebellum, ipsilateral posterior cingulate, parahippocampal gyrus, contralateral postcentral gyrus, and

  7. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study.

    Science.gov (United States)

    Wang, Ping; Zhu, Xing-Ting; Qi, Zhigang; Huang, Silin; Li, Hui-Jie

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60 years of age or older participated in the present study, and there are no significant differences in age ( t = 0.62, p = 0.536), gender ratio ( t = 1.29, p = 0.206) and years of education ( t = 1.92, p = 0.062) between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  8. Further dissociating the processes involved in recognition memory: an FMRI study.

    Science.gov (United States)

    Henson, Richard N A; Hornberger, Michael; Rugg, Michael D

    2005-07-01

    Based on an event-related potential study by Rugg et al. [Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595-598, 1998], we attempted to isolate the hemodynamic correlates of recollection, familiarity, and implicit memory within a single verbal recognition memory task using event-related fMRI. Words were randomly cued for either deep or shallow processing, and then intermixed with new words for yes/no recognition. The number of studied words was such that, whereas most were recognized ("hits"), an appreciable number of shallow-studied words were not ("misses"). Comparison of deep hits versus shallow hits at test revealed activations in regions including the left inferior parietal gyrus. Comparison of shallow hits versus shallow misses revealed activations in regions including the bilateral intraparietal sulci, the left posterior middle frontal gyrus, and the left frontopolar cortex. Comparison of hits versus correct rejections revealed a relative deactivation in an anterior left medial-temporal region (most likely the perirhinal cortex). Comparison of shallow misses versus correct rejections did not reveal response decreases in any regions expected on the basis of previous imaging studies of priming. Given these and previous data, we associate the left inferior parietal activation with recollection, the left anterior medial-temporal deactivation with familiarity, and the intraparietal and prefrontal responses with target detection. The absence of differences between shallow misses and correct rejections means that the hemodynamic correlates of implicit memory remain unclear.

  9. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-11-01

    Full Text Available Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs and twenty non-video game players (NVGPs of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536, gender ratio (t = 1.29, p = 0.206 and years of education (t = 1.92, p = 0.062 between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  10. Neurophenomenology of an Altered State of Consciousness: An fMRI Case Study.

    Science.gov (United States)

    Modestino, Edward J

    2016-01-01

    A research participant came to our lab with self-proclaimed, ecstatic, Kundalini meditative experiences. Using neurophenomenology and functional magnetic resonance imaging (fMRI), we were able to identify brain activation in the left prefrontal cortex [primarily in left Brodmann׳s areas (BAs) 46 and 10, but also extending into BAs 11, 47, and 45] associated with this experience. The Phenomenology of Consciousness Inventory provided evidence that this was a perceived altered state of consciousness. Additionally, the Physio-Kundalini Syndrome Index strongly suggested that what he was experiencing was indeed Kundalini. The feelings of joy, happiness and the left prefrontal brain region found in this study are consistent with many published neuroimaging and electrophysiological studies of meditation. This case study suggests that using first-person subjective experience within a phenomenological reduction process can be combined with neuroimaging to divulge objective brain regions associated with such experiences. Furthermore, this provides evidence that at least in this participant, the Kundalini experience is associated with brain activation in the left prefrontal cortex. Future research is needed to confirm these results in a large group study, perhaps contrasting brain activation of those who experience spontaneously emerging Kundalini with trained Kundalini practitioners. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Brain activity for spontaneous and explicit mentalizing in adults with autism spectrum disorder: An fMRI study

    Directory of Open Access Journals (Sweden)

    Annabel D. Nijhof

    Full Text Available The socio-communicative difficulties of individuals with autism spectrum disorder (ASD are hypothesized to be caused by a specific deficit in the ability to represent one's own and others' mental states, referred to as Theory of Mind or mentalizing. However, many individuals with ASD show successful performance on explicit measures of mentalizing, and for this reason, the deficit is thought to be better captured by measures of spontaneous mentalizing. While there is initial behavioral support for this hypothesis, spontaneous mentalizing in ASD has not yet been studied at the neural level. Recent findings indicate involvement of the right temporoparietal junction (rTPJ in both explicit and spontaneous mentalizing (Bardi et al., 2016. In the current study, we investigated brain activation during explicit and spontaneous mentalizing in adults with ASD by means of fMRI. Based on our hypothesis of a core mentalizing deficit in ASD, decreased rTPJ activity was expected for both forms of mentalizing. A group of 24 adults with ASD and 21 neurotypical controls carried out a spontaneous and an explicit version of the same mentalizing task. They watched videos in which both they themselves and another agent formed a belief about the location of an object (belief formation phase. Only in the explicit task version participants were instructed to report the agent's belief on some trials. At the behavioral level, no group differences were revealed in either of the task versions. A planned region-of-interest analysis of the rTPJ showed that this region was more active for false- than for true-belief formation, independent of task version, especially when the agent's belief had a positive content (when the agent was expecting the object. This effect of belief was absent in adults with ASD. A whole-brain analysis revealed reduced activation in the anterior middle temporal pole in ASD for false - versus true-belief trials, independent of task version. Our findings

  12. Emotional Picture and Word Processing: An fMRI Study on Effects of Stimulus Complexity

    Science.gov (United States)

    Schlochtermeier, Lorna H.; Kuchinke, Lars; Pehrs, Corinna; Urton, Karolina; Kappelhoff, Hermann; Jacobs, Arthur M.

    2013-01-01

    Neuroscientific investigations regarding aspects of emotional experiences usually focus on one stimulus modality (e.g., pictorial or verbal). Similarities and differences in the processing between the different modalities have rarely been studied directly. The comparison of verbal and pictorial emotional stimuli often reveals a processing advantage of emotional pictures in terms of larger or more pronounced emotion effects evoked by pictorial stimuli. In this study, we examined whether this picture advantage refers to general processing differences or whether it might partly be attributed to differences in visual complexity between pictures and words. We first developed a new stimulus database comprising valence and arousal ratings for more than 200 concrete objects representable in different modalities including different levels of complexity: words, phrases, pictograms, and photographs. Using fMRI we then studied the neural correlates of the processing of these emotional stimuli in a valence judgment task, in which the stimulus material was controlled for differences in emotional arousal. No superiority for the pictorial stimuli was found in terms of emotional information processing with differences between modalities being revealed mainly in perceptual processing regions. While visual complexity might partly account for previously found differences in emotional stimulus processing, the main existing processing differences are probably due to enhanced processing in modality specific perceptual regions. We would suggest that both pictures and words elicit emotional responses with no general superiority for either stimulus modality, while emotional responses to pictures are modulated by perceptual stimulus features, such as picture complexity. PMID:23409009

  13. Cortical activation during power grip task with pneumatic pressure gauge: an fMRI study

    Science.gov (United States)

    Mohamad, M.; Mardan, N. H.; Ismail, S. S.

    2017-05-01

    Aging is associated with a decline in cognitive and motor function. But, the relationships with motor performance are less well understood. In this study, functional magnetic resonance imaging (fMRI) was used to assess cortical activation in older adults. This study employed power grip task that utilised block paradigm consisted of alternate 30s rest and active. A visual cue was used to pace the hand grip movement that clenched a cylindrical rubber bulb connected with pressure pneumatic gauge that measure the pressure (Psi). The objective of this study is determined the brain areas activated during motor task and the correlation between percentage signal change of each motor area (BA 4 and 6) and hand grip pressure. Result showed there was a significant difference in mean percentage signal change in BA 4 and BA 6 in both hemispheres and negative correlation obtained in BA 4 and BA 6. These results indicate that a reduced ability in the motor networks contribute to age-related decline in motor performance.

  14. Cortical activation during power grip task with pneumatic pressure gauge: an fMRI study

    International Nuclear Information System (INIS)

    Mohamad, M; Ismail, S S; Mardan, N H

    2017-01-01

    Aging is associated with a decline in cognitive and motor function. But, the relationships with motor performance are less well understood. In this study, functional magnetic resonance imaging (fMRI) was used to assess cortical activation in older adults. This study employed power grip task that utilised block paradigm consisted of alternate 30s rest and active. A visual cue was used to pace the hand grip movement that clenched a cylindrical rubber bulb connected with pressure pneumatic gauge that measure the pressure (Psi). The objective of this study is determined the brain areas activated during motor task and the correlation between percentage signal change of each motor area (BA 4 and 6) and hand grip pressure. Result showed there was a significant difference in mean percentage signal change in BA 4 and BA 6 in both hemispheres and negative correlation obtained in BA 4 and BA 6. These results indicate that a reduced ability in the motor networks contribute to age-related decline in motor performance. (paper)

  15. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    Science.gov (United States)

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  16. FMRI Study of Neural Responses to Implicit Infant Emotion in Anorexia Nervosa

    Directory of Open Access Journals (Sweden)

    Jenni Leppanen

    2017-05-01

    Full Text Available Difficulties in social–emotional processing have been proposed to play an important role in the development and maintenance of anorexia nervosa (AN. Few studies, thus far, have investigated neural processes that underlie these difficulties, including processing emotional facial expressions. However, the majority of these studies have investigated neural responses to adult emotional display, which may be confounded by elevated sensitivity to social rank and threat in AN. Therefore, the aim of this study was to investigate the neural processes underlying implicit processing of positively and negatively valenced infant emotional display in AN. Twenty-one adult women with AN and twenty-six healthy comparison (HC women were presented with images of positively valenced, negatively valenced, and neutral infant faces during a fMRI scan. Significant differences between the groups in positive > neutral and negative > neutral contrasts were investigated in a priori regions of interest, including the bilateral amygdala, insula, and lateral prefrontal cortex (PFC. The findings revealed that the AN participants showed relatively increased recruitment while the HC participants showed relatively reduced recruitment of the bilateral amygdala and the right dorsolateral PFC in the positive > neutral contrast. In the negative > neutral contrast, the AN group showed relatively increased recruitment of the left posterior insula while the HC groups showed relatively reduced recruitment of this region. These findings suggest that people with AN may engage in implicit prefrontal down-regulation of elevated limbic reactivity to positively social–emotional stimuli.

  17. Neural correlates of vocal learning in songbirds and humans: cross-species fMRI studies into individual differences

    OpenAIRE

    Kant, Anne Marie van der

    2015-01-01

    Animal models, songbirds particularly, are increasingly used to study the human capacity for speech and language. In the light of understanding both language evolution and individual language acquisition these models are highly valuable, provided that they are studied within a valid comparative framework. In the past few decades, non-invasive methods such as functional Magnetic Resonance Imaging (fMRI) and Near-InfraRed Spectroscopy (NIRS) have become available for human as well as animal bra...

  18. Development of visual cortical function in infant macaques: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Tom J Van Grootel

    Full Text Available Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of

  19. N-back Working Memory Task: Meta-analysis of Normative fMRI Studies With Children.

    Science.gov (United States)

    Yaple, Zachary; Arsalidou, Marie

    2018-05-07

    The n-back task is likely the most popular measure of working memory for functional magnetic resonance imaging (fMRI) studies. Despite accumulating neuroimaging studies with the n-back task and children, its neural representation is still unclear. fMRI studies that used the n-back were compiled, and data from children up to 15 years (n = 260) were analyzed using activation likelihood estimation. Results show concordance in frontoparietal regions recognized for their role in working memory as well as regions not typically highlighted as part of the working memory network, such as the insula. Findings are discussed in terms of developmental methodology and potential contribution to developmental theories of cognition. © 2018 Society for Research in Child Development.

  20. Are autobiographical memories inherently social? Evidence from an fMRI study.

    Directory of Open Access Journals (Sweden)

    Linda Wilbers

    Full Text Available The story of our lifetime - our narrative self - is constructed from our autobiographical memories. A central claim of social psychology is that this narrative self is inherently social: When we construct our lives, we do so in a real or imagined interaction. This predicts that self-referential processes which are involved in recall of autobiographical memories overlap with processes involved in social interactions. Indeed, previous functional MRI studies indicate that regions in the medial prefrontal cortex (mPFC are activated during autobiographical memory recall and virtual communication. However, no fMRI study has investigated recall of autobiographical memories in a real-life interaction. We developed a novel paradigm in which participants overtly reported self-related and other-related memories to an experimenter, whose non-verbal reactions were being filmed and online displayed to the participants in the scanner. We found that recall of autobiographical vs. non-autobiographical memories was associated with activation of the mPFC, as was recall in the social as compared to a non-social control condition; however, both contrasts involved different non-overlapping regions within the mPFC. These results indicate that self-referential processes involved in autobiographical memory recall are different from processes supporting social interactions, and argue against the hypothesis that autobiographical memories are inherently social.

  1. Neural correlates of receiving an apology and active forgiveness: an FMRI study.

    Science.gov (United States)

    Strang, Sabrina; Utikal, Verena; Fischbacher, Urs; Weber, Bernd; Falk, Armin

    2014-01-01

    Interpersonal conflicts are a common element of many social relationships. One possible process in rebuilding social relationships is the act of apologizing. Behavioral studies have shown that apologies promote forgiveness. However, the neural bases of receiving an apology and forgiveness are still unknown. Hence, the aim of the present fMRI study was to investigate brain processes involved in receiving an apology and active forgiveness of an ambiguous offense. We asked one group of participants (player A) to make decisions, which were either positive or negative for another group of participants (player B). The intention of player A was ambiguous to player B. In case of a negative impact, participants in the role of player A could send an apology message to participants in the role of player B. Subsequently players B were asked whether they wanted to forgive player A for making a decision with negative consequences. We found that receiving an apology yielded activation in the left inferior frontal gyrus, the left middle temporal gyrus, and left angular gyrus. In line with previous research we found that forgiving judgments activated the right angular gyrus.

  2. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Esther Via

    Full Text Available Patients with anorexia nervosa (AN display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2 and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  3. Abnormal Social Reward Responses in Anorexia Nervosa: An fMRI Study.

    Science.gov (United States)

    Via, Esther; Soriano-Mas, Carles; Sánchez, Isabel; Forcano, Laura; Harrison, Ben J; Davey, Christopher G; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Menchón, José M; Fernández-Aranda, Fernando; Cardoner, Narcís

    2015-01-01

    Patients with anorexia nervosa (AN) display impaired social interactions, implicated in the development and prognosis of the disorder. Importantly, social behavior is modulated by reward-based processes, and dysfunctional at-brain-level reward responses have been involved in AN neurobiological models. However, no prior evidence exists of whether these neural alterations would be equally present in social contexts. In this study, we conducted a cross-sectional social-judgment functional magnetic resonance imaging (fMRI) study of 20 restrictive-subtype AN patients and 20 matched healthy controls. Brain activity during acceptance and rejection was investigated and correlated with severity measures (Eating Disorder Inventory -EDI-2) and with personality traits of interest known to modulate social behavior (The Sensitivity to Punishment and Sensitivity to Reward Questionnaire). Patients showed hypoactivation of the dorsomedial prefrontal cortex (DMPFC) during social acceptance and hyperactivation of visual areas during social rejection. Ventral striatum activation during rejection was positively correlated in patients with clinical severity scores. During acceptance, activation of the frontal opercula-anterior insula and dorsomedial/dorsolateral prefrontal cortices was differentially associated with reward sensitivity between groups. These results suggest an abnormal motivational drive for social stimuli, and involve overlapping social cognition and reward systems leading to a disruption of adaptive responses in the processing of social reward. The specific association of reward-related regions with clinical and psychometric measures suggests the putative involvement of reward structures in the maintenance of pathological behaviors in AN.

  4. Neural correlates of cognitive control in gambling disorder: a systematic review of fMRI studies.

    Science.gov (United States)

    Moccia, Lorenzo; Pettorruso, Mauro; De Crescenzo, Franco; De Risio, Luisa; di Nuzzo, Luigi; Martinotti, Giovanni; Bifone, Angelo; Janiri, Luigi; Di Nicola, Marco

    2017-07-01

    Decreased cognitive control over the urge to be involved in gambling activities is a core feature of Gambling Disorder (GD). Cognitive control can be differentiated into several cognitive sub-processes pivotal in GD clinical phenomenology, such as response inhibition, conflict monitoring, decision-making, and cognitive flexibility. This article aims to systematically review fMRI studies, which investigated the neural mechanisms underlying diminished cognitive control in GD. We conducted a comprehensive literature search and collected neuropsychological and neuroimaging data investigating cognitive control in GD. We included a total of 14 studies comprising 499 individuals. Our results indicate that impaired activity in prefrontal cortex may account for decreased cognitive control in GD, contributing to the progressive loss of control over gambling urges. Among prefrontal regions, orbital and ventromedial areas seem to be a possible nexus for sensory integration, value-based decision-making and emotional processing, thus contributing to both motivational and affective aspects of cognitive control. Finally, we discussed possible therapeutic approaches aimed at the restoration of cognitive control in GD, including pharmacological and brain stimulation treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Parallel processing in the brain’s visual form system: An fMRI study

    Directory of Open Access Journals (Sweden)

    Yoshihito eShigihara

    2014-07-01

    Full Text Available We here extend and complement our earlier time-based, magneto-encephalographic (MEG, study of the processing of forms by the visual brain (Shigihara and Zeki, 2013 with a functional magnetic resonance imaging (fMRI study, in order to better localize the activity produced in early visual areas when subjects view simple geometric stimuli of increasing perceptual complexity (lines, angles, rhomboids constituted from the same elements (lines. Our results show that all three categories of form activate all three visual areas with which we were principally concerned (V1, V2, V3, with angles producing the strongest and rhomboids the weakest activity in all three. The difference between the activity produced by angles and rhomboids was significant, that between lines and rhomboids was trend significant while that between lines and angles was not. Taken together with our earlier MEG results, the present ones suggest that a parallel strategy is used in processing forms, in addition to the well-documented hierarchical strategy.

  6. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  7. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  8. The role of the DLPFC in inductive reasoning of MCI patients and normal agings: an fMRI study.

    Science.gov (United States)

    Yang, YanHui; Liang, PeiPeng; Lu, ShengFu; Li, KunCheng; Zhong, Ning

    2009-08-01

    Previous studies of young people have revealed that the left dorsolateral prefrontal cortex (DLPFC) plays an important role in inductive reasoning. An fMRI experiment was performed in this study to examine whether the left DLPFC was involved in inductive reasoning of MCI patients and normal aging, and whether the activation pattern of this region was different between MCI patients and normal aging. The fMRI results indicated that MCI patients had no difference from normal aging in behavior performance (reaction time and accuracy) and the activation pattern of DLPFC. However, the BOLD response of the DLPFC region for MCI patients was weaker than that for normal aging, and the functional connectivity between the bilateral DLPFC regions for MCI patients was significantly higher than for normal aging. Taken together, these results indicated that DLPFC plays an important role in inductive reasoning of aging, and the functional abnormity of DLPFC may be an earlier marker of MCI before structural alterations.

  9. Spontaneous mentalizing during an interactive real world task: an fMRI study.

    Science.gov (United States)

    Spiers, Hugo J; Maguire, Eleanor A

    2006-01-01

    There are moments in everyday life when we need to consider the thoughts and intentions of other individuals in order to act in a socially appropriate manner. Most of this mentalizing occurs spontaneously as we go about our business in the complexity of the real world. As such, studying the neural basis of spontaneous mentalizing has been virtually impossible. Here we devised a means to achieve this by employing a unique combination of functional magnetic resonance imaging (fMRI), a detailed and interactive virtual reality simulation of a bustling familiar city, and a retrospective verbal report protocol. We were able to provide insights into the content of spontaneous mentalizing events and identify the brain regions that underlie them. We found increased activity in a number of regions, namely the right posterior superior temporal sulcus, the medial prefrontal cortex and the right temporal pole associated with spontaneous mentalizing. Furthermore, we observed the right posterior superior temporal sulcus to be consistently active during several different subtypes of mentalizing events. By contrast, medial prefrontal cortex seemed to be particularly involved in thinking about agents that were visible in the environment. Our findings show that it is possible to investigate the neural basis of mentalizing in a manner closer to its true context, the real world, opening up intriguing possibilities for making comparisons with those who have mentalizing problems.

  10. Strategic Motives Drive Proposers to Offer Fairly in Ultimatum Games: An fMRI Study.

    Science.gov (United States)

    Chen, Yin-Hua; Chen, Ying-Chun; Kuo, Wen-Jui; Kan, Kamhon; Yang, C C; Yen, Nai-Shing

    2017-04-03

    The hypothesis of strategic motives postulates that offering fairly in the Ultimatum Game (UG) is to avoid rejection and receive money. In this fMRI study, we used a modified UG to elucidate how proposers reached decisions of offering fairly and to what extent they considered offering selfishly with different stakes. We had proposers choose between a fair and a selfish offer with different degrees of selfishness and stake sizes. Proposers were less likely and spent more time choosing the fair offer over a slightly-selfish offer than a very selfish offer independent of stakes. Such choices evoked greater activation in the dorsal anterior cingulate cortices that typically involve in allocation of cognitive control for cost/benefit decision making. Choosing a fair offer in higher stakes evoked greater activation in the anterior cingulate gyrus (ACCg) and the areas that previously have been implicated in reward and theory of mind. Furthermore, choosing a slightly selfish offer over a fair offer evoked greater activation in the anterior cingulate sulcus, ACCg, ventral tegmental area (or substantia nigra) and anterior insular cortex signalling the higher gain and implying higher rejection risk. In conclusion, our findings favoured the hypothesis that proposers offer fairly based on the strategic motives.

  11. Acupuncture induce the different modulation patterns of the default mode network: an fMRI study

    Science.gov (United States)

    Liu, Peng; Qin, Wei; Tian, Jie; Zhang, Yi

    2009-02-01

    According to Traditional Chinese Medicine (TCM) theory and certain clinical treatment reports, the sustained effects of acupuncture indeed exist, which may last several minutes or hours. Furthermore, increased attention has fallen on the sustained effects of acupuncture. Recently, it is reported that the sustained acupuncture effects may alter the default mode network (DMN). It raises interesting questions: whether the modulations of acupuncture effects to the DMN are still detected at other acupoints and whether the modulation patterns are different induced by different acupoints. In the present study, we wanted to investigate the questions. An experiment fMRI design was carried out on 36 subjects with the electroacupuncture stimulation (EAS) at the three acupoints: Guangming (GB37), Kunlun (BL60) and Jiaoxin (KI8) on the left leg. The data sets were analyzed by a data driven method named independent component analysis (ICA). The results indicated that the three acupoints stimulations may modulate the DMN. Moreover, the modulation patterns were distinct. We suggest the different modulation patterns on the DMN may attribute to the distinct functional effects of acupoints.

  12. An fMRI study on the influence of sommeliers’ expertise on the integration of flavor

    Directory of Open Access Journals (Sweden)

    Lionel ePazart

    2014-10-01

    Full Text Available Flavors guide consumers' choice of foodstuffs, preferring those that they like and meet their needs, and dismissing those for which they have a conditioned aversion. Flavor affects the learning and consumption of foods and drinks; what is already well-known is favored and what is new is apprehended. The flavor of foodstuffs is also crucial in explaining some eating behaviors such as overconsumption. The blind taste test of wine is a good model for assessing the ability of people to convert mouth feelings into flavor. To determine the relative importance of memory and sensory capabilities, we present the results of an fMRI neuro-imaging study involving 10 experts and 10 matched control subjects using wine as a stimulus in a blind taste test, focusing primarily on the assessment of flavor integration.The results revealed activations in the brain areas involved in sensory integration, both in experts and control subjects (insula, frontal operculum, orbitofrontal cortex, amygdala. However, experts were mainly characterized by a more immediate and targeted sensory reaction to wine stimulation with an economic mechanism reducing effort than control subjects. Wine experts showed brainstem and left-hemispheric activations in the hippocampal and parahippocampal formations and the temporal pole, whereas control subjects showed activations in different associative cortices, predominantly in the right hemisphere. These results also confirm that wine experts work simultaneously on sensory quality assessment and on label recognition of wine.

  13. Alterations of monetary reward and punishment processing in chronic cannabis users: an FMRI study.

    Science.gov (United States)

    Enzi, Björn; Lissek, Silke; Edel, Marc-Andreas; Tegenthoff, Martin; Nicolas, Volkmar; Scherbaum, Norbert; Juckel, Georg; Roser, Patrik

    2015-01-01

    Alterations in reward and punishment processing have been reported in adults suffering from long-term cannabis use. However, previous findings regarding the chronic effects of cannabis on reward and punishment processing have been inconsistent. In the present study, we used functional magnetic resonance imaging (fMRI) to reveal the neural correlates of reward and punishment processing in long-term cannabis users (n = 15) and in healthy control subjects (n = 15) with no history of drug abuse. For this purpose, we used the well-established Monetary Incentive Delay (MID) task, a reliable experimental paradigm that allows the differentiation between anticipatory and consummatory aspects of reward and punishment processing. Regarding the gain anticipation period, no significant group differences were observed. In the left caudate and the left inferior frontal gyrus, cannabis users were - in contrast to healthy controls - not able to differentiate between the conditions feedback of reward and control. In addition, cannabis users showed stronger activations in the left caudate and the bilateral inferior frontal gyrus following feedback of no punishment as compared to healthy controls. We interpreted these deficits in dorsal striatal functioning as altered stimulus-reward or action-contingent learning in cannabis users. In addition, the enhanced lateral prefrontal activation in cannabis users that is related to non-punishing feedback may reflect a deficit in emotion regulation or cognitive reappraisal in these subjects.

  14. The effect of motivation on working memory: an fMRI and SEM study.

    Science.gov (United States)

    Szatkowska, Iwona; Bogorodzki, Piotr; Wolak, Tomasz; Marchewka, Artur; Szeszkowski, Wojciech

    2008-09-01

    This study investigated the effective connectivity between prefrontal regions of human brain supporting motivational influence on working memory. Functional magnetic resonance imaging (fMRI) and structural equation modeling (SEM) were used to examine the interaction between the lateral orbitofrontal (OFC), medial OFC, and dorsolateral prefrontal (DLPFC) regions in the left and right hemisphere during performance of the verbal 2-back working memory task under two reinforcement conditions. The "low-motivation" condition was not associated with monetary reinforcement, while the "high-motivation" condition involved the probability of winning a certain amount of money. In the "low-motivation" condition, the OFC regions in both hemispheres positively influenced the left DLPFC activity. In the "high-motivation" condition, the connectivity in the network including the right OFC regions and left DLPFC changed from positive to negative, whereas the positive connectivity in the network composed of the left OFC and left DLPFC became slightly enhanced compared with the "low-motivation" condition. However, only the connection between the right lateral OFC and left DLPFC showed a significant condition-dependent change in the strength of influence conveyed through the pathway. This change appears to be the functional correlate of motivational influence on verbal working memory.

  15. Attention and amygdala activity: an fMRI study with spider pictures in spider phobia.

    Science.gov (United States)

    Alpers, Georg W; Gerdes, Antje B M; Lagarie, Bernadette; Tabbert, Katharina; Vaitl, Dieter; Stark, Rudolf

    2009-06-01

    Facilitated detection of threatening visual cues is thought to be adaptive. In theory, detection of threat cues should activate the amygdala independently from allocation of attention. However, previous studies using emotional facial expressions as well as phobic cues yielded contradictory results. We used fMRI to examine whether the allocation of attention to components of superimposed spider and bird displays modulates amygdala activation. Nineteen spider-phobic women were instructed to identify either a moving or a stationary animal in briefly presented double-exposure displays. Amygdala activation followed a dose-response relationship: Compared to congruent neutral displays (two birds), amygdala activation was most pronounced in response to congruent phobic displays (two spiders) and less but still significant in response to mixed displays (spider and bird) when attention was focused on the phobic component. When attention was focused on the neutral component, mixed displays did not result in significant amygdala activation. This was confirmed in a significant parametric graduation of the amygdala activation in the order of congruent phobic displays, mixed displays with attention focus on the spider, mixed displays with focus on the bird and congruent neutral displays. These results challenge the notion that amygdala activation in response to briefly presented phobic cues is independent from attention.

  16. Brain entropy and human intelligence: A resting-state fMRI study.

    Science.gov (United States)

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  17. Brain entropy and human intelligence: A resting-state fMRI study

    Science.gov (United States)

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  18. The neural correlates of internal and external comparisons: an fMRI study.

    Science.gov (United States)

    Wen, Xue; Xiang, Yanhui; Cant, Jonathan S; Wang, Tingting; Cupchik, Gerald; Huang, Ruiwang; Mo, Lei

    2017-01-01

    Many previous studies have suggested that various comparisons rely on the same cognitive and neural mechanisms. However, little attention has been paid to exploring the commonalities and differences between the internal comparison based on concepts or rules and the external comparison based on perception. In the present experiment, moral beauty comparison and facial beauty comparison were selected as the representatives of internal comparison and external comparison, respectively. Functional magnetic resonance imaging (fMRI) was used to record brain activity while participants compared the level of moral beauty of two scene drawings containing moral acts or the level of facial beauty of two face photos. In addition, a physical size comparison task with the same stimuli as the beauty comparison was included. We observed that both the internal moral beauty comparison and external facial beauty comparison obeyed a typical distance effect and this behavioral effect recruited a common frontoparietal network involved in comparisons of simple physical magnitudes such as size. In addition, compared to external facial beauty comparison, internal moral beauty comparison induced greater activity in more advanced and complex cortical regions, such as the bilateral middle temporal gyrus and middle occipital gyrus, but weaker activity in the putamen, a subcortical region. Our results provide novel neural evidence for the comparative process and suggest that different comparisons may rely on both common cognitive processes as well as distinct and specific cognitive components.

  19. Involvement of emotion in olfactory responses. A fMRI study

    International Nuclear Information System (INIS)

    Uno, Tominori; Wang, L.; Miwakeichi, Fumikazu; Tonoike, Mitsuo; Kaneda, Teruo

    2010-01-01

    We investigated the olfactory 'Kansei' information processing for two kinds of smells by measuring the brain activities associated with olfactory responses in humans. In this study, the brain activities related to discrimination and recognition of odors were examined using functional magnetic resonance imaging (fMRI). In experiment 1, odor stimuli (lemon-like and banana-like) were presented using a block design in a blinded manner, and the kind of fruits was identified by its odor. The frontal and temporal lobe, inferior parietal lobule, cingulate gyrus, amygdaloid body and parahippocampal gyrus were primarily activated by each odor based on conjunction analysis. In experiment 2, as a result of performing an oddball experiment using the odors of experiment 1, the active areas were mainly found in the temporal lobe, superior and inferior parietal lobule, insula, thalamus, supramarginal gyrus, uncus and parahippocampal gyrus. Moreover, these regions overlapped with the emotional circuit. These experimental results suggest that common brain activities accompany the discrimination and cognition associated with odor stimuli, which may underlie the olfactory responses relevant to the higher brain function and emotions associated with olfactory function. (author)

  20. Processing of vocalizations in humans and monkeys: A comparative fMRI study

    International Nuclear Information System (INIS)

    Joly, Olivier; Orban, Guy A.; Pallier, Christophe; Ramus, Franck; Pressnitzer, Daniel; Vanduffel, Wim

    2012-01-01

    Humans and many other animals use acoustical signals to mediate social interactions with con-specifics. The evolution of sound-based communication is still poorly understood and its neural correlates have only recently begun to be investigated. In the present study, we applied functional MRI to humans and macaque monkeys listening to identical stimuli in order to compare the cortical networks involved in the processing of vocalizations. At the first stages of auditory processing, both species showed similar fMRI activity maps within and around the lateral sulcus (the Sylvian fissure in humans). Monkeys showed remarkably similar responses to monkey calls and to human vocal sounds (speech or otherwise), mainly in the lateral sulcus and the adjacent superior temporal gyrus (STG). In contrast, a preference for human vocalizations and especially for speech was observed in the human STG and superior temporal sulcus (STS). The STS and Broca's region were especially responsive to intelligible utterances. The evolution of the language faculty in humans appears to have recruited most of the STS. It may be that in monkeys, a much simpler repertoire of vocalizations requires less involvement of this temporal territory. (authors)

  1. Bilateral frontal activation associated with cutaneous stimulation of elixir field: an FMRI study.

    Science.gov (United States)

    Chan, Agnes S; Cheung, Mei-Chun; Chan, Yu Leung; Yeung, David K W; Lam, Wan

    2006-01-01

    Elixir Field, or Dan Tian, is the area where energy is stored and nourished in the body according to traditional Chinese medicine (TCM). Although Dan Tian stimulation is a major concept in Qigong healing and has been practiced for thousands of years, and while there are some recent empirical evidence of its effect, its neurophysiological basis remains unknown. We used functional magnetic resonance imaging (fMRI) to study brain activations associated with external stimulation of the lower Elixir Field in ten normal subjects, and compared the results with the stimulation of their right hands. While right-hand stimulation resulted in left postcentral gyrus activation, stimulation of the lower Elixir Field resulted in bilateral activations including the medial and superior frontal gyrus, middle and superior temporal gyrus, thalamus, insula, and cingulate gyrus. These findings suggest that stimulation of the Elixir Field is not only associated with activation of the sensory motor cortex but also with cortical regions that mediate planning, attention, and memory.

  2. Brain activation profiles during kinesthetic and visual imagery: An fMRI study.

    Science.gov (United States)

    Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C

    2016-09-01

    The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study.

    Science.gov (United States)

    Smith, Andra M; Mioduszewski, Ola; Hatchard, Taylor; Byron-Alhassan, Aziza; Fall, Carley; Fried, Peter A

    Understanding the potentially harmful long term consequences of prenatal marijuana exposure is important given the increase in number of pregnant women smoking marijuana to relieve morning sickness. Altered executive functioning is one area of research that has suggested negative consequences of prenatal marijuana exposure into adolescence. Investigating if these findings continue into young adulthood and exploring the neural basis of these effects was the purpose of this research. Thirty one young adults (ages 18-22years) from the longitudinal Ottawa Prenatal Prospective Study (OPPS) underwent functional magnetic resonance imaging (fMRI) during four tasks; 1) Visuospatial 2-Back, 2) Go/NoGo, 3) Letter 2-Back and 4) Counting Stroop task. Sixteen participants were prenatally exposed to marijuana while 15 had no prenatal marijuana exposure. Task performance was similar for both groups but blood flow was significantly different between the groups. This paper presents the results for all 4 tasks, highlighting the consistently increased left posterior brain activity in the prenatally exposed group compared with the control group. These alterations in neurophysiological functioning of young adults prenatally exposed to marijuana emphasizes the importance of education for women in child bearing years, as well as for policy makers and physicians interested in the welfare of both the pregnant women and their offspring's future success. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Alterations of monetary reward and punishment processing in chronic cannabis users: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Björn Enzi

    Full Text Available Alterations in reward and punishment processing have been reported in adults suffering from long-term cannabis use. However, previous findings regarding the chronic effects of cannabis on reward and punishment processing have been inconsistent. In the present study, we used functional magnetic resonance imaging (fMRI to reveal the neural correlates of reward and punishment processing in long-term cannabis users (n = 15 and in healthy control subjects (n = 15 with no history of drug abuse. For this purpose, we used the well-established Monetary Incentive Delay (MID task, a reliable experimental paradigm that allows the differentiation between anticipatory and consummatory aspects of reward and punishment processing. Regarding the gain anticipation period, no significant group differences were observed. In the left caudate and the left inferior frontal gyrus, cannabis users were - in contrast to healthy controls - not able to differentiate between the conditions feedback of reward and control. In addition, cannabis users showed stronger activations in the left caudate and the bilateral inferior frontal gyrus following feedback of no punishment as compared to healthy controls. We interpreted these deficits in dorsal striatal functioning as altered stimulus-reward or action-contingent learning in cannabis users. In addition, the enhanced lateral prefrontal activation in cannabis users that is related to non-punishing feedback may reflect a deficit in emotion regulation or cognitive reappraisal in these subjects.

  5. Visual and auditory stimuli associated with swallowing. An fMRI study

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Watanabe, Yutaka; Tonogi, Morio; Yamane, Gen-yuki; Abe, Shinichi; Yamada, Yoshiaki; Callan, Akiko

    2009-01-01

    We focused on brain areas activated by audiovisual stimuli related to swallowing motions. In this study, three kinds of stimuli related to human swallowing movement (auditory stimuli alone, visual stimuli alone, or audiovisual stimuli) were presented to the subjects, and activated brain areas were measured using functional MRI (fMRI) and analyzed. When auditory stimuli alone were presented, the supplementary motor area was activated. When visual stimuli alone were presented, the premotor and primary motor areas of the left and right hemispheres and prefrontal area of the left hemisphere were activated. When audiovisual stimuli were presented, the prefrontal and premotor areas of the left and right hemispheres were activated. Activation of Broca's area, which would have been characteristic of mirror neuron system activation on presentation of motion images, was not observed; however, activation of brain areas related to swallowing motion programming and performance was verified for auditory, visual and audiovisual stimuli related to swallowing motion. These results suggest that audiovisual stimuli related to swallowing motion could be applied to the treatment of patients with dysphagia. (author)

  6. Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study.

