WorldWideScience

Sample records for current drive technique

  1. Design of Current Controller for Two Quadrant DC Motor Drive by Using Model Order Reduction Technique

    CERN Document Server

    Ramesh, K; Nirmalkumar, A; Gurusamy, G

    2010-01-01

    In this paper, design of current controller for a two quadrant DC motor drive was proposed with the help of model order reduction technique. The calculation of current controller gain with some approximations in the conventional design process is replaced by proposed model order reduction method. The model order reduction technique proposed in this paper gives the better controller gain value for the DC motor drive. The proposed model order reduction method is a mixed method, where the numerator polynomial of reduced order model is obtained by using stability equation method and the denominator polynomial is obtained by using some approximation technique preceded in this paper. The designed controllers responses were simulated with the help of MATLAB to show the validity of the proposed method.

  2. Input current interharmonics in adjustable speed drives caused by fixed-frequency modulation techniques

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Loh, Poh Chiang

    2016-01-01

    Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt an approp......Adjustable Speed Drives (ASDs) based on double-stage conversion systems may inject interharmonics distortion into the grid, other than the well-known characteristic harmonic components. The problems created by interharmonics make it necessary to find their precise sources, and, to adopt...... an appropriate strategy for minimizing their effects. This paper investigates the ASD's input current interharmonic sources caused by applying symmetrical regularly sampled fixed-frequency modulation techniques on the inverter. The interharmonics generation process is precisely formulated and comparative results...

  3. Simple Driving Techniques

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    2002-01-01

    -like language. Our aim is to extract a simple notion of driving and show that even in this tamed form it has much of the power of more general notions of driving. Our driving technique may be used to simplify functional programs which use function composition and will often be able to remove intermediate data......Driving was introduced as a program transformation technique by Valentin Turchin in some papers around 1980. It was intended for the programming language REFAL and used in metasystem transitions based on super compilation. In this paper we present one version of driving for a more conventional lisp...

  4. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  5. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Science.gov (United States)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  6. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    Energy Technology Data Exchange (ETDEWEB)

    Milanesio, D., E-mail: daniele.milanesio@polito.it; Maggiora, R. [Politecnico di Torino, Dipartimento di Elettronica e Telecomunicazioni (DET), Torino (Italy)

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  7. Turbulent current drive

    Science.gov (United States)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2014-11-01

    The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.

  8. Optimization of RF power absorption by optimization techniques using the lower hybrid current drive of FTU

    Energy Technology Data Exchange (ETDEWEB)

    Centioli, C. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Iannone, F. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Mazza, G. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Panella, M. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Pangione, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)]. E-mail: pangione@frascati.enea.it; Podda, S. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Tuccillo, A. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Vitale, V. [Associazione Euratom/ENEA Sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Zaccarian, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)

    2005-11-15

    In this paper, we will report on the experimental results arising from the implementation of optimization techniques to maximize the RF power coupling versus the plasma conditions in the FTU experimental facility. These experiments are carried out by employing the open-source Linux-RTAI control system currently running on the FTU digital feedback loop. The RF power source under consideration is a lower hybrid system (LH) based on six gyrotrons with a nominal power output capability of 1.1 MW each. The optimization of the coupling level between the plasma and the emitting antenna reduces the reflected power, thus maximizing the heating effects in addition to avoiding danger to the emitter (equivalently, annoying safety shutdowns of the system). To this aim, the plasma displacement is modified by suitably adjusting the reference input to the stabilizing feedback, according to a steepest descent algorithm. It will be shown in the paper how this algorithm achieves a satisfactory level of robustness with respect to measurement errors and well performs both in simulation and in experimental tests, thus leading to an improved effectiveness of the RF heating system.

  9. Non-inductive current drive

    NARCIS (Netherlands)

    Westerhof, E.

    2012-01-01

    This lecture addresses the various ways of non-inductive current generation. In particular, the topics covered include the bootstrap current, RF current drive, neutral beam current drive, alternative methods, and possible synergies between different ways of non-inductive current generation.

  10. NON-INDUCTIVE CURRENT DRIVE

    NARCIS (Netherlands)

    Westerhof, E.

    2010-01-01

    This lecture addresses the various ways of non-inductive current generation. In particular, the topics covered include the bootstrap current, RF current drive, neutral beam current drive, alternative methods, and possible synergies between different ways of non-inductive current generation.

  11. Current Drive in a Ponderomotive Potential with Sign Reversal

    Energy Technology Data Exchange (ETDEWEB)

    N.J. Fisch; J.M. Rax; I.Y. Dodin

    2003-07-30

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  12. Current Drive in a Ponderomotive Potential with Sign Reversal

    CERN Document Server

    Fisch, N J; Rax, J M

    2003-01-01

    Noninductive current drive can be accomplished through ponderomotive forces with high efficiency when the potential changes sign over the interaction region. The effect can practiced upon both ions and electrons. The current drive efficiencies, in principle, might be higher than those possible with conventional radio-frequency current-drive techniques, since different considerations come into play.

  13. Characterization of Input Current Interharmonics in Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz

    2017-01-01

    -edge symmetrical regularly sampled Space Vector Modulation (SVM) technique, on the input current interharmonic components are presented and discussed. Particular attention is also given to the influence of the asymmetrical regularly sampled modulation technique on the drive input current interharmonics...

  14. Electron cyclotron heating and current drive

    NARCIS (Netherlands)

    Westerhof, E.

    1996-01-01

    Plasma heating and non-inductive current drive by waves in the electron cyclotron range of frequencies are reviewed. Both theoretical aspects concerning wave properties, heating and current drive mechanisms, as well as the major experimental results are summarized.

  15. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  16. Current drive induced by intermittent trapping

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel (Israel)

    1999-02-01

    We propose a mechanism for driving a current in a dispersive plasma based on intermittent trapping of electrons in a ponderomotive well generated by two- counterpropagating electron cyclotron waves. By choosing properly the parameters of the system, this mechanism is expected to induce a high efficiency current drive. (authors)

  17. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  18. Electron cyclotron resonance heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I.; Castejon, F.

    1992-07-01

    A brief summary of the theory and experiments on electron- cyclotron heating and current drive is presented. The general relativistic formulation of wave propagation and linear absorption is considered in some detail. The O-mode and the X-mode for normal and oblique propagation are investigated and illustrated by several examples. The experimental verification of the theory in T-10 and D- III-D is briefly discussed. Quasilinear evolution of the momentum distribution and related applications as, for instance, non linear wave, damping and current drive, are also considered for special cases of wave frequencies, polarization and propagation. In the concluding section we present the general formulation of the wave damping and current drive in the absence of electron trapping for arbitrary values of the wave frequency. (Author) 13 refs.

  19. Disturbance observer based current controller for vector controlled IM drives

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Dal, Mehmet

    2008-01-01

    In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...... coupling effects and increase robustness against parameters change without requiring any other compensation strategies. The experimental implementation results are provided to demonstrate validity and performance of the proposed control scheme.......In order to increase the accuracy of the current control loop, usually, well known parameter compensation and/or cross decoupling techniques are employed for advanced ac drives. In this paper, instead of using these techniques an observer-based current controller is proposed for vector controlled...

  20. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  1. ITER (International Thermonuclear Experimental Reactor) current drive and heating physics

    Energy Technology Data Exchange (ETDEWEB)

    Nevins, W.M.; Lindquist, W. (Lawrence Livermore National Lab., CA (USA)); Fujisawa, N.; Kimura, H. (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan)); Hopman, H.; Rebuffi, L.; Wegrowe, J.G. (Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.). NET Design Team); Parail, V.; Vdovin, V. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow (USSR). Inst. Atomnoj Ehn

    1990-01-01

    The ITER Current Drive and Heating (CD H) systems are required for: Ionization and current initiation; Non-inductive current ramp-up assist; Heating of the plasma; Steady-state operation with full non-inductive current drive; Current profile control; and Burn control by modulation of the auxiliary power. Steady-state current drive is the most demanding requirement, so this has driven the choice of the ITER current drive and heating systems.

  2. Lower Hybrid Current Drive in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, A.; Goniche, M.; Guilhem, D.; Kazarian, F.; Peysson, Y. and Tore Supra Team [CEA, IRFM, F-13108 St Paul Les Durance, (France)

    2009-07-01

    Since the mission of Tore Supra is to produce quasi-steady-state discharges, the lower hybrid current drive (LHCD) system constitutes the most important method of additional hewing and noninductive current drive. A description of the LHCD is given, including the different launcher designs developed for the Tore Supra long-pulse program. Following the completion of the Composants Internes et Limiteur project, together with the installation of a high-performance LHCD launcher, world record discharges, injected and extracted energy exceeding 1 GJ, were obtained in 2003. With the flexibility of lower hybrid (LH) waves to tailor the current profile, an enhanced performance regime, the so-called LHEP has been maintained in quasi-steady-state discharges. Detailed measurements of the fast electron distribution have allowed us to constrain LHCD ray-tracing models and to quantify parametric dependencies describing the fast electron tail. Localized heat loads oil the LHCD launchers due to interaction with fast particles have been measured and quantified, using infrared imaging and calorimetric measurements oil water-cooled plasma facing components. Furthermore, experimental results in the area of LH wave coupling are presented. (authors)

  3. 一个新的适用于无刷直流电机驱动的单电流传感器技术%A Novel Current Sensor Technique for Brushless DC Motor Drives

    Institute of Scientific and Technical Information of China (English)

    谭徽; 江建中; 汪信尧; 王勇

    2000-01-01

    The torque output in a permanent magnet brushless DC motor (BLDCM) is usually controlled by regulating the motor phase currents. In this paper, three kinds of PWM strategies together with some critical review on traditional current measurements in a BLDCM drive system are discussed. A novel method for assessing the PWM information and measuring the motor phase currents by a dc link current sensor is proposed. An attractive feature of the proposed method is the simplicity with the current sample processing because there is no need to incorporate the conduction information of the power switches or diodes. Only the single sided PWM or the double sided complementary PWM is needed with the proposed technique.

  4. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  5. TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE

    Energy Technology Data Exchange (ETDEWEB)

    CHU, M.S.; PARKS, P.B.

    2002-06-01

    OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.

  6. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    Science.gov (United States)

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design.

  7. Brushless DC motor Drive during Speed regulation with Current Controller

    Directory of Open Access Journals (Sweden)

    Bhikshalu Manchala

    2015-04-01

    Full Text Available Brushless DC Motor (BLDC is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling the stator phase current in a brushless DC drive are practically effective in low speed and cannot reduce the commutation torque ripple in high speed range. This paper presents the PI controller for speed control of BLDC motor. The output of the PI controllers is summed and is given as the input to the current controller. The BLDC motor is fed from the inverter where the rotor position and current controller is the input. The complete model of the proposed drive system is developed and simulated using MATLAB/Simulink software. The operation principle of using component is analysed and the simulation results are presented in this to verify the theoretical analysis.

  8. Current European developments in solar paddle drives

    Science.gov (United States)

    Bentall, R. H.

    1973-01-01

    The European Space Research and Technology Centre (ESTEC) is sponsoring the development of a number of critical spacecraft hardware items. The hardware under development includes two competing solar paddle drives which are being produced to similar specifications. Three mechanisms of each type are being produced and will undergo thermal vacuum testing. All mechanisms have lead lubricated bearings.

  9. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  10. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  11. Validation of the ultrasonic and Eddy current techniques to inspect the accommodation of the elements of (CRDH) control rod drive; Validacion de las tecnicas de ultrasonidos y corrientes inducidas para inspeccionar los alojamientos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Gomez, P.; Sanchez, J.; Resa, P.

    2013-07-01

    Tecnatom development in the past with ultrasonic inspection procedures to examine vessels BWR of several Central nuclear (CRDH) control rod drive elements, accommodations. In each case, inspection techniques have relied on both the volume of required test postulated defects. Also, taking into account the possible access to the component, developed mechanical equipments of different characteristics.

  12. High Harmonic Fast Wave heating and current drive for NSTX

    Science.gov (United States)

    Robinson, J. A.; Majeski, R.; Hosea, J.; Menard, J.; Ono, M.; Phillips, C. K.; Wilson, J. R.; Wright, J.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Ryan, P.; Swain, D.; Mau, T. K.; Chiu, S. C.; Smithe, D.

    1997-11-01

    Heating and noninductive current drive in NSTX will initially use 6 MW of rf power in the high harmonic fast wave (HHFW) regime. We present numerical modelling of HHFW heating and current drive in NSTX using the PICES, CURRAY, FISIC, and METS95 codes. High electron β during the discharge flattop in NSTX is predicted to result in off-axis power deposition and current drive. However, reductions in the trapped electron fraction (due also to high β effects) are predicted to result in adequate current drive efficiency, with ~ 400 - 500 kA of noninductive current driven. Sufficient per-pass absorption (>10%) to ensure effective electron heating is also expected for the startup plasma. Present plans call for a single twelve strap antenna driven by six FMIT transmitters operating at 30 MHz. The design for the antenna and matching system will also be discussed.

  13. Nanorobotics current approaches and techniques

    CERN Document Server

    Ferreira, Antoine

    2013-01-01

    Nanorobot devices now perform a wide variety of tasks at the nanoscale in a wide variety of fields including but not limited to fields such as manufacturing, medicine, supply chain, biology, and outer space. Nanorobotics: Current Approaches and Techniques is a comprehensive overview of this interdisciplinary field with a wide ranging discussion that includes nano-manipulation and industrial nanorobotics, nanorobotics in biology and medicine, nanorobotic sensing, navigation and swarm behavior, and protein and DNA-based nanorobotics. Also included is the latest on topics such as bio-nano-actuators and propulsion and navigation of nanorobotic systems using magnetic fields. Nanorobotics: Current Approaches and Techniques is an ideal book for scientists, researchers, and engineers actively involved in applied and robotic research and development.

  14. Plasma heating and current drive using intense, pulsed microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  15. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    OpenAIRE

    Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.

    2012-01-01

    A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...

  16. On the Application of TLS Techniques to AC Electrical Drives

    Directory of Open Access Journals (Sweden)

    M. Cirrincione

    2005-03-01

    Full Text Available This paper deals with the application of a new neuron, the TLS EXIN neuron, to AC induction motor drives. In particular, it addresses two important subjects of AC induction motor drives: the on-line estimation of the electrical parameters of the machine and the speed estimation in sensorless drives. On this basis, this work summarizes the parameter estimation and sensorless techniques already developed by the authors over these last few years, all based on the TLS EXIN. With regard to sensorless, two techniques are proposed: one based on the MRAS and the other based on the full-order Luenberger observer. The work show some of the most significant results obtained by the authors in these fields and stresses the important potentiality of this new neural technique in AC induction machine drives.

  17. Current drive experiments in the Helicity Injected Torus - II

    Science.gov (United States)

    Hamp, W. T.; Redd, A. J.; Jarboe, T. R.; Nelson, B. A.; O'Neill, R. G.; Raman, R.; Sieck, P. E.; Smith, R. J.; Mueller, D.

    2006-10-01

    The HIT-II spherical torus (ST) device has demonstrated four toroidal plasma current drive configurations to form and sustain a tokamak: 1) inductive (ohmic) current drive, 2) coaxial helicity injection (CHI) current drive, 3) CHI initiated plasmas with ohmic sustainment (CHI+OH), and 4) ohmically initiated plasmas with CHI edge current drive (OH+ECD). CHI discharges with a sufficiently high ratio of injector current to toroidal field current form a closed flux core, and amplify the injector poloidal flux through magnetic reconnection. CHI+OH plasmas are more robust than unassisted ohmic discharges, with a wider operating space and more efficient use of the transformer Volt-seconds. Finally, edge CHI can enhance the plasma current of an ohmic discharge without significantly degrading the quality of the discharge. Results will be presented for each HIT-II operating regime, including empirical performance scalings, applicable parametric operating spaces, and requirements to produce these discharges. Thomson scattering measurements and EFIT simulations are used to evaluate confinement in several representative plasmas. Finally, we outline extensions to the HIT-II CHI studies that could be performed with NSTX, SUNIST, or other ST devices.

  18. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  19. Research on Predicting Drive Current of Shipborne Satcom Antenna

    Directory of Open Access Journals (Sweden)

    Kong Jinping

    2015-01-01

    Full Text Available Predicting the effect of antenna wind load on servo system precisely is meaningful to ensure the safety of satcom antenna on operation, which can avoid overload operation. In this paper, the computational fluid dynamics is used to proceed numerical computation on the pressure distribution of the reflector and torque of drive shaft under different wind speed, windward angle and angle of pitch of the antenna. The simulation model is built under MATLAB/Simulink simulation environment, and the drive current of the antenna servo system is analyzed under wind load effect and ship swing. Then, a method of predicting drive current of antenna servo system according to the wind speed, wind direction and attitude of the antenna is concluded. And this method is verified by simulation at last.

  20. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  1. Study of lower hybrid current drive for the demonstration reactor

    Energy Technology Data Exchange (ETDEWEB)

    Molavi-Choobini, Ali Asghar [Dept. of Physics, Faculty of Engineering, Islamic Azad University, Shahr-e-kord Branch, Shahr-e-kord (Iran, Islamic Republic of); Naghidokht, Ahmed [Dept. of Physics, Urmia University, Urmia (Iran, Islamic Republic of); Karami, Zahra [Dept. of Engineering, Islamic Azad University, Zanjan Branch, Zanjan (Iran, Islamic Republic of)

    2016-06-15

    Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

  2. Enhanced Lower Hybrid Current Drive Experiments on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement exper-iments in higher plasma parameters (Ip > 200 kA, ne> 2×1013 cm-3, Te ≥ 1 keⅤ) havebeen curried out in optimized LH wave spectrum and plasma parameters in HT-7 supercon-ducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasmadensity ne and toroidal magnetic field BT has been obtained under optimal conditions. A goodCD efficiency was obtained at higher plasma current and higher electron density. The improve-ment of the energy confinement time is accompanied with the increase in line averaged electrondensity, and in ion and electron temperatures. The highest current driving efficiency reachedηCD = IpneR/PRF ≈ 1.05 × 1019 Am-2/W. Wave-plasma coupling was sustained in a good stateand the reflective coefficient was less than 5%. The experiments have also demonstrated the abilityof LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporaldistribution of plasma parameter shows that lower hybrid leads to a broader profile in plasmaparameter. The LH power deposition profile and the plasma current density profile were modeledwith a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detectorarray.

  3. Electric machine and current source inverter drive system

    Science.gov (United States)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  4. Current drive at plasma densities required for thermonuclear reactors.

    Science.gov (United States)

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  5. Physics of electron cyclotron current drive on DIII-D

    CERN Document Server

    Petty, C C; Harvey, R W; Kinsey, J E; Lao, L L; Lohr, J; Luce, T C; Makowski, M A; Prater, R

    2002-01-01

    OAK A271 PHYSICS OF ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D. Recent experiments on the DIII-D tokamak have focused on determining the effect of trapped particles on the electron cyclotron current drive (ECCD) efficiency. The measured ECCD efficiency increases as the deposition location is moved towards the inboard midplane or towards smaller minor radius for both co and counter injection. The measured ECCD efficiency also increases with increasing electron density and/or temperature. The experimental ECCD is compared to both the linear theory (Toray-GA) as well as a quasilinear Fokker-Planck model (CQL3D). The experimental ECCD is found to be in better agreement with the more complete Fokker-Planck calculation, especially for cases of high rf power density and/or loop voltage. The narrow width of the measured ECCD profile is consistent with only low levels of radial transport for the current carrying electrons.

  6. Fast wave current drive antenna performance on D3-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.

    1991-10-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  7. Fast Wave Current Drive Antenna Performance on DIII-D

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Porkolab, M.; Prater, R.; Baity, F. W.; Goulding, R. H.; Hoffman, D. J.

    1992-01-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the DIII-D tokamak for the first time in high electron temperature, high β target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n∥ value (≂7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90°) in each of the straps for a directional spectrum. In this paper we describe the performance of the DIII-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  8. [Current techniques in tonsil surgery].

    Science.gov (United States)

    Coromina Isern, Jordi; Esteller Moré, Eduard

    2010-12-01

    In recent years, consolidation of tonsillar hypertrophy as the principal surgical procedure has led to the emergence of new techniques. Most aim to reduce volume (tonsillectomy or tonsil reduction). These techniques have considerably decreased intra- and postoperative hemorrhages and pain intensity. The present article describes the mechanisms and the advantages and disadvantages of the various techniques, including electro-dissection using electrical scalpels, reduction using a microdebrider, ultrasonic scalpel, radiofrequency (with its different variations) and CO(2) laser. When techniques that reduce tonsil volume are used, the possibility of recurrence of the tonsillar hypertrophy is high if less than 85% of the tonsil is removed. There is also a considerable possibility of infection of the remaining tonsils, whichever technique is used, and therefore these techniques are not valid in the case of repetitive tonsillitis. Recently, alternatives to classical adenoidectomy using adenoid curette have also appeared. Bleeding can be minimized by using a microdebrider, radiofrequency or a blood coagulator. We also discuss the concept of partial adenoidectomy, which is preferred in patients at risk of velopharyngeal insufficiency.

  9. Brushless DC motor Drive during Speed regulation with Current Controller

    OpenAIRE

    Bhikshalu Manchala; T.Amar Kiran

    2015-01-01

    Brushless DC Motor (BLDC) is one of the best electrical drives that have increasing popularity, due to their high efficiency, reliability, good dynamic response and very low maintenance. Due to the increasing demand for compact & reliable motors and the evolution of low cost power semiconductor switches and permanent magnet (PM) materials, brushless DC motors become popular in every application from home appliances to aerospace industry. The conventional techniques for controlling...

  10. Direct calculation of current drive efficiency in FISIC code

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.C.; Phillips, C.K. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543-0451 (United States); Bonoli, P.T. [Plasma Fusion Center, MIT Cambridge, Massachusetts 02139 (United States)

    1996-02-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires {ital a} {ital priori} knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. {copyright} {ital 1996 American Institute of Physics.}

  11. Direct calculation of current drive efficiency in FISIC code

    Science.gov (United States)

    Wright, J. C.; Phillips, C. K.; Bonoli, P. T.

    1996-02-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented.

  12. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    Science.gov (United States)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  13. Collisional current drive in two interpenetrating plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.; Pollaine, S. M.; Remington, B. A.; Ross, J. S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-10-15

    The magnetic field generation in two interpenetrating, weakly collisional plasma streams produced by intense lasers is considered. The generation mechanism is very similar to the neutral beam injection current drive in toroidal fusion devices, with the differences related to the absence of the initial magnetic field, short interaction time, and different geometry. Spatial and temporal characteristics of the magnetic field produced in two counterstreaming jets are evaluated; it is shown that the magnetic field of order of 1 T can be generated for modest jet parameters. Conditions under which this mechanism dominates that of the ''Biermann battery'' are discussed. Other settings where the mechanism of the collisional current drive can be important for the generation of seed magnetic fields include astrophysics and interiors of hohlraums.

  14. Submucosal tunneling techniques: current perspectives

    Directory of Open Access Journals (Sweden)

    Kobara H

    2014-04-01

    Full Text Available Hideki Kobara,1 Hirohito Mori,1 Kazi Rafiq,2 Shintaro Fujihara,1 Noriko Nishiyama,1 Maki Ayaki,1 Tatsuo Yachida,1 Tae Matsunaga,1 Johji Tani,1 Hisaaki Miyoshi,1 Hirohito Yoneyama,1 Asahiro Morishita,1 Makoto Oryu,1 Hisakazu Iwama,3 Tsutomu Masaki1 1Department of Gastroenterology and Neurology, 2Department of Pharmacology, 3Life Science Research Center, Faculty of Medicine, Kagawa University, Miki-cho, Kita-Gun, Kagawa, Japan Abstract: Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments. Keywords: submucosal endoscopy, submucosal tunneling method, natural orifice transluminal endoscopic surgery, peroral endoscopic myotomy, gastrointestinal subepithelial tumor, functional and motility disorders

  15. Towards fully non-inductive current drive operation in JET

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X. [Association Euratom-CEA Cadarache, Dept. de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France); Crisanti, F. [Association Euratom-ENEA sulla Fusione, Centro Ricerche Frascati (Italy); Alper, B. [Euratom-UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)] [and others

    2002-01-01

    Quasi steady operation has been achieved at JET in the high confinement regime with Internal Transport Barriers, ITBs. The ITBs' performances are maintained up to 11 s. This duration, much larger than the energy confinement time, is already approaching a current resistive time. The high performance phase is limited only by plant constraints. The radial profiles of the thermal electron and ion pressures have steep gradients typically at mid-plasma radius. A large fraction of non-inductive current (above 80%) is sustained throughout the high performance phase with a poloidal beta exceeding unity. The safety factor profile plays an important role in sustaining the ITB characteristics. In this regime where the self-generated bootstrap current (up to LOMA) represents 50% of the total current, the resistive evolution of the non-monotonic q-profile is slowed down by using off-axis lower hybrid current drive. (authors)

  16. Path to Efficient Lower Hybrid Current Drive at High Density

    Science.gov (United States)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  17. Current drive for stability of thermonuclear plasma reactor

    Science.gov (United States)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  18. Direct Calculations of Current Drive with a Full Wave Code

    Science.gov (United States)

    Wright, John C.; Phillips, Cynthia K.

    1997-11-01

    We have developed a current drive package that evaluates the current driven by fast magnetosonic waves in arbitrary flux geometry. An expression for the quasilinear flux has been derived which accounts for coupling between modes in the spectrum of waves launched from the antenna. The field amplitudes are calculated in the full wave code, FISIC, and the current response function, \\chi, also known as the Spitzer function, is determined with Charles Karney's Fokker-Planck code, adj.f. Both codes have been modified to incorporate the same numerical equilibria. To model the effects of a trapped particle population, the bounce averaged equations for current and power are used, and the bounce averaged flux is calculated. The computer model is benchmarked against the homogenous equations for a high aspect ratio case in which the expected agreement is confirmed. Results from cases for TFTR, NSTX and CDX-U are contrasted with the predictions of the Ehst-Karney parameterization of current drive for circular equilibria. For theoretical background, please see the authors' archive of papers. (http://w3.pppl.gov/ ~jwright/Publications)

  19. INTELLIGENT DTC FOR PMSM DRIVE USING ANFIS TECHNIQUE

    Directory of Open Access Journals (Sweden)

    AHMED A. MAHFOUZ

    2012-03-01

    Full Text Available This paper describes intelligent direct torque control (DTC technique for Permanent Magnet Synchronous Motor (PMSM drive based on Adaptive Neuro Fuzzy Inference Systems (ANFIS. The proposed system has proven successful in controlling the instantaneous torque so as not to depend only on the estimation flux, torque and position, but also the estimation of the lookup table and the generation of driver switching table. Experimental results prove the MATLAB simulation results for torque, speed and flux estimations.

  20. [Tomodensitometry: current technique and perspectives].

    Science.gov (United States)

    Bousquet, J C

    1994-10-01

    The inventors of computed tomography were rewarded by the Nobel Prize for Medicine in 1979. This apparatus, now used routinely, is based on the physical principle of attenuation of x-rays combined with computerised calculation to generate a tomographic image of the human body. This article describes the components of computed tomography, the mode of acquisition, calculation and image reconstruction and the criteria of image quality and artefacts. Continuous rotation of the x-ray tube, now available on the latest machines, allows rapid 3D acquisition of raw data, largely eliminating movement artefacts, particularly those related to respiration. It is also possible to reconstitute images in a different plane from the plane of acquisition and to obtain 3D representations of the volume studied. The advantages and disadvantages of this recent technique are discussed.

  1. Electric machine and current source inverter drive system

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S

    2014-06-24

    A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.

  2. Electron cyclotron heating and current drive in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  3. Modeling of finite aspect ratio effects on current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.C.; Phillips, C.K. [Princeton Plasma Physics Lab., NJ (United States)

    1996-12-31

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, {eta}, is judged by a comparison with a direct calculation: where {chi} is the adjoint function, {epsilon} is the kinetic energy, and {rvec {Gamma}} is the quasilinear flux. It is shown that for large aspect ratio devices ({epsilon} {r_arrow} 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear.

  4. Current drive by electron cyclotron waves in stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Castejon, F.; Alejaldre, C.; Coarasa, J. A.

    1992-07-01

    In this paper we propose a method to estimate the induced current by Electron Cyclotron waves fast enough, from the numerical point of view, to be included in a ray-tracing code, and yet accounting for the complicated geometry of stellarators. Since trapped particle effects are particularly important in this Current Drive method and in stellarator magnetic configuration, they are considered by the modification they introduce in the current drive efficiency. Basically, the method consists of integrating the Fisch and Boozer relativistic efficiency, corrected with the effect of trapped particles, times the absorbed power per momentum interval. This one is calculated for a Maxwellian distribution function, assuming a nearly linear regime. The influence of impurities and of species which are not protons is studied, calculating the efficiency for plasmas with Zeff) - Finally, a numerical analysis particularized to TJ-II stellarator is presented. The absorbed power density is calculated by the ray tracing code RAYS, taking into account the actual microwave beam structure. (Author) 23 refs.

  5. Current drive generation based on autoresonance and intermittent trapping mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Tel-Aviv (Israel)

    1999-10-15

    Two mechanisms for generating streams of high parallel velocity of electrons are presented. One has its origin in Autoresonance (AR) interaction taking place after a trapping conditioning stage, the second being dominated by the trapping itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a uniform magnetic field in a dispersive medium. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process which is characteristic for a dispersive medium, allowing for an effective generation of current drive. (author)

  6. Fluid equations in the presence of electron cyclotron current drive

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

    2012-12-15

    Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

  7. Extending Driving Vision Based on Image Mosaic Technique

    Directory of Open Access Journals (Sweden)

    Chen Deng

    2017-01-01

    Full Text Available Car cameras have been used extensively to assist driving by make driving visible. However, due to the limitation of the Angle of View (AoV, the dead zone still exists, which is a primary origin of car accidents. In this paper, we introduce a system to extend the vision of drivers to 360 degrees. Our system consists of four wide-angle cameras, which are mounted at different sides of a car. Although the AoV of each camera is within 180 degrees, relying on the image mosaic technique, our system can seamlessly integrate 4-channel videos into a panorama video. The panorama video enable drivers to observe everywhere around a car as far as three meters from a top view. We performed experiments in a laboratory environment. Preliminary results show that our system can eliminate vision dead zone completely. Additionally, the real-time performance of our system can satisfy requirements for practical use.

  8. Recent experimental results of KSTAR RF heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. J., E-mail: sjwang@nfri.re.kr; Kim, J.; Jeong, J. H.; Kim, H. J.; Joung, M.; Bae, Y. S.; Kwak, J. G. [National Fusion Research Institute, Daejoen, 305-806 (Korea, Republic of)

    2015-12-10

    The overview of KSTAR activities on ICRH, LHCD and ECH/CD including the last experimental results and future plan aiming for long-pulse high-beta plasma will be presented. Recently we achieved reasonable coupling of ICRF power to H-mode plasma through several efforts to increase system reliability. Power balance will be discussed on this experiment. LHCD is still struggling in the low power regime. Review of antenna spectrum for the higher coupling in H-mode plasma will be tried. ECH/CD provides 41 sec, 0.8 MW of heating power to support high-performance long-pulse discharge. Also, 170 GHz ECH system is integrated with the Plasma Control System (PCS) for the feedback controlling of NTM. Status and plan of ECH/CD will be discussed. Finally, helicon current drive is being prepared for the next stage of KSTAR operation. The hardware preparation and the calculation results of helicon current drive in KSTAR plasma will be discussed.

  9. Power electronic converters PWM strategies and current control techniques

    CERN Document Server

    Monmasson, Eric

    2013-01-01

    A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

  10. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  11. A New PWM Modifying Technique for Reconstructing Three-phase Currents from DC Bus Current

    Science.gov (United States)

    Aoyagi, Shigehisa; Iwaji, Yoshitaka; Tobari, Kazuaki; Sakamoto, Kiyoshi

    Vector control is used to drive a DC brushless motor and generally needs current information. DC bus current detection is often adopted as a low cost method for reconstructing three-phase currents. PWM modifying techniques increase the DC pulse duration, thereby enabling easy detection of the DC bus current. However, these techniques have two problems: reducing a noise frequency and making the reconstructed current waveforms distorted by current ripple. In the techniques, modification signals are added to the three-phase voltage commands; the sum of the signals over a single cycle is zero. The authors examined several PWM modifying techniques from the points of view of noise and current distortion performance. One of the techniques had a good noise performance, and the frequency component of the noise was the same as the carrier frequency (fc). However, the reconstructed current waveforms were distorted. The total harmonic distortion (THD) varied from 1.7% to 4.1%. Another technique had a very poor noise performance, and the frequency component on the noise was one-fourth of fc. The authors developed a new PWM modifying method called “Half Pulse Shift”, which achieves the optimum noise and current distortion performance. The frequency component of the new method was two-thirds of fc, and the current waveforms were not distorted; the THD in the simulations and experiments was 0.5%-1.4% and 3.4%-3.6%, respectively.

  12. Current drive generation based on autoresonance and intermittent trapping mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Gell, Y. [CET, Israel(Israel)

    1999-04-01

    Two mechanisms for generating stream of high velocity of electrons are presented. One has its origin in Auto Resonance interaction (AR) which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of stream of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process which is characteristic for a dispersive medium, allowing for an effective generation of current drive. Discussion of the results follows. (author)

  13. Sensorless Operation of Brushless DC Motor Drive using Back EMF Technique

    Directory of Open Access Journals (Sweden)

    R. Saranya, S. Saravana kumar,R. Baskaran, A. Vinidha Roc, K. Sathiyasekar

    2014-04-01

    Full Text Available The Brushless Direct Current (BLDC motors are one of the motor types that is gaining rapid popularity. Its major appliances include refrigerators, washing machines, vacuum cleaners, freezers, etc. As the name implies, BLDC motors do not use brushes for commutation; instead, they are electronically commutated. This paper proposes a new optimized technique for the Sensorless operation of permanent magnet brushless direct current (BLDC motor, which is based on back Electro Motive Force (back EMF, Zero Crossing Detection (ZCD. This proposed commutation technique of BLDC motor significantly reduces sensing circuits and cost of motor drive.

  14. Trapped electron effects on ICRF Current Drive Predictions in TFTR

    Science.gov (United States)

    Wright, John C.; Phillips, Cynthia K.; Bonoli, Paul T.

    1996-11-01

    Most 2D RF modeling codes use a parameterization^1 of current drive efficiencies to calculate fast wave driven currents. Because this parameterization is derived from a ray--tracing model, there are difficulties in applying it to a spectrum of waves. In addition, one cannot account for multiple resonances and coherency effects between the electrons and the waves. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient in an inhomogenous geometry coupled with a full wave code for the field polarizations. Current profiles are then calculated using the adjoint formulation^2, with the magnetic equilibrium specified consistently in both the adjoint routine and the full wave code. This approach has been implemented in the FISIC code^3. Results are benchmarked by comparing a power deposition calculation from conductivity to one from the quasilinear expression. It is shown that the two expressions agree. We quantify differences seen based upon aspect ratio and elongation. The largest discrepancies are seen in the regime of small aspect ratio, and little loss in accuracy for moderate aspect ratios ~>3. This work supported by DoE contract No. DE--AC02--76--CH03073. ^1 D. A. Ehst and C. F. F. Karney, Nucl. Fusion 31, 1933 (1991). ^2 C. F. F. Karney, Computer Physics Reports 4, 183 (1986). ^3 M. Brambilla and T. Krücken, Nucl. Fusion 28, 1813 (1988).

  15. Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks

    Science.gov (United States)

    Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.

    2012-03-01

    It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).

  16. Heating and Current Drive by Electron Cyclotron Waves

    Science.gov (United States)

    Prater, R.

    2003-10-01

    The physics model of electron cyclotron heating (ECH) and current drive (ECCD) is becoming well validated through systematic comparisons of theory and experiment. Work has shown that ECCD can be highly localized and robustly controlled, leading to applications including stabilization of MHD instabilities like neoclassical tearing modes, control and sustainment of desired profiles of current density and plasma pressure, and studies of localized transport. These physics applications and the study of the basic physics of ECH and ECCD were enabled by the advent of the gyrotron in the 1980s and of the diamond window for megawatt gyrotrons in the 1990s. The experimental work stimulated a broad base of theory based on first principles which is encapsulated in linear ray tracing codes and fully relativistic quasilinear Fokker-Planck codes. Recent experiments use measurements of the local poloidal magnetic field through the motional Stark effect to determine the magnitude and profile of the locally driven current. The subtle balance between wave-induced diffusion and Coulomb relaxation in velocity space provides an understanding of the effects of trapping of current-carrying electrons in the magnetic well, an effect which can be used to advantage. Strong quasilinear effects and radial transport of electrons which may broaden the driven current profile have also been observed under some conditions and appear to be consistent with theory, but in large devices these are usually insignificant. Additional advantages of ECH compared with other rf heating methods are that the antenna can be far removed from the plasma and the power density can be very high. The agreement of theory and experiment, the broad base of established applications, and the technical advantages of ECH support the application of ECH in next-step tokamaks and stellarators.

  17. Conditions for Lower Hybrid Current Drive in ITER

    Science.gov (United States)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Napoli, F.; Tuccillo, A. A.; Galli, A.; Schettini, G.

    2012-12-01

    To control the plasma current profile represents one of the most important problems of the research of nuclear fusion energy based on the tokamak concept, as in the plasma column the necessary conditions of stability and confinement should be satisfied. This problem can be solved by using the lower hybrid current drive (LHCD) effect, which was demonstrated to occur also at reactor grade high plasma densities provided that a proper method should be utilised, as assessed on FTU (Frascati Tokamak Upgrade). This method, based on theoretical predictions confirmed by experiment, produces relatively high electron temperature at the plasma periphery and scrape-off layer (SOL), consequently reducing the broadening of the spectrum launched by the antenna produced by parasitic wave physics of the edge, namely parametric instability (PI). The new results presented here show that, for kinetic profiles now foreseen for the SOL of ITER, PI is expected to hugely broaden the antenna spectrum and prevent any penetration in the core of the coupled LH power. However, considering the FTU method and assuming higher electron temperature at the edge (which would be however reasonable for ITER) the PI-produced spectral broadening would be mitigated, and enable the penetration of the coupled LH power in the main plasma. By successful LHCD effect, the control of the plasma current profile at normalised minor radius of about 0.8 would be possible, with much higher efficiency than that obtainable by other tools. A very useful reinforce of bootstrap current effects would be thus possible by LHCD in ITER.

  18. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  19. Lower hybrid counter current drive for edge current density modification in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E.; Nevins, W.M. [Lawrence Livermore National Lab., CA (US); Porkolab, M.; Bonoli, P.T. [Massachusetts Inst. of Technology, Cambridge, MA (US). Plasma Fusion Center; Harvey, R.W. [General Atomics, San Diego, CA (US)

    1993-07-01

    Each of the Advanced Tokamak operating modes in DIII-D is thought to have a distinctive current density profile. So far these modes have only been achieved transiently through experiments which ramp the plasma current and shape. Extension of these modes to steady state requires non-inductive current profile control, e.g. with lower hybrid current drive (LHCD). Calculations of LHCD have been done for DIII-D using the ACCOME and CQL3D codes, showing that counter driven current at the plasma edge can cancel some of the undesirable edge bootstrap current and potentially extend the VH-mode. Results are presented for scenarios using 2.45 GHz LH waves launched from both the midplane and off-axis ports. The sensitivity of the results to injected power, n{sub e} and T{sub e}, and launched wave spectrum is also shown.

  20. Single-current-sensor-based active front-end-converter-fed four quadrants induction motor drive

    Indian Academy of Sciences (India)

    JOSEPH KIRAN BANDA; AMIT KUMAR JAIN

    2017-08-01

    Induction motor (IM) is a workhorse of the industry, whose dynamics can be modified close to that of a separately excited DC machine by field-oriented control technique, which is commonly known as vector control of induction machine. This paper presents a complete performance of the field-oriented control of IM drive in all four quadrants with a single-current-sensor-based active front end converter whose work is to regulate DC link voltage, draw pure sinusoidal currents at unity power factor and to facilitate bi-directional power flow between the grid and the drive. The entire system is completely modelled in MATLAB/SIMULINK and the results are discussed in detail. The vector control analogy of the back to back converters is highlighted along with the experimental results of field-oriented control of induction machine using a dsPIC30F6010A digital signal controller.

  1. Control and sensor techniques for PAD servo motor drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a new type of electrical motor that employs piezoelectric multilayer actuators coupled with a form-fitted micro-mechanical gearing to generate rotary motion. The PAD is precise, having a positioning error of less than 2 arc-seconds. Its typical output...... torque is 4 Nm, without any additional gearing. The whole motor is fully non-magnetic, enabling its use in applications where magnetic neutrality is of importance. The main challenges of the PAD are the hysteretic behavior of the ceramic actuators used and their highly capacitive nature. After...... compensating for the hysteretic behavior, the current waveforms of the motor can be used to extract all necessary parameters for sensorless operation. Moreover, these signals provide a qualitative information about the precision in motor centering and show any mismatch between the actuators used....

  2. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  3. Current drive generation based on autoresonance and intermittent trapping mechanisms.

    Science.gov (United States)

    Gell, Y; Nakach, R

    1999-09-01

    Two mechanisms for generating streams of high-velocity electrons are presented. One has its origin in auto resonance (AR) interaction, which takes place in the system after a trapping conditioning stage, the second being dominated by the trapping process itself. These mechanisms are revealed from the study of the relativistic motion of an electron in a configuration consisting of two counterpropagating electromagnetic waves along a constant magnetic field in a dispersive medium. Using a Hamiltonian formalism, we have numerically solved the equations of motion and presented the results in a set of figures showing the generation of streams of electrons having high parallel velocities. Insight into these numerical results is gained from a theoretical analysis, which consists of a reformulation of the equations of motion. The operation of these mechanisms was found to circumvent the deterioration of the electron acceleration process that is characteristic for a dispersive medium, thus allowing for an effective generation of a current drive. Discussion of the results follows.

  4. Current ramp-up with lower hybrid current drive in EAST

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Fisch, N. J.; Qin, H.; Li, J. G.; Wilson, J. R.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.

    2012-12-01

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency Pel/PLH was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  5. Current Behaviours and Attitudes Towards Texting While Driving in Australia

    DEFF Research Database (Denmark)

    Adamsen, Jannie Mia; Beasley, Keiran

    2011-01-01

    This paper aims to understand the behaviour of texting and driving among the broader driving public in Australia and uncover whether attitudes are congruent with behaviours. Recent studies have generally been focussing on the behaviours of 18-24 year olds suggesting that the practice is mainly...... confined to people in this age bracket. Findings from an anonymous online survey show that the practice of texting and driving is widespread in Australia and not just confined to the younger demographic. Additionally, evidence suggests smart phone users are more likely to engage in texting while driving....... The paper also reveals that a majority of people continue to text and drive despite having strong views on the dangers associated with the practice....

  6. Gastrointestinal tract imaging in children: current techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hiorns, Melanie P. [Great Ormond Street Hospital for Children, Radiology Department, London (United Kingdom)

    2011-01-15

    Imaging of the gastrointestinal (GI) tract in children continues to evolve, with new techniques, both radiological and non-radiological, being added to the repertoire. This article provides a summary of current imaging techniques of the GI tract (primarily the upper GI tract) and the relationship between those techniques. It covers the upper GI series and other contrast studies, US, CT and MRI. Note is also made of the contribution now made by capsule endoscopy (CE). Abdominal emergency imaging is not covered in this article. (orig.)

  7. Advances in modeling of lower hybrid current drive

    Science.gov (United States)

    Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.

