WorldWideScience

Sample records for current debris environment

  1. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    Science.gov (United States)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  2. Review of current activities to model and measure the orbital debris environment in low-earth orbit

    Science.gov (United States)

    Reynolds, R. C.

    A very active orbital debris program is currently being pursued at the NASA/Johnson Space Center (JSC), with projects designed to better define the current environment, to project future environments, to model the processes contributing to or constraining the growth of debris in the environment, and to gather supporting data needed to improve the understanding of the orbital debris problem and the hazard it presents to spacecraft. This paper is a review of the activity being conducted at JSC, by NASA, Lockheed Engineering and Sciences Company, and other support contractors, and presents a review of current activity, results of current research, and a discussion of directions for future development.

  3. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste eBosson

    2016-04-01

    Full Text Available This contribution explores the internal structure of very small debris-covered glacier systems located in permafrost environments and their current dynamical responses to short-term climatic variations. Three systems were investigated with electrical resistivity tomography and dGPS monitoring over a 3-year period. Five distinct sectors are highlighted in each system: firn and bare-ice glacier, debris-covered glacier, heavily debris-covered glacier of low activity, rock glacier and ice-free debris. Decimetric to metric movements, related to ice ablation, internal deformation and basal sliding affect the glacial zones, which are mainly active in summer. Conversely, surface lowering is close to zero (-0.04 m yr-1 in the rock glaciers. Here, a constant and slow internal deformation was observed (c. 0.2 m yr-1. Thus, these systems are affected by both direct and high magnitude responses and delayed and attenuated responses to climatic variations. This differential evolution appears mainly controlled by (1 the proportion of ice, debris and the presence of water in the ground, and (2 the thickness of the superficial debris layer.

  4. Space Debris Environment Remediation Concepts

    Science.gov (United States)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  5. An Evolution Model of Space Debris Environment

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Various types of models including engineering models andevolution models have been developed to understand space debris environment since 1960s. Evolution model, consisting of a set of supporting models such as Launch Model, Breakup Model and Atmosphere Model, can reliably predicts the evolution of space debris environment. Of these supporting models, Breakup Model is employed to describe the distribution of debris and debris cloud during a explosion or collision case which is one of the main factors affecting the amount of total space debris. An analytical orbit debris environment model referred to as the “Particles-In-Boxes" model has been introduced. By regarding the orbit debris as the freedom particles running in the huge volume, the sources and sinks mechanism is established. Then the PIB model is expanded to the case of multiple-species in multiple-tier system. Combined with breakup model, the evolution of orbit debris environment is predicted.

  6. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    Science.gov (United States)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  7. LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective

    Science.gov (United States)

    Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan

    2016-09-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline

  8. Estimates of current debris from flux models

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.

    1997-01-01

    Flux models that balance accuracy and simplicity are used to predict the growth of space debris to the present. Known and projected launch rates, decay models, and numerical integrations are used to predict distributions that closely resemble the current catalog-particularly in the regions containing most of the debris.

  9. Overview of the space debris environment

    Science.gov (United States)

    Meshishnek, M. J.

    1995-03-01

    There is a component of the space environment that is man-made pollution, termed 'space debris' it exists at all inclinations and, primarily, at altitudes of roughly 350 km to 2000 km. The size of this debris ranges from several meters to a fraction of a micrometer in diameter, and the particle distribution follows an inverse power law, with the smaller size component far exceeding that of the larger. Debris is composed primarily of alumina from solid rocket motor exhausts, aluminum from spacecraft structures, and zinc and titanium oxides from thermal control coatings. The accepted model of the space debris environment is that of Kessler et al., a complex model that predicts the number of particles that will impact a surface as a function of altitude, inclination, solar cycle, and particle diameter, as well as their collision velocities. Recent data from LDEF has demonstrated both the accuracy and shortcomings of the Kessler model. Measured debris impactor fluxes are in good agreement with the model for ram surfaces. However, predictions of the model for other surfaces of a spacecraft are less accurate, most notably for the wake or trailing side. While the Kessler model is appropriate for long-term, average flux predictions, spatial-temporal impact fluxes measured on LDEF dramatically illustrated the presence of strong debris clouds that do not dissipate quickly in space and will encounter an orbiting spacecraft cyclically and repeatedly over its lifetime. LDEF data has also indicated the presence of debris in elliptical orbits, a fact not predicted by the Kessler model. This fact is responsible for the discrepancy between measured impact fluxes and predictions on trailing edge surfaces.

  10. LEGEND, a LEO-to-GEO Environment Debris Model

    Science.gov (United States)

    Liou, Jer Chyi; Hall, Doyle T.

    2013-01-01

    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  11. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    Science.gov (United States)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  12. Debris mitigation techniques for petawatt-class lasers in high debris environments

    Directory of Open Access Journals (Sweden)

    Jens Schwarz

    2010-04-01

    Full Text Available This paper addresses debris mitigation techniques for two different kinds of debris sources that are found in the high-energy density community. The first debris source stems from the laser-target interaction and this debris can be mitigated by avoiding a direct line of sight to the debris source (e.g. by using a sacrificial fold mirror or by inserting a thin debris shield. Several thin film debris shields have been investigated and nitrocellulose was found to be the best suited. The second debris source originates from an external high-energy density driver or experiment. In our specific case, this is the Z accelerator, a Z-pinch machine that generates 2 MJ of x rays at 300 TW. The center section of the Z accelerator is an extremely violent environment which requires the development of novel debris mitigation approaches for backlighting with petawatt lasers. Two such approaches are presented in this paper. First, a self-closing focusing cone. In our facility, the focused beam on target is fully enclosed inside a solid focusing cone. In the first debris mitigation scenario, the last part of the cone has a “flapper” that should seal the cone when the pressure wave from the Z-pinch explosion hits it. In the second scenario, an enclosed target assembly is used, with the last part of the focusing cone connected to a “target can” which houses the laser target. The laser produced x rays for backlighting escape through a 3 mm diameter hole that is protected by an x-ray filter stack. Both techniques are discussed in detail and have been successfully tested on the Z accelerator.

  13. Current and Future Impact Risks from Small Debris to Operational Satellites

    Science.gov (United States)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  14. High-density turbidity currents: Are they sandy debris flows?

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  15. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    Science.gov (United States)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  16. Analysis of the fragmentation debris environment between 2005 and 2008

    Science.gov (United States)

    Flegel, Sven Kevin; Stabroth, Sebastian; Wiedemann, Carsten; Klinkrad, Heiner; Krag, Holger; Vörsmann, Peter

    Several fragmentation events have occurred in the years since the release of the ESA space debris model MASTER-2005 (Meteoroid and Space Debris Terrestrial Environment Reference). During this period some notable events took place which resulted in an unusually large increase in the spatial debris density. A compilation of the fragmentation events between 2005 and 2008 is presented based on data gathered from the literature. Event parameters such as object type and location are discussed. The spatial object density is then simulated using the MASTER- 2005 population generation tool POEM (Program for Orbital Debris Environment Modelling). The NASA Breakup Model implemented in POEM is used to determine the properties of the initial cloud of fragments for each event. Propagating the orbital elements of all fragments yields the time dependent evolution of the object clouds. Spatial densities are then calculated from the distribution of the fragments. The results are discussed for all events in the detailed time frame. The changes in the orbital fragment environment since 2005 as a consequence of the presented events are of further interest. To this end, the overall density which is obtained from the simulations with POEM is compared to the predicted growth of the total spatial density. The prediction for the fragmentation debris is generated with MASTER-2005 on the basis of a business-as-usual scenario for the year 2005. Deviations between the resulting spatial density distributions are discussed in terms of fragmentation rates, breakup locations and breakup cause.

  17. Local debris congestion in the geosynchronous environment with population augmentation

    Science.gov (United States)

    Anderson, Paul V.; Schaub, Hanspeter

    2014-02-01

    Forecasting of localized debris congestion in the geostationary (GEO) regime is performed to investigate how frequently near-miss events occur for each of the longitude slots in the GEO ring. The present-day resident space object (RSO) population at GEO is propagated forward in time to determine current debris congestion conditions, and new probability density functions that describe where GEO satellites are inserted into operational orbits are harnessed to assess longitude-dependent congestion in "business-as-usual" launch traffic, with and without re-orbiting at end-of-life. Congestion forecasting for a 50-year period is presented to illustrate the need for appropriately executed mitigation measures in the GEO ring. Results indicate that localized debris congestion will double within 50 years under current 80% re-orbiting success rates.

  18. An active debris removal parametric study for LEO environment remediation

    Science.gov (United States)

    Liou, J.-C.

    2011-06-01

    Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited interest in using active debris removal (ADR) to remediate the environment. There are, however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to explore different operational options to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the existing satellites and the benefits of collision avoidance maneuvers are also included.

  19. An Overview of the Orbital Debris and Meteoroid Environments, Their Effects on Spacecraft, and What Can We Do About It?

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.

  20. Accumulation and fragmentation of plastic debris in global environments

    Science.gov (United States)

    Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton

    2009-01-01

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  1. A Parametric Study on Using Active Debris Removal for LEO Environment Remediation

    Science.gov (United States)

    2010-01-01

    Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to guide its implementation to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the currently existing satellites and the benefits of collision avoidance maneuvers are also included.

  2. Monitoring the abundance of plastic debris in the marine environment

    NARCIS (Netherlands)

    Ryan, P.G.; Moore, C.J. C.J.; Franeker, van J.A.; Moloney, C.L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and

  3. Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments

    Science.gov (United States)

    Mog, Robert A.

    2001-01-01

    A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.

  4. Effects of ground freezing and snow avalanche deposits on debris flows in alpine environments

    Directory of Open Access Journals (Sweden)

    E. Bardou

    2004-01-01

    Full Text Available Debris flows consist of a mixture of water and sediments of various sizes. Apart from few exceptions, the water is usually contributed directly from precipitation. In a high mountain environment like the Alps, it appears necessary to consider infiltration of water into the ground during rainfall events, the runoff characteristics and the potential supply of sediment as a function of a multitude of climatic and hydrogeological factors. This paper outlines several new processes - either linked to ice formation in the ground before an event, or to the presence of snow avalanche deposits - that change the probability of observing an event. These processes were identified during field observations connected with extreme weather events that occurred recently in the Valais Alps (south-western Switzerland: they can be seen as factors either amplifying or reducing the potential of slope instability caused by the precipitation event. An intense freezing of the ground during the week preceding the exceptional rainfall event in mid-October 2000 amplified the probability of triggering debris flows between roughly 1800 and 2300m asl. Both growth of ice needles and superficial ground freezing destroyed soil aggregates (increasing the availability of sediments and/or, a deeper ground freezing resulted in decreased infiltration rate (increased runoff during the first hours of heavy rainfall. The presence of snow avalanche deposits in a gully could be simultaneously an amplifying factor (the snow deposits increase the base flow and create a sliding plane for the sediments, mainly at the time of summer storms or a reducing factor (reduction in the impact energy of the raindrops, mainly at the time of winter storms of the risk of triggering debris flows. If it is not currently possible to establish rainfall threshold values for debris flow triggering, the knowledge and the implementation of these processes in the analysis of the potential triggering (for example by

  5. Using parallel computing for the display and simulation of the space debris environment

    Science.gov (United States)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software

  6. Analysis of the 2007 Chinese ASAT Test and the Impact of its Debris on the Space Environment

    Science.gov (United States)

    Kelso, T.

    On 2007 January 11, the People's Republic of China conducted a successful direct-ascent ASAT test against one of their own defunct polar-orbiting weather satellites. The test produced at least 1,337 pieces of debris large enough to be routinely tracked by the US Space Surveillance Network and the NASA Orbital Debris Program Office estimated it generated over 35,000 pieces of debris down to 1 centimeter in size. While this event captured worldwide attention in the weeks and months after the test was revealed, much of the information provided in the press was inaccurate or misleading and did not appear to be based on scientific analysis of the data available to the public. In order to help the public and key policy makers more fully understand the nature of the event and its impact on the existing satellite population, the Center for Space Standards & Innovation developed a series of animations, images, and graphical analyses to more clearly portray this event and provide a factual foundation for the subsequent debate. Those materials were all made publicly available via the Internet without restriction and have appeared in numerous publications. This paper will summarize the primary areas of analysis of this event, to include a confirmation of the basic facts initially reported in Aviation Week & Space Technology, a visualization of the initial spread of the debris cloud in the first couple of hours after the attack, analysis of the impact of the debris on the LEO space environment including the number of satellites potentially affected and the increase in the number of conjunctions, a look at the current debris environment, and an assessment of the orbital lifetimes that shows that these impacts will last not for years but for centuries. The visualization techniques used to portray these analyses played a substantial role in helping the scientific community to quickly and easily convey important aspects of this event to policy makers and the public at large.

  7. Plastic debris and policy: Using current scientific understanding to invoke positive change

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Cook, A.M.; Koelmans, A.A.

    2016-01-01

    Captain Charles Moore introduced the world to the "Great Pacific Garbage Patch" in the mid-1990s. Since then, there has been increasing interest from scientists, the public and policy makers regarding plastic debris in the environment. A focus article in the July issue of the Society of

  8. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  9. The International Space Station and the Space Debris Environment: 10 Years On

    Science.gov (United States)

    Johnson, Nicholas; Klinkrad, Heiner

    2009-01-01

    For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be

  10. Solid Waste Transportation through Ocean Currents: Marine Debris Sightings and their Waste Quantification at Port Dickson Beaches, Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Chong Jing Yi

    2016-07-01

    Full Text Available Four beaches at Port Dickson, Peninsular Malaysia, namely Saujana Beach, Nelayan Beach, Bagan Pinang Beach and Cermin beach have been sampled for marine debris from 7th June 2014 until 26th July 2014, on every Saturday. These beaches face the Strait of Malacca with a coastline stretching 18 km each. Our observations revealed a total debris items of 13193 in those beaches. The top three items of highest frequency were cigarette butts, foamed fragments and food wrappers. Plastic debris scaled high upto 41% of the total debris. Compared to the ocean conservancy�s 2013 report of marine debris in Malaysian beaches, which was 27,005 items with in 6.44 km, the current count is slightly low. However, Malaysia was ranked 14th place among the top 20 countries in International Marine Debris Watch program. Nelayan Beach is the dirtiest beach in Port Dickson. Around 50% of the total plastic items collected are found on those beaches. The marine debris items indicated that they arrived there by land-based and ocean-based activities. High energy conditions such as wind and waves in the beaches correlated well with less debris deposition on the beaches. With debris equivalent of 4193 items/km, Malaysia harvests less solid wastes compared to Croatia, USA, Singapore and Turkey. However, a nation wide survey is needed to assess the seriousness of marine debris problem in Malaysia.

  11. Comparing models of debris-flow susceptibility in the alpine environment

    Science.gov (United States)

    Carrara, Alberto; Crosta, Giovanni; Frattini, Paolo

    area into small slope units may constitute the most suitable approach to regional debris-flow assessment in the Alpine environment.

  12. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  13. The Impact of New Trends in Satellite Launches on the Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goektug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  14. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments.

    Science.gov (United States)

    Keswani, Anisha; Oliver, David M; Gutierrez, Tony; Quilliam, Richard S

    2016-07-01

    Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. What the Planner Needs to Know. Volume I. About the Debris Environment. Volume 2. About Debris Clearing Operations

    Science.gov (United States)

    1975-06-01

    a priority basis. Re- visions of inventories and the supply and maintenance of actual clearing operations will then proceed. c VOLUME I WHAT THE...Making Debris Predicition Survey I Potential Emergency | -j Operations - | ’ Clearing Routes, etc.j ± Completed DPS File...three types of primary equipment would be preferred. Mechanics (Grade 2) for maintenance and repair are slightly less critical than experienced

  16. Space debris: modeling and detectability

    Science.gov (United States)

    Wiedemann, C.; Lorenz, J.; Radtke, J.; Kebschull, C.; Horstmann, A.; Stoll, E.

    2017-01-01

    High precision orbit determination is required for the detection and removal of space debris. Knowledge of the distribution of debris objects in orbit is necessary for orbit determination by active or passive sensors. The results can be used to investigate the orbits on which objects of a certain size at a certain frequency can be found. The knowledge of the orbital distribution of the objects as well as their properties in accordance with sensor performance models provide the basis for estimating the expected detection rates. Comprehensive modeling of the space debris environment is required for this. This paper provides an overview of the current state of knowledge about the space debris environment. In particular non-cataloged small objects are evaluated. Furthermore, improvements concerning the update of the current space debris model are addressed. The model of the space debris environment is based on the simulation of historical events, such as fragmentations due to explosions and collisions that actually occurred in Earth orbits. The orbital distribution of debris is simulated by propagating the orbits considering all perturbing forces up to a reference epoch. The modeled object population is compared with measured data and validated. The model provides a statistical distribution of space objects, according to their size and number. This distribution is based on the correct consideration of orbital mechanics. This allows for a realistic description of the space debris environment. Subsequently, a realistic prediction can be provided concerning the question, how many pieces of debris can be expected on certain orbits. To validate the model, a software tool has been developed which allows the simulation of the observation behavior of ground-based or space-based sensors. Thus, it is possible to compare the results of published measurement data with simulated detections. This tool can also be used for the simulation of sensor measurement campaigns. It is

  17. HIGH-RESOLUTION MONITORING OF CURRENT RAPID TRANSFORMATIONS ON GLACIAL AND PERIGLACIAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    L. Carturan

    2014-01-01

    Full Text Available Glacial and periglacial environments are highly sensitive to climatic changes. Processes of cryosphere degradation may strongly impact human activities and infrastructures, and need to be monitored for improved understanding and for mitigation/adaptation. Studying glacial and periglacial environments using traditional techniques may be difficult or not feasible, but new remote sensing techniques like terrestrial and aerial laser scanner opened new possibilities for cryospheric studies. This work presents an application of the terrestrial laser scanner (TLS for monitoring the current rapid changes occurring on the Montasio Occidentale glacier (Eastern Italian alps, which is representative of low-altitude, avalanche-fed and debris-cover glaciers. These glaciers are quite common in the Alps but their reaction to climate changes is still poorly known. The mass balance, surface velocity fields, debris cover dynamics and effects of meteorological extremes were investigated by repeat high-resolution TLS scanning from September 2010 to October 2012. The results were encouraging and shed light on the peculiar response of this glacier to climatic changes, on its current dynamics and on the feedback played by the debris cover, which is critical for its preservation. The rapid transformations in act, combined with the unstable ice mass, large amount of loose debris and channeled runoff during intense rainfalls, constitute a potential area for the formation of large debris flows, as shown by field evidences and documented by the recent literature.

  18. CURRENT APPLICATIONS OF THREE MILE ISLAND-2 CORE AND DEBRIS HANDLING AT THE IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, William Jonathan [Idaho National Laboratory; Braase, Lori Ann [Idaho National Laboratory

    2015-09-01

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification of current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.

  19. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    Science.gov (United States)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into

  20. Circulation patterns related to debris-flow triggering in the Zermatt valley in current and future climates

    Science.gov (United States)

    van den Heuvel, Floor; Goyette, Stéphane; Rahman, Kazi; Stoffel, Markus

    2016-11-01

    The principal objective of this study was to investigate the types of large-scale meteorological situations that are conducive to the precipitation and temperature conditions most likely to trigger debris flows in the Zermatt valley, Switzerland, under current and future climates. A two-dimensional Bayesian probability calculation was applied to take account of uncertainties in debris-flow triggering. Precipitation quantities exceeding the 95th percentile of daily precipitation amounts were found to have a significantly higher probability to coincide with observed debris flows. A different relationship exists for extreme temperatures, however. Southerly air flows, weak horizontal pressure gradients over Europe, and westerly flows are mostly associated with observed debris flows and 95th precipitation percentile exceedances. These principal flow directions are well represented in the regional climate model (RCM) HIRHAM control simulations for events exceeding the 95th precipitation percentile and the 30th temperature percentile. Under the IPCC A2 emission scenario, westerly and southerly flows are mostly responsible for these precipitation and temperature conditions under the hypothesis of slow adaptation to climate change (HS1/HC1). Under the hypothesis of rapid adaptation to climate change (HS1/HS1), southerly flows and weak horizontal pressure gradients are likely to gain in importance. In both scenarios for the future, southeasterly flows are among the principal flow directions responsible for the joint exceedance of the 95th precipitation percentile and the 30th temperature percentile, while these were absent in observations and the control simulation.

  1. Sedimentary environments of the Cenozoic sedimentary debris found in the moraines of the Grove Mountains, east Antarctica and its climatic implications

    Institute of Scientific and Technical Information of China (English)

    FANG Aimin; LIU Xiaohan; LEE Jong Ik; LI Xiaoli; HUANG Feixin

    2004-01-01

    During the field work of the 1998~1999's and 1999~2000's Chinese National Antarctic Research Expedition (CHNARE) in the Grove Mountains, east Antarctica, some Cenozoic sedimentary debris are found in two terminal moraine banks over the blue ice near Harding Mount in the center of this region. All the debris are of characteristics of glaciogenic diamicton and belong to the products of the glacial movements of the East Antarctic Ice Sheet. In this paper, the authors make a detailed study on the sedimentary environments of the sedimentary debris through petrologic, sedimentological, mineralogical, and geo-chemical methods. Characteristics of their sedimentary textures and structures, grain size distributions, quartz grains' surface textures and features, together with their geo-chemical compositions all show that these sedimentary rocks are a kind of subglacial lodgement tills which are deposited in the ice sheet frontal area by reactions of glacial movements and glaciogenic melt water. Their palaeoenvironmental implications in revealing the retreat history of East Antarctic Ice Sheet are discussed. The authors draw the conclusion from current study that the glacial frontal of the East Antarctica Ice Sheet might have been retreated to this area during the Pliocene Epoch, which represents a warm climate event accompanied by a large-scale ice sheet retreat in Antarctica at that time.

  2. Preserving the Environment of Outer Space - Legal, Regulatory and Institutional Aspects of Active Orbital Debris Removal

    Science.gov (United States)

    Mankata Nyampong, Y. O.

    2012-01-01

    In view of the massive quantities of space debris already deposited in outer space, any effort aimed at guaranteeing the sustainability of mankind's access to outer space and the continued safety of space operations must not be limited exclusively to mitigating the creation of new debris, but must also focus on the active removal of existing pieces of debris from space (remediation) as a matter of necessity. Presently, technologies that will enable active debris removal (ADR) are only just emerging. As the technology develops, however, several legal, regulatory and institutional issues that may hinder the conduct of ADR activities must also be addressed. This paper highlights and explores some of the foregoing issues in an effort to draw international attention to these matters and ultimately to pave the way for the smooth conduct of ADR activities once the technology matures.

  3. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    Science.gov (United States)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity

  4. Space Debris & its Mitigation

    Science.gov (United States)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  5. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    Science.gov (United States)

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-01-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean. PMID:28281667

  6. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    Science.gov (United States)

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  7. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    Science.gov (United States)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as

  8. Prediction of Foreign Object Debris/Damage (FOD) type for elimination in the aeronautics manufacturing environment through logistic regression model

    Science.gov (United States)

    Espino, Natalia V.

    Foreign Object Debris/Damage (FOD) is a costly and high-risk problem that aeronautics industries such as Boeing, Lockheed Martin, among others are facing at their production lines every day. They spend an average of $350 thousand dollars per year fixing FOD problems. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality control standards. FOD can be in the form of any of the following categories: panstock, manufacturing debris, tools/shop aids, consumables and trash. Although aeronautics industries have put many prevention plans in place such as housekeeping and "clean as you go" philosophies, trainings, use of RFID for tooling control, etc. none of them has been able to completely eradicate the problem. This research presents a logistic regression statistical model approach to predict probability of FOD type under given specific circumstances such as workstation, month and aircraft/jet being built. FOD Quality Assurance Reports of the last three years were provided by an aeronautical industry for this study. By predicting type of FOD, custom reduction/elimination plans can be put in place and by such means being able to diminish the problem. Different aircrafts were analyzed and so different models developed through same methodology. Results of the study presented are predictions of FOD type for each aircraft and workstation throughout the year, which were obtained by applying proposed logistic regression models. This research would help aeronautic industries to address the FOD problem correctly, to be able to identify root causes and establish actual reduction/elimination plans.

  9. Orbital Debris-Debris Collision Avoidance

    CERN Document Server

    Mason, James; Marshall, William; Levit, Creon

    2011-01-01

    We investigate the feasibility of using a medium-powered (5kW) ground-based laser combined with a ground-based telescope to prevent collisions between debris objects in low-Earth orbit (LEO), for which there is no current, effective mitigation strategy. The scheme utilizes photon pressure alone as a means to perturb the orbit of a debris object. Applied over multiple engagements, this alters the debris orbit sufficiently to reduce the risk of an upcoming conjunction. We employ standard assumptions for atmospheric conditions and the resulting beam propagation. Using case studies designed to represent the properties (e.g. area and mass) of the current debris population, we show that one could significantly reduce the risk of more than half of all debris-debris collisions using only one such laser/telescope facility. We speculate on whether this could mitigate the debris fragmentation rate such that it falls below the natural debris re-entry rate due to atmospheric drag, and thus whether continuous long-term ope...

  10. Sensitivity of numerical simulation models of debris flow to the rheological parameters and application in the engineering environment

    Science.gov (United States)

    Rosso, M.; Sesenna, R.; Magni, L.; Demurtas, L.; Uras, G.

    2009-04-01

    Debris flows represents serious hazards in mountainous regions. For engineers it is important to know the quantitative analysis of the flow in terms of volumes, velocities and front height, and it is significant to predict possible triggering and deposition areas. In order to predict flow and deposition behaviour, debris flows traditionally have been regarded as homogenous fluids and bulk flow behaviour that was considered to be controlled by the rheological properties of the matrix. Flow mixtures with a considerable fraction of fines particles typically show a viscoplastic flow behaviour but due to the high variability of the material composition, complex physical interactions on the particle scale and time dependent effects, no generally applicable models are at time capable to cover the full range of all possible flow types. A first category of models, mostly of academic origin, uses a rigorous methodological approach, directed to describe to the phenomenon characterizing all the main parameters that regulate the origin and the propagation of the debris flow, with detail attention to rheology. A second category, which are referred mainly to the commercial environment, has as first objective the versatility and the simplicity of use, introducing theoretical simplifications in the definition of the rheology and in the propagation of the debris flow. The physical variables connected to the rheology are often difficult to determine and involve complex procedures of calibration of the model or long and expensive campaigns of measure, whose application can turn out not suitable to the engineering environment. The rheological parameters of the debris are however to the base of the codes of calculation mainly used in commerce. The necessary data to the implementation of the model refer mainly to the dynamic viscosity, to the shear stress, to the volumetric mass and to the volumetric concentration, that are linked variables. Through the application of various

  11. Solid Waste Transportation through Ocean Currents: Marine Debris Sightings and their Waste Quantification at Port Dickson Beaches, Peninsular Malaysia

    OpenAIRE

    Chong Jing Yi; Narayanan Kannan

    2016-01-01

    Four beaches at Port Dickson, Peninsular Malaysia, namely Saujana Beach, Nelayan Beach, Bagan Pinang Beach and Cermin beach have been sampled for marine debris from 7th June 2014 until 26th July 2014, on every Saturday. These beaches face the Strait of Malacca with a coastline stretching 18 km each. Our observations revealed a total debris items of 13193 in those beaches. The top three items of highest frequency were cigarette butts, foamed fragments and food wrappers. Plastic debris scaled h...

  12. Environment protection: The current challenge in radioecology

    Science.gov (United States)

    Bréchignac, F.

    2012-04-01

    Radioecology, a multifaceted scientific discipline which addresses environmental issues relevant to radioprotection, has for a long time been focused on environmental transfers through the environment to feed the needs of human radioprotection. This quite anthropocentric initial scope is now moving to a more ecocentric view capable of assessing ecological risk mediated by ionising radiation. The central issue consists in reaching an ability to understand the effects of radiation on the environment components, from individual organisms up to populations of species and ecosystems, together with their interaction with the abiotic compartments. Dominated by operational goals, the system of radiological protection of the environment which is under development emphasises a concept based upon reference organisms supported by traditional toxicological data on individual organisms. Whilst there are immediate advantages to this approach (pragmatism, consistency with other approaches in use for man and biota), there are also clear limitations which need to be acknowledged and further considered. The most important probably is to rely on effects data gathered almost exclusively for individual organisms to meet protection goals which are usually set at population and ecosystem levels. Overcoming this limitation leads to scientific and methodological approaches featuring the ecosystem concept.

  13. Environment protection: The current challenge in radioecology

    Directory of Open Access Journals (Sweden)

    Bréchignac F.