    Science.gov (United States)

    Zhang, Wei; He, Xianyou; Lai, Siyan; Wan, Juan; Lai, Shuxian; Zhao, Xueru; Li, Darong

    2017-08-02

    What are the neural mechanisms underlying beauty based on objective parameters and beauty based on subjective social construction? This study scanned participants with fMRI while they performed aesthetic judgments on concrete pictographs and abstract oracle bone scripts. Behavioral results showed both pictographs and oracle bone scripts were judged to be more beautiful when they referred to beautiful objects and positive social meanings, respectively. Imaging results revealed regions associated with perceptual, cognitive, emotional and reward processing were commonly activated both in beautiful judgments of pictographs and oracle bone scripts. Moreover, stronger activations of orbitofrontal cortex (OFC) and motor-related areas were found in beautiful judgments of pictographs, whereas beautiful judgments of oracle bone scripts were associated with putamen activity, implying stronger aesthetic experience and embodied approaching for beauty were elicited by the pictographs. In contrast, only visual processing areas were activated in the judgments of ugly pictographs and negative oracle bone scripts. Results provide evidence that the sense of beauty is triggered by two processes: one based on the objective parameters of stimuli (embodied natural beauty) and the other based on the subjective social construction (social endowed beauty).

  7. Effects of overnight fasting on working memory-related brain network: an fMRI study.

    Science.gov (United States)

    Chechko, Natalia; Vocke, Sebastian; Habel, Ute; Toygar, Timur; Kuckartz, Lisa; Berthold-Losleben, Mark; Laoutidis, Zacharias G; Orfanos, Stelios; Wassenberg, Annette; Karges, Wölfram; Schneider, Frank; Kohn, Nils

    2015-03-01

    Glucose metabolism serves as the central source of energy for the human brain. Little is known about the effects of blood glucose level (BGL) on higher-order cognitive functions within a physiological range (e.g., after overnight fasting). In this randomized, placebo-controlled, double blind study, we assessed the impact of overnight fasting (14 h) on brain activation during a working memory task. We sought to mimic BGLs that occur naturally in healthy humans after overnight fasting. After standardized periods of food restriction, 40 (20 male) healthy participants were randomly assigned to receive either glucagon to balance the BGL or placebo (NaCl). A parametric fMRI paradigm, including 2-back and 0-back tasks, was used. Subclinically low BGL following overnight fasting was found to be linked to reduced involvement of the bilateral dorsal midline thalamus and the bilateral basal ganglia, suggesting high sensitivity of those regions to minimal changes in BGLs. Our results indicate that overnight fasting leads to physiologically low levels of glucose, impacting brain activation during working memory tasks even when there are no differences in cognitive performance. © 2014 Wiley Periodicals, Inc.

  8. Does caffeine modulate verbal working memory processes? An fMRI study.

    Science.gov (United States)

    Koppelstaetter, F; Poeppel, T D; Siedentopf, C M; Ischebeck, A; Verius, M; Haala, I; Mottaghy, F M; Rhomberg, P; Golaszewski, S; Gotwald, T; Lorenz, I H; Kolbitsch, C; Felber, S; Krause, B J

    2008-01-01

    To assess the effect of caffeine on the functional MRI signal during a 2-back verbal working memory task, we examined blood oxygenation level-dependent regional brain activity in 15 healthy right-handed males. The subjects, all moderate caffeine consumers, underwent two scanning sessions on a 1.5-T MR-Scanner separated by a 24- to 48-h interval. Each participant received either placebo or 100 mg caffeine 20 min prior to the performance of the working memory task in blinded crossover fashion. The study was implemented as a blocked-design. Analysis was performed using SPM2. In both conditions, the characteristic working memory network of frontoparietal cortical activation including the precuneus and the anterior cingulate could be shown. In comparison to placebo, caffeine caused an increased response in the bilateral medial frontopolar cortex (BA 10), extending to the right anterior cingulate cortex (BA 32). These results suggest that caffeine modulates neuronal activity as evidenced by fMRI signal changes in a network of brain areas associated with executive and attentional functions during working memory processes.

  9. The distributed neural system for top-down letter processing: an fMRI study

    Science.gov (United States)

    Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie

    2011-03-01

    This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.

  10. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  11. Resting-state fMRI study of acute migraine treatment with kinetic oscillation stimulation in nasal cavity

    Directory of Open Access Journals (Sweden)

    Tie-Qiang Li

    2016-01-01

    The result of this study confirms the efficacy of KOS treatment for relieving acute migraine symptoms and reducing attack frequency. Resting-state fMRI measurements demonstrate that migraine is associated with aberrant intrinsic functional activity in the limbic and primary sensory systems. KOS in the nasal cavity gives rise to the adjustment of the intrinsic functional activity in the limbic and primary sensory networks and restores the physiological homeostasis in the autonomic nervous system.

  12. The neural correlates of perceptual load induced attentional selection: an fMRI study.

    Science.gov (United States)

    Wei, P; Szameitat, A J; Müller, H J; Schubert, T; Zhou, X

    2013-10-10

    The neural correlates of perceptual load induced attentional selection were investigated in an functional magnetic resonance imaging (fMRI) experiment in which attentional selection was manipulated through the variation of perceptual load in target search. Participants searched for a vertically or horizontally oriented bar among heterogeneously (the high load condition) or homogeneously (the low load condition) oriented distractor bars in the central display, which was flanked by a vertical or horizontal bar presented at the left or the right periphery. The search reaction times were longer when the central display was of high load than of low load, and were longer when the flanker was incongruent than congruent with the target. Importantly, the flanker congruency effect was manifested only in the low load condition, not in the high load condition, indicating that the perceptual load in target search determined whether the task-irrelevant flanker was processed. Imaging analyses revealed a set of fronto-parietal regions having higher activations in the high than in the low load condition. Anterior cingulate cortex (ACC) was more activated for the incongruent than for the congruent trials. Moreover, ACC and bilateral anterior insula were sensitive to the interaction between perceptual load and flanker congruency such that the activation differences between the incongruent and congruent conditions were significant in the low, but not in the high load condition. These results are consistent with the claim that ACC and bilateral anterior insula may exert executive control by selectively biasing processing in favor of task-relevant information and this biasing depends on the resources currently available to the control system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success.

    Science.gov (United States)

    Buckner, R L; Koutstaal, W; Schacter, D L; Wagner, A D; Rosen, B R

    1998-04-01

    A number of recent functional imaging studies have identified brain areas activated during tasks involving episodic memory retrieval. The identification of such areas provides a foundation for targeted hypotheses regarding the more specific contributions that these areas make to episodic retrieval. As a beginning effort toward such an endeavor, whole-brain functional magnetic resonance imaging (fMRI) was used to examine 14 subjects during episodic word recognition in a block-designed fMRI experiment. Study conditions were manipulated by presenting either shallow or deep encoding tasks. This manipulation yielded two recognition conditions that differed with regard to retrieval effort and retrieval success: shallow encoding yielded low levels of recognition success with high levels of retrieval effort, and deep encoding yielded high levels of recognition success with low levels of effort. Many brain areas were activated in common by these two recognition conditions compared to a low-level fixation condition, including left and right prefrontal regions often detected during PET episodic retrieval paradigms (e.g., R. L. Buckner et al., 1996, J. Neurosci. 16, 6219-6235) thereby generalizing these findings to fMRI. Characterization of the activated regions in relation to the separate recognition conditions showed (1) bilateral anterior insular regions and a left dorsal prefrontal region were more active after shallow encoding, when retrieval demanded greatest effort, and (2) right anterior prefrontal cortex, which has been implicated in episodic retrieval, was most active during successful retrieval after deep encoding. We discuss these findings in relation to component processes involved in episodic retrieval and in the context of a companion study using event-related fMRI.

  14. Virtual visual reminiscing pain stimulation of allodynia patients activates cortical representation of pain and emotions. fMRI study

    International Nuclear Information System (INIS)

    Ikemoto, Tatsunori; Ushida, Takahiro; Taniguchi, Shinichirou; Tania, Toshikazu; Zinchuk, V.; Morio, Kazuo; Sasaki, Toshikazu

    2004-01-01

    It is widely known that sensation of the pain is derived from sensory-discriminative factor and emotional factor. Especially in chronic pain, emotional factors and psychosocial backgrounds are more likely to contribute for the patients' discomfort. The aim of this study is to investigate how emotional factor of pain participates in intractable pain. We employed functional MRI (fMRI) to compare the brain activations occurring in the orthopaedic neuropathic pain patients with allodynia and normal individuals in response to the visual virtual painful experience. During fMRI scanning, a video demonstrating an actual tactile stimulation of the palm and its imitation were shown to participants. In contrast to normal individuals, allodynia patients also displayed activation of the areas reflecting emotions: frontal lobe and anterior cingulate. These findings suggest that brain have important role in the development and maintaining of peripheral originated chronic painful condition. (author)

  15. The resting state fMRI study of patients with Parkinson's disease associated with cognitive dysfunction

    International Nuclear Information System (INIS)

    Feng Jieying; Huang Biao

    2013-01-01

    Parkinson's disease (PD) is the most common neurodegenerative cause of Parkinsonism, but the high morbidity of PD accompanied cognitive dysfunction hasn't drawn enough attention by the clinicians. With the rapid development of the resting state functional MRI (fMRI) technique, the cause of PD patients with cognitive dysfunction may be associated with the damage of functional connectivity of the motor networks and the cognitive networks. The relationship between neuropathologic mechanism of PD patients with cognitive dysfunction and impaired cognitive circuits will be disclosed by building the changes of brain topological structure in patients. The resting state fMRI study can provide the rationale for prevention, diagnosis and treatment of PD. (authors)

  16. Hamstring Muscle Use in Females During Hip-Extension and the Nordic Hamstring Exercise: An fMRI Study.

    Science.gov (United States)

    Messer, Daniel J; Bourne, Matthew N; Williams, Morgan D; Al Najjar, Aiman; Shield, Anthony J

    2018-04-23

    Study Design Cross-sectional study. Background Understanding hamstring muscle activation patterns in resistance training exercises may have implications for the design of strength training and injury prevention programs. Unfortunately, surface electromyography studies have reported conflicting results with regard to hamstring muscle activation patterns in women. Objectives To determine the spatial patterns of hamstring muscle activity during the 45º hip-extension and Nordic hamstring exercises, in females using functional magnetic resonance imaging. Methods Six recreationally active females with no history of lower limb injury underwent functional magnetic resonance imaging (fMRI) on both thighs before and immediately after 5 sets of 6 bilateral eccentric contractions of the 45º hip-extension or Nordic exercises. Using fMRI, the transverse (T2) relaxation times were measured from pre- and post- exercise scans and the percentage increase in T2 was used as an index of muscle activation. Results fMRI revealed a significantly higher biceps femoris long head (BF LongHead ) to semitendinosus ratio during the 45° hip-extension than the Nordic exercise (P = .028). The T2 increase after 45° hip-extension was greater for BF LongHead (P Nordic exercise, the T2 increase for semitendinosus was greater than that of BF ShortHead (P Nordic exercise preferentially recruits that muscle while the hip extension more evenly activates all of the biarticular hamstrings. J Orthop Sports Phys Ther, Epub 23 Apr 2018. doi:10.2519/jospt.2018.7748.

  17. Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data.

    Science.gov (United States)

    Song, Sutao; Zhan, Zhichao; Long, Zhiying; Zhang, Jiacai; Yao, Li

    2011-02-16

    Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice.

  18. Different brain activation under left and right ventricular stimulation: an fMRI study in anesthetized rats.

    Science.gov (United States)

    Suzuki, Hideaki; Sumiyoshi, Akira; Kawashima, Ryuta; Shimokawa, Hiroaki

    2013-01-01

    Myocardial ischemia in the anterior wall of the left ventricule (LV) and in the inferior wall and/or right ventricle (RV) shows different manifestations that can be explained by the different innervations of cardiac afferent nerves. However, it remains unclear whether information from different areas of the heart, such as the LV and RV, are differently processed in the brain. In this study, we investigated the brain regions that process information from the LV or RV using cardiac electrical stimulation and functional magnetic resonance imaging (fMRI) in anesthetized rats because the combination of these two approaches cannot be used in humans. An electrical stimulation catheter was inserted into the LV or RV (n = 12 each). Brain fMRI scans were recorded during LV or RV stimulation (9 Hz and 0.3 ms width) over 10 blocks consisting of alternating periods of 2 mA for 30 sec followed by 0.2 mA for 60 sec. The validity of fMRI signals was confirmed by first and second-level analyses and temporal profiles. Increases in fMRI signals were observed in the anterior cingulate cortex and the right somatosensory cortex under LV stimulation. In contrast, RV stimulation activated the right somatosensory cortex, which was identified more anteriorly compared with LV stimulation but did not activate the anterior cingulate cortex. This study provides the first evidence for differences in brain activation under LV and RV stimulation. These different brain processes may be associated with different clinical manifestations between anterior wall and inferoposterior wall and/or RV myocardial ischemia.

  19. Functional and structural abnormalities associated with empathy in patients with schizophrenia: An fMRI and VBM study.

    Science.gov (United States)

    Singh, Sadhana; Modi, Shilpi; Goyal, Satnam; Kaur, Prabhjot; Singh, Namita; Bhatia, Triptish; Deshpande, Smita N; Khushu, Subash

    2015-06-01

    Empathy deficit is a core feature of schizophrenia which may lead to social dysfunction. The present study was carried out to investigate functional and structural abnormalities associated with empathy in patients with schizophrenia using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 schizophrenia patients and 14 healthy control subjects matched for age, sex and education were examined with structural highresolution T1-weighted MRI; fMRI images were obtained during empathy task in the same session. The analysis was carried out using SPM8 software. On behavioural assessment, schizophrenic patients (83.00+-29.04) showed less scores for sadness compared to healthy controls (128.70+-22.26) (p less than 0.001). fMRI results also showed reduced clusters of activation in the bilateral fusiform gyrus, left lingual gyrus, left middle and inferior occipital gyrus in schizophrenic subjects as compared to controls during empathy task. In the same brain areas, VBM results also showed reduced grey and white matter volumes. The present study provides an evidence for an association between structural alterations and disturbed functional brain activation during empathy task in persons affected with schizophrenia. These findings suggest a biological basis for social cognition deficits in schizophrenics.

  20. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    International Nuclear Information System (INIS)

    Tessa, Carlo; Vignali, Claudio; Lucetti, Claudio; Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario; Cecchi, Paolo; Baldacci, Filippo; Giannelli, Marco; Bonuccelli, Ubaldo

    2012-01-01

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  1. Altered regional homogeneity in pediatric bipolar disorder during manic state: a resting-state fMRI study.

    Directory of Open Access Journals (Sweden)

    Qian Xiao

    Full Text Available UNLABELLED: Pediatric bipolar disorder (PBD is a severely debilitating illness, which is characterized by episodes of mania and depression separated by periods of remission. Previous fMRI studies investigating PBD were mainly task-related. However, little is known about the abnormalities in PBD, especially during resting state. Resting state brain activity measured by fMRI might help to explore neurobiological biomarkers of the disorder. METHODS: Regional homogeneity (ReHo was examined with resting-state fMRI (RS-fMRI on 15 patients with PBD in manic state, with 15 age-and sex-matched healthy youth subjects as controls. RESULTS: Compared with the healthy controls, the patients with PBD showed altered ReHo in the cortical and subcortical structures. The ReHo measurement of the PBD group was negatively correlated with the score of Young Mania Rating Scale (YMRS in the superior frontal gyrus. Positive correlations between the ReHo measurement and the score of YMRS were found in the hippocampus and the anterior cingulate cortex in the PBD group. CONCLUSIONS: Altered regional brain activity is present in patients with PBD during manic state. This study presents new evidence for abnormal ventral-affective and dorsal-cognitive circuits in PBD during resting state and may add fresh insights into the pathophysiological mechanisms underlying PBD.

  2. Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Directory of Open Access Journals (Sweden)

    Li-Jun eYin

    2015-03-01

    Full Text Available Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009. Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10, left superior parietal lobule (SPL, left premotor cortex (PMC, and left dorsolateral prefrontal cortex (DLPFC, were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG and intraparietal sulci (IPS were less engaged in the study phase of 2-digit condition for C.L. (vs. controls. These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.

  3. Retrieval orientation and the control of recollection: an fMRI study

    Science.gov (United States)

    Morcom, Alexa M.; Rugg, Michael D.

    2012-01-01

    The present study used event-related fMRI to examine the impact of the adoption of different retrieval orientations on the neural correlates of recollection. In each of two study-test blocks, subjects encoded a mixed list of words and pictures, and then performed a recognition memory task with words as the test items. In one block, the requirement was to respond positively to test items corresponding to studied words, and to reject both new items and items corresponding to the studied pictures. In the other block, positive responses were made to test items corresponding to pictures, and items corresponding to words were classified along with the new items. Based on previous event-related potential (ERP) findings, we predicted that in the word task, recollection-related effects would be found for target information only. This prediction was fulfilled. In both tasks, targets elicited the characteristic pattern of recollection-related activity. By contrast, non-targets elicited this pattern in the picture task, but not in the word task. Importantly, the left angular gyrus was among the regions demonstrating this dissociation of non-target recollection effects according to retrieval orientation. The findings for the angular gyrus parallel prior findings for the `left-parietal' ERP old/new effect, and add to the evidence that the effect reflects recollection-related neural activity originating in left ventral parietal cortex. Thus, the results converge with the previous ERP findings to suggest that the processing of retrieval cues can be constrained to prevent the retrieval of goal-irrelevant information. PMID:23110678

  4. Measuring the representational space of music with fMRI: a case study with Sting.

    Science.gov (United States)

    Levitin, Daniel J; Grafton, Scott T

    2016-12-01

    Functional brain imaging has revealed much about the neuroanatomical substrates of higher cognition, including music, language, learning, and memory. The technique lends itself to studying of groups of individuals. In contrast, the nature of expert performance is typically studied through the examination of exceptional individuals using behavioral case studies and retrospective biography. Here, we combined fMRI and the study of an individual who is a world-class expert musician and composer in order to better understand the neural underpinnings of his music perception and cognition, in particular, his mental representations for music. We used state of the art multivoxel pattern analysis (MVPA) and representational dissimilarity analysis (RDA) in a fixed set of brain regions to test three exploratory hypotheses with the musician Sting: (1) Composing would recruit neutral structures that are both unique and distinguishable from other creative acts, such as composing prose or visual art; (2) listening and imagining music would recruit similar neural regions, indicating that musical memory shares anatomical substrates with music listening; (3) the MVPA and RDA results would help us to map the representational space for music, revealing which musical pieces and genres are perceived to be similar in the musician's mental models for music. Our hypotheses were confirmed. The act of composing, and even of imagining elements of the composed piece separately, such as melody and rhythm, activated a similar cluster of brain regions, and were distinct from prose and visual art. Listened and imagined music showed high similarity, and in addition, notable similarity/dissimilarity patterns emerged among the various pieces used as stimuli: Muzak and Top 100/Pop songs were far from all other musical styles in Mahalanobis distance (Euclidean representational space), whereas jazz, R&B, tango and rock were comparatively close. Closer inspection revealed principaled explanations for the

  5. Music-Evoked Emotions—Current Studies

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563

  6. Autobiographical Memory in Semantic Dementia: A Longitudinal fMRI Study

    Science.gov (United States)

    Maguire, Eleanor A.; Kumaran, Dharshan; Hassabis, Demis; Kopelman, Michael D.

    2010-01-01

    Whilst patients with semantic dementia (SD) are known to suffer from semantic memory and language impairments, there is less agreement about whether memory for personal everyday experiences, autobiographical memory, is compromised. In healthy individuals, functional MRI (fMRI) has helped to delineate a consistent and distributed brain network…

  7. Encoding and retrieval of landmark-related spatial cues during navigation: An fMRI study

    NARCIS (Netherlands)

    Wegman, J.B.T.; Tyborowska, A.B.; Janzen, G.

    2014-01-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants

  8. Effect of Unpleasant Loud Noise on Hippocampal Activities during Picture Encoding: An fMRI Study

    Science.gov (United States)

    Hirano, Yoshiyuki; Fujita, Masafumi; Watanabe, Kazuko; Niwa, Masami; Takahashi, Toru; Kanematsu, Masayuki; Ido, Yasushi; Tomida, Mihoko; Onozuka, Minoru

    2006-01-01

    The functional link between the amygdala and hippocampus in humans has not been well documented. We examined the effect of unpleasant loud noise on hippocampal and amygdaloid activities during picture encoding by means of fMRI, and on the correct response in humans. The noise reduced activity in the hippocampus during picture encoding, decreased…

  9. How Verbal and Spatial Manipulation Networks Contribute to Calculation: An fMRI Study

    Science.gov (United States)

    Zago, Laure; Petit, Laurent; Turbelin, Marie-Renee; Andersson, Frederic; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and…

  10. Dual-Tasking Alleviated Sleep Deprivation Disruption in Visuomotor Tracking: An fMRI Study

    Science.gov (United States)

    Gazes, Yunglin; Rakitin, Brian C.; Steffener, Jason; Habeck, Christian; Butterfield, Brady; Basner, Robert C.; Ghez, Claude; Stern, Yaakov

    2012-01-01

    Effects of dual-responding on tracking performance after 49-h of sleep deprivation (SD) were evaluated behaviorally and with functional magnetic resonance imaging (fMRI). Continuous visuomotor tracking was performed simultaneously with an intermittent color-matching visual detection task in which a pair of color-matched stimuli constituted a…

  11. The effectiveness of the computerized visual perceptual training program on individuals with Down syndrome: An fMRI study.

    Science.gov (United States)

    Wan, Yi-Ting; Chiang, Ching-Sui; Chen, Sharon Chia-Ju; Wuang, Yee-Pay

    2017-07-01

    This study investigated the effectiveness of the Computerized Visual Perception Training (CVPT) program on individuals with Down syndrome (DS, mean age=13.17±4.35years, age range: 6.54-20.75 years). All participants have mild intellectual disability classified by the standard IQ measures (mean=61.2, ranges from 55 to 68). Both the Test of Visual Perceptual Skill- Third Edition (TVPS-3) and functional magnetic resonance imaging (fMRI) were used to evaluate the training outcomes. Results of TVPS-3 and fMRI showed that DS group had visual perceptual deficits and abnormal neural networks related to visual organization. The results showed that DS intervention group had significant improvements on TVPS-3 after intervention. The fMRI results indicated more activation in superior and inferior parietal lobes (spatial manipulation), as well as precentral gyrus and dorsal premotor cortex (motor imagery) in DS intervention group. The CVPT program was effective in improving visual perceptual functions and enhancing associated cortical activations in DS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Impact of Short Social Training on Prosocial Behaviors: An fMRI Study.

    Science.gov (United States)

    Lukinova, Evgeniya; Myagkov, Mikhail

    2016-01-01

    Efficient brain-computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner's Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects.

  13. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    Science.gov (United States)

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Phase-synchronization-based parcellation of resting state fMRI signals reveals topographically organized clusters in early visual cortex

    NARCIS (Netherlands)

    Gravel, Nicolás G; Harvey, Ben M; Renken, Remco K; Dumoulin, Serge O; Cornelissen, Frans W

    2018-01-01

    Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting patterns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI

  15. The long-term effects of prenatal nicotine exposure on verbal working memory: an fMRI study of young adults.

    Science.gov (United States)

    A Longo, Carmelinda; A Fried, Peter; Cameron, Ian; M Smith, Andra

    2014-11-01

    Using functional magnetic resonance imaging (fMRI), the long-term effects of prenatal nicotine exposure on verbal working memory were investigated in young adults. Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood. This allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a 2-Back working memory task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants with more prenatal nicotine exposure demonstrated significantly greater activity in several regions of the brain that typically subserve verbal working memory including the middle frontal gyrus, precentral gyrus, the inferior parietal lobe and the cingulate gyrus. These results suggest that prenatal nicotine exposure contributes to altered neural functioning during verbal working memory that continues into adulthood. Working memory is critical for a wide range of cognitive skills such as language comprehension, learning and reasoning. Thus, these findings highlight the need for continued educational programs and public awareness campaigns to reduce tobacco use among pregnant women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Specificity of aesthetic experience for artworks: an fMRI study

    Directory of Open Access Journals (Sweden)

    Cinzia eDi Dio

    2011-11-01

    Full Text Available In a previous study aimed at investigating the neural correlates of aesthetic experience in the beholder we found that observation of canonical sculptures, relative to sculptures whose proportions had been modified, produced the activation of a specific brain network. This network included various cortical areas and, most interestingly, the right anterior insula. We interpreted this latter activation as the neural signature underpinning emotion-related responses during aesthetic experience. In the present fMRI study, we investigated whether aesthetic experience for Classical sculptures has a quality of its own, distinct from that underpinning observation of real human bodies. Sculpture images and pictures of young athletes, matched to sculptures for body postures and proportions, were used as stimuli. Participants were students naïve to art criticism. Results showed a similar activation pattern for the two stimulus-categories. Direct comparisons between stimulus-categories highlighted, however, some relevant differences. Observation of sculptures, relative to real human body images, determined a greater activation of some visual areas, including fusiform gyrus, plus the right anterior insula. The opposite contrast showed a stronger activation of the superior temporal sulcus. Moreover, canonical proportion in sculpture, but not in human body images, produced a stronger activation of the right anterior insula with respect to proportion-modified images. These data show that, during observation of sculpture images, attention is more attracted by specific visual aspects of the stimulus, whereas observation of real human body images activates areas encoding biological movement. Most interestingly, sculptures elicited activations in right anterior insula, which we suggested to be crucial in hallmarking emotional responses during aesthetic experience. This pattern was poorly expressed during observation of human bodies, suggesting poverty of true

  17. An fMRI study of finger tapping in children and adults.

    Science.gov (United States)

    Turesky, Ted K; Olulade, Olumide A; Luetje, Megan M; Eden, Guinevere F

    2018-04-02

    Functional brain imaging studies have characterized the neural bases of voluntary movement for finger tapping in adults, but equivalent information for children is lacking. When contrasted to adults, one would expect children to have relatively greater activation, reflecting compensation for an underdeveloped motor system combined with less experience in the execution of voluntary movement. To test this hypothesis, we acquired functional magnetic resonance imaging (fMRI) data on 17 healthy right-handed children (7.48 ± 0.66 years) and 15 adults (24.9 ± 2.9 years) while they performed an irregularly paced finger-tapping task in response to a visual cue (left- and right-hand examined separately). Whole-brain within-group analyses revealed that finger tapping in either age group and for either hand activated contralateral SM1, SMA, ipsilateral anterior cerebellum, and occipital cortices. We used an ANOVA factorial design to test for main effects of Age Group (children vs adults), Hand (left vs. right), and their interactions. For main effects of Age Group, children showed relatively greater activity in left SM1 (extending into bilateral SMA), and, surprisingly, adults exhibited relatively greater activity in right pre-SMA/SMA (extending into left pre-SMA/SMA), right lateral globus pallidus, left putamen, and right anterior cerebellum. The interaction of Age Group × Hand revealed that while both groups activated right SM1 during left finger tapping and exhibited signal decreases (i.e., below fixation baseline) during right finger tapping, both these responses were attenuated in children relative to adults. These data provide an important foundation by which to study children with motor disorders. © 2018 Wiley Periodicals, Inc.

  18. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study

    Directory of Open Access Journals (Sweden)

    Przemysław Adamczyk

    2017-01-01

    Full Text Available Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH outpatients (n = 20, and sex, age and education level matched healthy controls (n = 20. The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral – complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41 in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9 in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24 in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9 and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24. Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension

  19. Brain deactivation in the outperformance in bimodal tasks: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chiang

    Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.

  20. Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.

    Science.gov (United States)

    Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B

    2012-01-01

    Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.

    Science.gov (United States)

    Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz

    2017-01-01

    Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing

  2. Nocebo-induced modulation of cerebral itch processing - An fMRI study.

    Science.gov (United States)

    van de Sand, Missanga F; Menz, Mareike M; Sprenger, Christian; Büchel, Christian

    2018-02-01

    It has been shown repeatedly that perceiving itch-related pictures or listening to a lecture on itch can enhance itch sensation and scratching behaviour (Niemeier and Gieler, 2000; Holle et al., 2012; Lloyd et al., 2013), indicating that itch is strongly influenced by expectations. Using fMRI, we investigated the neural correlates of the itch-related nocebo effect in healthy male and female human subjects. Itch sensation on the left forearm was induced by cutaneous histamine application and thermally modulated, with cooling leading to higher itch. Nocebo-induced aggravation of histaminergic itch was achieved by ostensibly treating volunteers with "transcutaneous electrical nerve stimulation (TENS)" about which subjects were instructed that it would increase itch. During a conditioning phase subjects indeed experienced stronger itch due to slightly altered cooling and histamine concentrations, but attributed it to the alleged "TENS stimulation". Importantly, in the subsequent test phase where no "TENS" or electrical stimulation was applied, volunteers significantly reported stronger itch during the nocebo as compared to the control condition. Comparing BOLD responses during nocebo in contrast to control, we observed increased activity in contralateral (right) rolandic operculum. Opercular involvement was repeatedly reported in studies related to the expectation of stimulus intensification and might thus represent an early area integrating expectation information with somatosensory information. Finally, functional coupling between the insula and the periaqueductal gray (PAG) was enhanced specifically in the nocebo condition. This cortex-PAG interaction indicates that context-dependent top-down modulation during itch might represent a shared mechanism with other modalities such as pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Episodic Future Thinking in Semantic Dementia: A Cognitive and fMRI Study

    Science.gov (United States)

    Viard, Armelle; Piolino, Pascale; Belliard, Serge; de La Sayette, Vincent; Desgranges, Béatrice; Eustache, Francis

    2014-01-01

    Semantic dementia (SD) is characterized by gradual loss of semantic memory. While episodic autobiographical memory seems relatively preserved, behavioral studies suggest that episodic future thinking is impaired. We used fMRI to measure brain activity in four SD patients (JPL, EP, LL, EG) while they envisioned future events and remembered personal past events. Twelve healthy elders served as controls. Episodic quality, emotion, mental imagery and level of consciousness (via remember/know judgements) were checked at debriefing. We analyzed the future compared to the past for each patient. All patients presented lateral temporal atrophy, but varied in terms of frontal and anterior hippocampal atrophy. Patient JPL presented atrophy in bilateral superior medial frontal gyri and left anterior hippocampus and was unable to engage in episodic future thinking, despite hyperactivations in frontal and occipital regions. Patient EP presented no atrophy in the anterior hippocampus, but atrophy in bilateral superior medial frontal gyrus and had difficulties to engage in episodic future thinking. Patient LL presented atrophy in left anterior hippocampus, but hyperactivated its right counterpart for future compared to past thinking, permitting her to project efficiently in the future in an episodic way. Patient EG presented no atrophy in the superior medial frontal gyri or anterior hippocampi and was able to engage in episodic future thinking. Altogether, patients' future projections differed depending on the severity and localization of their atrophy. The functional integrity of bilateral superior medial frontal gyri and anterior hippocampus appear crucial for episodic future thinking: atrophy of both structures strongly impairs future projection, while integrity of these structures or hyperactivation of residual tissue normalizes episodic future projection. PMID:25333997

  4. Episodic future thinking in semantic dementia: a cognitive and FMRI study.

    Directory of Open Access Journals (Sweden)

    Armelle Viard

    Full Text Available Semantic dementia (SD is characterized by gradual loss of semantic memory. While episodic autobiographical memory seems relatively preserved, behavioral studies suggest that episodic future thinking is impaired. We used fMRI to measure brain activity in four SD patients (JPL, EP, LL, EG while they envisioned future events and remembered personal past events. Twelve healthy elders served as controls. Episodic quality, emotion, mental imagery and level of consciousness (via remember/know judgements were checked at debriefing. We analyzed the future compared to the past for each patient. All patients presented lateral temporal atrophy, but varied in terms of frontal and anterior hippocampal atrophy. Patient JPL presented atrophy in bilateral superior medial frontal gyri and left anterior hippocampus and was unable to engage in episodic future thinking, despite hyperactivations in frontal and occipital regions. Patient EP presented no atrophy in the anterior hippocampus, but atrophy in bilateral superior medial frontal gyrus and had difficulties to engage in episodic future thinking. Patient LL presented atrophy in left anterior hippocampus, but hyperactivated its right counterpart for future compared to past thinking, permitting her to project efficiently in the future in an episodic way. Patient EG presented no atrophy in the superior medial frontal gyri or anterior hippocampi and was able to engage in episodic future thinking. Altogether, patients' future projections differed depending on the severity and localization of their atrophy. The functional integrity of bilateral superior medial frontal gyri and anterior hippocampus appear crucial for episodic future thinking: atrophy of both structures strongly impairs future projection, while integrity of these structures or hyperactivation of residual tissue normalizes episodic future projection.

  5. The influence of menstrual cycle and androstadienone on female stress reactions: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Ka Chun eChung

    2016-02-01

    Full Text Available Communicating threats and stress via biological signaling is common in animals. In humans, androstadienone (ANDR, a synthetic male steroid, is a socially relevant chemosignal exhibited to increase positive mood and cortisol levels specifically in (periovulatory females in positively arousing contexts. In a negative context, we expected that such effects of ANDR could amplify social evaluative threat depending on the stress sensitivity, which differs between menstrual cycle phases. Therefore, this fMRI study aimed to examine psychosocial stress reactions on behavioral, hormonal and neural levels in 31 naturally cycling females, between 15 early follicular (EF and 16 mid-luteal (ML females tested with ANDR and placebo treatment in a repeated-measures design.Regardless of odor stimulation, psychosocial stress (i.e. mental arithmetic task with social evaluative threat led to elevated negative mood and anxiety in all females. A negative association of social threat related amygdala activation and competence ratings appeared in ML-females, indicating enhanced threat processing by ANDR, particularly in ML-females who felt less competent early in the stress experience. Further, ML-females showed reduced performance and stronger stress-related hippocampus activation compared to EF-females under ANDR. Hippocampal activation in ML-females also correlated positively with post-stress subjective stress. Contrarily, such patterns were not observed in EF-females or under placebo in either group. Strikingly, unlike passive emotional processing, ANDR in a stressful context decreased cortisol concentration in all females. This points to a more complex interaction of ovarian/gonadal hormones in social threat processing and stress reactivity.Our findings suggest that ANDR enhanced initial evaluation of self-related social threat in ML-females. Female stress reactions are related to stress sensitivity through enhanced awareness and processing of social cues in a

  6. Romantic love: an fMRI study of a neural mechanism for mate choice.

    Science.gov (United States)

    Fisher, Helen; Aron, Arthur; Brown, Lucy L

    2005-12-05

    Scientists have described myriad traits in mammalian and avian species that evolved to attract mates. But the brain mechanisms by which conspecifics become attracted to these traits is largely unknown. Yet mammals and birds express mate preferences and make mate choices, and data suggest that this "attraction system" is associated with the dopaminergic reward system. It has been proposed that intense romantic love, a cross-cultural universal, is a developed form of this attraction system. To determine the neural mechanisms associated with romantic love we used functional magnetic resonance imaging (fMRI) and studied 17 people who were intensely "in love" (Aron et al. [2005] J Neurophysiol 94:327-337). Activation specific to the beloved occurred in the right ventral tegmental area and right caudate nucleus, dopamine-rich areas associated with mammalian reward and motivation. These and other results suggest that dopaminergic reward pathways contribute to the "general arousal" component of romantic love; romantic love is primarily a motivation system, rather than an emotion; this drive is distinct from the sex drive; romantic love changes across time; and romantic love shares biobehavioral similarities with mammalian attraction. We propose that this attraction mechanism evolved to enable individuals to focus their mating energy on specific others, thereby conserving energy and facilitating mate choice-a primary aspect of reproduction. Last, the corticostriate system, with its potential for combining diverse cortical information with reward signals, is an excellent anatomical substrate for the complex factors contributing to romantic love and mate choice. (c) 2005 Wiley-Liss, Inc.

  7. Processing of false belief passages during natural story comprehension: An fMRI study.

    Science.gov (United States)

    Kandylaki, Katerina D; Nagels, Arne; Tune, Sarah; Wiese, Richard; Bornkessel-Schlesewsky, Ina; Kircher, Tilo

    2015-11-01

    The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks. © 2015 Wiley Periodicals, Inc.