    2016-04-01

    First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests

  8. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati, 00044, Frascati (Italy); Amicucci, L.; Galli, A. [Università di Roma Sapienza, Dipartimento Ingegneria Elettronica, Rome (Italy); Giruzzi, G. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Napoli, F.; Schettini, G. [Università di Roma Tre, Dipartimento Ingegneria Elettronica, Rome (Italy)

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  9. Plasma Heating and Current Drive for Fusion Reactors

    Science.gov (United States)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  10. Current and emerging techniques in gastrointestinal imaging

    Directory of Open Access Journals (Sweden)

    McSweeney S

    2010-01-01

    Full Text Available This review is devoted to current and emerging techniques in gastrointestinal (GI imaging. It is divided into three sections focusing on areas that are both interesting and challenging: imaging of the small bowel and appendix, imaging of the colon and rectum and finally liver and pancreas in the upper abdomen. The first section covers cross-sectional imaging of the small bowel using the techniques of multidetector computed tomography (MDCT (including CT enterography and magnetic resonance imaging (MRI. The evaluation of mesenteric ischemia and GI tract bleeding using MDCT angiography is also reviewed. Current imaging practice in the evaluation of appendix is also reviewed and illustrated. The second section reviews CT and MR colonography and imaging of the rectum. It describes CT virtual colonoscopy (CTVC with emphasis on the advantages and disadvantages of the technique with discussion of the role of CTVC in screening. The intriguing topic of MR colonography (MRC is also reviewed. Imaging of the rectum with emphasis on imaging of rectal cancer is described with the roles of CT, MR, endoluminal ultrasound and positron emission tomography scanning discussed. The final section reviews current and emerging techniques in liver imaging with the role of ultrasound including contrast ultrasound, MDCT and MR (including contrast agents discussed. The new developments and applications of imaging of pancreatic disease are discussed with emphasis on the role of MDCT and MRI with gadolinium. This review highlights the current role and advancement of imaging techniques with new diagnostic and prognostic information pertinent to gastrointestinal disease continuing to emerge.

  11. Filtering Spam: Current Trends and Techniques

    Directory of Open Access Journals (Sweden)

    Geerthik S.

    2013-07-01

    Full Text Available This article gives an overview about latest trend and techniques in spam filtering. We analyzed the problems which is introduced by spam ,what spam actually do and how to measure the spam .This article mainly focuses on automated, non-interactive filters, with a broad review ranging from commercial implementations to ideas confined to current research papers. The solutions using both machine and non –machine learning approaches are reviewed and taxonomy of different approaches is presented. While a range of different techniques have and continue to be evaluated in academic research, heuristic and Bayesian filtering, along with its variants provide the greatest potential for future spam prevention.

  12. The Use of Current Generators in Electrical Converter Drives for Stepper Motors

    Directory of Open Access Journals (Sweden)

    Emanoil Toma

    2014-09-01

    Full Text Available This paper presents some ways to realize electrical converters for stepper motor drives. The first part analyzes aspects for unipolar stepper motor and use of constant current generators. The second part present current sources based on peak limiting current trough the inductance of motor coil. A complete drive module for bipolar stepper motor was conceived and simulation results confirm their functionability.

  13. Current techniques for visualizing RNA in cells

    Science.gov (United States)

    Mannack, Lilith V.J.C.; Eising, Sebastian; Rentmeister, Andrea

    2016-01-01

    Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations. PMID:27158473

  14. Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma

    Science.gov (United States)

    Long, Chen; Jinyuan, Liu; Ping, Duan; Guangrui, Liu; Xingyu, Bian

    2017-02-01

    In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.

  15. Research on Predicting Drive Current of Shipborne Satcom Antenna

    OpenAIRE

    Kong Jinping; Xu Zhengfeng; Wu Botao

    2015-01-01

    Predicting the effect of antenna wind load on servo system precisely is meaningful to ensure the safety of satcom antenna on operation, which can avoid overload operation. In this paper, the computational fluid dynamics is used to proceed numerical computation on the pressure distribution of the reflector and torque of drive shaft under different wind speed, windward angle and angle of pitch of the antenna. The simulation model is built under MATLAB/Simulink simulation environment, and the dr...

  16. Robotic partial nephrectomy: current technique and outcomes.

    Science.gov (United States)

    Wang, Liang; Lee, Benjamin R

    2013-09-01

    Over the past decade, management of the T1 renal mass has focused on nephron-sparing surgery. Robotic partial nephrectomy has played an increasing role in the technique of preserving renal function by decreasing warm ischemia time, as well as optimizing outcomes of hemorrhage and fistula. Robot-assisted partial nephrectomy is designed to provide a minimally-invasive nephron-sparing surgical option utilizing reconstructive capability, decreasing intracorporeal suturing time, technical feasibility and safety. Ultimately, its benefits are resulting in its dissemination across institutions. Articulated instrumentation and three-dimensional vision facilitate resection, collecting system reconstruction and renorrhaphy, leading to decreased warm ischemia time while preserving oncological outcomes. The aim of the present review was to present our surgical sequence and technique, as well as review the current status of robot-assisted partial nephrectomy.

  17. An Improved Variable-Frequency Drive Based on Current Tracking

    Directory of Open Access Journals (Sweden)

    Zhiwei He

    2013-11-01

    Full Text Available Variable frequency devices are widely used in many power systems. A current tracking based VFD is proposed in this paper. The output current is firstly fed back and compared with a standard sine wave, the difference of them is then used for a PI regulator to control the PWM signal, so as to change the output current accordingly to make it approach the standard sine wave. Simulation and experiments results show that the current tracking VFD not only has a fast dynamic response, high current tracking precision, current limiting ability, but also has small distortion of the output sine wave current and low loss of the motor.    

  18. The role of the plasma current in turbulence decrease during lower hybrid current drive

    Science.gov (United States)

    Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.

    2017-03-01

    The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.

  19. Improvements on Pulsed Current Sharing in Driving Parallel MOSFETs

    Science.gov (United States)

    Takagi, Hajime; Orihara, Masato; Yamada, Tsutomu; Yanagidaira, Takeshi

    To switch high-voltage and high-current pulses by using MOS (Metal Oxide Semiconductor) transistors, it is necessary to distribute evenly the voltage and current to each element connected in series and parallel. In parallel connection, the current flowing in each element is different depending on the series resistance and wiring inductance. We verified improvements on pulsed current sharing in parallel transistors which were arranged in line on a printed circuit board. Although Gate and Drain wirings are different in length, pulsed current was evenly distributed by using transmission line transformers. Dissipation in transistors were equalized and four transistors were driven simultaneously near the rated current.

  20. A Review of Electronic Inductor Technique for Power Factor Correction in Three-Phase Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz;

    2016-01-01

    Electronic Inductor (EI) techniques are promising approaches for improving the grid-side current quality, and they are suitable for motor drive applications. In this paper, different EI topologies are investigated from the efficiency perspective, including the effect of employing Silicon Carbide...

  1. Clipper for High-Impedance Current-Drive Line

    Science.gov (United States)

    Woodhouse, Christopher E.

    1987-01-01

    New circuit leakage reduced by shunting current through saturated input at operational-amplifier follower already part of Howland, or equivalent, current source. Typical application is in circuit of germanium resistance thermometer in cryogenic system.

  2. Superresolution imaging: a survey of current techniques

    Science.gov (United States)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  3. A Novel Current Sensor Technique for Brushless DC Motor Drives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    1 Introduction Itiswellknownthatthetorquedevelopedbyapermanentmagnetbrushlessdcmotorisproportionaltothemagnitudeofmotorphasecurrents.ThislinearrelationshipmakesitconvenienttocontrolBLDCMtorqueproductionbyregulatingthemotorphasecurrents[1].Inthispaper,theinstantaneoustorquereferstotherealtorqueproducedatanytimeinstant,whereasthestatictorquereferstothetorqueproducedwhenonlytwoofthethreephasewindingscarrycurrents[2,3]. Instantaneoustorquecontrolstrategiesareusuallyimplementedonsuchservoapplicationsthatareexpec...

  4. Control and sensor techniques for PAD servo motor drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.;

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a new type of electrical motor that employs piezoelectric multilayer actuators coupled with a form-fitted micro-mechanical gearing to generate rotary motion. The PAD is precise, having a positioning error of less than 2 arc-seconds. Its typical output tor...

  5. Control and sensor techniques for PAD servo motor drive

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.;

    2015-01-01

    The Piezoelectric Actuator Drive (PAD) is a new type of electrical motor that employs piezoelectric multilayer actuators coupled with a form-fitted micro-mechanical gearing to generate rotary motion. The PAD is precise, having a positioning error of less than 2 arc-seconds. Its typical output...

  6. Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

    Energy Technology Data Exchange (ETDEWEB)

    Craig, D.J.G.

    1998-09-01

    Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport.

  7. Detection and sizing of defects in control rod drive mechanism penetrations using eddy current and ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Light, G.M.; Fisher, J.L.; Tennis, R.F.; Stolte, J.S.; Hendrix, G.J. [Southwest Research Inst., San Antonio, TX (United States)

    1996-08-01

    Over the last two years, concern has been generated about the capabilities of performing nondestructive evaluation (NDE) of the closure-head penetrations in nuclear-reactor pressure vessels. These penetrations are primarily for instrumentation and control rod drive mechanisms (CRDMs) and are usually thick-walled Inconel tubes, which are shrink-fitted into the steel closure head. The penetrations are then welded between the outside surface of the penetration and the inside surface of the closure head. Stress corrosion cracks initiating at the inner surface of the penetration have been reported at several plants. Through-wall cracks in the CRDM penetration or CRDM weld could lead to loss of coolant in the reactor vessel. The CRDM penetration presents a complex inspection geometry for conventional NDE techniques. A thermal sleeve, through which pass the mechanical linkages for operating the control rods, is inserted into the penetration in such a way that only a small annulus (nominally 3 mm) exists between the thermal sleeve and inside surface of the penetration. Ultrasonic (UT) and eddy current testing (ET) techniques that could be used to provide defect detection and sizing capability were investigated. This paper describes the ET and UT techniques, the probes developed, and the results obtained using these probes and techniques on CRDM penetration mock-ups.

  8. An Active Damping Technique for Small DC-Link Capacitor Based Drive System

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Lu, Kaiyuan

    2013-01-01

    A small dc-link capacitor based drive system shows instability when it is operated with large input line inductance at operating points with high power. This paper presents a simple, new active damping technique that can stabilize effectively the drive system at unstable operating points, offering...

  9. Adiabatic Compression of Compact Tori for Current Drive and Heating

    Science.gov (United States)

    Woodruff, Simon; McNab, Angus; Miller, Kenneth; Ziemba, Tim

    2008-11-01

    Several critical issues stand in the development path for compact tori. An important one is the production of strong magnetic fields, (or large flux amplifications) by use of a low current source. The Pulsed Build-up Experiment is a Phase II SBIR project in which we aim to show a new means for generating strong magnetic fields from a low current source, namely, the repetitive injection of helicity-bearing plasma that also undergoes an acceleration and compression. In the Phase I SBIR, advanced computations were benchmarked against analytic theory and run to determine the best means for the acceleration and compression of a compact torus plasma. The study included detailed simulations of magnetic reconnection. In Phase II, an experiment has been designed and is being built to produce strong magnetic fields in a spheromak by the repetitive injection of magnetic helicity from a low current coaxial plasma source. The plasma will be accelerated and compressed in a similar manner to a traveling wave adiabatic compression scheme that was previously applied to a mirror plasma [1]. [1] P. M. Bellan Scalings for a Traveling Mirror Adiabatic Magnetic Compressor Rev. Sci. Instrum. 53(8) 1214 (1982) Work supported by DOE Grant No. DE-FG02-06ER84449.

  10. Assessment of Electron-Cyclotron-Current-Drive-Assisted Operation in DEMO

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2012-09-01

    Full Text Available The achievable efficiency for external current drive through electron-cyclotron (EC waves in a demonstration tokamak reactor is discussed. Two possible reactor designs, one for steady state and one for pulsed operation, are considered. It is found that for midplane injection the achievable current drive efficiency is limited by secondharmonic absorption at levels consistent with previous studies. Propagation through the second-harmonic region can be reduced by moving the launch position to the high-field side (this can be obtained by injecting the beam from an upper port in the vacuum vessel. In this case, beam tracing calculations deliver values for the EC current drive efficiency approaching those usually reported for neutral beam current drive.

  11. Langmuir probe study in the nonresonant current drive regime of helicon discharge

    Indian Academy of Sciences (India)

    Manash Kumar Paul; Dhiraj Bora

    2008-07-01

    Characterization of the current drive regime is done for helicon wave-generated plasma in a torus, at a very high operating frequency. A radiofrequency-compensated Langmuir probe is designed and used for the measurement of plasma parameters along with the electron energy distributions in radial scans of the plasma. The electron energy distribution patterns obtained in the operational regime suggest that Landau damping cannot be responsible for the efficient helicon discharge in the present study. A typical peaked radial density profile, high plasma temperature and absence of an appreciable amount of energetic electrons for resonant wave–particle interactions, suggest that the chosen operational regime is suitable for the study of nonresonant current drive by helicon wave. Successful and significant current drive achieved in our device clearly demonstrates the capability of nonresonant current drive by helicon waves in the present operational regime.

  12. Fast wave current drive modeling using the combined RANT3D and PICES codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C. [and others

    1995-07-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  13. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Science.gov (United States)

    Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  14. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, I. E. [Harvard University, Cambridge, MA (United States). Department of Physics.; Bertelli, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fisch, N. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  15. Experimental Research of Harmonic Spectrum of Currents at Traction Drive with PMSM

    Directory of Open Access Journals (Sweden)

    J. Novak

    2011-06-01

    Full Text Available The paper deals with the significant results of the experimental research of current harmonic spectrum of traction drive with permanent magnet synchronous motor. The experiments were done on a special workplace with a real traction drive for wheel vehicles. Current harmonic spectrum was analyzed by a specialized device on the base of central measuring station. The knowledge of current marked subharmonic components of stator winding is the most significant finding of experiments. The frequencies of these components are given by multiples of frequency of mechanical speeds. The subharmonic components also pass to input DC current of drive. This fact is important in particular from the point of view of legislative requirements to electromagnetic compatibility of drive with railway interlocking devices.

  16. RF current drive by electron cyclotron waves in the presence of magnetic islands

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva Rosa, P.; Giruzzi, G

    1999-11-01

    The influence of the presence of magnetic islands, and the consequent modification of the tokamak magnetic surface topology, on electron current drive is analyzed. To this end, a new 3D Fokker-Planck code has been developed, taking into account the modifications of the magnetic equilibrium topology owing to the presence of the islands. Significant differences between electron cyclotron current drive efficiency with and without island inside the plasma are found, particularly in the case of interaction with locked modes. (authors)

  17. Mass of a skyrmion under a driving current

    Science.gov (United States)

    Martinez, J. C.; Jalil, M. B. A.

    2017-02-01

    We present arguments for a mass term in the Landau-Lifshitz-Gilbert equation based on the notion of mass as an inertial quantity. From trajectories of skyrmions in a confining potential and a 1-D potential we see evidence for a mass-inertia connection. We derive an expression for the effective mass for skyrmions, 1.6 ε ×10-23 kg , where ε accounts for the mismatch between the local magnetic moment induced on the conduction electrons and its corresponding effect on the current-driven skyrmion and varies from 10-2 to 1.

  18. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    Science.gov (United States)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  19. Effects of passive components on the input current interharmonics of adjustable-speed drives

    DEFF Research Database (Denmark)

    Soltani, Hamid; Blaabjerg, Frede; Zare, Firuz;

    2016-01-01

    speed drives with and/or without motor current imbalance. The investigation is done at different motor operating frequencies and load torque values. It shows that selecting the small filter components (ac choke, dc choke and dc-link capacitor) results in different performances in respect to those......Current and voltage source Adjustable Speed Drives (ASDs) exert distortion current into the grid, which may produce some interharmonic components other than the characteristic harmonic components. This paper studies the effects of passive components on the input current interharmonics of adjustable...... interharmincs issued by motor current imbalance and other non-characteristic interharmonics. The results are helpful for engineers investigating the effects of drive filters on the input current interharmonic components....

  20. Lower hybrid current drive for edge current density modification in DIII-D: Final status report

    Energy Technology Data Exchange (ETDEWEB)

    Fenstermacher, M.E. [Lawrence Livermore National Lab., CA (United States); Porkolab, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1993-08-04

    Application of Lower Hybrid (LH) Current Drive (CD) in the DIII-D tokamak has been studied at LLNL, off and on, for several years. The latest effort began in February 1992 in response to a letter from ASDEX indicating that the 2.45 GHz, 3 MW system there was available to be used on another device. An initial assessment of the possible uses for such a system on DIII-D was made and documented in September 1992. Multiple meetings with GA personnel and members of the LH community nationwide have occurred since that time. The work continued through the submission of the 1995 Field Work Proposals in March 1993 and was then put on hold due to budget limitations. The purpose of this document is to record the status of the work in such a way that it could fairly easily be restarted at a future date. This document will take the form of a collection of Appendices giving both background and the latest results from the FY 1993 work, connected by brief descriptive text. Section 2 will describe the final workshop on LHCD in DIII-D held at GA in February 1993. This was an open meeting with attendees from GA, LLNL, MIT and PPPL. Summary documents from the meeting and subsequent papers describing the results will be included in Appendices. Section 3 will describe the status of work on the use of low frequency (2.45 GHZ) LH power and Parametric Decay Instabilities (PDI) for the special case of high dielectric in the edge regions of the DIII-D plasma. This was one of the critical issues identified at the workshop. Other potential issues for LHCD in the DIII-D scenarios are: (1) damping of the waves on fast ions from neutral beam injection, (2) runaway electrons in the low density edge plasma, (3) the validity of the WKB approximation used in the ray-tracing models in the steep edge density gradients.

  1. A driving pulse edge modulation technique and its complex programming logic devices implementation

    Institute of Scientific and Technical Information of China (English)

    Xiao CHEN; Dong-chang QU; Yong GUO; Guo-zhu CHEN

    2015-01-01

    With the continual increase in switching speed and rating of power semiconductors, the switching voltage spike becomes a serious problem. This paper describes a new technique of driving pulse edge modulation for insulated gate bipolar transistors (IGBTs). By modulating the density and width of the pulse trains, without regulating the hardware circuit, the slope of the gate driving voltage is controlled to change the switching speed. This technique is used in the driving circuit based on complex programmable logic devices (CPLDs), and the switching voltage spike of IGBTs can be restrained through software, which is easier and more flexible to adjust. Experimental results demonstrate the effectiveness and practicability of the proposed method.

  2. The drive to strive: goal generation based on current needs

    Directory of Open Access Journals (Sweden)

    Elisabeth A Murray

    2013-06-01

    Full Text Available Hungry animals are influenced by a multitude of different factors when foraging for sustenance. Much of the work on animal foraging has focused on factors relating to the amount of time and energy animals expend searching for and harvesting foods. Models that emphasize such factors have been invaluable in determining when it is beneficial for an animal to search for pastures new. When foraging, however, animals also have to determine how to direct their search. For what food should they forage? There is no point searching for more of a particular food when you are sated from eating it. Here we review work in macaques and humans that has sought to reveal the neural circuits critical for determining the subjective value of different foods and associated objects in our environment and tracking this value over time. There is mounting evidence that a network composed of the orbitofrontal cortex (OFC, amygdala and medial thalamus is critical for linking objects in the environment with food value and adjusting those valuations in real time based on current biological needs. Temporal inactivation studies have revealed that the amygdala and OFC play distinct, but complementary roles in this valuation process. Such a network for determining the subjective value of different foods and, by extension, associated objects, must interact with systems that determine where and for how long to forage. Only by efficiently incorporating these two factors into their decisions will animals be able to achieve maximal fitness.

  3. Tomography of the fast electron Bremsstrahlung emission during lower hybrid current drive on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Imbeaux, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France)

    1999-04-01

    A new tomography dedicated to detailed studies of the fast electron Bremsstrahlung emission in the hard X-ray (HXR) energy range between 20 and 200 keV during lower hybrid (LH) current drive experiments on the TORE SUPRA tokamak [Equipe TORE SUPRA, in Proceedings of the 15. Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville (International Atomic Energy Agency, Vienna, 1995), 1, AIEA-CN-60 / A1-5, p. 105] is presented. Radiation detection is performed by cadmium telluride(CdTe) semiconductors, which have most of the desirable features for a powerful diagnosing of magnetically confined hot plasmas - compact size, high X-ray stopping efficiency, fast timing characteristics, good energy resolution, no sensitivity to magnetic field, reasonable susceptibility to performance degradation from neutron/{gamma}-induced damages. This instrument is made of two independent cameras viewing a poloidal cross-section of the plasma, with respectively 21 and 38 detectors. A coarse spectrometry - 8 energy channels - is carried out for each chord, with an energy resolution of 20 keV. The spatial resolution in the core of the plasma is 4-5 cm, while the time sampling may be lowered down to of 2-4 ms. Powerful inversion techniques based on maximum entropy or regularization algorithms take fully advantage of the large number of line-integrated measurements for very robust estimates of the local HXR profiles as a function of time and photon energy. A detailed account of main characteristics and performances of the diagnostic is reported as well as preliminary results on LH current drive experiments. (authors)

  4. Alternating Current Heating Technique of Hollow Rod

    Institute of Scientific and Technical Information of China (English)

    Na Weisheng; Shi Tonghao

    1995-01-01

    @@ In recent years, wellbore heat tracing technique is widely used in development of high viscosity and high pour point crude oil. Theory and experiences show that wellbore heat tracing has obvious effect on increasing liquid yield of oil wells.

  5. Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques

    Science.gov (United States)

    Goodman, John L.; Walker, Stephen R.

    2009-01-01

    Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.

  6. GENERATING OF OPTIMAL QUANTIZATION LEVELS OF CONTROL CURRENTS FOR LINEAR STEPPING DRIVES OF PRECISION MOTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. V. Dainiak

    2014-01-01

    Full Text Available The paper proposes a method of taking into account accumulated and temperature errors while forming coordinate discrete grid of a linear stepping drive. An algorithm for determination of optimal quantization levels of control currents of drive's phases has been developed in the paper; it minimizes an error of positioning that forms correction files for application of a control system in the software. Investigations on stability of discrete grid nodes coordinates have been carried our with the help of a monitoring station for accurate parameters of linear stepping drive. The investigations have proved an efficiency of the proposed algorithm and methodology for forming coordinate discrete grid.

  7. Fokker-Planck Simulation of Fast Wave Current Drive and Heating in the Reversed Field Pinch

    Science.gov (United States)

    Uchimoto, E.; Shiina, S.; Harvey, R. W.; Smirnov, A. P.; Forest, C. B.; Prager, S. C.; Wright, J. C.

    1999-11-01

    Fast wave current drive (FWCD) has been shown theoretically to be a good candidate for improving plasma confinement characteristics of a high-beta, reactor-grade RFP via current profile control.footnote S. Shiina, Y. Kondoh, H. Ishii, Nuclear Fusion 34, 1473 (1994); T. Nagai et al., Proc. ICPP (Nagoya, 1996), p. 1042; K. Kusano et al., 17th IAEA Fusion Energy Conf. (Yokohama, 1998), paper THP1/12. To assess the effects of toroidicity and quasilinear modifications to the electron distribution function on FWCD, we are using the RFP version of ray-tracing and Fokker-Planck codes (GENRAY and CQL3D). Although lower hybrid slow waves are ideally suited for poloidal current drive in large RFPs presently in operation, possible use of fast waves is being considered for core current drive and heating in these devices. For MST parameters, our calculations focus on intermediate to high harmonic fast waves for which geometric optics is valid.

  8. Advances in Current Rating Techniques for Flexible Printed Circuits

    Science.gov (United States)

    Hayes, Ron

    2014-01-01

    Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

  9. Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping

    Science.gov (United States)

    Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.

    2013-01-01

    Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time

  10. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    NARCIS (Netherlands)

    Westerhof, E.; Pratt, J.

    2014-01-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics is modified as E + v × B = η(J – J EC). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfu

  11. The effect of toroidal field on the rotating magnetic field current drive in rotamak plasmas

    Institute of Scientific and Technical Information of China (English)

    Zhong Fang-Chuan; Huang Tian-Sen; Petrov Yuri

    2007-01-01

    A rotamak is one kind of compact spherically shaped magnetic-confinement device. In a rotamak the plasma current is driven by means of rotating magnetic field (RMF). The driven current can reverse the original equilibrium field and generate a field-reversed-configuration. In a conventional rotamak, a toroidal field (TF) is not necessary for the RMF to drive plasma current, but it was found that the present of an additional TF can influence the RMF current drive. In this paper the effect of TF on the RMF current drive in a rotamak are investigated in some detail.The experimental results show that addition of TF increases the RMF driven current greatly and enhances the RMF penetration dramatically. Without TF, the RMF can only penetrate into plasma in the edge region. When a TF is added, the RMF can reach almost the whole plasma region. This is an optimal strength of toroidal magnetic field for getting maximum plasma current when Bv and radio frequency generator power are fixed. Besides driving current,the RMF generates high harmonic fields in rotamak plasma. The effect of TF on the harmonic field spectra are also reported.

  12. Design of Low-Power CMOS OTA Using Bulk-Drive Technique

    Directory of Open Access Journals (Sweden)

    Maryam Ghadiri Modarres

    2015-10-01

    Full Text Available This paper presents the design of low power CMOS- OTA (operational transconductance amplifier using bulk drive (BD technique with broad band. This technique is used for design of low power circuits with broad band for high frequency users, for example communication systems, mobile communication and communication forming of medical electronics. OTA is the base of amplifier .It is a fundamental building part of analog systems. Recently analog designer has been paid to low voltage (LV,low power (LP integrated circuits. Many techniques are used for the design of LV LP circuits, the bulk driven offers principle this designs. This paper suggests a bulk driven OTA in standard CMOS processes and supply voltage 0.8 volt DC. It used of improved wilson current mirror. The simulation results have been carried out by the HSPICE simulator in 180 nm CMOS technology. The open loop gain is enhanced to 17.4dB at unity gain band with (UGB of 26.1 MHZ with sufficient output swing. Power consumption of the OTA is in range of few hundreds of nanowatts (6%.

  13. Pile Driving

    Science.gov (United States)

    1987-01-01

    Machine-oriented structural engineering firm TERA, Inc. is engaged in a project to evaluate the reliability of offshore pile driving prediction methods to eventually predict the best pile driving technique for each new offshore oil platform. Phase I Pile driving records of 48 offshore platforms including such information as blow counts, soil composition and pertinent construction details were digitized. In Phase II, pile driving records were statistically compared with current methods of prediction. Result was development of modular software, the CRIPS80 Software Design Analyzer System, that companies can use to evaluate other prediction procedures or other data bases.

  14. Novel current monitoring techniques without shunt resistors

    Directory of Open Access Journals (Sweden)

    VODA Adriana

    2012-05-01

    Full Text Available Current measurement for automotiveelectrical actuator applications (with motors or valvesis necessary for appropriate control in many cases anda safety requirement in all cases: the control algorithmmay be dependent on the data but safety relevantfunctions will use it to determine possible over-current,over-temperature or failure conditions. This paperproposes an alternative method of monitoring thecurrent, without using sensors or current shunts.Instead, measurements are made on the motor in thedevelopment stages and low/high frequency variationsin the supply line are monitored, through low/highpassfilters, by available AD channels in the system.This results in cost reduction for the final product, byreducing hardware complexity.

  15. Concept development and numerical analysis of tokamak heating and current drive

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Myung Hee; Hong, Bong Guen [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    We have done the analytical study on the coupling between the KSTAR plasma and RF antenna necessary for the engineering design of the KSTAR auxiliary heating and current drive system as well as the KSTAR RF antenna. With the code TORIC, the possible parameter ranges of tokamak heating and current drive operation modes using fast wave on the KSTAR are defined and analyzed. The optimized operation scenarios corresponding to the variety of KSTAR fast wave-driven heating and current drive parameters are also developed. With the code RANT3D, the characteristics of the coupling between the KSTAR plasma and RF antenna are analyzed, and the data for the conceptual design of 6 MW KSTAR RF antenna are achieved. Finally the optimum heating and current drive scenarios for the 3 KSTAR operation modes (the baseline reference mode, the upgrade reference mode, the reverse shear mode) using ACCOME and WHIST are developed, and it was shown that they can be realized in KSTAR tokamak with the planned heating and current drive systems. (author). 20 refs., 39 figs., 3 tabs.

  16. MSE measurements for sawtooth and non-inductive current drive studies in KSTAR

    Science.gov (United States)

    Ko, J.; Park, H.; Bea, Y. S.; Chung, J.; Jeon, Y. M.

    2016-10-01

    Two major topics where the measurement of the magnetic-field-line rotational transform profiles in toroidal plasma systems include the long-standing issue of complete versus incomplete reconnection model of the sawtooth instability and the issue with future reactor-relevant tokamak devices in which non-inductive steady state current sustainment is essential. The motional Stark effect (MSE) diagnostic based on the photoelastic-modulator (PEM) approach is one of the most reliable means to measure the internal magnetic pitch, and thus the rotational transform, or its reciprocal (q), profiles. The MSE system has been commissioned for the Korea Superconducting Tokamak Advanced Research (KSTAR) along with the development of various techniques to minimize systematic offset errors such as Faraday rotation and mis-alignment of the bandpass filters. The diagnostic has revealed the central q is well correlated with the sawtooth oscillation, maintaining its value above unity during the MHD quiescent period and that the response of the q profile to external current drive such as electron cyclotron wave injection not only involves the local change of the pitch angle gradient but also a significant shift of the magnetic topology due to the wave energy transport. Work supported by the Ministry of Science, ICT and Future Planning, Korea.

  17. Investigation of lower hybrid current drive during H-mode in EAST tokamak

    Institute of Scientific and Technical Information of China (English)

    Li Miao-Hui; Liu Fu-Kun; Wang Mao; Xu Han-Dong; Wan Bao-Nian; Ding Bo-Jiang; Kong Er-Hua; Zhang Lei; Zhang Xin-Jun; Qian Jin-Ping; Yan Ning; Han Xiao-Feng; Shan Jia-Fang

    2011-01-01

    H-mode discharges with lower hybrid current drive (LHCD) alone are achieved in EAST divertor plasma over a wide parameter range.These H-mode discharges are characterized by a sudden drop in Dα emission and a spontaneous rise in main plasma density.Good lower hybrid (LH) coupling during H-mode is obtained by putting the plasma close to the antenna and by injecting D2 gas from a pipe near the grill mouse.The analysis of lower hybrid current drive properties shows that the LH deposition profile shifts off axis during H-mode,and current drive (CD) efficiency decreases due to the increase in density.Modeling results of H-mode discharges with a general ray tracing code GENRAY are reported.

  18. [Our current technique for basic pterional craniotomy].

    Science.gov (United States)

    Kaneko, Nobuyuki; Kurita, Hiroki; Hino, Ken; Nagayama, Kazuki; Tsubokawa, Tamiji; Tanaka, Naoko; Fujitsuka, Mitsuyuki; Nakamura, Masanao; Shiokawa, Yoshiaki

    2005-09-01

    Pterional cnaniotomy is frequently used in neurosurgical practice, but still poses significant cosmetic and functional drawbacks. Here, we describe our modified technique to overcome such problems as the sterilization of the scalp without brush and razor, preemptive analgesia, preservation of the periostium for reconstruction, retrograde dissection of the temporal muscle, and complete sphenoidotomy using chisel or drills. The tips of our pterional craniotomy offer suitable size and depth of working field around the paraclinoidal regions, maintaining cosmetic satisfaction of the patients.

  19. Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulationa)

    Science.gov (United States)

    Bonoli, P. T.; Ko, J.; Parker, R.; Schmidt, A. E.; Wallace, G.; Wright, J. C.; Fiore, C. L.; Hubbard, A. E.; Irby, J.; Marmar, E.; Porkolab, M.; Terry, D.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team; Wilson, J. R.; Scott, S.; Valeo, E.; Phillips, C. K.; Harvey, R. W.

    2008-05-01

    Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0/PLH≈2.5±0.2×1019(A/W/m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker-Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the presence of a significant fast electron population and the three-dimensional (r,v⊥,v∥) electron distribution function from CQL3D has been used in a synthetic diagnostic code to simulate the measured hard x-ray data.

  20. Analysis of JET LCHD/ICRH synergy experiments in terms of relativistic current drive theory

    Energy Technology Data Exchange (ETDEWEB)

    Start, D.F.H.; Baranov, Y.; Brusati, M.; Ekedahl, A.; Froissard, P.; Gormezano, C.; Jacquinot, J.; Paquin, L.; Rimini, F.G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cox, M.; Gardner, C.; O`Brien, M.R. [UKAEA Culham Lab., Abingdon (United Kingdom); Di Vita, A. [Ansaldo SpA, Genoa (Italy)

    1994-07-01

    The present analysis shows that the observed efficiency of current drive with synergy between LHCD and ICRH is in good agreement with the relativistic theory of Karney and Fisch for Landau damped waves. The predicted power absorption from the fast wave by the electron tail is within 30% of the measured value. In the presence of significant fast electron diffusion within a slowing down time it would be possible to produce central current drive using multiple ICRF resonances even when the LHCD deposition is at half radius, as in an ITER type device. (authors). 4 refs., 6 figs.

  1. Design of long-pulse fast wave current drive antennas for DIII-D

    Science.gov (United States)

    Baity, F. W.; Batchelor, D. B.; Bills, K. C.; Fogelman, C. H.; Jaeger, E. F.; Ping, J. L.; Riemer, B. W.; Ryan, P. M.; Stallings, D. C.; Taylor, D. J.; Yugo, J. J.

    1994-10-01

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90° phasing into a low-density plasma (˜4×1019m-3) with hot electrons (˜10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  2. Balancing Current Drive and Heating in DIII-D High Noninductive Current Fraction Discharges Through Choice of the Toroidal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ferron, J.R. [General Atomics, San Diego; Holcomb, C T [Lawrence Livermore National Laboratory (LLNL); Luce, T.C. [General Atomics, San Diego; Politzer, P. A. [General Atomics, San Diego; Turco, F. [Oak Ridge Associated Universities (ORAU); DeBoo, J. C. [General Atomics; Doyle, E. J. [University of California, Los Angeles; In, Y. [FAR Tech Inc. San Diego, CA; La Haye, R. [General Atomics, San Diego; Murakami, Masanori [ORNL; Okabayashi, M. [Princeton Plasma Physics Laboratory (PPPL); Park, J. M. [Oak Ridge National Laboratory (ORNL); Petrie, T W [General Atomics, San Diego; Petty, C C. [General Atomics, San Diego; Reimerdes, H. [Columbia University

    2011-01-01

    In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted.

  3. Extracting DC bus current information for optimal phase correction and current ripple in sensorless brushless DC motor drive

    Institute of Scientific and Technical Information of China (English)

    Zu-sheng HO; Chii-maw UANG; Ping-chieh WANG

    2014-01-01

    Brushless DC motor (BLDCM) sensorless driving technology is becoming increasingly established. However, op-timal phase correction still relies on complex calculations or algorithms. In finding the correct commutation point, the problem of phase lag is introduced. In this paper, we extract DC bus current information for auto-calibrating the phase shift to obtain the correct commutation point and optimize the control of BLDC sensorless driving. As we capture only DC bus current information, the original shunt resistor is used in the BLDCM driver and there is no need to add further current sensor components. Software processing using only simple arithmetic operations successfully accomplishes the phase correction. Experimental results show that the proposed method can operate accurately and stably at low or high speed, with light or heavy load, and is suitable for practical applications. This approach will not increase cost but will achieve the best performance/cost ratio and meet market expectations.

  4. On the merits of heating and current drive for tearing mode stabilization

    Science.gov (United States)

    DeLazzari, D.; Westerhof, E.

    2009-07-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high β discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flattening across a magnetic island. Control and suppression of this mode can be achieved by means of electron cyclotron waves (ECWs) which allow the deposition of highly localized power at the island location. The ECW power replenishes the missing bootstrap current by generating a current perturbation either inductively, through a temperature perturbation (electron cyclotron resonance heating), or non-inductively by direct current drive (electron cyclotron current drive). Although both methods have been applied successfully to experiments showing a predominance of ECRH for medium-sized limiter tokamaks (TEXTOR, T-10) and of ECCD for mid-to-large-sized divertor tokamaks (AUG, DIII-D, JT-60), conditions determining their relative importance are still unclear. We address this problem with a numerical study focused on the contributions of heating and current drive to the temporal evolution of NTMs as described by the modified Rutherford equation. For the effects of both heating as well as current drive, simple analytical expressions have been found in terms of an efficiency fore-factor times a 'geometrical' term depending on the power deposition width wdep, location and modulation. When the magnetic island width w equals the width of the deposition profile, w ≈ wdep, both geometric terms are practically identical. Whereas for current drive the geometric term approaches a constant for small island widths and is inversely proportional to (w/wdep)2 for large island widths, the heating term approaches a constant for large island widths and is proportional to (w/wdep) for small island widths. For medium-sized tokamaks (TEXTOR, AUG) the heating and current drive efficiencies are of the same order

  5. Lower hybrid heating and current drive in ignitor shear reversal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, E.; Pinaccione, L. [Italian Agengy for New Technologies, Energy and the Environment, Centro Ricerche Frascati, Rome (Italy). Dip. Energia

    1996-05-01

    Injection of Lower Hybrid (LH) Wave power at 8 GHz is considered into IGNITOR shear reversal scenarios, characterized by a reduced plasma current and density. Power deposition calculation are performed to establish whether LH waves can be used both as central heating and off axis current drive tool. It turns out that LH waves can be used (a) for central plasma heating purpose during the current vamp phase, to freeze the shear reversed configuration, at the power level of {approx}10 MW. (b) to drive a current in the outer part of the plasma at the power level of 20 MW. In this way around 1/3-1/6 of the total current in the proper plasma position (i.e. where q is minimum) is driven.

  6. Lower hybrid heating and current drive design for ITER and application for present tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Froissard, P.; Rey, G.; Bibet, P.; Goniche, M.; Kazarian, F.; Portafaix, C.; Tonon, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bosia, G.; Bruno, L. [ITER Joint Work Site, Garching (Germany); Kuzikov, S. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Wasastjerna, F. [VTT Energy (Finland)

    1998-07-01

    The lower Hybrid Heating and Current Drive (LHH and CD) System shall provide on ITER off-axis current profile control during burn, main contribution to the non-inductive current generation in the advanced Tokamak scenario, current profile tailoring during ramp up phase, heating and current drive during plasma shut-down, extension of the pulse duration during commissioning phase. The LHH and CD system operates at 5 GHz, this frequency being a trade-off between power absorption by alpha particles and klystron technology and couples a minimum of 50 MW using two ITER ports. This article describes the launcher plug and the transmission lines. Specific converters, such as the mode converters, RF windows and the hyper-guide have now been successfully tested at high power and long pulse duration.

  7. Theory and experiments on RF plasma heating, current drive and profile control in TORE SUPRA

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D.

    1994-01-01

    This paper reviews the main experimental and theoretical achievements related to the study of RF heating and non-inductive current drive and particularly phenomena related to the current density profile control and the potentiality of producing stationary enhanced performance regimes: description of the Lower Hybrid (LH) and Ion Cyclotron Resonant Frequency (ICRF) systems; long pulse coupling performance of the RF systems; observation of the transition to the so-called ``stationary LHEP regime`` in which the (flat) central current density and (peaked) electron temperature profiles are fully decoupled; experiments on ICRF sawtooth stabilization with the combined effect of LHCD modifying the current density profile; diffusion of fast electrons generated by LH waves; ramp-up experiments in which the LH power provided a significant part of the resistive poloidal flux and flux consumption scaling; theory of spectral wave diffusion and multipass absorption; fast wave current drive modelling with the Alcyon full wave code; a reflector LH antenna concept. 18 figs., 48 refs.

  8. Pediatric imaging: Current and emerging techniques

    Directory of Open Access Journals (Sweden)

    Shenoy-Bhangle A

    2010-01-01

    Full Text Available Imaging has always been an important component of the clinical evaluation of pediatric patients. Rapid technological advances in imaging are making noninvasive evaluation of a wide range of pediatric diseases possible. Ultrasound and magnetic resonance imaging (MRI are two imaging modalities that do not involve ionizing radiation and are preferred imaging modalities in the pediatric population. Computed tomography (CT remains the imaging modality with the highest increase in utilization in children due to its widespread availability and rapid image acquisition. Emerging imaging applications to be discussed include MR urography, voiding urosonography with use of ultrasound contrast agents, CT dose reduction techniques, MR enterography for inflammatory bowel disease, and MR cine airway imaging.

  9. Influence of various physics phenomena on fast-wave current drive in advanced tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Goldfinger, R.C.; Stallings, D.C. [Oak Ridge National Lab., TN (United States)

    1992-12-31

    The need for some type of noninductive current drive in advanced tokamaks has been recognized for some time. In reactor-grade plasmas, as envisioned in the International Thermonuclear Experimental Reactor (ITER), high density and temperature may limit the penetration of lower hybrid (LH) waves to only the outer layers of the plasma. Fast waves in the ion cyclotron range of frequencies (ICRF), however, can easily penetrate to the center of such high-density plasmas. With sufficient directivity in the launched wave spectrum, currents can be driven by combined damping of the fast waves on resonant electrons through electron Landau damping (ELD) and transit-time magnetic pumping (TTMP). Experiments to study the feasibility of fast-wave current drive (FWCD) have only recently begun, but theoretical predictions look promising. In this paper we analyze the influence of the relevant physics phenomena, which are not necessarily independent, on current drive performance. Such phenomena include diffraction and other nongeometrical optics processes, k{sub ||} modification, single-pass absorption, and antenna characteristics, such as poloidal extent and poloidal location. To do this, we apply a two-and-one-half dimensional (2 1/2-D), full-wave code (PICES) for modeling ion cyclotron resonance heating (ICRH) and current drive based on the poloidal mode expansion method and the reduced-order expansion. By 2 1/2-D, we mean that 3-D wave fields are calculated in axisymmetric geometry (2-D solution domain - r, {theta}), while the correct toroidal dependence of the antenna source currents is obtained from a 2-D (r, {phi}) recessed antenna code. The model includes the poloidal and toroidal structure of the antennas, the modification of the k{sub ||} spectrum due to the poloidal magnetic field, and a nonperturbative solution for E{sub ||}. A semianalytical model for current drive, including trapped electron effects, is employed. (author) 10 refs., 4 figs.

  10. Polyspectral signal analysis techniques for condition based maintenance of helicopter drive-train system

    Science.gov (United States)

    Hassan Mohammed, Mohammed Ahmed

    For an efficient maintenance of a diverse fleet of air- and rotorcraft, effective condition based maintenance (CBM) must be established based on rotating components monitored vibration signals. In this dissertation, we present theory and applications of polyspectral signal processing techniques for condition monitoring of critical components in the AH-64D helicopter tail rotor drive train system. Currently available vibration-monitoring tools are mostly built around auto- and cross-power spectral analysis which have limited performance in detecting frequency correlations higher than second order. Studying higher order correlations and their Fourier transforms, higher order spectra, provides more information about the vibration signals which helps in building more accurate diagnostic models of the mechanical system. Based on higher order spectral analysis, different signal processing techniques are developed to assess health conditions of different critical rotating-components in the AH-64D helicopter drive-train. Based on cross-bispectrum, quadratic nonlinear transfer function is presented to model second order nonlinearity in a drive-shaft running between the two hanger bearings. Then, quadratic-nonlinearity coupling coefficient between frequency harmonics of the rotating shaft is used as condition metric to study different seeded shaft faults compared to baseline case, namely: shaft misalignment, shaft imbalance, and combination of shaft misalignment and imbalance. The proposed quadratic-nonlinearity metric shows better capabilities in distinguishing the four studied shaft settings than the conventional linear coupling based on cross-power spectrum. We also develop a new concept of Quadratic-Nonlinearity Power-Index spectrum, QNLPI(f), that can be used in signal detection and classification, based on bicoherence spectrum. The proposed QNLPI(f) is derived as a projection of the three-dimensional bicoherence spectrum into two-dimensional spectrum that

  11. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  12. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A. [University of Washington, Seattle, Washington 98195 (United States)

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  13. Compensation methods applied in current control schemes for large AC drive systems

    DEFF Research Database (Denmark)

    Rus, D. C.; Preda, N. S.; Teodorescu, Remus;

    2012-01-01

    The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...

  14. Advanced launcher design options for electron cyclotron current drive on ITER based on remote steering

    NARCIS (Netherlands)

    Graswinckel, M. R.; Bongers, W. A.; M.R. de Baar,; van den Berg, M. A.; Denisov, G.; Donne, A. J. H.; Elzendoorn, B. S. Q.; Goede, A. P. H.; Heidinger, R.; Kuzikov, S.; Kruijt, O. G.; Kruizinga, B.; Moro, A.; Poli, E.; Ronden, D. M. S.; Saibene, G.; Thoen, D. J.; Verhoeven, A. G. A.

    2008-01-01

    Electron cyclotron current drive will become the main scheme on ITER for the stabilization of neoclassical tearing modes (NTMs) and the control of sawtooth oscillations. The effectiveness of this scheme forms the basis for the requirements of the ITER Upper Port Launcher. These requirements include

  15. Application of High Harmonic Fast Waves to Off-Axis Current Drive in DIII-D

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V. L.