    2012-04-01

    Full Text Available Radioecology, a multifaceted scientific discipline which addresses environmental issues relevant to radioprotection, has for a long time been focused on environmental transfers through the environment to feed the needs of human radioprotection. This quite anthropocentric initial scope is now moving to a more ecocentric view capable of assessing ecological risk mediated by ionising radiation. The central issue consists in reaching an ability to understand the effects of radiation on the environment components, from individual organisms up to populations of species and ecosystems, together with their interaction with the abiotic compartments. Dominated by operational goals, the system of radiological protection of the environment which is under development emphasises a concept based upon reference organisms supported by traditional toxicological data on individual organisms. Whilst there are immediate advantages to this approach (pragmatism, consistency with other approaches in use for man and biota, there are also clear limitations which need to be acknowledged and further considered. The most important probably is to rely on effects data gathered almost exclusively for individual organisms to meet protection goals which are usually set at population and ecosystem levels. Overcoming this limitation leads to scientific and methodological approaches featuring the ecosystem concept.

  14. LEGACY - EOP Marine Debris

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contains towed diver surveys of and weights of marine debris removed from the near shore environments of the NWHI.

  15. Decadal to seasonal evolution of small debris-covered glaciers in permafrost environments in relation to their internal structure and climatic factors

    Science.gov (United States)

    Bosson, Jean-Baptiste; Maxime, Capt; Lambiel, Christophe

    2015-04-01

    Debris-covered zones are extending on numerous glacier systems in mountainous regions. This situation results from an increase in debris supply and from a decrease of sediment evacuation capacity in glacier systems in the negative mass balance context. The progressive covering of ice mass affects particularly small cirque glacier systems (glaciers, these systems have several characteristics (thin ice body, polythermal regime, a high debris content and glacier-permafrost interactions) that limit glacial dynamic and related sediment evacuation. Associating massive glacier ice, ice-debris mixtures and deglaciated debris under permafrost conditions, these systems are experiencing specific and complex response to climate forcing. However, despite their important role on alpine water and sediment flux systems and because they are situated at the frontier between glacial and periglacial researches, the characterisation of these systems and of their current evolution remains a challenging task. Specific needs concern especially the precise knowledge of their composition, the detection and the quantification of ongoing processes and the recognition of the main factors controlling the evolution of the different system components. Exploring and synthetizing the results of a multi-site (Rognes, Tsarmine, Entre la Reille), multi-temporal (from seasons to decades) and multi-method (ERT, GPR, dGPS, Lidar, photogrammetry, thermal monitoring, etc.) research led in the NW European Alps between 2011 and 2015, this contribution tries to enlighten and explain the different situations encountered in these complex systems. Three main zones, with specific behaviours can be distinguished according to the internal structure: - The larger zone corresponds to the strictly glacial zone. In comparison with the other zones, the responses to climate signal are rapid, illustrating the local high sensitivity to climatic and hydrologic forcing. In consequence, intense (dcm to m) ice melt, basal

  16. Modeling the Space Debris Environment with MASTER-2009 and ORDEM2010

    Science.gov (United States)

    Flegel, S.; Gelhaus, J.; Wiedemann, C.; Mockel, M.; Vorsmann, P.; Krisko, P.; Xu, Y. -L.; Horstman, M. F.; Opiela, J. N.; Matney, M.; Krag, H.; Klinkrad, H.

    2010-01-01

    Spacecraft analysis using ORDEM2010 uses a high-fidelity population model to compute risk to on-orbit assets. The ORDEM2010 GUI allows visualization of spacecraft flux in 2-D and 1-D. The population was produced using a Bayesian statistical approach with measured and modeled environment data. Validation of sizes 1mm is on-going.

  17. Current Situation and Tendencies of Debris Flow Initiation Mechanism%泥石流起动机理研究现状及趋势

    Institute of Scientific and Technical Information of China (English)

    贺拿; 陈宁生; 曾超

    2013-01-01

    The current research situation of debris flow initiation mechanism ( experimental study and theory research) is summarized. On the basis of induction and summarization on the previous achievements, shortcomings of the previous researches are analyzed and the future research directions of debris flow initiation mechanism are proposed. Founded on soil mechanics, hydraulics and porous flow mechanics, etc. , the study in the future should reveal the dynamic process of debris flow from static to dynamic, from single factor to multi-factor, from qualitative research to quantitative research, and finally combining with the damage process and water condition to establish the initiation model of debris flow. Research on debris flow initiation mechanism can provide scientific basis for debris flow prediction, and promote the development of debris flow discipline at the same time.%概述了国内外泥石流起动机理研究(实验研究及理论研究)的现状,在归纳总结前人研究成果的同时,分析其研究的不足,同时提出泥石流起动机理未来的研究方向.未来的研究应该以土力学及水力学、渗流力学等学科为基础,揭示泥石流土体的动态变化过程,从静态向动态、从单因素向多因素、从定性向定量方向转化,并结合土体的动态破坏过程及需水条件构建泥石流起动的模型.泥石流起动机理的研究不仅可以为泥石流的预测预报提供科学依据,同时又可以推动泥石流学科的发展.

  18. Highlights of Recent Research Activities at the NASA Orbital Debris Program Office

    Science.gov (United States)

    Liou, J - C.

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) was established at the NASA Johnson Space Center in 1979. The ODPO has initiated and led major orbital debris research activities over the past 38 years, including developing the first set of the NASA orbital debris mitigation requirements in 1995 and supporting the establishment of the U.S. Government Orbital Debris Mitigation Standard Practices in 2001. This paper is an overview of the recent ODPO research activities, ranging from ground-based and in-situ measurements, to laboratory tests, and to engineering and long-term orbital debris environment modeling. These activities highlight the ODPO's commitment to continuously improve the orbital debris environment definition to better protect current and future space missions from the low Earth orbit to the geosynchronous Earth orbit regions.

  19. Comparison of space debris estimates

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Judd, O.P.; Naka, R.F.

    1996-10-01

    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  20. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    Science.gov (United States)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  1. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  2. Assessment and prediction of debris-flow hazards

    Science.gov (United States)

    Wieczorek, Gerald F.; ,

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  3. Current and emergent strategies for disinfection of hospital environments.

    Science.gov (United States)

    Abreu, Ana C; Tavares, Rafaela R; Borges, Anabela; Mergulhão, Filipe; Simões, Manuel

    2013-12-01

    A significant number of hospital-acquired infections occur due to inefficient disinfection of hospital surfaces, instruments and rooms. The emergence and wide spread of multiresistant forms of several microorganisms has led to a situation where few compounds are able to inhibit or kill the infectious agents. Several strategies to disinfect both clinical equipment and the environment are available, often involving the use of antimicrobial chemicals. More recently, investigations into gas plasma, antimicrobial surfaces and vapour systems have gained interest as promising alternatives to conventional disinfectants. This review provides updated information on the current and emergent disinfection strategies for clinical environments.

  4. Adaptive optics for laser space debris removal

    Science.gov (United States)

    Bennet, Francis; Conan, Rodolphe; D'Orgeville, Celine; Dawson, Murray; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian; Smith, Craig; Uhlendorf, Kristina

    2012-07-01

    Space debris in low Earth orbit below 1500km is becoming an increasing threat to satellites and spacecrafts. Radar and laser tracking are currently used to monitor the orbits of thousands of space debris and active satellites are able to use this information to manoeuvre out of the way of a predicted collision. However, many satellites are not able to manoeuvre and debris-on debris collisions are becoming a signicant contributor to the growing space debris population. The removal of the space debris from orbit is the preferred and more denitive solution. Space debris removal may be achieved through laser ablation, whereby a high power laser corrected with an adaptive optics system could, in theory, allow ablation of the debris surface and so impart a remote thrust on the targeted object. The goal of this is to avoid collisions between space debris to prevent an exponential increase in the number of space debris objects. We are developing an experiment to demonstrate the feasibility of laser ablation for space debris removal. This laser ablation demonstrator utilises a pulsed sodium laser to probe the atmosphere ahead of the space debris and the sun re ection of the space debris is used to provide atmospheric tip{tilt information. A deformable mirror is then shaped to correct an infrared laser beam on the uplink path to the debris. We present here the design and the expected performance of the system.

  5. Current understanding of organically bound tritium (OBT) in the environment.

    Science.gov (United States)

    Kim, S B; Baglan, N; Davis, P A

    2013-12-01

    It has become increasingly recognized that organically bound tritium (OBT) is the more significant tritium fraction with respect to understanding tritium behaviour in the environment. There are many different terms associated with OBT; such as total OBT, exchangeable OBT, non-exchangeable OBT, soluble OBT, insoluble OBT, tritiated organics, and buried tritium, etc. A simple classification is required to clarify understanding within the tritium research community. Unlike for tritiated water (HTO), the environmental quantification and behaviour of OBT are not well known. Tritiated water cannot bio-accumulate in the environment. However, it is not clear whether or not this is the case for OBT. Even though OBT can be detected in terrestrial biological materials, aquatic biological materials and soil samples, its behaviour is still in question. In order to evaluate the radiation dose from OBT accurately, further study will be required to understand OBT measurements and determine OBT fate in the environment. The relationship between OBT speciation and the OBT/HTO ratio in environmental samples will be useful in this regard, providing information on the previous tritium exposure conditions in the environment and the current tritium dynamics. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Orbital debris issues

    Science.gov (United States)

    Kessler, D. J.

    Orbital debris issues fall into three major topics: Environment Definition, Spacecraft Hazard, and Space Object Management. The major issue under Environment Definition is defining the debris flux for sizes smaller (10 cm in diameter) than those tracked by the North American Aerospace Defense Command (NORAD). Sources for this size debris are fragmentation of larger objects, either by explosion or collision, and solid rocket motor products. Modeling of these sources can predict fluxes in low Earth orbit which are greater than the meteoroid environment. Techniques to measure the environment in the size interval between 1 mm and 10 cm are being developed, including the use of telescopes and radar both on the ground and in space. Some impact sensors designed to detect meteoroids may have detected solid rocket motor products. Once the environment is defined, it can be combined with hypervelocity impact data and damage criteria to evaluate the Spacecraft Hazard. Shielding may be required to obtain an acceptable damage level. Space Object Management includes techniques to control the environment and the desired policy to effectively minimize the hazard to spacecraft. One control technique - reducing the likelihood of future explosions in space - has already been implemented by NASA. The effectiveness of other techniques has yet to be evaluated.

  7. Assessment of the effects of space debris and meteoroids environment on the space station solar array assembly

    Science.gov (United States)

    Nahra, Henry K.

    1988-01-01

    The methodology used to assess the probability of no impact of space debris and meteoroids on a spacecraft structure is applied to the Space Station solar array assembly. Starting with the space debris and meteoroids flux models, the projected surface area of the solar cell string circuit of the solar array panel and the mast longeron, and the design lifetime, the possibility of no impact on the solar array mast and solar cell string circuits was determined as a function of particle size. The probability of no impact on the cell string circuits was used to derive the probability of no open circuit panel. The probability of meeting a certain power requirement at the end of the design lifetime was then calculated as a function of impacting particle size. Coupled with a penetration and damage models/correlations which relate the particle size to the penetration depth and damage, the results of this analysis can be used to determine the probability of meeting the lower power requirement given a degree of redundancy, and the probability of no impact on the solar array mast.

  8. Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do.

    Science.gov (United States)

    Peng, Jinping; Wang, Jundong; Cai, Liqi

    2017-05-01

    Microplastics pollution has been documented in the global environment, including at sea, in freshwater and in atmospheric fallout. Ingestion of microplastics by multiple kinds of organisms has been reported and has received increasing attention, because microplastics not only act as a source of toxic chemicals but also a sink for toxic chemicals. To better understand the great concerns about microplastics and associated toxic chemicals potential exposed to the organisms ingesting the debris, we should know more about the occurrence, fate, and risks of microplastics in the environment. What we should do depends on this better understanding. Integr Environ Assess Manag 2017;13:476-482. © 2017 SETAC. © 2017 SETAC.

  9. Orbital Debris: Past, Present, and Future

    Science.gov (United States)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  10. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities.

    Science.gov (United States)

    Horton, Alice A; Walton, Alexander; Spurgeon, David J; Lahive, Elma; Svendsen, Claus

    2017-05-15

    Plastic debris is an environmentally persistent and complex contaminant of increasing concern. Understanding the sources, abundance and composition of microplastics present in the environment is a huge challenge due to the fact that hundreds of millions of tonnes of plastic material is manufactured for societal use annually, some of which is released to the environment. The majority of microplastics research to date has focussed on the marine environment. Although freshwater and terrestrial environments are recognised as origins and transport pathways of plastics to the oceans, there is still a comparative lack of knowledge about these environmental compartments. It is highly likely that microplastics will accumulate within continental environments, especially in areas of high anthropogenic influence such as agricultural or urban areas. This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, also draws on relevant studies from other fields including nanotechnology, agriculture and waste management. Furthermore, we evaluate the relevant biological and chemical information from the substantial body of marine microplastic literature, determining the applicability and comparability of this data to freshwater and terrestrial systems. With the evidence presented, the authors have set out the current state of the knowledge, and identified the key gaps. These include the volume and composition of microplastics entering the environment, behaviour and fate of microplastics under a variety of environmental conditions and how characteristics of microplastics influence their toxicity. Given the technical challenges surrounding microplastics research, it is especially important that future studies develop standardised techniques to allow for comparability of data. The identification of these research needs will help inform the design of future studies, to

  11. An Introduction to Space Debris

    Science.gov (United States)

    Wright, David

    2008-04-01

    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  12. Search for the Data of Space Debris Initial Distribution

    Science.gov (United States)

    Ping-Ping, Zhang; Bao-Jun, Pang

    Space debris environment model is one of the kernels of the research on space debris Space debris environment model is based on the data of space debris that is if we have the data of space debris orbit parameter we can determine the state of space debris distribution and then the spacecraft risk assessment can be executed Because numbers of small size space debris cannot be detected or observed we have not small size space debris data The short of small size space debris data leads to the engineering model inaccurate model needs to be updated while in the status of seriously short of data the model can not be updated in time In allusion to the problem of scarcity of data on the basis of modern computer arithmetic this paper is trying to search new data with old data and the results of the model is close to other engineering models Key words space debris data

  13. NASA Orbital Debris Baseline Populations

    Science.gov (United States)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  14. Active Space Debris Removal System

    Directory of Open Access Journals (Sweden)

    Gabriele GUERRA

    2017-06-01

    Full Text Available Since the start of the space era, more than 5000 launches have been carried out, each carrying satellites for many disparate uses, such as Earth observation or communication. Thus, the space environment has become congested and the problem of space debris is now generating some concerns in the space community due to our long-lived belief that “space is big”. In the last few years, solutions to this problem have been proposed, one of those is Active Space Debris Removal: this method will reduce the increasing debris growth and permit future sustainable space activities. The main idea of the method proposed below is a drag augmentation system: use a system capable of putting an expanded foam on a debris which will increase the area-to-mass ratio to increase the natural atmospheric drag and solar pressure. The drag augmentation system proposed here requires a docking system; the debris will be pushed to its release height and then, after un-docking, an uncontrolled re-entry takes place ending with a burn up of the object and the foam in the atmosphere within a given time frame. The method requires an efficient way to change the orbit between two debris. The present paper analyses such a system in combination with an Electric Propulsion system, and emphasizes the choice of using two satellites to remove five effective rockets bodies debris within a year.

  15. The earth orbiting space debris

    Directory of Open Access Journals (Sweden)

    Rossi A.

    2005-01-01

    Full Text Available The space debris population is similar to the asteroid belt, since it is subject to a process of high-velocity mutual collisions that affects the long-term evolution of its size distribution. Presently, more than 10 000 artificial debris particles with diameters larger than 10 cm (and more than 300 000 with diameters larger than 1 cm are orbiting the Earth, and are monitored and studied by a large network of sensors around the Earth. Many objects of different kind compose the space debris population, produced by different source mechanisms ranging from high energy fragmentation of large spacecraft to slow diffusion of liquid metal. The impact against a space debris is a serious risk that every spacecraft must face now and it can be evaluated with ad-hoc algorithms. The long term evolution of the whole debris population is studied with computer models allowing the simulation of all the known source and sink mechanisms. One of these codes is described in this paper and the evolution of the debris environment over the next 100 years, under different traffic scenarios, is shown, pointing out the possible measures to mitigate the growth of the orbital debris population. .

  16. Interactions of the space debris environment with mega constellations-Using the example of the OneWeb constellation

    Science.gov (United States)

    Radtke, Jonas; Kebschull, Christopher; Stoll, Enrico

    2017-02-01

    Recently, several announcements have been published to deploy satellite constellations into Low Earth Orbit (LEO) containing several hundred to thousands of rather small sized objects. The purpose of these constellations is to provide a worldwide internet coverage, even to the remotest areas. Examples of these mega-constellations are one from SpaceX, which is announced to comprise of about 4000 satellites, the Norwegian STEAM network, which is told to contain 4257 satellites, and the OneWeb constellation, which forms one of the smaller constellations with 720 satellites. As example constellation, OneWeb has been chosen. From all announced constellation, OneWeb by far delivered most information, both in regards to constellation design and their plans to encounter space debris issues, which is the reason why it has been chosen for these analyses. In this paper, at first an overview of the planned OneWeb constellation setup is given. From this description, a mission life-cycle is deduced, splitting the complete orbital lifetime of the satellites into four phases. Following, using ESA-MASTER, for each of the mission phases the flux on both single constellations satellites and the complete constellation are performed and the collision probabilities are derived. The focus in this analysis is set on catastrophic collisions. This analysis is then varied parametrically for different operational altitudes of the constellation as well as different lifetimes with different assumptions for the success of post mission disposal (PMD). Following the to-be-expected mean number of collision avoidance manoeuvres during all active mission phases is performed using ARES from ESA's DRAMA tool suite. The same variations as during the flux analysis are considered. Lastly the characteristics of hypothetical OneWeb satellite fragmentation clouds, calculated using the NASA Breakup model, are described and the impact of collision clouds from OneWeb satellites on the constellation itself is

  17. Engineering and Technology Challenges for Active Debris Removal

    Science.gov (United States)

    Liou, Jer-Chyi

    2011-01-01

    After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of

  18. Assessment of Current Cathodic Protection System of a Circulating Water Debris Filter in the Power Plant%电厂循环水碎屑过滤器现行阴极保护系统的评估

    Institute of Scientific and Technical Information of China (English)

    王文奋; 孙永亮; 刘晓军

    2014-01-01

    通过对某电厂过滤器的运行环境、牺牲阳极种类、阳极的设计计算、阳极的安装、运行现状分析,确认其循环水系统碎屑过滤器现有阴极保护系统大体满足防腐蚀的要求。为更好地运行,建议其更换牺牲阳极种类并对不溶解的阳极进行成分分析及电化学性能测试,对采购的阳极进行抽样检测,对每只安装的新阳极测量电连接。%Operating environment, type, design, installation,operation status of sacrificial anode were applied to analysis the effect of current cathodic protection system of a circulating water debris filter in the power plant,result shows that the system generally meet the requirements of anti-corrosion. In order to better operation, improvement measures, such as replacing the sacrificial anode and analysising the components and testing electrochemical performance of the insoluble anode, Sampling for testing and measuring the anode electrical connection were proposed.

  19. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    Science.gov (United States)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  20. Charging of space debris in the LEO and GEO regions

    Science.gov (United States)

    Sen, Abhijit; Tiwari, Sanat Kumar

    The near exponential rise of space debris at the satellite orbital altitudes (particularly in the low earth orbit (LEO) region) and the risk they pose for space assets is a source of major concern for all nations engaged in space activities. Considerable efforts are therefore being expended into accurate modeling and tracking of these objects and various ideas for the safe removal of these debris are being explored. The debris objects are likely to acquire a large amount of charge since they are typically found in a plasma environment - such as the earth’s ionospheric plasma in the LEO region (100 kms to 1000 kms) and the radiation belts in the geosynchronous orbit (GEO) region. The consequent flow of electron and ion currents on them lead to the accumulation of a large amount of surface charge and the development of a surface potential on these objects. The influence of the plasma environment on the dynamics and charging of the debris is a relatively unexplored area of Space Situational Awareness (SSA) and Space Debris (SD) research and can be potentially important for the accurate prediction of the long-term evolution of debris orbits and their collision probabilities with other space objects. In this paper we will report on the charging of space debris under a variety of orbital conditions in the LEO and GEO regions using both analytic and particle-in-cell (PIC) modeling. The analytic estimates are obtained using refined Orbit Motion Limited (OML) modeling while the simulation studies are carried out using the SPIS code [1]. In the GEO region account is taken of charging due to photoemission processes as well as energetic beam charging. The PIC approach enables us to study charging of irregularly shaped debris objects as well as differential charging on objects that are composed of patches of conducting and insulated regions. The dynamical consequences of the debris charging on their orbital trajectories and rotational characteristics will be discussed. [1] J

  1. Microplastics in the marine environment: Current trends and future perspectives.

    Science.gov (United States)

    Barboza, Luís Gabriel Antão; Gimenez, Barbara Carolina Garcia

    2015-08-15

    Over the last decade, the presence of microplastics on marine environments has become an important environmental concern and focus of interest of many researches. Thus, to provide a more integrated view of the research trends regarding this topic, we use a scientometric approach to systematically assess and quantify advances in knowledge related to microplastics in the marine environment. The papers that we used for our assessment were obtained from the database Thomson Reuters (ISI Web of Science), between 2004 and 2014. Our results reveal the overall research performance in the study area of microplastics present in the marine environment over the past decade as a newly developed research field. It has been recognized that there are several important issues that should be investigated. Toward that end, based on the suggested directions on all papers reviewed, we point out areas/topics of interest that may guide future work in the coming years.

  2. Gene-environment interactions and alcohol use and dependence: current status and future challenges

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.M.E.

    2009-01-01

    To discuss the current status of gene-environment interaction research with regard to alcohol use and dependence. Further, we highlight the difficulties concerning gene-environment studies. Overview of the current evidence for gene-environment interactions in alcohol outcomes, and of the associated

  3. Josephson current through a molecular transistor in a dissipative environment

    DEFF Research Database (Denmark)

    Novotny, T; Rossini, Gianpaolo; Flensberg, Karsten

    2005-01-01

    We study the Josephson coupling between two superconductors through a single correlated molecular level, including Coulomb interaction on the level and coupling to a bosonic environment. All calculations are done to the lowest, i.e., the fourth, order in the tunneling coupling and we find a suppr...

  4. Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size

    Science.gov (United States)

    Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.

    2008-01-01

    Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.

  5. Current automation environment of PETROBRAS offshore production units

    Energy Technology Data Exchange (ETDEWEB)

    Moura, C.H.W.; Mendes, F.M.R.; Silva Filho, J.A.P.; Loureiro, P. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper aims to show the evolution of automation in PETROBRAS` off-shore production units during the last decade. It also displays the currently used standard architecture, describing the main aspects of each sub-system which is part of the entire automation system. The changes in PETROBRAS` purchasing policy, and their consequences, are also discussed. 2 figs.

  6. Debris-flow observations in the Zermatt Valley

    Science.gov (United States)

    Graf, Christoph

    2015-04-01

    In the Alps, a multitude of unstable slopes is located at altitudes of ~2700 m asl, where sediment transfers typically happen outside the range of humans or their infrastructure. The situation is slightly different in the Zermatt Valley, a high-elevation, north-south oriented glacial valley in the Swiss Alps, where the detachment of melting permafrost results in rock falls on steep slopes and debris flows in high-gradient gullies through which till is transferred directly to the inhabited valley floor at elevations between 1100 (N) and 1600 m asl (S). As a result of the excellent database on past disasters in the valley, recent developments and measurements in the local rock glacier bodies and current torrential events, I show data from some debris-flow torrents to document impacts of past, ongoing and possible future changes of debris flows originating from periglacial environments. Debris flows are typically initiated by the abrupt input of considerable quantities of water. The water-saturated masses of fragmented rock and soil slump down mountainsides into gullies which in turn mobilize stored sediment in the channels. In addition to triggering by extreme rainstorms, debris flows have also been reported to be released by rapid snowmelt, rain-on-snow storms, or the sudden emptying of glacier water bodies or through the rupture of landslide dams. More frequently, debris flows occur as a result of high-intensity, convective rainstorms of short duration or low-intensity advective precipitation events over several days. Displacement rates and instability of rock glaciers have increased further recently to show movement rates without historical precedents. At Grabengufer (Dorfbach) e.g., increasing air and ice temperatures have favoured the development of annual displacement rates from just a few decimetres in the past decades to 80 m in 2010. Similar behaviour was observed in catchments nearby. As a consequence of the enhanced movement of these permafrost bodies and

  7. Limitations of eddy current testing in a fast reactor environment

    Science.gov (United States)

    Wu, Tao; Bowler, John R.

    2016-02-01

    The feasibility of using eddy current probes for detecting flaws in fast nuclear reactor structures has been investigated with the aim of detecting defects immersed in electrically conductive coolant including under liquid sodium during standby. For the inspections to be viable, there is a need to use an encapsulated sensor system that can be move into position with the aid of visualization tools. The initial objective being to locate the surface to be investigated using, for example, a combination of electromagnetic sensors and sonar. Here we focus on one feature of the task in which eddy current probe impedance variations due to interaction with the external surface of a tube are evaluated in order to monitor the probe location and orientation during inspection.

  8. CURRENT ENVIRONMENT STATE OF COASTAL MARINE WATER OF DAGESTAN

    Directory of Open Access Journals (Sweden)

    S. A. Guseinova

    2014-01-01

    Full Text Available Aim. We analysed current environmental state of the Dagestan coast of the Caspian Sea. Data on the spatial variability of contaminants in the coastal areas of the Dagestan segment of the Caspian Sea from the northern districts (Lopatin to the central (Sulak coastal land and, further, to the southern district (within Russian subsoil management confirm that it is caused by irregular contamination of the sea by above-ground sources. Location. Dagestan coastal area of the Caspian SeaMethods. Concentration analysis of background contamination of chemical agents in the Dagestan coastal water from northern districts (Lopatin to southern (Sulak coastal land during the period between 2004 and 2007.Results. Data on the spatial variability of contaminants in the coastal areas of the Dagestan segment of the Caspian Sea from the northern districts (Lopatin to the central (Sulak coastal land and, further, to the southern district (within Russian subsoil management confirm that it is caused by irregular contamination of the sea by above-ground sources.Main conclusions. The envisaged large-scale hydrocarbon resource development requires regular monitoring of sea currents on Makhachkala, Izberbash and Derbent roads.

  9. IS Audit Considerations in Respect of Current Economic Environment

    Directory of Open Access Journals (Sweden)

    Vlasta Svata

    2011-01-01

    Full Text Available Accountancy organizations, regulatory bodies, standard setters, and other international organizations have developed guidance, articles, frameworks and resources on issues related to the global financial crisis. Now there is a clear and widely accepted need for more rigorous governance over companies´ systems of internal control. Historically there exist many different activities aiming to support effective enterprise governance (legislative acts, best practices, standards, frameworks. But all these activities may have reinforced the already-existing focus on enterprise governance, but they did not necessarily bring clarity to the topic. Therefore we can currently notice some changes aiming to improve the adoption and adaptation of best practices and standards within the area of enterprise governance. The paper discusses the changes in the Enterprise Governance of IT/IS, audit/assurance evolution, and intended Cobit improvements.

  10. Development of the Space Debris Sensor (SDS)

    Science.gov (United States)

    Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.

    2017-01-01

    The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.

  11. Himalayan glacier retreat delayed by debris cover

    Science.gov (United States)

    Scherler, D.; Bookhagen, B.; Strecker, M. R.

    2010-12-01

    Variable retreat rates and paucity of mass-balance data complicate a coherent picture of the current state and future fate of Himalayan glaciers. We report frontal changes and remotely-sensed surface velocities from >250 glaciers in the greater Himalayan realm (Hindu Kush, Karakoram, Himalaya, West Kunlun Shan) between 2000 and 2008 that provide evidence for widespread meltdown, which is obscured by debris cover. While debris-free glaciers in Tibet and other low-relief areas have been mainly retreating, debris-covered glaciers in high-relief areas, such as the central Himalaya, were mostly stagnating and in-situ down wasting but not retreating. Only Karakoram glaciers show no signs of stagnation or appreciable retreat, despite high debris cover, suggesting no recent mass loss. Our study shows that regional differences in topographic relief account for substantial differences in debris cover and thus retreat behaviour that need to be considered when comparing glacier retreat rates. The combination of melt rates lowered by debris cover and healthier glaciers in the strongly glaciated Karakoram slows down current glacier wastage in High Asia. Predictions of future water availability and global sea level have so far neglected the effect of debris cover on glacier melt rates and thus likely overestimate the speed of glacier meltdown in the Himalaya and other steep mountain ranges where debris covered glaciers are common.

  12. The fast debris evolution model

    Science.gov (United States)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  13. Reflectance Spectra of Space Debris in GEO

    Science.gov (United States)

    Schildknecht, T.; Vannanti, A.; Krag, H.; Erd, C.