  8. Encoding and retrieval of landmark-related spatial cues during navigation: an fMRI study.

    Science.gov (United States)

    Wegman, Joost; Tyborowska, Anna; Janzen, Gabriele

    2014-07-01

    To successfully navigate, humans can use different cues from their surroundings. Learning locations in an environment can be supported by parallel subsystems in the hippocampus and the striatum. We used fMRI to look at differences in the use of object-related spatial cues while 47 participants actively navigated in an open-field virtual environment. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the removed target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. Participants were informed in blocks about which type of retrieval trial was most likely to occur, thereby modulating expectations of having to rely on a single landmark or on a configuration of landmarks. How the spatial learning systems in the hippocampus and caudate nucleus were involved in these landmark-based encoding and retrieval processes were investigated. Landmark configurations can create a geometry similar to boundaries in an environment. It was found that the hippocampus was involved in encoding when relying on configurations of landmarks, whereas the caudate nucleus was involved in encoding when relying on single landmarks. This might suggest that the observed hippocampal activation for configurations of objects is linked to a spatial representation observed with environmental boundaries. Retrieval based on configurations of landmarks activated regions associated with the spatial updation of object locations for reorientation. When only a single landmark was available during retrieval, regions associated with updating the location of oneself were activated. There was also evidence that good between-participant performance was predicted by right hippocampal activation. This study therefore sheds light on how the brain deals with changing demands on spatial processing related purely

  9. Attention Network Dysfunction in Bulimia Nervosa - An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Jochen Seitz

    Full Text Available Recent evidence has suggested an increased rate of comorbid ADHD and subclinical attentional impairments in bulimia nervosa (BN patients. However, little is known regarding the underlying neural mechanisms of attentional functions in BN.Twenty BN patients and twenty age- and weight-matched healthy controls (HC were investigated using a modified version of the Attention Network Task (ANT in an fMRI study. This design enabled an investigation of the neural mechanisms associated with the three attention networks involved in alerting, reorienting and executive attention.The BN patients showed hyperactivation in parieto-occipital regions and reduced deactivation of default-mode-network (DMN areas during alerting compared with HCs. Posterior cingulate activation during alerting correlated with the severity of eating-disorder symptoms within the patient group. Conversely, BN patients showed hypoactivation during reorienting and executive attention in anterior cingulate regions, the temporo-parietal junction (TPJ and parahippocampus compared with HCs, which was negatively associated with global ADHD symptoms and impulsivity, respectively.Our findings demonstrate altered brain mechanisms in BN associated with all three attentional networks. Failure to deactivate the DMN and increased parieto-occipital activation required for alerting might be associated with a constant preoccupation with food or body image-related thoughts. Hypoactivation of executive control networks and TPJ might increase the likelihood of inattentive and impulsive behaviors and poor emotion regulation. Thus, dysfunction in the attentional network in BN goes beyond an altered executive attentional domain and needs to be considered in the diagnosis and treatment of BN.

  10. Attention Network Dysfunction in Bulimia Nervosa - An fMRI Study

    Science.gov (United States)

    Dahmen, Brigitte; Schulte-Rüther, Martin; Legenbauer, Tanja; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2016-01-01

    Objective Recent evidence has suggested an increased rate of comorbid ADHD and subclinical attentional impairments in bulimia nervosa (BN) patients. However, little is known regarding the underlying neural mechanisms of attentional functions in BN. Method Twenty BN patients and twenty age- and weight-matched healthy controls (HC) were investigated using a modified version of the Attention Network Task (ANT) in an fMRI study. This design enabled an investigation of the neural mechanisms associated with the three attention networks involved in alerting, reorienting and executive attention. Results The BN patients showed hyperactivation in parieto-occipital regions and reduced deactivation of default-mode-network (DMN) areas during alerting compared with HCs. Posterior cingulate activation during alerting correlated with the severity of eating-disorder symptoms within the patient group. Conversely, BN patients showed hypoactivation during reorienting and executive attention in anterior cingulate regions, the temporo-parietal junction (TPJ) and parahippocampus compared with HCs, which was negatively associated with global ADHD symptoms and impulsivity, respectively. Discussion Our findings demonstrate altered brain mechanisms in BN associated with all three attentional networks. Failure to deactivate the DMN and increased parieto-occipital activation required for alerting might be associated with a constant preoccupation with food or body image-related thoughts. Hypoactivation of executive control networks and TPJ might increase the likelihood of inattentive and impulsive behaviors and poor emotion regulation. Thus, dysfunction in the attentional network in BN goes beyond an altered executive attentional domain and needs to be considered in the diagnosis and treatment of BN. PMID:27607439

  11. Broca's area, sentence comprehension, and working memory: an fMRI study

    Directory of Open Access Journals (Sweden)

    Corianne Rogalsky

    2008-10-01

    Full Text Available The role of Broca's area in sentence processing remains controversial. According to one view, Broca's area is involved in processing a subcomponent of syntactic processing. Another view holds that it contributes to sentence processing via verbal working memory. Sub-regions of Broca's area have been identified that are more active during the processing of complex (object-relative clause sentences compared to simple (subject-relative clause sentences. The present study aimed to determine if this complexity effect can be accounted for in terms of the articulatory rehearsal component of verbal working memory.  In a behavioral experiment, subjects were asked to comprehend sentences during concurrent speech articulation which minimizes articulatory rehearsal as a resource for sentence comprehension. A finger-tapping task was used as a control concurrent task. Only the object-relative clause sentences were more difficult to comprehend during speech articulation than during the manual task, showing that articulatory rehearsal does contribute to sentence processing.  A second experiment used fMRI to document the brain regions underlying this effect.  Subjects judged the plausibility of sentences during speech articulation, a finger-tapping task, or without a concurrent task. In the absence of a secondary task, Broca's area (pars triangularis and pars opercularis demonstrated an increase in activity as a function of syntactic complexity. However, during concurrent speech articulation (but not finger-tapping this complexity effect was eliminated in the pars opercularis suggesting that this region supports sentence comprehension via its role in articulatory rehearsal.  Activity in the pars triangularis was modulated by the finger-tapping task, but not the speech articulation task.

  12. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study

    Directory of Open Access Journals (Sweden)

    Zhang Jiaxing

    2011-09-01

    Full Text Available Abstract Background The impact of long term residence on high altitude (HA on human brain has raised concern among researchers in recent years. This study investigated the cerebrovascular reactivity among native-born high altitude (HA residents as compared to native sea level (SL residents. The two groups were matched on the ancestral line, ages, gender ratios, and education levels. A visual cue guided maximum inspiration task with brief breath holding was performed by all the subjects while Blood-Oxygenation-Level-Dependent (BOLD functional Magnetic Resonance Imaging (fMRI data were acquired from them. Results Compared to SL controls, the HA group showed generally decreased cerebrovascular reactivity and longer delay in hemodynamic response. Clusters showing significant differences in the former aspect were located at the bilateral primary motor cortex, the right somatosensory association cortex, the right thalamus and the right caudate, the bilateral precuneus, the right cingulate gyrus and the right posterior cingulate cortex, as well as the left fusiform gyrus and the right lingual cortex; clusters showing significant differences in the latter aspect were located at the precuneus, the insula, the superior frontal and temporal gyrus, the somatosensory cortex (the postcentral gyrus and the cerebellar tonsil. Inspiratory reserve volume (IRV, which is an important aspect of pulmonary function, demonstrated significant correlation with the amount of BOLD signal change in multiple brain regions, particularly at the bilateral insula among the HA group. Conclusions Native-born HA residents generally showed reduced cerebrovascular reactivity as demonstrated in the hemodynamic response during a visual cue guided maximum inspiration task conducted with BOLD-fMRI. This effect was particularly manifested among brain regions that are typically involved in cerebral modulation of respiration.

  13. Experimental study of neoclassical currents

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Prager, S.C.

    1985-05-01

    A detailed experimental study is presented of the bootstrap and Pfirsch-Schlueter currents that are predicted by neoclassical transport theory. In a toroidal octupole, on magnetic surfaces within the separatrix, the observed parallel plasma currents are in excellent quantitative agreement with neoclassical theory with regard to the spatial structure (along a magnetic surface), collisionality dependence and toroidal magnetic field dependence. On magnetic surfaces outside the separatrix, the ion portion of the parallel current is in agreement with neoclassical theory but the electron parallel current is observed to obtain a unidirectional component which deviates from and exceeds the theoretical prediction

  14. Self-referential and anxiety-relevant information processing in subclinical social anxiety: an fMRI study.

    Science.gov (United States)

    Abraham, Anna; Kaufmann, Carolin; Redlich, Ronny; Hermann, Andrea; Stark, Rudolf; Stevens, Stephan; Hermann, Christiane

    2013-03-01

    The fear of negative evaluation is one of the hallmark features of social anxiety. Behavioral evidence thus far largely supports cognitive models which postulate that information processing biases in the face of socially relevant information are a key factor underlying this widespread phobia. So far only one neuroimaging study has explicitly focused on the fear of negative evaluation in social anxiety where the brain responses of social phobics were compared to healthy participants during the processing of self-referential relative to other-referential criticism, praise or neutral information. Only self-referential criticism led to stronger activations in emotion-relevant regions of the brain, such as the amygdala and medial prefrontal cortices (mPFC), in the social phobics. The objective of the current study was to determine whether these findings could be extended to subclinical social anxiety. In doing so, the specificity of this self-referential bias was also examined by including both social and non-social (physical illness-related) threat information as well as a highly health anxious control group in the experimental paradigm. The fMRI findings indicated that the processing of emotional stimuli was accompanied by activations in the amygdala and the ventral mPFC, while self-referential processing was associated with activity in regions such as the mPFC, posterior cingulate and temporal poles. Despite the validation of the paradigm, the results revealed that the previously reported behavioral and brain biases associated with social phobia could not be unequivocally extended to subclinical social anxiety. The divergence between the findings is explored in detail with reference to paradigm differences and conceptual issues.

  15. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.

    Science.gov (United States)

    Melcher, Tobias; Gruber, Oliver

    2009-02-01

    In the current event-related functional magnetic resonance imaging (fMRI) study, we sought to trace back Stroop-interference to circumscribed properties of task-irrelevant word information - response-incompatibility, semantic incongruency and task-reference - that we conceive as conflict factors. Thereby, we particularly wanted to disentangle intermingled contributions of semantic conflict and response conflict to the overall Stroop-interference effect. To delineate neural substrates of single factors, we referred to the logics of cognitive subtraction and cognitive conjunction. Moreover, in a second step, we conducted correlation analyses to determine the relationship between neural activations and behavioral interference costs (i.e., conflict-related reaction time (RT) slowing) so as to further elucidate the functional role of the respective brain regions in conflict processing. Response-incompatibility was associated with activation in the left premotor cortex which can be interpreted as indicating motor competition or conflict, i.e., the presence of competing response tendencies. Accordingly, this activation was positively correlated with behavioral conflict costs. Semantic incongruency exhibited specific activation in the anterior cingulate cortex (ACC), the bilateral insula, and thalamus as well as in left somatosensory cortex. As supported by the consistent negative correlation with behavioral conflict costs, these activations most probably reflect strengthened control efforts to overcome interference and to ensure adequate task performance. Finally, task-reference elicited activation in the left temporo-polar cortex (TPC) and the right medial superior as well as in left rostroventral prefrontal cortex (rvPFC, sub-threshold activation). As strongly supported by prior studies' findings, this neural activation pattern may underlie residual semantic processing of the task-irrelevant word information.

  16. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    Smits, Marion; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan

    2007-01-01

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  17. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  18. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    Science.gov (United States)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  19. Serial changes of humor comprehension for four-frame comic Manga: an fMRI study.

    Science.gov (United States)

    Osaka, Mariko; Yaoi, Ken; Minamoto, Takehiro; Osaka, Naoyuki

    2014-07-25

    Serial changes of humor comprehension evoked by a well organized four-frame comic Manga were investigated by fMRI in each step of humor comprehension. The neural substrates underlying the amusing effects in response to funny and mixed order manga were compared. In accordance with the time course of the four frames, fMRI activations changed serially. Beginning with the second frame (development scene), activation of the temporo-parietal junction (TPJ) was observed, followed by activations in the temporal and frontal areas during viewing of the third frame (turn scene). For the fourth frame (punch line), strong increased activations were confirmed in the medial prefrontal cortex (MPFC) and cerebellum. Interestingly, distinguishable activation differences in the cerebellum between funny and non-funny conditions were also found for the fourth frame. These findings suggest that humor comprehension evokes activation that initiates in the TPJ and expands to the MPFC and cerebellum at the convergence level.

  20. Sparking interest in restaurant dishes? Cognitive and affective processes underlying dish design and ecological origin. An fMRI study.

    Science.gov (United States)

    Muñoz-Leiva, Francisco; Gómez-Carmona, Diego

    2018-06-14

    The objective of the current paper is to verify to what extent the presentation of a restaurant dish and the origin of its food provoke reactions in the consumer's brain during the visualization and the decision-making process, from an exploratory approach. The two independent variables singled out for study were whether the presentation was well or poorly presented and if the ingredients were ecological or non-ecological. The results applying the functional magnetic resonance image (fMRI) methodology reveal that well-presented dishes activate areas in the brain linked to the network of emotions indicating that the visualization in restaurant menus is not a purely cognitive and self-reflexive process but retains a strong affective component. Furthermore, the presence of this component is kept at the moment of choosing a dish, as observed by the activation of the gyrus cingulate, region linked to the regulatory processes of emotions. Hence, research ratifies the existence of an emotional factor during the entire process of decision-making carried out in a restaurant. Yet it is true that exposure to an ecological menu provokes activation of the medial frontal cortex, a region connected to higher reasoning and attention, suggesting that stimuli from well-presented dishes of ecological origin trigger neuronal responses related to high-level cognitive processes. The practical implications derived, along with its limitations and the future research opportunities, are interesting for both developing theory and also practice. Therefore, scholars are encouraged to further test some research proposals (e.g. moderating role of salubrity or simultaneously eye tracking method). Copyright © 2017. Published by Elsevier Inc.

  1. An fMRI study of semantic processing in men with schizophrenia

    OpenAIRE

    Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.

    2003-01-01

    As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditi...

  2. Global integration of local color differences in transparency perception: An fMRI study.

    OpenAIRE

    Dojat, Michel; Piettre, Loÿs; Delon-Martin, Chantal; Pachot-Clouard, Mathilde; Segebarth, Christoph; Knoblauch, Kenneth

    2006-01-01

    In normal viewing, the visual system effortlessly assigns approximately constant attributes of color and shape to perceived objects. A fundamental component of this process is the compensation for illuminant variations and intervening media to recover reflectance properties of natural surfaces. We exploited the phenomenon of transparency perception to explore what cortical regions are implicated in such processes, using fMRI. By manipulating the coherence of local color differences around a r...

  3. Acute Cannabis Intoxication and the Brain's Response to Visual Erotica: An Fmri Study

    Czech Academy of Sciences Publication Activity Database

    Androvičová, R.; Horáček, J.; Tintěra, J.; Rydlo, J.; Ježová, D.; Balíková, M.; Hložek, T.; Mikšátková, P.; Kuchař, M.; Hlinka, Jaroslav; Roman, M.; Tomíček, P.; Viktorínová, M.; Tylš, F.; Páleníček, T.

    2017-01-01

    Roč. 14, č. 5 (2017), e253-e253 ISSN 1743-6095. [Congress of the World Association for Sexual Health /23./. 28.05.2017-31.05.2017, Prague] Grant - others:GA MV(CZ) VG20122015080; GA MZd NT13145; GA MŠk(CZ) LO1611 Institutional support: RVO:67985807 Keywords : fMRI * cannabis * sexuality Subject RIV: FH - Neurology http://www.jsm.jsexmed.org/article/S1743-6095(17)30689-6/pdf

  4. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    Science.gov (United States)

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  5. Adaptive changes in early and late blind: a fMRI study of Braille reading.

    Science.gov (United States)

    Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E

    2002-01-01

    Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or

  6. Lexical-Semantic Search Under Different Covert Verbal Fluency Tasks: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yunqing Li

    2017-08-01

    Full Text Available Background: Verbal fluency is a measure of cognitive flexibility and word search strategies that is widely used to characterize impaired cognitive function. Despite the wealth of research on identifying and characterizing distinct aspects of verbal fluency, the anatomic and functional substrates of retrieval-related search and post-retrieval control processes still have not been fully elucidated.Methods: Twenty-one native English-speaking, healthy, right-handed, adult volunteers (mean age = 31 years; range = 21–45 years; 9 F took part in a block-design functional Magnetic Resonance Imaging (fMRI study of free recall, covert word generation tasks when guided by phonemic (P, semantic-category (C, and context-based fill-in–the-blank sentence completion (S cues. General linear model (GLM, Independent Component Analysis (ICA, and psychophysiological interaction (PPI were used to further characterize the neural substrate of verbal fluency as a function of retrieval cue type.Results: Common localized activations across P, C, and S tasks occurred in the bilateral superior and left inferior frontal gyrus, left anterior cingulate cortex, bilateral supplementary motor area (SMA, and left insula. Differential task activations were centered in the occipital, temporal and parietal regions as well as the thalamus and cerebellum. The context-based fluency task, i.e., the S task, elicited higher differential brain activity in a lateralized frontal-temporal network typically engaged in complex language processing. P and C tasks elicited activation in limited pathways mainly within the left frontal regions. ICA and PPI results of the S task suggested that brain regions distributed across both hemispheres, extending beyond classical language areas, are recruited for lexical-semantic access and retrieval during sentence completion.Conclusion: Study results support the hypothesis of overlapping, as well as distinct, neural networks for covert word generation when

  7. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    Science.gov (United States)

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  8. Evidence for thalamic involvement in the thermal grill illusion: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Fredrik Lindstedt

    Full Text Available BACKGROUND: Perceptual illusions play an important role in untangling neural mechanisms underlying conscious phenomena. The thermal grill illusion (TGI has been suggested as a promising model for exploring percepts involved in neuropathic pain, such as cold-allodynia (pain arising from contact with innocuous cold. The TGI is an unpleasant/painful sensation from touching juxtapositioned bars of cold and warm innocuous temperatures. AIM: To develop an MRI-compatible TGI-unit and explore the supraspinal correlates of the illusion, using fMRI, in a group of healthy volunteers. METHODS: We constructed a TGI-thermode allowing the rapid presentation of warm(41°C, cold(18°C and interleaved(41°C+18°C = TGI temperatures in an fMRI-environment. Twenty volunteers were tested. The affective-motivational ("unpleasantness" and sensory-disciminatory ("pain-intensity" dimensions of each respective stimulus were rated. Functional images were analyzed at a corrected α-level <0.05. RESULTS: The TGI was rated as significantly more unpleasant and painful than stimulation with each of its constituent temperatures. Also, the TGI was rated as significantly more unpleasant than painful. Thermal stimulation versus neutral baseline revealed bilateral activations of the anterior insulae and fronto-parietal regions. Unlike its constituent temperatures the TGI displayed a strong activation of the right (contralateral thalamus. Exploratory contrasts at a slightly more liberal threshold-level also revealed a TGI-activation of the right mid/anterior insula, correlating with ratings of unpleasantness (rho = 0.31. CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this is the first fMRI-study of the TGI. The activation of the anterior insula is consistent with this region's putative role in processing of homeostatically relevant feeling-states. Our results constitute the first neurophysiologic evidence of thalamic involvement in the TGI. Similar thalamic activity

  9. Walk-related mimic word activates the extrastriate visual cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki

    2009-03-02

    I present an fMRI study demonstrating that a mimic word highly suggestive of human walking, heard by the ear with eyes closed, significantly activates the visual cortex located in extrastriate occipital region (BA19, 18) and superior temporal sulcus (STS) while hearing non-sense words that do not imply walk under the same task does not activate these areas in humans. I concluded that BA19 and 18 would be a critical region for generating visual images of walking and related intentional stance, respectively, evoked by an onomatopoeia word that implied walking.

  10. A word expressing affective pain activates the anterior cingulate cortex in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko; Morishita, Masanao; Kondo, Hirohito; Fukuyama, Hidenao

    2004-08-12

    We present an fMRI study demonstrating that an onomatopoeia word highly suggestive of subjective pain, heard by the ear, significantly activates the anterior cingulate cortex (ACC) while hearing non-sense words that did not imply affective pain under the same task does not activate this area in humans. We concluded that the ACC would be a pivotal locus for perceiving affective pain evoked by an onomatopoeia word that implied affective pain closely associated with the unpleasantness of pain. We suggest that the pain affect sustained by pain unpleasantness may depend on ACC-prefrontal cortical interactions that modify cognitive evaluation of emotions associated with word-induced pain.

  11. An fMRI study of concreteness effects during spoken word recognition in aging. Preservation or attenuation?

    Directory of Open Access Journals (Sweden)

    Tracy eRoxbury

    2016-01-01

    Full Text Available It is unclear whether healthy aging influences concreteness effects (ie. the processing advantage seen for concrete over abstract words and its associated neural mechanisms. We conducted an fMRI study on young and older healthy adults performing auditory lexical decisions on concrete versus abstract words. We found that spoken comprehension of concrete and abstract words appears relatively preserved for healthy older individuals, including the concreteness effect. This preserved performance was supported by altered activity in left hemisphere regions including the inferior and middle frontal gyri, angular gyrus, and fusiform gyrus. This pattern is consistent with age-related compensatory mechanisms supporting spoken word processing.

  12. Non-symbolic numerical distance effect in children with and without developmental dyscalculia: a parametric fMRI study.

    Science.gov (United States)

    Kucian, Karin; Loenneker, Thomas; Martin, Ernst; von Aster, Michael

    2011-01-01

    This study investigated areas of brain activation related to non-symbolic distance effects in children with and without developmental dyscalculia (DD). We examined 15 children with DD (11.3 years) and 15 controls (10.6 years) by means of functional magnetic resonance imaging (fMRI). Both groups displayed similar behavioral performance, but differences in brain activation were observed, particularly in the supplementary motor area and the right fusiform gyrus, where children with DD demonstrated stronger activation. These results suggest that dyscalculic children engage areas attributed to higher difficulty in response selection more than control children, possibly due to a deficient development of a spatial number representation in DD.

  13. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Anthony C Johnson

    2010-01-01

    Full Text Available Although visceral pain of gastrointestinal (GI origin is the major complaint in patients with irritable bowel syndrome (IBS it remains poorly understood. Brain imaging studies suggest a defect in brain-gut communication in IBS with a greater activation of central arousal circuits including the amygdala. Previously, we found that stereotaxic implantation of corticosterone (CORT onto the amygdala in rats induced anxiety and colonic hypersensitivity. In the present study we used functional magnetic resonance imaging (fMRI to identify specific brain sites activated in a rat model characterized by anxiety and colonic hypersensitivity.Anesthetized male rats received micropellets (30 microg each of either CORT or cholesterol (CHOL, to serve as a control, implanted stereotaxically on the dorsal margin of each amygdala. Seven days later, rats were anesthetized and placed in the fMRI magnet (7T. A series of isobaric colorectal balloon distensions (CRD - 90s 'off', 30s 'on', 8 replicates at two pressures (40 and 60 mmHg were performed in a standard block-design. Cross correlation statistical analysis was used to determine significant differences between distended and non-distended states in CORT and CHOL-treated animals. Analysis of the imaging data demonstrated greater overall brain activation in response to CRD in rats with CORT implants compared to CHOL controls. Additionally, CORT implants produced significant positive bilateral increases in MRI signal in response to CRD in specific nuclei known as integration sites important in anxiety and pain perception.These data indicate that chronic exposure of the amygdala to elevated levels of CORT enhances overall brain activation in response to CRD, and identified other specific brain regions activated in response to mechanical distension of the colon. These results demonstrate the feasibility of performing fMRI imaging in a rodent model that supports clinical observations in IBS patients with enhanced

  14. Topologic analysis and comparison of brain activation in children with epilepsy versus controls: an fMRI study

    Science.gov (United States)

    Oweis, Khalid J.; Berl, Madison M.; Gaillard, William D.; Duke, Elizabeth S.; Blackstone, Kaitlin; Loew, Murray H.; Zara, Jason M.

    2010-03-01

    This paper describes the development of novel computer-aided analysis algorithms to identify the language activation patterns at a certain Region of Interest (ROI) in Functional Magnetic Resonance Imaging (fMRI). Previous analysis techniques have been used to compare typical and pathologic activation patterns in fMRI images resulting from identical tasks but none of them analyzed activation topographically in a quantitative manner. This paper presents new analysis techniques and algorithms capable of identifying a pattern of language activation associated with localization related epilepsy. fMRI images of 64 healthy individuals and 31 patients with localization related epilepsy have been studied and analyzed on an ROI basis. All subjects are right handed with normal MRI scans and have been classified into three age groups (4-6, 7-9, 10-12 years). Our initial efforts have focused on investigating activation in the Left Inferior Frontal Gyrus (LIFG). A number of volumetric features have been extracted from the data. The LIFG has been cut into slices and the activation has been investigated topographically on a slice by slice basis. Overall, a total of 809 features have been extracted, and correlation analysis was applied to eliminate highly correlated features. Principal Component analysis was then applied to account only for major components in the data and One-Way Analysis of Variance (ANOVA) has been applied to test for significantly different features between normal and patient groups. Twenty Nine features have were found to be significantly different (p<0.05) between patient and control groups

  15. Reorganization of Language Areas in Patient with a Frontal Lobe Low Grade Glioma – fMRI Case Study

    International Nuclear Information System (INIS)

    Kośla, Katarzyna; Bryszewski, Bartosz; Jaskólski, Dariusz; Błasiak-Kołacińska, Nina; Stefańczyk, Ludomir; Majos, Agata

    2015-01-01

    Functional magnetic resonance (fMRI) studies results in case of an adult patient with low grade glioma (LGG) in dominant hemisphere suggest brain plasticity process with acquisition of language functions by the non-dominant hemisphere speech regions. A 36-years old right-handed woman was admitted to the Department of Neurosurgery for surgical treatment of brain tumor. An MRI examination revealed a pathological mass in the left frontal lobe, in close topographical relationship to the Broca’s area. A left fronto-parietal craniotomy was performed, with an intraoperative awake language mapping procedure. A total resection of the pathological mass was achieved. The tumor was examined histologically as LGG. In the follow-up MRI exam 32 months after the operation a tumor recurrence was suggested. The fMRI exams performed preoperative and 3, 32 and 41 months after the operation showed changes in language regions activation patterns, with a progressive right-sided activation of Broca’s and Wernicke’s areas. Pre- and postoperative cognitive evaluation by a neuropsychologist did not detect any language impairment. We present a running process of reorganization of language areas in a patient after brain tumor resection, from strong left-sided to symmetrical lateralization. 1. FMRI results in comparison with the psychological status of the patient proved contribution of functional reorganization to the preservation of language performance. 2. A slow growing LGG as well as the recurrence of the tumor near the left Broca’s area might be the factors leading to reorganization of language-related areas by recruiting the right hemisphe

  16. An Emotional Go/No-Go fMRI study in adolescents with depressive symptoms following concussion.

    Science.gov (United States)

    Ho, Rachelle A; Hall, Geoffrey B; Noseworthy, Michael D; DeMatteo, Carol

    2017-10-03

    Following concussion, adolescents may experience both poor inhibitory control and increased depressive symptoms. fMRI research suggests that adolescents with major depressive disorder have abnormal physiological responses in the frontostriatal pathway, and exhibit poorer inhibitory control in the presence of negatively-aroused images. The scarcity of information surrounding depression following concussion in adolescents makes it difficult to identify patients at risk of depression after injury. This is the first study to examine neural activity patterns in adolescents with post-concussive depressive symptoms. To explore the effect of depressive symptoms on inhibitory control in adolescents with concussion in the presence of emotional stimuli using fMRI. Using a prospective cohort design, 30 adolescents diagnosed with concussion between 10 and 17years were recruited. The Children's Depression Inventory questionnaire was used to divide participants into two groups: average or elevated levels of depressive symptoms. Participants completed an Emotional Go/No-Go task involving angry or neutral faces in a 3Telsa MRI scanner. Eleven participants had elevated depressive symptoms, of which 72% were hit in the occipital region of the head at the time of injury. fMRI results from the Emotional Go/No-Go task revealed activity patterns in the overall sample. Faces activated regions associated with both facial and cognitive processing. However, frontal regions that are usually associated with inhibitory control were not activated. Adolescents with elevated levels of depressive symptoms engaged more frontal lobe regions during the task than the average group. They also showed a trend towards worse symptoms following MRI scanning. Adolescents with elevated depressive symptoms engaged brain regions subserving evaluative processing of social interactions. This finding provides insight into the role the environment plays in contributing to the cognitive demands placed on adolescents

  17. Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: a critical review of fMRI studies.

    Science.gov (United States)

    van Zutphen, Linda; Siep, Nicolette; Jacob, Gitta A; Goebel, Rainer; Arntz, Arnoud

    2015-04-01

    Emotional sensitivity, emotion regulation and impulsivity are fundamental topics in research of borderline personality disorder (BPD). Studies using fMRI examining the neural correlates concerning these topics is growing and has just begun understanding the underlying neural correlates in BPD. However, there are strong similarities but also important differences in results of different studies. It is therefore important to know in more detail what these differences are and how we should interpret these. In present review a critical light is shed on the fMRI studies examining emotional sensitivity, emotion regulation and impulsivity in BPD patients. First an outline of the methodology and the results of the studies will be given. Thereafter important issues that remained unanswered and topics to improve future research are discussed. Future research should take into account the limited power of previous studies and focus more on BPD specificity with regard to time course responses, different regulation strategies, manipulation of self-regulation, medication use, a wider range of stimuli, gender effects and the inclusion of a clinical control group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  19. A f-MRI study on memory function in normal subjects and patients with partial epilepsies

    International Nuclear Information System (INIS)

    Kamoda, Sachiko

    2004-01-01

    To investigate cerebral regions concerning a memory function and presence of memory lateralization, activated areas and the difference between the right and left hemisphere in functional magnetic resonance imaging (f-MRI) during verbal and visual memory tasks were examined in normal subjects and, as its clinical application, in patients with partial epilepsies. Subjects were 39 normal adult subjects and 10 adult patients. Of the 39 normal subjects, 30 were right-handed and 9 were left-handed. Further, of the 10 patients, 9 were right-handed and one was left-handed, and 7, 2 and 1 had temporal lobe, frontal lobe and undetermined partial epilepsies, respectively. Following the three type of memory task were designed; verbal memory tasks consisting of covert and overt recall tests of 10 words given auditory and visual memory task of covert recall tasks of 6 figures given visually. Activated cerebral areas were imaged with f-MRI using 1.5 tesla Magnetom Vision taken repeatedly during these tasks and neutral condition. Most of the 30 right-handed normal subjects showed activated areas over the left hemisphere specifically on the anterior cingulate, superior, middle and inferior frontal gyri during the verbal memory tasks of covert recall tests. Left hemisphere dominant activated areas in the precentral gyri were added during the verbal memory tasks of overt recall tests. On the other hand, 4 of the 9 left-handed normal subjects showed the left side-dominantly activated areas in the above-mentioned regions during the verbal memory tasks of covert and overt tests, in common with the right-handed subjects. However, 3 of the 9 left-handed normal subjects had right hemisphere dominant activation during the verbal memory tasks, while none of the 30 right-handed normal subjects showed such right side-dominancy. Further, the bilateral occipital lobes were activated during visual memory tasks. The reproducibility in this activation during these verbal and visual memory tasks

  20. Activations in temporal areas using visual and auditory naming stimuli: A language fMRI study in temporal lobe epilepsy.

    Science.gov (United States)

    Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S

    2016-12-01

    Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated

  1. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies

    Directory of Open Access Journals (Sweden)

    Marie Arsalidou

    2018-04-01

    Full Text Available Children use numbers every day and typically receive formal mathematical training from an early age, as it is a main subject in school curricula. Despite an increase in children neuroimaging studies, a comprehensive neuropsychological model of mathematical functions in children is lacking. Using quantitative meta-analyses of functional magnetic resonance imaging (fMRI studies, we identify concordant brain areas across articles that adhere to a set of selection criteria (e.g., whole-brain analysis, coordinate reports and report brain activity to tasks that involve processing symbolic and non-symbolic numbers with and without formal mathematical operations, which we called respectively number tasks and calculation tasks. We present data on children 14 years and younger, who solved these tasks. Results show activity in parietal (e.g., inferior parietal lobule and precuneus and frontal (e.g., superior and medial frontal gyri cortices, core areas related to mental-arithmetic, as well as brain regions such as the insula and claustrum, which are not typically discussed as part of mathematical problem solving models. We propose a topographical atlas of mathematical processes in children, discuss findings within a developmental constructivist theoretical model, and suggest practical methodological considerations for future studies. Keywords: Mathematical cognition, Meta-analyses, fMRI, Children, Development, Insula

  2. Relational complexity modulates activity in the prefrontal cortex during numerical inductive reasoning: an fMRI study.

    Science.gov (United States)

    Feng, Xiao; Peng, Li; Chang-Quan, Long; Yi, Lei; Hong, Li

    2014-09-01

    Most previous studies investigating relational reasoning have used visuo-spatial materials. This fMRI study aimed to determine how relational complexity affects brain activity during inductive reasoning, using numerical materials. Three numerical relational levels of the number series completion task were adopted for use: 0-relational (e.g., "23 23 23"), 1-relational ("32 30 28") and 2-relational ("12 13 15") problems. The fMRI results revealed that the bilateral dorsolateral prefrontal cortex (DLPFC) showed enhanced activity associated with relational complexity. Bilateral inferior parietal lobule (IPL) activity was greater during the 1- and 2-relational level problems than during the 0-relational level problems. In addition, the left fronto-polar cortex (FPC) showed selective activity during the 2-relational level problems. The bilateral DLPFC may be involved in the process of hypothesis generation, whereas the bilateral IPL may be sensitive to calculation demands. Moreover, the sensitivity of the left FPC to the multiple relational problems may be related to the integration of numerical relations. The present study extends our knowledge of the prefrontal activity pattern underlying numerical relational processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-current railgap studies

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-03

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field-distortion-triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Image-converter streak photographs were used to study channel evolution and current division. Transient gas-pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance and lifetime are discussed. Lifetime tests of the rail gap were performed. Degradation in the channel current-sharing and erosion measurements are discussed.

  4. High-current railgap studies

    Science.gov (United States)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-01

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field distortion triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Channel evolution and current division were studied on image converter streak photographs. Transient gas pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance in the channel current sharing and erosion measurements are discussed.

  5. Influence of mental abacus calculation practice on mental arithmetic in children: a fMRI study

    International Nuclear Information System (INIS)

    Long Jinfeng; Zhao Kunyuan; Wang Bin; Li Lixin; Shen Xiaojun

    2009-01-01

    Objective: To investigate the influence of mental abacus calculation practice on mental arithmetic in children with functional magnetic resonance imaging (fMRI). Methods: Twelve children who had practiced mental abacus calculation for 3 years and 12 untrained children (The two groups were matched in terms of age, handedness and education) underwent fMRI during mental calculation tasks. The related behavior data were recorded at the same time. All data were analyzed with statistical parametric mapping 2. Results: The calculation accuracy was significantly higher [(95.00±7.16)% vs.(74.26±16.07)%. t=-4.084, P<0.01]; and the reaction time was significantly shorter [(597.91±124.05) ms vs. (770.07± 148.54) ms, t=3.082, P<0.01] in trained group than untrained group. The extent and magnitude of the activated areas were significantly increased in the untrained group compared with the trained group. The activated areas mainly localized in the frontal and parietal lobes in untrained group, while the brain activated areas were few and mainly localized in occipital and parietal lobes in the trained group. Conclusion: Mental abacus calculation can enhance the information processing m some brain areas, and improve the utilization efficiency of neural resources. (authors)

  6. Activation on occipital lobe in children with abacus mental calculation training: an fMRI study

    International Nuclear Information System (INIS)

    Shen Xiaojun; Long Jinfeng; Zhao Kunyuan; Li Lixin; Sun Jining; Wang Bin

    2011-01-01

    Objective: By exploring the activation on occipital lobe in children with and without abacus mental calculation training when they engaged in different calculation tasks with functional magnetic resonance imaging (fMRI), to identify the possible mechanism of occipital lobe in abacus mental calculation. Methods: fMRI was performed in children trained with and without (sixteen in each group) abacus mental calculation when they engaged in addition, subtraction. multiplication, division, and number-object control judging tasks. The data processing and statistical analysis were performed on SPM 2.0 (statistical parametric mapping 2.0) and the related-brain functional areas were identified. The activation on occipital lobe was observed carefully. The difference in activated areas of occipital lobe was statistically significant between two groups engaged in different tasks of calculations (P<0.01). Result: Bilateral occipital lobe, especially in the cuneus and lingual gyrus, were activated in children trained with abacus mental calculation. The main activated area was lingual gyrus in children without abacus mental calculation. Conclusion: The occipital lobe participates visuospatial processing in the abacus mental calculations. The neuromechanism maybe account for the specific activation in occipital lobe. (authors)

  7. Verbal to visual code switching improves working memory in older adults: An fMRI study

    Directory of Open Access Journals (Sweden)

    Mariko eOsaka

    2012-02-01

    Full Text Available The effects of verbal to visual code switching training on working memory performance were investigated in the elderly. Twenty-five elderly people were introduced to a verbal to visual code switching strategy (training group while the other 25 were not (control group. During this strategy training period, participants in the training group practiced focusing their attention on a target word both by drawing the target’s figure and by forming mental images of the target. To explore the neural substrates underlying strategy effects, fMRI was used to measure brain activity of the elderly in both groups while they performed a working memory task (reading span test, RST, before and after the attention training period. RST recognition accuracy was enhanced only in the training group. fMRI data for this group showed increased activation in the anterior cingulate cortex (ACC, a region that typically shows activation in young adults performing the RST. Furthermore, activation was found both in the left and right inferior parietal lobule (IPL and right superior parietal lobule (SPL, while there was no activation in these areas for the control group. These findings suggest that using a strategy of verbal to visual code switching helped the elderly participants to maintain the words in working memory.