    2013-10-01

    High harmonic fast waves, also called ``whistlers'' or ``helicons,'' may be an effective means of driving current off-axis in high performance discharges in DIII-D. Modeling using the GENRAY ray tracing code APP shows that fast waves launched with frequency 500 MHz tend to spiral around the magnetic axis. If the electron beta is above 1.7%, the waves are damped around ρ = 0 . 5 for a broad range of conditions. The fast wave current drive in the test discharge is 2 to 4 times larger per MW than that from the electron cyclotron heating or neutral beam injection systems on DIII-D. Interestingly, the current drive location and magnitude are nearly independent of the launched n| | over the range 2 to 4. Use of a moderately large value, n| | = 3 , reduces the possibility of mode conversion to the slow wave. A traveling wave antenna is expected to be effective at launching the wave with a narrow spectrum of n| |, which also helps avoid mode conversion. A test of the physics of high harmonic fast wave current drive is planned for DIII-D. Work supported in part by the US Department of Energy under DE-FC02-04ER54698.

  16. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  17. Globalisation and the foreignisation of space: The seven processes driving the current global land grab.

    NARCIS (Netherlands)

    Zoomers, E.B.

    2010-01-01

    The current global land grab is causing radical changes in the use and ownership of land. The main process driving the land grab, or ‘foreignisation of space’, as highlighted in the media and the emerging literature is the production of food and biofuel for export in the aftermath of recent food and

  18. Heating, current drive and energetic particle studies on JET in preparation of ITER operation

    NARCIS (Netherlands)

    Noterdaeme, J. M.; Budny, R.; Cardinali, A.; Castaldo, C.; Cesario, R.; Crisanti, F.; DeGrassie, J.; D' Ippolito, D. A.; Durodie, F.; Ekedahl, A.; Figueiredo, A.; Ingesson, C.; Joffrin, E.; Hartmann, D.; Heikkinen, J.; Hellsten, T.; Jones, T.; Kiptily, V.; Lamalle, P.; Litaudon, X.; Nguyen, F.; Mailloux, J.; Mantsinen, M.; Mayoral, M.; Mazon, D.; Meo, F.; Monakhov, I.; Myra, J. R.; Pamela, J.; Pericoli, V.; Petrov, Y.; Sauter, O.; Sarazin, Y.; Sharapov, S. E.; Tuccillo, A. A.; Van Eester, D.

    2003-01-01

    This paper summarizes the recent work on JET in the three areas of heating, current drive and energetic particles. The achievements have extended the possibilities of JET, have a direct connection to ITER operation and provide new and interesting physics. Toroidal rotation profiles of plasmas heated

  19. Study of multipass regimes in lower hybrid current drive experiments on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Arslanbekov, R.; Litaudon, X.; Peysson, Y.; Hoang, G.T.; Kazarian, F.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Shoucri, M.; Shkarofsky, I.P. [Centre Canadien de Fusion Magnetique, Varennes, PQ (Canada); Baranov, Y. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Kupfer, K. [General Atomics, San Diego, CA (United States)

    1995-12-31

    This document presents a study of multipass regimes in Lower Hybrid Current Drive on Tore Supra. A statistical model of the plasma wave propagation based on the Fokker-Planck theory is proposed, together with experimental results performed on Tore Supra. (TEC). 9 refs., 4 figs.

  20. Lower Hybrid Wave Current Drive Efficiency on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong; LI Guo-Chao

    2005-01-01

    @@ Lower hybrid (LH) wave current drive efficiency on our HT-7 tokamak has been investigated based on the hot electrical conductivity theory.The interaction of the residual toroidal electric field with fast electrons has been included in the determination of current drive efficiency.The LH wave power scan was performed in the plasma parameter ranges of Ip = 50-156kA, (n)e = 0.5 × 1019-1.6 × 1019 m-3, PLH = 50-350kW.The current drive efficiency is derived to be about 0.1 × 1019-0.4 × 1019 Am-2W-1 on the HT-7 tokamak, which depends on the electron density and the LH wave phase velocity.At the electron density of about 1.5 × 1019 m-3, with the LH wave parallel refraction index peaked at 1.8, the highest current drive efficiency was obtained.A more generally normalized method is introduced to analyse the experimental data, which combines all the data in one curve.The normalized parameters are independent of the plasma parameters.

  1. Impact of heating and current drive mix on the ITER hybrid scenario

    NARCIS (Netherlands)

    Citrin, J.; Artaud, J. F.; Garcia, J.; Hogeweij, G. M. D.; Imbeaux, F.

    2010-01-01

    Hybrid scenario performance in ITER is studied with the CRONOS integrated modelling suite, using the GLF23 anomalous transport model for heat transport prediction. GLF23 predicted core confinement is optimized through tailoring the q-profile shape by a careful choice of current drive actuators, affe

  2. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, E.F.; Murakami, M.; Stallings, D.C.; Carter, M.D.; Wang, C.Y.; Galambos, J.D.; Batchelor, D.B.; Baity, F.W.; Bell, G.L.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States); Chiu, S.C.; DeGrassie, J.S.; Forest, C.B. [General Atomics, San Diego, California 92186-9784 (United States); Kupfer, K. [ORISE Postdoctoral Fellow at General Atomics, San Diego, California 92186-9784 (United States); Petty, C.C.; Pinsker, R.T.; Prater, R.; Lohr, J. [General Atomics, San Diego, California 92186-9784 (United States); Lee, K.M. [University of California, Los Angeles, California 90024-1597 (United States)

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment. {copyright} {ital 1996 American Institute of Physics.}

  3. Benchmarking of codes for electron cyclotron heating and electron cyclotron current drive under ITER conditions

    NARCIS (Netherlands)

    Prater, R.; Farina, D.; Gribov, Y.; Harvey, R. W.; Ram, A. K.; Lin-Liu, Y. R.; Poli, E.; Smirnov, A. P.; Volpe, F.; Westerhof, E.; Zvonkovo, A.

    2008-01-01

    Optimal design and use of electron cyclotron heating requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories wor

  4. Derivation of dynamo current drive in a closed-current volume and stable current sustainment in the HIT-SI experiment

    Science.gov (United States)

    Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.

    2017-02-01

    A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.

  5. Design of Low-Power CMOS OTA Using Bulk-Drive Technique

    OpenAIRE

    2015-01-01

    This paper presents the design of low power CMOS- OTA (operational transconductance amplifier) using bulk drive (BD) technique with broad band. This technique is used for design of low power circuits with broad band for high frequency users, for example communication systems, mobile communication and communication forming of medical electronics. OTA is the base of amplifier .It is a fundamental building part of analog systems. Recently analog designer has been paid to low voltage (LV),low pow...

  6. "When can I return to driving?": a review of the current literature on returning to driving after lower limb injury or arthroplasty.

    Science.gov (United States)

    MacLeod, K; Lingham, A; Chatha, H; Lewis, J; Parkes, A; Grange, S; Smitham, P J

    2013-03-01

    Clinicians are often asked by patients, "When can I drive again?" after lower limb injury or surgery. This question is difficult to answer in the absence of any guidelines. This review aims to collate the currently available evidence and discuss the factors that influence the decision to allow a patient to return to driving. Medline, Web of Science, Scopus, and EMBASE were searched using the following terms: 'brake reaction time', 'brake response time', 'braking force', 'brake pedal force', 'resume driving', 'rate of application of force', 'driving after injury', 'joint replacement and driving', and 'fracture and driving'. Of the relevant literature identified, most studies used the brake reaction time and total brake time as the outcome measures. Varying recovery periods were proposed based on the type and severity of injury or surgery. Surveys of the Driver and Vehicle Licensing Agency, the Police, insurance companies in the United Kingdom and Orthopaedic Surgeons offered a variety of opinions. There is currently insufficient evidence for any authoritative body to determine fitness to drive. The lack of guidance could result in patients being withheld from driving for longer than is necessary, or returning to driving while still unsafe.

  7. Optimal state feedback control of brushless direct-current motor drive systems based on Lyapunov stability criterion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper develops a unified methodology for a real-time speed control of brushless direct-current motor drive systems in the presence of measurement noise and load torque disturbance. First, the mathematical model and hardware structure of system is established. Next, an optimal state feed back controller using the Kalman filter state estimation technique is derived.This is followed by an adaptive control algorithm to compensate for the effects of noise and disturbance. Those two algorithms working together can provide a very-high-speed regulation and dynamic response over a wide range of operating conditions.Simulated responses are presented to highlight the effectiveness of the proposed control strategy.

  8. Hysteretic self-oscillating bandpass current mode control for Class D audio amplifiers driving capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    A hysteretic self-oscillating bandpass current mode control (BPCM) scheme for Class D audio amplifiers driving capacitive transducers are presented. The scheme provides excellent stability margins and low distortion over a wide range of operating conditions. Small-signal behavior of the amplifier...... the rules of electrostatics have been known as very interesting alternatives to the traditional inefficient electrodynamic transducers. When driving capacitive transducers from a Class D audio amplifier the high impedance nature of the load represents a key challenge. The BPCM control scheme ensures a flat...... is analysis through transfer function based linear control methodology. Measurements are performed on a single-ended ± 300 V half-bridge amplifier driving a capacitive load of 100 nF. Total Harmonic Distortion plus noise (THD+N) below 0.1 % are reported. Transducers representing a capacitive load and obeying...

  9. High efficiency off-axis current drive by high frequency fast waves

    Science.gov (United States)

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-01

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves ("helicons" or "whistlers"). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n∥, a result that can be understood from examination of the evolution of n∥ as the waves propagate in the plasma. Because of this insensitivity, relatively large values (˜3) of n∥ can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n∥ spectrum, which also helps avoid mode conversion.

  10. An analysis of JET fast-wave heating and current drive experiments directly related to ITER

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, V.P.; Eriksson, L.; Gormezano, C.; Jacquinot, J.; Kaye, A.; Start, D.F.H. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The ITER fast-wave system is required to serve a variety of purposes, in particular, plasma heating to ignition, current profile and burn control and eventually, in conjunction with other schemes, a central non-inductive current drive (CD) for the steady-state operation of ITER. The ICRF heating and current drive data that has been obtained in JET are analyzed in terms of dimensionless parameters, with a view to ascertaining its direct relevance to key ITER requirements. The analysis is then used to identify areas both in physics and technological aspects of ion-cyclotron resonance heating (ICRH) and CD that require further experimentation in ITER-relevant devices such as JET to establish the required data base. (authors). 12 refs., 8 figs.

  11. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    harmonic mitigation methods have been developed over the years, the total cost and complexity has become the main obstacle in employing prior-art methods for motor drive systems. This paper presents a novel current modulation method based on the electronic inductor concept for three-phase ac-dc systems......Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active...... to reduce input current harmonics. The obtained results at simulation and experimental levels confirm the effectiveness of the proposed approach....

  12. Current Reversal Due to Coupling Between Asymmetrical Driving Force and Ratchet Potential

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Transport of a Brownian particle moving in a periodic potential is investigated in the presence of an asymmetric unbiased external force. The asymmetry of the external force and the asymmetry of the potential are the two ways of inducing a net current. It is found that the competition of the spatial asymmetry of potential with the temporal asymmetry of the external force leads to the phenomena like current reversal. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.

  13. Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train - A contemporary survey

    Science.gov (United States)

    Uma Maheswari, R.; Umamaheswari, R.

    2017-02-01

    Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.

  14. A method to change frictional characteristics based on ultrasonic micro driving technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Weishan; ZHANG Fan; LIU Junkao

    2006-01-01

    In order to reduce friction force and eliminate stick-slip phenomenon of a mechanic system at a low velocity, a method based on the ultrasonic micro driving technique to change the frictional characteristics is proposed. Exciting clockwise and anticlockwise microscopic elliptical motion of driving points on the ultrasonic actuator's two longitudinal bolt-clamped vibrators will generate ultrasonic lubrication action; furthermore, the friction can be actively controlled by adjusting the vibrators' vibrating amplitude. An experimental installation for friction control is designed using aerostatic guide, force sensors and a low speed moment motor.Fuzzy control theory is applied into this system. The experiments indicate the friction force has been reduced largely and the motion of the experimental system is stable. The friction coefficient is only about 0.0053 when the total mass of the ultrasonic actuator and load is3.8 kg and the motor's driving velocity is 0.5 mm/s.

  15. Redundant drive current imbalance problem of the Automatic Radiator Inspection Device (ARID)

    Science.gov (United States)

    Latino, Carl D.

    1992-09-01

    The Automatic Radiator Inspection Device (ARID) is a 4 Degree of Freedom (DOF) robot with redundant drive motors at each joint. The device is intended to automate the labor intensive task of space shuttle radiator inspection. For safety and redundancy, each joint is driven by two independent motor systems. Motors driving the same joint, however, draw vastly different currents. The concern was that the robot joints could be subjected to undue stress. It was the objective of this summer's project to determine the cause of this current imbalance. In addition it was to determine, in a quantitative manner, what was the cause, how serious the problem was in terms of damage or undue wear to the robot and find solutions if possible. It was concluded that most problems could be resolved with a better motor control design. This document discusses problems encountered and possible solutions.

  16. Design of long-pulse fast wave current drive antennas for DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Baity, F.W.; Batchelor, D.B.; Bills, K.C.; Fogelman, C.H.; Jaeger, E.F.; Ping, J.L.; Riemer, B.W.; Ryan, P.M.; Stallings, D.C.; Taylor, D.J.; Yugo, J.J. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States))

    1994-10-15

    Two new long-pulse fast wave current drive (FWCD) antennas will be installed on DIII-D in early 1994. These antennas will increase the available FWCD power from 2 MW to 6 MW for pulse lengths of up to 2 s, and to 4 MW for up to 10 s. Power for the new antennas is from two ASDEX-type 30- to 120-MHz transmitters. When operated at 90[degree] phasing into a low-density plasma ([similar to]4[times]10[sup 19]m[sup [minus]3]) with hot electrons ([similar to]10 keV), these two new antennas are predicted to drive approximately 1 MA of plasma current.

  17. Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    Shi Yue-Jiang; Kuang Gang-Li; Li Jian-Gang; HT-7 Team; Wan Bao-Nian; Chen Zhong-Yong; Hu Li-Qun; Lin Shi-Yao; Ruan Huai-Lin; Qian Jin-Ping; Zhen Xiang-Jun; Ding Bo-Jiang

    2005-01-01

    The dynamic behaviour of fast electron in lower hybrid current drive (LHCD) experiments is a crucial issue in the sense of enhancing plasma performance. A new hard x-ray diagnostic system on HT-7 allows the investigation of the lower hybrid wave dynamics. The behaviour of fast electron is studied in several kinds of LHCD experiments, including long pulse discharges, high performance discharges and counter-LHCD experiments.

  18. First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)

    Science.gov (United States)

    Février, O.; Maget, P.; Lütjens, H.; Luciani, J. F.; Decker, J.; Giruzzi, G.; Reich, M.; Beyer, P.; Lazzaro, E.; Nowak, S.; the ASDEX Upgrade Team

    2016-04-01

    Tearing modes are MagnetoHydroDynamics (MHD) instabilities that reduce the performance of fusion devices. They can however be controlled and suppressed using electron cyclotron current drive (ECCD) as demonstrated in various tokamaks. In this work, simulations of island stabilization by ECCD-driven current have been carried out using the toroidal nonlinear 3D full MHD code xtor-2f, in which a current source term modeling the ECCD has been implemented. The efficiency parameter, {η\\text{RF}} , has been computed and its variations with respect to source width and location were also computed. The influence of parameters such as current intensity, source width and position with respect to the island was evaluated and compared to the modified Rutherford equation. We retrieved a good agreement between the simulations and the analytical predictions concerning the variations of control efficiency with source width and position. We also show that the 3D nature of the current source term can lead to the onset of an island if the source term is precisely applied on a rational surface. We report the observation of a flip phenomenon in which the O- and X-points of the island rapidly switch their position in order for the island to take advantage of the current drive to grow.

  19. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  20. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    Science.gov (United States)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  1. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    Science.gov (United States)

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  2. Recent progress on lower hybrid current drive and implications for ITER

    CERN Document Server

    Hillairet, Julien; Goniche, M; Achard, J; Armitano, A; Beckett, B; Belo, J; Berger-By, G; Corbel, E; Delpech, L; Decker, J; Dumont, R; Guilhem, D; Kazarian, F; Litaudon, X; Magne, R; Marfisi, L; Mollard, P; Namkung, W; Nilsson, E; Park, S; Peysson, Y; Preynas, M; Sharma, P K; Prou, M

    2015-01-01

    The sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower Hybrid Current Drive (LHCD) is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current as well as reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like LH launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long pulse scenarios. However, in order to achieve pure stationary LH sustained plasmas, some R\\&D are needed to increase the reliability of all the systems and codes, from the RF sources to the plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R\\&D program towards an ITER LH system and by the validation of an integrated LH modeling suite of...

  3. Benchmarking of electron cyclotron heating and current drive codes on ITER scenarios within the European Integrated Tokamak Modelling framework

    Directory of Open Access Journals (Sweden)

    Peysson Y.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  4. A New High Speed Induction Motor Drive based on Field Orientation and Hysteresis Current Comparison

    Science.gov (United States)

    Ogbuka, Cosmas; Nwosu, Cajethan; Agu, Marcel

    2016-09-01

    This paper presents a new high speed induction motor drive based on the core advantage of field orientation control (FOC) and hysteresis current comparison (HCC). A complete closed loop speed-controlled induction motor drive system is developed consisting of an outer speed and an inner HCC algorithm which are optimised to obtain fast and stable speed response with effective current and torque tracking, both during transient and steady states. The developed model, being speed-controlled, was examined with step and ramp speed references and excellent performances obtained under full load stress. A speed response comparison of the model with the standard AC3 (Field-Oriented Control Induction Motor Drive) of MATLAB Simpower systems shows that the model achieved a rise time of 0.0762 seconds compared to 0.2930 seconds achieved by the AC3. Also, a settle time of 0.0775 seconds was obtained with the developed model while that of the AC3 model is 0.2986 seconds confirming, therefore, the superiority of the developed model over the AC3 model which, hitherto, served as a reference standard.

  5. Compact ASD Topologies for Single-Phase Integrated Motor Drives with Sinusoidal Input Current

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede; Thoegersen, Paul

    2005-01-01

    A standard configuration of an Adjustable Speed Drive (ASD) consists of two separate units: an AC motor, which runs with fixed speed when it is supplied from a constant frequency grid voltage and a frequency converter, which is used to provide the motor with variable voltage-variable frequency...... needed to adjust the speed of the motor. The integrated motor drive concept is a result of merging the two units in order to achieve the following benefits [1-3]: reducing the design and the commissioning time in complex industrial equipments, no need for a cabinet to host the frequency converter......, no needfor shielded cables to reduce EM1 (Electro Magnetic Inteiference), no needfor cables for the speed transducers or for other sensorsfor industrial process control (e.g. pressure). This solution is currently available up to 7.5 kW being not used in the medium and high power range due to a low...

  6. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  7. Electron cyclotron heating and current drive in toroidal geometry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A.H.

    1991-11-01

    The Principal Investigator has continued to work on problems associated both with the deposition and with the emission of electron cyclotron power in toroidal plasmas. We have investigated the use of electron cyclotron resonance heating for bringing compact tokamaks (BPX) to ignition-like parameters. This requires that we continue to refine the modeling capability of the TORCH code linked with the BALDUR 1 {1/2} D transport code. Using this computational tool, we have examined the dependence of ignition on heating and transport employing both theoretical (multi-mode) and empirically based transport models. The work on current drive focused on the suppression of tearing modes near the q = 2 surface and sawteeth near the q = 1 surface. Electron cyclotron current drive in CIT near the q =2 surface was evaluated for a launch scenario where electron cyclotron power was launched near the equatorial plane. The work on suppression of sawteeth has been oriented toward understanding the suppression that has been observed in a number of tokamaks, in particular, in the WT-3 tokamak in Kyoto. To evaluate the changes in current profile (shear) near the q =1 surface, simulations have been carried out using the linked BALDUR-TORCH code. We consider effects on shear resulting both from wave-induced current as well as from changes in conductivity associated with changes in local temperature. Abstracts and a paper relating to this work is included in Appendix A.

  8. A Modified Bridgeless Converter for SRM Drive with Reduced Ripple Current

    Directory of Open Access Journals (Sweden)

    Maheswari C krishnakumar

    2015-06-01

    Full Text Available Single Phase Switched Reluctance Motor is more popular in many industrial purposes for high speed applications because of its robust and rugged construction. For low cost and variable speed drive applications SRM are widely used.Due to doubly salient structure of motor, the torque pulsations are high when compared to other sinusoidal machines. The major drawback in using SRM drive is torque pulsations and increased number of switching components. In order to overcome these drawbacks, a bridgeless Single Ended Primary Inductor Converter (SEPIC is proposed. The major advantages of this converter are continuous output current,smaller voltage ripple and reduced semiconductor current stress when compared to the conventional SEPIC converter. The ripple free input current is obtained by using additional winding of input inductor and auxiliary capacitors. To achieve high efficiency, active power factor correction circuits (PFC are employed to precise the power factor. Further, the unity power factor can be obtained by making the input current during switching period proportional to the input voltage is proposed. The proposed system consists of reduced components and it is also capable of reducing the conduction losses. The working principles and the waveforms of proposed converter are analyzed. To analyze the circuit operation, theoretical analysis and simulation results are provided. Finally, the  comparison between the waveforms of conventional SEPIC and proposed system is presented by using MATLAB/Simulink tools.

  9. Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

    Science.gov (United States)

    Bonoli, Paul

    2007-11-01

    Recently, lower hybrid current drive (LHCD) experiments have been carried out on Alcator C-Mod using an RF system consisting of 12 klystrons at 4.6 GHz, feeding a 4 x 22 waveguide array. Up to 900 kW of LH power has been coupled in the range1.6 PLH 0.3 [1]. We have simulated the LH current drive in these discharges using the combined ray tracing / 3D (r, v, v//) Fokker Planck code GENRAY -- CQL3D [2] and found similar current drive efficiencies. Measurements of nonthermal x-ray emission and electron cyclotron emission (ECE) confirm the presence of a significant fast electron population that varies with waveguide phasing and plasma density. Studies are currently underway to investigate the role of fast electron diffusion and full-wave effects such as diffractional broadening in determining the spatial and velocity space structure of the nonthermal electrons. The 3D (r, v, v//) electron distribution function from CQL3D has been used in synthetic diagnostic codes to simulate the measured hard x-ray and ECE emissions. Fast electron diffusion times have been inferred from x-ray data by employing a radial diffusion operator in CQL3D and determining the fast electron diffusivities that are required to reproduce the experimentally observed profiles of hard x-ray emission. Finally, we have been performing full-wave LH field simulations using the massively parallel TORIC --LH solver [3] in order to assess spatial and spectral broadening of the incident wave front that can result from diffraction and wave focusing effects. [1] R. Parker, Bull. Am. Phys. Soc. 51, 20 (2006). [2] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' Proc. IAEA Tech. Comm. Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992. [3] J. C. Wright et al., Nucl. Fusion 45, 1411 (2005).

  10. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    Science.gov (United States)

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology.

  11. Evolution of Wave Energy Deposition Profile in HT-7 Lower Hybrid Current Drive Experiment

    Institute of Scientific and Technical Information of China (English)

    方瑜德; 石跃江; 匡光力; 刘岳修; 沈慰慈; 丁伯江

    2001-01-01

    Lower hybrid waves (LHWs) with a selected n‖ spectrum have been used to control the energy deposition profiles, and then the wave driven current profiles effectively in tokamak discharges. In our lower hybrid current drive experiment in the HT-7 tokamak, it was found that the set-up of the wave energy deposition profile is a graduation process. In the beginning phase of the wave injection duration, the waves (with different n‖ spectra)deposit almost all their energy in the central region of the plasma column, even if their n‖ are very different. Up to around one hundred milliseconds, the wave energy deposition profiles can only take their corresponding shapes according to the n‖ spectra of LHWs. It also shown that this evolution process is affected obviously by the LHW driven current profile, which has been formed early.

  12. High voltage power supplies for ITER RF heating and current drive systems

    Energy Technology Data Exchange (ETDEWEB)

    Gassmann, T., E-mail: thibault.gassmann@iter.org [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arambhadiya, B.; Beaumont, B. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Baruah, U.K. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Bonicelli, T. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Darbos, C.; Purohit, D.; Decamps, H. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Albajar, F. [Fusion For Energy, C/3 Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Gandini, F.; Henderson, M.; Kazarian, F.; Lamalle, P.U.; Omori, T. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Parmar, D.; Patel, A. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India); Rathi, D. [ITER Organization, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Singh, N.P. [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382428 (India)

    2011-10-15

    The RF heating and current drive (H and CD) systems to be installed for the ITER fusion machine are the electron cyclotron (EC), ion cyclotron (IC) and, although not in the first phase of the project, lower hybrid (LH). These systems require high voltage, high current power supplies (HVPS) in CW operation. These HVPS should deliver around 50 MW electrical power to each of the RF H and CD systems with stringent requirements in terms of accuracy, voltage ripple, response time, turn off time and fault energy. The PSM (Pulse Step Modulation) technology has demonstrated over the past 20 years its ability to fulfill these requirements in many industrial facilities and other fusion reactors and has therefore been chosen as reference design for the IC and EC HVPS systems. This paper describes the technical specifications, including interfaces, the resulting constraints on the design, the conceptual design proposed for ITER EC and IC HVPS systems and the current status.

  13. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    Science.gov (United States)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  14. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Amicucci, L., E-mail: luca.amicucci@enea.it; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A. [EUROfusion-ENEA, Centro Ricerche Frascati, Unità Fusione, Frascati (Italy); Ding, B. J.; Li, M. H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  15. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    Science.gov (United States)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  16. Reduced Order Models of a Current Source Inverter Induction Motor Drive

    Directory of Open Access Journals (Sweden)

    Ibrahim K. Al-Abbas

    2009-01-01

    Full Text Available Problem Statement: The current source inverter induction motor (CSI-IM drive was widely used in various industries. The main disadvantage of this drive was nonlinearity and complexity. This work was done to develop a simple drive systems models. Approach: The MATLAB/SIMULINK software was used for system modeling. Three reduced models were developed by choosing specific frame, neglecting stator transients and ignoring stator equations. Results: The dynamic performance of the models was examined in open loop form for a step change in control variable (the input voltage as well as for step change in disturbance (mechanical load.Conclusion: The three models were equivalent in steady state. The error of these models in the transient response was less than 5 %, with the exception of the time performances of the transient model to step change of supply voltage. Recommendations: All three models were suggested to be used for designing torque control systems. The detailed and stator equation models were recommended to be used in speed control design.

  17. High efficiency off-axis current drive by high frequency fast waves

    Energy Technology Data Exchange (ETDEWEB)

    Prater, R.; Pinsker, R. I.; Moeller, C. P. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States); Porkolab, M.; Vdovin, V. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  18. Effort of lower hybrid current drive experiments toward to H-mode in EAST

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Liu, F. K.; Shan, J. F.; Li, Y. C.; Wang, M.; Liu, L.; Zhao, L. M.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Cheng, M.; Zang, Q.; Lyu, B.; Duan, Y. M.; Lin, S. Y.; Wu, J. H.; Hillairet, J.; Ekedahl, A.; Peysson, Y.; Goniche, M.; Tuccillo, A. A.; Cesario, R.; Amicucci, L.; Shen, B.; Gong, X. Z.; Xu, G. S.; Zhao, H. L.; Hu, L. Q.; Li, J. G.; Wan, B. N.; EAST Team

    2017-02-01

    Lower hybrid current drive (LHCD) is an effective tool to achieve high confinement (H-mode) plasma in EAST. To utilize LHCD for accessing H-mode plasma, efforts have been made to improve LHW (lower hybrid wave)-plasma coupling and current drive capability at high density. Improved LHW-plasma coupling by means of local gas puffing and gas puffing from the electron side is routinely used during EAST operation with LHCD. High density experiments suggest that low recycling and high LH frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. The effect of LHCD on the current profile in EAST demonstrates that it is possible to control the plasma profile by optimizing the LHW spectrum. Repeatable H-mode plasma was obtained by LHCD and the maximum density during H-mode with the combination of 2.45 GHz and 4.6 GHz LH waves was up to 4.5  ×  1019 m-3.

  19. The targeted heating and current drive applications for the ITER electron cyclotron system

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.; Darbos, C.; Gandini, F.; Gassmann, T.; Loarte, A.; Omori, T.; Purohit, D. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Saibene, G.; Gagliardi, M. [Fusion for Energy, Josep Pla 2, Barcelona 08019 (Spain); Farina, D.; Figini, L. [Istituto di Fisica del Plasma CNR, 20125 Milano (Italy); Hanson, G. [US ITER Project Office, ORNL, 1055 Commerce Park, PO Box 2008, Oak Ridge, Tennessee 37831 (United States); Poli, E. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); Takahashi, K. [Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 311-0193 (Japan)

    2015-02-15

    A 24 MW Electron Cyclotron (EC) system operating at 170 GHz and 3600 s pulse length is to be installed on ITER. The EC plant shall deliver 20 MW of this power to the plasma for Heating and Current Drive (H and CD) applications. The EC system is designed for plasma initiation, central heating, current drive, current profile tailoring, and Magneto-hydrodynamic control (in particular, sawteeth and Neo-classical Tearing Mode) in the flat-top phase of the plasma. A preliminary design review was performed in 2012, which identified a need for extended application of the EC system to the plasma ramp-up, flattop, and ramp down phases of ITER plasma pulse. The various functionalities are prioritized based on those applications, which can be uniquely addressed with the EC system in contrast to other H and CD systems. An initial attempt has been developed at prioritizing the allocated H and CD applications for the three scenarios envisioned: ELMy H-mode (15 MA), Hybrid (∼12 MA), and Advanced (∼9 MA) scenarios. This leads to the finalization of the design requirements for the EC sub-systems.

  20. Reduction of current chopping noise with DSP controller in switched reluctance motor drive system

    Institute of Scientific and Technical Information of China (English)

    郭伟; 詹琼华; 马志源

    2002-01-01

    A novel current chopping mode was used in a switched reluctance motor drive system to make full use of the characteristics of digital signal processor (DSP) TMS320F240. The necessity of this 180° phase-shift current control (PSCC) mode is introduced first and then the principle of PSCC covering both hardware requirement and software programming is described in detail. The analysis made indicated that with this mode, the chopping frequency in winding can reach 20 kHz with 10 kHz power switches and the control frequency can reach 40 kHz at the same time. Subsequently, based on the linear and nonlinear mathematical models of the switched reluctance motor ( SRM), some simulation work has been done. The simulation results show that when this mode is applied to SRM drive (SRD) system, the current waveform becomes better. So the ripple of the torque is reduced simultaneously and the vibration and acoustic noise are reduced involuntarily. Stationary tests show that the acoustic noise is greatly diminished. Finally, some experiments were made using a 50 kW SRD system for electric vehicle (EV). Experimental results indicate that this mode can be implemented feasibly and it has a good action on the SRD system.

  1. Destabilization of fast particle stabilized sawteeth in ASDEX Upgrade with electron cyclotron current drive

    DEFF Research Database (Denmark)

    Igochine, V.; Chapman, I.T.; Bobkov, V.

    2011-01-01

    It is often observed that large sawteeth trigger the neoclassical tearing mode well below the usual threshold for this instability. At the same time, fast particles in the plasma core stabilize sawteeth and provide these large crashes. The paper presents results of first experiments in ASDEX...... Upgrade for destabilization of fast particle stabilized sawteeth with electron cyclotron current drive (ECCD). It is shown that moderate ECCD from a single gyrotron is able to destabilize the fast particle stabilized sawteeth. A reduction in sawtooth period by about 40% was achieved in first experiments...

  2. Effect of Alfvén resonance on low-frequency fast wave current drive

    Science.gov (United States)

    Wang, C. Y.; Batchelor, D. B.; Carter, M. D.; Jaeger, E. F.; Stallings, D. C.

    1995-08-01

    The Alfvén resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 31, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss.

  3. Effect of Alfven resonance on low-frequency fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.; Batchelor, D.B.; Carter, M.D.; Jaeger, E.F.; Stallings, D.C. [Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    1995-07-01

    The Alfven resonances may occur on the low- and high-field sides for a low-frequency fast wave current drive scenario proposed for the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion {bold 31}, 1135 (1991)]. At the resonance on the low-field side, the fast wave may be mode converted into a short-wavelength slow wave, which can be absorbed by electrons at the plasma edge, before the fast wave propagates into the core area of the plasma. Such absorption may cause a significant parasitic power loss. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Effects of electron cyclotron current drive on the evolution of double tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guanglan, E-mail: sunguanglan@nciae.edu.cn; Dong, Chunying [Basic Science Section, North China Institute of Aerospace Engineering, Langfang 065000 (China); Duan, Longfang [School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000 (China)

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  5. Non-Destructive Techniques Based on Eddy Current Testing

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  6. Non-Destructive Techniques Based on Eddy Current Testing

    Directory of Open Access Journals (Sweden)

    Ernesto Vázquez-Sánchez

    2011-02-01

    Full Text Available Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  7. Non-destructive techniques based on eddy current testing.

    Science.gov (United States)

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  8. SOL plasma measurements during high density and long duration current drive on TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takeharu; Kawasaki, Shoji; Jotaki, Eriko; Makino, Ken-ichi; Sakamoto, Mizuki; Nakamura, Kazuo; Nakamura, Yukio; Itoh, Sanae; Itoh, Satoshi [Kyushu Univ., Kasuga, Fukuoka (Japan). Research Inst. for Applied Mechanics

    1997-02-01

    In the superconducting, strong magnetic field tokamak, TRIAM-1M, for the purpose of maintaining high density plasma for long time, the current drive experiment using 8.2 GHz lower hybrid wave has been carried out. For maintaining high density plasma for long time, it is indispensable to control gas puff and recycling from wall, as these are closely related to the structure and characteristics of boundary plasma including scrape-off layer (SOL). In this study, in the high density, long time current drive using 8.2 GHz lower hybrid wave, the electron density and electron temperature of SOL plasma were measured by using double probe, and the z-direction distribution and the toroidal magnetic field dependence of the electron density and electron temperature of SOL plasma were examined and compared with OH discharge. Also the dependence of the electron density of SOL plasma on the phase difference in a adjoining waveguide tubes was examined. The experimental setup and the double probe theory are explained. The experimental results of the change with time lapse, the z-direction distribution and the magnetic field dependence of the electron density and electron temperature of SOL plasma are reported. (K.I.)

  9. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    Science.gov (United States)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  10. The Current Status of Peer Assessment Techniques and Sociometric Methods.

    Science.gov (United States)

    Bukowski, William M; Castellanos, Melisa; Persram, Ryan J

    2017-09-01

    Current issues in the use of peer assessment techniques and sociometric methods are discussed. Attention is paid to the contributions of the four articles in this volume. Together these contributions point to the continual level of change and progress in these techniques. They also show that the paradigm underlying these methods has been unchanged for decades. It is argued that this domain is ripe for a paradigm change that takes advantage of recent developments in statistical techniques and technology. © 2017 Wiley Periodicals, Inc.

  11. Capabilities of the ITER Electron Cyclotron Equatorial Launcher for Heating and Current Drive

    Directory of Open Access Journals (Sweden)

    Ramponi G.

    2012-09-01

    Full Text Available The ITER Electron Cyclotron Equatorial Launcher is designed to be one of the heating systems to assist and sustain the development of various ITER plasma scenarios starting with the very first plasma operation. Here the capabilities for Heating and Current Drive of this system are reviewed. In particular, the optimum launching conditions are investigated for two scenarios at burn, comparing toroidal and poloidal steering options. Then, the EC capabilities are investigated for different plasma parameters corresponding to various phases of the ITER plasma discharge, from current ramp-up up to burn, and for a wide range of magnetic field, focusing in particular on the EC potential for heating and for L to H-mode assist. It is found that the EC system can contribute to a wide range of heating scenarios during the ramp-up of the magnetic field, significantly increasing the applicable range as a function of magnetic field.

  12. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    Electronic Inductor (EI)-based front-end rectifiers have a large potential to become the prominent next generation of Active Front End (AFE) topology used in many applications including Adjustable Speed Drives (ASDs) for systems having unidirectional power flow. The EI-based ASD is mostly...... attractive due to its improved harmonic performance compared to a conventional ASD. In this digest, the input currents of the EI-based ASD are investigated and compared with the conventional ASDs with respect to interharmonics, which is an emerging power quality topic. First, the main causes...... of the interharmonic distortions in the ASD applications are analyzed under balanced and unbalanced load conditions. Thereafter, the key role of the EI at the DC stage is investigated in terms of high impedance and current harmonics transfer. Obtained experiments and simulations for both EI-based and conventional ASD...

  13. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  14. Ohmic Radio-Frequency Synergy Current Drive and Transformer Recharging Experiments in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong-Yong; WAN Bao-Nian; SHI Yue-Jiang; HU Li-Qun; XU Han-Dong

    2005-01-01

    @@ Lower hybrid current drive (LHCD) experiments for investigating the interaction between lower hybrid (LH) wave and residual dc electric field were performed in extensive plasma parameter ranges in the HT-7 superconducting tokamak. The experimental results are well fitted to the Karney-Fisch theory on the efficiency of LH waves energy converted to poloidal magnetic field energy. The fraction of absorbed LH power is about 0.75 for the HT-7 machine, and the upshift of the LH-wave parallel refraction index during LHCD experiments have been derived by the optimizing fitting parameters. The LH wave is also used for the transformer recharging when the plasma current is maintained unchanged. The highest efficiency about 7% has been achieved in HT-7 machine.

  15. Diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by transformative techniques

    Directory of Open Access Journals (Sweden)

    Khadim Moin Siddiqui

    2016-09-01

    Full Text Available In the present paper, the airgap eccentricity fault of the induction motor has been diagnosed by digital signal processing transformative techniques in the inverter driven induction motor drives. The airgap eccentricity fault has been diagnosed in the transient condition by time domain as well as time-frequency domain techniques with the help of a proposed dynamic simulation model. In the past, many signal processing techniques had been used for various induction motor fault detection purpose such as fast Fourier transform, Hilbert transform, short term Fourier transform, etc. But, all techniques faced some sort of disadvantages. Therefore, in this paper, all shortcomings of the previous used signal processing techniques have been solved by newly wavelet transform's approximation signal. The low frequency approximation signal has been used to diagnose the eccentricity fault in the transient condition. Therefore, early fault diagnosis of the motor is possible and averted the motor before reaching in the ruinous conditions. As a result, the industries may save large revenues and unexpected failure conditions. The obtained results clearly demonstrate that the developed diagnostic technique may reliably separate airgap eccentricity fault in many stages.

  16. Heating and current drive by fast wave in lower hybrid range of frequency on Versatile Experiment Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ho, E-mail: shkim95@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Seung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyunwoo; Lee, Byungje [KwangWoon University, Seoul (Korea, Republic of); Jo, Jong-Gab; Lee, Hyun-Young; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    An efficient heating and current drive scheme in central or off-axis region is required to realize steady state operation of tokamak fusion reactor. And the fast wave in lower hybrid resonance range of frequency could be a candidate for such an efficient scheme in high density and high temperature plasmas. Its propagation and absorption characteristics including current drive and coupling efficiency are analyzed for Versatile Experiment Spherical Torus and it is shown that it is possible to drive current with considerable current drive efficiency in central region. The RF system for the fast wave experiment including klystron, transmission systems, inter-digital antenna, and RF diagnostics are given as well in this paper.

  17. Current research projects on traffic conflicts technique studies.

    NARCIS (Netherlands)

    Hondel, M. van den & and Kraay, J.H.

    1979-01-01

    A review of current research concerning the development, evaluation and use of the traffic conflicts technique is presented. The 32 studies, selected from the IRRD data base, are listed alphabetically by names of countries and under countries by names of research organizations. The IRRD descriptions

  18. Requirements on localized current drive for the suppression of neoclassical tearing modes

    Science.gov (United States)

    Bertelli, N.; De Lazzari, D.; Westerhof, E.

    2011-10-01

    A heuristic criterion for the full suppression of an NTM was formulated as ηNTM ≡ jCD,max/jBS >= 1.2 (Zohm et al 2005 J. Phys. Conf. Ser. 25 234), where jCD,max is the maximum in the driven current density profile applied to stabilize the mode and jBS is the local bootstrap current density. In this work we subject this criterion to a systematic theoretical analysis on the basis of the generalized Rutherford equation. Taking into account only the effect of jCD inside the island, a new criterion for full suppression by a minimum applied total current is obtained in the form of a maximum allowed value for the width of the driven current, wdep, combined with a required minimum for the total driven current in the form of wdepηNTM, where both limits depend on the marginal and saturated island sizes. These requirements can be relaxed when additional effects are taken into account, such as a change in the stability parameter Δ' from the current driven outside the island, power modulation, the accompanying heating inside the island or when the current drive is applied preemptively. When applied to ITER scenario 2, the requirement for full suppression of either the 3/2 or 2/1 NTM becomes wdep ~ 5 cm in agreement with (Sauter et al 2010 Plasma Phys. Control. Fusion 52 025002). Optimization of the ITER ECRH Upper Port Launcher design towards minimum required power for full NTM suppression requires an increase in the toroidal injection angle of the lower steering mirror of several degrees compared with its present design value, while for the upper steering mirror the present design value is close to the optimum.

  19. Current techniques for assessing developmental neurotoxicity of pesticides

    Institute of Scientific and Technical Information of China (English)

    Yu GAO; Ying TIAN; Xiaoming SHEN

    2008-01-01

    Organophosphates (OPs) and Pyrethroids (PRY) have been widely used in agriculture and in the home as broad spectrum insecticides, but may produce considerable risk to human health, especially to children. Children are more susceptible to environmental exposure, and concern about the neurotoxic effects of pesticide exposure on children is increasing. There is a need for better understanding of the potential developmental neu-rotoxicity of pesticides. Techniques for assessing devel-opmental neurotoxicity of pesticides will continue to be developed, rendering a need for flexibility of testing para-digms. Current techniques used in evaluating the devel-opmental neurotoxicity of OPs and PRY are presented in this review. These include: (1) In vitro techniques (PC12 cells, C6 cells and other cell models); (2) Non-mammalian models (sea urchins, zebrafish and other non-mammalian models); and (3) In vivo mammalian models (morpho-logical techniques, neurobehavioral assessments and biomarkers).

  20. Perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse-engineering technique

    Science.gov (United States)

    Wu, Qi-Cheng; Huang, Bi-Hua; Chen, Ye-Hong; Shi, Zhi-Cheng; Song, Jie; Xia, Yan

    2017-10-01

    We propose a method to design shortcuts to adiabaticity for implementing perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse engineering technique. Based on the method, we can design simple schemes to realize the intended dynamics. For the sake of clearness, we apply this method to several examples including two-level, three-level and four-level system. We show that fast quantum state engineering can be realized by utilizing simply-designed auxiliary Hamiltonian. Furthermore, a suitable choice of the control parameters can eliminate the additional couplings in the introduced auxiliary Hamiltonian. Numerical simulation reveals that the constructed scheme is reliable and robust against various dissipation effects and the fluctuations of control parameters in current technology.

  1. Biopsy of parotid masses:Review of current techniques

    Institute of Scientific and Technical Information of China (English)

    Sananda Haldar; Joseph D Sinnott; Kemal M Tekeli; Samuel S Turner; David C Howlett

    2016-01-01

    Definitive diagnosis of parotid gland masses is required optimal management planning and for prognosis. There is controversy over whether fine needle aspiration cytology(FNAC) or ultrasound guided core biopsy(USCB) should be the standard for obtaining a biopsy. The aim of this review is to assess the current evidence available to assess the benefits of each technique and also to assess the use of intra-operative frozen section(IOFS). Literature searches were performed using pubmed and google scholar. The literature has been reviewed and the evidence is presented. FNAC is an accepted and widely used technique. It has been shown to have variable diagnostic capabilities depending on centres and experience of staff. USCB has a highly consistent diagnostic accuracy and can help with tumour grading and staging. However, the technique is more invasive and there is a question regarding potential for seeding. Furthermore, USCB is less likely to be offered as part of a one-stop clinic. IOFS has no role as a first line diagnostic technique but may be reserved as an adjunct or for lesions not amenable to percutaneous biopsy. On balance, USCB seems to be the method of choice. The current evidence suggests it has superior diagnostic potential and is safe. With time, USCB is likely to supplant FNAC as the biopsy technique of choice, replicating that which has occurred already in other areas of medicine such a breast practice.

  2. Status of the ITER Electron Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  3. Electron Cyclotron Current Drive at High Electron Temperature on DIII-D

    Science.gov (United States)

    Petty, C. C.; Austin, M. E.; Harvey, R. W.; Lohr, J.; Luce, T. C.; Makowski, M. A.; Prater, R.