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated by means of optical surveys. Such surveys revealed a considerable amount of debris in the size range of 10 centimeter to one meter. Some of these debris exhibit particularly high area-to-mass ratios as derived from the evolution of their orbits. In order to understand the nature and eventually the origin of these objects, observations allowing to derive physical characteristics like size, shape and material are required. Information on the shape and the attitude motion of a debris piece may be obtained by photometric light curves. The most promising technique to investigate the surface material properties is reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of space debris in GEO. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The target objects were space debris of different types with brightness as small as magnitude 15. Some simple-shaped, intact "calibration objects" with known surface materials like the MSG-2 satellites were also observed. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the possible materials is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  14. Development of the Space Debris Sensor (SDS)

    Science.gov (United States)

    Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.

    2017-01-01

    Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.

  15. Reviews on Fluid Properties and Sedimentary Characteristics of Debris Flows and Turbidity Currents%碎屑流与浊流的流体性质及沉积特征研究进展

    Institute of Scientific and Technical Information of China (English)

    高红灿; 郑荣才; 魏钦廉; 陈发亮; 陈君; 朱登锋; 刘云

    2012-01-01

    受浊流沉积模式(即鲍马序列和浊积扇模式)的驱动和浊积岩思维定势的影响,自1970s浊流与浊积岩的概念逐渐扩大,特别是通过“高密度浊流”术语的引入,以及将水下浊流与陆上河流的错误类比,使得一部分碎屑流与底流的沉积被认为是浊积岩。随着现代观测设备的应用以及详细的岩芯观察,碎屑流(特别是砂质碎屑流)和浊流被重新认识。浊流是一种具牛顿流变性质和紊乱状态的沉积物重力流,其沉积物支撑机制是湍流。碎屑流是一种具塑性流变性质和层流状态的沉积物重力流,其沉积物支撑机制主要是基质强度和颗粒间的摩擦强度。浊流沉积具特征的正粒序韵律结构,底部为突变接触而顶部为渐变接触;碎屑流沉积一般具上、下两层韵律结构,即下部发育具平行碎屑结构的层流段,上部发育具块状层理的“刚性”筏流段。但当碎屑流被周围流体整体稀释改造且改造不彻底时,强碎屑流可变为中—弱碎屑流,相应自下而上可形成逆—正粒序的沉积韵律结构,其中发育有呈漂浮状的石英颗粒和泥质撕裂屑等碎屑颗粒,明显区别于浊流沉积单一的正粒序韵律结构特征。碎屑流沉积顶、底部均为突变接触。浊流的沉积模式为简单的具平坦盆底的坡底模式,而碎屑流则为复杂的斜坡模式。%Influenced by the sedimentary models of turbidity currents and the turbidite mind set, the concepts of turbidity currents and turbidites have been expanded gradually since 1970s. Specially, Some deposition of debris flows and bottom flows are considered as turbidites by the introduction of the term "high-density turbidity currents" and the incorrect comparison of subaerial rive currents and subaqueous turbidity currents. Turbidity currents and debris flows, especially sandy debris flows, have been re-recognized with application of

  16. Provision, transport and deposition of debris in urban waterways

    Institute of Scientific and Technical Information of China (English)

    Deonie Allen; Scott Arthur; Nicolas Wallerstien; Janice Blanc; Heather Haynes

    2015-01-01

    abstract The transport of woody debris from urban surfaces, through local urban waterways, to constriction and blockage risk locations is not well understood. Flume trials have identified debris and water-course dimensions as influential factors on debris movement, and large woody debris movement has been traced in the natural rural environment using time series photography, active transponders, and field surveys. Using novel passive transponder technology, small woody debris has been traced through an urban case study watercourse to establish key influential factors on urban debris transport. Through incorporating urban debris transport detail into the source and deposition process, a complete picture of urban debris transport can be created, supporting effective culvert and trash screen design, watercourse maintenance and blockage risk assessment. This case study highlights that factors beyond watercourse depth and velocity are influential in debris movement within an urban watercourse. Debris dimension and source location upstream are shown to significantly affect the potential for debris to reach a downstream constriction, illustrating a possible distance limitation in nuisance flow debris blockage risk.

  17. Debris ingestion by the Antillean Manatee (Trichechus manatus manatus).

    Science.gov (United States)

    Attademo, Fernanda Loffler Niemeyer; Balensiefer, Deisi Cristiane; Freire, Augusto Carlos da Bôaviagem; de Sousa, Glaucia Pereira; da Cunha, Fábio Adonis Gouveia Carneiro; Luna, Fábia de Oliveira

    2015-12-15

    The Antillean manatee inhabits coastal regions of North and Northeastern Brazil and currently is considered an endangered species in the country. Aiming to gather information for the development of public policies focusing on the conservation of manatees, the National Center for Research and Conservation of Aquatic Mammals of the Chico Mendes Institute for Biodiversity has been rescuing, rehabilitating and releasing these mammals since the 1980s. Over the last 36 years, 40 manatees were released by the CMA/ICMBio and four of them were rescued again due to debris ingestion. Two of these manatees died and the other two were taken back into captivity for a new rehabilitation process. The four mammals had confirmed diagnosis of plastic debris ingestion. These findings demonstrate that the environment where the manatees live after being released had a significant amount of garbage which may hinder the success of the species conservation in Brazil.

  18. Space Debris Removal: A Game Theoretic Analysis

    Directory of Open Access Journals (Sweden)

    Richard Klima

    2016-08-01

    Full Text Available We analyse active space debris removal efforts from a strategic, game-theoretical perspective. Space debris is non-manoeuvrable, human-made objects orbiting Earth, which pose a significant threat to operational spacecraft. Active debris removal missions have been considered and investigated by different space agencies with the goal to protect valuable assets present in strategic orbital environments. An active debris removal mission is costly, but has a positive effect for all satellites in the same orbital band. This leads to a dilemma: each agency is faced with the choice between the individually costly action of debris removal, which has a positive impact on all players; or wait and hope that others jump in and do the ‘dirty’ work. The risk of the latter action is that, if everyone waits, the joint outcome will be catastrophic, leading to what in game theory is referred to as the ‘tragedy of the commons’. We introduce and thoroughly analyse this dilemma using empirical game theory and a space debris simulator. We consider two- and three-player settings, investigate the strategic properties and equilibria of the game and find that the cost/benefit ratio of debris removal strongly affects the game dynamics.

  19. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    Science.gov (United States)

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna.

  20. 76 FR 38399 - Assessing the Current Research, Policy, and Practice Environment in Public Health Genomics

    Science.gov (United States)

    2011-06-30

    ... HUMAN SERVICES Centers for Disease Control and Prevention Assessing the Current Research, Policy, and..., and other information helpful to assess the current research, policy, and practice environment in... Control and Prevention (CDC) has worked to integrate genomics into public health research, policy,...

  1. The current situation of impact of coal mine developing on environment in China and government proposal

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yang [China University of Mining and Technology, Beijing (China). Ministry of Land and Resources

    2005-07-01

    Current environmental problems caused by coal mining in China, the importance of management of the environment, impact of coal mining on land and water resources, and upcoming coal development are discussed. It is suggested that the government should act in two ways: take responsibility for management of reclamation of mines existing before 1986, and set up mechanisms to protect the environment, starting with the publishing of relevant laws and regulations. Methods for solving environmental issues include: prepare a practical plan, establish an environmental control fund, establish a special fund to protect the environment, and develop new ways to combine protection of the biological environment and land reclamation. 5 refs., 3 tabs.

  2. Wear debris in cemented total hip arthroplasty.

    Science.gov (United States)

    Huo, M H; Salvati, E A; Buly, R L

    1991-03-01

    One of the most prevalent clinical problems in long-term follow up of total hip arthroplasty patients is loosening of prosthetic fixation. Factors contributing to mechanical failure of total hip reconstruction are complex and multiple. It has become increasingly apparent that wear debris from the prosthetic components may contribute significantly to this process. The authors summarize some of the current concepts concerning the detrimental effects of metallic debris in total hip arthroplasty.

  3. POST Earthquake Debris Management - AN Overview

    Science.gov (United States)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  4. Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments.

    Science.gov (United States)

    Zheng, Jisi; Chen, Bing; Thanyamanta, Worakanok; Hawboldt, Kelly; Zhang, Baiyu; Liu, Bo

    2016-03-15

    Increasing offshore oil and gas exploration and development in harsh/Arctic environments require more effective offshore produced water management, as these environments are much more sensitive to changes in water quality than more temperate climates. However, the number and scope of studies of offshore produced water management in harsh/Arctic environments are limited. This paper reviews the current state of offshore produced water management, impacts, and policies, as well as the vulnerability, implications and operational challenges in harsh/Arctic environments. The findings show that the primary contaminant(s) of concern are contained in both the dissolved oil and the dispersed oil. The application of emerging technologies that can tackle this issue is significantly limited by the challenges of offshore operations in harsh/Arctic environments. Therefore, there is a need to develop more efficient and suitable management systems since more stringent policies are being implemented due to the increased vulnerability of harsh/Arctic environments.

  5. The bistatic radar capabilities of the Medicina radiotelescopes in space debris detection and tracking

    Science.gov (United States)

    Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.

    2010-03-01

    An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.

  6. Clinical compliance of viewing conditions in radiology reporting environments against current guidelines and standards

    Science.gov (United States)

    Daly, S.; Rainford, L.; Butler, M. L.

    2014-03-01

    Several studies have demonstrated the importance of environmental conditions in the radiology reporting environment, with many indicating that incorrect parameters could lead to error and misinterpretation. Literature is available with recommendations as to the levels that should be achieved in clinical practice, but evidence of adherence to these guidelines in radiology reporting environments is absent. This study audited the reporting environments of four teleradiologist and eight hospital based radiology reporting areas. This audit aimed to quantify adherence to guidelines and identify differences in the locations with respect to layout and design, monitor distance and angle as well as the ambient factors of the reporting environments. In line with international recommendations, an audit tool was designed to enquire in relation to the layout and design of reporting environments, monitor angle and distances used by radiologists when reporting, as well as the ambient factors such as noise, light and temperature. The review of conditions were carried out by the same independent auditor for consistency. The results obtained were compared against international standards and current research. Each radiology environment was given an overall compliance score to establish whether or not their environments were in line with recommended guidelines. Poor compliance to international recommendations and standards among radiology reporting environments was identified. Teleradiology reporting environments demonstrated greater compliance than hospital environments. The findings of this study identified a need for greater awareness of environmental and perceptual issues in the clinical setting. Further work involving a larger number of clinical centres is recommended.

  7. Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime

    Science.gov (United States)

    Albercromby, Kira J.; Abell, Paul; Barker, Ed

    2009-03-01

    A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but

  8. New solutions for the space debris problem

    CERN Document Server

    Pelton, Joseph N

    2015-01-01

    Addressing a pressing issue in space policy, Pelton explores the new forms of technology that are being developed to actively remove the defunct space objects from orbit and analyzes their implications in the existing regime of international space law and public international law. This authoritative review covers the due diligence guidelines that nations are using to minimize the generation of new debris, mandates to de-orbit satellites at end of life, and innovative endeavours to remove non-functional satellites, upper stage rockets and other large debris from orbit under new institutional, financial and regulatory guidelines.  Commercial space services currently exceed 100 billion USD business per annum, but the alarming proliferation in the population of orbital debris in low, medium and geosynchronous satellite orbits poses a serious threat to all kinds of space assets and applications. There is a graver concern that the existing space debris will begin to collide in a cascading manner, generating furth...

  9. Molecular Gas in Young Debris Disks

    Science.gov (United States)

    Moór, Attila; Kóspál, Ágnes; Ábrahám, Péter; Juhász, Attila; Apai, Dániel; Csengeri, Timea; Grady, Carol; Henning, Thomas; Kiss, Csaba; Pascucci, Ilaria

    2013-07-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. So far only a very few debris disks with measurable gas component have been known. We carried out a survey with the APEX radio telescope to detect molecular gas at millimeter wavelengths in 28 infrared-luminous young debris disks, and discovered two new systems with substantial amount of CO. Motivated to understand the origin, physics, and evolutionary status of the gas in these systems we observed one of them, HD 21997, with ALMA and Herschel. Our results suggest that HD 21997 may be a hybrid system where secondary debris dust and residual primordial gas coexist. This poses a serious question to the current paradigm, since the age of the system (30 Myr) significantly exceeds model predictions for disk clearing and the ages of the oldest transitional disks.

  10. Effect of the electromagnetic environment on current fluctuations in driven tunnel junctions

    Science.gov (United States)

    Frey, Moritz; Grabert, Hermann

    2016-07-01

    We examine current fluctuations in tunnel junctions driven by a superposition of a constant and a sinusoidal voltage source. In standard setups, the external voltage is applied to the tunneling element via an impedance providing an electromagnetic environment of the junction. The modes of this environment are excited by the time-dependent voltage and are the source of Johnson-Nyquist noise. We determine the autocorrelation function of the current flowing in the leads of the junction in the weak tunneling limit up to terms of second order in the tunneling Hamiltonian. The driven modes of the electromagnetic environment are treated exactly by means of a unitary transformation introduced recently. Particular emphasis is placed on the spectral function of the current fluctuations. The spectrum is found to comprise three contributions: a term arising from the Johnson-Nyquist noise of the environmental impedance, a part due to the shot noise of the tunneling element, and a third contribution which comes from the cross correlation between fluctuations caused by the electromagnetic environment and fluctuations of the tunneling current. All three parts of the spectral function occur already for devices under dc bias. The spectral function of ac driven tunneling elements can be determined from the result for a dc bias by means of a photoassisted tunneling relation of the Tien-Gordon type. Specific results are given for an Ohmic environment and for a junction driven through a resonator.

  11. Expanding capabilities of the debris analysis workstation

    Science.gov (United States)

    Spencer, David B.; Sorge, Marlon E.; Mains, Deanna L.; Shubert, Ann J.; Gerhart, Charlotte M.; Yates, Ken W.; Leake, Michael

    1996-10-01

    Determining the hazards from debris-generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the United States Air Force (USAF) Phillips Laboratory (PL) Space Debris Research Program has developed a simulation software package called the Debris Analysis Workstation (DAW). This software provides an analysis capability for assessing a wide variety of debris hazards. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for Department of Defense space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts who are not debris experts. The current version of DAW includes models for spacecraft breakup, debris orbital lifetime, collision hazard risk assessment, and collision dispersion, as well as a satellite catalog database manager, a drag inclusive propagator, a graphical user interface, and data visualization routines. Together they provide capabilities to conduct several types of analyses, ranging from range safety assessments to satellite constellation risk assessment. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated system is an object oriented language layer scheduled to be added soon. Other candidate component models under consideration for incorporation include additional orbital propagators, error estimation routines, other dispersion models, and other breakup models. At present, DAW resides on a SUNR workstation, although future versions could be tailored for other platforms, depending on the need.

  12. Modeling debris-covered glaciers: response to steady debris deposition

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  13. Orbital Debris Quarterly News. Volume 13; No. 1

    Science.gov (United States)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  14. Radar Measurements of Small Debris from HUSIR and HAX

    Science.gov (United States)

    Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  15. Radar Measurements of Small Debris from HUSIR and HAX

    Science.gov (United States)

    Hamilton, Joseph; Blackwell, Chris; McSheehy, Richard; Juarez, Quanette

    2017-01-01

    For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.

  16. Space Tourism: Orbital Debris Considerations

    Science.gov (United States)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    review of the current work on space tourism and debris situation in low earth orbit suitable orbits for space tourism activities with regard to the presence of orbital debris are discussed.

  17. A Support System to Tie Apron Strings to Debris Flow

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists from the Chengdubased CAS Institute of Mountain Hazards and Environment (IMHE) recently worked out a decision-making support system for disaster mitigation on debris fans in mountainous regions.As a domestic vanguard, the system plays a key role in the fight against debris flow and helping to reduce casualties.

  18. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    Science.gov (United States)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  19. Special Report Debris - Race

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  20. Disaster Debris Recovery Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 3,500 composting facilities, demolition contractors, haulers, transfer...

  1. Planetesimals in Debris Disks

    CERN Document Server

    Youdin, Andrew N

    2015-01-01

    Planetesimals form in gas-rich protoplanetary disks around young stars. However, protoplanetary disks fade in about 10 Myr. The planetesimals (and also many of the planets) left behind are too dim to study directly. Fortunately, collisions between planetesimals produce dusty debris disks. These debris disks trace the processes of terrestrial planet formation for 100 Myr and of exoplanetary system evolution out to 10 Gyr. This chapter begins with a summary of planetesimal formation as a prelude to the epoch of planetesimal destruction. Our review of debris disks covers the key issues, including dust production and dynamics, needed to understand the observations. Our discussion of extrasolar debris keeps an eye on similarities to and differences from Solar System dust.

  2. Roll Call Debris - Race

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  3. Fleet Debris Levels

    Data.gov (United States)

    U.S. Environmental Protection Agency — Marine debris degrades ocean habitats, endangers marine and coastal wildlife, causes navigation hazards, results in economic losses to industry and governments, and...

  4. Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps

    Science.gov (United States)

    Lugon, Ralph; Stoffel, Markus

    2010-09-01

    A widespread risk in high mountains is related to the accumulation of loose sediments on steep slopes, which represent potential sources of different types of geomorphic processes including debris flows. This paper combines data on 50 yr of permafrost creep at the Ritigraben rock glacier (Valais, Swiss Alps) with magnitude-frequency (M-F) relationships of debris flows recorded in the Ritigraben torrent originating at the rock-glacier front. Debris production and volumetric changes at the rock-glacier front are compared with debris-flow activity recorded on the cone and potential couplings and feedbacks between debris sources, channel processes and debris sinks. The dataset existing for the Ritigraben rock glacier and its debris-flow system is unique and allows prime insights into controls and dynamics of permafrost processes and related debris-flow activity in a constantly changing and warming high-altitude environment. Acceleration in rock-glacier movement rates is observed in the (1950s and) 1960s, followed by a decrease in flow rates by the 1970s, before movements increase again after the early 1990s. At a decadal scale, measured changes in rock-glacier movements at Ritigraben are in concert with changes in atmospheric temperatures in the Alps. Geodetic data indicates displacement rates in the frontal part of the rock glacier of up to 0.6-0.9 m yr -1 since the beginning of systematic measurements in 1995. While the Ritigraben rock glacier has always formed a sediment reservoir for the associated debris-flow system, annual horizontal displacement rates of the rock-glacier body have remained quite small and are in the order of decimeters under current climatic conditions. Sediment delivery from the rock-glacier front alone could not therefore be sufficient to support the 16 debris flows reconstructed on the cone since 1958. On the contrary, debris accumulated at the foot of the rock glacier, landslide and rockfall activity as well as the partial collapse of

  5. STRATEGIC MANAGEMENT OF COSTS - THE MAIN TOOL OF COMPETITIVE ADVANTAGE IN THE CURRENT ECONOMIC ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    CORINA MICULESCU

    2012-05-01

    Full Text Available Both global and national hipercompetiţia and globalization are two phenomena that generate complexity and instability in the business. Therefore, the economic context in which organizations operate has changed a lot, the current environment characterized by globalization, increased competition, rapidly changing, market segmentation, changes in technology, demand volatility, the importance of information. These phenomena not only create a state of turmoil and turbulence in the competitive environment and generate changes in market conditions, but require changes and development in organizations. In these circumstances organizations worldwide are forced to adapt constantly, products and services to market needs to turn its attention to customer satisfaction, they need sophisticated production processes, internal processes flexible to respond quickly to changes environment.Therefore to achieve any competitive advantage, organizations must take the current economic environment strategies that integrate environmental opportunities, market and technology advantages in the most efficient way. In this context the question of modernization, the transformation cost information system, an adaptation to the realities and requirements of this, to change tools, processes and methods to meet current scientific and technical progress.

  6. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    Science.gov (United States)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  7. Characterization of Debris from the DebriSat Hypervelocity Test

    Science.gov (United States)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  8. Conceptualizing an economically, legally, and politically viable active debris removal option

    Science.gov (United States)

    Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.

    2014-11-01

    It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these

  9. Biobjective planning of an active debris removal mission

    Science.gov (United States)

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel

    2013-03-01

    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  10. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    Energy Technology Data Exchange (ETDEWEB)

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  11. The average direct current offset values for small digital audio recorders in an acoustically consistent environment.

    Science.gov (United States)

    Koenig, Bruce E; Lacey, Douglas S

    2014-07-01

    In this research project, nine small digital audio recorders were tested using five sets of 30-min recordings at all available recording modes, with consistent audio material, identical source and microphone locations, and identical acoustic environments. The averaged direct current (DC) offset values and standard deviations were measured for 30-sec and 1-, 2-, 3-, 6-, 10-, 15-, and 30-min segments. The research found an inverse association between segment lengths and the standard deviation values and that lengths beyond 30 min may not meaningfully reduce the standard deviation values. This research supports previous studies indicating that measured averaged DC offsets should only be used for exclusionary purposes in authenticity analyses and exhibit consistent values when the general acoustic environment and microphone/recorder configurations were held constant. Measured average DC offset values from exemplar recorders may not be directly comparable to those of submitted digital audio recordings without exactly duplicating the acoustic environment and microphone/recorder configurations.

  12. Plastics, the environment and human health: current consensus and future trends

    OpenAIRE

    Richard C. Thompson; Moore, Charles J.; Frederick S Vom Saal; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However...

  13. Plastics, the environment and human health: current consensus and future trends

    OpenAIRE

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However...

  14. Sub-Millimeter Size Debris Monitoring System with IDEA OSG 1

    Science.gov (United States)

    Uetsuhara, M.; Okada, M.; Yamazaki, Y.; Hanada, T.

    2016-09-01

    The 20-kg class microsatellite carrying debris impact sensors IDEA OSG 1 contributes to timely mapping and tracking capabilities for space debris in sub-millimeter size regime are essential to model the low earth orbit (LEO) environment and to improve spaceflight safety. IDEA OSG 1 will sample the sub-millimeter size debris environment in one of the most congested region in LEO by detecting impacts of sub-millimeter size debris and provide key data about the size, the time, and the location of impacted sub-millimeter size debris in near real time.

  15. Parametric analysis: SOC meteoroid and debris protection

    Science.gov (United States)

    Kowalski, R.

    1985-01-01

    The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.

  16. European code of conduct for space debris mitigation

    OpenAIRE

    Alby, Fernand; Alwes, Detlef; Anselmo, Luciano

    2004-01-01

    Towards the end of the third decade of the space age, it became apparent that a new particulate environment was beginning to dominate the background meteoroid environment in all but the millimetre size regime. This man-made, orbital debris population was growing rapidly, the direct consequence of launching and operating space systems during the previous 3 decades. Man-made orbital debris poses a significantly increased collision hazard to man-made satellites, and as we become more dependent u...

  17. North Atlantic Current and European environments during the declining stage of the last interglacial

    Science.gov (United States)

    Müller, Ulrich C.; Kukla, George J.

    2004-12-01

    This paper provides a tentative reconstruction of environmental shifts in Europe associated with changes of the North Atlantic Current and related meridional sea-surface temperature (SST) gradients. During most of the Eemian interglacial (ca. 126 115 ka), the North Atlantic Current extended far north into the Nordic Seas and European environments were comparable to those of the Holocene. However, ca. 115 ka an SST drop in the Nordic Seas marked a southward displacement of the North Atlantic Current. This hydrographic shift was associated with substantial cooling in northern Europe and drier conditions in the Mediterranean region. The polar timberline retreated southward from 69°N in northernmost Scandinavia to 52°N in central Europe, and thermophilous deciduous trees became extinct north of the 48th parallel. Woodlands persisted in southern Europe for another 5 k.y. well into marine isotope substage 5d. These conditions indicate steep vegetation and climate gradients at the inception of the last glacial.

  18. Space Debris Reentry Analysis Methods and Tools

    Institute of Scientific and Technical Information of China (English)

    WU Ziniu; HU Ruifeng; QU Xi; WANG Xiang; WU Zhe

    2011-01-01

    The reentry of uncontrolled spacecraft may be broken into many pieces of debris at an altitude in the range of 75-85 km.The surviving fragments could pose great hazard and risk to ground and people.In recent years,methods and tools for predicting and analyzing debris reentry and ground risk assessment have been studied and developed in National Aeronautics and Space Administration(NASA),European Space Agency(ESA) and other organizations,including the group of the present authors.This paper reviews the current progress on this topic of debris reentry briefly.We outline the Monte Carlo method for uncertainty analysis,breakup prediction,and parameters affecting survivability of debris.The existing analysis tools can be classified into two categories,i.e.the object-oriented and the spacecraft-oriented methods,the latter being more accurate than the first one.The past object-oriented tools include objects of only simple shapes.For more realistic simulation,here we present an object-oriented tool debris reentry and ablation prediction system(DRAPS) developed by the present authors,which introduces new object shapes to 15 types,as well as 51 predefined motions and relevant aerodynamic and aerothermal models.The aerodynamic and aerothermal models in DRAPS are validated using direct simulation Monte Carlo(DSMC) method.

  19. Acoustic Doppler current profiler measurements in coastal and estuarine environments: examples from the Tay Estuary, Scotland

    Science.gov (United States)

    Wewetzer, Silke F. K.; Duck, Robert W.; Anderson, James M.

    1999-08-01

    Acoustic Doppler current profilers (ADCPs) provide a means to measure the components of water current velocities in three dimensions. Such instruments have been used widely by the oil industry in deep offshore waters but their application to nearshore coastal and estuarine environments has been principally confined to the USA. Using examples of ADCP datasets acquired from the macrotidal Tay Estuary, eastern Scotland, the principles of field deployment, data acquisition and forms of output are critically summarised. It is shown, for the first time in the Tay Estuary, that vertical current velocities are significant and are particularly so in downwelling zones associated with the development and passage of axially convergent tidal fronts. The improved understanding of three-dimensional water and suspended sediment dynamics in coastal and estuarine waters is crucial to, inter alia, the sustainable management of effluent discharges and, in more general terms, it is predicted on the basis of the Tay case study, that ADCP measurements afford significant opportunities to refine understanding of geomorphological processes in a variety of aquatic environments worldwide.

  20. Final payload test results for the RemoveDebris active debris removal mission

    Science.gov (United States)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2017-09-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  1. Space Debris Mitigation Guidelines

    Science.gov (United States)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  2. Chemical Classification of Space Debris

    Institute of Scientific and Technical Information of China (English)

    LI Chunlai; ZUO Wei; LIU Jianjun; OUYANG Ziyuan

    2004-01-01

    Space debris, here referring to all non-operating orbital objects, has steadily increased in number so that it has become a potential barrier to the exploration of space. The ever-increasing number of space debris pieces in space has created an increasingly threatening hazard to all on-the-orbit spacecraft, and all future space exploration activities have to be designed and operated with respect to the increasing threat posed by space debris. Generally, space debris is classified as large, medium and small debris pieces based on their sizes. The large debris piece is easily catalogued, but medium to small debris pieces are very difficult to track and also quite different in damage mechanisms from the large ones. In this paper, a scheme of chemical classification of space debris is developed. In our scheme, the first-order classification is employed to divide space debris into two groups: natural micrometeoroids and artificial space debris.The second-order classification is based on their chemical patterns and compositions. The natural micrometeoroids are further divided into three types, namely maric, metal and phyllosilicate micrometeorites, while the artificial space debris is divided into seven types, which are polymers, non-metal debris, metals and their alloys, oxides, sulphides and their analogs, halides and carbides. Of the latter seven types, some can also be further divided into several sub-types. Chemical classification of space debris is very useful for the study of the chemical damage mechanism of small debris pieces, and also is of great significance in constraining the origin and source of space debris and assessing their impact on spacecraft and human space activities.

  3. Data Acquisition, Management, and Analysis in Support of the Audiology and Hearing Conservation and the Orbital Debris Program Office

    Science.gov (United States)

    Dicken, Todd

    2012-01-01

    My internship at Johnson Space Center, Houston TX comprised of working simultaneously in the Space Life Science Directorate (Clinical Services Branch, SD3) in Audiology and Hearing Conservation and in the Astromaterials Research and Exploration Sciences Directorate in the Orbital Debris Program Office (KX). The purpose of the project done to support the Audiology and Hearing Conservation Clinic (AuHCon) is to organize and analyze auditory test data that has been obtained from tests conducted onboard the International Space Station (ISS) and in Johnson Space Center's clinic. Astronauts undergo a special type of auditory test called an On-Orbit Hearing Assessment (OOHA), which monitors hearing function while crewmembers are exposed to noise and microgravity during long-duration spaceflight. Data needed to be formatted to assist the Audiologist in studying, analyzing and reporting OOHA results from all ISS missions, with comparison to conventional preflight and post-flight audiometric test results of crewmembers. Orbital debris is the #1 threat to manned spacecraft; therefore NASA is investing in different measurement techniques to acquire information on orbital debris. These measurements are taken with telescopes in different parts of the world to acquire brightness variations over time, from which size, rotation rates and material information can be determined for orbital debris. Currently many assumptions are taken to resolve size and material from observed brightness, therefore a laboratory (Optical Measurement Center) is used to simulate the space environment and acquire information of known targets suited to best model the orbital debris population. In the Orbital Debris Program Office (ODPO) telescopic data were acquired and analyzed to better assess the orbital debris population.