  8. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Li Chunbo; Hu Zhenghui; Xi Qian; Wu Wenyuan; Tang Xiaowei

    2007-01-01

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology

  9. Hybrid ICA-Seed-Based Methods for fMRI Functional Connectivity Assessment: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Robert E. Kelly

    2010-01-01

    Full Text Available Brain functional connectivity (FC is often assessed from fMRI data using seed-based methods, such as those of detecting temporal correlation between a predefined region (seed and all other regions in the brain; or using multivariate methods, such as independent component analysis (ICA. ICA is a useful data-driven tool, but reproducibility issues complicate group inferences based on FC maps derived with ICA. These reproducibility issues can be circumvented with hybrid methods that use information from ICA-derived spatial maps as seeds to produce seed-based FC maps. We report results from five experiments to demonstrate the potential advantages of hybrid ICA-seed-based FC methods, comparing results from regressing fMRI data against task-related a priori time courses, with “back-reconstruction” from a group ICA, and with five hybrid ICA-seed-based FC methods: ROI-based with (1 single-voxel, (2 few-voxel, and (3 many-voxel seed; and dual-regression-based with (4 single ICA map and (5 multiple ICA map seed.

  10. Cerebellar induced differential polyglot aphasia: A neurolinguistic and fMRI study.

    Science.gov (United States)

    Mariën, Peter; van Dun, Kim; Van Dormael, Johanna; Vandenborre, Dorien; Keulen, Stefanie; Manto, Mario; Verhoeven, Jo; Abutalebi, Jubin

    2017-12-01

    Research has shown that linguistic functions in the bilingual brain are subserved by similar neural circuits as in monolinguals, but with extra-activity associated with cognitive and attentional control. Although a role for the right cerebellum in multilingual language processing has recently been acknowledged, a potential role of the left cerebellum remains largely unexplored. This paper reports the clinical and fMRI findings in a strongly right-handed (late) multilingual patient who developed differential polyglot aphasia, ataxic dysarthria and a selective decrease in executive function due to an ischemic stroke in the left cerebellum. fMRI revealed that lexical-semantic retrieval in the unaffected L1 was predominantly associated with activations in the left cortical areas (left prefrontal area and left postcentral gyrus), while naming in two affected non-native languages recruited a significantly larger bilateral functional network, including the cerebellum. It is hypothesized that the left cerebellar insult resulted in decreased right prefrontal hemisphere functioning due to a loss of cerebellar impulses through the cerebello-cerebral pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Neurobiology of Insight Deficits in Schizophrenia: An fMRI Study

    Science.gov (United States)

    Shad, Mujeeb U.; Keshavan, Matcheri S.

    2015-01-01

    Prior research has shown insight deficits in schizophrenia to be associated with specific neuroimaging changes (primarily structural) especially in the prefrontal sub-regions. However, little is known about the functional correlates of impaired insight. Seventeen patients with schizophrenia (mean age 40.0±10.3; M/F= 14/3) underwent fMRI on a Philips 3.0 T Achieva system while performing on a self-awareness task containing self- vs. other-directed sentence stimuli. SPM5 was used to process the imaging data. Preprocessing consisted of realignment, coregistration, and normalization, and smoothing. A regression analysis was used to examine the relationship between brain activation in response to self-directed versus other-directed sentence stimuli and average scores on behavioral measures of awareness of symptoms and attribution of symptoms to the illness from Scale to Assess Unawareness of Mental Disorders. Family Wise Error correction was employed in the fMRI analysis. Average scores on awareness of symptoms (1 = aware; 5 = unaware) were associated with activation of multiple brain regions, including prefrontal, parietal and limbic areas as well as basal ganglia. However, average scores on correct attribution of symptoms (1 = attribute; 5 = misattribute) were associated with relatively more localized activation of prefrontal cortex and basal ganglia. These findings suggest that unawareness and misattribution of symptoms may have different neurobiological basis in schizophrenia. While symptom unawareness may be a function of a more complex brain network, symptom misattribution may be mediated by specific brain regions. PMID:25957484

  12. Trait or state? A longitudinal neuropsychological evaluation and fMRI study in schizoaffective disorder.

    Science.gov (United States)

    Madre, Merce; Radua, Joaquim; Landin-Romero, Ramon; Alonso-Lana, Silvia; Salvador, Raimond; Panicali, Francesco; Pomarol-Clotet, Edith; Amann, Benedikt L

    2014-11-01

    Schizoaffective patients can have neurocognitive deficits and default mode network dysfunction while being acutely ill. It remains unclear to what extent these abnormalities persist when they go into clinical remission. Memory and executive function were tested in 22 acutely ill schizoaffective patients; they also underwent fMRI scanning during performance of the n-back working memory test. The same measures were obtained after they had been in remission for ≥ 2 months. Twenty-two matched healthy individuals were also examined. In clinical remission, schizomanic patients showed an improvement of memory but not of executive function, while schizodepressive patients did not change in either domain. All schizoaffective patients in clinical remission showed memory and executive impairment compared to the controls. On fMRI, acutely ill schizomanic patients had reversible frontal hypo-activation when compared to clinical remission, while activation patterns in ill and remitted schizodepressive patients were similar. The whole group of schizoaffective patients in clinical remission showed a failure of de-activation in the medial frontal gyrus compared to the healthy controls. There was evidence for memory improvement and state dependent changes in activation in schizomanic patients across relapse and remission. Medial frontal failure of de-activation in remitted schizoaffective patients, which probably reflects default mode network dysfunction, appears to be a state independent feature of the illness. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Categorical speech processing in Broca's area: an fMRI study using multivariate pattern-based analysis.

    Science.gov (United States)

    Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S

    2012-03-14

    Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.

  14. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    International Nuclear Information System (INIS)

    Nasaruddin, N H; Yusoff, A N; Kaur, S

    2014-01-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus

  15. The effects of background noise on dichotic listening to consonant-vowel syllables: An fMRI study.

    Science.gov (United States)

    Dos Santos Sequeira, Sarah; Specht, Karsten; Moosmann, Matthias; Westerhausen, Rene; Hugdahl, Kenneth

    2010-11-01

    The present fMRI study attempts to identify brain areas that may underlie the effect of different background noises on functional brain asymmetry in a dichotic listening task. Previous studies have shown that the prominent right ear advantage in dichotic listening to consonant-vowel syllables is affected by background noise. To explore the underlying neuronal processes, haemodynamic brain responses using fMRI were recorded while participants performed the dichotic listening task in two different noisy backgrounds (conversational "babble" and traffic noise). The behavioural results showed a reduction of the right ear advantage in the background noise conditions, especially in the traffic noise condition. The behavioural results are discussed in terms of alertness-attentional mechanisms. The effects of background noise on brain activation involved significant activations in a speech-processing network. Specifically the changes in activations in the peri-Sylvian region of the superior temporal gyrus and in the temporo-parietal junction part in the left hemisphere, as well as in the superior temporal gyrus/sulcus area in the right hemisphere may mirror the effects of noise on behavioural performance. The effects of noise on brain activation are discussed with regard to pre-activation mechanisms.

  16. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study.

    Science.gov (United States)

    Duarte, João V; Pereira, João M S; Quendera, Bruno; Raimundo, Miguel; Moreno, Carolina; Gomes, Leonor; Carrilho, Francisco; Castelo-Branco, Miguel

    2015-10-01

    Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.

  17. Reduced functional reserve in patients with age-related white matter changes: a preliminary FMRI study of working memory.

    Directory of Open Access Journals (Sweden)

    Martin Griebe

    Full Text Available Subcortical age-related white matter changes (ARWMC are a frequent finding in healthy elderly people suggested to cause secondary tissue changes and possibly affecting cognitive processes. We aimed to determine the influence of the extent of ARWMC load on attention and working memory processes in healthy elderly individuals. Fourteen healthy elderly subjects (MMSE >26; age 55-80 years performed three fMRI tasks with increasing difficulty assessing alertness, attention (0-back, and working memory (2-back. We compared activation patterns in those with only minimal ARWMC (Fazekas 0-1 to those with moderate to severe ARWMC (Fazekas 2-3. During the fMRI experiments, the study population showed activation in brain areas typically involved in attention and working memory with a recruitment of cortical areas with increasing task difficulty. Subjects with higher lesion load showed a higher activation at all task levels with only sparse increase of signal with increasing complexity. In the lower lesion load group, rising task difficulty lead to a significant and widely distributed increase of activation. Although the number of patients included in the study is small, these findings suggest that even clinically silent ARWMC may affect cognitive processing and lead to compensatory activation during cognitive tasks. This can be interpreted as a reduction of functional reserve and may pose a risk for cognitive decline in these patients.

  18. Stimulating neural plasticity with real-time fMRI neurofeedback in Huntington's disease: A proof of concept study.

    Science.gov (United States)

    Papoutsi, Marina; Weiskopf, Nikolaus; Langbehn, Douglas; Reilmann, Ralf; Rees, Geraint; Tabrizi, Sarah J

    2018-03-01

    Novel methods that stimulate neuroplasticity are increasingly being studied to treat neurological and psychiatric conditions. We sought to determine whether real-time fMRI neurofeedback training is feasible in Huntington's disease (HD), and assess any factors that contribute to its effectiveness. In this proof-of-concept study, we used this technique to train 10 patients with HD to volitionally regulate the activity of their supplementary motor area (SMA). We collected detailed behavioral and neuroimaging data before and after training to examine changes of brain function and structure, and cognitive and motor performance. We found that patients overall learned to increase activity of the target region during training with variable effects on cognitive and motor behavior. Improved cognitive and motor performance after training predicted increases in pre-SMA grey matter volume, fMRI activity in the left putamen, and increased SMA-left putamen functional connectivity. Although we did not directly target the putamen and corticostriatal connectivity during neurofeedback training, our results suggest that training the SMA can lead to regulation of associated networks with beneficial effects in behavior. We conclude that neurofeedback training can induce plasticity in patients with Huntington's disease despite the presence of neurodegeneration, and the effects of training a single region may engage other regions and circuits implicated in disease pathology. © 2017 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    Science.gov (United States)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  20. Sensitivity and reliability of language laterality assessment with a free reversed association task - a fMRI study

    International Nuclear Information System (INIS)

    Fesl, Gunther; Brueckmann, Hartmut; Bruhns, Philipp; Rau, Sabine; Ilmberger, Josef; Wiesmann, Martin; Kegel, Gerd

    2010-01-01

    The aim of the study was to evaluate the sensitivity and reliability of assessing hemispheric language dominance with functional magnetic resonance imaging (fMRI) using a 'free reversed association task.' Thirty-nine healthy subjects (13 dextrals, 13 sinistrals and 13 bimanuals) underwent two repeated fMRI sessions. In the active phases sets of words were presented via headphones, and an associated target item was named. During the baseline phases a standard answer was given after listening to unintelligible stimuli. Data were preprocessed with SPM, and then laterality indices (LI) and reliability coefficients (RC) were calculated. Extensive frontal, temporal and parietal activations were found. Seventy-eight percent of the subjects showed left-hemispheric dominance, 5% showed right-hemispheric dominance, and 17% had bilateral language representations. The incidence of right-hemispheric language dominance was 4.3 times higher in a left-hander with a handedness quotient (HQ) of -90 than in a right-hander with a HQ of +90. The RC was 0.61 for combined ROIs (global network). Strong correlations were found between the two session LIs (r = 0.95 for the global network). 'Free reversed association' is a sensitive and reliable task for the determination of individual language lateralization. This suggests that the task may be used in a clinical setting. (orig.)

  1. Sensitivity and reliability of language laterality assessment with a free reversed association task - a fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Fesl, Gunther; Brueckmann, Hartmut [University of Munich, Department of Neuroradiology, Campus Grosshadern, Marchioninistr. 15, 81377, Munich (Germany); Bruhns, Philipp [University of Munich, Department of Neuroradiology, Campus Grosshadern, Marchioninistr. 15, 81377, Munich (Germany); University of Munich, Department of Psycholinguistics, Munich (Germany); Rau, Sabine; Ilmberger, Josef [University of Munich, Department of Physical Medicine and Rehabilitation, Munich (Germany); Wiesmann, Martin [Helios Hospitals Schwerin, Department of Radiology and Neuroradiology, Schwerin (Germany); Kegel, Gerd [University of Munich, Department of Psycholinguistics, Munich (Germany)

    2010-03-15

    The aim of the study was to evaluate the sensitivity and reliability of assessing hemispheric language dominance with functional magnetic resonance imaging (fMRI) using a 'free reversed association task.' Thirty-nine healthy subjects (13 dextrals, 13 sinistrals and 13 bimanuals) underwent two repeated fMRI sessions. In the active phases sets of words were presented via headphones, and an associated target item was named. During the baseline phases a standard answer was given after listening to unintelligible stimuli. Data were preprocessed with SPM, and then laterality indices (LI) and reliability coefficients (RC) were calculated. Extensive frontal, temporal and parietal activations were found. Seventy-eight percent of the subjects showed left-hemispheric dominance, 5% showed right-hemispheric dominance, and 17% had bilateral language representations. The incidence of right-hemispheric language dominance was 4.3 times higher in a left-hander with a handedness quotient (HQ) of -90 than in a right-hander with a HQ of +90. The RC was 0.61 for combined ROIs (global network). Strong correlations were found between the two session LIs (r = 0.95 for the global network). 'Free reversed association' is a sensitive and reliable task for the determination of individual language lateralization. This suggests that the task may be used in a clinical setting. (orig.)

  2. Hemispheric differences in processing the literal interpretation of idioms: converging evidence from behavioral and fMRI studies.

    Science.gov (United States)

    Mashal, Nira; Faust, Miriam; Hendler, Talma; Jung-Beeman, Mark

    2008-01-01

    The present study examined the role of the left (LH) and right (RH) cerebral hemispheres in processing alternative meanings of idiomatic sentences. We conducted two experiments using ambiguous idioms with plausible literal interpretations as stimuli. In the first experiment we tested hemispheric differences in accessing either the literal or the idiomatic meaning of idioms for targets presented to either the left or the right visual field. In the second experiment, we used functional magnetic resonance imaging (fMRI) to define regional brain activation patterns in healthy adults processing either the idiomatic meaning of idioms or the literal meanings of either idioms or literal sentences. According to the Graded Salience Hypothesis (GSH, Giora, 2003), a selective RH involvement in the processing of nonsalient meanings, such as literal interpretations of idiomatic expressions, was expected. Results of the two experiments were consistent with the GSH predictions and show that literal interpretations of idioms are accessed faster than their idiomatic meanings in the RH. The fMRI data showed that processing the idiomatic interpretation of idioms and the literal interpretations of literal sentences involved LH regions whereas processing the literal interpretation of idioms was associated with increased activity in right brain regions including the right precuneus, right middle frontal gyrus (MFG), right posterior middle temporal gyrus (MTG), and right anterior superior temporal gyrus (STG). We suggest that these RH areas are involved in semantic ambiguity resolution and in processing nonsalient meanings of conventional idiomatic expressions.

  3. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    Directory of Open Access Journals (Sweden)

    Mura M

    2012-04-01

    Full Text Available Marco Mura1, Alessandro Castagna2, Vania Fontani2, Salvatore Rinaldi21Institute of Radiology, University of Cagliari, 2Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, ItalyPurpose: This study assessed changes in functional dysmetria (FD and in brain activation observable by functional magnetic resonance imaging (fMRI during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC pulse, according to the precisely defined neuropostural optimization (NPO protocol.Population and methods: Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO.Results: A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task.Conclusion: Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD.Keywords: motor behavior, motor control, cerebellum, dysmetria, functional dysmetria, fluctuating asymmetry

  4. Modafinil alters intrinsic functional connectivity of the right posterior insula: a pharmacological resting state fMRI study.

    Directory of Open Access Journals (Sweden)

    Nicoletta Cera

    Full Text Available Modafinil is employed for the treatment of narcolepsy and has also been, off-label, used to treat cognitive dysfunction in neuropsychiatric disorders. In a previous study, we have reported that single dose administration of modafinil in healthy young subjects enhances fluid reasoning and affects resting state activity in the Fronto Parietal Control (FPC and Dorsal Attention (DAN networks. No changes were found in the Salience Network (SN, a surprising result as the network is involved in the modulation of emotional and fluid reasoning. The insula is crucial hub of the SN and functionally divided in anterior and posterior subregions.Using a seed-based approach, we have now analyzed effects of modafinil on the functional connectivity (FC of insular subregions.Analysis of FC with resting state fMRI (rs-FMRI revealed increased FC between the right posterior insula and the putamen, the superior frontal gyrus and the anterior cingulate cortex in the modafinil-treated group.Modafinil is considered a putative cognitive enhancer. The rs-fMRI modifications that we have found are consistent with the drug cognitive enhancing properties and indicate subregional targets of action.ClinicalTrials.gov NCT01684306.

  5. Cue-elicited craving in heroin addicts at different abstinent time: an fMRI pilot study.

    Science.gov (United States)

    Lou, Mingwu; Wang, Erlei; Shen, Yunxia; Wang, Jiping

    2012-05-01

    We evaluated the effect of short-term and long-term heroin abstinence on brain responses to heroin-related cues using functional magnetic resonance imaging (fMRI). Eighteen male heroin addicts following short-term abstinence and 19 male heroin addicts following long-term abstinence underwent fMRI scanning while viewing heroin-related and neutral images. Cue-elicited craving and withdrawal symptoms in the subjects were measured. Following short-term abstinence, greater activation was found in response to heroin cues compared to neutral cues in bilateral temporal, occipital, posterior cingulate, anterior cingulate, thalamus, cerebellum, and left hippocampus. In contrast, activations in bilateral temporal and occipital and deactivations in bilateral frontal, bilateral parietal, left posterior cingulate, insula, thalamus, dorsal striatum, and bilateral cerebellum were observed following long-term abstinence. Direct comparisons between conditions showed greater brain reactivity in response to smoking cues following short-term abstinence. In addition, short-term abstinence had more serious withdrawal symptoms than the long-term. The present findings indicate that compared to short-term, long-term abstinence manifests less serious withdrawal symptoms and significantly decreases neural responses to heroin-related cues in brain regions subserving visual sensory processing, attention, memory, and action planning. These findings suggest that long-term abstinence can decrease the salience of conditioned cues, thereby reducing the risk of relapses. The study's limitations are noted.

  6. Visual processing of words in a patient with visual form agnosia: a behavioural and fMRI study.

    Science.gov (United States)

    Cavina-Pratesi, Cristiana; Large, Mary-Ellen; Milner, A David

    2015-03-01

    Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988. Her inability to distinguish simple geometric shapes or single alphanumeric characters can be attributed to a bilateral loss of cortical area LO, a loss that has been well established through structural and functional fMRI. Yet despite this severe perceptual deficit, D.F. is able to "guess" remarkably well the identity of whole words. This paradoxical finding, which we were able to replicate more than 20 years following her initial testing, raises the question as to whether D.F. has retained specialized brain circuitry for word recognition that is able to function to some degree without the benefit of inputs from area LO. We used fMRI to investigate this, and found regions in the left fusiform gyrus, left inferior frontal gyrus, and left middle temporal cortex that responded selectively to words. A group of healthy control subjects showed similar activations. The left fusiform activations appear to coincide with the area commonly named the visual word form area (VWFA) in studies of healthy individuals, and appear to be quite separate from the fusiform face area (FFA). We hypothesize that there is a route to this area that lies outside area LO, and which remains relatively unscathed in D.F. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    Science.gov (United States)

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  8. The Effects of Audiovisual Inputs on Solving the Cocktail Party Problem in the Human Brain: An fMRI Study.

    Science.gov (United States)

    Li, Yuanqing; Wang, Fangyi; Chen, Yongbin; Cichocki, Andrzej; Sejnowski, Terrence

    2017-09-25

    At cocktail parties, our brains often simultaneously receive visual and auditory information. Although the cocktail party problem has been widely investigated under auditory-only settings, the effects of audiovisual inputs have not. This study explored the effects of audiovisual inputs in a simulated cocktail party. In our fMRI experiment, each congruent audiovisual stimulus was a synthesis of 2 facial movie clips, each of which could be classified into 1 of 2 emotion categories (crying and laughing). Visual-only (faces) and auditory-only stimuli (voices) were created by extracting the visual and auditory contents from the synthesized audiovisual stimuli. Subjects were instructed to selectively attend to 1 of the 2 objects contained in each stimulus and to judge its emotion category in the visual-only, auditory-only, and audiovisual conditions. The neural representations of the emotion features were assessed by calculating decoding accuracy and brain pattern-related reproducibility index based on the fMRI data. We compared the audiovisual condition with the visual-only and auditory-only conditions and found that audiovisual inputs enhanced the neural representations of emotion features of the attended objects instead of the unattended objects. This enhancement might partially explain the benefits of audiovisual inputs for the brain to solve the cocktail party problem. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Music Therapy Using Singing Training Improves Psychomotor Speed in Patients with Alzheimer's Disease: A Neuropsychological and fMRI Study

    Science.gov (United States)

    Satoh, Masayuki; Yuba, Toru; Tabei, Ken-ichi; Okubo, Yukari; Kida, Hirotaka; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Background/Aims To investigate the effect of singing training on the cognitive function in Alzheimer's disease (AD) patients. Methods Ten AD patients (mean age 78.1 years) participated in music therapy using singing training once a week for 6 months (music therapy group). Each session was performed with professional musicians using karaoke and a unique voice training method (the YUBA Method). Before and after the intervention period, each patient was assessed by neuropsychological batteries, and functional magnetic resonance imaging (fMRI) was performed while the patients sang familiar songs with a karaoke device. As the control group, another 10 AD patients were recruited (mean age 77.0 years), and neuropsychological assessments were performed twice with an interval of 6 months. Results In the music therapy group, the time for completion of the Japanese Raven's Colored Progressive Matrices was significantly reduced (p = 0.026), and the results obtained from interviewing the patients' caregivers revealed a significant decrease in the Neuropsychiatric Inventory score (p = 0.042) and a prolongation of the patients' sleep time (p = 0.039). The fMRI study revealed increased activity in the right angular gyrus and the left lingual gyrus in the before-minus-after subtraction analysis of the music therapy intervention. Conclusion Music therapy intervention using singing training may be useful for dementia patients by improving the neural efficacy of cognitive processing. PMID:26483829

  10. Ecphory of Autobiographical Memories: an fMRI Study on Recent and Remote Memory Retrieval

    Science.gov (United States)

    Steinvorth, Sarah; Corkin, Suzanne; Halgren, Eric

    2006-01-01

    Ecphory occurs when one recollects a past event cued by a trigger, such as a picture, odor, or name. It is a central component of autobiographical memory, which allows us to “travel mentally back in time” and re-experience specific events from our personal past. Using fMRI and focusing on the role of medial temporal lobe (MTL) structures, we investigated the brain bases of autobiographical memory and whether they change with the age of memories. Importantly, we used an ecphory task in which the remote character of the memories was ensured. The results showed that a large bilateral network supports autobiographical memory: temporal lobe, temporo-occipito-parietal junction, dorsal prefrontal cortex, medial frontal cortex, retrosplenial cortex and surrounding areas, and MTL structures. This network, including MTL structures, changed little with the age of the memories. PMID:16257547

  11. Typical and atypical neurodevelopment for face specialization: An fMRI study

    Science.gov (United States)

    Joseph, Jane E.; Zhu, Xun; Gundran, Andrew; Davies, Faraday; Clark, Jonathan D.; Ruble, Lisa; Glaser, Paul; Bhatt, Ramesh S.

    2014-01-01

    Individuals with Autism Spectrum Disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5–18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex (vmPFC), with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal-amygdala-fusiform system which is strongly linked to detecting salience and processing facial information. PMID:25479816

  12. Why Do Some Find it Hard to Disagree? An fMRI Study

    Science.gov (United States)

    Domínguez D, Juan F.; Taing, Sreyneth A.; Molenberghs, Pascal

    2016-01-01

    People often find it hard to disagree with others, but how this disposition varies across individuals or how it is influenced by social factors like other people's level of expertise remains little understood. Using functional magnetic resonance imaging (fMRI), we found that activity across a network of brain areas [comprising posterior medial frontal cortex (pMFC), anterior insula (AI), inferior frontal gyrus (IFG), lateral orbitofrontal cortex, and angular gyrus] was modulated by individual differences in the frequency with which participants actively disagreed with statements made by others. Specifically, participants who disagreed less frequently exhibited greater brain activation in these areas when they actually disagreed. Given the role of this network in cognitive dissonance, our results suggest that some participants had more trouble disagreeing due to a heightened cognitive dissonance response. Contrary to expectation, the level of expertise (high or low) had no effect on behavior or brain activity. PMID:26858629

  13. Why do some find it hard to disagree? An fMRI study

    Directory of Open Access Journals (Sweden)

    Juan F Dominguez D

    2016-01-01

    Full Text Available People often find it hard to disagree with others, but how this disposition varies across individuals or how it is influenced by social factors like other people’s level of expertise remains little understood. Using functional magnetic resonance imaging (fMRI, we found that activity across a network of brain areas (comprising posterior medial frontal cortex, anterior insula, inferior frontal gyrus, lateral orbitofrontal cortex, and angular gyrus was modulated by individual differences in the frequency with which participants actively disagreed with statements made by others. Specifically, participants who disagreed less frequently exhibited greater brain activation in these areas when they actually disagreed. Given the role of this network in cognitive dissonance, our results suggest that some participants had more trouble disagreeing due to a heightened cognitive dissonance response. Contrary to expectation, the level of expertise (high or low had no effect on behavior or brain activity.

  14. Neural correlates of social motivation: an fMRI study on power versus affiliation.

    Science.gov (United States)

    Quirin, Markus; Meyer, Frank; Heise, Nils; Kuhl, Julius; Küstermann, Ekkehard; Strüber, Daniel; Cacioppo, John T

    2013-06-01

    Power versus affiliation motivations refer to two different strivings relevant in the context of social relationships. We used functional magnetic resonance imaging (fMRI) to determine neural structures involved in power versus affiliation motivation based on an individual differences approach. Seventeen participants provided self-reports of power and affiliation motives and were presented with love, power-related, and control movie clips. The power motive predicted activity in four clusters within the left prefrontal cortex (PFC), while participants viewed power-related film clips. The affiliation motive predicted activity in the right putamen/pallidum while participants viewed love stories. The present findings extend previous research on social motivations to the level of neural functioning and suggest differential networks for power-related versus affiliation-related social motivations. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. An fMRI study of semantic processing in men with schizophrenia

    Science.gov (United States)

    Kubicki, M.; McCarley, R.W.; Nestor, P.G.; Huh, T.; Kikinis, R.; Shenton, M.E.; Wible, C.G.

    2009-01-01

    As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus

  16. Unique functional abnormalities in youth with combined marijuana use and depression: an fMRI study

    Directory of Open Access Journals (Sweden)

    Kristen A Ford

    2014-09-01

    Full Text Available Prior research has shown a relationship between early onset marijuana (MJ use and depression, however this relationship is complex and poorly understood. Here, we utilized passive music listening and fMRI to examine functional brain activation to a rewarding stimulus in 75 participants (healthy controls (HC, patients with Major Depressive Disorder (MDD, frequent MJ users (MJ, and the combination of MDD and MJ (MDD+MJ. For each participant a preferred and neutral piece of instrumental music was determined (utilizing ratings on a standardized scale, and each completed two 6-minute fMRI scans of a passive music listening task. Data underwent preprocessing and 61 participants were carried forward for analysis (17 HC, 15 MDD, 15 MJ, 14 MDD+MJ. Two statistical analyses were performed using SPM8, an ANCOVA with two factors (group x music-type and a whole brain, multiple regression analysis incorporating two predictors of interest (MJ use in past 28 days; and Beck Depression Inventory (BDI score. We identified a significant group x music-type interaction. Post hoc comparisons showed the preferred music had significantly greater activation in the MDD+MJ group in areas including the right middle and inferior frontal gyri extending into the claustrum and putamen and the anterior cingulate. No significant differences were identified in MDD, MJ or HC groups. Multiple regression analysis showed that activation in medial frontal cortex was positively correlated with amount of MJ use, and activation in areas including the insula was negatively correlated with BDI score. Results showed modulation in brain activation during passive music listening specific to MDD, frequent MJ users. This supports the suggestion that frequent MJ use, when combined with MDD, is associated with changes in neurocircuitry involved in reward-processing in ways that are absent with either frequent marijuana use or MDD alone. This could help inform clinical recommendations for youth with

  17. Spatial and Temporal Features of Superordinate Semantic Processing Studied with fMRI and EEG.

    Directory of Open Access Journals (Sweden)

    Michelle E Costanzo

    2013-07-01

    Full Text Available The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization – the extraction of general features shared by broad classes of exemplars (e.g. living vs. non-living semantic categories. We proposed that, because of the abstract nature, of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization - specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP with functional magnetic resonance imaging (fMRI to characterize subjects’ responses as they made superordinate categorical decisions (living vs. nonliving about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items.  

  18. Spatial and temporal features of superordinate semantic processing studied with fMRI and EEG.

    Science.gov (United States)

    Costanzo, Michelle E; McArdle, Joseph J; Swett, Bruce; Nechaev, Vladimir; Kemeny, Stefan; Xu, Jiang; Braun, Allen R

    2013-01-01

    The relationships between the anatomical representation of semantic knowledge in the human brain and the timing of neurophysiological mechanisms involved in manipulating such information remain unclear. This is the case for superordinate semantic categorization-the extraction of general features shared by broad classes of exemplars (e.g., living vs. non-living semantic categories). We proposed that, because of the abstract nature of this information, input from diverse input modalities (visual or auditory, lexical or non-lexical) should converge and be processed in the same regions of the brain, at similar time scales during superordinate categorization-specifically in a network of heteromodal regions, and late in the course of the categorization process. In order to test this hypothesis, we utilized electroencephalography and event related potentials (EEG/ERP) with functional magnetic resonance imaging (fMRI) to characterize subjects' responses as they made superordinate categorical decisions (living vs. non-living) about objects presented as visual pictures or auditory words. Our results reveal that, consistent with our hypothesis, during the course of superordinate categorization, information provided by these diverse inputs appears to converge in both time and space: fMRI showed that heteromodal areas of the parietal and temporal cortices are active during categorization of both classes of stimuli. The ERP results suggest that superordinate categorization is reflected as a late positive component (LPC) with a parietal distribution and long latencies for both stimulus types. Within the areas and times in which modality independent responses were identified, some differences between living and non-living categories were observed, with a more widespread spatial extent and longer latency responses for categorization of non-living items.

  19. An fMRI study of semantic processing in men with schizophrenia.

    Science.gov (United States)

    Kubicki, M; McCarley, R W; Nestor, P G; Huh, T; Kikinis, R; Shenton, M E; Wible, C G

    2003-12-01

    As a means toward understanding the neural bases of schizophrenic thought disturbance, we examined brain activation patterns in response to semantically and superficially encoded words in patients with schizophrenia. Nine male schizophrenic and 9 male control subjects were tested in a visual levels of processing (LOP) task first outside the magnet and then during the fMRI scanning procedures (using a different set of words). During the experiments visual words were presented under two conditions. Under the deep, semantic encoding condition, subjects made semantic judgments as to whether the words were abstract or concrete. Under the shallow, nonsemantic encoding condition, subjects made perceptual judgments of the font size (uppercase/lowercase) of the presented words. After performance of the behavioral task, a recognition test was used to assess the depth of processing effect, defined as better performance for semantically encoded words than for perceptually encoded words. For the scanned version only, the words for both conditions were repeated in order to assess repetition-priming effects. Reaction times were assessed in both testing scenarios. Both groups showed the expected depth of processing effect for recognition, and control subjects showed the expected increased activation of the left inferior prefrontal cortex (LIPC) under semantic encoding relative to perceptual encoding conditions as well as repetition priming for semantic conditions only. In contrast, schizophrenics showed similar patterns of fMRI activation regardless of condition. Most striking in relation to controls, patients showed decreased LIFC activation concurrent with increased left superior temporal gyrus activation for semantic encoding versus shallow encoding. Furthermore, schizophrenia subjects did not show the repetition priming effect, either behaviorally or as a decrease in LIPC activity. In patients with schizophrenia, LIFC underactivation and left superior temporal gyrus

  20. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.

    Science.gov (United States)

    Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J

    2012-02-07

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.

  1. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

    Science.gov (United States)

    Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.

    2012-01-01

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440

  2. EEG-Informed fMRI: A Review of Data Analysis Methods

    Science.gov (United States)

    Abreu, Rodolfo; Leal, Alberto; Figueiredo, Patrícia

    2018-01-01

    The simultaneous acquisition of electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD) fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest. PMID:29467634

  3. EEG-Informed fMRI: A Review of Data Analysis Methods

    Directory of Open Access Journals (Sweden)

    Rodolfo Abreu

    2018-02-01

    Full Text Available The simultaneous acquisition of electroencephalography (EEG with functional magnetic resonance imaging (fMRI is a very promising non-invasive technique for the study of human brain function. Despite continuous improvements, it remains a challenging technique, and a standard methodology for data analysis is yet to be established. Here we review the methodologies that are currently available to address the challenges at each step of the data analysis pipeline. We start by surveying methods for pre-processing both EEG and fMRI data. On the EEG side, we focus on the correction for several MR-induced artifacts, particularly the gradient and pulse artifacts, as well as other sources of EEG artifacts. On the fMRI side, we consider image artifacts induced by the presence of EEG hardware inside the MR scanner, and the contamination of the fMRI signal by physiological noise of non-neuronal origin, including a review of several approaches to model and remove it. We then provide an overview of the approaches specifically employed for the integration of EEG and fMRI when using EEG to predict the blood oxygenation level dependent (BOLD fMRI signal, the so-called EEG-informed fMRI integration strategy, the most commonly used strategy in EEG-fMRI research. Finally, we systematically review methods used for the extraction of EEG features reflecting neuronal phenomena of interest.

  4. fMRI Neurofeedback Training for Increasing Anterior Cingulate Cortex Activation in Adult Attention Deficit Hyperactivity Disorder. An Exploratory Randomized, Single-Blinded Study.

    Science.gov (United States)

    Zilverstand, Anna; Sorger, Bettina; Slaats-Willemse, Dorine; Kan, Cornelis C; Goebel, Rainer; Buitelaar, Jan K

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized by poor cognitive control/attention and hypofunctioning of the dorsal anterior cingulate cortex (dACC). In the current study, we investigated for the first time whether real-time fMRI neurofeedback (rt-fMRI) training targeted at increasing activation levels within dACC in adults with ADHD leads to a reduction of clinical symptoms and improved cognitive functioning. An exploratory randomized controlled treatment study with blinding of the participants was conducted. Participants with ADHD (n = 7 in the neurofeedback group, and n = 6 in the control group) attended four weekly MRI training sessions (60-min training time/session), during which they performed a mental calculation task at varying levels of difficulty, in order to learn how to up-regulate dACC activation. Only neurofeedback participants received continuous feedback information on actual brain activation levels within dACC. Before and after the training, ADHD symptoms and relevant cognitive functioning was assessed. Results showed that both groups achieved a significant increase in dACC activation levels over sessions. While there was no significant difference between the neurofeedback and control group in clinical outcome, neurofeedback participants showed stronger improvement on cognitive functioning. The current study demonstrates the general feasibility of the suggested rt-fMRI neurofeedback training approach as a potential novel treatment option for ADHD patients. Due to the study's small sample size, potential clinical benefits need to be further investigated in future studies. ISRCTN12390961.

  5. How Does Your Brain See “Living” Circles: A Study of Animacy and Intention Using fMRI

    Directory of Open Access Journals (Sweden)

    P McAleer

    2011-04-01

    Full Text Available It is widely reported that the perception of animacy can occur from simple displays of moving shapes with participants attributing such qualities as goals, beliefs, and intentions. Furthermore, via neuroimaging studies, a network of brain areas, including regions of the temporal and frontal lobes, has been shown to process the percept. However, problems exist that prevent the bridging of fMRI studies on the perception of animacy and intention in shapes to the same percept of human movement. First, the issue of prior displays being poorly controlled in terms of low-level visual cues blurs the actual root of the effect. Second, the general use of synthetically generated displays and their relationship to actual human movement: a problem previously addressed in behavioural studies via a systematic reduction of live visual footage of human actors. Therefore, we propose experiments that incorporate both synthetically generated animacy stimuli and displays derived from human motion. Following the classic Tremoulet and Feldman displays, stimuli are created that allow for manipulation of animacy and intent whilst controlling low-level visual cues. These displays are then used in a whole-brain fMRI study to locate neural regions sensitive to the perception of animacy and intention. Finally, within these regions, a region-of-interest analysis is performed to examine the change in brain activation from viewing animacy displays derived from human movement with varying intent (eg, chasing or following. This study develops the relationship between previous animacy literature and the real-world perception of intent.