    2007-09-01

    Experiments on DIII-D have measured the electron cyclotron current drive (ECCD) efficiency for co- and counter-injection in low density plasmas with radiation temperatures from electron cyclotron emission (ECE) above 20 keV. The radiation temperature is generally higher than the Thomson scattering temperature, indicating that there is a significant population of non-thermal electrons. The experimental ECCD profile measured with motional Stark effect (MSE) polarimetry is found to agree with quasi-linear theory except for the highest power density cases (QEC/ne2≫1). Radial transport of the energetic electrons with diffusion coefficients of ˜0.4 m2/s is needed to model the broadened ECCD profile at high power density.

  4. A Study on New Current Controller for 7-Phase BLDC Motor Drive System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Surk; Jeon, Ywun Seok; Mok, Hyung Soo [Konkuk University (Korea); Kim, Duk Keun [Komotek Co., Ltd. (Korea)

    2001-04-01

    Recently, the demand of motor for industrial, household machinery is increasing. As Switching devices and control technology are progressing, so the use of BLDC Motor is increasing. But 3-phase BLCD Motor generally used has pulsating torque and speed variation in commutation, so the range of its application is limited to high speed operation. Especially, to solve these problems, it is necessary to increase phase of Motor, so study of Poly-Phase BLDC Motor is progressing. However, when hysteresis current controller is used, switching frequency is highly increasing. In this paper, 7-Phase BLDC Motor drive system is designed. Also MSTC (Minimum Switching Time Controller) is proposed and with simulation and experiment, their validities are verified. (author). 10 refs., 26 figs., 1 tab.

  5. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  6. HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Taylor, P.T. Bonoli, D.L. Green, R.W. Harvey, J.C. Hosea, E.F. Jaeger, B.P. LeBlanc, R. Maingi, C.K. Phillips, P.M. Ryan, E.J. Valeo, J.R. Wilson, J.C. Wright, and the NSTX Team

    2011-06-08

    30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between the LCFS and the wall that can have large amplitudes at longer launch wavelengths. These simulation results qualitatively agree with HHFW

  7. Image analysis technique applied to lock-exchange gravity currents

    OpenAIRE

    Nogueira, Helena; Adduce, Claudia; Alves, Elsa; Franca, Rodrigues Pereira Da; Jorge, Mario

    2013-01-01

    An image analysis technique is used to estimate the two-dimensional instantaneous density field of unsteady gravity currents produced by full-depth lock-release of saline water. An experiment reproducing a gravity current was performed in a 3.0 m long, 0.20 m wide and 0.30 m deep Perspex flume with horizontal smooth bed and recorded with a 25 Hz CCD video camera under controlled light conditions. Using dye concentration as a tracer, a calibration procedure was established for each pixel in th...

  8. Defect detection in conducting materials using eddy current testing techniques

    Directory of Open Access Journals (Sweden)

    Brauer Hartmut

    2014-01-01

    Full Text Available Lorentz force eddy current testing (LET is a novel nondestructive testing technique which can be applied preferably to the identification of internal defects in nonmagnetic moving conductors. The LET is compared (similar testing conditions with the classical eddy current testing (ECT. Numerical FEM simulations have been performed to analyze the measurements as well as the identification of internal defects in nonmagnetic conductors. The results are compared with measurements to test the feasibility of defect identification. Finally, the use of LET measurements to estimate of the electrical conductors under test are described as well.

  9. Principal physics of rotating magnetic-field current drive of field reversed configurations

    Science.gov (United States)

    Hoffman, A. L.; Guo, H. Y.; Miller, K. E.; Milroy, R. D.

    2006-01-01

    After extensive experimentation on the Translation, Confinement, and Sustainment rotating magnetic-field (RMF)-driven field reversed configuration (FRC) device [A. L. Hoffman et al., Fusion Sci. Technol. 41, 92 (2002)], the principal physics of RMF formation and sustainment of standard prolate FRCs inside a flux conserver is reasonably well understood. If the RMF magnitude Bω at a given frequency ω is high enough compared to other experimental parameters, it will drive the outer electrons of a plasma column into near synchronous rotation, allowing the RMF to penetrate into the plasma. If the resultant azimuthal current is strong enough to reverse an initial axial bias field Bo a FRC will be formed. A balance between the RMF applied torque and electron-ion friction will determine the peak plasma density nm∝Bω/η1/2ω1/2rs, where rs is the FRC separatrix radius and η is an effective weighted plasma resistivity. The plasma total temperature Tt is free to be any value allowed by power balance as long as the ratio of FRC diamagnetic current, I'dia≈2Be/μo, is less than the maximum possible synchronous current, I'sync=⟨ne⟩eωrs2/2. The RMF will self-consistently penetrate a distance δ* governed by the ratio ζ =I'dia/I'sync. Since the FRC is a diamagnetic entity, its peak pressure pm=nmkTt determines its external magnetic field Be≈(2μopm)1/2. Higher FRC currents, magnetic fields, and poloidal fluxes can thus be obtained, with the same RMF parameters, simply by raising the plasma temperature. Higher temperatures have also been noted to reduce the effective plasma resistivity, so that these higher currents can be supported with surprisingly little increase in absorbed RMF power.

  10. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    Energy Technology Data Exchange (ETDEWEB)

    Geinitz, Hans [Krankenhaus der Barmherzigen Schwestern, Linz (Austria). Dept. of Radiation Oncology; Linz Univ. (Austria). Medical Faculty; Roach, Mack III [California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology; Van As, Nicholas (ed.) [The Institute of Cancer Research, Sutton Surrey (United Kingdom)

    2015-04-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  11. Spray drying technique: II. Current applications in pharmaceutical technology.

    Science.gov (United States)

    Sollohub, Krzysztof; Cal, Krzysztof

    2010-02-01

    This review presents current applications of spray drying in pharmaceutical technology. The topics discussed include the obtention of excipients and cospray dried composites, methods for increasing the aqueous solubility and bioavailability of active substances, and modified release profiles from spray-dried particles. This review also describes the use of the spray drying technique in the context of biological therapies, such as the spray drying of proteins, inhalable powders, and viable organisms, and the modification of the physical properties of dry plant extracts.

  12. Nondestructive examination of PHWR pressure tube using eddy current technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Jong; Choi, Sung Nam; Cho, Chan Hee; Yoo, Hyun Joo; Moon, Gyoon Young [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter x 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the D2O heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

  13. Current situation of endoscopic biliary cannulation and salvage techniques for difficult cases: Current strategies in Japan.

    Science.gov (United States)

    Yasuda, Ichiro; Isayama, Hiroyuki; Bhatia, Vikram

    2016-04-01

    In the pancreatobiliary session at Endoscopic Forum Japan (EFJ) 2015, current trends of routine biliary cannulation techniques and salvage techniques for difficult biliary cannulation cases were discussed. Endoscopists from nine Japanese high-volume centers along with two overseas centers participated in the questionnaires and discussion. It was concluded that, currently, in Western countries, the wire-guided cannulation (WGC) technique is favored during initial cannulation attempts. However, the conventional technique using an endoscopic retrograde cholangiopancreatography catheter with contrast medium injection is still used as first choice at most Japanese high-volume centers. The WGC technique is used as the second choice at some institutions only. After failed biliary cannulation attempts, the initial salvage option preferred in most centers includes pancreatic guidewire placement, followed by precut techniques as the second salvage choice. Among several precut techniques, the free-hand needle knife sphincterotomy with cutting upwards from the pancreatic duct is most popular. Endoscopic ultrasonography-guided rendezvous technique is also carried out as a final salvage option at select institutions.

  14. [Current operative techniques and strategies in endocrine surgery].

    Science.gov (United States)

    Gürtler, Thomas; Weber, Markus

    2011-06-01

    Technical advances and focusing on subsets modified endocrine surgery in the last ten years tremendously. There is on one side a clear trend towards minimal invasive approaches, first of all in the surgery of the adrenal glands, where the transperitoneal or retroperitoneal laparoscopic adrenalectomy has become the gold standard for tumors up to a size of 10 cm in diameter. But also in pancreatic endocrine surgery for small tumors localized in the pancreas tail and up to a certain extend in thyroid and parathyroid surgery, laparoscopic or video assisted techniques are used. On the other side more precise techniques allow a more complete and radical removal of endocrine tissue, especially in thyroid surgery. This article presents a summary of current operative techniques and strategies in endocrine surgery.

  15. A resonant series counterpulse technique for high current opening switches

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, E. van [Delft Univ. of Technology (Netherlands). Lab. for Power Electronics and Electrical Machines; Gelder, P. van [TNO PML-Pulse Physics Lab., Delft (Netherlands)

    1995-01-01

    A counterpulse technique for the controlled interruption of very high currents in inductive storage pulsed power systems is described and analyzed, and some simulation results of its performance are presented. The accompanying circuit comprises a pre-charged capacitor bank, connected in series with the inductive load, which has to be provided with a current pulse. Upon actuation, a resonant counterpulse current is created in the opening switch, connected in parallel with the current source and the load. In this way, the opening switch is opened at low current. A separate closing switch prevents closing of the opening switch at high voltage. Operation of the opening switch, often a mechanical switch, at low current and low voltage prevents arc erosion of the contacts. The advantage of this circuit compared to other counterpulse circuits is that the capacitor bank does not experience a voltage reversal. Electrolytic capacitors, which have a high energy density, are applied. The remaining energy of the capacitor bank after opening the opening switch, is transferred to the load. The required initial voltage of the capacitor bank is only a few hundred volts, whereas it may be above a kilovolt in other circuits. Another advantage of the method described here is that the load does not experience a pre-current, causing unwanted preheating of the load, before the resonant current is activated. At the moment, work is being performed at the Pulse Physics Laboratory to develop the resonant series counterpulse circuit for use with rail accelerators, which must be supplied with current pulses in the millisecond range up to the mega-ampere level.

  16. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    Science.gov (United States)

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  17. Integrated Plasma Simulation of Lower Hybrid Current Drive Modification of Sawtooth in Alcator C-Mod

    Science.gov (United States)

    Bonoli, P. T.; Hubbard, A. E.; Schmidt, A. E.; Wright, J. C.; Kessel, C. E.; Batchelor, D. B.; Berry, L. A.; Harvey, R. W.

    2010-11-01

    Experiments were performed in Alcator C-Mod, where the onset time for sawteeth was delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through injection of off-axis LH current drive power [1]. In this poster we discuss simulations of these experiments using the Integrated Plasma Simulator (IPS) [2], through which driven current density profiles and hard x-ray spectra are computed using a ray tracing code (GENRAY) and Fokker Planck code (CQL3D) [3], that are executed repeatedly in time. The background plasma is evolved in these simulations using the TSC transport code with the Porcelli sawtooth model [4]. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Mtg. on Sim. and Mod. of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, Journal Comp. Phys. 66, 481 (1986).

  18. Component development for the ITER Ion Cyclotron Heating and Current Drive Transmission Line and Matching System

    Science.gov (United States)

    Goulding, R. H.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.

    2013-10-01

    The transmission line and matching network for the ITER Ion Cyclotron Heating and Current Drive System feeds two equatorial launchers, each with 24 phased current straps combined into groups of three, and each designed to couple up to 20 MW into ELMy H-mode plasmas in the frequency range 40-55 MHz, for pulse lengths up to 3600 s. The network includes > 1 km of 50 Ohm 300 mm diameter transmission line carrying up to 6 MW net power per line at VSWR = 1.5. In addition, there are 8 power splitters, 32 hybrid phase shifters incorporating 64 tuning stubs, 32 additional tuning stubs, and 36 vacuum capacitors, which are configured to provide pre-matching in the port cell region adjacent to the antenna, final matching, decoupling of mutual inductances between antenna elements, and passive ELM resilience. The development and design of the various system components will be discussed. High power tests of components have begun, and the latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  19. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  20. Investigation of Line Current Harmonics in Cascaded Multi-level Inverter Based Induction Motor Drive and an Adaptive On-line Selective Current Harmonic Elimination Algorithm

    Directory of Open Access Journals (Sweden)

    P. Avirajamanjula

    2015-03-01

    Full Text Available Multilevel Inverters (MLIs have drawn increasing attention in numerous applications, especially in drives, distributed energy resources area, utility etc. MLIs have the ability to synthesize a near sinusoidal output voltage wave with minimal Total Harmonic Distortion (THD in low frequency switching. Even though they offer lower THD, the presence of lower order harmonics is objectionable and harmonics elimination in Multilevel Inverters (MLIs has been receiving immense attention for the past few decades. Existing Selective Harmonic Elimination (SHE techniques can eliminate the objectionable lower order voltage harmonics with low switching frequency by solving the Fourier non-linear transcendental equations of the output voltage. The line current harmonics has a direct role to play on the magneto-motive force and results in increase of mismatching of air-gap permeance, vibrations, acoustic noise etc. This study proposes Normalized Least Mean Squares (NLMS algorithm based scheme to eliminate the selected dominant harmonics in load current using only the knowledge of the frequencies to be eliminated. The algorithm is simulated using MATLAB/SIMULINK tool for a three-phase VSI to eliminate the fifth and seventh harmonics. The informative simulation results verify the validity and effectiveness of the proposed algorithm. The system performance is analyzed based on the simulation results considering Total Harmonic Distortion (THD, magnitude of eliminated harmonics and frequency spectrum.

  1. Technique of optimization of minimum temperature driving forces in the heaters of regeneration system of a steam turbine unit

    Science.gov (United States)

    Shamarokov, A. S.; Zorin, V. M.; Dai, Fam Kuang

    2016-03-01

    At the current stage of development of nuclear power engineering, high demands on nuclear power plants (NPP), including on their economy, are made. In these conditions, improving the quality of NPP means, in particular, the need to reasonably choose the values of numerous managed parameters of technological (heat) scheme. Furthermore, the chosen values should correspond to the economic conditions of NPP operation, which are postponed usually a considerable time interval from the point of time of parameters' choice. The article presents the technique of optimization of controlled parameters of the heat circuit of a steam turbine plant for the future. Its particularity is to obtain the results depending on a complex parameter combining the external economic and operating parameters that are relatively stable under the changing economic environment. The article presents the results of optimization according to this technique of the minimum temperature driving forces in the surface heaters of the heat regeneration system of the steam turbine plant of a K-1200-6.8/50 type. For optimization, the collector-screen heaters of high and low pressure developed at the OAO All-Russia Research and Design Institute of Nuclear Power Machine Building, which, in the authors' opinion, have the certain advantages over other types of heaters, were chosen. The optimality criterion in the task was the change in annual reduced costs for NPP compared to the version accepted as the baseline one. The influence on the decision of the task of independent variables that are not included in the complex parameter was analyzed. An optimization task was decided using the alternating-variable descent method. The obtained values of minimum temperature driving forces can guide the design of new nuclear plants with a heat circuit, similar to that accepted in the considered task.

  2. Imaging fast calcium currents beyond the limitations of electrode techniques.

    Science.gov (United States)

    Jaafari, Nadia; De Waard, Michel; Canepari, Marco

    2014-09-16

    The current understanding of Ca(2+) channel function is derived from the use of the patch-clamp technique. In particular, the measurement of fast cellular Ca(2+) currents is routinely achieved using whole-cell voltage-clamp recordings. However, this experimental approach is not applicable to the study of local native Ca(2+) channels during physiological changes of membrane potential in complex cells, since the voltage-clamp configuration constrains the membrane potential to a given value. Here, we report for the first time to our knowledge that Ca(2+) currents from individual cells can be quantitatively measured beyond the limitations of the voltage-clamp approach using fast Ca(2+) imaging with low-affinity indicators. The optical measurement of the Ca(2+) current was correlated with the membrane potential, simultaneously measured with a voltage-sensitive dye to investigate the activation of Ca(2+) channels along the apical dendrite of the CA1 hippocampal pyramidal neuron during the back-propagation of an action potential. To validate the method, we analyzed the voltage dependence of high- and low-voltage-gated Ca(2+) channels. In particular, we measured the Ca(2+) current component mediated by T-type channels, and we investigated the mechanisms of recovery from inactivation of these channels. This method is expected to become a reference approach to investigate Ca(2+) channels in their native physiological environment.

  3. Quality control in hard disc drive manufacturing using pattern recognition technique

    Science.gov (United States)

    Masood, Ibrahim; Shyen, Victor Bee Ee

    2016-11-01

    Computerized monitoring-diagnosis is an efficient technique to identify the source of unnatural variation (UV) in manufacturing process. In this study, a pattern recognition scheme (PRS) for monitoring-diagnosis the UVs was developed based on control chart pattern recognition technique. This PRS integrates the multivariate exponentially weighted moving average (MEWMA) control chart and artificial neural network (ANN) recognizer to perform two-stage monitoring-diagnosis. The first stage monitoring was performed using the MEWMA statistics, whereas the second stage monitoring-diagnosis was performed using an ANN. The PRS was designed based on bivariate process mean shifts between 0.75σ and 3.00σ, with cross correlation between ρ=0.1 and 0.9. The performance of the proposed PRS has been validated in quality control of hard disk drive component manufacturing. The validation proved that it is efficient in rapidly detecting UV and accurately classify the source of UV patterns. In a nutshell, the PRS will aid in realizing automated decision making system in manufacturing industry.

  4. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  5. NTM stabilization by alternating O-point EC current drive using a high-power diplexer

    Science.gov (United States)

    Kasparek, W.; Doelman, N.; Stober, J.; Maraschek, M.; Zohm, H.; Monaco, F.; Eixenberger, H.; Klop, W.; Wagner, D.; Schubert, M.; Schütz, H.; Grünwald, G.; Plaum, B.; Munk, R.; Schlüter, K. H.; ASDEX Upgrade Team

    2016-12-01

    At the tokamak ASDEX Upgrade, experiments to stabilize neoclassical tearing modes (NTMs) by electron cyclotron (EC) heating and current drive in the O-points of the magnetic islands were performed. For the first time, injection into the O-points of the revolving islands was performed via a fast directional switch, which toggled the EC power between two launchers synchronously to the island rotation. The switching was performed by a resonant diplexer employing a sharp resonance in the transfer function, and a small frequency modulation of the feeding gyrotron around the slope of the resonance. Thus, toggling of the power between the two outputs of the diplexer connected to two articulating launchers was possible. Phasing and control of the modulation were performed via a set of Mirnov coils and appropriate signal processing. In the paper, technological issues, the design of the diplexer, the tracking of the diplexer resonance to the gyrotron frequency, the generation and processing of control signals for the gyrotron, and the typical performance concerning switching contrast and efficiency are discussed. The plasma scenario is described, and plasma experiments are presented, where the launchers scanned the region of the resonant surface continuously and also where the launchers were at a fixed position near to the q  =  1.5-surface. In the second case, complete stabilization of a 3/2 NTM could be reached. These experiments are also seen as a technical demonstration for the applicability of diplexers in large-scale ECRH systems.

  6. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.K., E-mail: pramod@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India); Kazarian, F.; Garibaldi, P.; Gassman, T. [ITER Organization, CS 90 046, 13067 Saint-Paul-Les-Durance (France); Artaud, J.F. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bae, Y.S. [National Fusion Research Institute, Daejeon (Korea, Republic of); Belo, J. [Associacao Euratom-IST, Centro de Fusao Nuclear, Lisboa (Portugal); Berger-By, G.; Bernard, J.M.; Cara, Ph. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy); Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2011-10-15

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  7. Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive

    Science.gov (United States)

    Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2010-06-01

    Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.

  8. High Power Antenna Design for Lower Hybrid Current Drive in MST

    Science.gov (United States)

    Thomas, M. A.; Goetz, J. A.; Kaufman, M. C.; Oliva, S. P.; Caughman, J. B. O.; Ryan, P. M.

    2003-10-01

    RF current drive has been proposed as a method for reducing the tearing fluctuations that are responsible for anomalous energy transport in the RFP. A system for launching lower hybrid slow waves at 800 MHz and n_||= 7.5 is now in operation at up to 50 kW on MST. The antenna is an enclosed interdigital line using λ/4 resonators with an opening in the cavity through which the wave is coupled to the plasma. It has an untuned VSWR of ˜2, and is instrumented on 5 of its 23 elements to allow measurement of damping length. The antenna design is being optimized for higher power handling. Improvements include larger vacuum feedthroughs, better impedance matching, and RF instrumentation on all resonators. The new antenna will be modeled in Microwave Studio^TM. The goal is a design which can handle ˜250 kW and presents a VSWR of 1.4 or better without external tuning. Full instrumentation will allow more detailed power deposition measurements.

  9. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Jones, S.; Paoletti, F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center); Petravich, G. (Hungarian Academy of Sciences, Budapest (Hungary). Central Research Inst. for Physics); Rimini,

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 [times] 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  10. Techniques and applications of endoscopic spine surgery. Part I:overview of current techniques

    Institute of Scientific and Technical Information of China (English)

    Kai-Xuan Liu; MD; PhD

    2013-01-01

    Background Spinal pain is a serious health and social-economic problem. Endoscopic spine surgery as a treatment option for spinal pain has gained tremendous attention and growth in the past 2 decades, and a variety of endoscopic techniques have been invented to treat a wide range of spinal conditions. Purposes The purposes of this 2-part review article are to 1 ) overview the published techniques of endoscopic spine surgery, 2 ) summarize the applications of these techniques in treating various spinal conditions, and 3 ) evaluate the clinical evidence of the safety and effectiveness of these endoscopic techniques in treating some of the most common spinal conditions. The first part of the review article provides an overview of currently most commonly used techniques. Methods We searched the PubMed database for publications concerning endoscopic spine surgery and reviewed the relevant articles published in the English language. Results Discectomy and foraminotomy are the most common types of spine surgery that can currently be done endoscopically. Endoscopic techniques have been used to treat a wide range of spinal disorders located in the lumbar, cervical, as well as the thoracic regions of the spine.

  11. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Cardinali, A., E-mail: alessandro.cardinali@enea.it; Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A. [ENEA, Unità Tecnica Fusione, Via E Fermi 45 Rome (Italy)

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  12. Categorizing the Driving Affecting Factors on Iran’s Carpet Industry competitiveness by Fuzzy Topsis Technique

    Directory of Open Access Journals (Sweden)

    F. Haghshenas Kashani

    2011-01-01

    Full Text Available One of the most prominent and important problems of Iran industries is the lack of competitiveness and the major reason among several various reasons is due to the absence of a defined approach for competitiveness. During this study, by testing an integrated model and presenting it as the research final model, we are trying to categorize the driving affecting factors on Iran’s carpet industry competitiveness. Thus, one of the new Multi Criteria Decision Making (MCDM techniques – Fuzzy Topsis- was applied. The components of research conceptual model which has 3 main criteria (internal resources, market situation, and innovation strength and 44 sub criteria was categorized by Fuzzy Topsis technique. Accordingly, “market share”, “e-commerce”, “knowledge creation’, “industry reliability”, and “exporters expertise and skills” were recognized as the most important sub criteria and simultaneously “customers satisfaction”, “employees’ education”, “international certifications”, and “fundamental researches” were recognized as the least momentous and effective sub criteria. These results represent that Iran’s hand-made carpet industry has still some difficulties in applying marketing knowledge such as: on line marketing, e-commerce, and making merchants familiar to these techniques. In addition, paying excessive attention to the quality, durability, and appearance of the Iranian carpets make managers to ignore some other factors such as customer satisfaction. Among the main criteria, market-based perspective was chosen as the most leading and significant criterion. In other words, the approach of position improvement in the international markets is recommended for this industry.

  13. Categorizing the Driving Affecting Factors on Iran’s Carpet Industry competitiveness by Fuzzy Topsis Technique

    Directory of Open Access Journals (Sweden)

    Farideh Haghshenas

    2011-07-01

    One of the most prominent and important problems of Iran industries is the lack of competitiveness and the major reason among several various reasons is due to the absence of a defined approach for competitiveness. During this study, by testing an integrated model and presenting it as the research final model, we are trying to categorize the driving affecting factors on Iran’s carpet industry competitiveness. Thus, one of the new Multi Criteria Decision Making (MCDM techniques – Fuzzy Topsis- was applied. The components of research conceptual model which has 3 main criteria (internal resources, market situation, and innovation strength and 44 sub criteria was categorized by Fuzzy Topsis technique. Accordingly, “market share”, “e-commerce”, “knowledge creation’, “industry reliability”, and “exporters expertise and skills” were recognized as the most important sub criteria and simultaneously “customers satisfaction”, “employees’ education”, “international certifications”, and “fundamental researches” were recognized as the least momentous and effective sub criteria. These results represent that Iran’s hand-made carpet industry has still some difficulties in applying marketing knowledge such as: on line marketing, e-commerce, and making merchants familiar to these techniques. In addition, paying excessive attention to the quality, durability, and appearance of the Iranian carpets make managers to ignore some other factors such as customer satisfaction. Among the main criteria, market-based perspective was chosen as the most leading and significant criterion. In other words, the approach of position improvement in the international markets is recommended for this industry.

  14. Current practices of driving restriction implementation for patients with brain tumors.

    Science.gov (United States)

    Thomas, Sayana; Mehta, Minesh P; Kuo, John S; Ian Robins, H; Khuntia, Deepak

    2011-07-01

    Brain tumors may impair functioning in several neuro-cognitive domains and interfere with sophisticated tasks, such as driving motor vehicles. No formalized national guidelines or recommendations for driving restrictions in patients with brain tumors exist in the US. We created and administered a 24 question survey to 1,157 US medical practitioners, mostly neurosurgeons, radiation oncologists, and medical oncologists, to identify their knowledge of local driving restriction laws and their practice patterns regarding driving restriction instructions to brain tumor patients. Response were collected from 251 (21.7%) and analyzed from 221 (19%) recipients. Seventy-one percent of the respondents indicated they discuss driving recommendations/restrictions with brain tumor patients, with 82% primarily basing this on seizure activity. Approximately 28% of respondents were unsure if they are required by their State's motor vehicle licensing authority to report medically impaired drivers. Respondents felt that longer periods of restriction prior to re-evaluation are warranted in patients with malignant versus benign brain tumors and high versus low grade gliomas. Only 25% of respondents use formal, standardized testing to determine driving eligibility and approximately 31% address driving restrictions in every patient with a brain tumor. This survey highlights the lack of consensus regarding the responsibilities of physicians treating brain tumor patients in designing and enforcing driving restrictions. We propose that a panel of experts generate driving restriction guidelines to be used in conjunction with objective testing of motor and sensory impairment. These would aid practitioners in developing individualized driving restrictions for every brain tumor patient.

  15. Eddy-current analysis of isolated permanent-magnet drives using two- and three-dimensional finite-element methods (abstract)

    Science.gov (United States)

    Ferreira, C. A.

    1990-05-01

    Present drive systems which rely on mechanical devices for torque transmission have some negative features: the driven component cannot be isolated from the drive motor, rotating seals have inherent leakage and friction problems, and mechanical failures often occur due to torque overloads. Magnetic couplings are especially well suited for use in isolated-drive systems. This is often the case in military and aerospace applications where pumps and compressors are vital parts of the thermal and fuel operating systems. The application of permanent-magnet couplings in isolated drives requires accurate calculation of the eddy-current losses induced on the hermetic vessel. This is because the losses along with the required output torque dictate the size and efficiency of the permanent-magnet coupling. The vessel isolates the drive member from the driven member of the turbocompressor. The paper will show the formulation of the computational method based on the Poynting-vector theorem and the concept of motional electric field intensity. The eddy-current losses are calculated using two- and three-dimensional magnetostatic finite-element (FE) analysis. A comparison of the results obtained by two- and three-dimensional FE analysis is made. The results of the analysis will be compared to test data for verification. The test-facility setup and procedure will also be described. This state-of-the-art technique for computation of eddy-current losses has several advantages over conventional analysis methods: the nonlinearities of the magnetic circuit are taken into account, magnetic field fringing and end-leakage effects are not neglected, and the method does not rely on the use of empirical factors. The significant benefits of this approach are that trial-and-error experimental design approaches are eliminated and test data provide validation of analytical results.

  16. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies on......-shifted current control is a cost-effective solution to multiple ASD systems in terms of harmonic cancellation.......A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...

  17. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    Directory of Open Access Journals (Sweden)

    A. Schmitz

    2005-01-01

    Full Text Available Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0. Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  18. The Influence of Neutral Beam Injection on the Heating and Current Drive with Electron Cyclotron Wave on EAST

    Science.gov (United States)

    Chang, Pengxiang; Wu, Bin; Wang, Jinfang; Li, Yingying; Wang, Xiaoguang; Xu, Handong; Wang, Xiaojie; Liu, Yong; Zhao, Hailin; Hao, Baolong; Yang, Zhen; Zheng, Ting; Hu, Chundong

    2016-11-01

    Both neutral beam injection (NBI) and electron cyclotron resonance heating (ECRH) have been applied on the Experimental Advanced Superconducting Tokamak (EAST) in the 2015 campaign. In order to achieve more effective heating and current drive, the effects of NBI on the heating and current drive with electron cyclotron wave (ECW) are analyzed utilizing the code TORAY and experimental data in the shot #54411 and #54417. According to the experimental and simulated results, for the heating with ECW, NBI can improve the heating efficiency and move the power deposition place towards the inside of the plasma. On the other hand, for the electron cyclotron current drive (ECCD), NBI can also improve the efficiency of ECCD and move the place of ECCD inward. These results will be valuable for the center heating, the achievement of fully non-inductive current drive operation and the suppression of magnetohydrodynamic (MHD) instabilities with ECW on EAST or ITER with many auxiliary heating methods. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB101001 and 2014DFG61950) and National Natural Science Foundation of China (Nos. 11405212 and 11175211)

  19. Evolution of the Tore Supra Lower Hybrid Current Drive System for WEST

    Energy Technology Data Exchange (ETDEWEB)

    Delpech, Léna, E-mail: lena.delpech@cea.fr [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Achard, Joelle; Armitano, Arthur; Berger-By, Gilles; Ekedahl, Annika; Gargiulo, Laurent; Goniche, Marc; Guilhem, Dominique; Hertout, Patrick; Hillairet, Julien; Magne, Roland; Mollard, Patrick [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Piluso, P. [CNIM Industrial Systems, 83507 La Seyne-sur-Mer (France); Poli, Serge; Prou, Marc; Saille, Alain; Samaille, Franck [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)

    2015-10-15

    Highlights: • Describe the state of the Lower Hybrid heating system for the WEST project. • Detailed the experiments to assess the coupling in WEST configuration. • Give the modifications required on the launchers to be adapted to WEST configuration. • Detailed the technical modifications with the CNIM company on the launchers. - Abstract: The WEST-project (W-tungsten Environment in Steady-state Tokamak) involves equipping Tore Supra with a full tungsten divertor, capable of withstanding heat load of 10 MW/m{sup 2} in steady-state conditions, in discharges sustained by Lower Hybrid Current Drive (LHCD). The LHCD generator, recently upgraded to deliver 9.2 MW/1000 s, is equipped with sixteen TH2103C klystrons powering two launchers. The WEST transformation involves reducing the plasma volume, thus moving the launchers ∼10 cm closer to the tokamak centre. The toroidal curvature of the launchers no longer fits the plasma curvature due to the strong magnetic field ripple effect, leading to a degradation of the LH wave coupling, especially with the Full Active Multijunction Launcher (FAM). The toroidal curvature radius of the FAM launcher mouth will therefore be reshaped from 1700 mm to 2300 mm. The machining process is described in this article. In order to improve the coupling of the LH wave, the local gas injection has been modified to help to meet the requirement of 7 MW/1000 s of LH power coupled to the plasma in the WEST scenarios. Finally, the curvature radius of the waveguide septa are rounded to minimize the excitation of suprathermal electrons near the plasma edge, which can induce high power loads on the plasma facing components.

  20. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  1. Analysis of cutting-edge techniques in the high voltage and high power adjustable speed drive systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The high voltage and high power adjustable speed drive (ASD) system is one of the most attractive fields in power electronics, and it is also a very crucial technique for energy saving and emission reduction. This paper discussed and analyzed the main cutting-edge knowledge and issues in the process of exploiting the high voltage and high power ASD system.

  2. Swarming Speed Control for DC Permanent Magnet Motor Drive via Pulse Width Modulation Technique and DC/DC Converter

    Directory of Open Access Journals (Sweden)

    A.S. Oshaba

    2013-05-01

    Full Text Available This study presents an approach for the speed control of a permanent magnet DC motor drive via Pulse Width Modulation (PWM technique and a DC/DC converter. The Particle Swarm Optimization (PSO technique is used to minimize a time domain objective function and obtain the optimal controller parameters. The performance of the proposed technique has been evaluated using various types of disturbances including load torque variations. Simulation results illustrate clearly the robustness of the controller and validity of the design technique for controlling the speed of permanent magnet motors.

  3. Active damping technique for small DC-link capacitor based drive system

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Henriksen, Bjarne

    2010-01-01

    A detailed model of Adjustable Speed Drive (ASD) is discussed, which yield a general rule for active damping in a small DC link based drive. A desired value of input LC resonance damping coefficient can be achieved by changing gain parameters. The modified state space matrix due to active damping...

  4. Simple Augmented Current Controller with OHC Technique for grid current compensation in the Distribution System

    Directory of Open Access Journals (Sweden)

    S. Rajalingam

    2014-05-01

    Full Text Available This paper presents a novel control technique on four leg inverter with which the distribution grid is interconnected with the domestic houses. Most of the houses in the distribution side possess inverter for the usage of Electricity. With the advancement in Solar & wind, it will become easy to see houses, often with solar & a small Wind power system. The excess power generated can be exchanged with the Electricity Board for providing uninterruptible power supply. During this exchange there may be a deterioration in the quality of power, most often the grid current gets affected with a large harmonic distortion, and also there exists unbalanced grid currents. Thus, it is necessary to provide uninterruptible power supply with good quality of power. In spite of several controllers, the proposed augmented controller has its own reliability & quick response with Overall Harmonic Compensation (OHC technique which relies on DSP based filter. This Augmented based control technique with OHC is demonstrated extensively with MATLAB/Simulink simulation.

  5. Study of lower hybrid current drive efficiency and its correlation with photon temperatures in the HT-7 tokamak

    Science.gov (United States)

    Younis, J.; Wan, B. N.; Lin, S. Y.; Shi, Y. J.; Ding, B. J.; Gong, X.; HT-7 Team

    2009-07-01

    Lower hybrid current drive (LHCD) efficiency is a very important parameter. The experimental current drive efficiency is defined as η = IrfneR/PLH, where Irf is the current driven by the lower hybrid waves (LHWs), ne is the central line-average density, R is the major radius of the plasma and PLH is the injected LH wave power absorbed by the plasma through Landau damping. A study of current drive efficiency of LHWs in the HT-7 tokamak has been carried out in the parameter ranges: ne = (1.2-2.5) × 1019 m-3, Ip = (80-200) kA, Bt = 1.8 T, PLH = (188-532) kW in the limiter configuration. Current drive efficiency is investigated through a simple correlation with photon temperature and normalized intensity of fast electron bremstrahlung emission, which is, in the first approximation, proportional to the averaged velocity and population of the fast electrons. The plasma current scanning experiment shows that CD efficiency increase is due to the increase in both the photon temperature and the population of the fast electrons generated by LHWs. The density scanning experiment shows that as the plasma density is increased, an increment in CD efficiency along with the increase in the population of fast electrons is observed. The slowing down through the collisions with bulk electrons is mainly responsible for the decreased photon temperature during the plasma density scan. These experiments strongly suggest the dominant role of the population of fast electrons generated by LHCD and the generation of the current carried by fast electrons.

  6. When do we think it is Safe to Drive after Hand Surgery? – Current Practice and Legal Perspective

    LENUS (Irish Health Repository)

    Murphy, SF

    2016-11-01

    Patients recovering from hand surgery frequently ask when it is safe to drive and it is unclear where the responsibility lies; the surgeon, the patient or the insurance company. An eight-question survey looking at various aspects of clinical practice was circulated to consultant and trainee plastic and orthopaedic surgeons in Ireland and the UK. Of the 89 surgeons who replied, (53%) felt the decision when to drive was the patient’s compared with the insurance company (40%) and the surgeon (7%). 80% advised patients to contact their insurance company. 87% were unaware of current regulations or guidelines. National guidelines were vague and left the decision with the treating doctor. Similarly, major insurers advise patients to contact their doctor for advice. From a legal standpoint, the patient has a duty of care to other road users to be in full control of his vehicle prior to driving, regardless of any advice received.

  7. Study of lower hybrid current drive system in tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 {mu}P is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 {mu}sec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10{sup -6} Pam{sup 3}/sm{sup 2} at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm{sup -2} (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10{sup -5} Pam{sup 3}/sm{sup 2} which is low enough for an antenna material. (author)

  8. A rough terrain traction control technique for all-wheel-drive mobile robots

    National Research Council Canada - National Science Library

    Silva, Alexandre F. Barral; Santos, Auderi Vicente; Meggiolaro, Marco Antonio; Speranza Neto, Mauro

    2010-01-01

    ... - and guaranteeing an adequate trajectory and speed control while reducing the power requirements. Traction control of all-wheel-drive robots in rough terrain was originally motivated by space exploration, such as in the case of the Mars Exploration Rovers...

  9. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz;

    2017-01-01

    Electronic Inductor (EI)-based front-end rectifiers have a large potential to become the prominent next generation of Active Front End (AFE) topology used in many applications including Adjustable Speed Drives (ASDs) for systems having unidirectional power flow. The EI-based ASD is mostly attract...

  10. Open partial nephrectomy: ancient art or currently available technique?

    Science.gov (United States)

    Seveso, Mauro; Grizzi, Fabio; Bozzini, Giorgio; Mandressi, Alberto; Guazzoni, Giorgio; Taverna, Gianluigi

    2015-12-01

    Renal cell carcinoma (RCC) accounts for 3 % of adult solid tumors, with the highest incidence between 50 and 70 years of age. Nephron-sparing surgery was initially reserved to patients with small renal masses detected in anatomically or functionally solitary kidney or in the presence of multiple bilateral tumors or hereditary forms of RCC, which posed a high risk of developing a tumor in the contralateral kidney. Nowadays, partial nephrectomy (PN) has grown up to an established approach for the treatment of small renal masses. In patients with T1a-staged RCCs, PN has proven to be associated with better survival, long-term renal function preservation with lower dialysis need or renal transplantation. Currently, most of the kidney masses are incidentally detected, up to 40 %, with smaller size due to the widespread use of imaging modalities such as ultrasound, computed tomography and magnetic resonance. Here we review the role of open PN in the management of small renal masses particularly focusing on indications, oncological outcomes and comparison with laparoscopic and robotic PN. Recent studies demonstrate that PN confers better survival, oncologic equivalence and lower risk of severe chronic kidney disease compared to radical nephrectomy becoming then the gold-standard surgical technique, even if increasingly challenged by laparoscopic and/or robot-assisted partial nephrectomy which in the hands of experts seems to achieve comparable outcome results albeit with slightly higher complication rate.

  11. Detection of localized damage by eddy currents technique

    Directory of Open Access Journals (Sweden)

    Aoukili A.

    2014-01-01

    Full Text Available Non destructive evaluation techniques based on eddy currents (EC are largely used for quality control of the castings in a lot of industries. The principle of detection by EC consists in using an adequate inductive coil to generate them by a variable magnetic field, and measuring their effects by using one or several sensors. These effects result from the interaction between the induced magnetic field and the excited conductive material. A local variation of the physical properties or geometry of the tested sample, due to a singularity or a flaw, causes a modification of the EC distribution, enabling thus detection. In order to optimize the capacity of defect revealing by means of EC based probes, an accurate modelling of the problem is essential. This can be used to perform simulation of the EC distribution under different circumstances and to analyze the EC sensitivity to the various implicated parameters. In this work, the modelling of EC is made by using the finite element method. Using a B-scan strategy was used, detection of a small defect having the shape of an open cavity is shown to be correctly indicated via monitoring variations of the induced voltage in the receiver coil.

  12. High-temperature strain measurement techniques: Current developments and challenges

    Science.gov (United States)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  13. Design and Preparation of RF System for the Lower Hybrid Fast Wave Heating and Current Drive Research on VEST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ho; Jeong, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Hyun Woo; Lee, Byung Je [Kwang Woon University, Chuncheon (Korea, Republic of); Jo, Jong Gab; Lee, Hyun Young; Hwang, Yong Seok [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    Continuous current drive is one of the key issues for tokamak to be a commercial fusion reactor. As a part of new and efficient current drive concept research by using a Lower Hybrid Fast Wave (LHFW), the experimental study is planned on Versatile Experiment Spherical Torus (VEST) and a RF system is being developed in collaboration with Kwang Woon University (KWU), Korea Accelerator Plasma Research Association (KAPRA) and Seoul National University (SNU). The LHFW RF system includes UHF band klystron, inter-digital antenna, RF diagnostics and power transmission sub components such as circulator, DC breaker, vacuum feed-thru. The design and preparation status of the RF system will be presented in the meeting in detail. A RF system has been designed and prepared for the experimental study of efficient current drive by using Lower Hybrid Fast Wave. Overall LHFW RF system including diagnostics is designed to deliver about 10 kW in UHF band. And the key hardware components including klystron and antenna are being prepared and designed through the collaboration with KWU, KAPRA and SNU.

  14. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  15. Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak

    Science.gov (United States)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.; Wan

    2017-02-01

    Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.

  16. Analysis of cutting-edge techniques in the high voltage and high power adjustable speed drive systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZhengMing; BAI Hua; YUAN LiQiang

    2009-01-01

    The high voltage and high power adjustable speed drive (ASD) system is one of the most attractive fields in power electronics, and it is also a very crucial technique for energy saving and emission re-duction. This paper discussed and analyzed the main cutting-edge knowledge and issues in the proc-ess of exploiting the high voltage and high power ASD system.

  17. Analysis of voltage modulation based active damping techniques for small DC-link drive system

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand;

    2015-01-01

    Small DC-link drive system, built with film capacitor in the DC link, may have the advantages of longer lifetime and the possibility to achieve a more compact design of capacitor bank at medium and high power rates. However, it exhibits instability problem, especially when it is fed by a soft grid...

  18. Digitally Controlled Current Source Amplifiers for Power Converter Gate Drive Units

    OpenAIRE

    Scheele, Mathias

    2013-01-01

    Within this project, performance differences of 3.3 kV / 1500 A IGBT modules of the same type, but of different production batches are being investigated while the modules are being driven by the gate drive units of Bombardier Transportation. The results will be compared to measurements of a reference module. Devices of two different manufacturers were used. Results show that the deviations in terms of dI/dt, dV/dt and losses are generally very small. However, the IGBTs react differently if a...

  19. REACTIVE CURRENT OF AN INDUCTION ELECTRIC DRIVES WITH THYRISTOR VOLTAGE REGULATOR

    Directory of Open Access Journals (Sweden)

    J.V. Kovalova

    2014-12-01

    Full Text Available A model for a separation of reactive constituent from current of idling of an induction motor at its feed from a thyristor voltage regulator in the dependences on the control angle of thyristors is developed. As a result of modeling, dependence of relative reactive current which is approximated by formula for calculation of effective current of reactive constituent of nonsinusoidal current is obtained.

  20. Harmonics Reduction of Multilevel Inverter Drive Using Sine Carrier Pulse Width Modulation Techniques

    Directory of Open Access Journals (Sweden)

    S. Ebanezar Pravin

    2016-11-01

    Full Text Available The main objective of this paper is to control the speed of an induction motor by using seven level diode clamped multilevel inverter and improve the high quality sinusoidal output voltage with reduced harmonics. The presented scheme for diode clamped multilevel inverter is sine carrier Pulse Width Modulation control. An open loop speed control can be achieved by using V/ƒ method. This method can be implemented by changing the supply voltage and frequency applied to the three phase induction motor at constant ratio. The presented system is an effective replacement for the conventional method which has high switching losses, its result ends in a poor drive performance. The simulation result portrays the effective control in the motor speed and an enhanced drive performance through reduction in total harmonic distortion (THD. The effectiveness of the system is verified through simulation using PSIM6.1 Simulink package.

  1. Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation.

    Science.gov (United States)

    Yamada-Hanff, Jason; Bean, Bruce P

    2013-09-18

    Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current-voltage curve was dominated by inward TTX-sensitive persistent sodium current (I(NaP)) that activated near -75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near -70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near -70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of I(NaP), which then depolarizes the cell from -70 mV to spike threshold. We quantified the relative contributions of I(NaP), hyperpolarization-activated cation current (I(h)), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of I(NaP) in a positive feedback loop starting near -70 mV and providing increasing inward current to threshold. These results show that the pacemaking "engine" from I(NaP) is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near -70 mV, as by muscarinic stimulation.