  4. Estimates of durability of TMI-2 core debris canisters and cask liners

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Lund, A.L.; Pednekar, S.P.

    1994-04-01

    Core debris from the Three Mile Island-2 (TMI-2) reactor is currently stored in stainless steel canisters. The need to maintain the integrity of the TMI-2 core debris containers through the period of extended storage and possibly into disposal prompted this assessment. In the assessment, corrosion-induced degradation was estimated for two materials: type 304L stainless steel (SS) canisters that contain the core debris, and type 1020 carbon steel (CS) liners in the concrete casks planned for containing the canisters from 2000 AD until the TMI-2 core debris is placed in a repository. Three environments were considered: air-saturated water (with 2 ppM Cl{sup {minus}}) at 20{degree}C, and air at 20{degree}C with two relative humidities (RHs), 10 and 40%. Corrosion mechanisms assessed included general corrosion (failure criterion: 50% loss of wall thickness) and localized attack (failure criterion: through-wall pinhole penetration). Estimation of carbon steel corrosion after 50 y also was requested.

  5. The significance of personal learning environments (PLEs) in nursing education: Extending current conceptualizations.

    Science.gov (United States)

    Patterson, Christopher; Stephens, Moira; Chiang, Vico; Price, Ann M; Work, Fiona; Snelgrove-Clarke, Erna

    2017-01-01

    Personal learning environments (PLEs) have been shown to be a critical part of how students negotiate and manage their own learning. Understandings of PLEs appear to be constrained by narrow definitions that focus primarily on technological engagement with a range of web tools and associated applications. This paper addresses a gap in the literature around PLEs for students currently enrolled in undergraduate nursing degrees. To provide in-depth insights into how undergraduate students of nursing manage and experience their learning. This was an international multi-site qualitative study, utilizing focus groups. A schedule of 10 questions and nominal group techniques were used. Whilst the focus groups took place in very different geographical locations, there were strong similarities in student understandings of effective PLEs. These went well beyond current technological definitions. Findings were organized into three major themes; technologies, learning modalities and influencing factors. We propose a broader understanding of PLEs that acknowledges individual personal and cultural contexts which we call the personally significant learning environment (PSLE). There is a need for greater investigation of how students understand and systematize their PSLE. This paper and our findings will be of interest to educators, researchers and institutions for developing appropriate frameworks that may maximize learning outcomes, encourage cultural sensitivities and facilitate greater understandings of how to support students to create appropriate PSLEs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Research on the Detection of Metal Debris with Microplane Inductance Sensor

    Directory of Open Access Journals (Sweden)

    Bendong Liu

    2013-01-01

    Full Text Available The debris detection system is simulated and analyzed with the software of Maxwell 14 in this paper. The magnetic induction intensity and the magnetic density of the detection system with metal debris are simulated. The static experimental system is designed to measure the inductance caused by different metal debris. The simulation and experimental result indicate that the nonferromagnetic metal debris reduces the inductance of microplane inductance sensor and that ferromagnetic metal debris increases the inductance of microplane sensor. The detection of metal debris with microplane sensor is feasibly proved by the research. This paper provides a model for detecting the debris with a plane eddy current sensor and a case for the 3D simulation of the eddy current. This work may have some significance for improving the efficiency of the plane eddy current sensor.

  7. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  8. EISCAT Space Debris during the IPY- A 5000-Hour Campaign

    Science.gov (United States)

    Markkanen, J.; Jehn, R.; Krag, H.

    2009-03-01

    During the International Polar Year (IPY) in 2007-2009, EISCAT measured space debris at its Svalbard radar (ESR, latitude 78.2°N), simultaneously with the standard ionospheric measurement. From the 239 000 events which were recorded in 5060 hours only a "Quality Set" (QS) was extracted for further analysis. The QS essentially consists of 101 complete 24-hour beam park debris measurements, between 13 Mar 2007 and 10 Feb 2008, and contains about 95 000 events. The data provide a relatively dense sampling of the debris environment above ESR in the first year following the Chinese ASAT event, in January 2007. The QS is freely available in the web.

  9. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    Science.gov (United States)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  10. Plastics, the environment and human health: current consensus and future trends.

    Science.gov (United States)

    Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H

    2009-07-27

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  11. Plastics, the environment and human health: current consensus and future trends

    Science.gov (United States)

    Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.

    2009-01-01

    Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the

  12. Extreme Environment Simulation - Current and New Capabilities to Simulate Venus and Other Planetary Bodies

    Science.gov (United States)

    Kremic, Tibor; Vento, Dan; Lalli, Nick; Palinski, Timothy

    2014-01-01

    Science, technology, and planetary mission communities have a growing interest in components and systems that are capable of working in extreme (high) temperature and pressure conditions. Terrestrial applications range from scientific research, aerospace, defense, automotive systems, energy storage and power distribution, deep mining and others. As the target environments get increasingly extreme, capabilities to develop and test the sensors and systems designed to operate in such environments will be required. An application of particular importance to the planetary science community is the ability for a robotic lander to survive on the Venus surface where pressures are nearly 100 times that of Earth and temperatures approach 500C. The scientific importance and relevance of Venus missions are stated in the current Planetary Decadal Survey. Further, several missions to Venus were proposed in the most recent Discovery call. Despite this interest, the ability to accurately simulate Venus conditions at a scale that can test and validate instruments and spacecraft systems and accurately simulate the Venus atmosphere has been lacking. This paper discusses and compares the capabilities that are known to exist within and outside the United States to simulate the extreme environmental conditions found in terrestrial or planetary surfaces including the Venus atmosphere and surface. The paper then focuses on discussing the recent additional capability found in the NASA Glenn Extreme Environment Rig (GEER). The GEER, located at the NASA Glenn Research Center in Cleveland, Ohio, is designed to simulate not only the temperature and pressure extremes described, but can also accurately reproduce the atmospheric compositions of bodies in the solar system including those with acidic and hazardous elements. GEER capabilities and characteristics are described along with operational considerations relevant to potential users. The paper presents initial operating results and concludes

  13. Development of in-situ Space Debris Detector

    Science.gov (United States)

    Bauer, Waldemar; Romberg, O.; Wiedemann, C.; Drolshagen, G.; Vörsmann, P.

    2014-11-01

    Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small

  14. Simulation of long-term debris flow sediment transport based on a slope stability and a debris flow routing model

    Science.gov (United States)

    Müller, T.; Hoffmann, T.

    2012-04-01

    Debris flows play a crucial role in the coupling of hillslope-sediment sources and channels in mountain environments. In most landscape evolution models (LEMs), the sediment transport by debris flows is (if at all) often represented by simple empirical rules. This generally results from the mismatch of the coarse resolution of the LEMs and the small scale impacts of debris flow processes. To extend the accuracy and predictive power of LEMs, either a higher resolution of LEMs in combination with process-based debris flow models or a better parametrisation of subpixel scale debris flow processes is necessary. Furthermore, the simulation of sediment transport by debris flows is complicated by their episodic nature and unknown factors controlling the frequency and magnitude of events. Here, we present first results using a slope stability model (SINMAP) and an event-based debris flow routing model (SCIDDICA-S4c) to simulate the effects of debris flows in LEMs. The model was implemented in the XULU modelling platform developed by the Department of Computer Science at the University of Bonn. The combination of the slope stability model and the event-based routing and mass balance model enables us to simulate the triggering and routing of debris flow material through the iteration of single events over several thousand years. Although a detailed calibration and validation remains to be done, the resulting debris flow-affected areas in a test elevation model correspond well with data gained from a geomorphological mapping of the corresponding area, justifying our approach. The increased computation speed allows to run high resolution LEM in convenient short time at relatively low cost. This should encourage the development of more detailed LEMs, in which process-based models should be incorporated.

  15. Optical Estimation of Depth and Current in a Ebb Tidal Delta Environment

    Science.gov (United States)

    Holman, R. A.; Stanley, J.

    2012-12-01

    A key limitation to our ability to make nearshore environmental predictions is the difficulty of obtaining up-to-date bathymetry measurements at a reasonable cost and frequency. Due to the high cost and complex logistics of in-situ methods, research into remote sensing approaches has been steady and has finally yielded fairly robust methods like the cBathy algorithm for optical Argus data that show good performance on simple barred beach profiles and near immunity to noise and signal problems. In May, 2012, data were collected in a more complex ebb tidal delta environment during the RIVET field experiment at New River Inlet, NC. The presence of strong reversing tidal currents led to significant errors in cBathy depths that were phase-locked to the tide. In this paper we will test methods for the robust estimation of both depths and vector currents in a tidal delta domain. In contrast to previous Fourier methods, wavenumber estimation in cBathy can be done on small enough scales to resolve interesting nearshore features.

  16. Evolutionary Psychology: How Psychological Mechanisms Shaped by Natural Selection for Ancestral Environments Produce Current Behaviours

    Institute of Scientific and Technical Information of China (English)

    Charles Crawford

    2009-01-01

    The central purpose of this paper is to explain how Darwin's theory of evolution by natural selection can be used in understanding current human behaviour. First, Darwin's logic is briefly described. Development is an important issue when applying evolutionary theory to human behaviour. The notion of innate developmental orga-nization of psychological mechanisms is introduced. The possible social and political outcomes produced when differ-ent levels of innate developmental organization are paired with different beliefs about it are considered. The notion of psychological mechanisms as evolved adaptations is considered in some detail. Then I discuss different ways evo-htionists think about how genes are involved in the development of adaptations. The paper concludes with a frame-work for considering how ancestral adaptations function in current environments and outlines some ways of studying them. In China and many other parts of the world people desire a more harmonious society. Ⅰ hope that this paper will be of some small help in achieving this great task.

  17. NOAA-USGS Debris-Flow Warning System - Final Report

    Science.gov (United States)

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  18. Sources, composition and spatial distribution of marine debris along the Mediterranean coast of Israel

    Science.gov (United States)

    Pasternak, Galia; Zviely, Dov; Ribic, Christine; Ariel, Asaf; Spanier, Ehud

    2017-01-01

    Marine debris (litter) is a complex problem that affects human activities and the marine environment worldwide. The Clean Coast Program in Israel has had some success in keeping most of the coasts clean most of the time, but without understanding the mechanisms of accumulation of marine debris on the coasts of Israel. In 2012, we initiated a study to characterize the types of marine debris, its origins and spatial distribution. Nineteen surveys were done from June 2012 to March 2015 on eight beaches that spanned the coast of Israel. Average debris density was 12.1 items per 100 m2 and 90% of the items were plastic. The top debris categories were food wrappers and disposables, plastic bags and cigarette butts. However, there was variation in the top debris categories among the beaches indicating that a flexible approach with multiple options will be important when addressing the marine debris problem.

  19. Sources, composition and spatial distribution of marine debris along the Mediterranean coast of Israel.

    Science.gov (United States)

    Pasternak, Galia; Zviely, Dov; Ribic, Christine A; Ariel, Asaf; Spanier, Ehud

    2017-01-30

    Marine debris (litter) is a complex problem that affects human activities and the marine environment worldwide. The Clean Coast Program in Israel has had some success in keeping most of the coasts clean most of the time, but without understanding the mechanisms of accumulation of marine debris on the coasts of Israel. In 2012, we initiated a study to characterize the types of marine debris, its origins and spatial distribution. Nineteen surveys were done from June 2012 to March 2015 on eight beaches that spanned the coast of Israel. Average debris density was 12.1 items per 100m(2) and 90% of the items were plastic. The top debris categories were food wrappers and disposables, plastic bags and cigarette butts. However, there was variation in the top debris categories among the beaches indicating that a flexible approach with multiple options will be important when addressing the marine debris problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dead-ice environments

    DEFF Research Database (Denmark)

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...... and conclusions on dead-ice melting and landscape formation from Kötlujökull. Processes and landform-sediment associations are linked to the current climate and glacier–volcano interaction....

  1. Orbital debris hazard insights from spacecraft anomalies studies

    Science.gov (United States)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  2. DEBRIS FLOWS AND HYPERCONCENTRATED STREAMFLOWS.

    Science.gov (United States)

    Wieczorek, Gerald F.

    1986-01-01

    Examination of recent debris-flow and hyperconcentrated-streamflow events in the western United States reveals (1) the topographic, geologic, hydrologic, and vegetative conditions that affect initiation of debris flows and (2) the wide ranging climatic conditions that can trigger debris flows. Recognition of these physiographic and climatic conditions has aided development of preliminary methods for hazard evaluation. Recent developments in the application of electronic data gathering, transmitting, and processing systems shows potential for real-time hazard warning.

  3. Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment

    Science.gov (United States)

    Squire, Michael D.; Cooke, William J.; Williamsen, Joel; Kessler, Donald; Vesely, William E.; Hull, Scott H.; Schonberg, William; Peterson, Glenn E.; Jenkin, Alan B.; Cornford, Steven L.

    2015-01-01

    The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report.

  4. Active debris removal of multiple priority targets

    Science.gov (United States)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  5. The SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current activities and future key tasks

    Science.gov (United States)

    Beylich, A. A.; Lamoureux, S. F.; Decaulne, A.

    2012-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G./A.I.G.)SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Saemundsson (Iceland), Jeff Warburton (UK), Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (2004-2006), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available resources, but typically represent interdisciplinary collaborations of

  6. Environmental Vulnerability,Ecosystem Resilience and Debris Flow Disasters-Taking Disaster of Debris Flow in Dongchuan of Yunnan Province as a Case Study

    Institute of Scientific and Technical Information of China (English)

    Li Yongxiang

    2015-01-01

    The Dongchuan district of Kun-ming,Yunnan is a place where debris flows hap-pens frequently.As a result, the district is called a“natural museum of debris flow disasters”.This ar-ticle will analyze the causes of debris flows in Dongchuan, management approaches, and the im-pacts of the disaster on the local people from the perspective of anthropology.It will reflect environ-mental vulnerability, ecosystem resilience, and their anthropological significance.Moreover, this article will also propose some suggestions on sol-ving the problems of debris flow in Dongchuan from the angle of anthropology.

  7. Space Debris in the neighborhood of the ISS

    Science.gov (United States)

    Sampaio, Jarbas; Vilhena de Moraes, Rodolpho; Celestino, Claudia C.; Fiorilo de Melo, Cristiano

    2016-07-01

    The International Space Station (ISS) is a great opportunity to use a research platform in space. An international partnership of space agencies provides the operation of the ISS since 2000. The ISS is in Low Earth Orbits, in the same region of most of the space debris orbiting the planet. In this way, several studies are important to preserve the operability of the space station and operational artificial satellites, considering the increasing number of distinct objects in the space environment offering collision risks. In this work, the orbital dynamics of space debris are studied in the neighborhood of the ISS - International Space Station. The results show that the collision risk of space debris with the ISS is high and purposes to avoid these events are necessary. Solutions for the space debris mitigation are considered.

  8. GULLY-SPECIFIC DEBRIS FLOW HAZARD ASSESSMENT IN CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-lin

    2003-01-01

    Techniques of gully-specific debris flow hazard assessment developed in four periods since the end of the1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectional-ized function transformation for the factor value, rather than the classified logical transformation. The theoretical equationof the gully-specific debris flow hazard is expressed as the definite integral of an exponential function and its numericalsolution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China arestill valid and practical. The further work should be put on the study of the reliability (or unc ertainty) of the techniques.For the future, we should give a high priority to the relationship between debris flow magnitude and its frequency of occur-rence, make more developments of prediction model on debris flow magnitude, so as to finally reach the goal of assessingthe hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.

  9. A real two-phase submarine debris flow and tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)

    2012-09-26

    submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.

  10. Space debris executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Judd, O.; Naka, R.F.

    1996-09-01

    Spacecraft, boosters, and fragments are potential hazards to space vehicles, and it is argued that collisions between them could produce a cascade that could preclude activity in LEO in 25 to 50 years. That has generated pressure for constraints on military space operations, so the AF SAB performed a study of technical aspects of the debris problem. The Study was independent of the efforts of the Air Force Space Command (AFSPC) as well as those of and NASA Johnson Space Center (JSC), which is the principal advocate for cascades and constraints. Most work on space debris has been performed by AFSPC and JSC, so the Study was in part an assessment of their efforts, in which both have been cooperative. The Study identified the main disagreements and quantified their impacts. It resolved some issues and provided bounds for the rest. It treated radar and optical observations; launch, explosion, and decay rates; and the number and distribution of fragments from explosions and collisions. That made it possible to address hazard to manned spacecraft at low altitudes and the possibility of cascading at higher altitudes, both of which now appear less likely.

  11. Space Debris Mitigation CONOPS Development

    Science.gov (United States)

    2013-06-01

    Yoshikawa, T. (2003). Space debris capture by a joint compliance controlled robot . Paper presented at the Advanced Intelligent Mechatronics , 2003. AIM...80 Robotic Arm ............................................................................................................. 80 Tethers...than 10 centimeters 79 xi Figure 34 Robotic Arm Space Debris Removal Servicer with Joint Compliance Control82 Figure 35 Prototype of brush

  12. Space debris; challenges and solutions

    NARCIS (Netherlands)

    Van Beurden, E.; Prins, C.

    2013-01-01

    Space debris has been a hot topic for the last few decades, ever since the space industry started growing exponentially. Everyone agrees that space debris is a growing problem and the saturation point has almost been reached. With a big risk of a chain reaction, called the Kessler syndrome, billions

  13. On-line monitoring of base current and forward emitter current gain of the voltage regulator's serial pnp transistor in a radiation environment

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2012-01-01

    Full Text Available A method of on-line monitoring of the low-dropout voltage regulator's operation in a radiation environment is developed in this paper. The method had to enable detection of the circuit's degradation during exploitation, without terminating its operation in an ionizing radiation field. Moreover, it had to enable automatic measurement and data collection, as well as the detection of any considerable degradation, well before the monitored voltage regulator's malfunction. The principal parameters of the voltage regulator's operation that were monitored were the serial pnp transistor's base current and the forward emitter current gain. These parameters were procured indirectly, from the data on the voltage regulator's load and quiescent currents. Since the internal consumption current in moderately and heavily loaded devices was used, the quiescent current of a negligibly loaded voltage regulator of the same type served as a reference. Results acquired by on-line monitoring demonstrated marked agreement with the results acquired from examinations of the voltage regulator's maximum output current and minimum dropout voltage in a radiation environment. The results were particularly consistent in tests with heavily loaded devices. Results obtained for moderately loaded voltage regulators and the risks accompanying the application of the presented method, were also analyzed.

  14. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  15. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  16. A Comparison of the SOCIT and DebriSat Experiments

    Science.gov (United States)

    Ausay, Erick; Blake, Brandon; Boyle, Colleen; Cornejo, Alex; Horn, Alexa; Palma, Kirsten; Pistella, Frank; Sato, Taishi; Todd, Naromi; Zimmerman, Jeffrey; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Huynh, Thomas; Opiela, John; Krisko, Paula H.; Cowardin, Heather

    2017-01-01

    This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the

  17. Environment

    DEFF Research Database (Denmark)

    Valentini, Chiara

    2017-01-01

    The term environment refers to the internal and external context in which organizations operate. For some scholars, environment is defined as an arrangement of political, economic, social and cultural factors existing in a given context that have an impact on organizational processes and structures....... For others, environment is a generic term describing a large variety of stakeholders and how these interact and act upon organizations. Organizations and their environment are mutually interdependent and organizational communications are highly affected by the environment. This entry examines the origin...... and development of organization-environment interdependence, the nature of the concept of environment and its relevance for communication scholarships and activities....

  18. On the connection of permafrost and debris flow activity in Austria

    Science.gov (United States)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  19. TMI-2 core debris-cesium release/settling test. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D W; Johnson, D A

    1984-12-01

    Cesium release, turbidity and airborne potential tests were conducted on 50 grams of TMI-2 core debris materials. The tests were performed on the debris in two conditions: on the as-received core debris specimen, and after crushing the debris to alter the particle size distribution. The crushing was intended to simulate the breakup of TMI-2 core material that may occur during reactor defueling. These tests are intended to assist GPU Nuclear in predicting the effect of defueling on the reactor environment.

  20. Development and Flight Demonstration of Space Debris Monitor (SDM)

    Science.gov (United States)

    Kitazawa, Yukihito; Hanada, Toshiya; Matsumoto, Haruhisa; Kobayashi, Masanori; Sakurai, Akira; Yasaka, Tetsuo; Funakoshi, Kunihiro; Hasegawa, Sunao; Akahoshi, Yasuhiro; Kimoto, Yugo; Okudaira, Osamu; Kamiya, Koki; Nakamura, Maki

    2016-07-01

    The space debris monitor (SDM) is a large-area impact sensor for in situ measurements of micro-meteoroids and space debris of the sub-millimeter to millimeter size in the near-Earth space environment. These meteoroid and debris particles are very small to be detected by ground-based observations (radars and optical telescopes) but are sufficiently large to cause serious damage to spacecraft equipment in the low Earth orbit region. The nominal detection area of the SDM is 0.1 m^2 (0.35 m × 0.3 m), but its dimensions can be easily modified to accommodate different SDM constraints. The SDM is made from a flexible printed circuit, which is produced from a thin film of a nonconductive material (such as polyimide) on which thin conductive stripes are formed in parallel. The stripe width is approximately 50 μm, and the spatial separation is approximately 100 μm, as shown in Figure 1. When a micro-debris particle with an effective diameter near to or larger than the spatial separation of the stripes (here approximately 100 μm) collides with the sensor film at a velocity sufficient to penetrate it, one or more of the stripes are cut and become nonconductive. Debris impacts can thus be detected by monitoring the electrical conductivity (resistivity) of the stripes. This sensor system can measure the size of the incident micro-debris particles by detecting the number of severed stripes. The measurement concept is registered as a patent in many countries. The first SDM was launched with HTV-5 on August 19, 2015 and represented the world's first micro-debris measurement demonstration experiment to be conducted on the ISS using the concept of conductive (resistive) strip lines for real-time debris detection.

  1. Variability of air temperature over a debris-covered glacier in the Nepalese Himalaya

    NARCIS (Netherlands)

    Steiner, J.; Pellicciotti, F.

    2016-01-01

    Estimates of melt from debris-covered glaciers require distributed estimates of meteorological variables and air temperature in particular. Meteorological data are scarce for this environment, and spatial variability of temperature over debris is poorly understood. Based on multiple measurements of

  2. 14 CFR 417.211 - Debris analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  3. Debris Engine: A Potential Thruster for Space Debris Removal

    CERN Document Server

    Lan, Lei; Baoyin, Hexi

    2015-01-01

    We present a design concept for a space engine that can continuously remove the orbit debris by using the debris as a propellant. Space robotic cleaner is adopted to capture the targeting debris and to transfer them into the engine. Debris with larger size is first disintegrated into small pieces by using a mechanical method. The planetary ball mill is then adopted to grind the pieces into micrometer or smaller powder. The energy needed in this process is get from the nuclear and solar power. By the effect of gamma-ray photoelectric or the behavior of tangently rub of tungsten needles, the debris powered is charged. This behavior can be used to speed up the movement of powder in a tandem electrostatic particle accelerator. By ejecting the high-temperture and high-pressure charged powered from the nozzle of the engine,the continuously thrust is obtained. This thrust can be used to perform orbital maneuver and debris rendezvous for the spacecraft and robotic cleaner. The ejected charged particle will be blown a...

  4. Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris

    Science.gov (United States)

    Brock, Benjamin

    2015-04-01

    Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is

  5. Effects of basal debris on glacier flow.

    Science.gov (United States)

    Iverson, Neal R; Cohen, Denis; Hooyer, Thomas S; Fischer, Urs H; Jackson, Miriam; Moore, Peter L; Lappegard, Gaute; Kohler, Jack

    2003-07-04

    Glacier movement is resisted partially by debris, either within glaciers or under glaciers in water-saturated layers. In experiments beneath a thick, sliding glacier, ice containing 2 to 11% debris exerted shear traction of 60 to 200 kilopascals on a smooth rock bed, comparable to the total shear traction beneath glaciers and contrary to the usual assumption that debris-bed friction is negligible. Imposed pore-water pressure that was 60 to 100% of the normal stress in a subglacial debris layer reduced shear traction on the debris sufficiently to halt its deformation and cause slip of ice over the debris. Slip resistance was thus less than debris shearing resistance.

  6. Survival in extreme environments – on the current knowledge of adaptations in tardigrades

    DEFF Research Database (Denmark)

    Møbjerg, Nadja; Halberg, Kenneth Agerlin; Jørgensen, Aslak

    2011-01-01

    of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially...... to below )20 C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation....

  7. Disaster Debris Recovery Database - Recovery

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations,...

  8. Disaster Debris Recovery Database - Landfills

    Data.gov (United States)

    U.S. Environmental Protection Agency — The US EPA Region 5 Disaster Debris Recovery Database includes public datasets of over 6,000 composting facilities, demolition contractors, transfer stations,...

  9. Generation of Martian chaos and channels by debris flows

    Science.gov (United States)

    Nummedal, D.; Prior, D. B.

    1981-01-01

    A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.

  10. Collisional Grooming of Debris Disks

    CERN Document Server

    Kuchner, Marc J

    2009-01-01

    Debris disk images show clumps, rings, warps, and other structures, many of which have been interpreted as perturbations from hidden planets. But so far, no models of these structures have properly accounted for collisions between dust grains. We have developed new steady-state 3D models of debris disks that self-consistently incorporate grain-grain collisions. We summarize our algorithm and use it to illustrate how collisions interact with resonant trapping in the presence of a planet.

  11. Hydraulic System Wear Debris Analysis.

    Science.gov (United States)

    1982-08-03

    drawn. Each one-=L sample was drawn with a clean plastic pipette of one-mL capacity. The samples were placed in clean Ferrogram preparation bottles ...and from cavities in a block which held linear seals into sampling bottles . Several photographs of this debris , which was deposited on Ferro- grams...silicon in the glass overshadowed the elements of the wear debris . To overcome this difficulty, the Ferrogram should be pre- pared on a carbon-filled

  12. The SCEC Community Modeling Environment (SCEC/CME) - An Overview of its Architecture and Current Capabilities

    Science.gov (United States)

    Maechling, P. J.; Jordan, T. H.; Minster, B.; Moore, R.; Kesselman, C.; SCEC ITR Collaboration

    2004-12-01

    The Southern California Earthquake Center (SCEC), in collaboration with the San Diego Supercomputer Center, the USC Information Sciences Institute, the Incorporated Research Institutions for Seismology, and the U.S. Geological Survey, is developing the Southern California Earthquake Center Community Modeling Environment (CME) under a five-year grant from the National Science Foundation's Information Technology Research (ITR) Program jointly funded by the Geosciences and Computer and Information Science & Engineering Directorates. The CME system is an integrated geophysical simulation modeling framework that automates the process of selecting, configuring, and executing models of earthquake systems. During the Project's first three years, we have performed fundamental geophysical and information technology research and have also developed substantial system capabilities, software tools, and data collections that can help scientist perform systems-level earthquake science. The CME system provides collaborative tools to facilitate distributed research and development. These collaborative tools are primarily communication tools, providing researchers with access to information in ways that are convenient and useful. The CME system provides collaborators with access to significant computing and storage resources. The computing resources of the Project include in-house servers, Project allocations on USC High Performance Computing Linux Cluster, as well as allocations on NPACI Supercomputers and the TeraGrid. The CME system provides access to SCEC community geophysical models such as the Community Velocity Model, Community Fault Model, Community Crustal Motion Model, and the Community Block Model. The organizations that develop these models often provide access to them so it is not necessary to use the CME system to access these models. However, in some cases, the CME system supplements the SCEC community models with utility codes that make it easier to use or access

  13. Removing Orbital Debris with Lasers

    CERN Document Server

    Phipps, Claude R; Bradford, Brian; George, E Victor; Libby, Stephen B; Liedahl, Duane A; Marcovici, Bogdan; Olivier, Scot S; Pleasance, Lyn D; Reilly, James P; Rubenchik, Alexander; Strafford, David N; Valley, Michael T

    2011-01-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. Internat...

  14. Vulnerability of the Barents Sea environment to climate changes: a review of the current assessments

    Energy Technology Data Exchange (ETDEWEB)

    Gelfan, A.; Danilov-Danilyan, V.