  6. Exploring neural dysfunction in 'clinical high risk' for psychosis: a quantitative review of fMRI studies.

    Science.gov (United States)

    Dutt, Anirban; Tseng, Huai-Hsuan; Fonville, Leon; Drakesmith, Mark; Su, Liang; Evans, John; Zammit, Stanley; Jones, Derek; Lewis, Glyn; David, Anthony S

    2015-02-01

    Individuals at clinical high risk (CHR) of developing psychosis present with widespread functional abnormalities in the brain. Cognitive deficits, including working memory (WM) problems, as commonly elicited by n-back tasks, are observed in CHR individuals. However, functional MRI (fMRI) studies, comprising a heterogeneous cluster of general and social cognition paradigms, have not necessarily demonstrated consistent and conclusive results in this population. Hence, a comprehensive review of fMRI studies, spanning almost one decade, was carried out to observe for general trends with respect to brain regions and cognitive systems most likely to be dysfunctional in CHR individuals. 32 studies were included for this review, out of which 22 met the criteria for quantitative analysis using activation likelihood estimation (ALE). Task related contrast activations were firstly analysed by comparing CHR and healthy control participants in the total pooled sample, followed by a comparison of general cognitive function studies (excluding social cognition paradigms), and finally by only looking at n-back working memory task based studies. Findings from the ALE implicated four key dysfunctional and distinct neural regions in the CHR group, namely the right inferior parietal lobule (rIPL), the left medial frontal gyrus (lmFG), the left superior temporal gyrus (lSTG) and the right fronto-polar cortex (rFPC) of the superior frontal gyrus (SFG). Narrowing down to relatively few significant dysfunctional neural regions is a step forward in reducing the apparent ambiguity of overall findings, which would help to target specific neural regions and pathways of interest for future research in CHR populations. Copyright © 2014. Published by Elsevier Ltd.

  7. The Neural Substrates for Letter String Readings in The Normal and Reverse Directions: An fMRI Study

    Science.gov (United States)

    Ge, Sheng; Saito, Takashi; Wu, Jing-Long; Ogasawara, Jun-Ichi; Yamauchi, Shuichi; Matsunaga, Naofumi; Iramina, Keiji

    In order to investigate the difference in cortical activations between reading letter strings in the normal direction and the reverse direction, an fMRI study was conducted. In this study, the cortical activations elicited by Japanese letter string reading and Chinese letter string reading were investigated. The subjects performed the normal direction reading task (read letter strings from left to right), and the reverse direction reading task (read letter strings from right to left). According to the experimental results, the activated brain regions during the normal and the reverse direction reading tasks were compared. It was found that visuospatial transformation was involved in the reverse direction reading task, while this function was not significant during the normal direction reading task. Furthermore, we found that there was no significant difference in cortical activation between Japanese and Chinese letter string readings.

  8. Altered fractional amplitude of low frequency fluctuation in premenstrual syndrome: A resting state fMRI study.

    Science.gov (United States)

    Liao, Hai; Duan, Gaoxiong; Liu, Peng; Liu, Yanfei; Pang, Yong; Liu, Huimei; Tang, Lijun; Tao, Jien; Wen, Danhong; Li, Shasha; Liang, Lingyan; Deng, Demao

    2017-08-15

    Premenstrual syndrome (PMS) is becoming highly prevalent among female and is characterized by emotional, physical and behavior symptoms. Previous evidence suggested functional dysregulation of female brain was expected to be involved in the etiology of PMS. The aim of present study was to evaluate the alterations of spontaneous brain activity in PMS patients based on functional magnetic resonance imaging (fMRI). 20 PMS patients and 21 healthy controls underwent resting-state fMRI scanning during luteal phase. All participants were asked to complete a prospective daily record of severity of problems (DRSP) questionnaire. Compared with healthy controls, the results showed that PMS patients had increased fALFF in bilateral precuneus, left hippocampus and left inferior temporal cortex, and decreased fALFF in bilateral anterior cingulate cortex (ACC) and cerebellum at luteal phase. Moreover, the DRSP scores of PMS patients were negatively correlated with the mean fALFF in ACC and positively correlated with the fALFF in precuneus. (1) the study did not investigate whether or not abnormal brain activity differences between groups in mid-follicular phase, and within-group changes. between phases.(2) it was relatively limited sample size and the participants were young; (3) fALFF could not provide us with more holistic information of brain network;(4) the comparisons of PMS and premenstrual dysphoric disorder (PMDD) were not involved in the study. The present study shows abnormal spontaneous brain activity in PMS patients revealed by fALFF, which could provide neuroimaging evidence to further improve our understanding of the underlying neural mechanism of PMS. Copyright © 2017. Published by Elsevier B.V.

  9. Coping with Self-Threat and the Evaluation of Self-Related Traits: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Andreas Hoefler

    Full Text Available A positive view of oneself is important for a healthy lifestyle. Self-protection mechanisms such as suppressing negative self-related information help us to maintain a positive view of ourselves. This is of special relevance when, for instance, a negative test result threatens our positive self-view. To date, it is not clear which brain areas support self-protective mechanisms under self-threat. In the present functional magnetic resonance imaging (fMRI study the participants (N = 46 received a (negative vs. positive performance test feedback before entering the scanner. In the scanner, the participants were instructed to ascribe personality traits either to themselves or to a famous other. Our results showed that participants responded slower to negative self-related traits compared to positive self-related traits. High self-esteem individuals responded slower to negative traits compared to low self-esteem individuals following a self-threat. This indicates that high self-esteem individuals engage more in self-enhancing strategies after a threat by inhibiting negative self-related information more successfully than low self-esteem individuals. This behavioral pattern was mirrored in the fMRI data as dACC correlated positively with trait self-esteem. Generally, ACC activation was attenuated under threat when participants evaluated self-relevant traits and even more for negative self-related traits. We also found that activation in the ACC was negatively correlated with response times, indicating that greater activation of the ACC is linked to better access (faster response to positive self-related traits and to impaired access (slower response to negative self-related traits. These results confirm the ACC function as important in managing threatened self-worth but indicate differences in trait self-esteem levels. The fMRI analyses also revealed a decrease in activation within the left Hippocampus and the right thalamus under threat. This

  10. Coping with Self-Threat and the Evaluation of Self-Related Traits: An fMRI Study

    Science.gov (United States)

    Corcoran, Katja; Ebner, Franz

    2015-01-01

    A positive view of oneself is important for a healthy lifestyle. Self-protection mechanisms such as suppressing negative self-related information help us to maintain a positive view of ourselves. This is of special relevance when, for instance, a negative test result threatens our positive self-view. To date, it is not clear which brain areas support self-protective mechanisms under self-threat. In the present functional magnetic resonance imaging (fMRI) study the participants (N = 46) received a (negative vs. positive) performance test feedback before entering the scanner. In the scanner, the participants were instructed to ascribe personality traits either to themselves or to a famous other. Our results showed that participants responded slower to negative self-related traits compared to positive self-related traits. High self-esteem individuals responded slower to negative traits compared to low self-esteem individuals following a self-threat. This indicates that high self-esteem individuals engage more in self-enhancing strategies after a threat by inhibiting negative self-related information more successfully than low self-esteem individuals. This behavioral pattern was mirrored in the fMRI data as dACC correlated positively with trait self-esteem. Generally, ACC activation was attenuated under threat when participants evaluated self-relevant traits and even more for negative self-related traits. We also found that activation in the ACC was negatively correlated with response times, indicating that greater activation of the ACC is linked to better access (faster response) to positive self-related traits and to impaired access (slower response) to negative self-related traits. These results confirm the ACC function as important in managing threatened self-worth but indicate differences in trait self-esteem levels. The fMRI analyses also revealed a decrease in activation within the left Hippocampus and the right thalamus under threat. This indicates that a down

  11. Framing effects reveal discrete lexical-semantic and sublexical procedures in reading: an fMRI study.

    Science.gov (United States)

    Danelli, Laura; Marelli, Marco; Berlingeri, Manuela; Tettamanti, Marco; Sberna, Maurizio; Paulesu, Eraldo; Luzzatti, Claudio

    2015-01-01

    According to the dual-route model, a printed string of letters can be processed by either a grapheme-to-phoneme conversion (GPC) route or a lexical-semantic route. Although meta-analyses of the imaging literature support the existence of distinct but interacting reading procedures, individual neuroimaging studies that explored neural correlates of reading yielded inconclusive results. We used a list-manipulation paradigm to provide a fresh empirical look at this issue and to isolate specific areas that underlie the two reading procedures. In a lexical condition, we embedded disyllabic Italian words (target stimuli) in lists of either loanwords or trisyllabic Italian words with unpredictable stress position. In a GPC condition, similar target stimuli were included within lists of pseudowords. The procedure was designed to induce participants to emphasize either the lexical-semantic or the GPC reading procedure, while controlling for possible linguistic confounds and keeping the reading task requirements stable across the two conditions. Thirty-three adults participated in the behavioral study, and 20 further adult participants were included in the fMRI study. At the behavioral level, we found sizeable effects of the framing manipulations that included slower voice onset times for stimuli in the pseudoword frames. At the functional anatomical level, the occipital and temporal regions, and the intraparietal sulcus were specifically activated when subjects were reading target words in a lexical frame. The inferior parietal and anterior fusiform cortex were specifically activated in the GPC condition. These patterns of activation represented a valid classifying model of fMRI images associated with target reading in both frames in the multi-voxel pattern analyses. Further activations were shared by the two procedures in the occipital and inferior parietal areas, in the premotor cortex, in the frontal regions and the left supplementary motor area. These regions are most

  12. Single trial classification for the categories of perceived emotional facial expressions: an event-related fMRI study

    Science.gov (United States)

    Song, Sutao; Huang, Yuxia; Long, Zhiying; Zhang, Jiacai; Chen, Gongxiang; Wang, Shuqing

    2016-03-01

    Recently, several studies have successfully applied multivariate pattern analysis methods to predict the categories of emotions. These studies are mainly focused on self-experienced emotions, such as the emotional states elicited by music or movie. In fact, most of our social interactions involve perception of emotional information from the expressions of other people, and it is an important basic skill for humans to recognize the emotional facial expressions of other people in a short time. In this study, we aimed to determine the discriminability of perceived emotional facial expressions. In a rapid event-related fMRI design, subjects were instructed to classify four categories of facial expressions (happy, disgust, angry and neutral) by pressing different buttons, and each facial expression stimulus lasted for 2s. All participants performed 5 fMRI runs. One multivariate pattern analysis method, support vector machine was trained to predict the categories of facial expressions. For feature selection, ninety masks defined from anatomical automatic labeling (AAL) atlas were firstly generated and each were treated as the input of the classifier; then, the most stable AAL areas were selected according to prediction accuracies, and comprised the final feature sets. Results showed that: for the 6 pair-wise classification conditions, the accuracy, sensitivity and specificity were all above chance prediction, among which, happy vs. neutral , angry vs. disgust achieved the lowest results. These results suggested that specific neural signatures of perceived emotional facial expressions may exist, and happy vs. neutral, angry vs. disgust might be more similar in information representation in the brain.

  13. Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study.

    Directory of Open Access Journals (Sweden)

    Akinwunmi Oni-Orisan

    Full Text Available Functional magnetic resonance imaging (fMRI studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity. However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (>2 years post injury and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system.

  14. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  15. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  16. Neural differences between intrinsic reasons for doing versus extrinsic reasons for doing: an fMRI study.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall; Xue, Yiqun; Xiong, Jinhu

    2012-05-01

    The contemporary neural understanding of motivation is based almost exclusively on the neural mechanisms of incentive motivation. Recognizing this as a limitation, we used event-related functional magnetic resonance imaging (fMRI) to pursue the viability of expanding the neural understanding of motivation by initiating a pioneering study of intrinsic motivation by scanning participants' neural activity when they decided to act for intrinsic reasons versus when they decided to act for extrinsic reasons. As expected, intrinsic reasons for acting more recruited insular cortex activity while extrinsic reasons for acting more recruited posterior cingulate cortex (PCC) activity. The results demonstrate that engagement decisions based on intrinsic motivation are more determined by weighing the presence of spontaneous self-satisfactions such as interest and enjoyment while engagement decisions based on extrinsic motivation are more determined by weighing socially-acquired stored values as to whether the environmental incentive is attractive enough to warrant action.

  17. Aging affects both perceptual and lexical/semantic components of word stem priming: An event-related fMRI study

    NARCIS (Netherlands)

    Daselaar, S.M.; Veltman, D.J.; Rombouts, S.A.R.B.; Raaijmakers, J.G.; Jonker, C.

    2005-01-01

    In this event-related fMRI study, brain activity patterns were compared in extensive groups of young (N = 25) and older (N = 38) adults, while they were performing a word stem completion priming task. Based on behavioral findings, we tested the hypothesis that aging affects only the

  18. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    Science.gov (United States)

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  19. Neural signatures of economic parameters during decision-making: a functional MRI (FMRI), electroencephalography (EEG) and autonomic monitoring study.

    Science.gov (United States)

    Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D

    2012-01-01

    Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing

  20. Functional changes in people with different hearing status and experiences of using Chinese sign language: an fMRI study.

    Science.gov (United States)

    Li, Qiang; Xia, Shuang; Zhao, Fei; Qi, Ji

    2014-01-01

    The purpose of this study was to assess functional changes in the cerebral cortex in people with different sign language experience and hearing status whilst observing and imitating Chinese Sign Language (CSL) using functional magnetic resonance imaging (fMRI). 50 participants took part in the study, and were divided into four groups according to their hearing status and experience of using sign language: prelingual deafness signer group (PDS), normal hearing non-signer group (HnS), native signer group with normal hearing (HNS), and acquired signer group with normal hearing (HLS). fMRI images were scanned from all subjects when they performed block-designed tasks that involved observing and imitating sign language stimuli. Nine activation areas were found in response to undertaking either observation or imitation CSL tasks and three activated areas were found only when undertaking the imitation task. Of those, the PDS group had significantly greater activation areas in terms of the cluster size of the activated voxels in the bilateral superior parietal lobule, cuneate lobe and lingual gyrus in response to undertaking either the observation or the imitation CSL task than the HnS, HNS and HLS groups. The PDS group also showed significantly greater activation in the bilateral inferior frontal gyrus which was also found in the HNS or the HLS groups but not in the HnS group. This indicates that deaf signers have better sign language proficiency, because they engage more actively with the phonetic and semantic elements. In addition, the activations of the bilateral superior temporal gyrus and inferior parietal lobule were only found in the PDS group and HNS group, and not in the other two groups, which indicates that the area for sign language processing appears to be sensitive to the age of language acquisition. After reading this article, readers will be able to: discuss the relationship between sign language and its neural mechanisms. Copyright © 2014 Elsevier Inc

  1. The Difference between Aesthetic Appreciation of Artistic and Popular Music: Evidence from an fMRI Study

    Science.gov (United States)

    Luo, Qiuling; Mo, Lei

    2016-01-01

    To test the hypothesis that pleasure from artistic music is intellectual while that from popular music is physiological, this study investigated the different functional mechanisms between aesthetic appreciation of artistic and popular music using fMRI. 18 male non-musicians were scanned while they performed an aesthetic rating task for excerpts of artistic music, popular music and musical notes playing and singing (control). The rating scores of artistic and popular music excerpts were both significantly higher than that of control materials while the scores of them were not different. The fMRI results showed both artistic and popular conditions activated the VS and vmPFC, compared with control condition. When contrasted popular and artistic condition directly, we found popular music activated right putamen, while artistic music activated right mPFC. By parametric analysis, we found the activation of right putamen tracked the aesthetic ratings of popular music, whereas the BOLD signal in right mPFC tracked the aesthetic ratings of artistic music. These results indicate the reward induced by popular music is closer to a primary reward while that induced by artistic music is closer to a secondary reward. We also found artistic music activated ToM areas, including PCC/PC, arMFC and TPJ, when compared with popular music. And these areas also tracked aesthetic ratings of artistic music but not those of popular music. These results imply that the pleasure from former comes from cognitive empathy. In conclusion, this study gives clear neuronal evidences supporting the view that artistic music is of intelligence and social cognition involved while the popular music is of physiology. PMID:27814379

  2. Temporo-parietal dysfunction in Tourette syndrome: Insights from an fMRI study of Theory of Mind.

    Science.gov (United States)

    Eddy, Clare M; Cavanna, Andrea E; Rickards, Hugh E; Hansen, Peter C

    2016-10-01

    Tourette syndrome (TS) is a neurodevelopmental disorder characterized by tics, repetitive movements and vocalizations which are prompted by a sensory-cognitive premonitory urge. Complex tics include environmentally dependent social behaviors such as echoing of other people's speech and actions. Recent studies have suggested that adults with TS can show differences to controls in Theory of Mind (ToM): reasoning about mental states (e.g. beliefs, emotions). In this study, twenty-five adults with uncomplicated TS (no co-morbid disorders, moderate tic severity), and twenty-five healthy age and gender matched controls were scanned with fMRI during an established ToM task. Neural activity was contrasted across ToM trials involving reasoning about false-belief, and matched trials requiring judgments about physical states rather than mental states. Contrasting task conditions uncovered differential fMRI activation in TS during ToM involving the right temporo-parietal junction (TPJ), right amygdala and posterior cingulate. Further analysis revealed that activity within the right TPJ as localised by this task covaried with the severity of symptoms including echophenomena, impulse control problems and premonitory urges in TS. Amygdala activation was also linked to premonitory urges, while activity in the left TPJ during ToM was linked to ratings of non-obscene socially inappropriate symptoms. These findings indicate that patients with TS exhibit atypical functional activation within key neural substrates involved in ToM. More generally, our data could highlight an important role for TPJ dysfunction in driving compulsive behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Difference between Aesthetic Appreciation of Artistic and Popular Music: Evidence from an fMRI Study.

    Science.gov (United States)

    Huang, Ping; Huang, Hanhua; Luo, Qiuling; Mo, Lei

    2016-01-01

    To test the hypothesis that pleasure from artistic music is intellectual while that from popular music is physiological, this study investigated the different functional mechanisms between aesthetic appreciation of artistic and popular music using fMRI. 18 male non-musicians were scanned while they performed an aesthetic rating task for excerpts of artistic music, popular music and musical notes playing and singing (control). The rating scores of artistic and popular music excerpts were both significantly higher than that of control materials while the scores of them were not different. The fMRI results showed both artistic and popular conditions activated the VS and vmPFC, compared with control condition. When contrasted popular and artistic condition directly, we found popular music activated right putamen, while artistic music activated right mPFC. By parametric analysis, we found the activation of right putamen tracked the aesthetic ratings of popular music, whereas the BOLD signal in right mPFC tracked the aesthetic ratings of artistic music. These results indicate the reward induced by popular music is closer to a primary reward while that induced by artistic music is closer to a secondary reward. We also found artistic music activated ToM areas, including PCC/PC, arMFC and TPJ, when compared with popular music. And these areas also tracked aesthetic ratings of artistic music but not those of popular music. These results imply that the pleasure from former comes from cognitive empathy. In conclusion, this study gives clear neuronal evidences supporting the view that artistic music is of intelligence and social cognition involved while the popular music is of physiology.

  4. Effect of emotional arousal on inter-temporal decision-making: an fMRI study

    OpenAIRE

    Sohn, Jin-Hun; Kim, Hyo-Eun; Sohn, Sunju; Seok, Ji-Woo; Choi, Damee; Watanuki, Shigeki

    2015-01-01

    Background Previous research has shown that emotion can significantly impact decision-making in humans. The current study examined whether or not and how situationally induced emotion influences people to make inter-temporal choices. Methods Affective pictures were used as experiment stimuli to provoke emotion, immediately followed by subjects? performance of a delay-discounting task to measure impulsivity during functional magnetic resonance imaging. Results Results demonstrate a subsequent ...

  5. Visioning in the brain: an fMRI study of inspirational coaching and mentoring.

    Science.gov (United States)

    Jack, Anthony I; Boyatzis, Richard E; Khawaja, Masud S; Passarelli, Angela M; Leckie, Regina L

    2013-01-01

    Effective coaching and mentoring is crucial to the success of individuals and organizations, yet relatively little is known about its neural underpinnings. Coaching and mentoring to the Positive Emotional Attractor (PEA) emphasizes compassion for the individual's hopes and dreams and has been shown to enhance a behavioral change. In contrast, coaching to the Negative Emotional Attractor (NEA), by focusing on externally defined criteria for success and the individual's weaknesses in relation to them, does not show sustained change. We used fMRI to measure BOLD responses associated with these two coaching styles. We hypothesized that PEA coaching would be associated with increased global visual processing and with engagement of the parasympathetic nervous system (PNS), while the NEA coaching would involve greater engagement of the sympathetic nervous system (SNS). Regions showing more activity in PEA conditions included the lateral occipital cortex, superior temporal cortex, medial parietal, subgenual cingulate, nucleus accumbens, and left lateral prefrontal cortex. We relate these activations to visioning, PNS activity, and positive affect. Regions showing more activity in NEA conditions included medial prefrontal regions and right lateral prefrontal cortex. We relate these activations to SNS activity, self-trait attribution and negative affect.

  6. An fMRI study to investigate auditory attention. A model of the cocktail party phenomenon

    International Nuclear Information System (INIS)

    Nakai, Toshiharu; Kato, Chikako; Matsuo, Kayako

    2005-01-01

    In human life, discrimination of a target voice from other voices or sounds is indispensable, and inability for such discrimination results in sensory aphasia. To investigate the neuronal basis of the attentional system for human voices, we evaluated brain activity during listening comprehension tasks using functional magnetic resonance imaging (fMRI) at 3T. Diotic listening comprehension tasks, in which a narration was superimposed by another given by the same speaker (SV experiment) or by a different speaker (DV experiment), were presented to normal volunteers. The story indicated in the baseline task blocks, in which only one narration was presented, was intensively followed during the superimposed task blocks. In each experiment, 6 task blocks, 3 blocks for each condition, and 7 rest blocks were alternatively repeated, and the contrast of the superimposed condition to the baseline condition in each session was obtained. In the DV experiment, compared with the control condition, activation in Wernicke's area (BA22) was increased. In the SV experiment, activation in the frontal association cortex (BA6, BA9/46, BA32, BA13/47) was additionally increased. These results suggested that difficulty in phonological processing to discriminate human voices calls for further semantic, syntactic, and prosodic processing, as well as augmented selective attention. (author)

  7. Pain Perception Can Be Modulated by Mindfulness Training: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    I-Wen Su

    2016-11-01

    Full Text Available The multi-dimensional nature of pain renders difficult a holistic understanding of it. The conceptual framework of pain is said to be cognitive-evaluative, in addition to being sensory-discriminative and affective-motivational. To compare participants’ brain-behavior response before and after a six-week mindfulness-based stress reduction (MBSR training course on mindfulness in relation to pain modulation, three questionnaires (the Dallas Pain Questionnaire, Short Form McGill Pain Questionnaire-SFMPQ, and Kentucky Inventory of Mindfulness as well as resting-state functional magnetic resonance imaging (fMRI were administered to participants, divided into a pain-afflicted group (N=18 and a control group (N=16. Our results showed that the pain-afflicted group experienced significantly less pain after the mindfulness treatment than before, as measured by the SFMPQ. In conjunction, an increased connection from the anterior insular cortex (AIC to the dorsal anterior midcingulate cortex (daMCC was observed in the post-training pain-afflicted group and a significant correlation was found between AIC-daMCC connectivity and SFMPQ scores. The results suggest that mindfulness training can modulate the brain network dynamics underlying the subjective experience of pain.

  8. Situation and person attributions under spontaneous and intentional instructions: an fMRI study

    Science.gov (United States)

    Kestemont, Jenny; Vandekerckhove, Marie; Ma, Ning; Van Hoeck, Nicole

    2013-01-01

    This functional magnetic resonance imaging (fMRI) research explores how observers make causal beliefs about an event in terms of the person or situation. Thirty-four participants read various short descriptions of social events that implied either the person or the situation as the cause. Half of them were explicitly instructed to judge whether the event was caused by something about the person or the situation (intentional inferences), whereas the other half was instructed simply to read the material carefully (spontaneous inferences). The results showed common activation in areas related to mentalizing, across all types of causes or instructions (posterior superior temporal sulcus, temporo-parietal junction, precuneus). However, the medial prefrontal cortex was activated only under spontaneous instructions, but not under intentional instruction. This suggests a bias toward person attributions (e.g. fundamental attribution bias). Complementary to this, intentional situation attributions activated a stronger and more extended network compared to intentional person attributions, suggesting that situation attributions require more controlled, extended and broader processing of the information. PMID:22345370

  9. How verbal and spatial manipulation networks contribute to calculation: An fMRI study

    International Nuclear Information System (INIS)

    Zago, L.; Petit, L.; Turbelin, M.R.; Anderson, F.; Vigneau, M.; Tzourio-Mazoyer, N.

    2008-01-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intra-parietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and non-symbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with non-symbolic material. (authors)

  10. Visual attention deficits in Alzheimer's disease--a fMRI study

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Wang Wei; Yang Yanhui; Zhang Dexuan; Wang Yan; Li Ke; Yan Bin

    2005-01-01

    Objective: To investigate the attention level and p robe the neuro-anatomic basis of visual attention deficits, and to identify its essential causes in AD patients by using functional MRI. Methods: Thirteen patients with AD and 13 healthy subjects of similar age and gender ratio participated in the experiment designed with two visual search tasks. The first was a conjunction task, where two features were presented in the array and spatial attention and feature binding were required. The second task was subset search, where two features were also presented but only one of them was needed in order to group stimuli together (the subset) without the need for feature binding. The fMRI data were collected on a Siemens 1.5 T Sonata MRI system and analyzed by statistical parametric mapping software (SPM 99) to generate the activation map. Results: Although two groups revealed similar networks engaged in different search tasks, including the parietal lobe, frontal lobe, occipital regions, primary visual cortex, and some subcortical structures, there were remarkable differences in the extent of activation of these brain regions between patients and controls. The less activation was demonstrated in the bilateral parietal lobes and left frontal regions, especially in the subset search, in AD patients. Conclusion: The attention deficits in AD patients were caused by 'feature binding' problem and 'grouping' inefficiency. The less activation mainly located in the parietal cortex (unable to switch the focus of their attention 'window' in different spatial locations) , with anterior cingulate and the frontal lobes dysfunction. (authors)

  11. Intense passionate love attenuates cigarette cue-reactivity in nicotine-deprived smokers: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Xiaomeng Xu

    Full Text Available Self-expanding experiences like falling in love or engaging in novel, exciting and interesting activities activate the same brain reward mechanism (mesolimbic dopamine pathway that reinforces drug use and abuse, including tobacco smoking. This suggests the possibility that reward from smoking is substitutable by self-expansion (through competition with the same neural system, potentially aiding cessation efforts. Using a model of self-expansion in the context of romantic love, the present fMRI experiment examined whether, among nicotine-deprived smokers, relationship self-expansion is associated with deactivation of cigarette cue-reactivity regions. Results indicated that among participants who were experiencing moderate levels of craving, cigarette cue-reactivity regions (e.g., cuneus and posterior cingulate cortex showed significantly less activation during self-expansion conditions compared with control conditions. These results provide evidence that rewards from one domain (self-expansion can act as a substitute for reward from another domain (nicotine to attenuate cigarette cue reactivity.

  12. Intense passionate love attenuates cigarette cue-reactivity in nicotine-deprived smokers: an FMRI study.

    Science.gov (United States)

    Xu, Xiaomeng; Wang, Jin; Aron, Arthur; Lei, Wei; Westmaas, J Lee; Weng, Xuchu

    2012-01-01

    Self-expanding experiences like falling in love or engaging in novel, exciting and interesting activities activate the same brain reward mechanism (mesolimbic dopamine pathway) that reinforces drug use and abuse, including tobacco smoking. This suggests the possibility that reward from smoking is substitutable by self-expansion (through competition with the same neural system), potentially aiding cessation efforts. Using a model of self-expansion in the context of romantic love, the present fMRI experiment examined whether, among nicotine-deprived smokers, relationship self-expansion is associated with deactivation of cigarette cue-reactivity regions. Results indicated that among participants who were experiencing moderate levels of craving, cigarette cue-reactivity regions (e.g., cuneus and posterior cingulate cortex) showed significantly less activation during self-expansion conditions compared with control conditions. These results provide evidence that rewards from one domain (self-expansion) can act as a substitute for reward from another domain (nicotine) to attenuate cigarette cue reactivity.

  13. Neural correlates of incidental memory in mild cognitive impairment: an fMRI study.

    Science.gov (United States)

    Mandzia, Jennifer L; McAndrews, Mary Pat; Grady, Cheryl L; Graham, Simon J; Black, Sandra E

    2009-05-01

    Behaviour and fMRI brain activation patterns were compared during encoding and recognition tasks in mild cognitive impairment (MCI) (n=14) and normal controls (NC) (n=14). Deep (natural vs. man-made) and shallow (color vs. black and white) decisions were made at encoding and pictures from each condition were presented for yes/no recognition 20 min later. MCI showed less inferior frontal activation during deep (left only) and superficial encoding (bilaterally) and in both medial temporal lobes (MTL). When performance was equivalent (recognition of words encoded superficially), MTL activation was similar for the two groups, but during recognition testing of deeply encoded items NC showed more activation in both prefrontal and left MTL region. In a region of interest analysis, the extent of activation during deep encoding in the parahippocampi bilaterally and in left hippocampus correlated with subsequent recognition accuracy for those items in controls but not in MCI, which may reflect the heterogeneity of activation responses in conjunction with different degrees of pathology burden and progression status in the MCI group.

  14. Supernatural believers attribute more intentions to random movement than skeptics: an fMRI study.

    Science.gov (United States)

    Riekki, Tapani; Lindeman, Marjaana; Raij, Tuukka T

    2014-01-01

    A host of research has attempted to explain why some believe in the supernatural and some do not. One suggested explanation for commonly held supernatural beliefs is that they are a by-product of theory of mind (ToM) processing. However, this does not explain why skeptics with intact ToM processes do not believe. We employed fMRI to investigate activation differences in ToM-related brain circuitries between supernatural believers (N = 12) and skeptics (N = 11) while they watched 2D animations of geometric objects moving intentionally or randomly and rated the intentionality of the animations. The ToM-related circuitries in the medial prefrontal cortex (mPFC) were localized by contrasting intention-rating-related and control-rating-related brain activation. Compared with the skeptics, the supernatural believers rated the random movements as more intentional and had stronger activation of the ToM-related circuitries during the animation with random movement. The strength of the ToM-related activation covaried with the intentionality ratings. These findings provide evidence that differences in ToM-related activations are associated with supernatural believers' tendency to interpret random phenomena in mental terms. Thus, differences in ToM processing may contribute to differences between believing and unbelieving.

  15. Impaired sense of agency in functional movement disorders: An fMRI study.

    Directory of Open Access Journals (Sweden)

    Fatta B Nahab

    Full Text Available The sense of agency (SA is an established framework that refers to our ability to exert and perceive control over our own actions. Having an intact SA provides the basis for the human perception of voluntariness, while impairments in SA are hypothesized to lead to the perception of movements being involuntary that may be seen many neurological or psychiatric disorders. Individuals with functional movement disorders (FMD experience a lack of control over their movements, yet these movements appear voluntary by physiology. We used fMRI to explore whether alterations in SA in an FMD population could explain why these patients feel their movements are involuntary. We compared the FMD group to a control group that was previously collected using an ecologically valid, virtual-reality movement paradigm that could modulate SA. We found selective dysfunction of the SA neural network, whereby the dorsolateral prefrontal cortex and pre-supplementary motor area on the right did not respond differentially to the loss of movement control. These findings provide some of the strongest evidence to date for a physiological basis underlying these disabling disorders.

  16. Situation and person attributions under spontaneous and intentional instructions: an fMRI study.

    Science.gov (United States)

    Kestemont, Jenny; Vandekerckhove, Marie; Ma, Ning; Van Hoeck, Nicole; Van Overwalle, Frank

    2013-06-01

    This functional magnetic resonance imaging (fMRI) research explores how observers make causal beliefs about an event in terms of the person or situation. Thirty-four participants read various short descriptions of social events that implied either the person or the situation as the cause. Half of them were explicitly instructed to judge whether the event was caused by something about the person or the situation (intentional inferences), whereas the other half was instructed simply to read the material carefully (spontaneous inferences). The results showed common activation in areas related to mentalizing, across all types of causes or instructions (posterior superior temporal sulcus, temporo-parietal junction, precuneus). However, the medial prefrontal cortex was activated only under spontaneous instructions, but not under intentional instruction. This suggests a bias toward person attributions (e.g. fundamental attribution bias). Complementary to this, intentional situation attributions activated a stronger and more extended network compared to intentional person attributions, suggesting that situation attributions require more controlled, extended and broader processing of the information.

  17. Neuroticism related differences in the functional neuroanatomical correlates of multitasking. An fMRI study.

    Science.gov (United States)

    Szameitat, Andre J; Saylik, Rahmi; Parton, Andrew

    2016-12-02

    It is known that neuroticism impairs cognitive performance mostly in difficult tasks, but not so much in easier tasks. One pervasive situation of this type is multitasking, in which the combination of two simple tasks creates a highly demanding dual-task, and consequently high neurotics show higher dual-task costs than low neurotics. However, the functional neuroanatomical correlates of these additional performance impairments in high neurotics are unknown. To test for this, we assessed brain activity by means of functional magnetic resonance imaging (fMRI) in 17 low and 15 high neurotics while they were performing a demanding dual-task and the less demanding component tasks as single-tasks. Behavioural results showed that performance (response times and error rates) was lower in the dual-task than in the single-tasks (dual-task costs), and that these dual-task costs were significantly higher in high neurotics. Imaging data showed that high neurotics showed less dual-task specific activation in lateral (mainly middle frontal gyrus) and medial prefrontal cortices. We conclude that high levels of neuroticism impair behavioural performance in demanding tasks, and that this impairment is accompanied by reduced activation of the task-associated brain areas. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Localization of Human Cortical Areas Underlying Glossiness Perception: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Yuichi Sakano

    2011-05-01

    Full Text Available We conducted two fMRI experiments to clarify what cortical areas are involved in perception of surface glossiness. To dissociate activations caused by glossiness from those caused by low-level features such as luminance and luminance contrast of the stimulus, we utilized the perceptual glossiness constancy (Experiment 1 and the selective attention technique (Experiment 2. In Experiment 1, subjects viewed glossy or matte objects under bright or dim illumination. The mean luminance and luminance RMS contrast of glossy objects under dim illumination were lower than those of matte objects under bright illumination. Thus, if certain areas are more activated by the former stimulus than the latter, the activation differences can be explained by the differences in surface glossiness but not by the differences in mean luminance or luminance RMS contrast of the stimulus. In Experiment 2, subjects judged whether the paired objects were the same or different in terms of glossiness, 3D form, or 3D orientation. If certain areas are more activated during the glossiness discrimination task than the other two tasks, it is suggested that the areas are involved in glossiness perception. Common areas identified as those involved in glossiness perception in both experiments are bilateral ventral occipital areas.

  19. Old Proverbs in new Skins – An fMRI Study on Defamiliarization

    Directory of Open Access Journals (Sweden)

    Isabel C Bohrn

    2012-07-01

    Full Text Available We investigated how processing fluency and defamiliarization contribute to the affective and aesthetic processing of reading in an event-related fMRI experiment with 26 participants. We compared the neural correlates of processing (a familiar German proverbs, (b unfamiliar proverbs, (c twisted variations which altered the concept of the original proverb (anti-proverbs, (d variations with incorrect wording but the same concept as the original proverb (violated proverbs, and (e non-rhetorical sentences. We report processing differences between anti-proverbs and violated proverbs. Anti-proverbs triggered a process of affective evaluation relying on self-referential thinking and semantic memory in contrast to violated proverbs, which recruited the frontotemporal attention and error detection network. In consistence with the coarse semantic coding theory, proverb familiarity affected lateralization: relative to non-rhetorical sentences highly familiar proverbs activated the left parahippocampal gyrus, whereas unfamiliar proverbs activated an extensive network, covering bilateral frontotemporal cortex. Despite affective processing being enhanced for anti-proverbs, familiar proverbs received the highest beauty ratings. Effects of familiarity and defamiliarization on the aesthetic perception of literature will be discussed.

  20. Predictive saccades in children and adults: A combined fMRI and eye tracking study.

    Directory of Open Access Journals (Sweden)

    Katerina Lukasova

    Full Text Available Saccades were assessed in 21 adults (age 24 years, SD = 4 and 15 children (age 11 years, SD = 1, using combined functional magnetic resonance imaging (fMRI and eye-tracking. Subjects visually tracked a point on a horizontal line in four conditions: time and position predictable task (PRED, position predictable (pPRED, time predictable (tPRED and visually guided saccades (SAC. Both groups in the PRED but not in pPRED, tPRED and SAC produced predictive saccades with latency below 80 ms. In task versus group comparisons, children's showed less efficient learning compared to adults for predictive saccades (adults = 48%, children = 34%, p = 0.05. In adults brain activation was found in the frontal and occipital regions in the PRED, in the intraparietal sulcus in pPRED and in the frontal eye field, posterior intraparietal sulcus and medial regions in the tPRED task. Group-task interaction was found in the supplementary eye field and visual cortex in the PRED task, and the frontal cortex including the right frontal eye field and left frontal pole, in the pPRED condition. These results indicate that, the basic visuomotor circuitry is present in both adults and children, but fine-tuning of the activation according to the task temporal and spatial demand mature late in child development.