  2. Failure laws of narrow pillar and asymmetric control technique of gob-side entry driving in island coal face

    Institute of Scientific and Technical Information of China (English)

    Yang Jiping; Cao Shenggen; Li Xuehua

    2013-01-01

    In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws,as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face,2107 face in Chengjiao Colliery is researched as an engineering case.Through physical mechanical test of rock,theoretical and numerical simulation analyses of rock,the analysis model of the roadway overlying strata structure was established,and its parameters quantified.To reveal the deformation law of the surrounding rock,the stability of the overlying strata structure was studied before,during and after the roadway driving.According to the field conditions,the stress distribution in coal pillar was quantified,and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving.Finally,the pillar width of 4 m was considered as the most reasonable.The research results show that there is great difference in support conditions among roadway roof,entity coal side and narrow pillar side.Besides,the asymmetric control technique for support of the surrounding rock was proposed.The asymmetric control technique was proved to be reasonable by field monitoring,support by bolt-net,steel ladder and steel wire truss used in narrow pillar side.

  3. Current Status of Gil-Vernet Trigonoplasty Technique

    Directory of Open Access Journals (Sweden)

    Nasser Simforoosh

    2008-01-01

    Full Text Available Significant controversy exists regarding vesicoureteral reflux (VUR management, due to lack of sufficient prospective studies. The rationale for surgical management is that VUR can cause recurrent episodes of pyelonephritis and long-term renal damage. Several surgical techniques have been introduced during the past decades. Open anti-reflux operations have high success rate, exceeding 95%, and long durability. The goal of this article is to review the Gil-Vernet trigonoplasty technique, which is a simple and highly successful technique but has not gained the attention it deserves. The mainstay of this technique is approximation of medial aspects of ureteral orifices to midline by one mattress suture. A unique advantage of Gil-Vernet trigonoplasty is its bilateral nature, which results in prevention from contralateral new reflux. Regarding not altering the normal course of the ureter in Gil-Vernet procedure, later catheterization of and retrograde access to the ureter can be performed normally. There is no report of ureterovesical junction obstruction following Gil-Vernet procedure. Gil-Vernet trigonoplasty can be performed without inserting a bladder catheter and drain on an outpatient setting. Several exclusive advantages of Gil-Vernet trigonoplasty make it necessary to reconsider the technique role in VUR management.

  4. SRG POSITION SENSORLESS TECHNIQUE WITH CURRENT CHOPPING MODE

    Institute of Scientific and Technical Information of China (English)

    ZhuXuezhong; LiuDiji; GuiXiaojie; LiuChuang

    2002-01-01

    A onvel current chopping strategy for switched reluc-tance generator(SRG)-a full conducted current chopping(FCCC)scheme is presented,According to characteristics lf phase current wave of SRG generating operation,it can be generated under sensorless condition without an addi-tional circuit or a position signal algorithm.Simulational results show the feasibility of this scheme.Experimental results of a 6kW6/4configuration SRG show its simplic-ity and high reliability with little decrease in efficiency.Soit will be widely used.

  5. A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.

    Directory of Open Access Journals (Sweden)

    Srinu Duvvada

    2014-07-01

    Full Text Available In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC converter for feeding a voltage source inverter (VSI based permanent magnet brushless DC motor (BLDC drive. The front end of this PFC converter is a diode bridge rectifier (DBR fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to achieve energy conservation using a concept of the voltage control at DC link proportional to the desired speed of the BLDC. Therefore the VSI is operated only as an electronic commutator of the BLDC. The stator current of the BLDC during step change of reference speed is controlled by a rate limiter for the reference voltage at DC link. The proposed BLDC drive with voltage control based PFC converter is designed, modeled and its performance is simulated in Matlab-Simulink environment for an air conditioner compressor driven through a 1.5 kW, 1500 rpm BLDC motor. The evaluation results of the proposed speed control scheme are presented to demonstrate an improved efficiency of the proposed drive system with PFC feature in wide range of the speed and an input AC voltage.

  6. Regional environmental analysis and management: New techniques for current problems

    Science.gov (United States)

    Honea, R. B.; Paludan, C. T. N.

    1974-01-01

    Advances in data acquisition and processing procedures for regional environmental analysis are discussed. Automated and semi-automated techniques employing Earth Resources Technology Satellite data and conventional data sources are presented. Experiences are summarized. The ERTS computer compatible tapes provide a very complete and flexible record of earth resources data and represent a viable medium to enhance regional environmental analysis research.

  7. On radio frequency current drive in the ion cyclotron range of frequencies in DEMO and large ignited plasmas

    Science.gov (United States)

    Brambilla, Marco; Bilato, Roberto

    2015-02-01

    To explore the possibility of efficient fast wave current drive in an ignited plasma in the ion cyclotron (IC) range of frequency in spite of competition from absorption by ions, we have added to the full-wave toroidal code TORIC a set of subroutines which evaluate absorption by these particles at IC harmonic resonances, using a realistic ‘slowing-down’ distribution function, and taking into account that their Larmor radius is comparable or even larger than the fast wave wavelength. The thermalized population of α-particles is not a serious competitor for power absorption as long as their number density is compatible with maintenance of ignition. By contrast, the energetic slowing down fraction, in spite of its even greater dilution, can absorb from the waves a substantial amount of power at the cyclotron resonance and its harmonics. An extensive exploration both in frequency and in toroidal wavenumbers using the parameters of one of the European versions of DEMO shows that three frequency windows exist in which damping is nevertheless predominantly on the electrons. Designing an antenna capable of shaping the launched spectrum to optimize current drive, however, will not be straightforward. Only in a narrow range when the first IC harmonic of tritium is deep inside the plasma on the high-field side of the magnetic axis, and that of deuterium and helium is still outside on the low-field side, it appears possible to achieve a satisfactory current drive efficiency with a conventional multi-strap antenna, preferentially located in the upper part of the vessel. Exploiting the other two windows at quite low and quite high frequencies is either impossible on first principles, or will demand novel ideas in antenna design.

  8. Berry{close_quote}s phase and a possible new topological current drive in certain weak link superconducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaitan, F.; Shenoy, S.R. [International Center for Theoretical Physics, P. O. Box 586, Miramare, 34100 Trieste (Italy)

    1996-06-01

    We examine the consequences of Berry{close_quote}s phase for the dynamics of Josephson junctions and junction arrays in which moving vortices are present. For both a large annular Josephson junction and a 2D junction array, Berry{close_quote}s phase produces a new current drive in the superconducting phase dynamics of these weak link systems. This Berry phase effect is shown to be physically inequivalent to a known effect in junction arrays associated with the Aharonov-Casher phase. {copyright} {ital 1996 The American Physical Society.}

  9. Complex state variable- and disturbance observer-based current controllers for AC drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus; Blaabjerg, Frede

    2013-01-01

    , extracted by a disturbance observer and then injected into the current controller. In this study, a revised version of a disturbance observer-based controller and a well known complex variable model-based design with a single set of complex pole are compared in terms of design aspects and performance...... of the parameter and the cross-coupling effect. Moreover, it provides a better performance, smooth and low noisy operation with respect to the complex variable controller....... of the stator current. In order to improve the current control performance an alternative current control strategy was proposed previously aiming to avoid the undesired cross-coupling and non-linearities between the state variables. These effects are assumed as disturbances arisen in the closed-loop path...

  10. Gandhi and the Environmental Consequences of the Current Drive to Industrialization and Modernization.

    Science.gov (United States)

    Sinha, Rajiv K.

    1993-01-01

    Discusses Gandhi's developmental philosophy that small is beautiful in relation to current issues in ecological conservation. Issues include environmental education, economic development, rural development, natural farming, and Gandhi's philosophy among Western nations. (MDH)

  11. Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review

    Science.gov (United States)

    Mao, Huiting; Cheng, Irene; Zhang, Leiming

    2016-10-01

    Atmospheric mercury (Hg) is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain-valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM/GEM increasing from the

  12. Current-Sensing and Voltage-Feedback Driving Method for Large-Area High-Resolution Active Matrix Organic Light Emitting Diodes

    Science.gov (United States)

    In, Hai‑Jung; Choi, Byong‑Deok; Chung, Ho‑Kyoon; Kwon, Oh‑Kyong

    2006-05-01

    There is the problem of picture quality nonuniformity due to thin film transistor (TFT) characteristic variations throughout a panel of large-area high-resolution active matrix organic light emitting diodes. The current programming method could solve this issue, but it also requires very long charging time of a data line at low gray shades. Therefore, we propose a new driving method and a pixel circuit with emission-current sensing and feedback operation in order to resolve these problems. The proposed driving method and pixel circuit successfully compensate threshold voltage and mobility variations of TFTs and overcome the data line charging problem. Simulation results show that emission current deviations of the proposed driving method are less than 1.7% with ± 10.0% mobility and ± 0.3 V threshold voltage variations of pixel-driving TFTs, which means the proposed driving method is applicable to large-area high-resolution applications.

  13. Bulbar urethroplasty using the dorsal approach: current techniques

    Directory of Open Access Journals (Sweden)

    Guido Barbagli

    2003-04-01

    Full Text Available INTRODUCTION: The use of flaps or grafts is mandatory in patients with longer and complex strictures. In 1995-96 we described a new dorsal onlay graft urethroplasty. Over time, our original technique was better defined and changed. Now this procedure (also named Barbagli technique has been greeted with a fair amount of enthusiasm in Europe and in the United States. SURGICAL TECHNIQUE: The patient is placed in normal lithotomy position, and a midline perineo-scrotal incision is made. The bulbar urethra is then free from the bulbo-cavernous muscles, and is dissected from the corpora cavernosa. The urethra is completely mobilized from the corpora cavernosa, it is rotated 180 degrees, and is incised along its dorsal surface. The graft (preputial skin or buccal mucosa or the flap is fixed and quilted to the tunica albuginea of the corporal bodies. The right mucosal margin of the opened urethra is sutured to the right side of the patch-graft. The urethra is rotated back into its original position. The left urethral margin is sutured to the left side of the patch graft and to the corporal bodies, and the grafted area is entirely covered by the urethral plate. The bulbo-cavernous muscles are approximated over the grafted area. A 16F silicone Foley catheter is left in place. COMMENTS: Dorsal onlay graft urethroplasty is a versatile procedure that may be combined with various substitute materials like preputial skin, buccal mucosa grafts or pedicled flaps.

  14. Biomechanical Comparison of 3 Current Ankle Syndesmosis Repair Techniques.

    Science.gov (United States)

    Clanton, Thomas O; Whitlow, Scott R; Williams, Brady T; Liechti, Daniel J; Backus, Jonathon D; Dornan, Grant J; Saroki, Adriana J; Turnbull, Travis Lee; LaPrade, Robert F

    2017-02-01

    Significant debate exists regarding optimal repair for unstable syndesmosis injuries. Techniques range from screw fixation, suture-button fixation, or a combination of the two. In this study, 3 common repairs were compared using a simulated weightbearing protocol with internal and external rotation of the foot. Twenty-four lower leg specimens with mean age 54 years (range, 38-68 years) were used for testing. Following creation of a complete syndesmotic injury (AITFL, ITFL, PITFL, interosseous membrane), specimens were repaired using 1 of 3 randomly assigned techniques: (1) one 3.5-mm syndesmotic screw, (2) 1 suture-button construct, and (3) 2 divergent suture-button constructs. Repairs were cycled for 500 cycles between 7.5 Nm of internal/external rotation torque under a constant 750 N axial compressive load in a neutral dorsiflexion position. At 0, 10, 100, and 500 cycles, torsional cyclic loading was interrupted to assess torsional resistance to rotation within a physiologic range of motion (15 degrees external rotation to 10 degrees internal rotation). Torque (Nm), rotational position (degrees), and 3-dimensional data were collected throughout the testing to characterize relative spatial relationships of the tibiofibular articulation. There were no significant differences between repair techniques in resistance to internal and external rotation with respect to the intact syndesmosis. Three-dimensional analysis revealed significant differences between repair techniques for sagittal fibular translation with external rotation of the foot. Screw fixation had the smallest magnitude of posterior sagittal translation (2.5 mm), and a single suture-button construct demonstrated the largest magnitude of posterior sagittal translation (4.6 mm). Screw fixation also allowed for significantly less anterior sagittal translation with internal rotation of the foot (0.1 mm) when compared to both 1 (2.7 mm) and 2 (2.9 mm) suture-button constructs. All repairs provided comparable

  15. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    Directory of Open Access Journals (Sweden)

    Mohammad Marufuzzaman

    2014-01-01

    Full Text Available High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA. FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.

  16. A Review of Voltage and Current Signature Diagnosis in Industrial Drives

    Directory of Open Access Journals (Sweden)

    K. Vinoth Kumar

    2011-09-01

    Full Text Available This paper presents the review of identify the different types of faults in the induction motor during online condition by using current and voltage signature analysis. Special attention is focused on the effect of both space distribution of rotor breakage and rotor dis-symmetry on the mechanism of generation of diagnosis signatures with the consideration of voltage supply unbalance and speed ripples. A comparison is made between the voltage signature analysis and current signature analysis. Keywords: Fault diagnosis, Induction motor, rotor breakage, MCSA, Motor voltage signature analysis (MVSA.

  17. Chest trauma in children: current imaging guidelines and techniques.

    LENUS (Irish Health Repository)

    Moore, Michael A

    2011-09-01

    Given the heterogeneous nature of pediatric chest trauma, the optimal imaging approach is tailored to the specific patient. Chest radiography remains the most important imaging modality for initial triage. The decision to perform a chest computed tomography scan should be based on the nature of the trauma, the child\\'s clinical condition, and the initial radiographic findings, taking the age-related pretest probabilities of serious injury into account. The principles of as low as reasonably achievable and Image Gently should be followed. The epidemiology and pathophysiology, imaging techniques, characteristic findings, and evidence-based algorithms for pediatric chest trauma are discussed.

  18. Performance Evaluation of Electronic Inductor-Based Adjustable Speed Drives with Respect to Line Current Interharmonics

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Zare, Firuz;

    2017-01-01

    attractive due to its improved harmonic performance compared to a conventional ASD. In this digest, the input currents of the EI-based ASD are investigated and compared with the conventional ASDs with respect to interharmonics, which is an emerging power quality topic. First, the main causes...

  19. On the merits of heating and current drive for tearing mode stabilization

    NARCIS (Netherlands)

    De Lazzari, D.; Westerhof, E.

    2009-01-01

    Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes that can limit the performance of high beta discharges in a tokamak, leading eventually to a plasma disruption. A NTM is sustained by the perturbation of the 'bootstrap' current, which is a consequence of the pressure flatteni

  20. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    Science.gov (United States)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  1. Magnetic force microscopy/current contrast imaging: A new technique for internal current probing of ICs

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Cole, E.I. Jr.; Dodd, B.A.; Anderson, R.E.

    1993-09-01

    This invited paper describes recently reported work on the application of magnetic force microscopy (MFM) to image currents in IC conductors [1]. A computer model for MFM imaging of IC currents and experimental results demonstrating the ability to determine current direction and magnitude with a resolution of {approximately} 1 mA dc and {approximately} 1 {mu}A ac are presented. The physics of MFM signal generation and applications to current imaging and measurement are described.

  2. Chronic total occlusions — Current techniques and future directions

    Directory of Open Access Journals (Sweden)

    George Touma

    2015-06-01

    Full Text Available Chronic total occlusions (CTOs of coronary arteries represent a common and significant challenge to interventional cardiology. Medical therapy is often regarded as an adequate long term strategy in the management of these lesions with surgical intervention for refractory symptoms. Extensive collateralisation is used as a marker of distal coronary perfusion, further reinforcing non-invasive strategies. This together with relatively low percutaneous success rates outside of specialised centres has meant that rates of percutaneous intervention have remained low. Increasing evidence suggests that CTOs are not a benign entity. Further, symptom control and quality of life improve significantly with successful percutaneous revascularisation. Both factors have reignited interest in percutaneous modalities. The Japanese have been pioneers in the field of CTO intervention although their success rates have been difficult to replicate. New techniques and equipment developed in North America offer an alternative to the Japanese approach. These techniques focus on time, radiation and contrast minimisation. This review will assess the histopathology of CTO and shifting paradigms in CTO treatment strategies.

  3. Radiographic measurements of hallux angles: a review of current techniques.

    Science.gov (United States)

    Srivastava, Subodh; Chockalingam, N; El Fakhri, Tarek

    2010-03-01

    Radiographic angles are commonly used in patients with hallux valgus deformity to assess the severity, plan surgery, assess outcome and compare results. Many different manual methods have been used, but are prone to error. More recently computer-assisted methods using software have become available. To review the different methods that have been used to measure radiographic angles in hallux valgus. A general literature search using relevant key words was undertaken using databases such as Medline, Embase, Cinahl and Cochrane Library. REVIEW FINDINGS AND DISCUSSION: The manual methods used are prone to errors. The reliability can be improved by using standardised radiographic technique and measurement technique using specific reference points. Computer-assisted methods using software, might improve reliability of measurements. Further studies are needed to assess if these methods are easy to use, and to compare different software's that are available. Specifically designed software for the foot might further improve the reliability of radiographic measurements in hallux valgus. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  4. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques

    LENUS (Irish Health Repository)

    Ohlendieck, Kay

    2011-02-01

    Abstract Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.

  5. The simulation of hard x-ray images obtained during lower hybrid current drive on PBX-M

    Energy Technology Data Exchange (ETDEWEB)

    Goeler, S. von; Fishman, H.; Ignat, D. [and others

    1994-10-01

    During lower hybrid current drive on PBX-M suprathermal electrons in the 30 to 150 keV range are generated. These electrons emit hard X-ray bremsstrahlung in collisions with plasma ions; the radiation creates images in a hard X-ray pinhole camera. In order to interpret the hard X-ray images, a computer simulation code has been written, the PBXRAY code. It represents an extension of the STEVENS code that calculates the free-free and free-bound radiation for non-Maxwellian relativistic electron tail distributions. The PBXRAY code provides the chord integration in the bean-shaped plasma geometry on PBX-M and integrates over photon energy. The simulations show that the location of the suprathermal electrons can be determined with an accuracy of approximately two centimeters in the plasma. In particular, the authors analyzed discharges whose characteristic ``hollow`` images indicate off-axis LH current drive. A comparison of images taken with different absorber foils reveals that the suprathermal electrons have less than 150 keV parallel energy for the hollow discharges.

  6. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  7. Minimization and identification of conducted emission bearing current in variable speed induction motor drives using PWM inverter

    Indian Academy of Sciences (India)

    A Ramachandran; M Channa Reddy; Ranjan Moodithaya

    2008-10-01

    The recent increase in the use of speed control of ac induction motor for variable speed drive using pulse width modulation (PWM) inverter is due to the advent of modern power electronic devices and introduction of microprocessors. There are many advantages of using ac induction motor for speed control applicatons in process and aerospace industries, but due to fast switching of the modern power electronic devices, the parasitic coupling produces undesirable effects. The undesirable effects include radiated and conducted electromagnetic interference (EMI) which adversely affect nearby computers, electronic/electrical instruments and give rise to the flow of bearing current in the induction motor. Due to the flow of bearing current in the induction motor, electrical discharge machining takes place in the inner race of the bearing which reduces the life of the bearing. In high power converters and inverters, the conducted and radiated emissions become a major concern. In this paper, identification of bearing current due to conducted emission, the measurement of bearing current in a modified induction motor and to minimize the bearing current are discussed. The standard current probe, the standard line impedance stabilization network (LISN)), the electronics interface circuits are used to measure high frequency common mode current, bearing current and to minimize the conducted noise from the system. The LISN will prevent the EMI noise entering the system from the supply source by conductive methods, at the same time prevents the EMI generated if any due to PWM, fast switching in the system, will not be allowed to enter the supply line. For comparing the results with Federal Communications Commission (FCC) and Special Committee on Radio Interference (CISPR) standards, the graphs are plotted with frequency Vs, line voltage in $dB{_\\mu} V$, common mode voltage in $dB{_\\mu} V$ and the bearing current in $dB_{\\mu} A$ with out and with minimizing circuits.

  8. Teaching artificial neural systems to drive: Manual training techniques for autonomous systems

    Science.gov (United States)

    Shepanski, J. F.; Macy, S. A.

    1987-01-01

    A methodology was developed for manually training autonomous control systems based on artificial neural systems (ANS). In applications where the rule set governing an expert's decisions is difficult to formulate, ANS can be used to extract rules by associating the information an expert receives with the actions taken. Properly constructed networks imitate rules of behavior that permits them to function autonomously when they are trained on the spanning set of possible situations. This training can be provided manually, either under the direct supervision of a system trainer, or indirectly using a background mode where the networks assimilates training data as the expert performs its day-to-day tasks. To demonstrate these methods, an ANS network was trained to drive a vehicle through simulated freeway traffic.

  9. Surgical treatment of scoliosis: a review of techniques currently applied

    Directory of Open Access Journals (Sweden)

    Maruyama Toru

    2008-04-01

    Full Text Available Abstract In this review, basic knowledge and recent innovation of surgical treatment for scoliosis will be described. Surgical treatment for scoliosis is indicated, in general, for the curve exceeding 45 or 50 degrees by the Cobb's method on the ground that: 1 Curves larger than 50 degrees progress even after skeletal maturity. 2 Curves of greater magnitude cause loss of pulmonary function, and much larger curves cause respiratory failure. 3 Larger the curve progress, more difficult to treat with surgery. Posterior fusion with instrumentation has been a standard of the surgical treatment for scoliosis. In modern instrumentation systems, more anchors are used to connect the rod and the spine, resulting in better correction and less frequent implant failures. Segmental pedicle screw constructs or hybrid constructs using pedicle screws, hooks, and wires are the trend of today. Anterior instrumentation surgery had been a choice of treatment for the thoracolumbar and lumbar scoliosis because better correction can be obtained with shorter fusion levels. Recently, superiority of anterior surgery for the thoracolumbar and lumbar scoliosis has been lost. Initial enthusiasm for anterior instrumentation for the thoracic curve using video assisted thoracoscopic surgery technique has faded out. Various attempts are being made with use of fusionless surgery. To control growth, epiphysiodesis on the convex side of the deformity with or without instrumentation is a technique to provide gradual progressive correction and to arrest the deterioration of the curves. To avoid fusion for skeletally immature children with spinal cord injury or myelodysplasia, vertebral wedge ostetomies are performed for the treatment of progressive paralytic scoliosis. For right thoracic curve with idiopathic scoliosis, multiple vertebral wedge osteotomies without fusion are performed. To provide correction and maintain it during the growing years while allowing spinal growth for

  10. Thickness Evaluation of Aluminium Plate Using Pulsed Eddy Current Technique

    Science.gov (United States)

    Singh, Gurpartap; Bapat, Harsh Madhukar; Singh, Bhanu Pratap; Bandyopadhyay, Manojit; Puri, Rakesh Kumar; Badodkar, Deepak Narayanrao

    2013-10-01

    This paper describes a pulsed eddy current (PEC) based non-destructive testing system used for detection of thickness variation in aluminium plate. A giant magneto-resistive sensor has been used instead of pick up coil for detecting resultant magnetic field. The PEC response signals obtained from 1 to 5 mm thickness change in aluminium plate were investigated. Two time domain features, namely peak value and time to peak, of PEC response were used for extracting information about thickness variation in aluminium plate. The variation of peak value and time to peak with thickness was compared. A program was developed to display the thickness variation of the tested sample.

  11. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    behaviour. It compensates the load torque influence on the speed control setting a feed forward torque value, i.e. current reference value. The benefits are twice. The speed controller reaches immediately the speed reference value avoiding offsets which must be compensated by the weak integrator. Moreover......, a better response to load torque variations which are detected and compensated leading to small speed variations is obtained....

  12. Chattering Suppression for DSP Based Sliding Mode Current Control of PM DC Drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus

    2009-01-01

    This paper investigates several chattering suppression methods for DSP based implementation of sliding mode control (SMC). It concentrates on the ‘equivalent-control-dependent' and ‘state-dependent' gain adjustment methods proposed in recent theoretical studies, and tests the effectiveness...... performed separately, and so various combinations of these methods are tested to find the best solution for chattering elimination. Discontinuous control signal averaging, which is a common chattering reduction technique, is made possible while the system is online by the use of a tunable low-pass filter...

  13. Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Arslanbekov, R.; Basiuk, V.; Carrasco, J.; Litaudon, X.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bizarro, J.P. [Instituto Superior Tecnico, Lisbon (Portugal). Lab. de Quimica Organica

    1996-01-01

    Using ray-tracing, a detailed investigation of the lower hybrid (LH) wave propagation in presence of toroidal magnetic field ripple is presented. By coupling ray tracing with a one-dimensional relativistic Fokker-Planck code, simulations of LH experiments have been performed for the Tore Supra tokamak. Taking into account magnetic ripple in LH simulations, a better agreement is found between numerical predictions and experimental observations, such as non-thermal Bremsstrahlung emission, current profile, ripple-induced power losses in local magnetic mirrors, when plasma conditions correspond to the ` `few passes` regime. (author). 47 refs.

  14. Osteomyelitis: a review of currently used imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sammak, B.; Abd El Bagi, M; Al Shahed, M.; Al Nabulsi, J.; Youssef, B.; Al Thagafi, M. [Department of Radiology, Riyadh Armed Forces Hospital, Riyadh (Saudi Arabia); Hamilton, D. [Department of Medical Physics, Riyadh Armed Forces Hospital (Saudi Arabia)

    1999-06-01

    Conventional radiographs remain the initial imaging modality involved in the diagnosis of osteomyelitis. Bone scintigraphy and its specific agents did not only eliminate the problems of inherent low sensitivity of conventional radiographs, but also increased the specificity to higher degrees. Spiral CT, on the other hand, has solved several diagnostic problems, such as osteomyelitis of the sterno-clavicular junction and hidden areas in the pelvic bones. Magnetic resonance imaging with its multiplanar capability, greater anatomic details and excellent soft tissue bone marrow contrast resolution has a significant role in surgical planning and limb preservation. Ultrasound and US-guided aspiration has recently been involved in the diagnosis and management of osteomyelitis with several advantages particularly in children. Our goal in this review is to outline the ability of various imaging techniques by comparing their strengths and weaknesses in the diagnosis of osteomyelitis. Finally, we suggest various imaging algorithms for specific clinical scenarios. Spondylitis and septic arthritis are not discussed in this review. (orig.) With 7 figs., 43 refs.

  15. Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques.

    Science.gov (United States)

    Shimomura, Kazunori; Moriguchi, Yu; Murawski, Christopher D; Yoshikawa, Hideki; Nakamura, Norimasa

    2014-10-01

    The management of osteoarthritis (OA) remains challenging and controversial. Although several clinical options exist for the treatment of OA, regeneration of the damaged articular cartilage has proved difficult due to the limited healing capacity. With the advancements in tissue engineering and cell-based technologies over the past decade, new therapeutic options for patients with osteochondral lesions potentially exist. This review will focus on the feasibility of tissue-engineered biphasic scaffolds, which can mimic the native osteochondral complex, for osteochondral repair and highlight the recent development of these techniques toward tissue regeneration. Moreover, basic anatomy, strategy for osteochondral repair, the design and fabrication methods of scaffolds, as well as the choice of cells, growth factor, and materials will be discussed. Specifically, we focus on the latest preclinical animal studies using large animals and clinical trials with high clinical relevance. In turn, this will facilitate an understanding of the latest trends in osteochondral repair and contribute to the future application of such clinical therapies in patients with OA.

  16. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    La Haye, R. J., E-mail: lahaye@fusion.gat.com [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-12-10

    ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized

  17. A fresh look at electron cyclotron current drive power requirements for stabilization of tearing modes in ITER

    Science.gov (United States)

    La Haye, R. J.

    2015-12-01

    ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of

  18. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    Science.gov (United States)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  19. An Insight into the Time Domain Phenomenon during the Transition Zone from Induction Motor to Synchronous Motor Mode for a Current Source Inverter Fed Synchronous Motor Drive System

    Directory of Open Access Journals (Sweden)

    A.B. Chattopadhyay

    2014-10-01

    Full Text Available Modeling of synchronous motor plays a dominant role in designing complicated drive system for different applications, especially large blower fans etc., for steel industries. As synchronous motor has no inherent starting torque generally it is started as an induction motor with the help of a damper winding and it pulls into synchronism under certain conditions. The present study exactly concentrates on this particular zone of transition from induction motor to synchronous motor mode for a current source inverter fed synchronous motor drive system. Due to complexity of synchronous motor in terms of number of windings and finite amount of air gap saliency, direct modeling of such transition zone in time domain becomes cumbersome at the first instance of modeling. That is why firstly the modeling is presented in complex frequency domain and then the time domain modeling is obtained by applying inverse Laplace transform technique. Apparently it seems to be a straight forward mathematical treatment but involvement of Convolution Integral for converting the formulation from s-domain to time domain becomes a matter of interest and it may draw the attention of various researchers working in this area. Furthermore the time domain response of the disturbance function may help a designer to fix up the time instant when the pull in phenomenon will be imposed by throwing the field winding to a DC supply.

  20. Effective variable switching point predictive current control for ac low-voltage drives

    Science.gov (United States)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  1. Laser-driven Beat-Wave Current Drive in Dense Plasmas with Demo on CTIX

    Science.gov (United States)

    Liu, Fei; Horton, Robert; Hwang, David; Zhu, Ben; Evans, Russell; Hong, Sean; Hsu, Scott

    2010-11-01

    The ability to remotely generate plasma current in dense plasmas hanging freely in vacuum in voluminous amount without obstruction to diagnostics will greatly enhance our ability to study the physics of high energy density plasmas in strong magnetic fields. Plasma current can be generated through nonlinear beat-wave process by launching two intense electromagnetic waves into unmagnetized plasma. Beat-wave acceleration of electrons has been demonstrated in a low-density plasma using microwaves [1]. The proposed PLX experimental facility presently under construction at Los Alamos offers the opportunity to test the method at a density level scalable to the study of HED plasmas. For PLX beat-wave experiments, CO2 lasers will be used as pump waves due to their high power and tunability. For a typical PLX density ne=10^17cm-3, two CO2 lasers can be separately tuned to 9P(28) and 10P(20) to match the 2.84THz plasma frequency. The beat-wave demo experiment will be conducted on CTIX. The laser arrangement is being converted to two independent single lasers. Frequency-tuning methods, optics focusing system and diagnostics system will be discussed. The laser measurements and results of synchronization of two lasers will be presented, and scaling to PLX experiments will be given. [1] Rogers, J. H. and Hwang, D. Q., PRL. v68 p3877 (1992).

  2. Current cardiac imaging techniques for detection of left ventricular mass

    Directory of Open Access Journals (Sweden)

    Celebi Aksuyek S

    2010-06-01

    Full Text Available Abstract Estimation of left ventricular (LV mass has both prognostic and therapeutic value independent of traditional risk factors. Unfortunately, LV mass evaluation has been underestimated in clinical practice. Assessment of LV mass can be performed by a number of imaging modalities. Despite inherent limitations, conventional echocardiography has fundamentally been established as most widely used diagnostic tool. 3-dimensional echocardiography (3DE is now feasible, fast and accurate for LV mass evaluation. 3DE is also superior to conventional echocardiography in terms of LV mass assessment, especially in patients with abnormal LV geometry. Cardiovascular magnetic resonance (CMR and cardiovascular computed tomography (CCT are currently performed for LV mass assessment and also do not depend on cardiac geometry and display 3-dimensional data, as well. Therefore, CMR is being increasingly employed and is at the present standard of reference in the clinical setting. Although each method demonstrates advantages over another, there are also disadvantages to receive attention. Diagnostic accuracy of methods will also be increased with the introduction of more advanced systems. It is also likely that in the coming years new and more accurate diagnostic tests will become available. In particular, CMR and CCT have been intersecting hot topic between cardiology and radiology clinics. Thus, good communication and collaboration between two specialties is required for selection of an appropriate test.

  3. Heating, current drive and confinement regimes with the JET ICRH and LHCD systems

    DEFF Research Database (Denmark)

    Jacquinot, J.; Adams, J.M.; Altmann, H.;

    1991-01-01

    During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H......-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained....... Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current...

  4. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    Science.gov (United States)

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  5. Electron Drift Speed And Current-Induced Drive Torques On A Domain Wall

    Science.gov (United States)

    Berger, Luc

    2009-03-01

    It has become fashionable to describe [1] current-induced torques on a DW in terms of an electron drift speed u = - P*j*muB/e*M where muB is the Bohr magneton and M the saturation magnetization. While appropriate for adiabatic torques, this quantity u is misleading and not the best choice in the case of non-adiabatic torques. For example, it leads [2] to beta not equal to alpha, where beta represents the intensity of the non-adiabatic torque, and alpha is the damping parameter. By writing equations of motion for conduction- electron spins in a moving frame where the electron gas is at rest, we find [3] a direct relation between damping and non- adiabatic torques. The correct electron drift speed turns out to be the speed of the frame, and is v = P*j/(n*q) where n and q are the carrier density and charge. It is related to the ordinary Hall constant R0 by v P*R0*j. After substituting v for u in the expression of the non-adiabatic torque, we find that beta = alpha holds now. Because v is larger than u in Permalloy, it can explain better the large current-induced DW speeds found [4] experimentally. In materials where R0> 0 and the carriers are dominantly hole-like, v and u have opposite signs, leading to different predictions for the sense of DW motion. We discuss examples of such materials. 1. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 086601 (2004). 2. H. Kohno et al., J. Phys. Soc. Japan, 75, 113706 (2006). 3. L. Berger, Phys. Rev. B 75, 174401 (2007). 4. M. Hayashi et al., Phys. Rev. Lett. 98, 037204 (2007).

  6. Integrated design and analysis of RF heating and current drive systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Carter, M.D.; Goulding, R.H.; Batchelor, D.B.; Jaeger, E.F.; Stallings, D.C.; Wang, C.Y.; Baity, F.W.; Bell, G.L.; Bigelow, T.S.; England, A.C.; Hanson, G.R.; Haste, G.R.; Hoffman, D.J.; Murakami, M.; Rasmussen, D.A.; Wilgen, J.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States); Rogers, J.H.; Majeski, R.; Schilling, G.; Wilson, J.R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Bhatnagar, V.; Bures, M.; Kaye, A.; Start, D.; Wade, T. [JET Joint Undertaking, Abingdon (United Kingdom); Ho, Y.L.; Kruger, W. [SAIC-McLean, Virginia (United States); TFTR ICH Team% JET ICH Team

    1996-02-01

    The design, analysis, and performance evaluation of rf power systems ultimately requires accurate modeling of a chain of subsystems starting with the rf transmitter and ending with the power absorption in the plasma. A collection of computer codes is used at ORNL to calculate the plasma loading and wave spectrum for a three-dimensional rf antenna, the transmission/reflection properties of the Faraday shield and its effect on the electrical characteristics and phase velocity of the antenna, the internal coupling among antenna array components and the incorporation of the antenna array into a transmission line model of the phase control, tuning, matching, and power distribution system. Some codes and techniques are more suited for the rapid evaluation of system design progressions, while others are more applicable to the detailed analysis of final designs or existing hardware. The interaction of codes and the accuracy of calculations will be illustrated by the process of determining the plasma loading as a function of phasing and density profiles for the TFTR ICRH antennas and comparing the results to measurements. An example of modeling a complex antenna geometry will be the comparison of calculations with the measured electrical response of a four-strap mockup of the JET A2 antenna array which was loaned to ORNL by the JET ICRH team. {copyright} {ital 1996 American Institute of Physics.}

  7. Integrated design and analysis of RF heating and current drive systems

    Science.gov (United States)

    Ryan, P. M.; Carter, M. D.; Goulding, R. H.; Batchelor, D. B.; Jaeger, E. F.; Stallings, D. C.; Wang, C. Y.; Baity, F. W.; Bell, G. L.; Bigelow, T. S.; England, A. C.; Hanson, G. R.; Haste, G. R.; Hoffman, D. J.; Murakami, M.; Rasmussen, D. A.; Wilgen, J. B.; Rogers, J. H.; Majeski, R.; Schilling, G.; Wilson, J. R.; Bhatnagar, V.; Bures, M.; Kaye, A.; Start, D.; Wade, T.; Ho, Y. L.; Kruger, W.

    1996-02-01

    The design, analysis, and performance evaluation of rf power systems ultimately requires accurate modeling of a chain of subsystems starting with the rf transmitter and ending with the power absorption in the plasma. A collection of computer codes is used at ORNL to calculate the plasma loading and wave spectrum for a three-dimensional rf antenna, the transmission/reflection properties of the Faraday shield and its effect on the electrical characteristics and phase velocity of the antenna, the internal coupling among antenna array components and the incorporation of the antenna array into a transmission line model of the phase control, tuning, matching, and power distribution system. Some codes and techniques are more suited for the rapid evaluation of system design progressions, while others are more applicable to the detailed analysis of final designs or existing hardware. The interaction of codes and the accuracy of calculations will be illustrated by the process of determining the plasma loading as a function of phasing and density profiles for the TFTR ICRH antennas and comparing the results to measurements. An example of modeling a complex antenna geometry will be the comparison of calculations with the measured electrical response of a four-strap mockup of the JET A2 antenna array which was loaned to ORNL by the JET ICRH team.

  8. Stability of coal pillar in gob-side entry driving under unstable overlying strata and its coupling support control technique

    Institute of Scientific and Technical Information of China (English)

    Yuan Zhang; Zhijun Wan; Fuchen Li; Changbing Zhou; Bo Zhang; Feng Guo; Chengtan Zhu

    2013-01-01

    Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata,the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity,as well as the deformation characteristics of narrow coal pillar in gob-side entry driving,in the whole process from entry driving of last working face to the present working face mining.A new method of narrow coal pillar control based on the triune coupling support technique (TCST),which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side,and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side,and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone,is thereby generated and applied to the field production.The result indicates that after entry excavating along the gob under unstable overlying strata,the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability,and the large deformation of the pillar on the gob side is evident.Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process,the stress variation inside the coal pillar in other stages are rather steady,however,the stress expansion is obvious and the coal pillar continues to deform.Once the gob-side entry driving is completed,a global displacement zone on the entry side appears in the shallow part of the pillar,whereas,a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar.The application of TCST can not only avoid the failure of pillar supporting structure,but exert the supporting capacity of the bolting structure left in the

  9. Lower Hybrid Current Drive and Heating for the National Transport Code Collaboration

    Science.gov (United States)

    Ignat, D. W.; Jardin, S. C.; McCune, D. C.; Valeo, E. J.

    2000-10-01

    The Lower hybrid Simulation Code LSC was originally written as a subroutine to the Toroidal Simulation Code TSC (Jardin, Pomphrey, Kessel, et al) and subsequently ported to a subroutine of TRANSP. Modifications to simplify the use of the LSC both as a callable module, and also independently of larger transport codes, and improve the documentation have been undertaken with the goal of installing LSC in the NTCC library. The physical model, which includes ray tracing from a Brambilla spectrum, 1D Fokker-Planck development of the electron distribution, the Karney-Fisch treatment of the electric field, heuristic diffusion of current and power and wall scattering, has not been changed. The computational approach is to suppress or remove from the control of the user numerical parameters such as step size and number of iterations while changing some code to be extremely stable in varied conditions. Essential graphics are now output as gnuplot commands and data for off-line post processing, but the original outputs to sglib are retained as an option. Examples of output are shown.

  10. Online tuning technique of frequency conversion crystals of high power solid-state laser facility at low 1ω drive irradiance

    Science.gov (United States)

    Zhang, Fan; Zhong, Wei; Guo, Huaiwen; Wang, Yuancheng; Huang, Xiaoxia; Wang, Fang; Zhou, Lidan; Jia, Huaiting; Deng, Xuewei; Zhou, Wei

    2017-05-01

    Advanced an online low 1ω drive irradiance tuning technique of frequency conversion crystals of high power solid-state laser facility, which can acquire the best match angle of frequency conversion crystals through online low 1ω drive irradiance tuning curve test, and achieve fast and high precision angle correction to assure the frequency conversion crystals to achieve the highest energy conversion efficiency in shot experiments. Analyzed the possibility of online low 1ω drive irradiance tuning technique of frequency conversion crystals, researched the technical scheme of online low 1ω drive irradiance tuning of frequency conversion crystals, and applied this technique on SG facility, which achieved 60% 70% frequency conversion efficiency in high energy shots.

  11. THEORY OF ELECTROMAGNETIC DRIVE WITH ELEMENTARY PARTICLES CURRENT AND VACUUM POLARIZATION

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2016-01-01

    Full Text Available The article discusses a model of rocket motor of electromagnetic type, consisting of a source of electromagnetic radio frequency oscillations and the conical cavity, in which electromagnetic waves are excited. We have created a multi-dimensional transient numerical model describing the process of establishing electromagnetic oscillations in the resonator, taking into account the finite conductivity of the walls. Separately, the standing waves in the cavity with conducting walls have been simulated. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in a case of steady and unsteady waves. We have built a dynamic model taking into account the thermal conductivity and electrical conductivity of the walls, waves and particles emission and vacuum polarization. We have also developed a dynamic model enables to optimize a thrust force on a considerable number of parameters without the involvement of the hypotheses about the physics of the phenomenon. We run the optimization of the operating parameters of the device, namely by the excitation frequency, the frequency of the modulating signal, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of forced heat transfer and the temperature dependence of the resistance of the material of the cavity walls. It is found that the pulse modulation greatly improves the efficiency of conversion of electromagnetic energy into thrust. The mechanism of formation of traction, adjusting the metrics of space-time, the current contribution of elementary particles, the Yang-Mills and electromagnetic fields is proposed. It is shown that the contribution of the elementary particles in the thrust force is proportional to the electrical conductivity of the system multiplied by Abraham force

  12. Technological and physics assessments on heating and current drive systems for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Thomas, E-mail: thomas.franke@efda.org [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Barbato, E. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Bosia, G. [Department of Physics, University of Turin, Via P. Giuria 1, 10125 Turin (Italy); Cardinali, A.; Ceccuzzi, S.; Cesario, R. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Van Eester, D. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Federici, G. [EFDA Close Support Unit, Boltzmannstr. 2, D-85748 Garching (Germany); Gantenbein, G. [Karlsruhe Institute of Technology (KIT), Association EURATOM-KIT, Kaiserstrasse 12, 76131 Karlsruhe (Germany); Helou, W.; Hillairet, J. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Jenkins, I. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Kazakov, Ye.O. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Kemp, R. [CCFE, Culham Science Centre, Abingdon OX143DB (United Kingdom); Lerche, E. [Laboratory for Plasma Physics, LPP-ERM/KMS, TEC & Belgian EUROfusion Consortium Partner, Brussels (Belgium); Mirizzi, F. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); Noterdaeme, J.-M.; Poli, E. [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Porte, L. [Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 13, CH-1015 Lausanne (Switzerland); Ravera, G.L. [Unità Tecnica Fusione ENEA, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma) (Italy); and others

    2015-10-15

    Highlights: • Basic physics requirements of H&CD systems in DEMO have been captured. • The four H&CD systems NBI, EC, IC and LH were analysed to optimize performance. • Novel solutions were studied to overcome the limitations of the present H&CD systems. • RAMI as well as efficiency and optimized design of H&CD systems have been assessed. • Further constraints by remote maintenance or breeding blanket interactions were considered. - Abstract: The physics requirements of the heating and current (H&CD) systems in a Demonstration Fusion Power Plant (DEMO) are often beyond the actual level of design maturity and technology readiness required. The recent EU fusion roadmap advocates a pragmatic approach and favours, for the initial design integration studies, systems to be as much as possible, extrapolated from the ITER experience. To reach the goal of demonstrating the production of electricity in DEMO with a closed fuel cycle by 2050, one must ensure reliability, availability, maintainability, inspectability (RAMI) as well as performance, efficiency and optimized design for the H&CD systems. In the recent Power Plant Physics & Technology (PPP&T) Work Programme, a number of H&CD studies were performed. The four H&CD systems Neutral Beam (NB) Injection, Electron Cyclotron (EC), Ion Cyclotron (IC) and Lower Hybrid (LH) were considered. First, a physics optimization study was made assuming all technologies are available and identifying which parameters are needed to optimize the performance for given plasma parameters. Separately, the (i) technological maturity was considered (e.g. 240 GHz gyrotrons for EC) and (ii) technologies were adapted (e.g. multi-stage depressed collector for EC) or (iii) novel solutions (e.g. photo-neutralization for NB or new antennae concepts for IC) were studied to overcome the limitations of the present H&CD systems with respect to DEMO requirements. Further constraints imposed by remote maintenance or breeding blanket interactions

  13. Sawtooth control using electron cyclotron current drive in the presence of energetic particles in high performance ASDEX Upgrade plasmas

    CERN Document Server

    Chapman, I T; Maraschek, M; McCarthy, P J; Tardini, G

    2013-01-01

    Sawtooth control using steerable electron cyclotron current drive (ECCD) has been demonstrated in ASDEX Upgrade plasmas with a significant population of energetic ions in the plasma core and long uncontrolled sawtooth periods. The sawtooth period is found to be minimised when the ECCD resonance is swept to just inside the q = 1 surface. By utilising ECCD inside q = 1 for sawtooth control, it is possible to avoid the triggering of neoclassical tearing modes, even at significnatly higher pressure than anticipated in the ITER baseline scenario. Operation at 25% higher normalised pressure has been achieved when only modest ECCD power is used for sawtooth control compared to identical discharges without sawtooth control when neo-classical tearing modes are triggered by the sawteeth. Modelling suggests that the destabilisation arising from the change in the local magnetic shear caused by the ECCD is able to compete with the stabilising influence of the energetic particles inside the q = 1 surface.