    2009-07-15

    Authors' conclusion: Climate change is not considered to be just 'one more stress' on the ecosystem, but rather it will create complex and dynamic changes in the environment that may alter the level of its vulnerability. Cumulative effects can be defined as changes to the environment that are caused by an action in combination with other past, present and future human actions (Environment Canada 2003). The magnitude and effects of multiple stresses can be equal to the sum of the individual effects (additive effects) or they may strengthen or weaken each other (positive or negative feedbacks). To understand complex interactions within the system atmosphere-land surface-ocean at regional scales and to assess influence of the environmental changes on the ecological conditions, sophisticated models should be developed allowing to account for regional peculiarities of these systems. Development of such models is considered as one of the main challenge of the Earth system science. (author)

  15. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    Science.gov (United States)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  16. Debris Flow Monitoring System and Observed Event in Taiwan: A Case Study at Aiyuzi River

    Institute of Scientific and Technical Information of China (English)

    HSIAO Taichung; LEE Bingjean; CHOU Tienyin; LIEN Huipain; CHANG Yinghuei

    2007-01-01

    Since 2002, the Soil and Water Conservation Bureau, which is responsible for the conservation and administrative management of hillside in Taiwan, has been cooperating with Feng Chia University. Together, they have successfully carried out the establishment and maintenance of 13 fixed debris flow monitoring stations over the island and 2 mobile debris flow monitoring stations. During July 2004, a powerful southwest air current brought by Mindulle Typhoon caused serious flood in central and southern Taiwan. This paper aims to describe the establishment of debris flow monitoring systems in Taiwan and the observation of the debris flow event during Mindulle Typhoon at Aiyuzi River in Shenmu Village, Nantou County by the monitoring station.

  17. Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami.

    Science.gov (United States)

    Lebreton, Laurent C-M; Borrero, Jose C

    2013-01-15

    A global ocean circulation model is coupled to a particle-tracking model to simulate the transport of floating debris washed into the North Pacific Ocean by the Tohoku tsunami. A release scenario for the tsunami debris is based on coastal population and measured tsunami runup. Archived 2011/2012 hindcast current data is used to model the transport of debris since the tsunami, while data from 2008 to 2012 is used to investigate the distribution of debris on timescales up to 4years. The vast amount of debris pushed into ocean likely represents thousands of years worth of 'normal' litter flux from Japan's urbanized coastline. This is important since a significant fraction of the debris will be comprised of plastics, some of which will degrade into tiny particles and be consumed by marine organisms, thereby allowing adsorbed organic pollutants to enter our food supply in quantities much higher than present. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. In orbit debris-detection based on solar panels

    Science.gov (United States)

    Bauer, Waldemar; Romberg, Oliver; Pissarskoi, Alexei; Wiedemann, Carsten; Vörsmann, Peter

    2013-09-01

    The solar generator-based space debris impact detector (SOLID), currently under development at DLR, has a large impact area and offers high orbital flexibility. Once placed in orbit, it will collect space debris and micro-meteoroids impact data for software validation (e.g. MASTER or ORDEM). The verification of SOLID itself will be based on hypervelocity-impact testing (HVI-testing), anticipated to be performed at the Fraunhofer EMI (Ernst-Mach-Institute for High-Speed Dynamics in Freiburg, Germany). This paper presents the current state of SOLID development. Furthermore, the setup of the engineering model as well as corresponding assumptions in the manufacturing process is presented.

  19. Current views of health care design and construction: practical implications for safer, cleaner environments.

    Science.gov (United States)

    Bartley, Judene M; Olmsted, Russell N; Haas, Janet

    2010-06-01

    Infection preventionists (IP) play an increasingly important role in preventing health care-associated infection in the physical environment associated with new construction or renovation of health care facilities. The Guidelines for Design and Construction of Hospital and Healthcare Facilities, 2010, formerly known as "AIA Guidelines" was the origin of the "infection control risk assessment" now required by multiple agencies. These Guidelines represent minimum US health care standards and provide guidance on best practices. They recognize that the built environment has a profound affect on health and the natural environment and require that health care facilities be designed to "first, do no harm." This review uses the Guidelines as a blueprint for IPs' role in design and construction, updating familiar concepts to the 2010 edition with special emphasis on IP input into design given its longer range impact on health care-associated infection prevention while linking to safety and sustainability. Section I provides an overview of disease transmission risks from the built environment and related costs, section II presents a broad view of design and master planning, and section III addresses the detailed design strategies for infection prevention specifically addressed in the 2010 Facility Guidelines Institute edition.

  20. Implications of Current Reference Structures for Authority Work in Online Environments.

    Science.gov (United States)

    Watson, Mark R.; Taylor, Arlene G.

    1987-01-01

    Describes a study which examined (1) the percentage of personal and corporate name authority records in the Library of Congress authority file that do not contain any references, and (2) the percentage of references present on existing authority records that are not needed in an automatic right hand truncation, keyword searching environment. (CLB)

  1. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    Science.gov (United States)

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  2. Plasma environment during hot cathode direct current discharge plasma chemical vapor deposition of diamond films

    Institute of Scientific and Technical Information of China (English)

    朱晓东; 詹如娟; 周海洋; 胡敏; 温晓辉; 周贵恩; 李凡庆

    1999-01-01

    The plasma characteristics have been investigated in situ by using optical emission spectroscopy (OES) and the Langmuir probe during hot cathode direct current discharge plasma chemical vapor deposition of diamond films. The changes of atomic H and CH radical in the ground state have been calculated quantitatively according to the results of OES and the Langmuir probe measurement as discharge current density varied. It is shown that atomic H and CH radicals both in the ground state and in the excited state increase with the enhancement of the discharge current density in the plasma. The electron density and CH emission intensity increase linearly with the enhancement of discharge current densities. The generation of different carbon-containing radicals is related to the elevation of electron temperature. Combining the growth process of diamond films and the diagnostic results, it is shown that atomic H in the excited state may improve the diamond growth efficiently, and the increase of electron temperat

  3. First Stage Solid Propellant Multiply Debris Thermal Analysis

    Science.gov (United States)

    Toleman, Benjamin M.

    2011-01-01

    Destruction of a solid rocket stage of a launch vehicle can create a thermal radiation hazard for an aborting crew module. This hazard was assessed for the Constellation Program (Cx) crew and launch vehicle concept. For this concept, if an abort was initiated in first stage flight, the Crew Module (CM) will separate and be pulled away from the malfunctioning launch vehicle via a Launch Abort System (LAS). Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment, caused by surrounding burning propellant debris, may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and to quantify the risk of first stage propellant debris leading to the thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.

  4. First Stage Solid Propellant Multi Debris Thermal Analysis

    Science.gov (United States)

    Toleman, Benjamin M.

    2011-01-01

    The crew launch vehicle considered for the Constellation (Cx) Program utilizes a first stage solid rocket motor. If an abort is initiated in first stage flight the Crew Module (CM) will separate and be pulled away from the launch vehicle via a Launch Abort System (LAS) in order to safely and quickly carry the crew away from the malfunction launch vehicle. Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment induced by surrounding burning propellant debris may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and quantify the risk of first stage propellant debris leading to radiative thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst-case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature, with magnitudes on the order of 10 s of degrees Fahrenheit. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be

  5. The physics of debris flows

    Science.gov (United States)

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  6. Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona

    Science.gov (United States)

    Wohl, E.E.; Pearthree, P.P.

    1991-01-01

    Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the

  7. A review of modern challenges in fire debris analysis.

    Science.gov (United States)

    Baerncopf, Jamie; Hutches, Katherine

    2014-11-01

    The continually-evolving field of fire debris analysis presents challenges to examiners on a regular basis. This article combines an overview of the scientific literature with novel samples that illustrate the current issues faced by fire debris examiners. Unusual liquids that contradict current classification schemes are discussed, as are complex matrices with noteworthy interferences. The matrix effects range from inherent interferences to the degradation of ignitable liquids. Finally, non-routine analyses are discussed, including the analysis of vegetable and lubricating oils and novel ignition methods. Through open discussion of complex samples and individual experiences, the problems in fire debris analysis can be overcome, resulting in the production of accurate and authoritative information.

  8. Analysis of the PPBE Process in the Current Dynamic Political Environment

    Science.gov (United States)

    2008-06-01

    Complicated/ expensive systems - Business practices Legal - USA Patriot Act - Military prison scandals - CIA leak probe (Plume Affair) - Enron , Tyco...54 such as Enron , Tyco and WorldCom were prosecuted and received prison sentences for the roles they played in these scandals .114 These...of the author aided in shaping the environment. DoD Political -Vietnam War -Kennedy Assassination -Great Society Initiatives -Watergate Scandal

  9. Design Rework Prediction in Concurrent Design Environment: Current Trends and Future Research Directions

    OpenAIRE

    Arundachawat, Panumas; Roy, Rajkumar; Al-Ashaab, Ahmed; Shehab, Essam

    2009-01-01

    This paper aims to present state-of-the-art and formulate future research areas on design rework in concurrent design environment. Related literatures are analysed to extract the key factors which impact design rework. Design rework occurs due to changes from upstream design activities and/or by feedbacks from downstream design activities. Design rework is considered as negative iteration; therefore, value in design activities will be increased if design rework is reduced. Set-bas...

  10. Do biological medicinal products pose a risk to the environment?: a current view on ecopharmacovigilance.

    Science.gov (United States)

    Kühler, Thomas C; Andersson, Mikael; Carlin, Gunnar; Johnsson, Ann; Akerblom, Lennart

    2009-01-01

    The occurrence of active pharmaceutical substances in the environment is of growing concern. The vast majority of the compounds in question are of low molecular weight, intended for oral use and designed to tolerate, for example, the digestive enzymes in the upper alimentary tract, the harsh milieus found in the acidic stomach, or the microbe rich intestine. Accordingly, these xenobiotic compounds may, due to their inherent biological activity, constitute a risk to the environment. Biological medicinal products, for example recombinant human insulin or monoclonal antibodies, however, are different. They are primarily made up of oligomers or polymers of amino acids, sugars or nucleotides and are thus readily metabolized. They are therefore generally not considered to pose any risk to the environment. Certain classes of biological medicinal products, however, are associated with specific safety issues. Genetically modified organisms as vectors in vaccines or in gene therapy products have attracted much attention in this regard. Issues include the degree of attenuation of the live recombinant vaccine, replication restrictions of the vaccine vector, alteration of the host and tissue tropism of the vector, the possibility of reversion to virulence, and risk to the ecosystem. In this review we discuss the fate and the potential environmental impact of biological medicinal products following clinical use from an ecopharmacovigilance point of view, and review relevant policy documents and regulatory statements.

  11. Responding to biological incidents--what are the current issues in remediation of the contaminated environment?

    Science.gov (United States)

    Pottage, T; Goode, E; Wyke, S; Bennett, A M

    2014-11-01

    Since 2000 there have been a number of biological incidents resulting in environmental contamination with Bacillus anthracis, the causative agent of anthrax. These incidents include the US anthrax attacks in 2001, the US and UK drumming incidents in 2006-2008 and more recently, anthrax contamination of heroin in 2009/2010 and 2012/2013. Remediation techniques used to return environments to normal have varied between incidents, with different decontamination technologies being employed. Many factors need to be considered before a remediation strategy or recovery option can be implemented, including; cost, time (length of application), public perception of risk, and sampling strategies (and results) to name a few. These incidents have demonstrated that consolidated guidance for remediating biologically contaminated environments in the aftermath of a biological incident was required. The UK Recovery Handbook for Biological Incidents (UKRHBI) is a project led by Public Health England (PHE), formerly the Health Protection Agency (HPA) to provide guidance and advice on how to remediate the environment following a biological incident or outbreak of infection, and is expected to be published in 2015. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Forecasting Inundation from Debris Flows That Grow By Entraining Sediment

    Science.gov (United States)

    Reid, M. E.; Coe, J. A.; Brien, D. L.

    2014-12-01

    Destructive debris flows often grow, and extend their runouts, by entraining sediment as they travel. However, incorporating varied entrainment processes into physics-based flow routing models is challenging. As an alternative, we developed a relatively simple, automated method for forecasting the inundation hazards posed by debris flows that entrain sediment and coalesce from multiple flows. Within a drainage network, we amalgamate the effects of many possible debris flows with each flow volume proportional to an entrainment rate scaled by the upslope contributing area, and then use these volumes in the USGS GIS-based inundation model LAHARZ. Our approach only requires estimates of two parameters: spatial entrainment rate & maximum entrainment area or maximum volume. Our procedure readily integrates various sediment sources and it can portray different inundation hazard levels on a GIS-based map by varying our two parameters. We applied this approach to part of the Coast Range, southern Oregon, USA. Using aerial photography, we mapped debris flows triggered by a large 1996 rain event on a LiDAR-derived topographic base, and identified initiation locations, travel paths, and areas of channel erosion and deposition. Many catchments experienced multiple debris flows that coalesced downstream and about 95% of the debris flows entrained sediment as they traveled. Flows typically stopped entraining sediment before the upslope contributing area reached ~500,000 m2. We used pre- and post-debris-flow stereo photos to estimate spatial entrainment rates in four clear-cut catchments having both channel erosion and coalescence of flows; these rates varied from 0.12 to 0.2 m3/m2. GIS-based inundation maps, using our automated methods, are quite similar to the mapped flow paths and deposits. Given appropriate parameters, our approach could be applied to a variety of steep, channelized environments where entrainment is important, such as alpine and post-wildfire slopes.

  13. Characterizing Debris in the Infrared with UKIRT

    Science.gov (United States)

    Lederer, S. M.; Jah, M.; Kendrick, R.; Buckalew, B.; Frith, J. M.; Cowardin, H. M.; Bold, M.

    2015-01-01

    The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5µm) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt

  14. Leakage Current Phenomenon on Ceramics and Epoxy Resin as 20 kV Outdoor Insulator at Tropical Environment

    Directory of Open Access Journals (Sweden)

    Valdi Rizki Yandri

    2011-01-01

    Full Text Available This paper explains the research results of  leakage current, hydrophobicity and flashover voltage comparison on ceramics and epoxy  resin 20 kV outdoor insulator in a  chamber at tropical climate conditions. The waveform of leakage current (LC was measured using a digital oscilloscope. The digital data was transferred to a personal computer using a RS-232 cable. The digital data was analyzed using Fast Fourier Transform. The result showed that LC was affected by various environment conditions like temperature, humidity and pollution. LC of ceramics insulator was higher than epoxy resin insulator in low temperature, high humidity and high pollution condition.

  15. To eat or not to eat? Debris selectivity by marine turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  16. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  17. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  18. Evaluation of current state of agricultural land using problem-oriented fuzzy indicators in GIS environment

    Science.gov (United States)

    Current state of agricultural lands is defined under influence of processes in soil, plants and atmosphere and is described by observation data, complicated models and subjective opinion of experts. Problem-oriented indicators summarize this information in useful form for decision of the same specif...

  19. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These advan

  20. Hydroplaning and submarine debris flows

    Science.gov (United States)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  1. Particle swarm optimization based space debris surveillance network scheduling

    Science.gov (United States)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  2. NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0

    Science.gov (United States)

    Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.

    2013-01-01

    The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.

  3. Shifting Currents: Science Technology Society and Environment in Northern Ontario Schools

    OpenAIRE

    2013-01-01

    The focus is on the practices of secondary science teachers in rural, resource-extraction-based communities in the boreal region of northern Ontario, Canada. In 2008 the Ontario Ministry of Education mandated that science teaching and learning should bring to the forefront consideration of the impacts of science on society and environment, and include environmental education; topics that are particularly pertinent given the location(s) of the study in logging and mining towns. Three years aft...

  4. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    Science.gov (United States)

    Liou, J.-C.

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 has reignited interest in using active debris removal to remediate the near-Earth orbital debris environment. A recent NASA study shows that, in order to stabilize the environment in the low Earth orbit (LEO) region for the next 200 years, active debris removal of about five large and massive (1 to more than 8 metric tons) objects per year is needed. To develop the capability to remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development.

  5. Biotemplated materials for sustainable energy and environment: current status and challenges.

    Science.gov (United States)

    Zhou, Han; Fan, Tongxiang; Zhang, Di

    2011-10-17

    Materials science will play a key role in the further development of emerging solutions for the increasing problems of energy and environment. Materials found in nature have many inspiring structures, such as hierarchical organizations, periodic architectures, or nanostructures, that endow them with amazing functions, such as energy harvesting and conversion, antireflection, structural coloration, superhydrophobicity, and biological self-assembly. Biotemplating is an effective strategy to obtain morphology-controllable materials with structural specificity, complexity, and related unique functions. Herein, we highlight the synthesis and application of biotemplated materials for six key areas of energy and environment technologies, namely, photocatalytic hydrogen evolution, CO(2) reduction, solar cells, lithium-ion batteries, photocatalytic degradation, and gas/vapor sensing. Although the applications differ from each other, a common fundamental challenge is to realize optimum structures for improved performances. We highlight the role of four typical structures derived from biological systems exploited to optimize properties: hierarchical (porous) structures, periodic (porous) structures, hollow structures, and nanostructures. We also provide examples of using biogenic elements (e.g., C, Si, N, I, P, S) for the creation of active materials. Finally, we disscuss the challenges of achieving the desired performance for large-scale commercial applications and provide some useful prototypes from nature for the biomimetic design of new materials or systems. The emphasis is mainly focused on the structural effects and compositional utilization of biotemplated materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. INVESTIGATION OF SPATIOTEMPORAL VARIABILITY AND CONTAMINATION OF PLASTIC MARINE DEBRIS IN QATAR’S COASTAL WATERS

    OpenAIRE

    Abayomi, Oyebamiji Abib

    2015-01-01

    There has been a tremendous proliferation in plastic production in the last five decades due to its low cost and versatile applications. Plastic debris dominates the marine litter globally and has been found in the most pristine environment including the abysmal region of the ocean. Studies show that over 8 million tons of plastics are dumped in the ocean annually. Plastics are persistent in the environment and take several decades to degrade especially in the ocean. Large plastic debris can ...

  7. Geared induction motor fault diagnosis by current, noise and vibration considering measurement environment

    Directory of Open Access Journals (Sweden)

    Ki-Seok Kim

    2017-01-01

    Full Text Available Lots of motors have been being used in industry. Therefore many studies have been carried out about the failure diagnosis of motors. In this paper, a diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. In the abnormal gearbox, a tooth of the intermediate gear is damaged. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. Fault gear was found by comparing the FFT with normal FFT. From these, the difference between the normal and abnormal states can be seen by the frequency characteristic analysis for the current as well as noise and vibration.

  8. Survival in extreme environments - on the current knowledge of adaptations in tardigrades.

    Science.gov (United States)

    Møbjerg, N; Halberg, K A; Jørgensen, A; Persson, D; Bjørn, M; Ramløv, H; Kristensen, R M

    2011-07-01

    Tardigrades are microscopic animals found worldwide in aquatic as well as terrestrial ecosystems. They belong to the invertebrate superclade Ecdysozoa, as do the two major invertebrate model organisms: Caenorhabditis elegans and Drosophila melanogaster. We present a brief description of the tardigrades and highlight species that are currently used as models for physiological and molecular investigations. Tardigrades are uniquely adapted to a range of environmental extremes. Cryptobiosis, currently referred to as a reversible ametabolic state induced by e.g. desiccation, is common especially among limno-terrestrial species. It has been shown that the entry and exit of cryptobiosis may involve synthesis of bioprotectants in the form of selective carbohydrates and proteins as well as high levels of antioxidant enzymes and other free radical scavengers. However, at present a general scheme of mechanisms explaining this phenomenon is lacking. Importantly, recent research has shown that tardigrades even in their active states may be extremely tolerant to environmental stress, handling extreme levels of ionizing radiation, large fluctuation in external salinity and avoiding freezing by supercooling to below -20 °C, presumably relying on efficient DNA repair mechanisms and osmoregulation. This review summarizes the current knowledge on adaptations found among tardigrades, and presents new data on tardigrade cell numbers and osmoregulation.

  9. Gravity Currents: In the Environment and the Laboratory, Ellis Horwood Series in Environmental Sciences

    Science.gov (United States)

    Csanady, G. T.

    There are books and courses on experimental physics, thorough and rigorous, which contain only simple formulae and use only elementary algebra. The subject is explained in lucid and precise language, with the help of many sketches, photos, and diagrams. The book under review belongs to this genre and is in fact one of its most successful members.About half of the book is devoted to the description of a variety of natural phenomena in which gravity currents play an important role. The class of gravity currents is taken to be quite broad, to include almost any kind of quasi-horizontal motion caused by density differences. The range of natural phenomena surveyed is correspondingly great, from tidal bores through thunderstorms to the eruption of Mount St. Helens. The atmospheric examples are especially thorough and interesting. The broad panorama certainly brings home to the reader the many ways in which fluids (including fluidized rock) can move under the influence of gravity. However, not all of the examples show typical gravity behavior, nor are they all treated with equal thoroughness. The Gulf Stream is mentioned, and the variability of its position is shown in an illustration, but this is not connected with anything typical of gravity currents, nor is the important interplay between Earth rotation and such large-scale “gravity currents” (if one insists on calling them that) at all adequately explained.

  10. Fractal Structure of Debris Flow

    Institute of Scientific and Technical Information of China (English)

    LI Yong; LIU Jingjing; HU Kaiheng; CHEN Xiaoqing

    2007-01-01

    One of the most remarkable characteristics of debris flow is the competence for supporting boulders on the surface of flow, which strongly suggests that there should be some structure in the fluid body. This paper analyzed the grain compositions from various samples of debris flows and then revealed the fractal structure. Specifically, the fractality holds in three domains that can be respectively identified as the slurry, matrix, and the coarse content. Furthermore, the matrix fractal, which distinguishes debris flow from other kinds of flows, involves a hierarchical structure in the sense that it might contain ever increasing grains while the total range of grain size increases. It provides a possible mechanism for the boulder suspension.

  11. Atomic gas in debris discs

    Science.gov (United States)

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.

    2017-04-01

    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  12. The complex interaction between marine debris and toxic chemicals in the ocean.

    Science.gov (United States)

    Engler, Richard E

    2012-11-20

    Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.

  13. Beyond Data Regulation: Finding a Solution to the Persistent Problem of Marine Debris and Sea Surface Temperature Measurement Along the Coastline of Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    O A Ediang

    2013-03-01

    Full Text Available In this paper we discuss environmental changes along the coastal line of Nigeria, especially in the region around Lagos, based on provisional multi-disciplinary analyses of meteorological and maritime observations. This study has revealed that recent environmental change in the Nigerian coastal region has been much more apparent than that of a few years back (1989-2007. Various kinds of ocean debris, transported mainly by coastal wind, are severely affecting the marine and coastal environment. Because the current ocean monitoring system has been found to be troubled by ocean debris, establishing a new system to obtain reliable observational data to monitor and preserve the environment of the coastal region is urgent.

  14. Space debris: Assessing risk and responsibility

    Science.gov (United States)

    Bradley, Andrew M.; Wein, Lawrence M.

    2009-05-01

    We model the orbital debris environment by a set of differential equations with parameter values that capture many of the complexities of existing three-dimensional simulation models. We compute the probability that a spacecraft gets destroyed in a collision during its operational lifetime, and then define the sustainable risk level as the maximum of this probability over all future time. Focusing on the 900- to 1000-km altitude region, which is the most congested portion of low Earth orbit, we find that - despite the initial rise in the level of fragments - the sustainable risk remains below 10-3 if there is high (>98%) compliance to the existing 25-year postmission deorbiting guideline. We quantify the damage (via the number of future destroyed operational spacecraft) generated by past and future space activities. We estimate that the 2007 FengYun 1C antisatellite weapon test represents ≈1% of the legacy damage due to space objects having a characteristic size of ⩾10 cm, and causes the same damage as failing to deorbit 2.6 spacecraft after their operational life. Although the political and economic issues are daunting, these damage estimates can be used to help determine one-time legacy fees and fees on future activities (including deorbit noncompliance), which can deter future debris generation, compensate operational spacecraft that are destroyed in future collisions, and partially fund research and development into space debris mitigation technologies. Our results need to be confirmed with a high-fidelity three-dimensional model before they can provide the basis for any major decisions made by the space community.

  15. The Herschel Cold Debris Disks

    CERN Document Server

    Gaspar, Andras

    2013-01-01

    The Herschel "DUst around NEarby Stars (DUNES)" survey has found a number of debris disk candidates that are apparently very cold, with temperatures near 22K. It has proven difficult to fit their spectral energy distributions with conventional models for debris disks. Given this issue we carefully examine the alternative explanation, that the detections arise from confusion with IR cirrus and/or background galaxies that are not physically associated with the foreground star. We find that such an explanation is consistent with all of these detections.

  16. Staying Relevant and Current with Online Learning in an Increasingly Global and Competitive Environment

    Directory of Open Access Journals (Sweden)

    Grace Lynch

    2012-08-01

    Full Text Available This paper outlines the success of online learning in the workplace with corporate partners through Open Universities Australia (OUA. OUA is recognized as the national leader in online higher education in Australia with over 200,000 students studying with OUA since 1993. The corporate program helps employees formalize or extend their current skills, reach the next level in their organization or pursue relevant interests through tertiary studies. The business sector sees OUA as a highly attractive solution to fostering a culture of professional development, engagement and inclusiveness.

  17. The preliminary assessment of abundance and composition of marine beach debris in the northern Persian Gulf, Bandar Abbas City, Iran

    OpenAIRE

    Sarafraz, J.; Rajabizadeh, M.; Kamrani, E.

    2016-01-01

    Marine debris is a major challenge threatening ocean and coastal environment with no easy solution in coming years. The problem is totally manmade and extendeds to coastal areas around the world. The accumulation of marine debris is largely due to lack of awareness and environmental education among the public reinforced with mismanagement of municipal litter in coastal cities. Iran has about 2415 km of coastlines in the north and south of the country that suffer severely from a marine debris ...

  18. Plant growth on debris covered glacier surfaces - ecology, vegetation patterns and implications for debris mantled glaciers serving as cold and warm stage plant refugia in the past

    Science.gov (United States)

    Fickert, Thomas; Friend, Donald; Grüninger, Friederike; Molnia, Bruce; Richter, Michael

    2017-04-01

    As stated at the International Conference on Debris-Covered Glaciers in 2000, "debris-covered glaciers comprise a significant fraction of the global population of glaciers...." Given a minimum of debris thickness and sufficient stability, these surfaces host surprisingly diverse plant assemblages, both floristically and structurally. Observations of plant growth on glacier surfaces are reported from around the world - including mature forests with trees more than 50cm in diameter. Debris covered glacier surfaces are mobile habitats for plants, which migrate downhill with glacier movement, but are able to spread upward with strong anabatic valley winds. Plant growth is possible even on a very shallow debris cover. Depending on site conditions, floristic composition and structure of vegetation on debris covered glaciers represent a mosaic of environments, including subnival pioneer communities, glacier foreland early- to late-successional stages, and morainal locations. The taxa involved display a wide spectrum of adaptations to habitat conditions with particular migration and dispersal strategies. With a shallow debris cover, alpine/subnival taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures. In contrast, a greater thickness of debris cover allows even thermophilous plants of lower elevations to grow on glacier surfaces. Employing the principle of actualism, debris covered glaciers provided important and previously undocumented refugia for plants during the Pleistocene cold stages from which alpine and arctic plant species were able to re-establish and spread in post-glacial time. This assumption is complementary to the two competing ideas to explain the fate of alpine and/or arctic taxa during the Pleistocene, the nunatak hypothesis (i.e. in-situ survival of plants on unglaciated summits) and tabula rasa theory (i.e. displacement of plants and subsequent remigration). Vice versa debris covered glaciers

  19. Nearby debris disk systems with high fractional luminosity reconsidered

    CERN Document Server

    Moor, A; Apai, D; Derekas, A; Grady, C; Henning, T; Kiss, C; Kiss, L L; Henning, Th.; Kiss, Cs.

    2006-01-01

    By searching the IRAS and ISO databases we compiled a list of 60 debris disks which exhibit the highest fractional luminosity values (fd>10^-4) in the vicinity of the Sun (d5x10^-4 are younger than 100Myr. The distribution of the disks in the fractional luminosity versus age diagram indicates that (1) the number of old systems with high fd is lower than was claimed before; (2) there exist many relatively young disks of moderate fractional luminosity; and (3) comparing the observations with a current theoretical model of debris disk evolution a general good agreement could be found.

  20. Marine Debris Research, Prevention, and Reduction Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Debris Research, Prevention, and Reduction Act legally establishes the National Oceanic and Atmospheric Administration's (NOAA) Marine Debris Program. The...

  1. Space Debris Elimination (SpaDE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The amount of debris in low Earth orbit (LEO) has increased rapidly over the last twenty years. This prevalence of debris increases the likelihood of cascading...

  2. NASA Orbital Debris Requirements and Best Practices

    Science.gov (United States)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  3. DebriSat Project Update and Planning

    Science.gov (United States)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  4. Hazards of falling debris to people, aircraft, and watercraft

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.K.; Young, L.W.; Jordan-Culler, T.

    1997-04-01

    This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting, or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.

  5. Hazards of falling debris to people, aircraft, and watercraft

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.K.; Young, L.W.; Jordan-Culler, T.

    1997-04-01

    This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting, or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.

  6. Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and costal environments and a base station, and lagrangian buoy for measuring currents for ocean and costal environments

    OpenAIRE

    Martínez-Ledesma, Miquel; Álvarez, Alberto; Vizoso, Guillermo; Tintoré, Joaquín

    2011-01-01

    [EN] Method for transferring data between at least one lagrangian buoy for measuring currents for ocean and coastal environments and a base station, which comprises capturing data by the buoy by means of the parameter-measuring sensors and the GPS receiver and storing said data in a first file which is segmented into packets of a maximum length defined by the SBD Iridium protocol for the subsequent sending thereof to the base station. The invention also relates to the lagrangian buoy for meas...