  1. How verbal and spatial manipulation networks contribute to calculation: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zago, L.; Petit, L.; Turbelin, M.R.; Anderson, F.; Vigneau, M.; Tzourio-Mazoyer, N. [Univ Paris 05, Univ Caen Basse Normandie, CEA, DSV, CNRS, CI NAPSUMR 6232, Paris (France)

    2008-07-01

    The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intra-parietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and non-symbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with non-symbolic material. (authors)

  2. Resting state FMRI research in child psychiatric disorders

    NARCIS (Netherlands)

    Oldehinkel, Marianne; Francx, Winke; Beckmann, Christian; Buitelaar, Jan K.; Mennes, Maarten

    2013-01-01

    Concurring with the shift from linking functions to specific brain areas towards studying network integration, resting state FMRI (R-FMRI) has become an important tool for delineating the functional network architecture of the brain. Fueled by straightforward data collection, R-FMRI analysis methods

  3. Sex differences in itch perception and modulation by distraction--an FMRI pilot study in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Astrid Stumpf

    Full Text Available BACKGROUND: Even though itch is a common syndrome of many diseases there is only little knowledge about sex and gender differences in pruritus, especially in central itch perception and modulation. To our knowledge, this is the first fMRI study examining sex differences in perception and its modulation by distraction. METHODS: Experimental itch was induced by application of histamine (0.1 mM via microdialysis fibers twice at the left forearm and twice at the left lower leg in 33 healthy volunteers (17 females, 16 males. The brain activation patterns were assessed by fMRI during itch without and with distraction (Stroop task. Between the various conditions, subjects were asked to rate itch intensity, desire to scratch and pain intensity. In a second experiment in 10 of the 33 volunteers histamine was replaced by saline solution to serve as control for the 'Stroop' condition. RESULTS: Women generally presented higher itch intensities compared to men during itch over the course of the experiment. A more specific analysis revealed higher itch intensities and desire to scratch in women during experimental induced itch that can be reduced by distraction at the lower legs when itch is followed by 'Stroop'. In contrast, men depicted significant reduction of 'itch' by 'Stroop' at the forearms. Women depicted higher brain activation of structures responsible for integration of sensory, affective information and motor integration/planning during 'itch' and 'Stroop' condition when compared to men. No sex differences were seen in the saline control condition. CONCLUSION: Women and men exhibited localisation dependent differences in their itch perception with women presenting higher itch intensities and desire to scratch. Our findings parallel clinical observations of women reporting higher itch intensities depending on itch localisation and suffering more from itch as compared to men.

  4. An fMRI study of the neural basis hand postures specific to tool use. Presidential award proceedings

    International Nuclear Information System (INIS)

    Ohgami, Yuko; Uchida, Nobuko; Matsuo, Kayako; Nakai, Toshiharu

    2007-01-01

    Patients with apraxia are often unable to mimic the use of a tool, even when it is presented visually. Such mimicking involves various cognitive and motor processes, including the visual perception of a tool and the manipulation of imagined tools. Although previous studies reported the involvement of several brain areas, including the left inferior parietal lobule, in such tool-use action, the details of each process have not been well understood. To clarify the neural basis of the process involved in forming hand postures for using tools, we used functional magnetic resonance imaging (fMRI) in normal volunteers to investigate brain activation while they formed hand postures for tool manipulation. Three conditions were evaluated in separate block-designed fMRI series, formation of hand posture (A) using a tool, (B) imitating such a hand posture, and (C) to imitate the shape of a tool. Subjects formed their right hand in a manner specified according to the task conditions. Hand posturing for condition (A) induced activation in the left inferior frontal gyrus (BA 45), left inferior parietal lobule (BA 40), and the premotor area compared with the imitative posturing of condition (B). Activation in these areas might be related to processes shared by tool-use pantomime. On the other hand, comparison between conditions (A) and (C) demonstrated activation in the right superior parietal lobule (BA 7). This activation may reflect spatial regulation, in which the subject was prepared to hold and manipulate the tool. Formation of static hand postures to prepare for tool use may employ a neural network shared by various tool-use actions, such as pantomime. In addition, forming hand postures may require close coordination between the tool and hand. (author)

  5. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study.

    Science.gov (United States)

    Barbeau, Elise B; Chai, Xiaoqian J; Chen, Jen-Kai; Soles, Jennika; Berken, Jonathan; Baum, Shari; Watkins, Kate E; Klein, Denise

    2017-04-01

    Research to date suggests that second language acquisition results in functional and structural changes in the bilingual brain, however, in what way and how quickly these changes occur remains unclear. To address these questions, we studied fourteen English-speaking monolingual adults enrolled in a 12-week intensive French language-training program in Montreal. Using functional MRI, we investigated the neural changes associated with new language acquisition. The participants were scanned before the start of the immersion program and at the end of the 12 weeks. The fMRI scan aimed to investigate the brain regions recruited in a sentence reading task both in English, their first language (L1), and in French, their second language (L2). For the L1, fMRI patterns did not change from Time 1 to Time 2, while for the L2, the brain response changed between Time 1 and Time 2 in language-related areas. Of note, for the L2, there was higher activation at Time 2 compared to Time 1 in the left inferior parietal lobule (IPL) including the supramarginal gyrus. At Time 2 this higher activation in the IPL correlated with faster L2 reading speed. Moreover, higher activation in the left IPL at Time 1 predicted improvement in L2 reading speed from Time 1 to Time 2. Our results suggest that learning-induced plasticity occurred as early as 12 weeks into immersive second-language training, and that the IPL appears to play a special role in language learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    Science.gov (United States)

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. The cerebral correlates of set-shifting: an fMRI study of the trail making test

    Directory of Open Access Journals (Sweden)

    Moll Jorge

    2002-01-01

    Full Text Available The trail making test (TMT pertains to a family of tests that tap the ability to alternate between cognitive categories. However, the value of the TMT as a localizing instrument remains elusive. Here we report the results of a functional magnetic resonance imaging (fMRI study of a verbal adaptation of the TMT (vTMT. The vTMT takes advantage of the set-shifting properties of the TMT and, at the same time, minimizes the visuospatial and visuomotor components of the written TMT. Whole brain BOLD fMRI was performed during the alternating execution of vTMTA and vTMTB in seven normal adults with more than 12 years of formal education. Brain activation related to the set-shifting component of vTMTB was investigated by comparing performance on vTMTB with vTMTA, a simple counting task. There was a marked asymmetry of activation in favor of the left hemisphere, most notably in dorsolateral prefrontal cortex (BA 6 lateral, 44 and 46 and supplementary motor area/cingulate sulcus (BA 6 medial and 32. The intraparietal sulcus (BA 7 and 39 was bilaterally activated. These findings are in line with clinico-anatomic and functional neuroimaging data that point to a critical role of the dorsolateral and medial prefrontal cortices as well as the intraparietal sulci in the regulation of cognitive flexibility, intention, and the covert execution of saccades/anti-saccades. Many commonly used neuropsychological paradigms, such as the Stroop, Wisconsin Card Sorting, and go - no go tasks, share some patterns of cerebral activation with the TMT.

  8. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    Science.gov (United States)

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  9. Intersubject synchronisation analysis of brain activity associated with the instant effects of acupuncture: an fMRI study.

    Science.gov (United States)

    Jin, Lingmin; Sun, Jinbo; Xu, Ziliang; Yang, Xuejuan; Liu, Peng; Qin, Wei

    2018-02-01

    To use a promising analytical method, namely intersubject synchronisation (ISS), to evaluate the brain activity associated with the instant effects of acupuncture and compare the findings with traditional general linear model (GLM) methods. 30 healthy volunteers were recruited for this study. Block-designed manual acupuncture stimuli were delivered at SP6, and de qi sensations were measured after acupuncture stimulation. All subjects underwent functional MRI (fMRI) scanning during the acupuncture stimuli. The fMRI data were separately analysed by ISS and traditional GLM methods. All subjects experienced de qi sensations. ISS analysis showed that the regions activated during acupuncture stimulation at SP6 were mainly divided into five clusters based on the time courses. The time courses of clusters 1 and 2 were in line with the acupuncture stimulation pattern, and the active regions were mainly involved in the sensorimotor system and salience network. Clusters 3, 4 and 5 displayed an almost contrary time course relative to the stimulation pattern. The brain regions activated included the default mode network, descending pain modulation pathway and visual cortices. GLM analysis indicated that the brain responses associated with the instant effects of acupuncture were largely implicated in sensory and motor processing and sensory integration. The ISS analysis considered the sustained effect of acupuncture and uncovered additional information not shown by GLM analysis. We suggest that ISS may be a suitable approach to investigate the brain responses associated with the instant effects of acupuncture. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.

    Science.gov (United States)

    Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C

    2008-01-01

    As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.

  11. Neural correlates of depressive realism--an fMRI study on causal attribution in depression.

    Science.gov (United States)

    Seidel, Eva-Maria; Satterthwaite, Theodore D; Eickhoff, Simon B; Schneider, Frank; Gur, Ruben C; Wolf, Daniel H; Habel, Ute; Derntl, Birgit

    2012-05-01

    Biased causal attribution is a critical factor in the cognitive model of depression. Whereas depressed patients interpret events negatively, healthy people show a self-serving bias (internal attribution of positive events and external attribution of negative events). Using fMRI, depressed patients (n=15) and healthy controls (n=15) were confronted with positive and negative social events and made causal attributions (internal vs. external). Functional data were analyzed using a mixed effects model. Behaviourally, controls showed a self-serving bias, whereas patients demonstrated a balanced attributional pattern. Analysis of functional data revealed a significant group difference in a fronto-temporal network. Higher activation of this network was associated with non self-serving attributions in controls but self-serving attributions in patients. Applying a psycho-physiological interaction analysis, we observed reduced coupling between a dorsomedial PFC seed region and limbic areas during self-serving attributions in patients compared to controls. Results of the PPI analysis are preliminary given the liberal statistical threshold. The association of the behaviourally less frequent attributional pattern with activation in a fronto-temporal network suggests that non self-serving responses may produce a self-related response conflict in controls, while self-serving responses produce this conflict in patients. Moreover, attribution-modulated coupling between the dorsomedial PFC and limbic regions was weaker in patients than controls. This preliminary finding suggests that depression may be associated with disturbances in fronto-limbic coupling during attributional decisions. Our results implicate that treatment of major depression may benefit from approaches that facilitate reinterpretation of emotional events in a more positive, more self-serving way. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Neural correlates of depressive realism – An fMRI study on causal attribution in depression

    Science.gov (United States)

    Seidel, Eva-Maria; Satterthwaite, Theodore D.; Eickhoff, Simon B.; Schneider, Frank; Gur, Ruben C.; Wolf, Daniel H.; Habel, Ute; Derntl, Birgit

    2013-01-01

    Background Biased causal attribution is a critical factor in the cognitive model of depression. Whereas depressed patients interpret events negatively, healthy people show a self-serving bias (internal attribution of positive events and external attribution of negative events). Methods Using fMRI, depressed patients (n=15) and healthy controls (n=15) were confronted with positive and negative social events and made causal attributions (internal vs. external). Functional data were analyzed using a mixed effects model. Results Behaviourally, controls showed a self-serving bias, whereas patients demonstrated a balanced attributional pattern. Analysis of functional data revealed a significant group difference in a fronto-temporal network. Higher activation of this network was associated with non self-serving attributions in controls but self-serving attributions in patients. Applying a psycho-physiological interaction analysis, we observed reduced coupling between a dorsomedial PFC seed region and limbic areas during self-serving attributions in patients compared to controls. Limitations Results of the PPI analysis are preliminary given the liberal statistical threshold. Conclusions The association of the behaviourally less frequent attributional pattern with activation in a fronto-temporal network suggests that non self-serving responses may produce a self-related response conflict in controls, while self-serving responses produce this conflict in patients. Moreover, attribution-modulated coupling between the dorsomedial PFC and limbic regions was weaker in patients than controls. This preliminary finding suggests that depression may be associated with disturbances in fronto-limbic coupling during attributional decisions. Our results implicate that treatment of major depression may benefit from approaches that facilitate reinterpretation of emotional events in a more positive, more self-serving way. PMID:22377511

  13. Mental rotation versus invariant features in object perception from different viewpoints: an fMRI study.

    Science.gov (United States)

    Vanrie, Jan; Béatse, Erik; Wagemans, Johan; Sunaert, Stefan; Van Hecke, Paul

    2002-01-01

    It has been proposed that object perception can proceed through different routes, which can be situated on a continuum ranging from complete viewpoint-dependency to complete viewpoint-independency, depending on the objects and the task at hand. Although these different routes have been extensively demonstrated on the behavioral level, the corresponding distinction in the underlying neural substrate has not received the same attention. Our goal was to disentangle, on the behavioral and the neurofunctional level, a process associated with extreme viewpoint-dependency, i.e. mental rotation, and a process associated with extreme viewpoint-independency, i.e. the use of viewpoint-invariant, diagnostic features. Two sets of 3-D block figures were created that either differed in handedness (original versus mirrored) or in the angles joining the block components (orthogonal versus skewed). Behavioral measures on a same-different judgment task were predicted to be dependent on viewpoint in the rotation condition (same versus mirrored), but not in the invariance condition (same angles versus different angles). Six subjects participated in an fMRI experiment while presented with both conditions in alternating blocks. Both reaction times and accuracy confirmed the predicted dissociation between the two conditions. Neurofunctional results indicate that all cortical areas activated in the invariance condition were also activated in the rotation condition. Parietal areas were more activated than occipito-temporal areas in the rotation condition, while this pattern was reversed in the invariance condition. Furthermore, some areas were activated uniquely by the rotation condition, probably reflecting the additional processes apparent in the behavioral response patterns.

  14. Self-reflection and the psychosis-prone brain: an fMRI study.

    Science.gov (United States)

    Modinos, Gemma; Renken, Remco; Ormel, Johan; Aleman, André

    2011-05-01

    The Cortical Midline Structures (CMS) play a critical role in self-reflection, together with the insula. Abnormalities in self-referential processing and its neural underpinnings have been reported in schizophrenia and at-risk populations, suggesting they might be markers of psychotic vulnerability. Psychometric measures of schizotypal traits may be used to index psychosis proneness (PP) in nonclinical samples. It remains an unresolved question whether differences in self-reflective processing are associated with PP. Six hundred students completed the Community Assessment of Psychic Experiences Questionnaire, positive subscale. Two groups were formed from the extremes of the distribution (total N = 36). fMRI was used to examine CMS/insula function during a self-reflection task. Participants judged personality trait sentences about self and about an acquaintance. High PP subjects attributed less positive traits to others (i.e., acquaintances) than subjects with low PP. Across groups, the contrasts self > semantic and self > other induced activation in CMS and insula, whereas other > semantic did not produce insula activation. Other > self induced posterior cingulate cortex activation in low PP but not in high PP. In addition, high PP subjects showed stronger activation than low PP in left insula during self > semantic. Examining valence effects revealed that high PP individuals showed increased activation in left insula, right dMPFC, and left vMPFC for positive self-related traits, and in bilateral insula, ACC, and right dMPFC for negative self-related traits. The findings suggest that aspects of self-referential processing and underlying brain mechanisms are similar in clinical and subclinical (high PP) forms of psychosis, suggesting that these may be associated with vulnerability to psychosis.

  15. The role of emotional inhibitory control in specific internet addiction - an fMRI study.

    Science.gov (United States)

    Dieter, Julia; Hoffmann, Sabine; Mier, Daniela; Reinhard, Iris; Beutel, Martin; Vollstädt-Klein, Sabine; Kiefer, Falk; Mann, Karl; Leménager, Tagrid

    2017-05-01

    Addicts to specific internet applications involving communication features showed increased social anxiety, emotional competence deficits and impaired prefrontal-related inhibitory control. The dorsal Anterior Cingulate Cortex (dACC) likely plays an important role in cognitive control and negative affect (such as social exclusion, pain or anxiety). To assess (social) anxiety-related inhibitory control in specific internet addiction (addicted use of games and social networks) and its relation to altered dACC activation. N=44 controls and n=51 specific internet addicts completed an anxious words-based Affective Go/No-Go task (AGN). A subsample of n=23 healthy controls and n=25 specific internet addicts underwent functional Magnetic Resonance Imaging (fMRI) while completing an Emotional Stroop Task (EST) with socially anxious, positive, negative and neutral words. Subgroups of internet gaming and social network addicts were exploratively assessed. Psychometric measures of social anxiety, emotional competence and impulsivity were additionally explored. Specific internet addicts showed higher impulsivity, social anxiety and reduced emotional competence. Between-group differences in AGN and EST behavioral measures were not detected. No group differences were found in the dACC, but explorative analyses revealed decreased left middle and superior temporal gyrus activation during interference of socially anxious words in internet gaming and relative to social network addicts. Given the function of the left middle temporal gyrus in the retrieval of words or expressions during communication, our findings give a first hint that social words might be less retrievable in the semantic storage of internet gaming addicts, possibly indicating deficiencies in handling speech in social situations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Study on corresponding areas the liver and lung channels in brain with fMRI].

    Science.gov (United States)

    Xu, Fang-Ming; Xie, Peng; Lü, Fa-Jin; Mou, Jun; Li, Yong-Mei; Zhao, Jian-Nong; Chen, Wei-Juan; Gong, Qi-Yong; Zhao, Li-Bo; Liu, Qing-Jun; Shen, Lin; Zhai, Hong; Yang, De-Yu

    2007-10-01

    To explore distribution of the Liver and Lung Channels in the brain so as to provide imaging basis for construction of channel theory in the brain. Sixty healthy student volunteers were randomly divided into a Liver Channel group (I) and a Lung Channel group (II), and the each group was further divided into five subgroups with 6 volunteers in each subgroup, based on five-shu-point principles which, were Dadun (LR 1, I 1), Xingjian (LR 2, I 2), Taichong (LR 3, I 3), Zhongfeng (LR 4, I 4), Ququan (LR 8, I 5), Shaoshang (LU 11, II 1), Yuji (LU 10, II 2), Taiyuan (LU 9, II 3), Jingqu (LU 8, II 4), and Chize (LU 5, II 5), respectively. In order to observe the brain activating patterns during acupuncture at the different acupoints, functional magnetic resonance imaging (fMRI) technique was adopted. All image data were then analyzed with SPM 2 software. The statistical parameter gram was composed of the pixel P areas, and the commonly activated area of five-shu-point of each channel was considered as the brain distribution of the Liver and Lung Channels. The common areas activated by the five-shu-points of the Liver Channel were homolateral Brodmann area (BA) 34, BA 47, red nucleus, contralateral BA 19, BA 30, BA 39, the superior parietal lobule, cerebellum decline, and bilateral BA 3 and culmen. The common areas activated by the five-shu-points of the Lung Channels included homolateral BA 2, BA 18, BA 35, and contralateral BA 9 and substania nigra. There are relatively specific corresponding brain areas for the Liver and Lung Channels, indicating that there is possible relatively specific connection between channels and the brain.

  17. Effects of motivation on reward and attentional networks: an fMRI study.

    Science.gov (United States)

    Ivanov, Iliyan; Liu, Xun; Clerkin, Suzanne; Schulz, Kurt; Friston, Karl; Newcorn, Jeffrey H; Fan, Jin

    2012-11-01

    Existing evidence suggests that reward and attentional networks function in concert and that activation in one system influences the other in a reciprocal fashion; however, the nature of these influences remains poorly understood. We therefore developed a three-component task to assess the interaction effects of reward anticipation and conflict resolution on the behavioral performance and the activation of brain reward and attentional systems. Sixteen healthy adult volunteers aged 21-45 years were scanned with functional magnetic resonance imaging (fMRI) while performing the task. A two-way repeated measures analysis of variance (ANOVA) with cue (reward vs. non-reward) and target (congruent vs. incongruent) as within-subjects factors was used to test for main and interaction effects. Neural responses to anticipation, conflict, and reward outcomes were tested. Behaviorally there were main effects of both reward cue and target congruency on reaction time. Neuroimaging results showed that reward anticipation and expected reward outcomes activated components of the attentional networks, including the inferior parietal and occipital cortices, whereas surprising non-rewards activated the frontoinsular cortex bilaterally and deactivated the ventral striatum. In turn, conflict activated a broad network associated with cognitive control and motor functions. Interaction effects showed decreased activity in the thalamus, anterior cingulated gyrus, and middle frontal gyrus bilaterally when difficult conflict trials (e.g., incongruent targets) were preceded by reward cues; in contrast, the ventral striatum and orbitofrontal cortex showed greater activation during congruent targets preceded by reward cues. These results suggest that reward anticipation is associated with lower activation in attentional networks, possibly due to increased processing efficiency, whereas more difficult, conflict trials are associated with lower activity in regions of the reward system, possibly

  18. fMRI Study of Social Anxiety during Social Ostracism with and without Emotional Support.

    Directory of Open Access Journals (Sweden)

    Yoshiko Nishiyama

    Full Text Available Social anxiety is characterized by an excessive fear of being embarrassed in social interactions or social performance situations. Emotional support can help to decrease or diminish social distress. Such support may play an important role at different points of social interaction. However, it is unclear how the beneficial effects of social support are represented in the brains of socially anxious individuals. To explore this, we used the same paradigm previously used to examine the effects of emotional support on social pain caused by exclusion. Undergraduates (n = 46 showing a wide range of social anxiety scores underwent functional magnetic resonance imaging (fMRI while participating in a Cyberball game. Participants were initially included and later excluded from the game. In the latter half of the session in which participants were excluded, they were provided with supportive messages. In line with our previous work, we found that social exclusion led to increased anterior cingulate cortex (ACC activity, whereas emotional support led to increased left dorsolateral prefrontal cortex (DLPFC activity. Despite validation of the paradigm, social anxiety was not associated with increased ACC activity during social exclusion, or during perceived emotional support. Instead, fear of negative evaluation as assessed by the Brief Fear of Negative Evaluation (BFNE scale showed positive associations with left DLPFC activation while receiving emotional support, compared to while being socially excluded. The more socially anxious an individual was, the greater was the left DLPFC activity increased during receipt of messages. This suggests that highly socially anxious people still have the ability to perceive social support, but that they are nevertheless susceptible to negative evaluation by others.

  19. fMRI Study of Social Anxiety during Social Ostracism with and without Emotional Support.

    Science.gov (United States)

    Nishiyama, Yoshiko; Okamoto, Yasumasa; Kunisato, Yoshihiko; Okada, Go; Yoshimura, Shinpei; Kanai, Yoshihiro; Yamamura, Takanao; Yoshino, Atsuo; Jinnin, Ran; Takagaki, Koki; Onoda, Keiichi; Yamawaki, Shigeto

    2015-01-01

    Social anxiety is characterized by an excessive fear of being embarrassed in social interactions or social performance situations. Emotional support can help to decrease or diminish social distress. Such support may play an important role at different points of social interaction. However, it is unclear how the beneficial effects of social support are represented in the brains of socially anxious individuals. To explore this, we used the same paradigm previously used to examine the effects of emotional support on social pain caused by exclusion. Undergraduates (n = 46) showing a wide range of social anxiety scores underwent functional magnetic resonance imaging (fMRI) while participating in a Cyberball game. Participants were initially included and later excluded from the game. In the latter half of the session in which participants were excluded, they were provided with supportive messages. In line with our previous work, we found that social exclusion led to increased anterior cingulate cortex (ACC) activity, whereas emotional support led to increased left dorsolateral prefrontal cortex (DLPFC) activity. Despite validation of the paradigm, social anxiety was not associated with increased ACC activity during social exclusion, or during perceived emotional support. Instead, fear of negative evaluation as assessed by the Brief Fear of Negative Evaluation (BFNE) scale showed positive associations with left DLPFC activation while receiving emotional support, compared to while being socially excluded. The more socially anxious an individual was, the greater was the left DLPFC activity increased during receipt of messages. This suggests that highly socially anxious people still have the ability to perceive social support, but that they are nevertheless susceptible to negative evaluation by others.

  20. Neural correlates of working memory in first episode and recurrent depression: An fMRI study.

    Science.gov (United States)

    Yüksel, Dilara; Dietsche, Bruno; Konrad, Carsten; Dannlowski, Udo; Kircher, Tilo; Krug, Axel

    2018-06-08

    Patients suffering from major depressive disorder (MDD) show deficits in working memory (WM) performance accompanied by bilateral fronto-parietal BOLD signal changes. It is unclear whether patients with a first depressive episode (FDE) exhibit the same signal changes as patients with recurrent depressive episodes (RDE). We investigated seventy-four MDD inpatients (48 RDE, 26 FDE) and 74 healthy control (HC) subjects performing an n-back WM task (0-back, 2-back, 3-back condition) in a 3T-fMRI. FMRI analyses revealed deviating BOLD signal in MDD in the thalamus (0-back vs. 2-back), the angular gyrus (0-back vs. 3-back), and the superior frontal gyrus (2-back vs. 3-back). Further effects were observed between RDE vs. FDE. Thus, RDE displayed differing neural activation in the middle frontal gyrus (2-back vs. 3-back), the inferior frontal gyrus, and the precentral gyrus (0-back vs. 2-back). In addition, both HC and FDE indicated a linear activation trend depending on task complexity. Although we failed to find behavioral differences between the groups, results suggest differing BOLD signal in fronto-parietal brain regions in MDD vs. HC, and in RDE vs. FDE. Moreover, both HC and FDE show similar trends in activation shapes. This indicates a link between levels of complexity-dependent activation in fronto-parietal brain regions and the stage of MDD. We therefore assume that load-dependent BOLD signal during WM is impaired in MDD, and that it is particularly affected in RDE. We also suspect neurobiological compensatory mechanisms of the reported brain regions in (working) memory functioning. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. A computational study of whole-brain connectivity in resting state and task fMRI

    Science.gov (United States)

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  2. Cue-Elicited Craving in Heroin Addicts at Different Abstinent Time: An fMRI Pilot Study

    OpenAIRE

    Lou, Mingwu; Wang, Erlei; Shen, Yunxia; Wang, Jiping

    2012-01-01

    Objective: We evaluated the effect of short-term and long-term heroin abstinence on brain responses to heroin-related cues using functional magnetic resonance imaging (fMRI). Methods: Eighteen male heroin addicts following short-term abstinence and 19 male heroin addicts following long-term abstinence underwent fMRI scanning while viewing heroin-related and neutral images. Cue-elicited craving and withdrawal symptoms in the subjects were measured. Results: Following short-term abstinence, gre...

  3. Dissociable effects of motivation and expectancy on conflict processing: an fMRI study.

    Science.gov (United States)

    Soutschek, Alexander; Stelzel, Christine; Paschke, Lena; Walter, Henrik; Schubert, Torsten

    2015-02-01

    Previous studies suggest that both motivation and task difficulty expectations activate brain regions associated with cognitive control. However, it remains an open question whether motivational and cognitive determinants of control have similar or dissociable impacts on conflict processing on a neural level. The current study tested the effects of motivation and conflict expectancy on activity in regions related to processing of the target and the distractor information. Participants performed a picture-word interference task in which we manipulated the size of performance-dependent monetary rewards (level of motivation) and the ratio of congruent to incongruent trials within a block (level of conflict expectancy). Our results suggest that motivation improves conflict processing by facilitating task-relevant stimulus processing and task difficulty expectations mainly modulate the processing of distractor information. We conclude that motivation and conflict expectancy engage dissociable control strategies during conflict resolution.

  4. Posterior and prefrontal contributions to the development posttraumatic stress disorder symptom severity: an fMRI study of symptom provocation in acute stress disorder.

    Science.gov (United States)

    Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J

    2017-09-01

    Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.

  5. Functional anatomy of the masking level difference, an fMRI study.

    Directory of Open Access Journals (Sweden)

    David S Wack

    Full Text Available INTRODUCTION: Masking level differences (MLDs are differences in the hearing threshold for the detection of a signal presented in a noise background, where either the phase of the signal or noise is reversed between ears. We use N0/Nπ to denote noise presented in-phase/out-of-phase between ears and S0/Sπ to denote a 500 Hz sine wave signal as in/out-of-phase. Signal detection level for the noise/signal combinations N0Sπ and NπS0 is typically 10-20 dB better than for N0S0. All combinations have the same spectrum, level, and duration of both the signal and the noise. METHODS: Ten participants (5 female, age: 22-43, with N0Sπ-N0S0 MLDs greater than 10 dB, were imaged using a sparse BOLD fMRI sequence, with a 9 second gap (1 second quiet preceding stimuli. Band-pass (400-600 Hz noise and an enveloped signal (.25 second tone burst, 50% duty-cycle were used to create the stimuli. Brain maps of statistically significant regions were formed from a second-level analysis using SPM5. RESULTS: The contrast NπS0- N0Sπ had significant regions of activation in the right pulvinar, corpus callosum, and insula bilaterally. The left inferior frontal gyrus had significant activation for contrasts N0Sπ-N0S0 and NπS0-N0S0. The contrast N0S0-N0Sπ revealed a region in the right insula, and the contrast N0S0-NπS0 had a region of significance in the left insula. CONCLUSION: Our results extend the view that the thalamus acts as a gating mechanism to enable dichotic listening, and suggest that MLD processing is accomplished through thalamic communication with the insula, which communicate across the corpus callosum to either enhance or diminish the binaural signal (depending on the MLD condition. The audibility improvement of the signal with both MLD conditions is likely reflected by activation in the left inferior frontal gyrus, a late stage in the what/where model of auditory processing.

  6. [Resting state fMRI study of emotional network in patients with postconcussion syndrome].

    Science.gov (United States)

    Zhang, X; Qian, R B; Fu, X M; Lin, B; Zhang, D; Xia, C S; Wei, X P; Niu, C S; Wang, Y H

    2017-07-04

    Objective: To discuss functional connectivity changes in the emotional network of patients with post-concussion syndrome (PCS) and their clinical significance by resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Twenty-seven patients with PCS were recruited from the Department of Neurosurgery of Anhui provincial hospital affiliated to Anhui medical university from October 2015 to April 2016, and 27 healthy subjects were recruited as the controls. The Hamilton Anxiety Scale (HAMA) and The Hamilton Depression Scale (HAMD) were used to evaluate the emotional state of two groups of subjects. All fMRI data were preprocessed after RS-fMRI scanning, the left and right amygdala were selected as region of interest (ROI) to make functional connectivity (FC) calculation with the whole brain and then the results were did statistical analysis in order to obtain the altered brain areas of amygdala and whole brain functional connectivity in the PCS patient, to understand the functional changes of emotional network. Results: HAMA and HAMD scores of PCS group and the health controls had significant statistical difference (HAMA: the PCS group 9.8±1.5, the health controls 4.5±1.2, P =0.044; HAMD: the PCS group 12±1.2, the health controls was 4.2±1.5, P =0.024). Compared with the health controls, the left amygdala in PCS patients showed decreased FC with left insula, left putamen, left anterior cingulate gyrus, left inferior orbital frontal gyrus, left medial superior frontal gyrus, bilateral superior temporal gyrus, left superior temporal pole, bilateral supramarginal gyrus et al, on the contrary with the increased FC with right superior orbital frontal gyrus, right middle frontal lobe, right orbital frontal lobe, right middle frontal gyrus. The right amygdala in PCS patients showed decreased FC with bilateral putamen, right inferior orbital frontal gyrus, left insula, bilateral precuneus, bilateral superior temporal pole, right superior temporal gyrus

  7. Facial Expression Enhances Emotion Perception Compared to Vocal Prosody: Behavioral and fMRI Studies.

    Science.gov (United States)

    Zhang, Heming; Chen, Xuhai; Chen, Shengdong; Li, Yansong; Chen, Changming; Long, Quanshan; Yuan, Jiajin

    2018-05-09

    Facial and vocal expressions are essential modalities mediating the perception of emotion and social communication. Nonetheless, currently little is known about how emotion perception and its neural substrates differ across facial expression and vocal prosody. To clarify this issue, functional MRI scans were acquired in Study 1, in which participants were asked to discriminate the valence of emotional expression (angry, happy or neutral) from facial, vocal, or bimodal stimuli. In Study 2, we used an affective priming task (unimodal materials as primers and bimodal materials as target) and participants were asked to rate the intensity, valence, and arousal of the targets. Study 1 showed higher accuracy and shorter response latencies in the facial than in the vocal modality for a happy expression. Whole-brain analysis showed enhanced activation during facial compared to vocal emotions in the inferior temporal-occipital regions. Region of interest analysis showed a higher percentage signal change for facial than for vocal anger in the superior temporal sulcus. Study 2 showed that facial relative to vocal priming of anger had a greater influence on perceived emotion for bimodal targets, irrespective of the target valence. These findings suggest that facial expression is associated with enhanced emotion perception compared to equivalent vocal prosodies.

  8. Effect of emotional arousal on inter-temporal decision-making: an fMRI study.

    Science.gov (United States)

    Sohn, Jin-Hun; Kim, Hyo-Eun; Sohn, Sunju; Seok, Ji-Woo; Choi, Damee; Watanuki, Shigeki

    2015-03-07

    Previous research has shown that emotion can significantly impact decision-making in humans. The current study examined whether or not and how situationally induced emotion influences people to make inter-temporal choices. Affective pictures were used as experiment stimuli to provoke emotion, immediately followed by subjects' performance of a delay-discounting task to measure impulsivity during functional magnetic resonance imaging. Results demonstrate a subsequent process of increased impulsive decision-making following a prior exposure to both high positive and negative arousal stimuli, compared to the experiment subjects' experiences with neutral stimuli. Findings indicate that increased impulsive decision-making behaviors can occur with high arousal and can be characterized by decreased activities in the cognitive control regions such as prefronto-parietal regions. These results suggest that 'stabilization of high emotional arousal' may facilitate a reduction of impulsive decision-making and implementation of longer term goals.

  9. Thoughts turned into high-level commands: Proof-of-concept study of a vision-guided robot arm driven by functional MRI (fMRI) signals.

    Science.gov (United States)

    Minati, Ludovico; Nigri, Anna; Rosazza, Cristina; Bruzzone, Maria Grazia

    2012-06-01

    Previous studies have demonstrated the possibility of using functional MRI to control a robot arm through a brain-machine interface by directly coupling haemodynamic activity in the sensory-motor cortex to the position of two axes. Here, we extend this work by implementing interaction at a more abstract level, whereby imagined actions deliver structured commands to a robot arm guided by a machine vision system. Rather than extracting signals from a small number of pre-selected regions, the proposed system adaptively determines at individual level how to map representative brain areas to the input nodes of a classifier network. In this initial study, a median action recognition accuracy of 90% was attained on five volunteers performing a game consisting of collecting randomly positioned coloured pawns and placing them into cups. The "pawn" and "cup" instructions were imparted through four mental imaginery tasks, linked to robot arm actions by a state machine. With the current implementation in MatLab language the median action recognition time was 24.3s and the robot execution time was 17.7s. We demonstrate the notion of combining haemodynamic brain-machine interfacing with computer vision to implement interaction at the level of high-level commands rather than individual movements, which may find application in future fMRI approaches relevant to brain-lesioned patients, and provide source code supporting further work on larger command sets and real-time processing. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. fMRI study of language activation in schizophrenia, schizoaffective disorder and in individuals genetically at high risk.

    Science.gov (United States)

    Li, Xiaobo; Branch, Craig A; Ardekani, Babak A; Bertisch, Hilary; Hicks, Chindo; DeLisi, Lynn E

    2007-11-01

    Structural and functional abnormalities have been found in language-related brain regions in patients with schizophrenia. We previously reported findings pointing to differences in word processing between people with schizophrenia and individuals who are at high-risk for schizophrenia using a voxel-based (whole brain) fMRI approach. We now extend this finding to specifically examine functional activity in three language related cortical regions using a larger cohort of individuals. A visual lexical discrimination task was performed by 36 controls, 21 subjects at high genetic-risk for schizophrenia, and 20 patients with schizophrenia during blood oxygenation level dependent (BOLD) fMRI scanning. Activation in bilateral inferior frontal gyri (Brodmann's area 44-45), bilateral inferior parietal lobe (Brodmann's area 39-40), and bilateral superior temporal gyri (Brodmann's area 22) was investigated. For all subjects, two-tailed Pearson correlations were calculated between the computed laterality index and a series of cognitive test scores determining language functioning. Regional activation in Brodmann's area 44-45 was left lateralized in normal controls, while high-risk subjects and patients with schizophrenia or schizoaffective disorder showed more bilateral activation. No significant differences among the three diagnostic groups in the other two regions of interest (Brodmann's area 22 or areas 39-40) were found. Furthermore, the apparent reasons for loss of leftward language lateralization differed between groups. In high-risk subjects, the loss of lateralization was based on reduced left hemisphere activation, while in the patient group, it was due to increased right side activation. Language ability related cognitive scores were positively correlations with the laterality indices obtained from Brodmann's areas 44-45 in the high-risk group, and with the laterality indices from Brodmann's areas 22 and 44-45 in the patient group. This study reinforces previous

  11. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  12. Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants.