  14. Non-inductive current built-up by local electron cyclotron heating and current drive with a 28 GHz focused beam on QUEST

    Science.gov (United States)

    Onchi, Takumi; Idei, Hiroshi; Hasegawa, Makoto; Ohwada, Hiroaki; Zushi, Hideki; Hanada, Kazuaki; Kariya, Tsuyoshi; Mishra, Kishore; Shikama, Taichi; Quest Team

    2016-10-01

    The plasma current can be driven solely by injecting electron cyclotron waves (ECWs) in spherical tokamak (ST) configuration. A system of 28 GHz gyrotron (maximum power: 270 kW) is renewed and reinstalled on QUEST. A focused ECW beam, whose diameter is about 5 cm at the second harmonic resonance, is injected for local ECW heating and current drive. The local power density at resonance exceeds 75 MW/m2 at an injection power of 150 kW. The incident ECW polarization can be adjusted employing the phase shifter consisting of two corrugated plates. During 1.25 second pulse of ECH, plasma current is built up to Ip = 70 kA fully non-inductively with a core electron density of ne > 1018 m-3. The closed flux in such ST plasma is determined at the inboard limiter on the center stack. Energetic electrons are also responsible for the pressure and equilibrium. This work is supported by JSPS KAKENHI (15H04231, 15K17800), NIFS Collaboration Research program (NIFS13KUTR085, NIFS11KUTR069, NIFS16KUTR114).

  15. Characteristics of electron cyclotron resonance plasma formed by lower hybrid current drive grill antenna

    Indian Academy of Sciences (India)

    P K Sharma; S L Rao; K Mishra; R G Trivedi; D Bora

    2008-03-01

    A 3.7 GHz system, which is meant for LHCD experiments on ADITYA tokamak, is used for producing ECR discharge. The ECR discharge is produced by setting the appropriate resonance magnetic field of 0.13 T, with hydrogen at a fill pressure of about 5 × 10-5 Torr. The RF powe r, up to 10 kW (of which ∼ 50% is reflected back), with a typical pulse length of 50 ms, is injected into the vacuum chamber of the ADITYA tokamak by a LHCD grill antenna and is used for plasma formation. The average coupled RF power density (the RF power/a typical volume of the plasma) is estimated to be ∼ 5 kW/m3. When the ECR appears inside the tokamak chamber for the given pumping frequency ( = 3.7 GHz) a plasma with a density () ∼ 4 × 1016 m-3 and electron temperature ∼ 8 eV is produced. The density and temperature during the RF pulse are measured by sets of Langmuir probes, located toroidally, on either side of the antenna. signals are also monitored to detect ionization. An estimate of density and temperature based on simple theoretical calculation agrees well with our experimental measurements. The plasma produced by the above mechanism is further used to characterize the ECR-assisted low voltage Ohmic start-up discharges. During this part of the experiments, Ohmic plasma is formed using capacitor banks. The plasma loop voltage is gradually decreased, till the discharge ceases to form. The same is repeated in the presence of ECR-formed plasma (RF pre-ionization), formed 10 ms prior to the loop voltage. We have observed that (with LHCD-induced) ECR-assisted Ohmic start-up discharges is reliably and repeatedly obtained with reduced loop voltage requirement and breakdown time decreases substantially. The current ramp-up rates also decrease with reduced loop voltage operation. These studies established that ECR plasma formed with LHCD system exhibits similar characteristics as reported earlier by dedicated ECR systems. This experiment also addresses the issue of whether ECR plasma

  16. Driving forces of change in environmental indicators an analysis based on divisia index decomposition techniques

    CERN Document Server

    González, Paula Fernández; Presno, Mª José

    2014-01-01

    This book addresses several index decomposition analysis methods to assess progress made by EU countries in the last decade in relation to energy and climate change concerns. Several applications of these techniques are carried out in order to decompose changes in both energy and environmental aggregates. In addition to this, a new methodology based on classical spline approximations is introduced, which provides useful mathematical and statistical properties. Once a suitable set of determinant factors has been identified, these decomposition methods allow the researcher to quantify the respec

  17. Historical processes and contemporary ocean currents drive genetic structure in the seagrass Thalassia hemprichii in the Indo-Australian Archipelago.

    Science.gov (United States)

    Hernawan, Udhi E; van Dijk, Kor-Jent; Kendrick, Gary A; Feng, Ming; Biffin, Edward; Lavery, Paul S; McMahon, Kathryn

    2017-02-01

    Understanding spatial patterns of gene flow and genetic structure is essential for the conservation of marine ecosystems. Contemporary ocean currents and historical isolation due to Pleistocene sea level fluctuations have been predicted to influence the genetic structure in marine populations. In the Indo-Australian Archipelago (IAA), the world's hotspot of marine biodiversity, seagrasses are a vital component but population genetic information is very limited. Here, we reconstructed the phylogeography of the seagrass Thalassia hemprichii in the IAA based on single nucleotide polymorphisms (SNPs) and then characterized the genetic structure based on a panel of 16 microsatellite markers. We further examined the relative importance of historical isolation and contemporary ocean currents in driving the patterns of genetic structure. Results from SNPs revealed three population groups: eastern Indonesia, western Indonesia (Sunda Shelf) and Indian Ocean; while the microsatellites supported five population groups (eastern Indonesia, Sunda Shelf, Lesser Sunda, Western Australia and Indian Ocean). Both SNPs and microsatellites showed asymmetrical gene flow among population groups with a trend of southwestward migration from eastern Indonesia. Genetic diversity was generally higher in eastern Indonesia and decreased southwestward. The pattern of genetic structure and connectivity is attributed partly to the Pleistocene sea level fluctuations modified to a smaller level by contemporary ocean currents.

  18. Complemenary body driving - a low voltage analog circuit technique for SOI

    Science.gov (United States)

    Mojarradi, M. M.; Terry, S.; Blalock, B. J.; Yong, L.; Dufrene, B.

    2002-01-01

    This paper describes several analog circuit primitives that utilize the body terminal as a signal port. A cascode current mirror that can operate with an input and output voltage of 200 mV; and a rail-to-rail, constant transconductance gain block capable of 1 V operation are presented. These circuits have been implemented in a standard 0.351 partially-depleted Silicon-on-Insulator (PDSOI) CMOS process and should find wide application in next-generation analog circuit designs.

  19. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  20. Design of Current Controller in Servo Drive%伺服驱动电流调节器的设计

    Institute of Scientific and Technical Information of China (English)

    游帅; 马钧华

    2012-01-01

    This paper presented a design method of current controller in servo drive. On hardware design, three current sensors, LTS25-NP, ACS7xx, HCPL-7840 and their interface circuit with DSP's AD input were introduced, and these three current sensors can perform well to meet the demands of accuracy and speed in current sampling circuit. On software design, according to simulation, the principles of adjusting PI controller parameters were discussed. The results of the simulations show that good initial PI parameters can he calculated through the motor parameters, thus lay the foundation for experiment tuning. [Ch,8 fig. 1 tab. 10 ref. ]%介绍了伺服驱动中电流调节器的设计方法.在硬件上给出LTS25-NP,ACS7xx,HCPL-7840 3种电流采样器件的工作原理、性能指标和DSP的接口设计,可知3种器件可以满足不同的电流采样精度与速度的要求.在软件上,利用仿真得到电流调节器PI参数计算方法,并介绍实验整定方法.仿真结果表明,通过电机的参数可以计算得到PI电流调节器良好的初始参数,为实验整定做基础.

  1. Direct Drive and Eddy Current Septa Magnet Designs for CERN’s PSB Extraction at 2 GeV

    CERN Multimedia

    Szoke, Zsolt; Balhan, Bruno; Baud, Cedric; Borburgh, Jan; Hourican, Michael; Masson, Thierry; Prost, Antoine

    2015-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN’s PS Booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 GeV to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS, the eddy current PS injection septum together with a bumper at injection have been investigated using finite element software. For the recombination magnets an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modelling of the devices, the comparison of the ...

  2. Two-way shape memory effect and alternating current driving characteristics of a TiNi alloy spring

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiguo; ZU Xiaotao

    2004-01-01

    Two-way shape memory effect (TWSME) was induced into the TiNi shape memory alloys (SMAs) spring by thermomechanical training after annealing treatment, which has promising application in micro-actuating fields. The TWSME spring can contract upon heating and extend upon cooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of 45%. During the training procedure, transformation temperatures and hysteresis were measured by different scanning calorimetry (DSC). The results show that As (reverse transformation start temperature) and Af (revere transformation finish temperature) shift to lower temperature after training. The intervals of Af-As and Ms-Mr (Ms and Mf are the martensite start and finish temperatures, respectively) increase and the heat of transformation decreases after training. The electrothermal driving characteristics of the TWSME springs were also investigated with alternating current density of 3.2-14.7 A/mm2. It is found that the time response and the maximum contraction ratio greatly depend on the magnitude of the electrical current density.

  3. submitter Direct Drive and Eddy Current Septa Magnet Designs for CERN's PSB Extraction at 2 GeV

    CERN Document Server

    Szoke, Z; Balhan, B; Baud, C; Borburgh, J; Hourican, M; Masson, T; Prost, A

    2016-01-01

    In the framework of the LIU project, new septa magnets have been designed between CERN's PS booster (PSB) extraction and PS injection. The upgraded devices are to deal with the increased beam energy from 1.4 to 2 GeV at extraction of the PSB. The direct drive recombination septa in the PSB transfer line to the PS and the eddy current PS injection septum together with a bumper at injection have been investigated using finite-element software. For the recombination magnets, an increase in magnet length is sufficient to obtain the required deflection; however, for the PS injection elements, a more novel solution is necessary to also achieve increased robustness to extend the expected lifetime of the pulsed device. The injection septum will share the same vacuum vessel with an injection bumper, and both magnets will be located adjacent to each other. The new PS injection magnet will be the first septum operated at CERN based on eddy current technology. The magnetic modeling of the devices, the comparison of the p...

  4. Control algorithm for the inverter fed induction motor drive with DC current feedback loop based on principles of the vector control

    Energy Technology Data Exchange (ETDEWEB)

    Vuckovic, V.; Vukosavic, S. (Electrical Engineering Inst. Nikola Tesla, Viktora Igoa 3, Belgrade, 11000 (Yugoslavia))

    1992-01-01

    This paper brings out a control algorithm for VSI fed induction motor drives based on the converter DC link current feedback. It is shown that the speed and flux can be controlled over the wide speed and load range quite satisfactorily for simpler drives. The base commands of both the inverter voltage and frequency are proportional to the reference speed, but each of them is further modified by the signals derived from the DC current sensor. The algorithm is based on the equations well known from the vector control theory, and is aimed to obtain the constant rotor flux and proportionality between the electrical torque, the slip frequency and the active component of the stator current. In this way, the problems of slip compensation, Ri compensation and correction of U/f characteristics are solved in the same time. Analytical considerations and computer simulations of the proposed control structure are in close agreement with the experimental results measured on a prototype drive.

  5. Development of a high power wideband polarizer for electron cyclotron current drive system in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2015-10-15

    Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.

  6. Non-linear effects in electron cyclotron current drive applied for the stabilization of neoclassical tearing modes

    CERN Document Server

    Ayten, B

    2013-01-01

    Due to the smallness of the volumes associated with the flux surfaces around the O-point of a magnetic island, the electron cyclotron power density applied inside the island for the stabilization of neoclassical tearing modes (NTMs) can exceed the threshold for non-linear effects as derived previously by Harvey et al, Phys. Rev. Lett. 62 (1989) 426. We study the non-linear electron cyclotron current drive (ECCD) efficiency through bounce-averaged, quasi-linear Fokker-Planck calculations in the magnetic geometry as created by the islands. The calculations are performed for the parameters of a typical NTM stabilization experiment on ASDEX Upgrade. A particular feature of these experiments is that the rays of the EC wave beam propagate tangential to the flux surfaces in the power deposition region. The calculations show significant non-linear effects on the ECCD efficiency, when the ECCD power is increased from its experimental value of 1 MW to a larger value of 4 MW. The nonlinear effects are largest in case of...

  7. Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER

    CERN Document Server

    Chapman, I T; Sauter, O; Zucca, C; Asunta, O; Buttery, R J; Coda, S; Goodman, T; Igochine, V; Johnson, T; Jucker, M; La Haye, R J; Lennholm, M; Contributors, JET-EFDA

    2013-01-01

    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neo-classical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced alpha particle stabilisation for instance, this ancillary sawtooth control can be provided from > 10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes sig...

  8. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C., E-mail: hansec@uw.edu [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Columbia University, New York, New York 10027 (United States); Marklin, G. [PSI-Center, University of Washington, Seattle, Washington 98195 (United States); Victor, B. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); Akcay, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jarboe, T. [HIT-SI Group, University of Washington, Seattle, Washington 98195 (United States); PSI-Center, University of Washington, Seattle, Washington 98195 (United States)

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-β Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  9. STARLITE figures of merit for tokamak current drive -- Economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A. [Argonne National Lab., IL (United States); Jardin, S.; Kessel, C. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1995-10-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub 0} R{sub 0}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  10. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive ({gamma}{sub B} {proportional_to} n{sub e} I{sub o} R{sub o}/P{sub CD}), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for {gamma}{sub B} depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium.

  11. Determination of confinement efficiency in tokamaks based on current independent flux loops technique

    Science.gov (United States)

    Salar Elahi, A.; Ghoranneviss, M.

    In this contribution we presented a current independent approximation of the combination of poloidal beta and internal inductance (confinement efficiency) only based on poloidal flux loops measurement in IR-T1 tokamak. The main advantage of this technique is that it based only on the one diagnostic (only flux loops and not need to plasma current measurement). Based on this method, two flux loops were designed, constructed, and installed on outer surface of the IR-T1 tokamak chamber and then the Shafranov parameter was measured from them. Also the result of this technique was compared with conventional magnetic probes technique and found in good agreement with each other.

  12. A High Performance Space Vector Modulation - Direct Torque Controlled Induction Machine Drive based on Stator Flux Orientation Technique

    Directory of Open Access Journals (Sweden)

    BELMADANI, B.

    2009-06-01

    Full Text Available This paper proposes the design and implementation of a novel direct torque controlled induction machine drive system. The control system enjoys the advantages of stator vector control and conventional direct torque control and avoids some of the implementation difficulties of either of the two control methods. The stator vector control principal is used to keep constant the amplitude of stator flux vector at rated value, and to develop the relationship between the machine torque and the rotating speed of the stator flux vector. Thus, the machine torque can be regulated to generate the stator angular speed, which becomes a command signal and permits to overcome the problem of its estimation. Furthermore, with the combined control methods, the reference stator voltage vector can be generated and proportional-integral controllers and space vector modulation technique can be used to obtain fixed switching frequency and low torque ripple. Simulation experiments results indicate that, with the proposed scheme, a precise control of the stator flux and machine torque can be achieved. Compared to conventional direct torque control, presented method is easily implemented, and the steady performances of ripples of both torque and flux are considerably improved.

  13. Hysteresis Current Control technique based on Space Vector Modulation for Active Power Filter

    Directory of Open Access Journals (Sweden)

    Wang Yun-liang

    2011-09-01

    Full Text Available In this paper, the hysteresis current control (HCC technique based on space vector modulation (SVM for shunt active power filter (APF is proposed. The switching control algorithms of the HCC based SVM manage to generate compensated current according to the reference current. Harmonics extraction is based on the instantaneous active and reactive power theorem in time domain by calculating the power compensation. A closed loop control system is carried out and the error current is the difference between the reference current which is obtained from the power compensation and the actual current needs to be injected back into the power grid. By implementing this control strategy, the APF manages to generate better compensated harmonics currents to the power grid. Keywords: active power filter, hysteresis current control, space vector modulation ,matlab/simulink

  14. Modulation method for a multiple drive system based on a two-stage direct power conversion topology with reduced input current ripple

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    A new two-stage multi-drive direct power conversion (DPC) topology suited for multi-drive application is proposed, having an input port for a three-phase power supply and several output ports to connect three-phase loads, which are independently controlled and allow for sine wave in-sine wave out...... patterns of the inversion stages, which have to form two groups, allowing for size reduction of the input current filter. This is validated by experiments on a realistic laboratory prototype, while its limitations are determined by simulations....

  15. 有源纹波补偿电流平方降压型LED驱动电路%Step-down LED drive circuit based on active ripple compensation and current square control

    Institute of Scientific and Technical Information of China (English)

    胡成龙; 薛凌云

    2012-01-01

    The ideal way to drive LED is constant current driving, and the electrolytic capacitor for filtering is adopted in output terminal, but the life-span of electrolytic capacitor cannot match well with the LED's. Peak current control is a commonly used control mode to realize the constant driving for LED, but peak current control can only control the peak current which flows through the LED and can not precisely control its average current, thus the luminous efficiency and reliability of LED are greatly affected. Aiming at solving these problems, the active ripple compensation structure omitting the filter capacitor and the current square control technique were applied in LED's driving circuit Based on the average current, controlled by the current square control technique and the current ripple compensated by the active ripple compensation structure, the working principle of the driving circuit was researched and analyzed, and the simulation based on PSIM6. 0 and the physical simulation was carried out at last. The simulation results indicate that the current square control technique can precisely control the average current, and the active ripple compensation structure can fully compensate the current ripple which results from omitting the filter capacitor and makes the LED's current approximately const.%LED理想的驱动方式是恒流驱动,在输出端常采用电解电容进行滤波,但电解电容的寿命与LED寿命不匹配;峰值电流控制是实现恒流驱动的常用控制方式,但该方式仅控制了流过LED的峰值电流,而未精确地控制其平均电流,这对LED的发光效率、可靠性等都有较大的影响.为解决以上问题,将省略了滤波电容的有源纹波补偿电路结构与电流平方控制技术应用于LED驱动电路中,基于电流平方控制对平均电流的控制,以及有源纹波补偿电路对纹波电流的补偿,开展了该驱动电路工作原理的研究及分析,并基于PSIM6.0进行了仿真验证,

  16. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei; Tan, Cher Heng [Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong [Tan Tock Seng Hospital, Department of Cardiology, Singapore (Singapore)

    2014-08-28

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  17. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  18. A Review of Novel Leakage Current Suppression Techniques for Transformerless Photovoltaic Inverters

    Institute of Scientific and Technical Information of China (English)

    WU Weiyang; GUO Xiaoqiang

    2012-01-01

    In recent years, the transformerless PV inverters have been paid more attention due to cost and size reduction, as well as efficiency improvement compared with the conventional transformer ones. Leakage current suppression is one of the most important techniques for transformerless grid connected photovoltaic systems. The objective of this paper is to present a comprehensive review of the recently developed solution to the leakage current reduction. First of all, the common-mode model of the PV system is described to explain how the leakage current generates.

  19. Pulse-driven LED circuit with transformer-based current balance technique

    Science.gov (United States)

    Kwak, S.-S.

    2014-12-01

    Light emitting diodes (LEDs) have been gradually used for backlight modules for liquid crystal display as a substitute for cold cathode fluorescent lamps. In most of LED applications, it is required to connect several LED strings in parallel to limit the dc voltage level to be applied to the single LED string. Due to considerable current variations through each LED string with inevitable parameter deviations as well as temperature and ageing effects, techniques to balance currents flowing through LED strings are required for LED drivers. This article proposes a pulse-driven LED circuit with transformer-based current balancing scheme, which can simply regulate currents through the LED strings. The transformers are placed in series with the LED strings in such a way that the LED currents are automatically balanced. Since the developed current sharing technique employs no dissipative resistors and no linear-mode transistors, the proposed driver has high efficiency, low power dissipation and reduced thermal problems. In addition, the presented driver with no additional semiconductor devices and no additional controllers can provide a simple and a cost-effective current balancing solution, compared to conventional approaches. Thus, the proposed LED driver can feature a simple, highly efficient, reliable and cost-effective method. The presented LED driver is verified with experimental results.

  20. Sub-Threshold Leakage Current Reduction Techniques In VLSI Circuits -A Survey

    Directory of Open Access Journals (Sweden)

    V.Sri Sai Harsha

    2015-09-01

    Full Text Available There is an increasing demand for portable devices powered up by battery, this led the manufacturers of semiconductor technology to scale down the feature size which results in reduction in threshold voltage and enables the complex functionality on a single chip. By scaling down the feature size the dynamic power dissipation has no effect but the static power dissipation has become equal or more than that of Dynamic power dissipation. So in recent CMOS technologies static power dissipation i.e. power dissipation due to leakage current has become a challenging area for VLSI chip designers. In order to prolong the battery life and maintain reliability of circuit, leakage current reduction is the primary goal. A basic overview of techniques used for reduction of sub-threshold leakages is discussed in this paper. Based on the surveyed techniques, one would be able to choose required and apt leakage reduction technique.

  1. Leakage Current Optimization Techniques During Test Based on Don't Care Bits Assignment

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Yu Hu; Yin-He Han; Xiao-Wei Li; You-Sheng Zhang

    2007-01-01

    It is a well-known fact that test power consumption may exceed that during functional operation. Leakage power dissipation caused by leakage current in Complementary Metal-Oxide-Semiconductor (CMOS) circuits during test has become a significant part of the total power dissipation. Hence, it is important to reduce leakage power to prolong battery life in portable systems which employ periodic self-test, to increase test reliability and to reduce test cost. This paper analyzes leakage current and presents a kind of leakage current simulator based on the transistor stacking effect.Using it, we propose techniques based on don't care bits (denoted by Xs) in test vectors to optimize leakage current in integrated circuit (IC) test by genetic algorithm. The techniques identify a set of don't care inputs in given test vectors and reassign specified logic values to the X inputs by the genetic algorithm to get minimum leakage vector (MLV).Experimental results indicate that the techniques can effectually optimize leakage current of combinational circuits and sequential circuits during test while maintaining high fault coverage.

  2. Automatic parameter extraction technique for gate leakage current modeling in double gate MOSFET

    Science.gov (United States)

    Darbandy, Ghader; Gneiting, Thomas; Alius, Heidrun; Alvarado, Joaquín; Cerdeira, Antonio; Iñiguez, Benjamin

    2013-11-01

    Direct Tunneling (DT) and Trap Assisted Tunneling (TAT) gate leakage current parameters have been extracted and verified considering automatic parameter extraction approach. The industry standard package IC-CAP is used to extract our leakage current model parameters. The model is coded in Verilog-A and the comparison between the model and measured data allows to obtain the model parameter values and parameters correlations/relations. The model and parameter extraction techniques have been used to study the impact of parameters in the gate leakage current based on the extracted parameter values. It is shown that the gate leakage current depends on the interfacial barrier height more strongly than the barrier height of the dielectric layer. There is almost the same scenario with respect to the carrier effective masses into the interfacial layer and the dielectric layer. The comparison between the simulated results and available measured gate leakage current transistor characteristics of Trigate MOSFETs shows good agreement.

  3. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    Science.gov (United States)

    Prater, R.; Moeller, C. P.; Pinsker, R. I.; Porkolab, M.; Meneghini, O.; Vdovin, V. L.

    2014-08-01

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called 'helicons' or ‘whistlers’) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behaviour of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly towards the plasma centre. The high frequency also contributes to strong damping. Modelling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta is above about 1.8%. Detailed analysis of ray behaviour shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behaviour in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n‖, so wave accessibility issues can be reduced. Use of a travelling wave antenna provides a very narrow n‖spectrum, which also helps avoid accessibility problems.

  4. High speed control of electro-mechanical transduction Advanced Drive Techniques for Optimized Step-and-Settle Response of MEMS Micromirrors

    CERN Document Server

    Imboden, Matthias; Pollock, Corey; Lowell, Evan; Akbulut, Mehmet; Morrison, Jessica; Stark, Thomas; Bifano, Thomas G; Bishop, David J

    2015-01-01

    Micro/Nano Electro Mechanical Systems (MEMS/NEMS) provide the engineer with a powerful set of solutions to a wide variety of technical challenges. However, because they are mechanical systems, response times can be a limitation. In some situations, advanced engineered drive techniques can improve response times by as much as a thousand, significantly opening up the application space for MEMS/NEMS solutions.

  5. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    Science.gov (United States)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  6. Maximum Bandwidth Enhancement of Current Mirror using Series-Resistor and Dynamic Body Bias Technique

    Directory of Open Access Journals (Sweden)

    V. Niranjan

    2014-09-01

    Full Text Available This paper introduces a new approach for enhancing the bandwidth of a low voltage CMOS current mirror. The proposed approach is based on utilizing body effect in a MOS transistor by connecting its gate and bulk terminals together for signal input. This results in boosting the effective transconductance of MOS transistor along with reduction of the threshold voltage. The proposed approach does not affect the DC gain of the current mirror. We demonstrate that the proposed approach features compatibility with widely used series-resistor technique for enhancing the current mirror bandwidth and both techniques have been employed simultaneously for maximum bandwidth enhancement. An important consequence of using both techniques simultaneously is the reduction of the series-resistor value for achieving the same bandwidth. This reduction in value is very attractive because a smaller resistor results in smaller chip area and less noise. PSpice simulation results using 180 nm CMOS technology from TSMC are included to prove the unique results. The proposed current mirror operates at 1Volt consuming only 102 µW and maximum bandwidth extension ratio of 1.85 has been obtained using the proposed approach. Simulation results are in good agreement with analytical predictions.

  7. Fault current reduction by SFCL in a distribution system with PV using fuzzy logic technique

    Science.gov (United States)

    Mounika, M.; Lingareddy, P.

    2017-07-01

    In the modern power system, as the utilization of electric power is very wide, there is a frequent occurring of any fault or disturbance in power system. It causes a high short circuit current. Due to this fault, high currents occurs results to large mechanical forces, these forces cause overheating of the equipment. If the large size equipment are used in power system then they need a large protection scheme for severe fault conditions. Generally, the maintenance of electrical power system reliability is more important. But the elimination of fault is not possible in power systems. So the only alternate solution is to minimize the fault currents. For this the Super Conducting Fault Current Limiter using fuzzy logic technique is the best electric equipment which is used for reducing the severe fault current levels. In this paper, we simulated the unsymmetrical and symmetrical faults with fuzzy based superconducting fault current limiter. In our analysis it is proved that, fuzzy logic based super conducting fault current limiter reduces fault current quickly to a lower value.

  8. A Review of Electronic Inductor Technique for Power Factor Correction in Three-Phase Adjustable Speed Drives

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    (SiC) power devices. Moreover, the influence of partial loading on component sizing in Adjustable Speed Drives (ASDs) is studied. Finally the analytical loss modelling of power switches is utilized for efficiency measurement. The theoretical analyses are verified by experimental benchmarking in an ASD...

  9. Sliding mode controller gain adaptation and chattering reduction techniques for DSP-based PM DC motor drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus

    2011-01-01

    simulations. To demonstrate the effectiveness of each method, several experiments were performed on a DSP-based PM DC motor drive system. Then, the newly proposed combinations of these methods were implemented. The hardware implementation results are comparatively presented and discussed....

  10. Imaging Techniques in Psoriatic Arthritis: Update 2012-2014 on Current Status and Future Prospects.

    Science.gov (United States)

    Aleo, Elena; Migone, Stefania; Prono, Valentina; Barbieri, Francesca; Garlaschi, Giacomo; Cimmino, Marco A

    2015-11-01

    By providing additional and more sensitive information over clinical examination, imaging techniques are useful in the assessment of patients with psoriatic arthritis (PsA) and have been increasingly used to obtain additional clues to its pathogenesis. This review describes the current status and future development of conventional radiography, computed tomography, magnetic resonance imaging, positron emission tomography, and other novel techniques in the evaluation of PsA, with a focus on their use in diagnosing, monitoring, and predicting disease course and followup treatment response. The role and applications of ultrasonography are outside the scope and are reviewed elsewhere in these proceedings.

  11. Recanalization of Chronic Total Occlusion Lesions: A Critical Appraisal of Current Devices and Techniques

    Science.gov (United States)

    2016-01-01

    Chronic Total Occlusion (CTO) has been considered as one of the “final frontier” in interventional cardiology. Until recently, the patients with CTO are often managed surgically or medically due to lack of published evidence of clinical benefits and lower success rate of percutaneous recanalization of CTO. However, the introduction of enhanced guidewires, microcatheters combined with novel specialized devices and techniques reduce the number of unapproachable CTO. In this review article, current techniques and devices of percutaneous recanalization of CTO have been systematically summarized, which may help budding interventional cardiologists to theoretically understand these complex procedures and to deliver safe and effective percutaneous management of CTO to the patients. PMID:27790503

  12. Investigations of Tracking Phenomena in Silicone Rubber Using Moving Average Current Technique

    Institute of Scientific and Technical Information of China (English)

    R. Sarathi; S. Chandrasekar

    2004-01-01

    In the present work, tracking phenomenon in Silicone rubber material has been studied under AC and DC voltage, with ammonium chloride as a contaminant. It is observed that the tracking is more severe under the DC voltages. The tracking time is less under negative DC compared to the positive DC voltage. The tracking mechanism is explained in detail. The leakage current during the tracking studies was as measured and the moving average technique was adopted to understand the trend in current flow. The leakage current magnitude is high with thermally aged specimens compared to the virgin specimen, irrespective of the type of applied voltage. It is realized that the tracking time and the leakage current magnitude shows an inverse relationship.

  13. A novel biphasic-current-pulse calibration technique for electrical neural stimulation.

    Science.gov (United States)

    Maohua Ren; Jinyong Zhang; Lei Wang; Zhenyu Wang

    2014-01-01

    One of the major challenge in neural prosthetic device design is to ensure charge-balanced stimulation. This paper presents a new calibration technique to minimize the mismatch between anodic and cathodic current amplitudes. The proposed circuit mainly consists of a digital and an analog calibration, where a successive approximation register (SAR) logic and a comparator are used in digital calibration while a source follower is adopted in analog calibration. With a 0.18 μm high voltage CMOS process, the simulation shows that the maximum current mismatch is 45 nA (<0.05%).

  14. New Approach to Low-Power & Leakage Current Reduction Technique for CMOS Circuit Design

    Directory of Open Access Journals (Sweden)

    Sujata Prajapati

    2014-02-01

    Full Text Available Leakage power dissipation has become major portion of total power consumption in the integrated device and is expected to grow exponentially in the next decade as per International Technology Roadmap for Semiconductors (IRTS. This directly affects the battery operated devices as it has long idle times. Thus by scaling down the threshold voltage has tremendously increased the sub threshold leakage current thereby making the static power dissipation very high. To overcome this problem several techniques has been proposed to overcome this high leakage power dissipation. A comprehensive survey and analysis of various leakage power minimization techniques is presented in this paper. Of the available techniques, eight techniques are considered for the analysis namely, Multi Threshold CMOS (MTCMOS, Super Cut-off CMOS (SCCMOS, Forced Transistor Stacking (FTS and Sleepy Stack (SS, Sleepy keeper (SK, Dual Stack (OS, and LECTOR. From the results, it is observed that Lector techniques produces lower power dissipation than the other techniques due to the ability of power gating.

  15. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.

    Science.gov (United States)

    Miura, Hidekazu; Yamada, Akihiro; Shiraishi, Yasuyuki; Yambe, Tomoyuki

    2015-08-01

    We have been developing transcutaneous energy transmission system (TETS) for a ventricular assist device, shape memory alloy (SMA) fibered artificial organs and so on, the system has high efficiency and a compact size. In this paper, we summarize the development, design method and characteristics of the TETS. New control methods for stabilizing output voltage or current of the TETS are proposed. These methods are primary side, are outside of the body, not depending on a communication system from the inside the body. Basically, the TETS operates at the fixed frequency with a suitable compensation capacitor so that the internal impedance is minimalized and a flat load characteristic is obtained. However, when the coil shifted from the optimal position, the coupling factor changes and the output is fluctuated. TETS has a resonant property; its output can be controlled by changing the driving frequency. The continuous current to continuous voltage driving method was implemented by changing driving frequency and setting of limitation of low side frequency. This method is useful for battery charging system for electrically driven artificial hearts and also useful for SMA fibered artificial organs which need intermittent high peak power comsumption. In this system, the internal storage capacitor is charged slowly while the fibers are turned off and discharge the energy when the fibers are turned on. We examined the effect of the system. It was found that the size and maximum output of the TETS would able to be reduced.

  16. Development of fiber-optic current sensing technique and its applications in electric power systems

    Science.gov (United States)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  17. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  18. Harmonic analysis and FPGA implementation of SHE controlled three phase CHB 11-level inverter in MV drives using deterministic and stochastic optimization techniques.

    Science.gov (United States)

    Vesapogu, Joshi Manohar; Peddakotla, Sujatha; Kuppa, Seetha Rama Anjaneyulu

    2013-01-01

    With the advancements in semiconductor technology, high power medium voltage (MV) Drives are extensively used in numerous industrial applications. Challenging technical requirements of MV Drives is to control multilevel inverter (MLI) with less Total harmonic distortion (%THD) which satisfies IEEE standard 519-1992 harmonic guidelines and less switching losses. Among all modulation control strategies for MLI, Selective harmonic elimination (SHE) technique is one of the traditionally preferred modulation control technique at fundamental switching frequency with better harmonic profile. On the other hand, the equations which are formed by SHE technique are highly non-linear in nature, may exist multiple, single or even no solution at particular modulation index (MI). However, in some MV Drive applications, it is required to operate over a range of MI. Providing analytical solutions for SHE equations during the whole range of MI from 0 to 1, has been a challenging task for researchers. In this paper, an attempt is made to solve SHE equations by using deterministic and stochastic optimization methods and comparative harmonic analysis has been carried out. An effective algorithm which minimizes %THD with less computational effort among all optimization algorithms has been presented. To validate the effectiveness of proposed MPSO technique, an experiment is carried out on a low power proto type of three phase CHB 11- level Inverter using FPGA based Xilinx's Spartan -3A DSP Controller. The experimental results proved that MPSO technique has successfully solved SHE equations over all range of MI from 0 to 1, the %THD obtained over major range of MI also satisfies IEEE 519-1992 harmonic guidelines too.

  19. Current techniques for visualizing RNA in cells [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lilith V.J.C. Mannack

    2016-04-01

    Full Text Available Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations.

  20. Limiting current technique in the research of mass/heat transfer in nanofluid

    Science.gov (United States)

    Wilk, J.; Grosicki, S.

    2016-09-01

    In the paper the authors focused on the application of the electrochemical limiting diffusion current technique to the study of mass transfer in nanofluid flow. As mass and heat transfer are analogical phenomena, analysing mass transfer helps understand heat transfer processes in nanofluids. The paper begins with a short review of the available literature on the subject followed by the authors' results of mass transfer coefficient measurements and the conclusions concerning mass/heat transfer enhancement in nanofluids.

  1. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.

    2017-01-01

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399

  2. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design.

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A

    2017-03-13

    The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  3. An Eddy Current Testing Platform System for Pipe Defect Inspection Based on an Optimized Eddy Current Technique Probe Design

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2017-03-01

    Full Text Available The use of the eddy current technique (ECT for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM. The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.

  4. A veterinary and behavioral analysis of dolphin killing methods currently used in the "drive hunt" in Taiji, Japan.

    Science.gov (United States)

    Butterworth, Andrew; Brakes, Philippa; Vail, Courtney S; Reiss, Diana

    2013-01-01

    Annually in Japanese waters, small cetaceans are killed in "drive hunts" with quotas set by the government of Japan. The Taiji Fishing Cooperative in Japan has published the details of a new killing method that involves cutting (transecting) the spinal cord and purports to reduce time to death. The method involves the repeated insertion of a metal rod followed by the plugging of the wound to prevent blood loss into the water. To date, a paucity of data exists regarding these methods utilized in the drive hunts. Our veterinary and behavioral analysis of video documentation of this method indicates that it does not immediately lead to death and that the time to death data provided in the description of the method, based on termination of breathing and movement, is not supported by the available video data. The method employed causes damage to the vertebral blood vessels and the vascular rete from insertion of the rod that will lead to significant hemorrhage, but this alone would not produce a rapid death in a large mammal of this type. The method induces paraplegia (paralysis of the body) and death through trauma and gradual blood loss. This killing method does not conform to the recognized requirement for "immediate insensibility" and would not be tolerated or permitted in any regulated slaughterhouse process in the developed world.

  5. Implementations of artificial neural networks using current-mode pulse width modulation technique.

    Science.gov (United States)

    El-Masry, E I; Yang, H K; Yakout, M A

    1997-01-01

    The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector.

  6. High impulse voltage and current measurement techniques fundamentals, measuring instruments, measuring methods

    CERN Document Server

    Schon, Klaus

    2013-01-01

    Equipment to be installed in electric power-transmission and distribution systems must pass acceptance tests with standardized high-voltage or high-current test impulses which simulate the stress on the insulation caused by external lightning discharges and switching operations in the grid. High impulse voltages and currents are also used in many other fields of science and engineering for various applications. Therefore, precise impulse-measurement techniques are necessary, either to prevent an over- or understressing of the insulation or to guarantee the effectiveness and quality of the application. The book deals with: principal generator circuits for generating high-voltage and high-current impulses measuring systems and their calibration according to IEC 60060 and IEC 62475 methods of estimating uncertainties of measurement mathematical and experimental basis for characterizing the transfer behavior of spatially extended systems used for measuring fast transients. This book is intended for engineers and ...

  7. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  8. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.

    Science.gov (United States)

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T; Kornbluth, Joshua

    2016-07-01

    Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.

  9. Smart Technique for Induction Motors Diagnosis by Monitoring the Power Factor Using Only the Measured Current

    Science.gov (United States)

    Shnibha, R. A.; Albarabar, A. S.

    2012-05-01

    This paper is concerned with accurate, early and reliable induction motor IM fault detection and diagnosis using an enhanced power parameter measurement technique. IM protection devices typically monitor the motor current and/or voltage to provide the motor protection from e.g. current overload, over/under voltage, etc. One of the interesting parameters to monitor is the operating power factor (PF) of the IM which provides better under-load protection compared to the motor current based approaches. The PF of the motor is determined by the level of the current and voltage that are drawn, and offers non-intrusive monitoring. Traditionally, PF estimation would require both voltage and the current measurements to apply the displacement method. This paper will use a method of determining the operating PF of the IM using only the measured current and the manufacturer data that are typically available from the nameplate and/or datasheet for IM monitoring. The novelty of this work lies in detecting very low phase imbalance related faults and misalignment. Much of the previous work has dealt with detecting phase imbalance faults at higher degrees of severity, i.e. voltage drops of 10% or more. The technique was tested by empirical measurements on test rig comprised a 1.1 kW variable speed three phase induction motor with varying output load (No load, 25%, 50%, 75% and 100% load). One common faults was introduced; imbalance in one phase as the electrical fault The experimental results demonstrate that the PF can be successfully applied for IM fault diagnosis and the present study shows that severity fault detection using PF is promising. The proposed method offers a potentially reliable, non-intrusive, and inexpensive CM tool which can be implemented with real-time monitoring systems

  10. Design automation techniques for high-resolution current folding and interpolating CMOS A/D converters

    Science.gov (United States)

    Gevaert, D.

    2007-05-01

    The design and testing of a 12-bit Analog-to-Digital (A/D) converter, in current mode, arranged in an 8-bit LSB and a 4- bit MSB architecture together with the integration of specialized test building blocks on chip allows the set up of a design automation technique for current folding and interpolation CMOS A/D converter architectures. The presented design methodology focuses on the automation for CMOS A/D building blocks in a flexible target current folding and interpolating architecture for a downscaling technology and for different quality specifications. The comprehensive understanding of all sources of mismatching in the crucial building blocks and the use of physical based mismatch modeling in the prediction of mismatch errors, more adequate and realistic sizing of all transistors will result in an overall area reduction of the A/D converter. In this design the folding degree is 16, the number of folders is 64 and the interpolation level is 4. The number of folders is reduced by creating intermediate folding signals with a 4-level interpolator based on current division techniques. Current comparators detect the zero-crossing between the differential folder output currents. The outputs of the comparators deliver a cyclic thermometer code. The digital synthesis part for decoding and error correction building blocks is a standardized digital standard cell design. The basic building blocks in the target architecture were designed in 0.35μ CMOS technology; they are suitable for topological reuse and are in an automated way downscaled into a 0.18μ CMOS technology.

  11. Influence of impurity and recycling on high-β steady-state plasmas sustained by rotating magnetic fields current drive

    Science.gov (United States)

    Guo, H. Y.; Grossnickle, J. A.; Hoffman, A. L.; Vlases, G. C.

    2009-06-01

    A new upgrade of the Translation, Confinement, and Sustainment (TCS) device, TCSU, has been built to form and sustain high temperature compact toroids (CT), known as Field Reversed Configurations, using Rotating Magnetic Fields (RMF). In TCS the plasma temperature was limited to several 10s of eV due to high impurity content. These impurities are greatly reduced in TCSU by using advanced plasma chamber and helium glow discharge cleaning. Reducing impurity radiation, when coupled with reduced overall recycling, enabled the plasma to enter into a new, collisionless regime with temperatures well over 200 eV, substantially exceeding the radiation barrier. This is a first for CTs at low input power density. This was achieved using the simple even-parity RMF drive (despite transient opening of field lines by the RMF) because the associated energy loss is sheath-limited, coupled with the low edge density resulting from the RMF pinch effect.

  12. EVALUATION OF THE RUSSIAN CURRENT TECHNIQUE ON THE TRICEPS SURAE MUSCLE IN THE PERFORMANCE OF THE VERTICAL JUMP

    OpenAIRE

    Barbosa, Aline Fernandes; Unioeste; Peretti, Ana Luiza; Unioeste; Lara, Ellis Regina Medeiros de; Unioeste; Amaro, Fernanda Lucasynski; Unioeste; Carvalho, Alberito Rodrigo de; Unioeste; Bertolini, Gladson Ricardo Flor; Universidade Estadual do Oeste do Paraná

    2014-01-01

    Neuromuscle electric stimulation is a technique for muscle strengthening based on electric stimulation of the intramuscle branches of motor-neurons that induce muscular contraction. Authors do not agree on functional gains by employing the Russian current technique. Current analysis evaluates the effect of electro-stimulation with the Russian current technique on the triceps surae muscle on the power and resistance of the vertical jump. Assay comprised 16 volunteers who were divided into a co...

  13. IMPLEMENTATION AND STUDY OF BLDC MOTOR DRIVE SYSTEM

    OpenAIRE

    2016-01-01

    The BLDC motor  is an electronically commutated dc motor becoming very popular in many applications. There are various speed control methods used for BLDC motor. The performance of BLDC motor drives can be improved using sensored control techniques over sensorless technology. This paper presents Brushless Direct Current motor drive system and its sensored speed control technique with PWM.  Advantages and limitations of sensorless techniques are reviewed and then, sensored speed cont...

  14. Reviewing current knowledge in snatch performance and technique: the need for future directions in applied research.

    Science.gov (United States)

    Ho, Lester K W; Lorenzen, Christian; Wilson, Cameron J; Saunders, John E; Williams, Morgan D

    2014-02-01

    This is a review of current research trends in weightlifting literature relating to the understanding of technique and its role in successful snatch performance. Reference to the world records in the snatch from the 1960s onwards indicates little progress across all weight categories. With such mediocre advances in performance at the International level, there is a need to better understand how snatch technique can improve performance even if only by a small margin. Methods of data acquisition for technical analysis of the snatch have involved mostly 2-dimensional barbell and joint kinematics. Although key variables which play a role in the successful outcome of a snatch lift have been heavily investigated, few studies have combined variables relating both the barbell and the weightlifter in their analyses. This suggests the need for a more detailed approach integrating both barbell-related and weightlifter-related data to enhance understanding of the mechanics of a successful lift. Currently, with the aid of technical advances in motion analysis, data acquisition, and methods of analysis, a more accurate representation of the movement can be provided. Better ways of understanding the key characteristics of technique in the snatch could provide the opportunity for more effective individualized feedback from the coach to the athlete, which should in turn lead to improved performance in competition.