  7. The Impact of Neighborhood Social and Built Environment Factors across the Cancer Continuum: Current Research, Methodologic Considerations, and Future Directions

    Science.gov (United States)

    Gomez, Scarlett Lin; Shariff-Marco, Salma; De Rouen, Mindy; Keegan, Theresa H. M.; Yen, Irene H.; Mujahid, Mahasin; Satariano, William A.; Glaser, Sally L.

    2015-01-01

    Neighborhood social and built environments have been recognized as important contexts in which health is shaped. We review the extent to which these neighborhood factors have been addressed in population-level cancer research, with a scan of the literature for research that focuses on specific social and/or built environment characteristics and association with outcomes across the cancer continuum, including incidence, diagnosis, treatment, survivorship, and survival. We discuss commonalities and differences in methodologies across studies, current challenges in research methodology, and future directions in this research area. The assessment of social and built environment factors in relation to cancer is a relatively new field, with 82% of 34 reviewed papers published since 2010. Across the wide range of social and built environment exposures and cancer outcomes considered by the studies, numerous associations were reported. However, the directions and magnitudes of association varied, due in large part to the variation in cancer sites and outcomes being studied, but also likely due to differences in study populations, geographical region, and, importantly, choice of neighborhood measure and geographic scale. We recommend that future studies consider the life course implications of cancer incidence and survival, integrate secondary and self-report data, consider work neighborhood environments, and further develop analytical and statistical approaches appropriate to the geospatial and multilevel nature of the data. Incorporating social and built environment factors into research on cancer etiology and outcomes can provide insights into disease processes, identify vulnerable populations, and generate results with translational impact of relevance for interventionists and policy makers. PMID:25847484

  8. The current state of workers' pneumoconiosis in relationship to dusty working environments in Okayama Prefecture, Japan.

    Directory of Open Access Journals (Sweden)

    Takigawa T

    2002-12-01

    Full Text Available This study involved the examination of 1,006 chest x-ray films of workers from the industries devoted to shipyard welding, stone grinding, and refractory crushing in southern Okayama prefecture. Of the reviewed films, analysis was focused on subjects with a profusion rate of 0/1 as well as pneumoconiotic subjects (exhibiting profusion rates of 1/0 or greater in order to discover cases in the beginning stages. One-hundred-and-seventy-four films illustrated a profusion rate of 0/1 or greater, and the proportion of this profusion rate was revealed to be highest in shipyard welders. Even some workers under 40 years of age were found to have already developed pneumoconiosis. Of these 1,006 subjects, 30 volunteers permitted us to measure their personal dust exposure concentrations. The measured concentration of the shipyard welders' dust exposure (respirable dust; 3.3 86.3 mg/m3, total dust; 7.5-117.0 mg/m3 was higher than those of the other 2 industries. Statistical differences among the industries were observed in the respirable dust concentrations. A statistically significant positive correlation was demonstrated between the working duration in dusty environments and the rate of profusion. The present findings suggest the need for taking adequate measures in Okayama in order to prevent workers from developing, or to help retard the progression of, pneumoconiosis.

  9. Educating Medical Laboratory Technologists: Revisiting Our Assumptions in the Current Economic and Health-Care Environment

    Directory of Open Access Journals (Sweden)

    Regina Linder

    2012-08-01

    Full Text Available Health care occupies a distinct niche in an economy struggling to recover from recession. Professions related to the care of patients are thought to be relatively resistant to downturns, and thus become attractive to students typically drawn to more lucrative pursuits. Currently, a higher profile for clinical laboratory technology among college students and those considering career change results in larger and better prepared applicant pools. However, after decades of contraction marked by closing of programs, prospective students encounter an educational system without the capacity or vigor to meet their needs. Here discussed are some principles and proposals to allow universities, partnering with health-care providers, government agencies, and other stakeholders to develop new programs, or reenergize existing ones to serve our students and patients. Principles include academic rigor in biomedical and clinical science, multiple points of entry for students, flexibility in format, cost effectiveness, career ladders and robust partnerships.

  10. A Search for Optically Faint GEO Debris

    Science.gov (United States)

    2011-09-01

    similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American...Examples are the results from the European Space Debris Facility in the Canary Islands, MODEST (the Michigan orbital DEbris Survey Telescope at Cerro ...filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American

  11. Stochastic modeling of hypervelocity impacts in attitude propagation of space debris

    Science.gov (United States)

    Sagnières, Luc B. M.; Sharf, Inna

    2017-02-01

    Bombardment of orbital debris and micrometeoroids on active and inoperative satellites is becoming an increasing threat to space operations and has significant consequences on space missions. Concerns with orbital debris have led agencies to start developing debris removal missions and knowing a target's rotational parameters ahead of time is crucial to the eventual success of such a mission. A new method is proposed, enabling the inclusion of hypervelocity impacts into spacecraft attitude propagation models by considering the transfer of angular momentum from collisions as a stochastic jump process. Furthermore, the additional momentum transfer due to ejecta created during these hypervelocity impacts, an effect known as momentum enhancement, is considered. In order to assess the importance of collisions on attitude propagation, the developed model is applied to two pieces of space debris by using impact fluxes from ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model.

  12. High Temperature Corrosion studies on Pulsed Current Gas Tungsten Arc Welded Alloy C-276 in Molten Salt Environment

    Science.gov (United States)

    Manikandan, M.; Arivarasu, M.; Arivazhagan, N.; Puneeth, T.; Sivakumar, N.; Murugan, B. Arul; Sathishkumar, M.; Sivalingam, S.

    2016-09-01

    Alloy C-276 is widely used in the power plant environment due to high strength and corrosion in highly aggressive environment. The investigation on high- temperature corrosion resistance of the alloy C-276 PCGTA weldment is necessary for prolonged service lifetime of the components used in corrosive environments. Investigation has been carried out on Pulsed Current Gas Tungsten Arc Welding by autogenous and different filler wires (ERNiCrMo-3 and ERNiCrMo-4) under molten state of K2SO4-60% NaCl environment at 675oC under cyclic condition. Thermogravimetric technique was used to establish the kinetics of corrosion. Weight gained in the molten salt reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. PCGTA ERNiCrMo-3 shows the higher parabolic constant compared to others. The scale formed on the weldment samples upon hot corrosion was characterized by using X-ray diffraction, SEM and EDAX analysis to understand the degradation mechanisms. From the results of the experiment the major phases are identified as Cr2O3, Fe2O3, and NiCr2O4. The result showed that weld fabricated by ERNiCrMo-3 found to be more prone to degradation than base metal and ERNiCrMo-4 filler wire due to higher segregation of alloying element of Mo and W in the weldment

  13. Applying Knowledge from Terrestrial Debris-Covered Glaciers to Constrain the Evolution of Martian Debris-Covered Ice

    Science.gov (United States)

    Koutnik, M. R.; Pathare, A. V.; Todd, C.; Waddington, E.; Christian, J. E.

    2016-09-01

    We will discuss the application of terrestrial knowledge on debris emplacement, the effects of debris on glacier-surface topography, debris transport by ice flow, deformation of debris-laden ice, and atmosphere-glacier feedbacks to Mars ice.

  14. Observations of Titan IIIC Transtage Fragmentation Debris

    Science.gov (United States)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Buckalew, B.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  15. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    Science.gov (United States)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  16. Induced current density in the foetus of pregnant workers in high magnetic field environments.

    Science.gov (United States)

    Xue, C; Wood, A W; Dovan, T

    2004-12-01

    There are moves to limit by legislation the amount of electric and magnetic fields that workers and the general public are exposed to. In work locations near wiring, cables & equipment carrying high electric currents, there are situations in which the proposed magnetic field limits could be exceeded. Since the limits for the general public are more conservative than those for workers and since the foetus or a pregnant worker should be afforded the status of a member of the general public, it is important to assess a worst-case scenario for the purposes of a general code of practice. Three different magnetic field exposures are modelled, which include the worst case - the body of a pregnant woman at a smallest distance of 30 cm to the conductor. All computations were done by using Multiple Multipole Program (MMP), which is based on the Generalized Multipole Technique (GMT) from ETH (Swiss Federal Institute of Technology), Zurich, Switzerland. In a worst-case scenario the proposed basic restrictions would be exceeded slightly in both maternal and foetal tissue. With appropriate pre-placement assessment, these over-exposures can be avoided.

  17. An analytic method of space debris cloud evolution and its collision evaluation for constellation satellites

    Science.gov (United States)

    Zhang, Binbin; Wang, Zhaokui; Zhang, Yulin

    2016-09-01

    When a debris cloud is formed in the neighborhood of a constellation, the constellation satellites will face a serious threat of collision. In order to evaluate the collision probability in a long time scale, first we build an analytic model to describe the evolution process of the debris cloud. Under the perturbations of atmospheric drag, nonspherical gravity field, etc., results of numerical simulation indicate that after the breakup of an object, the distribution of debris cloud will evolve into a relatively stable band. Based on the stable distribution characteristic of the debris cloud, fragments are divided into several groups according their orbital heights and area-mass ratios. For each debris group, the dynamics of the distribution process under the perturbation of atmosphere drag is described by a partial differential equation (PDE). Solutions of those PDEs are obtained. And the distribution of the debris cloud can be easily propagated over long time scales. Applying this analytic model, the collision probability between a debris cloud and the Globalstar satellites is analyzed and computed. Results show that the collision probability is nearly 10,000 times of the average collision probability in the near Earth environment. Moreover, as the band distribution of the space debris cloud is stable, the collisional risk on constellation satellites will last for quite a long time.

  18. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    Science.gov (United States)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  19. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    Science.gov (United States)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  20. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  1. Legacy and currently used pesticides in the atmospheric environment of Lake Victoria, East Africa.

    Science.gov (United States)

    Arinaitwe, Kenneth; Kiremire, Bernard T; Muir, Derek C G; Fellin, Phil; Li, Henrik; Teixeira, Camilla; Mubiru, Drake N

    2016-02-01

    The Lake Victoria watershed has extensive agricultural activity with a long history of pesticide use but there is limited information on historical use or on environmental levels. To address this data gap, high volume air samples were collected from two sites close to the northern shore of Lake Victoria; Kakira (KAK) and Entebbe (EBB). The samples, to be analyzed for pesticides, were collected over various periods between 1999 and 2004 inclusive (KAK 1999-2000, KAK 2003-2004, EBB 2003 and EBB 2004 sample sets) and from 2008 to 2010 inclusive (EBB 2008, EBB 2009 and EBB 2010 sample sets). The latter sample sets (which also included precipitation samples) were also analyzed for currently used pesticides (CUPs) including chlorpyrifos, chlorthalonil, metribuzin, trifluralin, malathion and dacthal. Chlorpyrifos was the predominant CUP in air samples with average concentrations of 93.5, 26.1 and 3.54 ng m(-3) for the EBB 2008, 2009, 2010 sample sets, respectively. Average concentrations of total endosulfan (ΣEndo), total DDT related compounds (ΣDDTs) and hexachlorocyclohexanes (ΣHCHs) ranged from 12.3-282, 22.8-130 and 3.72-81.8 pg m(-3), respectively, for all the sample sets. Atmospheric prevalence of residues of persistent organic pollutants (POPs) increased with fresh emissions of endosulfan, DDT and lindane. Hexachlorobenzene (HCB), pentachlorobenzene (PeCB) and dieldrin were also detected in air samples. Transformation products, pentachloroanisole, 3,4,5-trichloroveratrole and 3,4,5,6-tetrachloroveratrole, were also detected. The five most prevalent compounds in the precipitation samples were in the order chlorpyrifos>chlorothalonil>ΣEndo>ΣDDTs>ΣHCHs with average fluxes of 1123, 396, 130, 41.7 and 41.3 ng m(-2)sample(-1), respectively. PeCB exceeded HCB in precipitation samples. The reverse was true for air samples. Backward air trajectories suggested transboundary and local emission sources of the analytes. The results underscore the need for a concerted

  2. An Experimental Study on the Nuclear Fuel Debris Filtering Efficiency Using Wire Debris

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Kyoo; Kwon, Oh-Joon; Lee, Tae-Kwon; Park, Nam-Gyu; Kim, Jae-Ik [KEPCO NF, Daejeon (Korea, Republic of)

    2014-10-15

    If this debris vibrates over a long period of time, the cladding tubes could wear out. Especially, the wire types of debris from the tools during the plant maintenance operations can induce worn hole or wear scar on the fuel rods and may be make severe damage. Most of failures due to debris are observed under the first grid from the bottom of fuel assembly. In order to mitigate this defect, the fuel vendor have developed various anti-debris grids, such as protective grid or debris filtering bottom grid, which is located just above the bottom nozzle. The vendors have performed the debris filtering test to evaluate the efficiency of these grids. KEPCO NF (KEPCO Nuclear fuel) also has carried out the debris filtering test for the fuel assembly with protective grid. Some major design parameters, such as the maximum debris passable size or grid axial location, which affect the debris filtering capacity are found out thorough the test. This paper will discuss the filtering efficiency according to the relative dimensions of wire debris specimens and the effects of the specimen dimensions through simulation tests. The relative dimensions could be useful to develop the debris filtering grid. This study discussed the filtering efficiency according to the relative dimensions of wire debris specimens through simulation tests. The wire debris is used since the debris is more useful to evaluate debris filtering efficiency.

  3. Detecting debris flows using ground vibrations

    Science.gov (United States)

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  4. Debris Discs: Modeling/theory review

    Science.gov (United States)

    Thébault, P.

    2012-03-01

    An impressive amount of photometric, spectroscopic and imaging observations of circumstellar debris discs has been accumulated over the past 3 decades, revealing that they come in all shapes and flavours, from young post-planet-formation systems like Beta-Pic to much older ones like Vega. What we see in these systems are small grains, which are probably only the tip of the iceberg of a vast population of larger (undetectable) collisionally-eroding bodies, leftover from the planet-formation process. Understanding the spatial structure, physical properties, origin and evolution of this dust is of crucial importance, as it is our only window into what is going on in these systems. Dust can be used as a tracer of the distribution of their collisional progenitors and of possible hidden massive pertubers, but can also allow to derive valuable information about the disc's total mass, size distribution or chemical composition. I will review the state of the art in numerical models of debris disc, and present some important issues that are explored by current modelling efforts: planet-disc interactions, link between cold (i.e. Herschel-observed) and hot discs, effect of binarity, transient versus continuous processes, etc. I will finally present some possible perspectives for the development of future models.

  5. Active Polarimetry for Orbital Debris Identification

    Science.gov (United States)

    Pasqual, M.; Cahoy, C.

    We present the results of polarimetric measurements that may help remotely identify orbital debris fragments, thereby extending current space surveillance capabilities. A bench-top polarimeter (wavelength 1064 nm) was used to experimentally determine the polarimetric Bidirectional Reflectance Distribution Function (BRDF) of several common spacecraft materials and coatings, including glossy white paint, matte black paint, black Kapton®, silver Teflon®, aluminum, and titanium. Analysis of these measurements allowed us to estimate each material's Mueller matrix and associated polarimetric properties as a function of the incident angle and (bistatic) in-plane scatter angle. Results revealed notable trends in the materials' polarimetric signatures. Specifically, the materials exhibited mostly weak diattenuation (D 0.5 in the forward scatter direction). In terms of retardance (R), silver Teflon® exhibited a finite range of values (R = 30 to 120º) in all directions, while the other materials acted as mirrors (R = 180º) in the back scatter direction and had the full range of behavior (R = 0 to 180º) in the forward scatter direction. Finally, in terms of depolarization power (Delta), glossy white paint was a nearly perfect depolarizer (Delta = 1) in the back scatter direction, but sharply lost depolarization power (Delta = 0) at specular reflection. All other materials were mostly weak depolarizers (Delta < 0.5) in all scatter directions. These experimental findings may be used to develop requirements for a polarimetric laser radar that can interrogate debris fragments, identify their constituent materials, and infer their masses and other characteristics of interest.

  6. Emerging insights into the dynamics of submarine debris flows

    Science.gov (United States)

    Elverhøi, A.; Issler, D.; de Blasio, F. V.; Ilstad, T.; Harbitz, C. B.; Gauer, P.

    2005-08-01

    Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the "neck" of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an "outrunner" block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING) successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional) models fail at all scales

  7. Emerging insights into the dynamics of submarine debris flows

    Directory of Open Access Journals (Sweden)

    A. Elverhøi

    2005-01-01

    Full Text Available Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the 'neck' of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an 'outrunner' block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional models

  8. A Probabilistic View of Debris Flow

    Institute of Scientific and Technical Information of China (English)

    LI Yong; SU Pengcheng; CUI Peng; HU Kaiheng

    2008-01-01

    Most debris flows occur in valleys of area smaller than 50 km2. While associated with a valley, debris flow is by no means a full-valley event but originates from parts of the valley, i.e., the tributary sources. We propose that debris flow develops by extending from tributaries to the mainstream. The debris flow observed in the mainstream is the confluence of the tributary flows and the process of the confluence can be considered as a combination of the tributary elements. The frequency distribution of tributaries is found subject to the Weibull form (or its generalizations). And the same distribution form applies to the discharge of debris flow. Then the process of debris flow is related to the geometric structure of the valley. Moreover, viewed from a large scale of water system, all valleys are tributaries, which have been found to assume the same distribution. With each valley corresponding to a debris flow, the distribution can be taken as the frequency distribution of debris flow and therefore provides a quantitative description of the fact that debris flow is inclined to occur at valley of small size. Furthermore, different parameters appear in different regions, suggesting the regional differentials of debris flow potential. We can use the failure rate, instead of the size per se, to describe the risk of a valley of a given area. Finally we claim that the valleys of debris flow in different regions are in the similar episode of evolution.

  9. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  10. International 24-Hour LEO Space Debris Measurement Campaign 2015

    Science.gov (United States)

    Hamilton, Joseph; Letsch, Klemens; Blackwell, Christopher; McSheehy, Richard; Quanette, Juarez

    2017-01-01

    The Inter-Agency Space Debris Coordination Committee (IADC) provides the organizational framework for sponsoring periodic international measurement campaigns of the space debris environment. The IADC has conducted two types of campaigns: high altitude campaigns designed to measure the debris environment at near-geostationary altitudes using mostly optical telescopes, and low altitude campaigns using primarily radars. One of the goals of the low altitude campaigns is to collect data for 24 contiguous hours. This way, all orbit planes can be sampled. Multiple sensors are used, each with its own strengths and weaknesses, to provide a more complete understanding of the environment. Comparing results between sensors also provides a better understanding of the potential biases resulting from any one sensor. Conducting the campaigns at roughly regular intervals over a long period also allows researchers to examine trends and growth of the environment over time. For this reason, low altitude campaigns are anticipated at two-year intervals. This is the eighth IADC low altitude campaign conducted. The first campaign was conducted in 1996 and two campaigns were conducted in 1999. The 2002 campaign was delayed until January 2003 because of scheduling conflicts, and the fifth, sixth, and seventh campaigns were conducted in 2004, 2008, and 2013 respectively. The eighth campaign was conducted on 8 December 2015.

  11. Magnitude and frequency data for historic debris flows in Grand Canyon National Park and vicinity, Arizona

    Science.gov (United States)

    Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.

    1995-01-01

    drainage basins. On average, debris flows may recur approximately every 30 to 50 years in individual tributaries, although adjacent tributaries may have considerably different histories. Peak discharges were estimated in 18 drainages for debris flows that occurred between 1939 and 1994. Typically, discharges range from about 100 to 300 cubic meters per second (m3/s). The largest debris flow in Grand Canyon during the last century, which occurred in Prospect Canyon in 1939, had a peak discharge of about 1,000 m3/s. Debris-flow deposits generally contain 15 to 30 percent sand-and-finer sediment; however, the variability of sand-and-finer sediment contained by recent debris flows is large. Reconstitution of debris-flow samples indicates a range in water content of 10 to 25 percent by weight;. Before flow regulation of the Colorado River began, debris fans aggraded by debris flows were periodically reworked by large river floods that may have been as large as 11,000 m3/s. Impoundment of the river by Glen Canyon Dam in 1963, and subsequent operation of the reservoir have reduced the magnitude of these floods. Flow releases from the dam since 1963 have only partly reworked recently-aggraded debris fans. Significant reworking of new debris-flow deposits now occurs only during river discharges higher than typical power plant releases, which currently range between 142 and 510 m3/s.

  12. Drift simulation of MH370 debris using superensemble techniques

    Science.gov (United States)

    Jansen, Eric; Coppini, Giovanni; Pinardi, Nadia

    2016-07-01

    On 7 March 2014 (UTC), Malaysia Airlines flight 370 vanished without a trace. The aircraft is believed to have crashed in the southern Indian Ocean, but despite extensive search operations the location of the wreckage is still unknown. The first tangible evidence of the accident was discovered almost 17 months after the disappearance. On 29 July 2015, a small piece of the right wing of the aircraft was found washed up on the island of Réunion, approximately 4000 km from the assumed crash site. Since then a number of other parts have been found in Mozambique, South Africa and on Rodrigues Island. This paper presents a numerical simulation using high-resolution oceanographic and meteorological data to predict the movement of floating debris from the accident. Multiple model realisations are used with different starting locations and wind drag parameters. The model realisations are combined into a superensemble, adjusting the model weights to best represent the discovered debris. The superensemble is then used to predict the distribution of marine debris at various moments in time. This approach can be easily generalised to other drift simulations where observations are available to constrain unknown input parameters. The distribution at the time of the accident shows that the discovered debris most likely originated from the wide search area between 28 and 35° S. This partially overlaps with the current underwater search area, but extends further towards the north. Results at later times show that the most probable locations to discover washed-up debris are along the African east coast, especially in the area around Madagascar. The debris remaining at sea in 2016 is spread out over a wide area and its distribution changes only slowly.

  13. Space Debris Symposium (A6.) Measurements and Space Surveillance (1.): Measurements of the Small Particle Debris Cloud from the 11 January, 2007 Chinese Anti-satellite Test

    Science.gov (United States)

    Matney, Mark J.; Stansbery, Eugene; J.-C Liou; Stokely, Christopher; Horstman, Matthew; Whitlock, David

    2008-01-01

    On January 11, 2007, the Chinese military conducted a test of an anti-satellite (ASAT) system, destroying their own Fengyun-1C spacecraft with an interceptor missile. The resulting hypervelocity collision created an unprecedented number of tracked debris - more than 2500 objects. These objects represent only those large enough for the US Space Surveillance Network (SSN) to track - typically objects larger than about 5-10 cm in diameter. There are expected to be even more debris objects at sizes too small to be seen and tracked by the SSN. Because of the altitude of the target satellite (865 x 845 km orbit), many of the debris are expected to have long orbital lifetimes and contribute to the orbital debris environment for decades to come. In the days and weeks following the ASAT test, NASA was able to use Lincoln Laboratory s Haystack radar on several occasions to observe portions of the ASAT debris cloud. Haystack has the capability of detecting objects down to less than one centimeter in diameter, and a large number of centimeter-sized particles corresponding to the ASAT cloud were clearly seen in the data. While Haystack cannot track these objects, the statistical sampling procedures NASA uses can give an accurate statistical picture of the characteristics of the debris from a breakup event. For years computer models based on data from ground hypervelocity collision tests (e.g., the SOCIT test) and orbital collision experiments (e.g., the P-78 and Delta-180 on-orbit collisions) have been used to predict the extent and characteristics of such hypervelocity collision debris clouds, but until now there have not been good ways to verify these models in the centimeter size regime. It is believed that unplanned collisions of objects in space similar to ASAT tests will drive the long-term future evolution of the debris environment in near-Earth space. Therefore, the Chinese ASAT test provides an excellent opportunity to test the models used to predict the future debris

  14. New Orbit Propagator to Be Used in Orbital Debris Evolutionary Models

    OpenAIRE

    Narumi, Tomohiro; Hanada, Toshiya

    2007-01-01

    An orbital environment debris evolutionary model for low Earth orbit has been developed at Kyushu University. A fast orbit propagator is essentially needed in such an evolutionary model because the number of space debris larger than 1 cm in low earth orbit is very large and it takes much time to compute long-term orbital changes of space debris. The effects of orbital perturbations are investigated for hundreds of years, and the rate of change in orbital elements were invented by earlier publ...

  15. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring.

    Science.gov (United States)

    Petrie, Bruce; Barden, Ruth; Kasprzyk-Hordern, Barbara

    2015-04-01

    of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.

  16. A computational model for assessing high-velocity debris impact in space applications

    Science.gov (United States)

    Bergh, M.; Garcia, V.

    2017-07-01

    Man-made space debris is dominating the background meteorite environment with a growing debris population leading to increased collision risks for satellites, especially in the low Earth orbit and geostationary orbit protected environments. Here we present a computational model for estimating the effect of hypervelocity impact from debris particles on non-shielded propellant and pressurant tanks. Eulerian hydrocode simulation is utilised to model firstly penetration and shock wave formation in the propellant and secondly subsequent detonation wave propagation and interaction with the tank wall. Furthermore, reactive molecular dynamics is used to estimate the risk of detonation in a liquid hydrazine layer. We present simulations of a 3.5 mm aluminium spherical debris particle at a velocity of 14 km/s relative to a hydrazine tank. We find that the degree of damage is strongly dependent on tank temperature and hence on the satellite thermal configuration at its end of life.

  17. A computational model for assessing high-velocity debris impact in space applications

    Science.gov (United States)

    Bergh, M.; Garcia, V.

    2017-01-01

    Man-made space debris is dominating the background meteorite environment with a growing debris population leading to increased collision risks for satellites, especially in the low Earth orbit and geostationary orbit protected environments. Here we present a computational model for estimating the effect of hypervelocity impact from debris particles on non-shielded propellant and pressurant tanks. Eulerian hydrocode simulation is utilised to model firstly penetration and shock wave formation in the propellant and secondly subsequent detonation wave propagation and interaction with the tank wall. Furthermore, reactive molecular dynamics is used to estimate the risk of detonation in a liquid hydrazine layer. We present simulations of a 3.5 mm aluminium spherical debris particle at a velocity of 14 km/s relative to a hydrazine tank. We find that the degree of damage is strongly dependent on tank temperature and hence on the satellite thermal configuration at its end of life.

  18. Orbit propagation using semi-analytical theory and its applications in space debris field

    Science.gov (United States)

    Dutt, Pooja; Anilkumar, A. K.

    2017-02-01

    Lifetime estimation of space objects is very important for space debris related studies including mitigation studies and manoeuvre designs. It is essential to have a fast and accurate lifetime prediction tool for studies related to long term evolution of space debris environment. This paper presents the details of the Orbit Prediction using Semi-Analytic Theory (OPSAT) used for lifetime estimation of space objects. It uses BFGS Quasi-Newton algorithm to minimize least square error on apogee and perigee altitudes of a given TLE set to estimate ballistic coefficient (BC). This BC is used for future orbit prediction. OPSAT is evaluated for long term and short term orbit prediction using TLE data. It has been used for identification of potential candidate for active debris removal (ADR) and future projection of space debris environment with ADR.

  19. Debris flow study in Malaysia

    Science.gov (United States)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  20. DebriSat Laboratory Analyses

    Science.gov (United States)

    2015-01-05

    Semiquantitative elemental composition. – Elemental mapping and line scans. • Fourier Transform Infrared ( FTIR ) spectroscopy – Identification of chemical...Transform Infrared ( FTIR ) spectroscopy – Nicolet 6700 spectrometer. – Harrick Scientific “praying mantis” diffuse reflectance accessory. • Qualitative...VIS-NIR Spectroscopy Dianna Alaan © The Aerospace Corporation 2015 DebriSat Laboratory Analyses 5 January, 2015 Paul M. Adams1, Zachary Lingley2

  1. SPACE DEBRIS RESEARCH IN CHINA(2000-2002)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Space debris is is referred to as the human made pollution in the space environment.Ever since the first launch of man made satellite in 1957, millions of kilograms of objects have been sent into the space. Large space objects that are traceable and cataloged by ground base telescope and radar reach around 9 000, becoming grave threat to the social development of human beings as well as astronautics.