    Science.gov (United States)

    Fullana, Miquel A; Albajes-Eizagirre, Anton; Soriano-Mas, Carles; Vervliet, Bram; Cardoner, Narcís; Benet, Olívia; Radua, Joaquim; Harrison, Ben J

    2018-05-01

    The study of fear extinction represents an important example of translational neuroscience in psychiatry and promises to improve the understanding and treatment of anxiety and fear-related disorders. We present the results of a set of meta-analyses of human fear extinction studies in healthy participants, conducted with functional magnetic resonance imaging (fMRI) and reporting whole-brain results. Meta-analyses of fear extinction learning primarily implicate consistent activation of brain regions linked to threat appraisal and experience, including the dorsal anterior cingulate and anterior insular cortices. An overlapping anatomical result was obtained from the meta-analysis of extinction recall studies, except when studies directly compared an extinguished threat stimulus to an unextinguished threat stimulus (instead of a safety stimulus). In this latter instance, more consistent activation was observed in dorsolateral and ventromedial prefrontal cortex regions, together with other areas including the hippocampus. While our results partially support the notion of a shared neuroanatomy between human and rodent models of extinction processes, they also encourage an expanded account of the neural basis of human fear extinction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Recognition memory for Braille or spoken words: an fMRI study in early blind.

    Science.gov (United States)

    Burton, Harold; Sinclair, Robert J; Agato, Alvin

    2012-02-15

    We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5years. In an event-related design, we studied blood oxygen level-dependent responses to studied ("old") compared to novel ("new") words. Presentation mode was in Braille or spoken. Responses were larger for identified "new" words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken "new" words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with "old"/"new" recognition. Left dorsolateral prefrontal cortex had larger responses to "old" words only with Braille. Larger occipital cortex responses to "new" Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for "new" words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering "old" words. A larger response when identifying "new" words possibly resulted from exhaustive recollecting the sensory properties of "old" words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a "sensory echo" that aids recollection. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Recognition Memory for Braille or Spoken Words: An fMRI study in Early Blind

    Science.gov (United States)

    Burton, Harold; Sinclair, Robert J.; Agato, Alvin

    2012-01-01

    We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5 yrs. In an event-related design, we studied blood oxygen level-dependent responses to studied (“old”) compared to novel (“new”) words. Presentation mode was in Braille or spoken. Responses were larger for identified “new” words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken “new” words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with “old”/“new” recognition. Left dorsolateral prefrontal cortex had larger responses to “old” words only with Braille. Larger occipital cortex responses to “new” Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for “new” words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering “old” words. A larger response when identifying “new” words possibly resulted from exhaustive recollecting the sensory properties of “old” words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a “sensory echo” that aids recollection. PMID:22251836

  15. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    Science.gov (United States)

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual

  16. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study

    Directory of Open Access Journals (Sweden)

    Nocchi Federico

    2012-07-01

    Full Text Available Abstract Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb and non-biological (abstract object movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes. Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions

  17. Altered Structural and Functional Connectivity of Juvenile Myoclonic Epilepsy: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Chengqing Zhong

    2018-01-01

    Full Text Available The aim of this study was to investigate the structural and functional connectivity (FC of juvenile myoclonic epilepsy (JME using resting state functional magnetic resonance imaging (rs-fMRI. High-resolution T1-weighted magnetic resonance imaging (MRI and rs-fMRI data were collected in 25 patients with JME and in 24 control subjects. A FC analysis was subsequently performed, with seeding at the regions that demonstrated between-group differences in gray matter volume (GMV. Then, the observed structural and FCs were associated with the clinical manifestations. The decreased GMV regions were found in the bilateral anterior cerebellum, the right orbital superior frontal gyrus, the left middle temporal gyrus, the left putamen, the right hippocampus, the bilateral caudate, and the right thalamus. The changed FCs were mainly observed in the motor-related areas and the cognitive-related areas. The significant findings of this study revealed an important role for the cerebellum in motor control and cognitive regulation in JME patients, which also have an effect on the activity of the occipital lobe. In addition, the changed FCs were related to the clinical features of JME patients. The current observations may contribute to the understanding of the pathogenesis of JME.

  18. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    International Nuclear Information System (INIS)

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  19. An fMRI paradigm based on Williams inhibition test to study the neural substrates of attention and inhibitory control.

    Science.gov (United States)

    Dores, Artemisa R; Barbosa, Fernando; Carvalho, Irene P; Almeida, Isabel; Guerreiro, Sandra; da Rocha, Benedita Martins; Cunha, Gil; Castelo Branco, Miguel; de Sousa, Liliana; Castro Caldas, Alexandre

    2017-12-01

    The purpose of this study is to present an fMRI paradigm, based on the Williams inhibition test (WIT), to study attentional and inhibitory control and their neuroanatomical substrates. We present an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioral performances of healthy participants from those of individuals with acquired brain injury. Stroop and Simon tests present similarities with WIT, but this latter is more demanding. We analyze the BOLD signal in 10 healthy participants performing the WIT. The dorsolateral prefrontal cortex, the inferior prefrontal cortex, the anterior cingulate cortex, and the posterior cingulate cortex were defined for specified region of interest analysis. We additionally compare behavioral data (hits, errors, reaction times) of the healthy participants with those of eight acquired brain injury patients. Data were analyzed with GLM-based random effects and Mann-Whitney tests. Results show the involvement of the defined regions and indicate that the WIT is sensitive to brain lesions. This WIT-based block design paradigm can be used as a research methodology for behavioral and neuroimaging studies of the attentional and inhibitory components of executive functions.

  20. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Energy Technology Data Exchange (ETDEWEB)

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  1. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    International Nuclear Information System (INIS)

    Zhang Minming; Hu Shaohua; Xu Lijuan; Wang Qidong; Xu Xiaojun; Wei Erqing; Yan Leqin; Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli; Xu Yi

    2011-01-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  2. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Minming [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Hu Shaohua [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Lijuan [National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing (China); Wang Qidong [Department of Radiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Xu Xiaojun [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Wei Erqing [College of Pharmacology, Zhejiang University (China); Yan Leqin [MD Anderson Cancer Center, Virginia Harris Cockrell Cancer Research Center, University of Texas, Austin (United States); Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Yi, E-mail: xuyi61@yahoo.com.cn [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China)

    2011-11-15

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  3. Impaired mixed emotion processing in the right ventrolateral prefrontal cortex in schizophrenia: an fMRI study.

    Science.gov (United States)

    Szabó, Ádám György; Farkas, Kinga; Marosi, Csilla; Kozák, Lajos R; Rudas, Gábor; Réthelyi, János; Csukly, Gábor

    2017-12-08

    Schizophrenia has a negative effect on the activity of the temporal and prefrontal cortices in the processing of emotional facial expressions. However no previous research focused on the evaluation of mixed emotions in schizophrenia, albeit they are frequently expressed in everyday situations and negative emotions are frequently expressed by mixed facial expressions. Altogether 37 subjects, 19 patients with schizophrenia and 18 healthy control subjects were enrolled in the study. The two study groups did not differ in age and education. The stimulus set consisted of 10 fearful (100%), 10 happy (100%), 10 mixed fear (70% fear and 30% happy) and 10 mixed happy facial expressions. During the fMRI acquisition pictures were presented in a randomized order and subjects had to categorize expressions by button press. A decreased activation was found in the patient group during fear, mixed fear and mixed happy processing in the right ventrolateral prefrontal cortex (VLPFC) and the right anterior insula (RAI) at voxel and cluster level after familywise error correction. No difference was found between study groups in activations to happy facial condition. Patients with schizophrenia did not show a differential activation between mixed happy and happy facial expression similar to controls in the right dorsolateral prefrontal cortex (DLPFC). Patients with schizophrenia showed decreased functioning in right prefrontal regions responsible for salience signaling and valence evaluation during emotion recognition. Our results indicate that fear and mixed happy/fear processing are impaired in schizophrenia, while happy facial expression processing is relatively intact.

  4. Differences in cortical coding of heat evoked pain beyond the perceived intensity: an fMRI and EEG study.

    Science.gov (United States)

    Haefeli, Jenny; Freund, Patrick; Kramer, John L K; Blum, Julia; Luechinger, Roger; Curt, Armin

    2014-04-01

    Imaging studies have identified a wide network of brain areas activated by nociceptive stimuli and revealed differences in somatotopic representation of highly distinct stimulation sites (foot vs. hand) in the primary (S1) and secondary (S2) somatosensory cortices. Somatotopic organization between adjacent dermatomes and differences in cortical coding of similarly perceived nociceptive stimulation are less well studied. Here, cortical processing following contact heat nociceptive stimulation of cervical (C4, C6, and C8) and trunk (T10) dermatomes were recorded in 20 healthy subjects using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Stimulation of T10 compared with the C6 and C8 revealed significant higher response intensity in the left S1 (contralateral) and the right S2 (ipsilateral) even when the perceived pain was equal between stimulation sites. Accordingly, contact heat evoked potentials following stimulation of T10 showed significantly higher N2P2 amplitudes compared to C6 and C8. Adjacent dermatomes did not reveal a distinct somatotopical representation. Within the assessed cervical and trunk dermatomes, nociceptive cortical processing to heat differs significantly in magnitude even when controlling for pain perception. This study provides evidence that controlling for pain perception is not sufficient to compare directly the magnitude of cortical processing [blood oxygen level dependence (BOLD) response and amplitude of evoked potentials] between body sites. Copyright © 2013 Wiley Periodicals, Inc.

  5. High-field fMRI unveils orientation columns in humans.

    Science.gov (United States)

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  6. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia

    Directory of Open Access Journals (Sweden)

    Jessica A Turner

    2013-08-01

    Full Text Available Background. This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF and fractional ALFF (fALFF between patients with schizophrenia (SZ and healthy controls (HC. Methods. Eyes-closed resting fMRI scans (5:38 minutes; n=306, 146 SZ were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01 to 0.08 Hz was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter and CSF signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results. Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions. SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fractional ALFF measures, but does not affect the pattern of case

  7. Is it about the self or the significance? An fMRI study of self-name recognition.

    Science.gov (United States)

    Tacikowski, P; Brechmann, A; Marchewka, A; Jednoróg, K; Dobrowolny, M; Nowicka, A

    2011-01-01

    Our own name, due to its high social relevance, is supposed to have a unique status in our information processing. However, demonstrating this phenomenon empirically proves difficult as famous and unknown names, to which self-name is often compared in the studies, may differ from self-name not only in terms of the 'me vs. not-me' distinction, but also as regards their emotional content and frequency of occurrence in everyday life. In this fMRI study, apart from famous and unknown names we used the names of the most important persons in our subjects' lives. When compared to famous or unknown names recognition, self-name recognition was associated with robust activations in widely distributed bilateral network including fronto-temporal, limbic and subcortical structures, however, when compared to significant other's name, the activations were present specifically in the right inferior frontal gyrus. In addition, the significant other's name produced a similar pattern of activations to the one activated by self-name. These results suggest that the differences between own and other's name processing may rather be quantitative than qualitative in nature.

  8. Category-selective attention interacts with partial awareness processes in a continuous manner: An fMRI study

    Directory of Open Access Journals (Sweden)

    Shen Tu

    2015-12-01

    Full Text Available Recently, our team found that category-selective attention could modulate tool processing at the partial awareness level and unconscious face processing in the middle occipital gyrus (MOG. However, the modulation effects in MOG were in opposite directions across the masked tool and masked face conditions in that study: MOG activation decreased in the masked faces condition but increased in the masked tools condition under the consistent compared with the inconsistent cue-selective-attentional modulation. In the present study, in order to confirm that the opposite effects were due to the changed contours of the tools, using the same tool pictures and fMRI technique, we devised another two conditions: variant mirror tool picture condition and invariant tool picture condition. The results showed that, during the variant mirror tool picture condition, activation in the MOG decreased under tool-selective attention compared with face-selective attention. Interestingly, however, during the invariant tool picture condition, activation in the MOG revealed neither positive nor negative changes. Combined with the result of increased MOG activity in the changed different tool condition, the three different effects demonstrated not only that the unconscious component of partial awareness processing (no knowledge of the identity of the tool could be modulated by the category-selective attention in the earlier visual cortex but also that the modulation effect could further interact with the conscious component of partial awareness processing (consciousness of the changing contour of the tool in a continuous manner.

  9. Ambiguity aversion in schizophrenia: An fMRI study of decision-making under risk and ambiguity.

    Science.gov (United States)

    Fujino, Junya; Hirose, Kimito; Tei, Shisei; Kawada, Ryosaku; Tsurumi, Kosuke; Matsukawa, Noriko; Miyata, Jun; Sugihara, Genichi; Yoshihara, Yujiro; Ideno, Takashi; Aso, Toshihiko; Takemura, Kazuhisa; Fukuyama, Hidenao; Murai, Toshiya; Takahashi, Hidehiko

    2016-12-01

    When making decisions in everyday life, we often have to choose between uncertain outcomes. Economic studies have demonstrated that healthy people tend to prefer options with known probabilities (risk) than those with unknown probabilities (ambiguity), which is referred to as "ambiguity aversion." However, it remains unclear how patients with schizophrenia behave under ambiguity, despite growing evidence of their altered decision-making under uncertainty. In this study, combining economic tools and functional magnetic resonance imaging (fMRI), we assessed the attitudes toward risk/ambiguity and investigated the neural correlates during decision-making under risk/ambiguity in schizophrenia. Although no significant difference in attitudes under risk was observed, patients with schizophrenia chose ambiguity significantly more often than the healthy controls. Attitudes under risk and ambiguity did not correlate across patients with schizophrenia. Furthermore, unlike in the healthy controls, activation of the left lateral orbitofrontal cortex was not increased during decision-making under ambiguity compared to under risk in schizophrenia. These results suggest that ambiguity aversion, a well-established subjective bias, is attenuated in patients with schizophrenia, highlighting the need to distinguish between risk and ambiguity when assessing decision-making under these situations. Our findings, comprising important clinical implications, contribute to improved understanding of the mechanisms underlying altered decision-making in patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Differential brain responses to cries of infants with autistic disorder and typical development: an fMRI study.

    Science.gov (United States)

    Venuti, Paola; Caria, Andrea; Esposito, Gianluca; De Pisapia, Nicola; Bornstein, Marc H; de Falco, Simona

    2012-01-01

    This study used fMRI to measure brain activity during adult processing of cries of infants with autistic disorder (AD) compared to cries of typically developing (TD) infants. Using whole brain analysis, we found that cries of infants with AD compared to those of TD infants elicited enhanced activity in brain regions associated with verbal and prosodic processing, perhaps because altered acoustic patterns of AD cries render them especially difficult to interpret, and increased activity in brain regions associated with emotional processing, indicating that AD cries also elicit more negative feelings and may be perceived as more aversive and/or arousing. Perceived distress engendered by AD cries related to increased activation in brain regions associated with emotional processing. This study supports the hypothesis that cry is an early and meaningful anomaly displayed by children with AD. It could be that cries associated with AD alter parent-child interactions much earlier than the time that reliable AD diagnosis normally occurs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The modulation of venlafaxine on cortical activation of language area in healthy subjects with fMRI study.

    Science.gov (United States)

    Xie, Qi; Liu, Yan; Li, Chun-Yong; Song, Xue-Zhu; Wang, Jun; Han, Li-Xin; Bai, Hong-Min

    2012-10-01

    Previous studies have shown that selective serotonin reuptake inhibitors, activators of the cortex, apparently improved language functional recovery after brain damage rather than simply affective disorders. Our aim was to determine whether venlafaxine (an agonist of both norepinephrine and 5-hydroxytryptamine) could modulate language cortex function. A double-blind, crossover, randomized design was used to compare two 7-day treatment sessions with either venlafaxine (75 mg per day) or placebo. A functional magnetic resonance imaging experiment and two language function tests were performed on eight healthy males (mean age, 28.25 ± 3.15 years) at the end of each session, i.e., study entry, after venlafaxine, and after placebo (days 0, 7, and 18). Hyperactivation (venlafaxine minus placebo >0) or hypoactivation (placebo minus venlafaxine >0) by venlaxafine was assessed on the basis of the activation-baseline contrast. The naming score (P gyrus frontalis medius and the bilateral fusiform gyrus and the bilateral outer occipital lobes, (2) hyperactivation was observed in the adjoining area of posterior upper Broca area and premotor area in the dominant hemisphere in venlafaxine session (after venlafaxine), (3) the hyperactivation of the left gyrus frontalis medius on fMRI and the increase in naming test score were positively correlated, and (4) by contrast, we observed hypoactivation in the temporo-parieto-occipital region in venlafaxine session (after venlafaxine). This improvement may be related to increased phonics-related output in the frontal language cortex of the dominant hemisphere.

  12. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: an fMRI study.

    Science.gov (United States)

    Zhang, Minming; Hu, Shaohua; Xu, Lijuan; Wang, Qidong; Xu, Xiaojun; Wei, Erqing; Yan, Leqin; Hu, Jianbo; Wei, Ning; Zhou, Weihua; Huang, Manli; Xu, Yi

    2011-11-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (pmen. Crown Copyright © 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    Science.gov (United States)

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Well-being and Anticipation for Future Positive Events: Evidences from an fMRI Study.

    Science.gov (United States)

    Luo, Yangmei; Chen, Xuhai; Qi, Senqing; You, Xuqun; Huang, Xiting

    2017-01-01

    Anticipation for future confers great benefits to human well-being and mental health. However, previous work focus on how people's well-being correlate with brain activities during perception of emotional stimuli, rather than anticipation for the future events. Here, the current study investigated how well-being relates to neural circuitry underlying the anticipating process of future desired events. Using event-related functional magnetic resonance imaging, 40 participants were scanned while they were performing an emotion anticipation task, in which they were instructed to anticipate the positive or neutral events. The results showed that bilateral medial prefrontal cortex (MPFC) were activated during anticipation for positive events relative to neutral events, and the enhanced brain activation in MPFC was associated with higher level of well-being. The findings suggest a neural mechanism by which the anticipation process to future desired events correlates to human well-being, which provide a future-oriented view on the neural sources of well-being.

  15. Hemispheric involvement in the processing of Chinese idioms: An fMRI study.

    Science.gov (United States)

    Yang, Jie; Li, Ping; Fang, Xiaoping; Shu, Hua; Liu, Youyi; Chen, Lang

    2016-07-01

    Although the left hemisphere is believed to handle major language functions, the role of the right hemisphere in language comprehension remains controversial. Recently researchers have investigated hemispheric language processing with figurative language materials (e.g., metaphors, jokes, and idioms). The current study capitalizes on the pervasiveness and distinct features of Chinese idioms to examine the brain mechanism of figurative language processing. Native Chinese speakers performed a non-semantic task while reading opaque idioms, transparent idioms, and non-idiomatic literal phrases. Whole-brain analyses indicated strong activations for all three conditions in an overlapping brain network that includes the bilateral inferior/middle frontal gyrus and the temporo-parietal and occipital-temporal regions. The two idiom conditions elicited additional activations in the right superior parietal lobule and right precuneus. Item-based modulation analyses further demonstrated that activation amplitudes in the right angular gyrus, right superior parietal lobule and right precuneus, as well as left inferior temporo-occipital cortex, are negatively correlated with the semantic transparency of the idioms. These results suggest that both hemispheres are involved in idiom processing but they play different roles. Implications of the findings are discussed in light of theories of figurative language processing and hemispheric functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Individualism, conservatism, and radicalism as criteria for processing political beliefs: a parametric fMRI study.

    Science.gov (United States)

    Zamboni, Giovanna; Gozzi, Marta; Krueger, Frank; Duhamel, Jean-René; Sirigu, Angela; Grafman, Jordan

    2009-01-01

    Politics is a manifestation of the uniquely human ability to debate, decide, and reach consensus on decisions affecting large groups over long durations of time. Recent neuroimaging studies on politics have focused on the association between brain regions and specific political behaviors by adopting party or ideological affiliation as a criterion to classify either experimental stimuli or subjects. However, it is unlikely that complex political beliefs (i.e., "the government should protect freedom of speech") are evaluated only on a liberal-to-conservative criterion. Here we used multidimensional scaling and parametric functional magnetic resonance imaging to identify which criteria/dimensions people use to structure complex political beliefs and which brain regions are concurrently activated. We found that three independent dimensions explained the variability of a set of statements expressing political beliefs and that each dimension was reflected in a distinctive pattern of neural activation: individualism (medial prefrontal cortex and temporoparietal junction), conservatism (dorsolateral prefrontal cortex), and radicalism (ventral striatum and posterior cingulate). The structures we identified are also known to be important in self-other processing, social decision-making in ambivalent situations, and reward prediction. Our results extend current knowledge on the neural correlates of the structure of political beliefs, a fundamental aspect of the human ability to coalesce into social entities.

  17. Healthy brooders employ more attentional resources when disengaging from the negative: an event-related fMRI study.

    Science.gov (United States)

    Vanderhasselt, Marie-Anne; Kühn, Simone; De Raedt, Rudi

    2011-06-01

    Depressive brooding is considered a maladaptive ruminative-thinking style that has been shown to be highly correlated with major depression. The present study in healthy participants employed event-related fMRI to uncover the neural underpinnings of emotional disengagement as it relates to depressive brooding. Thirty-four healthy, never depressed individuals performed an emotional go/no-go task with a rapid presentation of emotional faces. We focused on the contrast of inhibiting sad (happy/no-go) versus inhibiting happy (sad/no-go) information. This contrast allowed us to assess possible difficulties in disengaging from emotionally negative, as compared with emotionally positive, faces. At the behavioral level, only in high brooders were higher self-reported brooding scores correlated with more errors when sad information was inhibited, relative to happy information. At the neural level, across all participants, brooding scores were positively correlated with activity in the right dorsolateral prefrontal cortex (DLPFC; BA 46), implying that high brooders show higher DLPFC involvement when successfully disengaging from a series of negative stimuli. These results may suggest that healthy individuals who report a high brooding thinking style need to recruit more attentional control in order to disengage successfully from negative information, in a way that may be related to emotion regulation strategies. These mechanisms might protect them from developing depressive symptoms.

  18. Prospective demonstration of brain plasticity after intensive abacus-based mental calculation training: An fMRI study

    International Nuclear Information System (INIS)

    Chen, C.L.; Wu, T.H.; Cheng, M.C.; Huang, Y.H.; Sheu, C.Y.; Hsieh, J.C.; Lee, J.S.

    2006-01-01

    Abacus-based mental calculation is a unique Chinese culture. The abacus experts can perform complex computations mentally with exceptionally fast speed and high accuracy. However, the neural bases of computation processing are not yet clearly known. This study used a BOLD contrast 3T fMRI system to explore the brain activation differences between abacus experts and non-expert subjects. All the acquired data were analyzed using SPM99 software. From the results, different ways of performing calculations between the two groups were seen. The experts tended to adopt efficient visuospatial/visuomotor strategy (bilateral parietal/frontal network) to process and retrieve all the intermediate and final results on the virtual abacus during calculation. By contrast, coordination of several networks (verbal, visuospatial processing and executive function) was required in the normal group to carry out arithmetic operations. Furthermore, more involvement of the visuomotor imagery processing (right dorsal premotor area) for imagining bead manipulation and low level use of the executive function (frontal-subcortical area) for launching the relatively time-consuming sequentially organized process was noted in the abacus expert group than in the non-expert group. We suggest that these findings may explain why abacus experts can reveal the exceptional computational skills compared to non-experts after intensive training

  19. Comparison study of human brain response to acupuncture stimulation vs finger tapping task by using real time fMRI

    International Nuclear Information System (INIS)

    Wang Wei; Zhu Fang; Qi Jianpin; Xia Yeling; Xia Liming; Wang Chengyuan

    2002-01-01

    Objective: To characterize the central nervous system reaction on acupuncture stimulations of ZUSANLI (S36) and YANGLINGQUAN (G34) by using real time imaging processing (RTIP) functional magnetic resonance imaging. Methods: Functional MR imaging was performed in 17 healthy volunteers with 2 paradigms: acupuncture at acu-points of ZUSANLI (S36 and YANGLINGQUAN (G34) (on the right side) and control stimulations (right finger tapping). Correlation coefficient (CC) of ROI was detected including bilateral sensorimotor area (SMC), pre-motor cortex (PMC), and supplementary motor area (SMA). Only the ROI in which CC ≥ 0.6 and range exceeded 4 pixels was counted as an activated area. Fisher's exact test was performed to analyze the data in SAS software package. Results: In tapping finger task, 16 subjects obtained functional MR images satisfactorily except 1 subjects, and 8 of SMC R , 8 of PMC R , 9 of SMA, 16 of SMC L , and 9 of PMC L were activated. In acupuncture task, 3 subjects were eliminated for gross motion artifacts, there were 6 of SMC R , 10 of PMC R , 8 of SMA, 11 of SMC L , and 10 of PMC L were activated in the rest 14 subjects. Fisher's exact test (2-Tail) (P> 0.05) showed that there was no significant difference in ROI activated by two kinds of stimulus. Conclusion: Real time fMRI was very useful in exploring acupuncture mechanisms. However, its value in practice still requires further study and synthetic appraise integrating clinical acupuncture effect

  20. Cue-reactivity in experienced electronic cigarette users: Novel stimulus videos and a pilot fMRI study.

    Science.gov (United States)

    Nichols, Travis T; Foulds, Jonathan; Yingst, Jessica M; Veldheer, Susan; Hrabovsky, Shari; Richie, John; Eissenberg, Thomas; Wilson, Stephen J

    2016-05-01

    Some individuals who try electronic cigarettes (e-cigarettes) continue to use long-term. Previous research has investigated the safety of e-cigarettes and their potential for use in smoking cessation, but comparatively little research has explored chronic or habitual e-cigarette use. In particular, the relationship between e-cigarette cues and craving is unknown. We sought to bridge this gap by developing a novel set of e-cigarette (salient) and electronic toothbrush (neutral) videos for use in cue-reactivity paradigms. Additionally, we demonstrate the utility of this approach in a pilot fMRI study of 7 experienced e-cigarette users. Participants were scanned while viewing the cue videos before and after 10min use of their own e-cigarettes (producing an 11.7ng/ml increase in plasma nicotine concentration). A significant session (pre- and post-use) by video type (salient and neutral) interaction was exhibited in many sensorimotor areas commonly activated in other cue-reactivity paradigms. We did not detect significant cue-related activity in other brain regions notable in the craving literature. Possible reasons for this discrepancy are discussed, including the importance of matching cue stimuli to participants' experiences. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. How specialized are writing-specific brain regions? An fMRI study of writing, drawing and oral spelling.

    Science.gov (United States)

    Planton, Samuel; Longcamp, Marieke; Péran, Patrice; Démonet, Jean-François; Jucla, Mélanie

    2017-03-01

    Several brain imaging studies identified brain regions that are consistently involved in writing tasks; the left premotor and superior parietal cortices have been associated with the peripheral components of writing performance as opposed to other regions that support the central, orthographic components. Based on a meta-analysis by Planton, Jucla, Roux, and Demonet (2013), we focused on five such writing areas and questioned the task-specificity and hemispheric lateralization profile of the brain response in an functional magnetic resonance imaging (fMRI) experiment where 16 right-handed participants wrote down, spelled out orally object names, and drew shapes from object pictures. All writing-related areas were activated by drawing, and some of them by oral spelling, thus questioning their specialization for written production. The graphemic/motor frontal area (GMFA), a subpart of the superior premotor cortex close to Exner's area (Roux et al., 2009), was the only area with a writing-specific lateralization profile, that is, clear left lateralization during handwriting, and bilateral activity during drawing. Furthermore, the relative lateralization and levels of activation in the superior parietal cortex, ventral premotor cortex, ventral occipitotemporal cortex and right cerebellum across the three tasks brought out new evidence regarding their respective contributions to the writing processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cue-reactivity in experienced electronic cigarette users: Novel stimulus videos and a pilot fMRI study

    Science.gov (United States)

    Nichols, Travis T.; Foulds, Jonathan; Yingst, Jessica; Veldheer, Susan; Hrabovsky, Shari; Richie, John; Eissenberg, Thomas; Wilson, Stephen J.

    2015-01-01

    Some individuals who try electronic cigarettes (e-cigarettes) continue to use long-term. Previous research has investigated the safety of e-cigarettes and their potential for use in smoking cessation, but comparatively little research has explored chronic or habitual e-cigarette use. In particular, the relationship between e-cigarette cues and craving is unknown. We sought to bridge this gap by developing a novel set of e-cigarette (salient) and electronic toothbrush (neutral) videos for use in cue-reactivity paradigms. Additionally, we demonstrate the utility of this approach in a pilot fMRI study of 7 experienced e-cigarette users. Participants were scanned while viewing the cue videos before and after 10 minute use of their own e-cigarettes (producing an 11.7 ng/ml increase in plasma nicotine concentration). A significant session (pre- and post-use) by video type (salient and neutral) interaction was exhibited in many sensorimotor areas commonly activated in other cue-reactivity paradigms. We did not detect significant cue-related activity in other brain regions notable in the craving literature. Possible reasons for this discrepancy are discussed, including the importance of matching cue stimuli to participants’ experiences. PMID:26478134

  3. The emotion potential of words and passages in reading Harry Potter--an fMRI study.

    Science.gov (United States)

    Hsu, Chun-Ting; Jacobs, Arthur M; Citron, Francesca M M; Conrad, Markus

    2015-03-01

    Previous studies suggested that the emotional connotation of single words automatically recruits attention. We investigated the potential of words to induce emotional engagement when reading texts. In an fMRI experiment, we presented 120 text passages from the Harry Potter book series. Results showed significant correlations between affective word (lexical) ratings and passage ratings. Furthermore, affective lexical ratings correlated with activity in regions associated with emotion, situation model building, multi-modal semantic integration, and Theory of Mind. We distinguished differential influences of affective lexical, inter-lexical, and supra-lexical variables: differential effects of lexical valence were significant in the left amygdala, while effects of arousal-span (the dynamic range of arousal across a passage) were significant in the left amygdala and insula. However, we found no differential effect of passage ratings in emotion-associated regions. Our results support the hypothesis that the emotion potential of short texts can be predicted by lexical and inter-lexical affective variables. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  5. An fMRI study during finger movement tasks and recalling finger movement tasks in normal subjects and schizophrenia patients

    International Nuclear Information System (INIS)

    Ueno, Takefumi

    2003-01-01

    Using fMRI, we investigated the region of the brain, which was activated by the finger movement tasks (F1) and the recalling finger movement tasks (F2). Six right-handed age-matched healthy controls and six Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) Schizophrenia patients were included in the study. In healthy controls, contralateral motor area, supplementary motor area and somatosensory area were all activated during F1 and F2. However the contralateral parietal lobe (supramarginal gyrus etc) and ipsilateral cerebellum were also activated during F2. In schizophrenia patients, the contralateral motor area was activated during F1, but the activated region was smaller than that observed in healthy subjects. During F2, the bilateral parietal lobes (sensorimotor cortices, association cortex) were activated, while the activated regions were smaller than those seen in healthy controls and no laterality was observed. In addition, no laterality of the activated regions was clearly observed. These results suggest that the function of recalling motor tasks can be mapped onto the contralateral motor area, somatosensory area, supplementary motor area, parietal association cortices, and ipsilateral cerebellum. In schizophrenia patients, the activated regions are smaller than those observed in healthy controls, and parietal regions are also activated bilaterally during recalling motor tasks. Schizophrenia patients may therefore process to recall motor task differently from healthy subjects while also demonstrate less laterality of the brain. (author)

  6. The effects of rehearsal on the functional neuroanatomy of episodic autobiographical and semantic remembering: an fMRI study

    Science.gov (United States)

    Svoboda, Eva; Levine, Brian

    2009-01-01

    This study examined the effects of rehearsal on the neural substrates supporting episodic autobiographical and semantic memory. Stimuli were collected prospectively using audio recordings, thereby bringing under experimental control ecologically-valid, naturalistic autobiographical stimuli. Participants documented both autobiographical and semantic stimuli over a period of 6 to 8 months, followed by a rehearsal manipulation during the three days preceding scanning. During fMRI scanning participants were exposed to recordings that they were hearing for the first, second or eighth time. Rehearsal increased the rated vividness with which information was remembered, particularly for autobiographical events. Neuroimaging findings revealed rehearsal-related suppression of activation in regions supporting episodic autobiographical and semantic memory. Episodic autobiographical and semantic memory produced distinctly different patterns of regional activation that held even after eight repetitions. Region of interest analyses further indicated a functional anatomical dissociation in response to rehearsal and memory conditions. These findings revealed that the hippocampus was specifically engaged by episodic autobiographical memory, whereas both memory conditions engaged the parahippocampal cortex. Our data suggest that when retrieval cues are potent enough to engage a vivid episodic recollection, the episodic/semantic dissociation within medial temporal lobe structures endure even with multiple stimulus repetitions. These findings support the Multiple Trace Theory (MTT) which predicts that the hippocampus is engaged in the retrieval of rich episodic recollection regardless of repeated reactivation such as that occurring with the passage of time. PMID:19279244

  7. Gender differences in brain activity toward unpleasant linguistic stimuli concerning interpersonal relationships: an fMRI study.

    Science.gov (United States)

    Shirao, Naoko; Okamoto, Yasumasa; Okada, Go; Ueda, Kazutaka; Yamawaki, Shigeto

    2005-10-01

    Women are more vulnerable to psychosocial stressors such as interpersonal conflicts than men, and are more susceptible to some psychiatric disorders. We hypothesized that there are differences in the brain activity of men and women while perceiving unpleasant linguistic stimuli concerning interpersonal relationships, and that they underlie the different sensitivity toward these stressful stimuli. We carried out a functional magnetic resonance imaging (fMRI) study on 13 young female adults and 13 young male adults who performed an emotional decision task including sets of unpleasant words concerning interpersonal relationships and sets of neutral words. In the women, the unpleasant words more significantly activated the bilateral caudate nuclei and left putamen than the neutral words. However, among the men, there was no difference in the level of activation of any brain area induced by the unpleasant or neutral word stimuli. Upon performing the task, there was a significant gender difference in brain activation. Moreover, among the female subjects, the activation in the bilateral caudate nuclei and left thalamus was negatively correlated with the average rating of pleasantness of the words concerning interpersonal conflicts by the subject. These results demonstrate gender differences in brain activity in processing unpleasant linguistic stimuli related to interpersonal conflicts. Our data suggest that the bilateral caudate nuclei and left putamen play an important role in the perception of words concerning interpersonal conflicts in women. The bilateral caudate nuclei and left thalamus may regulate a woman's sensitivity to unpleasant information about interpersonal difficulties.

  8. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    Science.gov (United States)

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  9. The implicit processing of categorical and dimensional strategies: an fMRI study of facial emotion perception

    Directory of Open Access Journals (Sweden)

    Yoshi-Taka eMatsuda

    2013-09-01

    Full Text Available Our understanding of facial emotion perception has been dominated by two seemingly opposing theories: the categorical and dimensional theories. However, we have recently demonstrated that hybrid processing involving both categorical and dimensional perception can be induced in an implicit manner (Fujimura et al., 2012. The underlying neural mechanisms of this hybrid processing remain unknown. In this study, we tested the hypothesis that separate neural loci might intrinsically encode categorical and dimensional processing functions that serve as a basis for hybrid processing. We used functional magnetic resonance imaging (fMRI to measure neural correlates while subjects passively viewed emotional faces and performed tasks that were unrelated to facial emotion processing. Activity in the right fusiform face area (FFA increased in response to psychologically obvious emotions and decreased in response to ambiguous expressions, demonstrating the role of the FFA in categorical processing. The amygdala, insula and medial prefrontal cortex exhibited evidence of dimensional (linear processing that correlated with physical changes in the emotional face stimuli. The occipital face area and superior temporal sulcus did not respond to these changes in the presented stimuli. Our results indicated that distinct neural loci process the physical and psychological aspects of facial emotion perception in a region-specific and implicit manner.

  10. Oxytocin effects on mind-reading are moderated by experiences of maternal love withdrawal: an fMRI study.

    Science.gov (United States)

    Riem, Madelon M E; Bakermans-Kranenburg, Marian J; Voorthuis, Alexandra; van IJzendoorn, Marinus H

    2014-06-03

    The neuropeptide oxytocin has been shown to stimulate a range of social behaviors. However, recent studies indicate that the effects of intranasal oxytocin are more nuanced than previously thought and that contextual factors and individual characteristics moderate the beneficiary oxytocin effects. In this randomized-controlled trial we examine the influence of intranasally administered oxytocin on neural activity during mind-reading with fMRI, taking into account harsh caregiving experiences as a potential moderator. Participants were 50 women who received a nasal spray containing either 16 IU of oxytocin or a placebo and had reported how often their mother used love withdrawal as a disciplinary strategy. Participants performed an adapted version of the Reading the Mind in the Eyes Test (RMET), a task which requires individuals to infer mental states by looking at photographs of the eye region of faces. We found that oxytocin enhanced neural activation in the superior temporal gyrus (STG) and insula during the RMET. Moreover, oxytocin increased RMET performance outside the scanner. However, the oxytocin induced changes in STG activation and RMET performance were only brought about in potentially less socially proficient individuals who had low RMET performance, that is, participants reporting higher levels of maternal love withdrawal. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Prospective demonstration of brain plasticity after intensive abacus-based mental calculation training: An fMRI study

    Science.gov (United States)

    Chen, C. L.; Wu, T. H.; Cheng, M. C.; Huang, Y. H.; Sheu, C. Y.; Hsieh, J. C.; Lee, J. S.