  15. Design and fabrication of nano-ring MRAM demo devices based on spin-polarized current driving

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nano-ring-type magnetic tunnel junctions(NR-MTJ)were nano-fabricated.The tunneling magnetoresistance(TMR)versus current(Ⅰ)loops of the NR-MTJs for a spin-polarized current switching were measured and the TMR ratio of around 20%~50% with a Al-O barrier at room temperature were observed.The critical value of switching current for the free Co_(60)Fe_(20)B_(20) layer between parallel and anti-parallel magnetization states is smaller than 650μA.The NR-MTJs arrays were also integrated above the transistors in ...

  16. A 540-[Formula: see text] Duty Controlled RSSI With Current Reusing Technique for Human Body Communication.

    Science.gov (United States)

    Jang, Jaeeun; Lee, Yongsu; Cho, Hyunwoo; Yoo, Hoi-Jun

    2016-08-01

    An ultra-low-power duty controlled received signal strength indicator (RSSI) is implemented for human body communication (HBC) in 180 nm CMOS technology under 1.5 V supply. The proposed RSSI adopted 3 following key features for low-power consumption; 1) current reusing technique (CR-RSSI) with replica bias circuit and calibration unit, 2) duty controller, and 3) reconfigurable gm-boosting LNA. The CR-RSSI utilizes stacked amplifier-rectifier-cell (AR-cell) to reuse the supply current of each blocks. As a result, the power consumption becomes 540 [Formula: see text] with +/-2 dB accuracy and 75 dB dynamic range. The replica bias circuit and calibration unit are adopted to increase the reliability of CR-RSSI. In addition, the duty controller turns off the RSSI when it is not required, and this function leads 70% power reduction. At last, the gm-boosting reconfigurable LNA can adaptively vary its noise and linearity performance with respect to input signal strength. Fro current reusing technique m this feature, we achieve 62% power reduction in the LNA. Thanks to these schemes, compared to the previous works, we can save 70% of power in RSSI and LNA.

  17. The impact of interface states on the mobility and drive current of In0.53Ga0.47 As semiconductor n-MOSFETs

    Science.gov (United States)

    Osgnach, Patrik; Caruso, Enrico; Lizzit, Daniel; Palestri, Pierpaolo; Esseni, David; Selmi, Luca

    2015-06-01

    Accurate Schrödinger-Poisson and Multi-Subband Monte Carlo simulations are used to investigate the effect of interface states at the channel-insulator interface of In0.53Ga0.47 As MOSFETs. Acceptor states with energy inside the conduction band of the semiconductor can explain the dramatic Fermi level pinning observed in the experiments. Our results show that these states significantly impact the electrical mobility measurements but they appear to have a limited influence on the static current drive of short channel devices.

  18. Observation of Lower Hybrid Current Drive Improved Confinement with a Graphite Probe at the Last Closed Flux Surface of the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    徐国盛; 万宝年; 宋梅; 凌必利; 匡光力; 丁伯江

    2002-01-01

    High time resolution measurements of the electrostatic fluctuations, radial electric field Er and turbulence-induced electron flux Гe have been performed across the transition of lower hybrid current drive improved confinement with a graphite Langmuir probe array at the last closed flux surface of the HT-7 tokamak. The decrease of Гe is dominated by the suppression of fluctuation levels, which follows the change of Er. A reversal of the poloidal propagation direction of turbulence demonstrates that the poloidal propagation is dominated by Eт× Bφ drift. The enhancement of poloidal coherence accompanies the fluctuation suppression, which suggests the subtle variation of turbulence features.

  19. An overview of MR arthrography with emphasis on the current technique and applicational hints and tips

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Guelden [Department of Radiology, Faculty of Medicine, Ankara University, Samanpazari, 06100 Ankara (Turkey)]. E-mail: gsahin@medicine.ankara.edu.tr; Demirtas, Mehmet [Department of Hand Surgery, Faculty of Medicine, Ankara University, Samanpazari, 06100 Ankara (Turkey)

    2006-06-15

    Magnetic resonance (MR) arthrography has been investigated in every major peripheral joint of the body, and has been proven to be effective in determining the integrity of intraarticular ligamentous and fibrocartilaginous structures and in the detection or assessment of osteochondral lesions and loose bodies in selected cases. Several methods could be used to create arthrogram effect during MR imaging, however, direct MR arthrography using diluted gadolinium as the contrast agent is the most commonly used technique and is the most reliable of all. MR arthrography is useful for demonstrating labrocapsular-ligamentous abnormalities and distinguishing partial thickness rotator cuff tears from focal full thickness tears in the shoulder, identifying or excluding recurrent tears following meniscal operations in the knee, demonstrating perforations of the triangular fibrocartilage complex (TFCC) and ligaments in the wrist, showing labral tears in the hip, diagnosing ligament tears in the ankle and identifying osteochondral lesions or loose bodies in any of the aforementioned joints. In this article, an overview of techniques of MR arthrography is provided with emphasis on direct MR arthrography using diluted gadolinium as the contrast agent. The current applications of the technique in major peripheral joints are reviewed, with emphasis given to the shoulder joint where the role of this technique has become well established.

  20. Current techniques and strategies for anesthesia in patients undergoing peripheral bypass surgery.

    Science.gov (United States)

    Bouman, E; Dortangs, E; Buhre, W; Gramke, H F

    2014-04-01

    Peripheral arterial disease is an illness with a high prevalence in Europe and North America. The disease is associated with a significant impact on quality of life. Despite advanced medical and endovascular treatments, surgery is often indicated to prevent the consequences of ischemic injury. Usually, these patients do have significant comorbidities resulting in an increased risk for anesthesia-related complications. While general anesthesia is commonly used for the majority of the patients, local and regional anesthesia (RA) offer several possible advantages such as stable cardiovascular hemodynamic perioperative course, improved postoperative pain relief and prevention of chronic postsurgical pain syndromes. This review will discuss perioperative management, available evidence regarding general anesthesia and various regional anesthetic techniques for peripheral vascular surgery, and the current advises regarding anticoagulants and RA. No definitive conclusions can be drawn from the existing literature with respect to superiority of general or neuraxial anesthesia or even RA. Maybe the profits lie in the combination of techniques, a strategy, to overcome the risks of one and use the benefits of the other technique. From circumstantial evidence, it is most likely that the experience of the anesthetic and surgical team is one of the major determinants of perioperative complications independent from the individual anesthesia technique.

  1. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    Energy Technology Data Exchange (ETDEWEB)

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

  2. Comparative Analysis of Different PWM Techniques to Reduce the Common Mode Voltage in Three-Level Neutral-Point-Clamped Inverters for Variable Speed Induction Drives

    Directory of Open Access Journals (Sweden)

    Bharati Raja

    2012-12-01

    Full Text Available This work presents the comparative study of the different PWM techniques to reduce the common-mode voltage (CMV at the output of neutral point diode clamped inverter for variable speed drives. Here the comparative study is done by the phase opposition disposed (POD, sinusoidal pulse width modulation (SPWM, phase disposition (PD, phase shift (PS space vector modulation (SVM techniques are proposed. A good trade-off between the quality of the output voltage and the partial magnitude of the CMV is achieved in this work. The scheme is proposed for three-level inverter. This work realizes the implementation of Three-level diode clamped MLI for three-phase (Y-Δ induction motor with the implementation of a space vector modulation technique without any additional control algorithm to reduce CMV within the range + Vdc/6. The Simulation with a 1HP induction motor drive system is setup in Matlab-2011b  and the same results validated effectively by hardware – FPGA-SPARTEN III processor and its shows that the CM voltage is effectively reduced and the maximum output voltage is not affected.  

  3. Ultra-fast dynamic imaging: an overview of current techniques, their capabilities and future prospects

    Science.gov (United States)

    Altucci, C.; Velotta, R.; Marangos, J. P.

    2010-06-01

    In this review we attempt to sketch an overview of the various methods currently being used or under development to enable ultra-fast dynamic imaging of matter. We concentrate on those techniques which combine atomic scale spatial resolution and femtosecond or even sub-femtosecond temporal resolution. In part this review was inspired and informed by the material presented at the 'Ultrafast Dynamic Imaging II' workshop held in Ischia, Italy in April 2009, but we also have drawn on a wider background of material especially when discussing the emerging laser-based methods.

  4. Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques

    Science.gov (United States)

    Zhang, Dejun; Yu, Yating; Lai, Chao; Tian, Guiyun

    2016-07-01

    To ensure the key structural performance in high-temperature and high-stress environments, thermal barrier coatings (TBCs) are often adopted in engineering. The thickness of these multi-layer conductive coatings is an important quality indicator. In order to measure the thickness of multi-layer conductive coatings, a new measurement approach is presented using eddy current testing techniques, and then, an inversion algorithm is proposed and proved efficient and applicable, of which the maximum experimental relative error is within 10%. Therefore, the new approach can be effectively applied to thickness measurement of multi-layer conductive coatings such as TBCs.

  5. Investigation of drain current transient behavior in SLS TFTs with the DLTS technique

    Energy Technology Data Exchange (ETDEWEB)

    Exarchos, M A [National and Kapodistrian University of Athens, Physics Department, Solid State Physics Section, Athens 15784 (Greece); Papaioannou, G J [National and Kapodistrian University of Athens, Physics Department, Solid State Physics Section, Athens 15784 (Greece); Kouvatsos, D N [N.C.S.R. Demokritos, Institute of Microelecronics, Athens 15310 (Greece); Voutsas, A T [L.C.D. Process Technology Laboratory, SHARP Labs of America, Inc., Washington 98607 (United States)

    2005-01-01

    In this work, the study of drain current overshoot transients of thin film transistors (TFTs) fabricated by excimer laser sequential lateral solidification (ELA SLS) process is presented. Drain current transient behavior, is ascribed to carrier capture/emission processes within the transistors' Si body, and represents complex mechanisms differently responding at dark and under illumination conditions. Additionally, the thickness of the Si body film, which is an important parameter for the material structure evaluation, ranged from 30 nm to 100 nm. The results were stemmed by deep level transient spectroscopy (DLTS) technique and measurements were conducted within the temperature interval of 200 K to 400 K. The impact of illumination, contributes mainly at lower temperatures through electron-hole generation processes, compensating though carrier freeze-out phenomena.

  6. Investigation of drain current transient behavior in SLS TFTs with the DLTS technique

    Science.gov (United States)

    Exarchos, M. A.; Papaioannou, G. J.; Kouvatsos, D. N.; Voutsas, A. T.

    2005-01-01

    In this work, the study of drain current overshoot transients of thin film transistors (TFTs) fabricated by excimer laser sequential lateral solidification (ELA SLS) process is presented. Drain current transient behavior, is ascribed to carrier capture/emission processes within the transistors' Si body, and represents complex mechanisms differently responding at dark and under illumination conditions. Additionally, the thickness of the Si body film, which is an important parameter for the material structure evaluation, ranged from 30 nm to 100 nm. The results were stemmed by deep level transient spectroscopy (DLTS) technique and measurements were conducted within the temperature interval of 200 K to 400 K. The impact of illumination, contributes mainly at lower temperatures through electron-hole generation processes, compensating though carrier freeze-out phenomena.

  7. A Study of Energy Conversion Efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    丁伯江; 匡光力; 刘岳修; 刘登成; 单家方; 刘甫坤; 沈慰慈; 石跃江; 吴振伟; 林建安; 俞家文; 徐汉东; 商连全; 张晓东; 刘小宁; 赵燕平; 李建刚

    2002-01-01

    Ramp-up experiments by means of lower hybrid wave on HT-7 superconducting tokamak have been performed and analyzed. A ramp-up rate of over 300 kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phase. The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current, which is mainly dominated by the competition of impurity concentration with wave accessibility condition. In addition, the effect of current profile may play an important role in determining the conversion efficiency.

  8. A Study of Energy Conversion Efficiency Versus Plasma Density by Lower Hybrid Current Drive in HT—7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    丁伯江; 匡光力; 等

    2002-01-01

    Ramp-up experiments by means of lower hydrid wave on HT-7 superconducting tokamak have been performed and analyzed.A ramp-up rate of over 300kA/s is obtained and a conversion efficiency of over 10% has been achieved during the ramp-up phases.The study of the dependence of conversion efficiency on plasma density shows that the conversion efficiency is affected by the driven current,which is mainly dominated by the competition of impurity concentration with wave accessibility condition.In addition,the effect of current profile may play an important role in determining the conversion efficiency.

  9. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...

  10. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    Science.gov (United States)

    Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.

    2016-08-01

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  11. Technique for the comparison of light spectra from natural and laboratory generated lightning current arcs

    Energy Technology Data Exchange (ETDEWEB)

    Mitchard, D., E-mail: mitcharddr@cardiff.ac.uk; Clark, D.; Carr, D.; Haddad, A. [Morgan-Botti Lightning Laboratory, Advanced High Voltage Research Centre, School of Engineering, Cardiff University, CF24 3AA Wales (United Kingdom)

    2016-08-29

    A technique was developed for the comparison of observed emission spectra from lightning current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural lightning events. A spectrograph system was used in which the wavelength of light emitted by the lightning arc was analyzed to derive elemental interactions. A lightning impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the lightning current and lightning arc length to be investigated. A natural lightning reference spectrum was reconstructed from literature, and generated lightning spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated lightning arc induced via self-breakdown produced a very similar spectrum to that of natural lightning, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of lightning interactions with surrounding media and materials, and in natural phenomena such as recently observed ball lightning.

  12. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    Science.gov (United States)

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-02-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna.

  13. Drive Stands

    Data.gov (United States)

    Federal Laboratory Consortium — The Electrical Systems Laboratory (ESL)houses numerous electrically driven drive stands. A drive stand consists of an electric motor driving a gearbox and a mounting...

  14. Warp Drive - From Imagination to Reality

    Science.gov (United States)

    Gardiner, J.

    The realisation of warp drive is far beyond current science and technology; nevertheless, setting out a timetable for the realisation of warp drive is instructive as this will set expectations for the progress of future research. It is proposed that a time scale for the realisation of warp drive can be estimated by historical analogy with the development of manned space travel to the Moon, using conventional project estimation techniques. A timeline for space travel to the Moon begins with Cyrano de Bergerac's Voyage dans la Lune in 1657 and culminates with the Apollo 11 Moon landing in 1969, a little over 300 years later. A similar timeline for warp drive begins with John W. Campbell's novel Islands of Space in 1930. Fictional conjecture on the warp drive has given way to serious scientific speculation following publication of Alcubierre's seminal warp drive paper in 1994. It is concluded that the realisation of warp drive might be achieved around the year 2180. A projected timetable for the realisation of warp drive through phases of conjecture , speculation , science , technology and application suggests that the warp drive proposal should enter the science phase around the year 2030.

  15. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  16. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  17. Numerical Simulations of Electrokinetic Processes Comparing the Use of a Constant Voltage Difference or a Constant Current as Driving Force

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    materials and the prevention of the reinforced concrete corrosion. The electrical energy applied in an electrokinetic process produces electrochemical reactions at the electrodes. Different electrode processes can occur. When considering inert electrodes in aqueous solutions, the reduction of water...... are transported from the anode to the cathode through the closed electrical circuit of the cell. In the solution, the electrical current is carried by the ions, which move towards the electrode with different charge. Therefore, different authors have studied the system using the circuit theory. Assuming...

  18. Modelling and Simulation of Three Level VSI-Neutral Point Balancing -Fed AC Drive using Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    K.Mohan Krishna

    2015-12-01

    Full Text Available Multilevel inverter topology has developed recently as a very important alternative in the area of high power medium voltage energy control. In multilevel inverter, thethree basic types of topologies used are diode clamped inverter (neutral point clamped, capacitorclamped (flying capacitor and cascaded multi cell with separate dc sources. Multilevel inverters are used in medium voltage and high power applications with less harmonic contents. This paper proposes a software implementation of neutral point clamped (NPC three level voltage source inverter using space vector pulse width modulation (SVPWM techniques. The inverter feeds an electrical system which is controlled by field oriented control (FOC.The improvement of the control technique is achieved using intelligence techniques. The operation of the electrical system is verified in steady state and transient state responses. This software implementation is performed by using matlab/Simulink software. This paper gives comparison between SVPWM three phase three level with neutral point clamped and without neutral point clamped. Finally, the comparative study of different techniques was implemented.

  19. Study of Bridging of the Spectral Gap in the Lower Hybrid Wave Current Drive in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANG Mao; DING Bojiang; XU Handong; ZHAO Lianmin; LIU Liang; LIN Shiyao; XU Ping; SUN Youwen; HU Huaichuan; YANG Yong; JIA Hua; WANG Xiaojie; WANG Dongxia; QIN Yongliang; FENG Jianqiang; LIU Fukun; SHAN Jiafang; ZHAO Yanping; HT-7 team

    2009-01-01

    An additional lower hybrid wave (LHW) with a higher refractive index(N//)was investigated in the HT-7 tokamak to bridge the spectral gap.It was found that the spectral gap between the wave and the electrons in the outer region was bridged by the additional wave with a higher N// spectrum.The results showed that the sawteeth oscillation was suppressed by launching the additional wave,and that the power deposition profile was moved outwards and the current profile was broadened due to the application of the additional wave.Our study indicates that the spectral gap may be bridged by an additional wave with a higher N// spectrum in the outer region.

  20. Quasi-two-dimensional subthreshold current model of deep submicrometer SOI drive-in gate controlled hybrid transistors with lateral non-uniform doping profile

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We have analyzed the operating mechanism of the novel deep submicrometer SOI drive-in gate controlled hybrid transistor (DGCHT), which can effectively alleviate the contradiction between speed enhancement and power reduction in conventional MOS devices and can improve the output resistance. On the basis of this, the subthreshold current model of DGCHTs is proposed. The model takes into account the impact of lateral non-uniform doping profile on body effect, short-channel effect and carrier mobility. Considering the mobile charge, two-dimensional Poisson equation is solved with quasi-two-dimensional analysis and parabolic approximation of surface potential. With the surface potential obtained, the subthreshold current is figured out, including both the diffusion and drift component. The calculated results are in good agreement with the MEDICI numerical simulation results, indicating the correct description of the current characteristics of SOI DGCHT by the presented model. The model can also be considered as an important reference to the current simulation of deep submicrometer MOSFET with pocket implantation.

  1. Evaluation of lung tumor response to therapy: Current and emerging techniques.

    Science.gov (United States)

    Coche, E

    2016-10-01

    Lung tumor response to therapy may be evaluated in most instances by morphological criteria such as RECIST 1.1 on computed tomography (CT) or magnetic resonance imaging (MRI). However, those criteria are limited because they are based on tumoral dimensional changes and do not take into account other morphologic criteria such as density evaluation, functional or metabolic changes that may occur following conventional or targeted chemotherapy. New techniques such as dual-energy CT, PET-CT, MRI including diffusion-weighted MRI has to be considered into the new technical armamentarium for tumor response evaluation. Integration of all informations provided by the different imaging modalities has to be integrated and represents probably the future goal of tumor response evaluation. The aim of the present paper is to review the current and emerging imaging criteria used to evaluate the response of therapy in the field of lung cancer.

  2. Robot-assisted laparoscopic partial nephrectomy: Current review of the technique and literature

    Directory of Open Access Journals (Sweden)

    Singh Iqbal

    2009-01-01

    Full Text Available Aim: To visit the operative technique and to review the current published English literature on the technique, and outcomes following robot-assisted laparoscopic partial nephrectomy (RPN. Materials and Methods: We searched the published English literature and the PubMed (TM for published series of ′robotic partial nephrectomy′ (RPN using the keywords; robot, robot-assisted laparoscopic partial nephrectomy, laparoscopic partial nephrectomy, partial nephrectomy and laparoscopic surgery. Results: The search yielded 15 major selected series of ′robotic partial nephrectomy′; these were reviewed, tracked and analysed in order to determine the current status and role of RPN in the management of early renal neoplasm(s, as a minimally invasive surgical alternative to open partial nephrectomy. A review of the initial peri-operative outcome of the 350 cases of select series of RPN reported in published English literature revealed a mean operating time, warm ischemia time, estimated blood loss and hospital stay, of 191 minutes, 25 minutes, 162 ml and 2.95 days, respectively. The overall computed mean complication rate of RPN in the present select series was about 7.4%. Conclusions: RPN is a safe, feasible and effective minimally invasive surgical alternative to laparoscopic partial nephrectomy for early stage (T 1 renal neoplasm(s. It has acceptable initial renal functional outcomes without the increased risk of major complications in experienced hands. Prospective randomised, controlled, comparative clinical trials with laparoscopic partial nephrectomy (LPN are the need of the day. While the initial oncological outcomes of RPN appear to be favourable, long-term data is awaited.

  3. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review.

    Science.gov (United States)

    Alharbi, Nawal; Wismeijer, Daniel; Osman, Reham B

    The aim of this article was to critically review the current application of additive manufacturing (AM)/3D-printing techniques in prosthodontics and to highlight the influence of various technical factors involved in different AM technologies. A standard approach of searching MEDLINE, EMBASE, and Google Scholar databases was followed. The following search terms were used: (Prosth* OR Restoration) AND (Prototype OR Additive Manufacture* OR Compute* OR 3D-print* OR CAD/CAM) AND (Dentistry OR Dental). Hand searching the reference lists of the included articles and personal connections revealed additional relevant articles. Selection criteria were any article written in English and reporting on the application of AM in prosthodontics from 1990 to February 2016. From a total of 4,290 articles identified, 33 were seen as relevant. Of these, 3 were narrative reviews, 18 were in vitro studies, and 12 were clinical in vivo studies. Different AM technologies are applied in prosthodontics, directly and indirectly for the fabrication of fixed metal copings, metal frameworks for removable partial dentures, and plastic mock-ups and resin patterns for further conventional metal castings. Technical factors involved in different AM techniques influence the overall quality, the mechanical properties of the printed parts, and the total cost and manufacturing time. AM is promising and offers new possibilities in the field of prosthodontics, though its application is still limited. An understanding of these limitations and of developments in material science is crucial prior to considering AM as an acceptable method for the fabrication of dental prostheses.

  4. Minimally invasive surgery of diabetic foot – review of current techniques

    Science.gov (United States)

    I, Botezatu; D, Laptoiu

    2016-01-01

    The term diabetic foot is usually used to indicate advanced foot pathology (complex clinical situations correlating diabetic foot ulcers, diabetic foot infections, Charcot foot, and critical limb ischemia). The early recognition of the etiology of these foot lesions is essential for the therapeutic decision in order to achieve a good functional result. Several surgical procedures involving the foot have been developed in order to promote healing and avoid complications. Traditionally, surgery has been performed in an open way. The literature regarding the performance and efficacy of classical osteotomies and arthrodesis is inconsistent. This can be attributed to several variables, such as differences in patient clinical aspects and the panel of surgical techniques utilized. As with other surgical specialties, fluoroscopic imaging and minimally invasive tools are now being incorporated in these procedures. The use of high speed burrs associated with specialized osteosynthesis implants, offers several advantages over classical techniques. The ability to associate these gestures to complex protocols is beginning to be currently developed. The respect for the soft tissues is considered one of the first advantages. Despite the limited time since they were introduced in clinical practice, functional results seemed to be consistent, supporting the use of this technology. PMID:27974928

  5. Designs and Techniques That Improve the Pullout Strength of Pedicle Screws in Osteoporotic Vertebrae: Current Status

    Directory of Open Access Journals (Sweden)

    Thomas M. Shea

    2014-01-01

    Full Text Available Osteoporosis is a medical condition affecting men and women of different age groups and populations. The compromised bone quality caused by this disease represents an important challenge when a surgical procedure (e.g., spinal fusion is needed after failure of conservative treatments. Different pedicle screw designs and instrumentation techniques have been explored to enhance spinal device fixation in bone of compromised quality. These include alterations of screw thread design, optimization of pilot hole size for non-self-tapping screws, modification of the implant’s trajectory, and bone cement augmentation. While the true benefits and limitations of any procedure may not be realized until they are observed in a clinical setting, axial pullout tests, due in large part to their reproducibility and ease of execution, are commonly used to estimate the device’s effectiveness by quantifying the change in force required to remove the screw from the body. The objective of this investigation is to provide an overview of the different pedicle screw designs and the associated surgical techniques either currently utilized or proposed to improve pullout strength in osteoporotic patients. Mechanical comparisons as well as potential advantages and disadvantages of each consideration are provided herein.

  6. Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status.

    Science.gov (United States)

    Shea, Thomas M; Laun, Jake; Gonzalez-Blohm, Sabrina A; Doulgeris, James J; Lee, William E; Aghayev, Kamran; Vrionis, Frank D

    2014-01-01

    Osteoporosis is a medical condition affecting men and women of different age groups and populations. The compromised bone quality caused by this disease represents an important challenge when a surgical procedure (e.g., spinal fusion) is needed after failure of conservative treatments. Different pedicle screw designs and instrumentation techniques have been explored to enhance spinal device fixation in bone of compromised quality. These include alterations of screw thread design, optimization of pilot hole size for non-self-tapping screws, modification of the implant's trajectory, and bone cement augmentation. While the true benefits and limitations of any procedure may not be realized until they are observed in a clinical setting, axial pullout tests, due in large part to their reproducibility and ease of execution, are commonly used to estimate the device's effectiveness by quantifying the change in force required to remove the screw from the body. The objective of this investigation is to provide an overview of the different pedicle screw designs and the associated surgical techniques either currently utilized or proposed to improve pullout strength in osteoporotic patients. Mechanical comparisons as well as potential advantages and disadvantages of each consideration are provided herein.

  7. Analytical model for Transient Current Technique (TCT) signal prediction and analysis for thin interface characterization

    Science.gov (United States)

    Bronuzzi, J.; Mapelli, A.; Sallese, J. M.

    2016-12-01

    A silicon wafer bonding technique has been recently proposed for the fabrication of monolithic silicon radiation detectors. This new process would enable direct bonding of a read-out electronic chip wafer on a highly resistive silicon substrate wafer. Therefore, monolithic silicon detectors could be fabricated in this way which would allow the free choice of electronic chips and high resistive silicon bulk, even from different providers. Moreover, a monolithic detector with a high resistive bulk would also be available. Electrical properties of the bonded interface are then critical for this application. Indeed, mobile charges generated by radiation inside the bonded bulk are expected to transit through the interface to be collected by the read-out electronics. In order to characterize this interface, the concept of Transient Current Technique (TCT) has been explored by means of numerical simulations combined with a physics based analytical model. In this work, the analytical model giving insight into the physics behind the TCT dependence upon interface traps is validated using both TCAD simulations and experimental measurements.

  8. Pediatric Endoscopic Third Ventriculostomy: A Narrative Review of Current Indications, Techniques and Complications

    Directory of Open Access Journals (Sweden)

    Kaveh Haddadi

    2016-05-01

    Full Text Available Hydrocephalus is a disorder in which excess cerebrospinal fluid (CSF collects in the brain. Possible managements for hydrocephalus contain CSF deviation through ventriculoperitoneal shunt assignment and endoscopic third ventriculostomy. An endoscopic third ventriculostomy has been in trend for the past two decades, as a tool in the field of the neurosurgery, for the management of hydrocephalus. Its utility has been confirmed consistently in congenital and acquired aqueductal stenosis, although the outcomes in communicating hydrocephalus and hydrocephalus secondary to other etiologies have not been impressive. It is a relatively harmless technique with the appropriate selection of patients with a low rate of enduring morbidity. Further studies in child should focus on the predictive factors that are specific to the older population. A combination of clinical, radiological, and intraoperative findings may be necessary to plan a clinical prediction rule suitable to this group of patients. The purpose of this review is to describe the current indications, management outcomes, techniques and complications of this method.

  9. Mesoscale SST-wind stress coupling in the Peru-Chile current system: Which mechanisms drive its seasonal variability?

    Science.gov (United States)

    Oerder, Vera; Colas, François; Echevin, Vincent; Masson, Sebastien; Hourdin, Christophe; Jullien, Swen; Madec, Gurvan; Lemarié, Florian

    2016-10-01

    Satellite observations and a high-resolution regional ocean-atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru-Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.

  10. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population.

    Science.gov (United States)

    Pulido, Francisco; Berthold, Peter

    2010-04-20

    Global warming is impacting biodiversity by altering the distribution, abundance, and phenology of a wide range of animal and plant species. One of the best documented responses to recent climate change is alterations in the migratory behavior of birds, but the mechanisms underlying these phenotypic adjustments are largely unknown. This knowledge is still crucial to predict whether populations of migratory birds will adapt to a rapid increase in temperature. We monitored migratory behavior in a population of blackcaps (Sylvia atricapilla) to test for evolutionary responses to recent climate change. Using a common garden experiment in time and captive breeding we demonstrated a genetic reduction in migratory activity and evolutionary change in phenotypic plasticity of migration onset. An artificial selection experiment further revealed that residency will rapidly evolve in completely migratory bird populations if selection for shorter migration distance persists. Our findings suggest that current alterations of the environment are favoring birds wintering closer to the breeding grounds and that populations of migratory birds have strongly responded to these changes in selection. The reduction of migratory activity is probably an important evolutionary process in the adaptation of migratory birds to climate change, because it reduces migration costs and facilitates the rapid adjustment to the shifts in the timing of food availability during reproduction.

  11. Fed-state gastric media and drug analysis techniques: Current status and points to consider.

    Science.gov (United States)

    Baxevanis, Fotios; Kuiper, Jesse; Fotaki, Nikoletta

    2016-10-01

    Gastric fed state conditions can have a significant effect on drug dissolution and absorption. In vitro dissolution tests with simple aqueous media cannot usually predict drugs' in vivo response, as several factors such as the meal content, the gastric emptying and possible interactions between food and drug formulations can affect drug's pharmacokinetics. Good understanding of the effect of the in vivo fed gastric conditions on the drug is essential for the development of biorelevant dissolution media simulating the gastric environment after the administration of the standard high fat meal proposed by the FDA and the EMA in bioavailability/bioequivalence (BA/BE) studies. The analysis of drugs in fed state media can be quite challenging as most analytical protocols currently employed are time consuming and labour intensive. In this review, an overview of the in vivo gastric conditions and the biorelevant media used for their in vitro simulation are described. Furthermore an analysis of the physicochemical properties of the drugs and the formulations related to food effect is given. In terms of drug analysis, the protocols currently used for the fed state media sample treatment and analysis and the analytical challenges and needs emerging for more efficient and time saving techniques for a broad spectrum of compounds are being discussed.

  12. Mycoplasma pneumoniae: Current knowledge on nucleic acid amplification techniques and serological diagnostics

    Directory of Open Access Journals (Sweden)

    Katherine eLoens

    2016-03-01

    Full Text Available Mycoplasma pneumoniae (M. pneumoniae belongs to the class Mollicutes and has been recognized as a common cause of respiratory tract infections (RTIs, including community-acquired pneumonia (CAP, that occur worldwide and in all age groups. In addition, M. pneumoniae can simultaneously or sequentially lead to damage in the nervous system and has been associated with a wide variety of other acute and chronic diseases. During the past 10 years, the proportion of LRTI in children and adults, associated with M. pneumoniae infection has ranged from 0% to more than 50%. This variation is due to the age and the geographic location of the population examined but also due to the diagnostic methods used. The true role of M. pneumoniae in RTIs remains a challenge given the many limitations and lack of standardization of the applied diagnostic tool in most cases, with resultant wide variations in data from different studies.Correct and rapid diagnosis and/or management of M. pneumoniae infections is, however, critical to initiate appropriate antibiotic treatment and is nowadays usually done by PCR and/or serology. Several recent reviews have summarized current methods for the detection and identification of M. pneumoniae. This review will therefore provide a look at the general principles, advantages, diagnostic value, and limitations of the most currently used detection techniques for the etiological diagnosis of a M. pneumoniae infection as they evolve from research to daily practice.

  13. Research on Characteristic of Sinusoidal Current Driving Method for BLDCM with Hall Position Sensor%基于Hall位置传感器的BLDCM正弦波驱动性能研究

    Institute of Scientific and Technical Information of China (English)

    马瑞卿; 邓钧君

    2011-01-01

    Adriving method of Brushless DC Motor (BLDCM) with sinusoidal current was presented. Space vector pulse width modulation ( SVPWM) techniques was adopted to generate sinusoidal current for motor three-phase windings according to the rotor position information provided by three-phase Hall sensors. The experimental results show that the approach is more effective for the minimization of the torque ripple and audible noise than the traditional square current driving method, and practical for quiet operation in low cost home appliances.%针对稀土永磁无刷直流电机( BLDCM),借助电机本体所固有的三相Hall转子位置传感器,通过空间矢量脉宽调制(SVPWM)控制技术,实现了BLDCM的正弦波电流驱动.实验结果表明,与方波电流驱动相比,采用正弦波驱动可有效减小BLDCM的运行噪声,降低转矩脉动,实现低成本家用电器等领域的静音运行.

  14. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    Energy Technology Data Exchange (ETDEWEB)

    Harzalla, S., E-mail: harzallahozil@yahoo.fr; Chabaat, M., E-mail: mchabaat@yahoo.com [Built Environmental Research Laboratory, Civil Engineering Faculty, University of Sciences and Technology Houari Boumediene, B.P. 32 El Alia Bab-Ezzouar, Algiers 16111 (Algeria); Belgacem, F. Bin Muhammad, E-mail: fbmbelgacem@gmail.com [Department of Mathematics, Faculty of Basic Education, PAAET, Al-Aardhia (Kuwait)

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  15. Current updates on laboratory techniques for the diagnosis of male reproductive failure.

    Science.gov (United States)

    Sikka, Suresh C; Hellstrom, Wayne J G

    2016-01-01

    The incidence of male reproductive failure leading to infertility, whether due to delayed parenthood, environmental issues, genetic factors, drugs, etc., is increasing throughout the world. The diagnosis and prognosis of male subfertility have become a challenge. While the basic semen assessment has been performed for many years, a number of studies question the value of the traditional semen characteristics. This is partly due to inadequate methods and standardization, limited knowledge of technical requirements for quality assurance, and an incomplete understanding of what clinical information a semen assessment can provide. Laboratories currently performing semen and endocrine assessment show great variability. The World Health Organization (WHO) manual for the evaluation of semen has been the core of andrology and fertility evaluation that has helped in further development of this field over many years. These include the physical appearance of the ejaculate, assessments of sperm count, motility, vitality, morphology, and functional aspects of the sperm and semen sample. These tests also include male endocrine profile, biochemical evaluation of the semen, detection of antisperm antibodies in serum, the use of computer-aided sperm analysis (CASA), sperm DNA integrity, and its damage due to oxidative stress. Assisted reproductive techniques (e.g., IVF, ICSI) have shown great success but are too expensive. Further development in this field with newer techniques and extensive training/instructions can improve accuracy and reduce variability, thus maintaining the quality and standards of such an evaluation. There is an urgent need to have standardized training centers and increased awareness in this area of men's health for reproductive success.

  16. Current updates on laboratory techniques for the diagnosis of male reproductive failure

    Directory of Open Access Journals (Sweden)

    Suresh C Sikka

    2016-01-01

    Full Text Available The incidence of male reproductive failure leading to infertility, whether due to delayed parenthood, environmental issues, genetic factors, drugs, etc., is increasing throughout the world. The diagnosis and prognosis of male subfertility have become a challenge. While the basic semen assessment has been performed for many years, a number of studies question the value of the traditional semen characteristics. This is partly due to inadequate methods and standardization, limited knowledge of technical requirements for quality assurance, and an incomplete understanding of what clinical information a semen assessment can provide. Laboratories currently performing semen and endocrine assessment show great variability. The World Health Organization (WHO manual for the evaluation of semen has been the core of andrology and fertility evaluation that has helped in further development of this field over many years. These include the physical appearance of the ejaculate, assessments of sperm count, motility, vitality, morphology, and functional aspects of the sperm and semen sample. These tests also include male endocrine profile, biochemical evaluation of the semen, detection of antisperm antibodies in serum, the use of computer-aided sperm analysis (CASA, sperm DNA integrity, and its damage due to oxidative stress. Assisted reproductive techniques (e.g., IVF, ICSI have shown great success but are too expensive. Further development in this field with newer techniques and extensive training/instructions can improve accuracy and reduce variability, thus maintaining the quality and standards of such an evaluation. There is an urgent need to have standardized training centers and increased awareness in this area of men′s health for reproductive success.

  17. Current knowledge and importance of dGEMRIC techniques in diagnosis of hip joint diseases

    Energy Technology Data Exchange (ETDEWEB)

    Zilkens, Christoph; Krauspe, Ruediger; Bittersohl, Bernd [University of Duesseldorf, Medical Faculty, Department of Orthopedic Surgery, Duesseldorf (Germany); Tiderius, Carl Johann [Lund University Hospital, Department of Orthopedic Surgery, Lund (Sweden)

    2015-08-15

    Accurate assessment of early hip joint cartilage alterations may help optimize patient selection and follow-up of hip joint preservation surgery. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is sensitive to the glycosaminoglycan content in cartilage that is lost early in the development of osteoarthritis (OA). Hence, the dGEMRIC technique holds promise for the development of new diagnostic and therapeutic procedures. However, because of the location of the hip joint deep within the body and due to the fairly thin cartilage layers that require high spatial resolution, the diagnosis of early hip joint cartilage alterations may be problematic. The purpose of this review is to outline the current status of dGEMRIC in the assessment of hip joint cartilage. A literature search was performed with PubMed, using the terms ''cartilage, osteoarthritis, hip joint, MRI, and dGEMRIC'', considering all levels of studies. This review revealed that dGEMRIC can be reliably used in the evaluation of early stage cartilage pathology in various hip joint disorders. Modifications in the technique, such as the operation of three-dimensional imaging and dGEMRIC after intra-articular contrast medium administration, have expanded the range of application. Notably, the studies differ considerably in patient selection and technical prerequisites. Furthermore, there is a need for multicenter prospective studies with the required technical conditions in place to establish outcome based dGEMRIC data to obtain, in conjunction with clinical data, reliable threshold values for normal and abnormal cartilage, and for hips that may benefit from conservative or surgical treatment. (orig.)

  18. 脉冲涡流测厚技术%Thickness Measurement Technique by Pulsed Eddy Current

    Institute of Scientific and Technical Information of China (English)

    吴鑫; 李方奇; 石坤; 谢基龙; 李浩

    2009-01-01

    脉冲涡流检测技术具有频谱宽、信号穿透能力强以及精确度好等优点.对脉冲涡流测厚技术进行了仿真,即针对脉冲涡流测厚系统,建立了有限元分析模型,仿真分析了检测线圈上的电压的衰减规律,得到了检测线圈上的电压随被测体厚度的变化规律,确定了两者之间的定量关系.分析了提离距离、检测线圈参数和脉冲涡流频率对检测结果的影响.该研究为将来进行脉冲涡流测厚仪的研制提供了理论依据和数学模型.%Pulsed eddy current technique had quite a few advantages such as wide spectrum, strong penetration,high accuracy. The experiment was carried out to study the metal thickness measurement of PEC, and a finite element model for the system of the metal thickness measurement of PEC was established. Based on the finite element model established, this thesis analyzed the attenuation law of the voltage in receiving coil By changing the thickness of tested bodies, the relationship between the voltage of receiving coil and the thickness of the testedbodies was analyzed, and also the factors that affected the measuring results such as lift-off distance, parameters of testing coil and frequency of pulsed eddy current were analyzed in detail It provided a theoretical basis and mathematical models for the future development of the PEC gage.

  19. Drugged Driving

    Science.gov (United States)

    ... Parents & Educators Children & Teens Search Connect with NIDA : Google Plus Facebook LinkedIn Twitter YouTube Flickr RSS Menu ... misuse of prescription drugs can make driving a car unsafe—just like driving after drinking alcohol. Drugged ...

  20. Measuring the corrosion rate of steel in concrete – effect of measurement technique, polarisation time and current

    DEFF Research Database (Denmark)

    Nygaard, Peter Vagn; Geiker, Mette Rica

    2012-01-01

    Both on-site investigations and laboratory studies have shown that different corrosion rates are obtained when different commercially available corrosion rate instruments are used. The different electrochemical techniques and the measurement parameters used, i.e. polarisation current and time......, are in some studies considered the main reasons for the variations. This paper presents an experimental study on the quantitative effect of polarisation time and current on the measured polarisation resistance – and thus the corrosion current density – of passively and actively corroding steel. Two...... electrochemical techniques often used in instruments for on-site corrosion rate measurements are investigated. On passively corroding reinforcement the measured polarisation resistance was for both techniques found to be highly affected by the polarisation time and current and no plateaus at either short or long...

  1. Characterization of the multi-component driving land subsidence using Persistent Scatterer Interferometry technique: the Ravenna case of study (Italy)

    Science.gov (United States)

    Bonì, Roberta; Fiaschi, Simone; Calcaterra, Domenico; Di Martire, Diego; Ibrahim, Ahmed; Meisina, Claudia; Perini, Luisa; Ramondini, Massimo; Tessitore, Serena; Floris, Mario

    2015-04-01

    Land subsidence represents a kind of hazard, which affects an increasing number of worldwide regions, densely populated, causing damage to the environment and infrastructures. Settlements can be related to multiple processes both natural and anthropic (i.e. vadose zone processes, soil consolidation, aquifer compaction, solid and fluid extraction and load-induced compaction) which take place at different spatio-temporal scale. Over the last decades, advanced subsidence studies exploited Synthetic-Aperture Radar (SAR) data, a recent remote sensing tool, to investigate land subsidence phenomena around the world. In particular, Persistent Scatterer Interferometry (PSI) technique, allowing a quantitative estimation at high resolution of the surface deformations, has already been successfully applied to monitor the phenomenon evolution; PSI measurements represent the cumulative displacement, deriving from the contribution of natural and anthropic components, both superficial and deep. The overlapping of several causative factors makes more difficult to accurately interpret the resulting deformations; therefore, it is essential to implement a suitable methodology to distinguish the shallow and deep components of motion. The aim of our research is to introduce a PSI-based approach not only to monitoring but also to understand the land subsidence mechanism, in order to disentangle the natural and anthropic components of motion. The methodology consists of three main phases: 1) Post-processing elaborations (i.e. interpolation of the cumulated displacements and isokinetics map implementation); 2) Characterization of the subsidence areas (i.e. subsidence pattern recognition by means of automatic time series classification); 3) Mechanisms recognition (i.e. identification of the predisposing and triggering factors and comparison with lito-technical model of subsoil, and with earth measurements). In this work, the methodology has been applied to the Ravenna area, Italy, using

  2. Resurgent Na+ current in pyramidal neurones of rat perirhinal cortex: axonal location of channels and contribution to depolarizing drive during repetitive firing

    Science.gov (United States)

    Castelli, Loretta; Biella, Gerardo; Toselli, Mauro; Magistretti, Jacopo

    2007-01-01

    The perirhinal cortex (PRC) is a supra-modal cortical area that collects and integrates information originating from uni- and multi-modal neocortical regions and directed to the hippocampus. The mechanisms that underlie the specific excitable properties of the different PRC neuronal types are still largely unknown, and their elucidation may be important in understanding the integrative functions of PRC. In this study we investigated the expression and properties of resurgent Na+ current (INaR) in pyramidal neurones of rat PRC area 35 (layer II). Patch-clamp experiments in acute PRC slices were first carried out. A measurable INaR was expressed by a large majority of neurones (31 out of 35 cells). INaR appeared as an inward, slowly decaying current elicited upon step repolarization after depolarizations sufficient to induce nearly complete inactivation of the transient Na+ current (INaT). INaR had a peak amplitude of ∼2.5% that of INaT, and showed the typical biophysical properties also observed in other neuronal types (i.e. cerebellar Purkinje and granule cells), including a bell-shaped current–voltage relationship with a peak at approximately −40 mV, and a characteristic acceleration of activation and decay speed at potentials negative to −45 mV. Current-clamp experiments were then carried out in which repetitive action-potential discharge at various frequencies was induced with depolarizing current injection. The voltage signals thus obtained were then used as command waveforms for voltage-clamp recordings. These experiments showed that a Na+ current identifiable as INaR activates in the early interspike phase even at relatively high firing frequencies (20 Hz), thereby contributing to the depolarizing drive and possibly enhancing repetitive discharge. In acutely dissociated area 35 layer II neurones, as well as in nucleated patches from the same neurones, INaR was never observed, despite the presence of typical INaTs. Since in both preparations neuronal

  3. [Current status of mangrove germplasm resources and key techniques for mangrove seedling propagation in China].