  2. Active Debris Removal System Based on Polyurethane Foam

    Science.gov (United States)

    Rizzitelli, Federico; Valdatta, Marcelo; Bellini, Niccolo; Candini Gian, Paolo; Rastelli, Davide; Romei, Fedrico; Locarini, Alfredo; Spadanuda, Antonio; Bagassi, Sara

    2013-08-01

    Space debris is an increasing problem. The exponential increase of satellite launches in the last 50 years has determined the problem of space debris especially in LEO. The remains of past missions are dangerous for both operative satellites and human activity in space. But not only: it has been shown that uncontrolled impacts between space objects can lead to a potentially dangerous situation for civil people on Earth. It is possible to reach a situation of instability where the big amount of debris could cause a cascade of collisions, the so called Kessler syndrome, resulting in the infeasibility of new space missions for many generations. Currently new technologies for the mitigation of space debris are under study: for what concerning the removal of debris the use of laser to give a little impulse to the object and push it in a graveyard orbit or to be destroyed in the atmosphere. Another solution is the use of a satellite to rendezvous with the space junk and then use a net to capture it and destroy it in the reentry phase. In a parallel way the research is addressed to the study of deorbiting solutions to prevent the formation of new space junk. The project presented in this paper faces the problem of how to deorbit an existing debris, applying the studies about the use of polyurethane foam developed by Space Robotic Group of University of Bologna. The research is started with the Redemption experiment part of last ESA Rexus program. The foam is composed by two liquid components that, once properly mixed, trig an expansive reaction leading to an increase of volume whose entity depends on the chemical composition of the two starting components. It is possible to perform two kind of mission: 1) Not controlled removal: the two components are designed to react producing a low density, high expanded, spongy foam that incorporates the debris. The A/m ratio of the debris is increased and in this way also the ballistic parameter. As a consequence, the effect of

  3. 170 years of debris covered glacier surface evolution

    Science.gov (United States)

    Mölg, Nico; Bolch, Tobias; Vieli, Andreas; Bauder, Andreas

    2017-04-01

    differences from DEMs demonstrate that the position of ice cliffs is clearly driving a large share of the total volume loss through melt. Currently, the extraction of surface features has been done manually, but we will also present an attempt to automatically extract ice cliffs and lakes. Further investigations will concentrate on studying the relationship of debris cover, surface features and flow velocity in more spatial detail using more and higher resolution DEMs and in-situ information on debris and glacier surface flow velocity.

  4. Debris Flow Damage Incurred to Buildings: An In-Situ Back Analysis

    Science.gov (United States)

    Jalayer, Fatemeh; Aronica, Giuseppe T.; Recupero, Antonino; Carozza, Stefano; Manfredi, Gaetano

    2016-04-01

    The flash-flood debris event of the October 1st 2009 in the area of Messina, Sicily, Italy has led to loss of life and significant damage to the constructed environment. Focusing the attention on an eighteenth masonry building (damaged and upgraded after the Messina-Reggio Calabria Earthquake of 1906) located in the village of Scaletta Zanclea, we have strived to reconstruct analytically the damages incurred to this building due to the debris flow event of 2009. In order to re-construct the damages incurred to the building due to the flash flood/debris flow event, hydrostatic and hydrodynamic force envelopes, calculated via a 2D hydrodynamic finite element model specifically designed for debris flow spatial propagation, have been applied to the building in question (assuming perfect coherence between static and dynamic maxima). The hydrograph for the solid discharge is then estimated by scaling up the liquid volume to the estimated debris volume. The hydrodynamic model used for the debris flow propagation proved to be well suited for these specific applications. The debris flow diffusion is simulated by solving the differential equations for a single-phase 2D flow employing triangular mesh elements, taking into account also the channeling of the flow through the building. The damage to the building is modeled, based on the maximum hydraulic actions caused by the debris flow, using 2D finite shell elements, modeling the boundary conditions provided by the openings, floor slab, orthogonal wall panels and the foundation. The finite element approach showed its capability in describing the complex geometries of the urban environments as the distributed nature of the 2D code allows to derive a reliable spatial distribution of debris flow actions. The reconstruction of the event and the damages to the case-study building confirms the location of the damages induced by the event.

  5. Corrosion Behavior of X80 Steel with Coupled Coating Defects under Alternating Current Interference in Alkaline Environment

    Science.gov (United States)

    Li, Zhong; Li, Caiyu; Qian, Hongchang; Li, Jun; Huang, Liang; Du, Cuiwei

    2017-01-01

    The corrosion behavior of X80 steel in the presence of coupled coating defects was simulated and studied under the interference of alternating current (AC) in an alkaline environment. The results from electrochemical measurements showed that the electrode potential of the coating defect with the smaller exposed area was lower than that with the larger area, which indicated that the steel with the smaller coating defect was more prone to corrosion. The result of weight loss tests also showed that the smaller coating defect had induced a higher corrosion rate. However, the corrosion rate of X80 steel at the larger coating defect decreased gradually with the increase of the larger defect area at a constant smaller defect area. The corrosion morphology images showed that the coating defects with smaller areas suffered from more severe pitting corrosion. PMID:28773078

  6. Current asthma, respiratory symptoms and airway infections among students in relation to the school and home environment in Japan.

    Science.gov (United States)

    Takaoka, Motoko; Suzuki, Kyoko; Norbäck, Dan

    2017-08-01

    To study associations between the school and home environment and current asthma, respiratory symptoms and airway infections among Japanese students. Japanese students (12-15 y) (N = 1048) in four schools responded to a questionnaire on respiratory health, allergy and the home environment. Temperature, relative air humidity (RH) and student density (students/m(2) floor area) was measured in the classrooms: dust was collected from floors and in classroom air and analysed for cat (Fel d 1) and dog (Can f 1) allergens. Health associations were analysed by multi-level logistic regression. Doctor's diagnosed asthma was common (13.4%), 8.8% reported cat allergy and 6.1% dog allergy. The median level in floor dust was 41 ng/g (IQR 23-92) for Fel d 1 and 101 ng/g (IQR 54-101) for Can f 1. The median level in air was 18.6 ng/ m(2)/ day (IQR5.9-25.1) for Fel d 1 and 18.6 ng/ m(2)/ day (IQR 6.0-13.3) for Can f 1. High RH, high student density and airborne cat allergen was associated with airway infections. In the home environment, recent indoor painting, new floor materials, odour, having cats as pets, window pane condensation in winter, and dampness in floor construction were associated with respiratory illness. High relative air humidity, high student density and airborne cat allergens at school may increase the risk of airway infections. Having cats as pets, chemical emissions from paint and new floor materials, odour and dampness can constitute domestic risk factors for respiratory symptoms while having dogs as pets could be protective.

  7. Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA

    Science.gov (United States)

    Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.

    2014-12-01

    In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial

  8. [Current status of operations in community general support centers and the correlation of personal traits, work environment and occupational stress].

    Science.gov (United States)

    Yamaguchi, Yoshie

    2010-01-01

    The purpose of this study was to identify the current status of operations at community general support centers which provide coordination for elderly care and the correlation of personal traits, work environment and the occupational stress of the staff. Subjects of the study were 251 staff members of community general support centers. The current status of operations at the community general support centers and the personal traits, work environment, effort-remuneration imbalance model (ERI) and general health questionnaire (GHQ) were surveyed. The initial analysis involved a comparison by a chi-square test on: The effort-remuneration ratio (E/R ratio) of personal traits and work environment, risk of over-commitment (OC), and GHQ score. To explore the correlation between the E/R ratio of the three GHQ groups (low, middle and high score groups) and the OC value, one-way analysis of variance was performed. Out of the four basic functions of the community general support centers, 22.0% of the respondents noted that "establishment of a regional, comprehensive/multi-tiered service network" was functioning, and 50.4% of respondents noted that "comprehensive and continuous care management" was functioning. The average effort score was 15.5 +/- 5.3, approximately double the average value of preceding studies. Significant differences found in GHQ scores were related to working hours (pworking hours of 50 h or more" (OR: 10.38, 95% CI: 2.52-42.70), "Unstable employment" (OR: 2.75, 95% CI: 1.22-6.21) and "Anxiety related to task content" (OR: 17.04, 95% CI: 3.57-81.24). Items observed to have significant correlation with OC value risk factors were: "Weekly working hours of 50 h or more" (OR: 8.04, 95% CI: 1.99-32.41) and "Anxiety related to task content" (OR: 4.60, 95% CI: 2.04-10.37). We conclude that the basic functions of the community general support centers are not presently very functional. The stress levels of the community general support center staff are high and

  9. Deep HST/STIS Visible-Light Imaging of Debris Systems around Solar Analog Hosts

    CERN Document Server

    Schneider, Glenn; Stark, Christopher C; Gaspar, Andras; Carson, Joseph; Debes, John H; Henning, Thomas; Hines, Dean C; Jang-Condell, Hannah; Kuchner, Marc J; Perrin, Marshall; Rodigas, Timothy J; Tamura, Motohide; Wisniewski, John P

    2016-01-01

    We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more-massive analogs of our solar system's Edgeworth- Kuiper belt. These systems were chosen for follow-up observations to provide higher-fidelity and better sensitivity imaging for the sparse sample of solar-analog CDSs that range over two decades in systemic ages with HD 202628 and HD 202917 (both ~ 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10 - 14 ksec) observations, with six-roll point-spread-function template subtracted visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large, diffuse/low surface brightness, debris rings, and for all targets probe their exo-ring environments for starlight-scatter...

  10. Interpreting Debris from Satellite Disruption in External Galaxies

    Science.gov (United States)

    Johnston, Kathryn V.; Sackett, Penny D.; Bullock, James S.

    2001-08-01

    We examine the detectability and interpretation of debris trails caused by satellite disruption in external galaxies using semianalytic approximations for the dependence of streamer length, width, and surface brightness on satellite and primary galaxy characteristics. The semianalytic method is tested successfully against N-body simulations and then applied to three representative astronomical applications. First, we show how streamer properties can be used to estimate mass-to-light ratios Υ and streamer ages of totally disrupted satellites, and we apply the method to the stellar arc in NGC 5907. Second, we discuss how the lack of observed tidal debris around a satellite can provide an upper limit on its mass-loss rate and, as an example, derive the implied limits on mass-loss rates for M32 and NGC 205 around Andromeda. Finally, we point out that a statistical analysis of streamer properties might be applied to test and refine cosmological models of hierarchical galaxy formation, and we use the predicted debris from a standard Λ cold dark matter realization to test the feasibility of such a study. Using the Local Group satellites and the few known examples of debris trails in the Galaxy and in external systems, we estimate that the best current techniques could characterize the brightest (RCELT and OWL may allow fainter trails to be detected routinely and thus may be used for statistical studies such as those required for tests of galaxy formation.

  11. Comprehensive Census and Complete Characterization of Nearby Debris Disk Stars

    Science.gov (United States)

    Cotten, Tara H.; Song, Inseok

    2016-01-01

    Debris disks are intimately linked to planetary system evolution since the rocky material surrounding the host stars is believed to be due to secondary generation from the collisions of planetesimals. With the conclusion and lack of future large scale infrared excess survey missions, it is time to summarize the history of using excess emission in the infrared as a tracer of debris and exploit all available data as well as provide a comprehensive study of the parameters of these important objects. We have compiled a catalog of infrared excess stars from peer-reviewed articles and performed an extensive search for new debris disks by cross-correlating the Tycho-2 and AllWISE catalogs. This study will conclude following the thorough examination of each debris disk star's parameters obtained through high-resolution spectroscopy at various facilities which is currently ongoing. We will maintain a webpage (www.debrisdisks.org) devoted to these infrared excess sources and provide various resources related to our catalog creation, SED fitting, and data reduction.

  12. Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador

    Science.gov (United States)

    Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.

    2017-04-01

    We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.

  13. Space Debris: il problema dei rifiuti spaziali

    OpenAIRE

    Michele Dussi

    2008-01-01

    Space Debris: the space garbage problemThe dramatic growth in space activities since 1957 has generated a large amount of “in-orbit garbage”, namely space-debris. Many of these are potentially dangerous for space vehicles and/or for the people on Earth. In an acceptable space security framework, amajor role is reserved to cooperative space debris monitoring in order to prevent and to mitigate the effects of the problem.

  14. Seasonal trends in abundance and composition of marine debris in selected public beaches in Peninsular Malaysia

    Science.gov (United States)

    Mobilik, Julyus-Melvin; Ling, Teck-Yee; Husain, Mohd-Lokman Bin; Hassan, Ruhana

    2015-09-01

    The abundance and composition of marine debris were investigated at Saujana (in the state of Negeri Sembilan) and Batu Rakit (in the state of Terengganu) beaches during surveys conducted in December 2012 (northeast monsoon), May 2013 (intermediate monsoon) and July 2013 (southwest monsoon). A total of 4,682 items of debris weighing 231.4 kg were collected and sorted. Batu Rakit received substantially greater quantities of debris (815±717 items/km or 40.4±13.0 kg/km) compared to Saujana (745±444 items/km or 36.7±18.0 kg/km). Total debris item was more abundant during the southwest monsoon (SWM) (1,122±737 items/km) compared to the northeast monsoon (NEM) (825±593 items/ km) and the intermediate monsoon (IM) (394±4 items/km) seasons. Plastic category (88%) was the most numerous items collected and object items contributed 44.18% includes packaging, plastic fragments, cups, plastic shopping bags, plastic food wrapper, clear plastic bottles from the total debris items collected. Object items associated with common source (47%) were the highest debris accumulated, followed by terrestrial (30%) and marine (23%) sources. The high percentage of common and terrestrial sources during SWM season requires immediate action by marine environment stakeholders to develop and introduce strategies to reduce if not totally eliminates the marine debris in the marine environment. Awareness should be continued and focused on beach users and vessels' crew to alert them on the alarming accumulation rate of marine debris and its pathways into the marine environment.

  15. Modeling debris-covered glaciers: extension due to steady debris input

    Directory of Open Access Journals (Sweden)

    L. S. Anderson

    2015-11-01

    Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR. The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  16. Mean Velocity Estimation of Viscous Debris Flows

    Institute of Scientific and Technical Information of China (English)

    Hongjuan Yang; Fangqiang Wei; Kaiheng Hu

    2014-01-01

    The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.

  17. Space debris measurement program at Phillips Laboratory

    Science.gov (United States)

    Dao, Phan D.; Mcnutt, Ross T.

    1992-01-01

    Ground-based optical sensing was identified as a technique for measuring space debris complementary to radar in the critical debris size range of 1 to 10 cm. The Phillips Laboratory is building a staring optical sensor for space debris measurement and considering search and track optical measurement at additional sites. The staring sensor is implemented in collaboration with Wright Laboratory using the 2.5 m telescope at Wright Patterson AFB, Dayton, Ohio. The search and track sensor is designed to detect and track orbital debris in tasked orbits. A progress report and a discussion of sensor performance and search and track strategies will be given.

  18. Gradient Index in Wear Debris Image Collection

    Institute of Scientific and Technical Information of China (English)

    LVZhi-yong; GAOHui-liang; YANXin-ping

    2004-01-01

    In order to solve a problem of oil on-line monitoring, this instrument adopts a prinripium of self-focus lens of Gradieat index fiber( GRIN Len) to design optics system and magnetic circuit. For the magnetic circuit, the monitor can catch particle wear debris in oil. And for the optics circuit. GRIN Len can transfer image of debris to apparatus of gather image, e . g, CCD and camera. And the image of debris is transferred to computer for analyzing seize and physiognomy of debris. The character of the monitor is of micro weight, micro volume andcurve imaging And it is directly pluged into oil to catch image of wear particles.

  19. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    Science.gov (United States)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm

  20. Susceptibility of Solar Arrays to Micrometeoroid and Space Debris Impact

    Science.gov (United States)

    Schimmerohn, Martin; Rott, Martin; Gerhard, Andreas; Schafer, Frank; D'Accolti, Gianfelice

    2014-08-01

    The susceptibility of solar arrays to micrometeoroid and space debris impact was studied in a comprehensive study to clarify 1) whether, 2) in which manner and 3) under which conditions GEO telecom satellite solar arrays are affected by hypervelocity impact events. Impact induced discharges have been generated in highly instrumented impact experiments using a two- staged light gas guns and a plasma dynamic accelerator. The discharges were found to be temporary and without consequences for the functioning of the power generating network of state-of-the-art solar arrays designs. Permanently sustained destructive discharges have been generated for current-voltage characteristics that are significantly exceeding current ESD safe levels. The highest risk of impact induced failure of GEO solar arrays is posed by micrometeoroids and space debris hitting transfer harness cable bundles on its rear side.

  1. Risk assessment reveals high exposure of sea turtles to marine debris in French Mediterranean and metropolitan Atlantic waters

    Science.gov (United States)

    Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François

    2017-07-01

    Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research

  2. Modeling the fate of Escherichia coli O157:H7 and Salmonella enterica in the agricultural environment: current perspective.

    Science.gov (United States)

    Ongeng, Duncan; Haberbeck, Leticia U; Mauriello, Gianluigi; Ryckeboer, Jaak; Springael, Dirk; Geeraerd, Annemie H

    2014-04-01

    The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E. coli O157:H7 and S. enterica at preharvest stage because both ruminant and nonruminant livestock are known carriers of E. coli O157:H7 and S. enterica in the environment. A number of challenge-testing studies have examined the fate of E. coli O157:H7 and S. enterica in the agricultural environment with the view of designing strategies for controlling vegetable contamination preharvest. In this review, we examined the mathematical modeling approaches that have been used to study the behavior of E. coli O157:H7 and S. enterica in the manure, manure-amended soil, and in manure-amended soil-plant ecosystem during cultivation of fresh vegetable crops. We focused on how the models have been applied to fit survivor curves, predict survival, and assess the risk of vegetable contamination preharvest. The inadequacies of the current modeling approaches are discussed and suggestions for improvements to enhance the applicability of the models as decision tools to control E. coli O157:H7 and S. enterica contamination of fresh vegetables during primary production are presented.

  3. Deep HST/STIS Visible-light Imaging of Debris Systems around Solar Analog Hosts

    Science.gov (United States)

    Schneider, Glenn; Grady, Carol A.; Stark, Christopher C.; Gaspar, Andras; Carson, Joseph; Debes, John H.; Henning, Thomas; Hines, Dean C.; Jang-Condell, Hannah; Kuchner, Marc J.; Perrin, Marshall; Rodigas, Timothy J.; Tamura, Motohide; Wisniewski, John P.

    2016-09-01

    We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth-Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both ˜2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F disk/F star optical brightness ˜t -0.8, similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.

  4. The I.A.G. / A.I.G. SEDIBUD (Sediment Budgets in Cold Environments) Programme: Current and future activities

    Science.gov (United States)

    Beylich, Achim A.; Lamoureux, Scott; Decaulne, Armelle

    2013-04-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists (I.A.G. / A.I.G. ) SEDIBUD (Sediment Budgets in Cold Environments) Programme was formed in 2005 to address this existing key knowledge gap. SEDIBUD currently has about 400 members worldwide and the Steering Committee of this international programme is composed of ten scientists from eight different countries: Achim A. Beylich (Chair) (Norway), Armelle Decaulne (Secretary) (France), John C. Dixon (USA), Scott F. Lamoureux (Vice-Chair) (Canada), John F. Orwin (Canada), Jan-Christoph Otto (Austria), Irina Overeem (USA), Thorsteinn Sæmundsson (Iceland), Jeff Warburton (UK) and Zbigniew Zwolinski (Poland). The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Initially formed as European Science Foundation (ESF) Network SEDIFLUX (Sedimentary Source-to-Sink Fluxes in Cold Environments) (2004 - ), SEDIBUD has further expanded to a global group of researchers with field research sites located in polar and alpine regions in the northern and southern hemisphere. Research carried out at each of the close to 50 defined SEDIBUD key test sites varies by programme, logistics and available

  5. Parental Involvement and Home Environment in Music: Current and Former Students from Selected Community Music Programs in Brazil and the United States

    Science.gov (United States)

    Barnes, Gail V.; DeFreitas, Aureo; Grego, John

    2016-01-01

    The purpose of this study was to determine whether individuals' perceptions of parental involvement and home environment in music vary with nationality (Brazil/United States) and time frame (past/current). Past and current students from selected community music programs in the United States and Brazil completed the PI-HEM (Parental Involvement and…

  6. Preliminary Results from Reflectance Spectroscopy Observations of Space Debris in GEO

    Science.gov (United States)

    Vananti, A.; Schidknecht, T.; Krag, H.; Erd, C.

    2009-03-01

    The space debris environment in the Geostationary Earth Orbit (GEO) region is mostly investigated using optical telescopes. The detection of the objects and the determination of their orbits are based on optical observations. However, for a better characterization of the environment it would be necessary to know the shape and the material of the objects. The area-to-mass ratio can be estimated from orbit determinations. In some rare case additional information can be derived from photometric measurements. A possible technique to investigate the material type of the debris is the reflectance spectroscopy. This paper discusses preliminary results obtained from spectrometric observations of orbital space debris. The observations were acquired at the 1-meter ESA Space Debris Telescope (ESASDT) on Tenerife with a low-resolution spectrograph in the wavelength range of 450-960 nm. The observed objects are space debris in GEO orbits with brightness as small as magnitude 16. The spectra show shape variations expected to be caused by the different physical properties of the objects. The determination of the material and of the type of object is still in a preliminary phase. Limitations of the acquisition process of the spectra and the subsequent analysis are discussed. Future steps planned for a better characterization of the debris from the observed data are briefly outlined.

  7. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  8. The DEBRIS Project: Searching for Kuiper Belts around the Nearest Stars with Herschel

    Science.gov (United States)

    Matthews, Brenda

    Building on the recent success of Spitzer in detecting debris disks around the nearest stars and the SCUBA instrument at the JCMT in imaging cold disks, DEBRIS (Disk Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) is an open time key project on Herschel which aims to conduct an unbiased statistical survey for debris disks around the nearest stars to unprecedented mass limits. The survey is driven by 100 and 160 micron observations and is flux-limited. The sample is drawn from a database of nearby stars (Phillips et al. in prep) of spectral types A0 through M7 and totals 446 primaries, 348 of which will be observed by the DEBRIS team and 98 of which are covered by another the DUNES (DUst disks around NEarby Stars) team. Each target will be observed to a 100 micron rms of 1.2 mJy, allowing the detection of disks with dust masses comparable that of our own Kuiper belt towar the nearest stars. The superior resolution of Herschel should provide resolved images of many of the closest disks, and even our most distant disks may be resolvable. I will discuss the current state of debris disk research and highlight the areas in which Herschel will make the biggest impacts: establishing the true incidence of debris disks; characterizing the debris disk population, resolving disks and modeling their structure for evidence of long period planets; and the placing of our own Solar System in context.

  9. Debris On Herschel: An Overview Of The Search For Kuiper Belts Around The Nearest Stars

    Science.gov (United States)

    Butner, Harold M.; Matthews, B.; DEBRIS Survey Team

    2010-01-01

    Building on the recent success of Spitzer in detecting debris disks around the nearest stars and the SCUBA instrument at the JCMT in imaging cold disks, DEBRIS (Disk Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) is an open time key project on Herschel which aims to conduct an unbiased statistical survey for debris disks around the nearest stars to unprecedented mass limits. The survey is driven by 100 and 160 micron observations and is flux-limited. The sample is drawn from a database of nearby stars of spectral types A0 through M7 and totals 446 primaries, 348 of which will be observed by the DEBRIS team and 98 of which are covered by another project, the DUNES (DUst disks around NEarby Stars) team. Each target will be observed to a 100 micron rms of 1.2 mJy, allowing the detection of disks with dust masses comparable that of our own Kuiper belt towar the nearest stars. The superior resolution of Herschel should provide resolved images of many of the closest disks, and even our most distant disks may be resolvable. We will discuss the current state of debris disk research and highlight the areas in which Herschel will make the biggest impacts: establishing the true incidence of debris disks; characterizing the debris disk population, resolving disks and modeling their structure for evidence of long period planets; and the placing of our own Solar System in context

  10. Procedures for the documentation of historical debris flows: application to the Chieppena Torrent (Italian alps).

    Science.gov (United States)

    Marchi, Lorenzo; Cavalli, Marco

    2007-09-01

    The reconstruction of triggering conditions, geomorphic effects, and damage produced by historical floods and debris flows significantly contributes to hazard assessment, allowing improved risk mitigation measures to be defined. Methods for the analysis of historical floods and debris flows vary greatly according to the type and quality of available data, which in turn are influenced by the time the events occurred. For floods and debris flows occurring in the Alps a few decades ago (between about 1950 and 1980), the documentation is usually better than for previous periods but, unlike events of most recent years, quantitative data are usually scanty and the description of the events does not aim to identify processes according to current terminology and classifications. The potential, and also the limitations of historical information available for the reconstruction of historical debris flows in the Alps have been explored by analyzing a high-magnitude debris flow that occurred on November 4, 1966 in the Chieppena Torrent (northeastern Italy). Reconstruction of the event was based on the use of written documentation, terrestrial and aerial photographs, and geomorphological maps. The analysis aimed to define the temporal development of phenomena, recognizing the type of flow processes and assessing some basic flow variables, such as volume, channel-debris yield rate, erosion depth, total distance traveled, and runout distance on the alluvial fan. The historical development of torrent hydraulic works, both before and after the debris flow of November 1966, was also analyzed with regard to the technical solutions adopted and their performance.

  11. Debris flow early warning systems in Norway: organization and tools

    Science.gov (United States)

    Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.

    2012-04-01

    model COUP). The data are presented in a web- and GIS-based system with daily nationwide maps showing the meteorological and hydrological conditions for the present and the near future from quantitative weather prognosis. In addition a division of the country in homogenous debris flow-prone regions is also under progress based on geomorfological, topographic parameters and loose quaternary deposits distribution. Threshold-levels are being investigated by using statistical analyses of historical debris flows events and measured hydro-meteorological parameters. The debris flow early warning system is currently being tested and is expected to be operational in 2013. Final products will be warning messages and a map showing the different hazard levels, from low to high, indicating the landslide probability and the type of expected damages in a certain area. Many activities are realized in strong collaboration with the road and railway authorities, the geological survey and private consultant companies.

  12. Dynamic aspects of large woody debris in river channels

    Science.gov (United States)

    Vergaro, Alexandra; Caporali, Enrica; Becchi, Ignazio

    2015-04-01

    Large Woody Debris (LWD) are an integral component of the fluvial environment. They represent an environmental resource, but without doubt they represent also a risk factor for the amplification that could give to the destructive power of a flood event. While countless intervention in river channels have reintroduced wood in rivers with restoration and banks protection aims, during several flash flood events LWD have had a great part in catastrophic consequences, pointing out the urgency of an adequate risk assessment procedure. At present wood dynamics in rivers is not systematically considered within the procedures for the elaboration of hazard maps resulting in loss of prediction accuracy and underestimation of hazard impacts. The assessment inconsistency comes from the complexity of the question: several aspects in wood processes are not yet well known and the superposition of different physical phenomena results in great difficulty to predict critical scenarios. The presented research activity has been aimed to improve management skills for the assessment of the hydrologic risk associated to the presence of large woody debris in rivers, improving knowledge about LWD dynamic processes and proposing effective tools for monitoring and mapping river catchments vulnerability. Utilizing critical review of the published works, field surveys and experimental investigations LWD damaging potential has been analysed to support the identification of the exposed sites and the redaction of hazard maps, taking into account that a comprehensive procedure has to involve: a) Identification of the critical cross sections; b) Evaluation of wood availability in the river catchment; c) Prediction of hazard scenarios through the estimation of water discharge, wood recruitment and entrainment, wood transport and destination. Particularly, a survey sheets form for direct measurements has been implemented and tested in field to provide an investigation instruments for wood and river

  13. Orbital Debris Observations with WFCAM

    Science.gov (United States)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  14. CONCENTRATION AND VELOCITY OF DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Xiangjun FEI; Peng CUI; Yong LI

    2002-01-01

    Debris flows in nature generally fall into three groups distinct in their grain composition: water-stone flow,or sub-viscous debris flow,dominated by coarse grains; muddy flow,dominated by fine grains;and viscous debris flow composed of grains in large range. Liquid-phase velocity and sedimentary delivery resistance of sub-viscous debris flow have been discussed based on the composition characters of sub-and high-viscous debris flows. It is revealed that the presence of fine grains plays a vital role in affecting resistance and average velocity,particularly when the volume fraction of grains in the flow is relatively high,i.e. Sv > 0.45. Grain-size distribution of viscous debris flow is characterized by a bimodal curve,which explains the properties like high density and low resistance gradient of debris flows. A calculation formula is finally put forward,which has to some extent overcome locality limits and achieved a good agreement with the field observations of debris flows in Southwest China.

  15. Effects of radiation and debris to SSPS

    OpenAIRE

    Utashima, Masayoshi; 歌島 昌由

    2004-01-01

    This paper studies effects of the radiation and space debris to the Space Solar Power Systems (SSPS). In the first half of the paper, the in-space transportation from low-Earth orbit to geostationary Earth orbit is studied in consideration of these effects. In the second half, the debris impacts to SSPS on geostationary Earth orbit are analyzed.

  16. High Energy Laser for Space Debris Removal

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and

  17. Planets, debris and their host metallicity correlations

    CERN Document Server

    Fletcher, Mark

    2016-01-01

    Recent observations of debris discs, believed to be made up of remnant planetesimals, brought a number of surprises. Debris disc presence does not correlate with the host star's metallicity, and may anti-correlate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here we explore predictions of the alternative Tidal Downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high metallicity stars but release more debris per disruption than their low [M/H] analogs. This predicts no simple relation between debris disc presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars w...