    2006-12-01

    Abacus-based mental calculation is a unique Chinese culture. The abacus experts can perform complex computations mentally with exceptionally fast speed and high accuracy. However, the neural bases of computation processing are not yet clearly known. This study used a BOLD contrast 3T fMRI system to explore the brain activation differences between abacus experts and non-expert subjects. All the acquired data were analyzed using SPM99 software. From the results, different ways of performing calculations between the two groups were seen. The experts tended to adopt efficient visuospatial/visuomotor strategy (bilateral parietal/frontal network) to process and retrieve all the intermediate and final results on the virtual abacus during calculation. By contrast, coordination of several networks (verbal, visuospatial processing and executive function) was required in the normal group to carry out arithmetic operations. Furthermore, more involvement of the visuomotor imagery processing (right dorsal premotor area) for imagining bead manipulation and low level use of the executive function (frontal-subcortical area) for launching the relatively time-consuming sequentially organized process was noted in the abacus expert group than in the non-expert group. We suggest that these findings may explain why abacus experts can reveal the exceptional computational skills compared to non-experts after intensive training.

  12. Beauty and ugliness in the bodies and faces of others: an fMRI study of person esthetic judgement.

    Science.gov (United States)

    Martín-Loeches, M; Hernández-Tamames, J A; Martín, A; Urrutia, M

    2014-09-26

    Whether beauty and ugliness represent two independent judgement categories or, instead, opposite extremes of a single dimension is a matter of debate. In the present 3T-functional Magnetic Resonance Imaging (fMRI) study, 20 participants were scanned while judging faces and nude bodies of people classified as extremely ugly, extremely beautiful, or indifferent. Certain areas, such as the caudate/nucleus accumbens (NAcc) and the anterior cingulate cortex (ACC), exhibited a linear relationship across esthetic judgments supporting ugliness as the lowest extreme of a beauty continuum. Other regions, such as basal occipital areas, displayed an inverse pattern, with the highest activations for ugly and the lowest for beautiful ones. Further, several areas were involved alike by both the very beautiful and the very ugly stimuli. Among these, the medial orbitofrontal cortex (mOFC), as well as the posterior and medial portions of the cingulate gyrus. This is interpreted as the activation of neural circuits related to self- vs. other-assessment. Beauty and ugliness in the brain, at least in relation to natural and biologically and socially relevant stimuli (faces and bodies), appear tightly related and non-independent. Finally, neutral stimuli elicited strong and wide activations of the somatosensory and somatomotor systems together with longer reaction times and higher error rates, probably reflecting the difficulty of the human brain to classify someone as indifferent. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Positive Facial Affect – An fMRI Study on the Involvement of Insula and Amygdala

    Science.gov (United States)

    Pohl, Anna; Anders, Silke; Schulte-Rüther, Martin; Mathiak, Klaus; Kircher, Tilo

    2013-01-01

    Imitation of facial expressions engages the putative human mirror neuron system as well as the insula and the amygdala as part of the limbic system. The specific function of the latter two regions during emotional actions is still under debate. The current study investigated brain responses during imitation of positive in comparison to non-emotional facial expressions. Differences in brain activation of the amygdala and insula were additionally examined during observation and execution of facial expressions. Participants imitated, executed and observed happy and non-emotional facial expressions, as well as neutral faces. During imitation, higher right hemispheric activation emerged in the happy compared to the non-emotional condition in the right anterior insula and the right amygdala, in addition to the pre-supplementary motor area, middle temporal gyrus and the inferior frontal gyrus. Region-of-interest analyses revealed that the right insula was more strongly recruited by (i) imitation and execution than by observation of facial expressions, that (ii) the insula was significantly stronger activated by happy than by non-emotional facial expressions during observation and imitation and that (iii) the activation differences in the right amygdala between happy and non-emotional facial expressions were increased during imitation and execution, in comparison to sole observation. We suggest that the insula and the amygdala contribute specifically to the happy emotional connotation of the facial expressions depending on the task. The pattern of the insula activity might reflect increased bodily awareness during active execution compared to passive observation and during visual processing of the happy compared to non-emotional facial expressions. The activation specific for the happy facial expression of the amygdala during motor tasks, but not in the observation condition, might reflect increased autonomic activity or feedback from facial muscles to the amygdala. PMID

  14. Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study.

    Science.gov (United States)

    Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian

    2017-02-01

    Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.

  15. Positive facial affect - an fMRI study on the involvement of insula and amygdala.

    Directory of Open Access Journals (Sweden)

    Anna Pohl

    Full Text Available Imitation of facial expressions engages the putative human mirror neuron system as well as the insula and the amygdala as part of the limbic system. The specific function of the latter two regions during emotional actions is still under debate. The current study investigated brain responses during imitation of positive in comparison to non-emotional facial expressions. Differences in brain activation of the amygdala and insula were additionally examined during observation and execution of facial expressions. Participants imitated, executed and observed happy and non-emotional facial expressions, as well as neutral faces. During imitation, higher right hemispheric activation emerged in the happy compared to the non-emotional condition in the right anterior insula and the right amygdala, in addition to the pre-supplementary motor area, middle temporal gyrus and the inferior frontal gyrus. Region-of-interest analyses revealed that the right insula was more strongly recruited by (i imitation and execution than by observation of facial expressions, that (ii the insula was significantly stronger activated by happy than by non-emotional facial expressions during observation and imitation and that (iii the activation differences in the right amygdala between happy and non-emotional facial expressions were increased during imitation and execution, in comparison to sole observation. We suggest that the insula and the amygdala contribute specifically to the happy emotional connotation of the facial expressions depending on the task. The pattern of the insula activity might reflect increased bodily awareness during active execution compared to passive observation and during visual processing of the happy compared to non-emotional facial expressions. The activation specific for the happy facial expression of the amygdala during motor tasks, but not in the observation condition, might reflect increased autonomic activity or feedback from facial muscles to the

  16. The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study.

    Science.gov (United States)

    Fox, Christopher J; Moon, So Young; Iaria, Giuseppe; Barton, Jason J S

    2009-01-15

    The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network.

  17. Role of emotional processing in depressive responses to sex-hormone manipulation: a pharmacological fMRI study

    DEFF Research Database (Denmark)

    Henningsson, S.; Madsen, Kristoffer Hougaard; Pinborg, A.

    2015-01-01

    resonance imaging (fMRI) to investigate if sex-steroid hormone manipulation with a gonadotropin-releasing hormone agonist (GnRHa) influences emotional processing. Fifty-six healthy women were investigated twice: at baseline (follicular phase of menstrual cycle) and 16 +/- 3 days post intervention. At both...... sessions, fMRI-scans during exposure to faces expressing fear, anger, happiness or no emotion, depressive symptom scores and estradiol levels were acquired. The fMRI analyses focused on regions of interest for emotional processing. As expected, GnRHa initially increased and subsequently reduced estradiol...

  18. Abnormal Baseline Brain Activity in Drug-Naïve Patients with Tourette Syndrome: A Resting-state fMRI Study

    Directory of Open Access Journals (Sweden)

    Yonghua eCui

    2014-01-01

    Full Text Available Tourette Syndrome (TS is a childhood-onset chronic disorder characterized by the presence of multiple motor and vocal tics. This study investigated spontaneous low-frequency fluctuations in TS patients during resting-state functional magnetic resonance imaging (fMRI scans. We obtained resting-state fMRI scans from seventeen drug-naïve TS children and fifteen demographically matched healthy children. We computed the amplitude of low frequency fluctuation (ALFF and fractional ALFF (fALFF of resting-state fMRI data to measure spontaneous brain activity, and assessed the between-group differences in ALFF/fALFF and the relationship between ALFF/fALFF and tic severity scores. Our results showed that the children with TS exhibited significantly decreased ALFF in the posterior cingulate gyrus/precuneus and bilateral parietal gyrus. fALFF was decreased in TS children in the anterior cingulated cortex, bilateral middle and superior frontal cortices and superior parietal lobule, and increased in the left putamen and bilateral thalamus. Moreover, we found significantly positive correlations between fALFF and tic severity scores in the right thalamus. Our study provides empirical evidence for abnormal spontaneous neuronal activity in TS patients, which may implicate the underlying neurophysiological mechanism in TS and demonstrate the possibility of applying ALFF/fALFF for clinical TS studies.

  19. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Science.gov (United States)

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p lateralization of SMC activation, as found in children and adults, is already present in the newborn period.

  20. Motor planning is facilitated by adopting an action's goal posture: An fMRI study

    NARCIS (Netherlands)

    Zimmermann, M.; Meulenbroek, R.G.J.; Lange, F.P. de

    2012-01-01

    Abstract: Motor planning is a hierarchical process that is typically organized around an action's goal (e.g., drinking from a cup). However, the motor plan depends not only on the goal but also on the current body state. Here, we investigated how one's own body posture interacts with planning of

  1. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. An fMRI study of neuronal activation in schizophrenia patients with and without previous cannabis use

    Directory of Open Access Journals (Sweden)

    Else-Marie eLøberg

    2012-10-01

    Full Text Available Previous studies have mostly shown positive effects of cannabis use on cognition in patients with schizophrenia, which could reflect lower neurocognitive vulnerability. There are however no studies comparing whether such cognitive differences have neuronal correlates. Thus, the aim of the present study was to compare whether patients with previous cannabis use differ in brain activation from patients who has never used cannabis. The patients groups were compared on the ability to up-regulate an effort mode network during a cognitive task and down-regulate activation in the same network during a task-absent condition. Task-present and task-absent brain activation was measured by functional magnetic resonance neuroimaging (fMRI. Twenty-six patients with a DSM-IV and ICD-10 diagnosis of schizophrenia were grouped into a previous cannabis user group and a no-cannabis group. An auditory dichotic listening task with instructions of attention focus on either the right or left ear stimulus was used to tap verbal processing, attention and cognitive control, calculated as an aggregate score. When comparing the two groups, there were remaining activations in the task-present condition for the cannabis group, not seen in the no-cannabis group, while there was remaining activation in the task-absent condition for the no-cannabis group, not seen in the cannabis group. Thus, the patients with previous cannabis use showed increased activation in an effort mode network and decreased activation in the default mode network as compared to the no-cannabis group. It is concluded that the present study show some differences in brain activation to a cognitively challenging task between previous cannabis and no-cannabis schizophrenia patients.

  3. Emotion Reactivity Is Increased 4-6 Weeks Postpartum in Healthy Women: A Longitudinal fMRI Study.

    Directory of Open Access Journals (Sweden)

    Malin Gingnell

    Full Text Available Marked endocrine alterations occur after delivery. Most women cope well with these changes, but the postpartum period is associated with an increased risk of depressive episodes. Previous studies of emotion processing have focused on maternal-infant bonding or postpartum depression (PPD, and longitudinal studies of the neural correlates of emotion processing throughout the postpartum period in healthy women are lacking. In this study, 13 women, without signs of post partum depression, underwent fMRI with an emotional face matching task and completed the MADRS-S, STAI-S, and EPDS within 48 h (early postpartum and 4-6 weeks after delivery (late postpartum. Also, data from a previous study including 15 naturally cycling controls assessed in the luteal and follicular phase of the menstrual cycle was used. Women had lower reactivity in insula, middle frontal gyrus (MFG, and inferior frontal gyrus (IFG in the early as compared to the late postpartum assessment. Insular reactivity was positively correlated with anxiety in the early postpartum period and with depressive symptoms late postpartum. Reactivity in insula and IFG were greater in postpartum women than in non-pregnant control subjects. Brain reactivity was not correlated with serum estradiol or progesterone levels. Increased reactivity in the insula, IFG, and MFG may reflect normal postpartum adaptation, but correlation with self-rated symptoms of depression and anxiety in these otherwise healthy postpartum women, may also suggest that these changes place susceptible women at increased risk of PPD. These findings contribute to our understanding of the neurobiological aspects of the postpartum period, which might shed light on the mechanisms underlying affective puerperal disorders, such as PPD.

  4. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  5. Neural Substrates for Verbal Working Memory in Deaf Signers: fMRI Study and Lesion Case Report

    Science.gov (United States)

    Buchsbaum, Bradley; Pickell, Bert; Love, Tracy; Hatrak, Marla; Bellugi, Ursula; Hickok, Gregory

    2005-01-01

    The nature of the representations maintained in verbal working memory is a topic of debate. Some authors argue for a modality-dependent code, tied to particular sensory or motor systems. Others argue for a modality-neutral code. Sign language affords a unique perspective because it factors out the effects of modality. In an fMRI experiment, deaf…

  6. Exploring Possible Neural Mechanisms of Intelligence Differences Using Processing Speed and Working Memory Tasks: An fMRI Study

    Science.gov (United States)

    Waiter, Gordon D.; Deary, Ian J.; Staff, Roger T.; Murray, Alison D.; Fox, Helen C.; Starr, John M.; Whalley, Lawrence J.

    2009-01-01

    To explore the possible neural foundations of individual differences in intelligence test scores, we examined the associations between Raven's Matrices scores and two tasks that were administered in a functional magnetic resonance imaging (fMRI) setting. The two tasks were an n-back working memory (N = 37) task and inspection time (N = 47). The…

  7. Syntactic Priming and the Lexical Boost Effect during Sentence Production and Sentence Comprehension: An fMRI Study

    Science.gov (United States)

    Segaert, Katrien; Kempen, Gerard; Petersson, Karl Magnus; Hagoort, Peter

    2013-01-01

    Behavioral syntactic priming effects during sentence comprehension are typically observed only if both the syntactic structure and lexical head are repeated. In contrast, during production syntactic priming occurs with structure repetition alone, but the effect is boosted by repetition of the lexical head. We used fMRI to investigate the neuronal…

  8. Valence Scaling of Dynamic Facial Expressions Is Altered in High-Functioning Subjects with Autism Spectrum Disorders: An FMRI Study

    Science.gov (United States)

    Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa

    2012-01-01

    FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…

  9. Brain Activation by Visual Food-Related Stimuli and Correlations with Metabolic and Hormonal Parameters: A fMRI Study

    NARCIS (Netherlands)

    Jakobsdottir, S.; de Ruiter, M.B.; Deijen, J.B.; Veltman, D.J.; Drent, M.L.

    2012-01-01

    Regional brain activity in 15 healthy, normal weight males during processing of visual food stimuli in a satiated and a hungry state was examined and correlated with neuroendocrine factors known to be involved in hunger and satiated states. Two functional Magnetic Resonance Imaging (fMRI) sessions

  10. Synaesthetic perception of colour and visual space in a blind subject: An fMRI case study

    NARCIS (Netherlands)

    Niccolai, V.; Leeuwen, T.M. van; Blakemore, C.; Störig, P.

    2012-01-01

    In spatial sequence synaesthesia (SSS) ordinal stimuli are perceived as arranged in peripersonal space. Using fMRI, we examined the neural bases of SSS and colour synaesthesia for spoken words in a late-blind synaesthete, JF. He reported days of the week and months of the year as both coloured and

  11. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); Yang, Hong; Wang, Hao [Third Military Medical University, Ophthalmology Research Center, Southwest Eye Hospital/Southwest Hospital, Chongqing (China); Yu, Longhua [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); 401st Hospital of PLA, Department of Radiology, Qingdao (China); He, Sheng [University of Minnesota Twin Cities, Department of Psychology, Minneapolis, MN (United States)

    2017-05-15

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  12. An fMRI study on variation of visuospatial cognitive performance of young male due to highly concentrated oxygen administration

    Science.gov (United States)

    Chung, Soon Cheol; Kim, Ik Hyeon; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    This study investigated the effects of 30% oxygen administration on the visuospatial cognitive performance using fMRI. Eight college students (right-handed, average age 23.5) were selected as subjects for this study. Oxygen supply equipment which gives 21% and 30% oxygen at a constant rate of 8L/min was developed for this study. To measure the performance of visuospatial cognition, two questionnaires with similar difficulty containing 20 questions each were also developed. Experiment was designed as two runs: run for visuospatial cognition test with normal air (21% of oxygen) and run for visuospatial cognition test with highly concentrated air (30% of oxygen). Run consists of 4 blocks and each block has 8 control problems and 5 visuospatial problems. Functional brain images were taken from 3T MRI using single-shot EPI method. Activities of neural network due to performing visuospatial cognition test were identified using subtraction procedure, and activation areas while performing visuospatial cognition test were extracted using double subtraction procedure. Activities were observed at occipital lobe, parietal lobe, and frontal lobe when performing visuospatial cognition test following both 21% and 30% oxygen administration. But in case of only 30% oxygen administration there were more activities at left precuneus, left cuneus, right postcentral gyrus, bilateral middle frontal gyri, right inferior frontal gyrus, left superior frontal gyrus, bilateral uvula, bilateral pyramis, and nodule compared with 21% oxygen administration. From results of visuospatial cognition test, accuracy rate increased in case of 30% oxygen administration. Thus it could be concluded that highly concentrated oxygen administration has positive effects on the visuospatial cognitive performance.

  13. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian; Yang, Hong; Wang, Hao; Yu, Longhua; He, Sheng

    2017-01-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  14. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Science.gov (United States)

    Murta, Teresa; Leite, Marco; Carmichael, David W; Figueiredo, Patrícia; Lemieux, Louis

    2015-01-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are important tools in cognitive and clinical neuroscience. Combined EEG–fMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level-dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological–haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (EEG–fMRI mapping), or exploring a range of EEG-derived quantities to determine which best explain colocalised BOLD fluctuations (local EEG–fMRI coupling). While reviewing studies of different forms of brain activity (epileptic and nonepileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG–fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations. PMID:25277370

  15. Acute exercise modulates cigarette cravings and brain activation in response to smoking-related images: an fMRI study.

    Science.gov (United States)

    Janse Van Rensburg, Kate; Taylor, Adrian; Hodgson, Tim; Benattayallah, Abdelmalek

    2009-04-01

    Substances of misuse (such as nicotine) are associated with increases in activation within the mesocorticolimbic brain system, a system thought to mediate the rewarding effects of drugs of abuse. Pharmacological treatments have been designed to reduce cigarette cravings during temporary abstinence. Exercise has been found to be an effective tool for controlling cigarette cravings. The objective of this study is to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomized crossover design, regular smokers (n = 10) undertook an exercise (10 min moderate-intensity stationary cycling) and control (passive seating for same duration) session, following 15 h of nicotine abstinence. Following treatments, participants entered a functional Magnetic Resonance Imaging (fMRI) scanner. Subjects viewed a random series of smoking and neutral images for 3 s, with an average inter-stimulus-interval (ISI) of 10 s. Self-reported cravings were assessed at baseline, mid-, and post-treatments. A significant interaction effect (time by group) was found, with self-reported cravings lower during and following exercise. During control scanning, significant activation was recorded in areas associated with reward (caudate nucleus), motivation (orbitofrontal cortex) and visuo-spatial attention (parietal lobe, parahippocampal, and fusiform gyrus). Post-exercise scanning showed hypo-activation in these areas with a concomitant shift of activation towards areas identified in the 'brain default mode' (Broadmanns Area 10). The study confirms previous evidence that a single session of exercise can reduce cigarette cravings, and for the first time provides evidence of a shift in regional activation in response to smoking cues.

  16. Neonatal brain injury and neuroanatomy of memory processing following very preterm birth in adulthood: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Anastasia K Kalpakidou

    Full Text Available Altered functional neuroanatomy of high-order cognitive processing has been described in very preterm individuals (born before 33 weeks of gestation; VPT compared to controls in childhood and adolescence. However, VPT birth may be accompanied by different types of adverse neonatal events and associated brain injury, the severity of which may have differential effects on brain development and subsequent neurodevelopmental outcome. We conducted a functional magnetic resonance imaging (fMRI study to investigate how differing degrees of neonatal brain injury, detected by neonatal ultrasounds, affect the functional neuroanatomy of memory processing in VPT young adults. We used a verbal paired associates learning task, consisting of four encoding, four cued-recall and four baseline condition blocks. To further investigate whether differences in neural activation between the groups were modulated by structural brain changes, structural MRI data were also collected. We studied 12 VPT young adults with a history of periventricular haemorrhage with associated ventricular dilatation, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage, 12 individuals with normal ultrasonographic findings, and 17 controls. Results of a linear trend analysis demonstrated that during completion of the paired associates learning task right frontal and right parietal brain activation decreased as the severity of neonatal brain injury increased. There were no statistically significant between-group differences in on-line task performance and participants' intelligence quotient (IQ at assessment. This pattern of differential activation across the groups was observed particularly in the right middle frontal gyrus during encoding and in the right posterior cingulate gyrus during recall. Structural MRI data analysis revealed that grey matter volume in the right superior temporal gyrus, right cerebellum, left middle temporal gyrus, right globus pallidus and

  17. The interaction of lexical semantics and cohort competition in spoken word recognition: an fMRI study.

    Science.gov (United States)

    Zhuang, Jie; Randall, Billi; Stamatakis, Emmanuel A; Marslen-Wilson, William D; Tyler, Lorraine K

    2011-12-01

    Spoken word recognition involves the activation of multiple word candidates on the basis of the initial speech input--the "cohort"--and selection among these competitors. Selection may be driven primarily by bottom-up acoustic-phonetic inputs or it may be modulated by other aspects of lexical representation, such as a word's meaning [Marslen-Wilson, W. D. Functional parallelism in spoken word-recognition. Cognition, 25, 71-102, 1987]. We examined these potential interactions in an fMRI study by presenting participants with words and pseudowords for lexical decision. In a factorial design, we manipulated (a) cohort competition (high/low competitive cohorts which vary the number of competing word candidates) and (b) the word's semantic properties (high/low imageability). A previous behavioral study [Tyler, L. K., Voice, J. K., & Moss, H. E. The interaction of meaning and sound in spoken word recognition. Psychonomic Bulletin & Review, 7, 320-326, 2000] showed that imageability facilitated word recognition but only for words in high competition cohorts. Here we found greater activity in the left inferior frontal gyrus (BA 45, 47) and the right inferior frontal gyrus (BA 47) with increased cohort competition, an imageability effect in the left posterior middle temporal gyrus/angular gyrus (BA 39), and a significant interaction between imageability and cohort competition in the left posterior superior temporal gyrus/middle temporal gyrus (BA 21, 22). In words with high competition cohorts, high imageability words generated stronger activity than low imageability words, indicating a facilitatory role of imageability in a highly competitive cohort context. For words in low competition cohorts, there was no effect of imageability. These results support the behavioral data in showing that selection processes do not rely solely on bottom-up acoustic-phonetic cues but rather that the semantic properties of candidate words facilitate discrimination between competitors.

  18. Self-evaluation in schizophrenia: an fMRI study with implications for the understanding of insight

    Directory of Open Access Journals (Sweden)

    Bedford Nicholas J

    2012-08-01

    Full Text Available Abstract Background Lack of insight is a core feature of schizophrenia and is associated with structural brain abnormalities. The functional neuroanatomy of insight has only recently been investigated. When people evaluate their personality traits compared to those of another, activation is seen in central midline structures (CMS of the brain. This study set out to compare cerebral activation in schizophrenia patients versus controls during a self-evaluation task which included positive and negative traits as well as mental and physical illness terms. Methods Eleven schizophrenia patients and 8 healthy controls, matched for age were studied. Insight was assessed using the Schedule for the Assessment of Insight-expanded version (SAI-E. FMRI data were obtained with a 1.5 Tesla GE system and interactions between participant group, self versus other, significant at the cluster level, were recorded. Results Significant hypoactivation in the medial superior frontal gyrus (dorsomedial prefrontal cortex was observed in patients vs. controls during self-evaluation of all traits combined. A second cluster of hypoactivation in the posterior cingulate was also detected. When the response to individual traits was explored, underactivation in other frontal regions plus right inferior parietal lobule emerged and this tended to correlate, albeit weakly with lower insight scores. Further, there were areas of hyperactivation relative to controls in anterior cingulate, frontal and parietal regions (especially precuneus which showed moderate inverse correlations with insight scores. Conclusions We have demonstrated that the CMS, identified as a key system underpinning self-evaluation, is dysfunctional in patients with schizophrenia, particularly dorso-medial PFC. This may have implications for lack of insight in schizophrenia. Hypofunction within the dorsomedial prefrontal region seems to be particularly important although other posterior and lateral cortical

  19. Acquisition, Analyses and Interpretation of fMRI Data: A Study on the Effective Connectivity in Human Primary Auditory Cortices

    International Nuclear Information System (INIS)

    Ahmad Nazlim Yusoff; Mazlyfarina Mohamad; Khairiah Abdul Hamid

    2011-01-01

    A study on the effective connectivity characteristics in auditory cortices was conducted on five healthy Malay male subjects with the age of 20 to 40 years old using functional magnetic resonance imaging (fMRI), statistical parametric mapping (SPM5) and dynamic causal modelling (DCM). A silent imaging paradigm was used to reduce the scanner sound artefacts on functional images. The subjects were instructed to pay attention to the white noise stimulus binaurally given at intensity level of 70 dB higher than the hearing level for normal people. Functional specialisation was studied using Matlab-based SPM5 software by means of fixed effects (FFX), random effects (RFX) and conjunction analyses. Individual analyses on all subjects indicate asymmetrical bilateral activation between the left and right auditory cortices in Brodmann areas (BA)22, 41 and 42 involving the primary and secondary auditory cortices. The three auditory areas in the right and left auditory cortices are selected for the determination of the effective connectivity by constructing 9 network models. The effective connectivity is determined on four out of five subjects with the exception of one subject who has the BA22 coordinates located too far from BA22 coordinates obtained from group analysis. DCM results showed the existence of effective connectivity between the three selected auditory areas in both auditory cortices. In the right auditory cortex, BA42 is identified as input centre with unidirectional parallel effective connectivities of BA42→BA41and BA42→BA22. However, for the left auditory cortex, the input is BA41 with unidirectional parallel effective connectivities of BA41→BA42 and BA41→BA22. The connectivity between the activated auditory areas suggests the existence of signal pathway in the auditory cortices even when the subject is listening to noise. (author)

  20. Prolonged Repeated Acupuncture Stimulation Induces Habituation Effects in Pain-Related Brain Areas: An fMRI Study

    Science.gov (United States)

    Li, Chuanfu; Yang, Jun; Park, Kyungmo; Wu, Hongli; Hu, Sheng; Zhang, Wei; Bu, Junjie; Xu, Chunsheng; Qiu, Bensheng; Zhang, Xiaochu

    2014-01-01

    Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia. PMID:24821143

  1. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study.

    Science.gov (United States)

    Neale, Chris; Johnston, Patrick; Hughes, Matthew; Scholey, Andrew

    2015-01-01

    The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.

  2. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Chris Neale

    Full Text Available The Rapid Visual Information Processing (RVIP task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16. The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis, such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi, parietal (precuenus, inferior parietal lobe and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.

  3. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    Science.gov (United States)

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  4. Cortical reorganization in children with connatal spastic hemiparesis - a functional magnetic resonance imaging (fMRI) study; Kortikale Reorganisation bei Kindern mit konnataler spastischer Hemiparese - eine funktionelle Magnetresonanztomographie-(fMRT-)Studie

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, F. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neuropaediatrie; Ulmer, S. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neurochirurgie; Wolff, S.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Sektion fuer Neuroradiologie; Stephani, U. [Universitaetsklinikum Schleswig-Holstein, Campus Kiel (Germany). Klinik fuer Neuropaediatrie

    2005-11-15

    Purpose: We applied fMRI to investigate atypical cortical activation in patients with connatal spastic hemiparesis using voluntary movements of the hand, foot, and tongue. The relation between the findings from fMRI and the motor dysfunction was examined. Materials and Methods: 11 patients with connatal spastic hemiparesis were studied. Eight of these patients had periventricular leukomalacia (PVL), and three patients had cortical-subcortical lesions. To evaluate the severity of motor impairment tests for the upper and lower limb were performed. fMRI data were obtained in a block design using hand, foot, and tongue movements. As a control group, 14 healthy volunteers were examined with the fMRI protocol. Results: A laterally cortical representation of the paretic foot was found in three patients with PVL. In patients with cortical-subcortical lesions, tongue movements were associated with cortical activation restricted to the unaffected hemisphere. Movements of the paretic limb showed more ipsilateral activation in patients with PVL than in patients with cortical-subcortical lesions. Conclusion: Different types of structural damage such as PVL and cortical-subcortical lesions show differences in fMRI examination. (orig.)

  5. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI.

    Science.gov (United States)

    Martin, Allan R; Aleksanderek, Izabela; Cohen-Adad, Julien; Tarmohamed, Zenovia; Tetreault, Lindsay; Smith, Nathaniel; Cadotte, David W; Crawley, Adrian; Ginsberg, Howard; Mikulis, David J; Fehlings, Michael G

    2016-01-01

    A recent meeting of international imaging experts sponsored by the International Spinal Research Trust (ISRT) and the Wings for Life Foundation identified 5 state-of-the-art MRI techniques with potential to transform the field of spinal cord imaging by elucidating elements of the microstructure and function: diffusion tensor imaging (DTI), magnetization transfer (MT), myelin water fraction (MWF), MR spectroscopy (MRS), and functional MRI (fMRI). However, the progress toward clinical translation of these techniques has not been established. A systematic review of the English literature was conducted using MEDLINE, MEDLINE-in-Progress, Embase, and Cochrane databases to identify all human studies that investigated utility, in terms of diagnosis, correlation with disability, and prediction of outcomes, of these promising techniques in pathologies affecting the spinal cord. Data regarding study design, subject characteristics, MRI methods, clinical measures of impairment, and analysis techniques were extracted and tabulated to identify trends and commonalities. The studies were assessed for risk of bias, and the overall quality of evidence was assessed for each specific finding using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. A total of 6597 unique citations were identified in the database search, and after full-text review of 274 articles, a total of 104 relevant studies were identified for final inclusion (97% from the initial database search). Among these, 69 studies utilized DTI and 25 used MT, with both techniques showing an increased number of publications in recent years. The review also identified 1 MWF study, 11 MRS studies, and 8 fMRI studies. Most of the studies were exploratory in nature, lacking a priori hypotheses and showing a high (72%) or moderately high (20%) risk of bias, due to issues with study design, acquisition techniques, and analysis methods. The acquisitions for each technique varied widely across

  6. fMRI study of neural sensitization to hedonic stimuli in long-term, daily cannabis users.

    Science.gov (United States)

    Filbey, Francesca M; Dunlop, Joseph; Ketcherside, Ariel; Baine, Jessica; Rhinehardt, Tyler; Kuhn, Brittany; DeWitt, Sam; Alvi, Talha

    2016-10-01

    Although there is emergent evidence illustrating neural sensitivity to cannabis cues in cannabis users, the specificity of this effect to cannabis cues as opposed to a generalized hyper-sensitivity to hedonic stimuli has not yet been directly tested. Using fMRI, we presented 53 daily, long-term cannabis users and 68 non-using controls visual and tactile cues for cannabis, a natural reward, and, a sensory-perceptual control object to evaluate brain response to hedonic stimuli in cannabis users. The results showed an interaction between group and reward type such that the users had greater response during cannabis cues relative to natural reward cues (i.e., fruit) in the orbitofrontal cortex, striatum, anterior cingulate gyrus, and ventral tegmental area compared to non-users (cluster-threshold z = 2.3, P brain-behavior correlations between neural response to cannabis cues in fronto-striatal-temporal regions and subjective craving, marijuana-related problems, withdrawal symptoms, and levels of THC metabolites (cluster-threshold z = 2.3, P brain response to cannabis cues in long-term cannabis users that are above that of response to natural reward cues. These observations are concordant with incentive sensitization models suggesting sensitization of mesocorticolimbic regions and disruption of natural reward processes following drug use. Although the cross-sectional nature of this study does not provide information on causality, the positive correlations between neural response and indicators of cannabis use (i.e., THC levels) suggest that alterations in the reward system are, in part, related to cannabis use. Hum Brain Mapp 37:3431-3443, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  7. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study

    Science.gov (United States)

    Ferri, Stefania; Rizzolatti, Giacomo

    2015-01-01

    Abstract The present fMRI study examined whether upper‐limb action classes differing in their motor goal are encoded by different PPC sectors. Action observation was used as a proxy for action execution. Subjects viewed actors performing object‐related (e.g., grasping), skin‐displacing (e.g., rubbing the skin), and interpersonal upper limb actions (e.g., pushing someone). Observation of the three action classes activated a three‐level network including occipito‐temporal, parietal, and premotor cortex. The parietal region common to observing all three action classes was located dorsally to the left intraparietal sulcus (DIPSM/DIPSA border). Regions specific for observing an action class were obtained by combining the interaction between observing action classes and stimulus types with exclusive masking for observing the other classes, while for regions considered preferentially active for a class the interaction was exclusively masked with the regions common to all observed actions. Left putative human anterior intraparietal was specific for observing manipulative actions, and left parietal operculum including putative human SII region, specific for observing skin‐displacing actions. Control experiments demonstrated that this latter activation depended on seeing the skin being moved and not simply on seeing touch. Psychophysiological interactions showed that the two specific parietal regions had similar connectivities. Finally, observing interpersonal actions preferentially activated a dorsal sector of left DIPSA, possibly the homologue of ventral intraparietal coding the impingement of the target person's body into the peripersonal space of the actor. These results support the importance of segregation according to the action class as principle of posterior parietal cortex organization for action observation and by implication for action execution. Hum Brain Mapp 36:3845–3866, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley

  8. Cortical activities evoked by the signals ascending through unmyelinated C fibers in humans. A fMRI study

    International Nuclear Information System (INIS)

    Kakigi, Ryusuke; Qiu, Yunhai; Noguchi, Yasuki

    2006-01-01

    Acute pain is classified as first and second pain associated with rapidly conducting Aδ fibers and slowly conducting unmyelinated C fibers, respectively. First pain aims at achieving relative safety from the source of injury, whereas second pain, with its strong affective component, attracts longer-lasting attention and initiates behavioral responses in order to limit further injury and optimize recovery. Accordingly, the distinct brain representations for first and second pain should reflect distinct biological functions of both sensations. In this study, therefore, an event-related functional magnetic resonance imaging (fMRI) was used to investigate brain processing of the signals ascending from peripheral C and Aδ fibers evoked by phasic laser stimuli on the right hand in humans. The stimulation of both C and Aδ nociceptors activated the bilateral thalamus, bilateral secondary somatosensory cortex (SII), right (ipsilateral) middle insula, and bilateral Brodmann's area (BA) 24/32, with the majority of activity found in the posterior portion of the anterior cingulate cortex (pACC). However, magnitude of activity in the right (ipsilateral) BA32/8/6, including dorsal parts in the anterior portion of the ACC (aACC) and pre-supplementary motor area (pre-SMA), and the bilateral anterior insula was significantly stronger following the stimulation of C nociceptors than Aδ nociceptors. It was concluded that the activation of C nociceptors, related to second pain, evokes different brain processing from that of Aδ nociceptors, related to first pain, probably due to the differences in the emotional and motivational aspects of either pain, which are mainly related to the aACC, pre-SMA and anterior insula. (author)

  9. Process and domain specificity in regions engaged for face processing: an fMRI study of perceptual differentiation.

    Science.gov (United States)

    Collins, Heather R; Zhu, Xun; Bhatt, Ramesh S; Clark, Jonathan D; Joseph, Jane E

    2012-12-01

    The degree to which face-specific brain regions are specialized for different kinds of perceptual processing is debated. This study parametrically varied demands on featural, first-order configural, or second-order configural processing of faces and houses in a perceptual matching task to determine the extent to which the process of perceptual differentiation was selective for faces regardless of processing type (domain-specific account), specialized for specific types of perceptual processing regardless of category (process-specific account), engaged in category-optimized processing (i.e., configural face processing or featural house processing), or reflected generalized perceptual differentiation (i.e., differentiation that crosses category and processing type boundaries). ROIs were identified in a separate localizer run or with a similarity regressor in the face-matching runs. The predominant principle accounting for fMRI signal modulation in most regions was generalized perceptual differentiation. Nearly all regions showed perceptual differentiation for both faces and houses for more than one processing type, even if the region was identified as face-preferential in the localizer run. Consistent with process specificity, some regions showed perceptual differentiation for first-order processing of faces and houses (right fusiform face area and occipito-temporal cortex and right lateral occipital complex), but not for featural or second-order processing. Somewhat consistent with domain specificity, the right inferior frontal gyrus showed perceptual differentiation only for faces in the featural matching task. The present findings demonstrate that the majority of regions involved in perceptual differentiation of faces are also involved in differentiation of other visually homogenous categories.

  10. Process- and Domain-Specificity in Regions Engaged for Face Processing: An fMRI Study of Perceptual Differentiation

    Science.gov (United States)

    Coll