    Science.gov (United States)

    Hu, Hong-You; Chen, Shun-Yang; Wang, Wen-Qing; Dong, Ke-Zuan; Lin, Guang-Hui

    2012-04-01

    Mangrove germplasm and nursery operation are the foundations of all mangrove ecological restoration projects. Based on the existing literatures and our own experiences, and by using cluster analysis and other methods, this paper assessed the current status of the mangrove germplasm resources and the key techniques for mangrove seedlings propagation in China. In China, the mangrove communities could be divided into 4 types, including low temperature tolerant widespread type, widespread type, thermophilic widespread type, and tropical type, and the mangrove distribution sites could be divided into 5 regions, i. e., eastern Hainan coast, Beibuwan Gulf coast, Pearl River estuary and eastern Guangdong coast, southern Fujian and Taiwan coast, and eastern Fujian and southern Zhejiang coast. The mangroves in Beibuwan Gulf coast region took up 75.3% of the total mangrove germplasm resources in the country. At present, the percentage of the mangrove species applied for seedling propagation in China was estimated at 52.6%, most of which were of viviparous species. The six key steps in mangrove nursery operation included the selection of proper seedling propagation methods, the collection and storage of seeds or propagules, the ways of raising seedlings, the management of water and salinity, the control of diseases and pests, and the prevention of cold damage during winter. The structure, functions, and applieations of the present five types of mangrove nurseries, including dry land nursery, mangrove tidal nursery, mudflat nursery, Jiwei pond nursery, and Spartina mudflat nursery, were also analyzed, which could provide guidance for the integrated management of mangrove ecological restoration engineering.

  4. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  5. Single-to-three phase induction motor sensorless drive system

    Directory of Open Access Journals (Sweden)

    Z.M.S. El-Barbary

    2012-06-01

    Full Text Available This paper presented a single to three-phase induction motor drive system to provide variable output voltage and frequency. The proposed drive system employs only six IGBT switches, which form the front-end rectifier and the output inverter for the one step conversion from single-phase supply to output three-phase supply. The front-end rectifier permits bidirectional power flow and provides excellent regulation against fluctuations in source voltage. Moreover, it incorporates active input current shaping feature. The control strategy of the proposed drive system of three-phase induction motor is based on speed sensorless vector control technique. A low cost of motor drive and much more advantages can be achieved using the proposed drive system. Simulation and experimental results are carried out to analysis and explore the characteristics of the proposed drive system.

  6. It does not always have to be three-phase current. Digitalisation makes dc drives still attractive. Es muss nicht immer Drehstrom sein. Digitalisierung macht Gleichstromantriebe weiter attraktiv

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, W. (ABB Antriebstechnik GmbH, Lampertheim (Germany))

    1992-01-31

    The stormy development of three-phase drives has replaced the dc systems in mechanical engineering and plant engineering partially, but the dc drive has managed to preserve its attractivity. Digitalisation sees to it. The progress made here is proved by the example a digital compact power converter of the second generation. (orig.).

  7. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Baskevicius, A. [Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10222 Vilnius (Lithuania)

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  8. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Science.gov (United States)

    Gaubas, E.; Ceponis, T.; Pavlov, J.; Baskevicius, A.

    2014-02-01

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  9. Ionic Current Mapping Techniques and Applications to Aluminum-Copper Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, H. S.; Jeffcoate, C. S.; Missert, N. A.; Barbour, J. C.

    1999-10-17

    Measurements have been made of the aluminum/metal galvanic couple. A wide range of geometries were investigated varying the areas of anodic and cathodic surfaces and employing specially designed galvanic cells with crevices. In situ ionic current density mapping was used to monitor galvanic corrosion and currents flowing between separated metals was measured.

  10. A comparison of two-dimensional techniques for converting magnetocardiogram maps into effective current source distributions.

    Science.gov (United States)

    Ogata, K; Kandori, A; Miyashita, T; Sekihara, K; Tsukada, K

    2011-01-01

    The aim of this study was to develop a method for converting the pseudo two-dimensional current given by a current-arrow map (CAM) into the physical current. The physical current distribution is obtained by the optimal solution in a least mean square sense with Tikhonov regularization (LMSTR). In the current dipole simulation, the current pattern differences (ΔJ) between the results of the CAM and the LMSTR with several regularization parameters (α = 10(-1)-10(-15)) are calculated. In magnetocardiographic (MCG) analysis, the depth (z(d)) of a reconstruction plane is chosen by using the coordinates of the sinus node, which is estimated from MCG signals at the early p-wave. The ΔJs at p-wave peaks, QRS-complex peaks, and T-wave peaks of MCG signals for healthy subjects are calculated. Furthermore, correlation coefficients and regression lines are also calculated from the current values of the CAM and the LMSTR during p-waves, QRS-complex, and T-waves of MCG signals. In the simulation, the ΔJs (α ≈ 10(-10)) had a minimal value. The ΔJs (α = 10(-10)) at p-wave peaks, QRS-complex peaks, and T-wave peaks of MCG signals for healthy subjects also had minimal value. The correlation coefficients of the current values given by the CAM and the LMSTR (α = 10(-10)) were greater than 0.9. Furthermore, slopes (y) of the regression lines are correlated with the depth (z(d)) (r = -0.93). Consequently, the CAM value can be transformed into the LMSTR current value by multiplying it by the slope (y) obtained from the depth (z(d)). In conclusion, the result given by the CAM can be converted into an effective physical current distribution by using the depth (z(d)).

  11. Predicting core losses and efficiency of SRM in continuous current mode of operation using improved analytical technique

    Energy Technology Data Exchange (ETDEWEB)

    Parsapour, Amir, E-mail: amirparsapour@gmail.com [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Dehkordi, Behzad Mirzaeian, E-mail: mirzaeian@eng.ui.ac.ir [Department of Electrical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of); Moallem, Mehdi, E-mail: moallem@cc.iut.ac.ir [Department of Electrical Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-03-15

    In applications in which the high torque per ampere at low speed and rated power at high speed are required, the continuous current method is the best solution. However, there is no report on calculating the core loss of SRM in continuous current mode of operation. Efficiency and iron loss calculation which are complex tasks in case of conventional mode of operation is even more involved in continuous current mode of operation. In this paper, the Switched Reluctance Motor (SRM) is modeled using finite element method and core loss and copper loss of SRM in discontinuous and continuous current modes of operation are calculated using improved analytical techniques to include the minor loop losses in continuous current mode of operation. Motor efficiency versus speed in both operation modes is obtained and compared. - Highlights: • Continuous current method for Switched Reluctance Motor (SRM) is explained. • An improved analytical technique is presented for SRM core loss calculation. • SRM losses in discontinuous and continuous current operation modes are presented. • Effect of mutual inductances on SRM performance is investigated.

  12. Current and Ongoing Internet Crime Tendencies and Techniques. Preventive Legislation Measures in Romania

    Directory of Open Access Journals (Sweden)

    Florin Postolache

    2010-06-01

    Full Text Available Internet crime techniques that pilfer from victims millions each year continue to plague the Internet through a range of methods. Trends and techniques identified by many organizations along with itsdescription are followed by preventative measures that will support you in being informed prior to entering into dealings and transactions over the Internet. Techniques as Auction Fraud, Counterfeit Cashier's Check, Credit Card Fraud, Debt Elimination, Parcel Courier Email Scheme, Employment/Business Opportunities,Escrow Services Fraud, Identity Theft, Internet Extortion, Investment Fraud, Lotteries, Nigerian Letter or "419", Phishing/Spoofing, Ponzi/Pyramid, Reshipping, Spam, Third Party Receiver of Funds are clarified in this paper and, also the internet crime prevention and legislative measures are treated, too.

  13. Laparoscopic Nephroureterectomy and Management of the Distal Ureter: A Review of Current Techniques and Outcomes

    Science.gov (United States)

    Viprakasit, Davis P.; Macejko, Amanda M.; Nadler, Robert B.

    2009-01-01

    Laparoscopic nephroureterectomy (LNU) is becoming an increasingly common alternative treatment for transitional cell carcinoma (TCC) of the renal pelvis and ureter due to decreased perioperative morbidity, shorter hospitalization, and comparable oncologic control with open nephroureterectomy (ONU). Mobilization of the kidney and proximal ureter may be performed through a transperitoneal, retroperitoneal, or hand-assisted approach. Each technique is associated with its own benefits and limitations, and the optimal approach is often dictated by surgeon preference. Our analysis of the literature reflects equivalent cancer control between LPN and OPN at intermediate follow-up with significantly improved perioperative morbidity following LPN. Several methods for bladder cuff excision have been advocated, however, no individual technique for management of the distal ureter proved superior. Overall, complete en-bloc resection with minimal disruption of the urinary tract should be optimized to maintain oncologic outcomes. Longer follow-up and prospective studies are needed to fully evaluate these techniques. PMID:19148293

  14. Is the trocar technique for tube thoracostomy safe in the current era?

    Science.gov (United States)

    John, Mohan; Razi, Syed; Sainathan, Sandeep; Stavropoulos, Christos

    2014-07-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was, 'in adult patients who require a tube thoracostomy, is the trocar technique comparable to blunt dissection in terms of rate of tube malposition or complications?' Altogether more than 258 papers were found using the reported search, of which 7 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers were tabulated. The articles included two retrospective reviews, three prospective observational studies and two prospective randomized studies. Of these, four papers concluded that the trocar technique was associated with a significantly higher rate of tube malposition and complications. One retrospective review found that the rate of tube malposition was similar in both groups; however, the trocar technique was abandoned due to the occurrence of severe complications like lung and stomach injury. Another study found that blunt dissection into the pleural space followed by the use of a trocar to direct the chest tube was as safe as and even more effective than blunt dissection alone. A randomized prospective study in cadavers comparing blunt vs sharp tip trocars reported that the use of blunt tip trocars resulted in less complications. We conclude that the trocar technique for chest tube placement should be avoided in adult patients as it is associated with a higher incidence of malposition and complications. The blunt dissection technique with digital exploration of the pleural cavity prior to chest tube placement is the safest technique and should be considered standard practice. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  16. Current status and prospects of nuclear physics research based on tracking techniques

    Science.gov (United States)

    Alekseev, V. A.; Alexandrov, A. B.; Bagulya, A. V.; Chernyavskiy, M. M.; Goncharova, L. A.; Gorbunov, S. A.; Kalinina, G. V.; Konovalova, N. S.; Okatyeva, N. M.; Pavlova, T. A.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymirov, M. S.; Volkov, A. E.

    2017-01-01

    Results of nuclear physics research made using track detectors are briefly reviewed. Advantages and prospects of the track detection technique in particle physics, neutrino physics, astrophysics and other fields are discussed on the example of the results of the search for direct origination of tau neutrino in a muon neutrino beam within the framework of the international experiment OPERA (Oscillation Project with Emulsion-tRacking Apparatus) and works on search for superheavy nuclei in nature on base of their tracks in meteoritic olivine crystals. The spectra of superheavy elements in galactic cosmic rays are presented. Prospects of using the track detection technique in fundamental and applied research are reported.

  17. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Workpackage 6, Driver Behaviour Monitoring through Naturalistic Driving: Deliverable 6.2: Part B: Sampling techniques and naturalistic driving study design.

    NARCIS (Netherlands)

    Commandeur, J.J.F.

    2015-01-01

    In this document we provide an overview of sampling and estimation methods that can be used to obtain population values of risk exposure data and safety performance indicators based on naturalistic driving study designs. More specifically, we discuss how to determine the optimal sample size required

  18. GATE REPLACEMENT TECHNIQUE FOR REDUCING LEAKAGE CURRENT IN WALLACE TREE MULTIPLIER

    Directory of Open Access Journals (Sweden)

    Naveen Raman

    2013-01-01

    Full Text Available Leakage power has become more significant in the power dissipation of today’s CMOS circuits. This affects the portable battery operated devices directly. The multipliers are the main key for designing an energy efficient processor, where the multiplier design decides the digital signal processors efficiency. In this study gate replacement technique is used to reduce the leakage power in 4×4 Wallace tree multiplier architecture which has been designed by using one bit full adders. This technique replaces the gate which is at worst leakage state by a library gate .In this technique the actual output logic state is maintained in active mode. The main objective of our study is to calculate leakage power in 4×4 Wallace tree multiplier by applied gate replacement technique and it is compared with 4×4 Wallace tree full adder multiplier. The proposed method reduces 43% of leakage power in 4×4 Wallace tree multiplier.

  19. Current status of adult-to-adult living donor liver transplantation: surgical techniques and innovations

    Institute of Scientific and Technical Information of China (English)

    YAN Lü-nan; WU Hong; CHEN Zhe-yu; LIN Yi-xin

    2009-01-01

    @@ In response to critical organ shortage, transplant surgeons have utilized living donors in an attempt to decrease the mortality rate associated with waiting on the liver transplant list. Although the surgical techniques were first utilized clinically 15 years ago, the application of living donor liver transplantation (LDLT) has been somewhat limited by the steep learning curve associated with developing a program.

  20. Current Evidence on the Socket-Shield Technique: A Systematic Review.

    Science.gov (United States)

    Gharpure, Amit Srikant; Bhatavadekar, Neel B

    2016-11-29

    The recently popularised socket shield technique involves intentional retention of a thin buccal section of the remnant root at the time of immediate implant placement to preserve the buccal crestal bone from resorption. The objective of this systematic review was to assess the literature available on the socket-shield technique and weigh its biological plausibility and long-term clinical prognosis. A Systematic Search was performed in PubMed-Medline, Embase, Web of Knowledge, Google Scholar and Cochrane Central for clinical/ animal studies up to May 2016 without restrictions of language, duration, and follow-up. The literature search revealed that 15 out of 16 articles available were case reports and series, with 12 out of 16 having less than 12 months duration. Animal histological evidence demonstrated the formation of PDL and/or cementum on the implant surfaces in contact with/ in proximity to the socket-shield. Some clinical reports indicated stable results at 12 months; however, a few studies also reported infection and resorption of the socket-shield and bone loss. It would be difficult to predict the long -term success of this technique until high-quality evidence becomes available. Given some negative results, clinicians are recommended to use this technique with caution.

  1. The role of ultrasound elastographic techniques in chronic liver disease: Current status and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Piscaglia, Fabio, E-mail: fabio.piscaglia@unibo.it [Division of Internal Medicine, University of Bologna, General and University Hospital S. Orsola-Malpighi, Bologna (Italy); Marinelli, Sara, E-mail: sara_marinelli@libero.it [Division of Internal Medicine, University of Bologna, General and University Hospital S. Orsola-Malpighi, Bologna (Italy); Bota, Simona, E-mail: bota_simona1982@yahoo.com [Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara (Romania); Serra, Carla, E-mail: carla.serra@aosp.bo.it [Division of Medical Liver Transplant Care, General and University Hospital S. Orsola-Malpighi, Bologna (Italy); Venerandi, Laura, E-mail: laura.venerandi@gmail.com [Division of Internal Medicine, University of Bologna, General and University Hospital S. Orsola-Malpighi, Bologna (Italy); Leoni, Simona, E-mail: leonisimona@yahoo.it [Division of Internal Medicine, University of Bologna, General and University Hospital S. Orsola-Malpighi, Bologna (Italy); Salvatore, Veronica, E-mail: veronica.salvatore@unibo.it [Division of Internal Medicine, University of Bologna, General and University Hospital S. Orsola-Malpighi, Bologna (Italy)

    2014-03-15

    This review illustrates the state of the art clinical applications and the future perspectives of ultrasound elastographic methods for the evaluation of chronic liver diseases, including the most widely used and validated technique, transient elastography, followed by shear wave elastography and strain imaging elastography. Liver ultrasound elastography allows the non-invasive evaluation of liver stiffness, providing information regarding the stage of fibrosis, comparable to liver biopsy which is still considered the gold standard; in this way, it can help physicians in managing patients, including the decision as to when to start antiviral treatment. The characterization of focal liver lesions and the prognostic role of the elastographic technique in the prediction of complications of cirrhosis are still under investigation.

  2. Plasma-based ambient mass spectrometry techniques: The current status and future prospective.

    Science.gov (United States)

    Ding, Xuelu; Duan, Yixiang

    2015-01-01

    Plasma-based ambient mass spectrometry is emerging as a frontier technology for direct analysis of sample that employs low-energy plasma as the ionization reagent. The versatile sources of ambient mass spectrometry (MS) can be classified according to the plasma formation approaches; namely, corona discharge, glow discharge, dielectric barrier discharge, and microwave-induced discharge. These techniques allow pretreatment-free detection of samples, ranging from biological materials (e.g., flies, bacteria, plants, tissues, peptides, metabolites, and lipids) to pharmaceuticals, food-stuffs, polymers, chemical warfare reagents, and daily-use chemicals. In most cases, plasma-based ambient MS performs well as a qualitative tool and as an analyzer for semi-quantitation. Herein, we provide an overview of the key concepts, mechanisms, and applications of plasma-based ambient MS techniques, and discuss the challenges and outlook.

  3. Average OH density in alternating current dielectric barrier discharge by laser-induced fluorescence technique

    Science.gov (United States)

    Yang, Hongliang; Feng, Chunlei; Gao, Liang; Ding, Hongbin

    2015-10-01

    The average OH density in atmospheric He-H2O(0.4%) needle-plate dielectric barrier discharge (DBD) was measured by the asynchronous laser-induced fluorescence (LIF) technique and the fluctuation of OH radical density was measured simultaneously to prove that the average OH density can be obtained by the asynchronous LIF technique. The evolution of the average OH density in four different discharge patterns, namely, negative barrier corona discharge, glow discharge, multi glow discharge, and streamer discharge, was studied, and it was found that the average OH density has an observable increase from corona discharge to streamer discharge. The main mechanism of OH production in the four different discharge patterns was analyzed. It was shown that the main mechanism of OH production in negative barrier corona discharge is electron direct collision dissociation, whereas in the other three discharge patterns the He metastable Penning ionization is the main process.

  4. Artificial chordae for degenerative mitral valve disease: critical analysis of current techniques

    Science.gov (United States)

    Ibrahim, Michael; Rao, Christopher; Athanasiou, Thanos

    2012-01-01

    The surgical repair of degenerative mitral valve disease involves a number of technical points of importance. The use of artificial chordae for the repair of degenerative disease has increased as a part of the move from mitral valve replacement to repair of the mitral valve. The use of artificial chordae provides an alternative to the techniques pioneered by Carpentier (including the quadrangular resection, transfer of native chordae and papillary muscle shortening/plasty), which can be more technically difficult. Despite a growth in their uptake and the indications for their use, a number of challenges remain for the use of artificial chordae in mitral valve repair, particularly in the determination of the correct length to ensure optimal leaflet coaptation. Here, we analyse over 40 techniques described for artificial chordae mitral valve repair in the setting of degenerative disease. PMID:22962321

  5. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    Directory of Open Access Journals (Sweden)

    Maciej Tankiewicz

    2011-11-01

    Full Text Available Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper.

  6. DDoS Attack and Defense: Review of Some Traditional and Current Techniques

    OpenAIRE

    Aamir, Muhammad; ZAIDI, Mustafa Ali

    2014-01-01

    Distributed Denial of Service (DDoS) attacks exhaust victim's bandwidth or services. Traditional architecture of Internet is vulnerable to DDoS attacks and an ongoing cycle of attack & defense is observed. In this paper, different types and techniques of DDoS attacks and their countermeasures are reviewed. The significance of this paper is the coverage of many aspects of countering DDoS attacks including new research on the topic. We survey different papers describing methods of defense again...

  7. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  8. Shoulder arthroplasty in osteoarthritis: current concepts in biomechanics and surgical technique

    OpenAIRE

    MEROLLA, GIOVANNI; Nastrucci, Guglielmo; Porcellini, Giuseppe

    2013-01-01

    Shoulder arthroplasty is a technically demanding procedure to restore shoulder function in patients with severe osteoarthritis of the glenohumeral joint. The modern prosthetic system exploit the benefits of modularity and the availibility of additional sizes of the prosthetic components. In this paper we describe the biomechanics of shoulder arthroplasty and the technique for shoulder replacement including total shoulder arthroplasty (TSA) with all-polyethylene and metal-backed glenoid compon...

  9. Techniques of tumour bed boost irradiation in breast conserving therapy: Current evidence and suggested guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Rakesh; Singh, Suruchi; Budrukkar, Ashwini [Tata Memorial Hospital, Mumbai (India)

    2007-10-15

    Breast conservation surgery followed by external beam radiotherapy to breast has become the standard of care in management of early carcinoma breast. A boost to the tumour bed after whole breast radiotherapy is employed in view of the pattern of tumour bed recurrences in the index quadrant and was particularly considered in patients with some adverse histopathological characteristics such as positive margins, extensive intraductal carcinoma (EIC), lymphovascular invasion (LVI), etc. There is however, now, a conclusive evidence of improvement in local control rates after a boost radiotherapy dose in patients even without such factors and for all age groups. The maximum absolute reduction of local recurrences by the addition of boost is especially seen in young premenopausal patients. At the same time, the addition of boost is associated with increased risk of worsening of cosmesis and no clear cut survival advantage. Radiological modalities such as fluoroscopy, ultrasound and CT scan have aided in accurate delineation of tumour bed with increasing efficacy. A widespread application of these techniques might ultimately translate into improved local control with minimal cosmetic deficit. The present article discusses the role of radiotherapy boost and the means to delineate and deliver the same, identify the high risk group, optimal technique and the doses and fractionations to be used. It also discusses the extent of adverse cosmetic outcome after boost delivery, means to minimise it and relevance of tumour bed in present day scenario of advanced radiotherapy delivery techniques like (IMRT)

  10. Distracted Driving

    Science.gov (United States)

    ... What's this? Submit What's this? Submit Button Distracted Driving Recommend on Facebook Tweet Share Compartir Each day in the United States, over 8 people are killed and 1,161 injured in crashes ...

  11. DRIVING GREEN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China is promoting environmentally friendly cars to save energy and protect the environment While people enjoy the pleasure and convenience of driving, they are also creating and breathing more and more toxic

  12. Elbow hemiarthroplasty for the management of distal humeral fractures: current technique, indications and results

    OpenAIRE

    Phadnis, Joideep; Adam C. Watts; Bain, Gregory I

    2016-01-01

    There has been a growing recent interest in the use of elbow hemiarthroplasty for the treatment of distal humeral trauma in select patients. However, the current available evidence regarding outcome after elbow hemiarthroplasty is limited to case series and biomechanical data. Consequently, the procedure remains unfamiliar to many surgeons. The aim of the present review is to outline the evidence regarding elbow hemiarthroplasty and to use this, along with the author’s experience, to better d...

  13. Neuromuscular electrostimulation techniques: historical aspects and current possibilities in treatment of pain and muscle waisting.

    Science.gov (United States)

    Heidland, August; Fazeli, Gholamreza; Klassen, André; Sebekova, Katarina; Hennemann, Hans; Bahner, Udo; Di Iorio, Biagio

    2013-01-01

    Application of electricity for pain treatment dates back to thousands of years BC. The Ancient Egyptians and later the Greeks and Romans recognized that electrical fishes are capable of generating electric shocks for relief of pain. In the 18th and 19th centuries these natural producers of electricity were replaced by man-made electrical devices. This happened in following phases. The first was the application of static electrical currents (called Franklinism), which was produced by a friction generator. Christian Kratzenstein was the first to apply it medically, followed shortly by Benjamin Franklin. The second phase was Galvanism. This method applied a direct electrical current to the skin by chemical means, applied a direct and pulsed electrical current to the skin. In the third phase the electrical current was induced intermittently and in alternate directions (called Faradism). The fourth stage was the use of high frequency currents (called d'Arsonvalisation). The 19th century was the "golden age" of electrotherapy. It was used for countless dental, neurological, psychiatric and gynecological disturbances. However, at beginning of the 20th century electrotherapy fell from grace. It was dismissed as lacking a scientific basis and being used also by quacks and charlatans for unserious aims. Furthermore, the development of effective analgesic drugs decreased the interest in electricity. In the second half of the 20th century electrotherapy underwent a revival. Based on animal experiments and clinical investigations, its neurophysiological mechanisms were elucidated in more details. The pain relieving action of electricity was explained in particular by two main mechanisms: first, segmental inhibition of pain signals to the brain in the dorsal horn of the spinal cord and second, activation of the descending inhibitory pathway with enhanced release of endogenous opioids and other neurochemical compounds (serotonin, noradrenaline, gamma aminobutyric acid (GABA

  14. Endoscopic button gastrostomy: Comparing a sutured endoscopic approach to the current techniques.

    Science.gov (United States)

    Gonzalez-Hernandez, Jessica; Daoud, Yahya; Fischer, Anne C; Barth, Bradley; Piper, Hannah G

    2016-01-01

    Button gastrostomy is the preferred feeding device in children and can be placed open or laparoscopically (LBG). Alternatively, a percutaneous endoscopic gastrostomy (PEG) can be placed initially and exchanged for a button. Endoscopic-assisted button gastrostomy (EBG) combines both techniques, using only one incision and suturing the stomach to the abdominal wall. The long-term outcomes and potential costs for EBG were compared to other techniques. Children undergoing EBG, LBG, and PEG (2010-2013) were compared. Patient demographics, procedure duration/complications, and clinic and emergency room (ER) visits for an eight-week follow-up period were compared. Patient demographics were similar (32 patients/group). Mean procedure time (min) for EBG was 38 ± 9, compared to 58 ± 20 for LBG and 31 ± 10 for PEG (pbutton gastrostomy. EBG is safe and comparable to LBG and PEG in terms of complications. It has a shorter procedure time than LBG and does not require laparoscopy, device exchange, or subsequent fluoroscopic confirmation, potentially reducing costs. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Advanced computer techniques for inverse modeling of electric current in cardiac tissue

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

    1996-08-01

    For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

  16. Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads

    DEFF Research Database (Denmark)

    Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel

    2014-01-01

    The global trends nowadays in the power generation industry are to supplement the electricity production using distributed generation (DG) technologies based on renewable energy resources such as photovoltaic, wind power, etc. However, failure to properly control the operation of distributed energy...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... in the total harmonic distortion of grid currents. © 2012 Springer-Verlag Berlin Heidelberg....

  17. Chosen Aspects Of Investigations Of Solar Cells With The Laser Beam Induced Current Technique

    Directory of Open Access Journals (Sweden)

    Chrobak Łukasz Bartłomiej

    2015-06-01

    Full Text Available This paper presents maps of spatial distributions of the short circuit current Isc(x,y and the open circuit voltage Uoc(x,y of the investigated low cost solar cells. Visible differences in values of these parameters were explained by differences in the serial and shunt resistances determined for different points of solar cells from measurements of I–V characteristics. The spectral dependence of the photo voltage of solar cell is also shown, discussed and interpreted in the model of amorphous and crystal silicon.

  18. Current techniques in the performance, interpretation, and reporting of CT colonography.

    Science.gov (United States)

    Poullos, Peter D; Beaulieu, Christopher F

    2010-04-01

    The technical objective of computed tomographic colonography (CTC) is to acquire high-quality computed tomography images of the cleansed, well-distended colon for polyp detection. In this article the authors provide an overview of the technical components of CTC, from preparation of the patient to acquisition of the imaging data and basic methods of interpretation. In each section, the best evidence for current practices and recommendations is reviewed. Each of the technical components must be optimized to achieve high sensitivity in polyp detection.

  19. Breast reconstruction with anatomical implants: A review of indications and techniques based on current literature

    Directory of Open Access Journals (Sweden)

    Marco Gardani

    2017-09-01

    Full Text Available One important modality of breast cancer therapy is surgical treatment, which has become increasingly less mutilating over the last century. Breast reconstruction has become an integrated part of breast cancer treatment due to long-term psychosexual health factors and its importance for breast cancer survivors. Both autogenous tissue-based and implant-based reconstruction provides satisfactory reconstructive options due to better surgeon awareness of “the ideal breast size”, although each has its own advantages and disadvantages. An overview of the current options in breast reconstruction is presented in this article.

  20. Current techniques for high-resolution mapping of behavioral circuits in Drosophila.

    Science.gov (United States)

    Sivanantharajah, Lovesha; Zhang, Bing

    2015-09-01

    Understanding behavior requires unraveling the mysteries of neurons, glia, and their extensive connectivity. Drosophila has emerged as an excellent organism for studying the neural basis of behavior. This can be largely attributed to the extensive effort of the fly community to develop numerous sophisticated genetic tools for visualizing, mapping, and manipulating behavioral circuits. Here, we attempt to highlight some of the new reagents, techniques and approaches available for dissecting behavioral circuits in Drosophila. We focus on detailing intersectional strategies such as the Flippase-induced intersectional Gal80/Gal4 repression (FINGR), because of the tremendous potential they possess for mapping the minimal number of cells required for a particular behavior. The logic and strategies outlined in this review should have broad applications for other genetic model organisms.

  1. Current Methods to Assess Human Cutaneous Blood Flow: An Updated Focus on Laser-Based-Techniques.

    Science.gov (United States)

    Cracowski, Jean-Luc; Roustit, Matthieu

    2016-07-01

    Several noninvasive techniques have been developed using laser light interaction in the skin to explore the skin's microcirculation. Combined with laser Doppler or LSCI, reactivity tests are used to explore skin endothelial and neurovascular function in humans, including PORH, LTH, PIV, and iontophoresis of vasodilators. Recent advances in our comprehension of the physiological pathways underlying these reactivity tests have been possible through topical or intradermal delivery of drugs that produce elevated local concentrations. Skin microvascular function has also been proposed as a prognostic biomarker or for evaluating the effect of drugs. Comprehension of the physiological pathways, together with recent technological improvements in microcirculation imaging, has provided reliable and reproducible tools to study skin microcirculation.

  2. The edge transient-current technique (E-TCT) with high energy hadron beam

    Science.gov (United States)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  3. Non-Invasive Glucose Monitoring Techniques: A review and current trends

    CERN Document Server

    Poddar, Raju; Shukla, Pratyoosh; Sen, Pratima

    2008-01-01

    Diabetes mellitus is a complex group of syndromes that have in common a disturbance in the body's use of glucose, resulting in an elevated blood sugar. Once detected, sugar diabetes can be controlled by an appropriate regimen that should include diet therapy, a weight reduction program for those persons who are overweight, a program of exercise and insulin injections or oral drugs to lower blood glucose. Blood glucose monitoring by the patient and the physician is an important aspect in the control of the devastating complications (heart disease, blindness, kidney failure or amputations) due to the disease. Intensive therapy and frequent glucose testing has numerous benefits. With ever improving advances in diagnostic technology, the race for the next generation of bloodless, painless, accurate glucose instruments has begun. In this paper, we reviewed various methods, techniques and approaches successfully demonstrated for measuring or monitoring blood glucose. Invasive, minimally invasive and noninvasive tec...

  4. Current and emerging techniques for contaminant mapping and data visualization at DNAPL sites

    DEFF Research Database (Denmark)

    Wealthall, Gary; Durant, Neal; Grosen, Bernt

    Recent advances in the development of contaminant specific site investigation tools has significantly enhanced our ability to characterize the spatial architecture of DNAPL source zones in both sedimentary and fractured bedrock environments. The application of innovative site characterization...... methods will be discussed in the context of contaminant delineation, remediation design, technology verification and regulatory acceptance. We present a range of site investigation tools, based on the principle of combined lines of evidence and the premise that a single technique is not available to fully...... delineate DNAPL distribution in the subsurface. Key to this strategy is the selection of technologies with multiple scales of measurement and data quality, of which there are two main categories. The first category provides qualitative, dense spatial data, often with higher detection limits over a preset...

  5. The edge transient-current technique (E-TCT) with high energy hadron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor [J. Stefan Institute, Ljubljana (Slovenia); Mikuž, Marko [J. Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Muškinja, Miha; Zavrtanik, Marko [J. Stefan Institute, Ljubljana (Slovenia)

    2016-09-21

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  6. A Generic Current Mode Design for Multifunction Grounded Capacitor Filters Employing Log-Domain Technique

    Directory of Open Access Journals (Sweden)

    N. A. Shah

    2011-01-01

    Full Text Available A generic design (GD for realizing an nth order log-domain multifunction filter (MFF, which can yield four possible stable filter configurations, each offering simultaneously lowpass (LP, highpass (HP, and bandpass (BP frequency responses, is presented. The features of these filters are very simple, consisting of merely a few exponential transconductor cells and capacitors; all grounded elements, capable of absorbing the shunt parasitic capacitances, responses are electronically tuneable, and suitable for monolithic integration. Furthermore, being designed using log-domain technique, it offers all its advantages. As an example, 5th-order MFFs are designed in each case and their performances are evaluated through simulation. Lastly, a comparative study of the MFFs is also carried, which helps in selecting better high-order MFF for a given application.

  7. A review of current concepts in flexor tendon repair: physiology, biomechanics, surgical technique and rehabilitation.

    Directory of Open Access Journals (Sweden)

    Rohit Singh

    2015-12-01

    Full Text Available Historically, the surgical treatment of flexor tendon injuries has always been associated with controversy. It was not until 1967, when the paper entitled Primary repair of flexor tendons in no man’s land was presented at the American Society of Hand Surgery, which reported excellent results and catalyzed the implementation of this technique into world-wide practice. We present an up to date literature review using PubMed and Google Scholar where the terms flexor tendon, repair and rehabilitation were used. Topics covered included functional anatomy, nutrition, biomechanics, suture repair, repair site gapping, and rehabilitation. This article aims to provide a comprehensive and complete overview of flexor tendon repairs.

  8. Optimization of brushless direct current motor design using an intelligent technique.

    Science.gov (United States)

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance.

  9. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L.; Matlashov, Andrei N.; Mosher, John C.; Espy, Michelle A.; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  10. Unmanned air/ground vehicles heterogeneous cooperative techniques:Current status and prospects

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the effectiveness of implementing detection,search and rescue tasks.This paper mainly focused on the key issues in multiple unmanned air/ground vehicles heterogeneous cooperation,including heterogeneous flocking,formation control,formation stability,network control,and actual applications.The main problems and future directions in this field were also analyzed in detail.These innovative technologies can significantly enhance the effectiveness of implementing complicated tasks,which definitely provide a series of novel breakthroughs for the intelligence,integration and advancement of future robot systems.

  11. The current state of intestine transplantation: indications, techniques, outcomes and challenges.

    Science.gov (United States)

    Sudan, D

    2014-09-01

    Intestine transplantation is the least common form of organ transplantation in the United States and often deemed one of the most difficult. Patient and graft survival have historically trailed well behind other organ transplants. Over the past 5-10 years registry reports and single center series have demonstrated improvements to patient survival after intestinal transplantation that now match patient survival for those without life-threatening complications on parenteral nutrition. For various reasons including improvements in medical care of patients with intestinal failure and difficulty accessing transplant care, the actual number of intestine transplants has declined by 25% over the past 6 years. In light of the small numbers of intestine transplants, many physicians and the lay public are often unaware that this is a therapeutic option. The aim of this review is to describe the current indications, outcomes and advances in the field of intestine transplantation and to explore concerns over future access to this important and life-saving therapy.

  12. In vivo and in vitro starch digestion: are current in vitro techniques adequate?

    Science.gov (United States)

    Hasjim, Jovin; Lavau, Gautier Cesbron; Gidley, Michael J; Gilbert, Robert G

    2010-12-13

    The time evolution of the size distributions of (fully branched and debranched) starch molecules during in vivo and in vitro digestion was analyzed using size exclusion chromatography (SEC) and compared. In vivo digesta were collected from the small intestine of pigs fed with raw normal maize starch; in vitro digestion was carried out on the same diet fed to the pigs using a method simulating digestion in the mouth, stomach, and small intestine. A qualitative difference was observed between the in vitro and the in vivo digestion. The former showed a degradation of starch molecules to a more uniform size, whereas the in vivo digestion preserved the size distribution of native starch before producing a multimodal distribution, the heterogeneous nature of which current in vitro methods do not reproduce. The use of in vitro digestion to infer in vivo digestion patterns and, hence, potential nutrition benefits need to take account of this phenomenon.

  13. Acute gastrointestinal bleeding: emerging role of multidetector CT angiography and review of current imaging techniques.

    Science.gov (United States)

    Laing, Christopher J; Tobias, Terrence; Rosenblum, David I; Banker, Wade L; Tseng, Lee; Tamarkin, Stephen W

    2007-01-01

    Acute gastrointestinal bleeding is a common cause of hospitalization, morbidity, and mortality in the United States. The evaluation and treatment of acute gastrointestinal bleeding are complex and often require a multispecialty approach involving gastroenterologists, surgeons, internists, emergency physicians, and radiologists. The multitude of pathologic processes that can result in gastrointestinal bleeding, the length of the gastrointestinal tract, and the often intermittent nature of gastrointestinal bleeding further complicate patient evaluation. In addition, there are multiple imaging modalities and therapeutic interventions that are currently being used in the evaluation and treatment of acute gastrointestinal hemorrhage, each with its own strengths and weaknesses. Initial experience indicates that multidetector computed tomographic angiography is a promising first-line modality for the time-efficient, sensitive, and accurate diagnosis or exclusion of active gastrointestinal hemorrhage and may have a profound impact on the evaluation and subsequent treatment of patients who present with acute gastrointestinal bleeding.

  14. Analysis of the current rib support practices and techniques in U.S. coal mines.

    Science.gov (United States)

    Mohamed, Khaled M; Murphy, Michael M; Lawson, Heather E; Klemetti, Ted

    2016-01-01

    Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins, coal seams, geology, loading conditions, and rib control strategies. The key findings are: (1) any rib design guideline or tool should take into account external rib support as well as internal bolting; (2) rib bolts on their own cannot contain rib spall, especially in soft ribs subjected to significant load-external rib control devices such as mesh are required in such cases to contain rib sloughing; (3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration; (4) potential rib instability occurred when certain geological features prevailed-these include draw slate and/or bone coal near the rib/roof line, claystone partings, and soft coal bench overlain by rock strata; (5) 47% of the studied rib spall was classified as blocky-this could indicate a high potential of rib hazards; and (6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m.

  15. Current technology and techniques in re-mineralization of white spot lesions: A systematic review

    Science.gov (United States)

    Podray, Susan S.

    White Spot lesions are a common iatrogenic occurrence on patients who are treated with fixed orthodontic appliances. There is a dynamic chemical interaction between enamel and saliva at the tooth surface that allow a lesion to have phase changes involving demineralization of enamel and reminerlization. This is due to calcium and phosphate dissolved in saliva that is deposited onto the tooth surface or removed depending on the surrounding pH. Caseinphosphopeptide-amorphous calcium phosphate (CPP-ACP) is gaining popularity in dentistry as a way to increase the available level of calcium and phosphate in plaque and saliva to improve the chemical gradient so that if favors reminerlization. The aim of our investigation is to search the available current literature and formulate a recommendation for use of CPP-ACP in orthodontics. Publications from the following electronic databases were searched: PubMed, Web of Science, Cochrane Library and Science Direct. Searches from August 2010 to April 1st 2012 were performed under the terms "MI Paste OR Recaldent OR caseinphosphopeptide-amorphous calcium phosphate OR CPP-ACP or tooth mousse". The searches yielded 155 articles, These were reviewed for relevance based on inclusion and exclusion criteria. Articles with inappropriate study design or no outcome measures at both baseline and end point were also excluded. 13 articles were deemed of relevance with a high quality study design and were included in this study for evaluation. The current literature suggests a preventative treatment regimen in which MI Paste Plus is used. It should be delivered once daily prior to bed after oral hygiene for 3 minutes in a fluoride tray, throughout orthodontic treatment. It should be recommended for high risk patients determined by poor oral hygiene, as seen by the inability to remove plaque from teeth and appliances. This protocol may prevent or assist in the remineralization of enamel white spot lesions during and after orthodontic treatment.

  16. Analysis of the current rib support practices and techniques in U.S. coal mines

    Institute of Scientific and Technical Information of China (English)

    Mohamed Khaled M.; Murphy Michael M.; Lawson Heather E.; Klemetti Ted

    2016-01-01

    Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins, coal seams, geology, loading conditions, and rib control strategies. The key findings are:(1) any rib design guideline or tool should take into account external rib support as well as internal bolting;(2) rib bolts on their own cannot contain rib spall, especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing;(3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration;(4) potential rib insta-bility occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line, claystone partings, and soft coal bench overlain by rock strata;(5) 47%of the stud-ied rib spall was classified as blocky—this could indicate a high potential of rib hazards;and (6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m.

  17. Current radiological techniques used to evaluate unilateral partial ureteral obstruction: an experimental rabbit study.

    Science.gov (United States)

    Yazıcı, Mehmet; Celebi, Suleyman; Kuzdan, Özgür; Koçan, Hüseyin; Ayyıldız, Halil Suat; Bayrak, İlkay Koray; Bilgici, Meltem Ceyhan; Yapıcı, Oktay; Kefeli, Mehmet; Arıtürk, Ender

    2015-07-01

    The aim of this study was to evaluate functional and prognostic benefits of Doppler ultrasonography (DU), diuretic renal scintigraphy (DRS), and magnetic resonance urography (MRU) during diagnosis and follow-up of ureteropelvic junction obstruction (UPJO) and to examine apoptosis rates caused by UPJO in an experimental rabbit model. Twenty-four rabbits were divided randomly into two groups. The left kidneys of 15 rabbits from the first group underwent Ulm-Miller surgery to create UPJO, whereas the left kidneys of nine rabbits from the second group underwent sham surgery. A pressure flow study (Whitaker's test) was done during postoperative week 6. Based on the Whitaker test, the DU, DRS, and MRU findings were compared. The number of apoptotic renal cells was counted after death. The Whitaker test run during postoperative week 6 revealed obstructions in 15 rabbits from group 1; the nine rabbits of the sham group had no obstructions. Sensitivity and specificity of DRS were 93.3 and 88.8 %, respectively, and those of MRU were 93.3 and 88.8 %, respectively. The postoperative mean RI values were significantly higher than the preoperative values, associated with sensitivity of 86.6 % and specificity of 77.5 % for detecting UPJO. DRS, MRU, and RI could not predict UPJO in one (8 %), one (8 %), and two (16 %) kidneys, respectively. Likelihood ratio (LR) was 8.4 for MRU and scintigraphy, while for RI, LR was 3.9. Pathology specimens revealed that all kidneys with UPJO underwent apoptosis, and the number of apoptotic cells was significantly higher on the UPJO-created side than on the contralateral and in the sham group (p < 0.05). No test predicted all apoptosis related to UPJO. The RI, DRS, and DMRU results correlated with the pressure flow results for detecting UPJO. No single radiological technique predicted all initial UPJO-created kidneys that concluded with apoptosis. Further studies are required to seek with better methods for diagnosing an obstruction or to define a

  18. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments

    Science.gov (United States)

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter ϕ6 ˜ ϕ10 mm and thickness of 0.1 ˜ 0.2 mm was accelerated to the hypervelocity of 10 ˜ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter ϕ20 ˜ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ˜ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics.

  19. 3D cell culture: a review of current approaches and techniques.

    Science.gov (United States)

    Haycock, John W

    2011-01-01

    Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

  20. Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles.

    Science.gov (United States)

    Jia, Kun; Ionescu, Rodica Elena

    2016-01-01

    : Bioluminescence is light production by living organisms, which can be observed in numerous marine creatures and some terrestrial invertebrates. More specifically, bacterial bioluminescence is the "cold light" produced and emitted by bacterial cells, including both wild-type luminescent and genetically engineered bacteria. Because of the lively interplay of synthetic biology, microbiology, toxicology, and biophysics, different configurations of whole-cell biosensors based on bacterial bioluminescence have been designed and are widely used in different fields, such as ecotoxicology, food toxicity, and environmental pollution. This chapter first discusses the background of the bioluminescence phenomenon in terms of optical spectrum. Platforms for bacterial bioluminescence detection using various techniques are then introduced, such as a photomultiplier tube, charge-coupled device (CCD) camera, micro-electro-mechanical systems (MEMS), and complementary metal-oxide-semiconductor (CMOS) based integrated circuit. Furthermore, some typical biochemical methods to optimize the analytical performances of bacterial bioluminescent biosensors/assays are reviewed, followed by a presentation of author's recent work concerning the improved sensitivity of a bioluminescent assay for pesticides. Finally, bacterial bioluminescence as implemented in eukaryotic cells, bioluminescent imaging, and cancer cell therapies is discussed.