  18. Debris flows: behavior and hazard assessment

    Science.gov (United States)

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  19. The debris-flow rheology myth

    Science.gov (United States)

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  20. Debris disc formation induced by planetary growth

    CERN Document Server

    Kobayashi, Hiroshi

    2014-01-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that ...

  1. Transformation of cohesive and noncohesive debris flows in subaerial and subaqueous settings

    Science.gov (United States)

    Sohn, Y. K.

    2003-04-01

    Debris flows are an important means of sediment transport and deposition in subaerial and subaqueous settings. They commonly transform into dilute flow types (e.g., hyperconcentrated flow, concentrated density flow, or turbidity current) when they mix with ambient water. In subaerial settings, noncohesive debris flows transform easily into dilute flow types when they run over a streamflow, producing a transition facies composed of a hyperconcentrated-flow deposit overlain by a debris-flow deposit in one sedimentation unit. On the other hand, cohesive debris flows are able to maintain their coherence and textural uniformity over 100 km without transforming into dilute flows. The behavioral difference between the cohesive and the noncohesive flows is caused mainly by the difference in the miscibility of the flows with associated streamflows, which depends strongly on the mud content in the matrix. In subaqueous settings, cohesive debris flows can be efficiently diluted because their impermeable (muddy) matrix facilitates hydroplaning. In this case, they produce a transition facies similar to that of subaerial noncohesive debris flows. Noncohesive debris flows in subaqueous settings may transform into dilute flow types as readily as subaerial ones because of larger flow resistance and the lack of surface tension effects by interstitial water. Some studies suggest, however, that clast-rich debris flows may be subject to neither hydroplaning nor vigorous surface transformation, remaining as debris flows to their termini. Further study on the transformation processes and related sedimentary features is necessary for resolving a number of problems regarding hazard assessment of mass-movement processes, characterization of reservoir rocks, and the definition and classification of sediment gravity flows.

  2. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    Science.gov (United States)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  3. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.

  4. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  5. An Assessment of the January 2007 Chinese ASAT Test on the LEO Environment

    Science.gov (United States)

    Talent, D.

    Over the past several decades there has been increasing concern regarding the growth of the orbital debris population in the Low Earth Orbit (LEO) environment. Even under the best of circumstances the debris population may be expected to increase under conditions of ambient use by the space-faring nations of the world. It is easy to see that such a situation will obtain since the operational lifetimes of most on-orbit systems are typically less than a decade, while their orbital lifetimes may be many decades to hundreds of years or more. Historically, very little has been done regarding the removal of defunct orbital systems. Making matters worse, there have been many cases of spontaneous explosion of derelict upper stages on orbit. In such an event, a single large "hazard to navigation" becomes hundreds to thousands of pieces of orbiting shrapnel. As the numbers of debris objects increases, for whatever reason, so does the threat of collision with high-value operational assets. Thus, given the importance of minimizing orbital debris in LEO, it is obvious that any nation conducting anti-satellite (ASAT) tests should do so in a responsible fashion - minimizing the long-term deposition of large numbers of orbital debris objects at operational LEO altitudes. It is the thesis of this paper that the January 2007 ASAT test conducted by the Chinese government was particularly careless in this regard. In support of this statement, Oceanit's LEO environment model, PODEM (patented in 2004), was employed. The Chinese ASAT test was conducted successfully at an altitude of about 850 km producing large numbers of debris objects. Results, based on an approximation to this recent event, utilizing the PODEM model, suggest that meter-size debris pieces may remain in the LEO environment for hundreds of years. By contrast, debris ranging in size from one to several centimeters may be expected to drift down, due to drag, through lower LEO altitudes producing a transient spike in hazard

  6. Forming Gaps in Debris Disks with Fewer Planets via Planet Migration

    Science.gov (United States)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2016-10-01

    Debris disks across a wide range of ages can possess wide gaps of several AU or more; these gaps have been attributed to the presence of multiple planets. While at least two planets are likely needed for maintaining the edges of such gaps, large gaps may require more than two in more dynamically packed configurations to be able to have cleared material within the gap in the present day. As an alternative to currently packed planets occupying gaps in debris disks, we assess whether planetesimal and dynamical instability-driven planet migration could produce wide gaps with lower mass, fewer planets on relevant timescales to be consistent with the observed properties of debris disk systems. We also discuss implications for the disk properties in which these mechanisms could operate within the broader evolutionary context linking planets, debris disks, and the protoplanetary disks from which they originated.

  7. Floating Marine Debris in waters of the Mexican Central Pacific.

    Science.gov (United States)

    Díaz-Torres, Evelyn R; Ortega-Ortiz, Christian D; Silva-Iñiguez, Lidia; Nene-Preciado, Alejandro; Orozco, Ernesto Torres

    2017-02-15

    The presence of marine debris has been reported recently in several oceans basins; there is very little information available for Mexican Pacific coasts, however. This research examined the composition, possible sources, distribution, and density of Floating Marine Debris (FMD) during nine research surveys conducted during 2010-2012 in the Mexican Central Pacific (MCP). Of 1820 floating objects recorded, 80% were plastic items. Sources of FMD were determined using key objects, which indicated that the most were related to the presence of the industrial harbor and of a growing fishing industry in the study area. Densities were relatively high, ranging from 40 to 2440objects/km(2); the highest densities were recorded in autumn. FMD were distributed near coastal regions, mainly in Jalisco, influenced by river outflow and surface currents. Our results seem to follow worldwide trends and highlight the need for further studies on potential ecological impacts within coastal waters of the MCP.

  8. Space Debris from the Perspective of Sustainable Development

    Science.gov (United States)

    Pogorzelska, Katarzyna

    2013-08-01

    This article analyses the issue of extension of the concept of sustainable development to the domain of outer space. It focuses on integration of environmental values into the anthropocentric system of space law in order to address current problems induced by proliferation of space debris threatening long-term sustainability of space. The paper argues that in the light of sustainable development States have to ensure safe and sustainable use of outer space in the long-term. The article highlights that the concept of sustainable development is quite well tailored to the domain of outer space, and its adoption would resemble a natural evolution of the existing legal system rather than a revolutionary change. Furthermore it argues that introduction of values carried by sustainable development could be a solution for some systemic problems of space law, especially its part applicable to the protection of space against space debris.

  9. Erosion of steepland valleys by debris flows

    Science.gov (United States)

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  10. Wear Debris Analysis:Fundamental Principle of Wear-Graphy

    Institute of Scientific and Technical Information of China (English)

    陈铭; 王伟华; 殷勇辉; 王成焘

    2004-01-01

    A new wear-graphy technology was developed, which can simultaneously identify the shape and composition of wear debris, for both metals and non-metals.The fundamental principles of the wear-graphy system and its wear-gram system are discussed here.A method was developed to distribute wear debris on a slide uniformly to reduce overlapping of wear debris while smearing.The composition identification analyzes the wear debris using the scanning electron microscope (SEM) energy spectrum, infrared-thermal imaging and X-ray imaging technology.A wear debris analysis system based on database techniques is demonstrated, and a visible digitized wear-gram is acquired based on the information of wear debris with image collection and processing of the wear debris.The method gives the morphological characteristics of the wear debris, material composition identification of the wear debris, intelligent recognition of the wear debris, and storage and management of wear debris information.

  11. Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region.

    Science.gov (United States)

    Jang, Mi; Shim, Won Joon; Han, Gi Myung; Rani, Manviri; Song, Young Kyoung; Hong, Sang Hee

    2017-08-30

    The role of marine plastic debris and microplastics as a carrier of hazardous chemicals in the marine environment is an emerging issue. This study investigated expanded polystyrene (EPS, commonly known as styrofoam) debris, which is a common marine debris item worldwide, and its additive chemical, hexabromocyclododecane (HBCD). To obtain a better understanding of chemical dispersion via EPS pollution in the marine environment, intensive monitoring of HBCD levels in EPS debris and microplastics was conducted in South Korea, where EPS is the predominant marine debris originate mainly from fishing and aquaculture buoys. At the same time, EPS debris were collected from 12 other countries in the Asia-Pacific region, and HBCD concentrations were measured. HBCD was detected extensively in EPS buoy debris and EPS microplastics stranded along the Korean coasts, which might be related to the detection of a quantity of HBCD in non-flame-retardant EPS bead (raw material). The wide detection of the flame retardant in sea-floating buoys, and the recycling of high-HBCD-containing EPS waste inside large buoys highlight the need for proper guidelines for the production and use of EPS raw materials, and the recycling of EPS waste. HBCD was also abundantly detected in EPS debris collected from the Asia-Pacific coastal region, indicating that HBCD contamination via EPS debris is a common environmental issue worldwide. Suspected tsunami debris from Alaskan beaches indicated that EPS debris has the potential for long-range transport in the ocean, accompanying the movement of hazardous chemicals. The results of this study indicate that EPS debris can be a source of HBCD in marine environments and marine food web. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Debris of Urban Imagination

    Directory of Open Access Journals (Sweden)

    Claudio Sgarbi

    2013-05-01

    Full Text Available “Il Guasto” is an urban context, a place in the heart of the historic city of Bologna which is a mound of debris (resulting from the demolition of an important building, the Bentivoglio Family palace during a popular revolt in the 1506 on top of which a “public garden” was created 40 years ago. The garden is well known in Bologna as “Giardino del Guasto”. Underneath, in between the debris, an underground space (bunker was created to protect the citizen during the bombing of the second world war.The aim of the Design Studio of Azrieli School of Architecture and Urbanism, Carleton University (Ottawa, Canada, DSA Directed Studies Abroad (January 15th - April 13th, 2012, is to exercise creativity and design skills in an historical context bearing some negative connotations. A spell was cast on the site and the negative effects of this spell are still perceivable today after more than five hundred years. This makes us ponder upon the notions of permanence and durability (of architecture and ideas in the urban fabric and in the meanders of human memory. The site, centered on a garden, has been undergoing many changes in use, purpose and meaning and today still requires to be reimagined in the social context of the city and its famous university. [In the menu on the right, ARTICLE TOOLS, in "Supplementary Files" link you can download the .pdf presentations of Carleton University students, related to the workshop on Giardino del Guasto area, developed in Bologna in 2012].

  13. Debris flow prevention pattern in national parks-Taking the world natural heritage Jiuzhaigou as an example

    Institute of Scientific and Technical Information of China (English)

    CUI; Peng; LIU; Suqing; TANG; Bangxing; CHEN; Xiaoqing

    2003-01-01

    With the development of the ecological tourism, how to control debris flow in national parks becomes an urgent problem. The characteristics of prevention of the debris flow in the areas are systematically studied, and a scientific strategy is introduced for dealing with debris flows. In term of the activity attribute of the debris flow and objects protected in Jiuzhaigou, some methods are proposed to arrange the projects of hazard mitigation, and finally an approach is established to carry out the technology in the control of the debris flow scientifically, reasonably and feasibly. Integrating the aforesaid strategy with methods, the pattern of prevention and countermeasures of the debris flow has been theorized, in this way the mitigation hazards engineering is in harmony with the natural view and combined with the ecology. The prevention pattern of the debris flow in national parks is divergent from those in other areas such as towns, traffic lines, and farmland.After the successful application of the pattern in the Jiuzhaigou National Park, it effectively controls debris flows and achieves the expected target, such as conserving the landscape resource, sustaining ecological environment, and securing the visitors and residents.

  14. A novel data association scheme for LEO space debris surveillance based on a double fence radar system

    Science.gov (United States)

    Huang, Jian; Hu, Weidong; Xin, Qin; Guo, Weiwei

    2012-12-01

    The increasing amount of space debris threatens to seriously deteriorate and damage space-based instruments in Low Earth Orbit (LEO) environments. Therefore, LEO space debris surveillance systems must be developed to provide situational awareness in space and issue warnings of collisions with LEO space debris. In this paper, a double fence radar system is proposed as an emerging paradigm for LEO space debris surveillance. This system exhibits several unique and promising characteristics compared with existing surveillance systems. In this paper, we also investigate the data association scheme for LEO space debris surveillance based on a double fence radar system. We also perform a theoretical analysis of the performance of our proposed scheme. The superiority and the effectiveness of our novel data association scheme is demonstrated by experimental results. The data used in our experiments is the LEO space debris catalog produced by the North American Air Defense Command (NORAD) up to 2009, especially for scenarios with high densities of LEO space debris, which were primarily produced by the collisions between Iridium 33 and Cosmos 2251. We hope that our work will stimulate and benefit future work on LEO space debris surveillance approaches and enable construction of the double fence radar system.

  15. NASA's Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    Science.gov (United States)

    Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry

    2012-01-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple

  16. NASAs Marshall Space Flight Center Recent Studies and Technology Developments in the Area of SSA/Orbital Debris

    Science.gov (United States)

    Wiegman, B.; Hovater, M.; Kos, L.

    2012-09-01

    NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple

  17. Marine debris in a World Heritage Listed Brazilian estuary.

    Science.gov (United States)

    Possatto, Fernanda E; Spach, Henry L; Cattani, André P; Lamour, Marcelo R; Santos, Lilyane O; Cordeiro, Nathalie M A; Broadhurst, Matt K

    2015-02-28

    Using monthly otter-trawl deployments, spatial and temporal variability among the relative densities of marine debris were assessed in the Paranaguá estuarine complex; a subtropical World Heritage Listed area in southern Brazil. During 432 deployments over 12 months, 291 marine debris items were identified; of which most (92%) were plastic, and more specifically shopping bags, food packages, candy wrappers and cups typically >21 mm long. The most contaminated sectors were those closest to Paranaguá city and the adjacent port, and had up to 23.37±3.22 pieces ha(-1). Less urbanized sectors had between 12.84±1.49 and 9.32±1.10 pieces ha(-1). Contamination did not vary between dry or wet seasons, but rather was probably affected by consistent urban disposal and localized hydrological processes. Marine debris might be minimized by using more environment friendly materials, however a concrete solution requires adequately integrating local government and civil society.

  18. Orbital Debris Assesment Tesing in the AEDC Range G

    Science.gov (United States)

    Polk, Marshall; Woods, David; Roebuck, Brian; Opiela, John; Sheaffer, Patti; Liou, J.-C.

    2015-01-01

    The space environment presents many hazards for satellites and spacecraft. One of the major hazards is hypervelocity impacts from uncontrolled man-made space debris. Arnold Engineering Development Complex (AEDC), The National Aeronautics and Space Administration (NASA), The United States Air Force Space and Missile Systems Center (SMC), the University of Florida, and The Aerospace Corporation configured a large ballistic range to perform a series of hypervelocity destructive impact tests in order to better understand the effects of space collisions. The test utilized AEDC's Range G light gas launcher, which is capable of firing projectiles up to 7 km/s. A non-functional full-scale representation of a modern satellite called the DebriSat was destroyed in the enclosed range enviroment. Several modifications to the range facility were made to ensure quality data was obtained from the impact events. The facility modifcations were intended to provide a high impact energy to target mass ratio (>200 J/g), a non-damaging method of debris collection, and an instrumentation suite capable of providing information on the physics of the entire imapct event.

  19. Discharge of debris from ice at the margin of the Greenland ice sheet

    Science.gov (United States)

    Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.

    2002-01-01

    Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

  20. Processing the ground vibration signal produced by debris flows: the methods of amplitude and impulses compared

    Science.gov (United States)

    Arattano, M.; Abancó, C.; Coviello, V.; Hürlimann, M.

    2014-12-01

    Ground vibration sensors have been increasingly used and tested, during the last few years, as devices to monitor debris flows and they have also been proposed as one of the more reliable devices for the design of debris flow warning systems. The need to process the output of ground vibration sensors, to diminish the amount of data to be recorded, is usually due to the reduced storing capabilities and the limited power supply, normally provided by solar panels, available in the high mountain environment. There are different methods that can be found in literature to process the ground vibration signal produced by debris flows. In this paper we will discuss the two most commonly employed: the method of impulses and the method of amplitude. These two methods of data processing are analyzed describing their origin and their use, presenting examples of applications and their main advantages and shortcomings. The two methods are then applied to process the ground vibration raw data produced by a debris flow occurred in the Rebaixader Torrent (Spanish Pyrenees) in 2012. The results of this work will provide means for decision to researchers and technicians who find themselves facing the task of designing a debris flow monitoring installation or a debris flow warning equipment based on the use of ground vibration detectors.

  1. Developing Insights into Debris Disk Composition from Dust Scattering

    Science.gov (United States)

    Weinberger, Alycia

    relevant to debris disk dust. In particular, we expect grains to be mixtures of silicates with ice and carbonaceous inclusions and to have porosities that reflect either cometary-like (high volatile content) or asteroidal-like (compacted) structures. Methodology: We propose to make discrete dipole (DDA) calculations of the interaction of light with debris-disk-like particles. DDA does a better job modeling high porosity than other approximations such as effective medium theory and provides the efficiencies of both scattering and absorption. We will calculate grain scattering efficiencies, albedos, phase functions, and polarizations for wavelengths out to a few microns for grains in which we vary total size and composition. Into a range of grain shapes and sizes, we will incorporate silicates (amorphous and crystalline), carbonaceous components (organics and amorphous), ices, and porosities. To expand the library of carbonaceous components, we will measure UV to near-infrared absorption spectra of laboratory-generated analogs to primitive solar system organic solids. We will compare the resulting grid of calculations to the colors of disks to determine how precisely dust composition may be estimated with spatially resolved photometry and spectroscopy. Relevance: Debris disks are the relics of formation and evolution of planetary systems, and they connect our solar system's small body population with that of exosolar systems. The can "improve our understanding of the origins of exoplanetary systems". We are currently using HST and ground-based adaptive optics systems to image disks from 0.4 - 4 microns. We will compare our new scattering calculations to existing data, and future missions that will add new disk color images, such as JWST and a WFIRST-AFTA coronagraph, provide a further impetus to make such calculations.

  2. 77 FR 67285 - Debris Removal: Eligibility of Force Account Labor Straight-Time Costs Under the Public...

    Science.gov (United States)

    2012-11-09

    ... in a safe and healthy environment depends on the quality of the debris response. Since 2000, the... environment which do not require an environmental assessment or environmental impact statement. 40 CFR 1508.4... activities that substantially affect human health or the environment, in a manner that ensures that...

  3. Algorithms for the Computation of Debris Risks

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  4. Algorithms for the Computation of Debris Risk

    Science.gov (United States)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  5. RemoveDebris – Mission Analysis for a Low Cost Active Debris Removal Demonstration in 2016

    OpenAIRE

    Joffre, E; Forshaw, J.; Secretin, T; Reynaud, S.; Salmon, T; Aurelien, P; Aglietti, G.

    2015-01-01

    Contracted by the European Commission in the frame of the EU’s Seventh Framework Programme for Research (FP7), a wide European consortium has been working since 2013 towards the design of a low cost in-orbit demonstration called RemoveDEBRIS. With a targeted launch date in the second quarter of 2016, the RemoveDEBRIS mission aims at demonstrating key Active Debris Removal (ADR) technologies, including capture means (net and harpoon firing on a distant target), relative navigation techniques (...

  6. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    Science.gov (United States)

    Frith, James; Barker, Ed; Cowardin, Heather; Buckalew, Brent; Anz-Meado, Phillip; Lederer, Susan

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.

  7. Debris ingestion by juvenile marine turtles: an underestimated problem.

    Science.gov (United States)

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  9. Predictions for Shepherding Planets in Scattered Light Images of Debris Disks

    CERN Document Server

    Rodigas, Timothy J; Hinz, Philip M

    2013-01-01

    Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and a disk of parent bodies and dust grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use ou...

  10. Orbital Debris Shape Characterization Project Abstract

    Science.gov (United States)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  11. Remote sensing and characterization of anomalous debris

    Science.gov (United States)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  12. CLUSTERING ANALYSIS OF DEBRIS-FLOW STREAMS

    Institute of Scientific and Technical Information of China (English)

    Yuan-Fan TSAI; Huai-Kuang TSAI; Cheng-Yan KAO

    2004-01-01

    The Chi-Chi earthquake in 1999 caused disastrous landslides, which triggered numerous debris flows and killed hundreds of people. A critical rainfall intensity line for each debris-flow stream is studied to prevent such a disaster. However, setting rainfall lines from incomplete data is difficult, so this study considered eight critical factors to group streams, such that streams within a cluster have similar rainfall lines. A genetic algorithm is applied to group 377 debris-flow streams selected from the center of an area affected by the Chi-Chi earthquake. These streams are grouped into seven clusters with different characteristics. The results reveal that the proposed method effectively groups debris-flow streams.

  13. Exoplanets and debris disk imaging with JWST

    Science.gov (United States)

    Pueyo, Laurent; Soummer, Remi; Perrin, Marshall D.

    2017-06-01

    Dramatic progress in exoplanetary systems imaging has occurred since the first generation of space coronagraphs on HST (NICMOS, STIS, ACS). While HST remains at forefront of both exoplanetary and circumstellar disk science, ground-based instruments have improved by three orders of magnitudes over the past decade. JWST will extend the current state of the art with a larger set of superior coronagraphs and greater sensitivity across more than a factor of 10 in wavelength, making it extraordinarily capable for detailed imaging characterization of planets and disks. We will address specific questions about nearby exoplanetary systems, while also optimizing observing strategies across the breadth of JWST’s high-contrast imaging modes, as follows: (a) Deep, multi-wavelength observations of selected nearby stars hosting known debris disks & planets. We will use the NIRCam and MIRI coronagraphs across the full range of JWST wavelengths, and perhaps MIRI MRS spatially resolved spectroscopy. Each comprehensive dataset will support a variety of investigations addressing both disk characterization and exoplanet detection & characterization. (b) Characterization of Planetary Systems around Cool M Stars. We will observe young and dusty M dwarfs, to complement observations of the closer but older M dwarf samples under consideration by other GTO groups. JWST observations will dramatically exceed HST images in their ability to address questions about the properties of dust rings, while the more favorable contrast ratios of planets relative to M dwarf hosts will enable sensitivity to relatively low mass planetary companions.

  14. Gravitational Stirring in Planetary Debris Disks

    CERN Document Server

    Kenyon, S J; Kenyon, Scott J.; Bromley, Benjamin C.

    2001-01-01

    We describe gravitational stirring models of planetary debris disks using a new multi-annulus planetesimal evolution code. The current code includes gravitational stirring and dynamical friction; future studies will include coagulation, fragmentation, Poynting-Robertson drag, and other physical processes. We use the results of our calculations to investigate the physical conditions required for small bodies in a planetesimal disk to reach the shattering velocity and begin a collisional cascade. Our results demonstrate that disks composed primarily of bodies with a single size will not undergo a collisional cascade which produces small dust grains at 30-150 AU on timescales of 1 Gyr or smaller. Disks with a size distribution of bodies reach conditions necessary for a collisional cascade in 10 Myr to 1 Gyr if the disk is at least as massive as a minimum mass solar nebula and if the disk contains objects with radii of 500 km or larger. The estimated 500 Myr survival time for these disks is close to the median ag...

  15. Debris Detector Verification by Hvi-Tests

    Science.gov (United States)

    Bauer, Waldemar; Drolshagen, Gerhard; Vörsmann, Peter; Romberg, Oliver; Putzar, Robin

    Information regarding Space Debris (SD) or Micrometeoroids (MM) impacting on spacecraft (S/C) or payloads (P/L) can be obtained by using environmental models e.g. MASTER (ESA) or ORDEM (NASA). The validation of such models is performed by comparison of simulated results with measured or orbital observed data. The latter is utilised for large particles and can be obtained from ground based or space based radars or telescopes. Data regarding very small but abundant particles can also be gained by analysis of retrieved hardware (e.g. Hubble Space Telescope, Space Shuttle Windows), which are brought from orbit back to Earth. Furthermore, in-situ impact detectors are an essential source for information on small size meteoroids and space debris. These kind of detectors are placed in orbit and collect impact data regarding SD and MM, sending data near real time via telemetry. Compared to the impact data which is gained by analysis of retrieved surfaces, the detected data comprise additional information regarding exact impact time and, depending on the type of detector, on the orbit and particles composition. Nevertheless, existing detectors have limitations. Since the detection area is small, statistically meaningful number of impacts are obtained for very small particles only. Measurements of particles in the size range of hundreds of microns to mm which are potentially damaging to S/C require larger sensor areas. To make use of the advantages of in-situ impact detectors and to increase the amount of impact data an innovative impact detector concept is currently under development at DLR in Bremen. Different to all previous impact detectors the Solar Generator based Impact Detector (SOLID) is not an add-on component on the S/C. SOLID makes use of existing subsystems of the S/C and adopts them for impact detection purposes. Since the number of impacts on a target in space depends linearly on the exposed area, the S/C solar panels offer a unique opportunity to use them for

  16. Evolution of the Synthetic Environment in the FFSE Section: Survey of Current Usage of Synthetic Environment within FFSE and Recommendations for the Future

    Science.gov (United States)

    2005-11-01

    d’outils de modélisation et de simulation pour créer des expériences et des exercices virtuels pour DND, dans le but d’aider au développement de...différents outils, exercices et expériences, onze instances de simulations ont été identifiées et caractérisées. Ces instances sont décrites brièvement...Mission Rehearsal in a Synthetic Environment: Summary and Preliminary Analyses . (DRDC Ottawa TM 2004-200). Defence R&D Canada - Ottawa 5. B. Kim

  17. Application of the Empirical Thresholds of Precipitation to the Debris Flows in Mexico

    Science.gov (United States)

    Cardoso-Landa, G.

    2013-05-01

    The debris flows are particularly dangerous for the life and the properties due to its high speeds and great destructive force, destroying houses, ways, bridges, trees and cultures, currents and ecosystems throughout its trajectory. The extraordinary precipitation events are one of the predominant physical processes that produce the genesis of the debris flows. The empirical thresholds of precipitation are based on the historical analyses of the occurrence relation precipitation/debris flow, for example statistical analyses. At the present time a limited number of this type of empirical thresholds exists and have been used different diagrams to represent them, depending on the combinations of precipitation parameters more commonly used: antecedent precipitation, duration, accumulated intensity and rain, and the most commons are that obtained by Caine and Aleotti. An analytical presentation of the concept of threshold of precipitation of a debris flow was recently introduced by Iritanno et al. (1998), who introduced the called function of mobilization Y(t), indirectly describing all the factors that contribute to trigger a process of landslides and that is dependent, in every moment of time t, the amount of water infiltrate on the ground before the time t. In the full article was applied the Iritanno's function of mobilization to the records of precipitation that produced the debris flows in the north of Puebla State, in the country of México, obtaining relationships intensity of rain-duration for these debris flows are greater from 3.43 to 2.1 times over empirical thresholds of precipitation generators of debris flows proposed by Caine and Aleotti in other regions of the world. .Intensity of precipitation for the debris flows in Mexicot;

  18. Debris generation from Mechanical degradation of MLI and thermo-control coating

    Science.gov (United States)

    Duzellier, Sophie; Drolshagen, Gerhard; Pons, Claude; Rey, Romain; Gordo, Paulo; Horstmann, Andre

    2016-07-01

    Space environment is a harsh environment for exposed materials. Amongst all environmental constraints, ionizing radiation in GEO (particles, UV), atomic oxygen in LEO and temperature variation through synergy mechanisms may lead to serious damage and loss of performance of surface materials (thermo-optical or mechanical properties). Optical and radar observations from the ground as well as analysis of retrieved hardware have shown an abundance of space debris objects that seem to result from the degradation of outer spacecraft surfaces. Recent surveys of the GEO and GTO region have found many objects with high area-to-mass ratio (HAMR debris, see T. Childknecht et al. 2003, 2004, 2005) indicating that they must consist of relatively thin material, like foils. This paper explores the cause, amount and characteristics of space debris objects resulting from spacecraft surface degradation in order to improve space debris population models and support the selection of materials in the context of debris mitigation measures. 20-year GEO dose profile along with thermal cycling has been applied to a set of MLI assemblies and painting samples. The material degradation was monitored through in and ex situ characterizations (visual observation, mechanical and thermo-optical). No self-flaking was observed for paintings nor for MLIs. However, paint surfaces became very brittle, whereas reclosable fasteners of MLIs and Mylar inner foils were strongly damaged as well. Potential scenarios for delamination of MLI foils could be defined.

  19. Benzotriazole-type ultraviolet stabilizers and antioxidants in plastic marine debris and their new products.

    Science.gov (United States)

    Rani, Manviri; Shim, Won Joon; Han, Gi Myung; Jang, Mi; Song, Young Kyoung; Hong, Sang Hee

    2017-02-01

    Ultraviolet stabilizers (UVSs) and antioxidants are the most widely used additives in plastics to enhance the lifetime of polymeric materials. There is growing interest in the roles of plastic marine debris and microplastics as source or vector of toxic substances to marine environment and organisms. However, there is limited information available on plastic associated chemicals, particularly additive chemicals. Therefore, to evaluate their extent of exposure from plastics to the marine environment, we determined UVSs and antioxidants in plastic debris (n=29) collected from beaches along with their corresponding new plastic products in markets (n=27) belonging to food, fisheries, and general use. Antioxidants were present at higher concentrations than UVSs in both plastic debris and new plastics, indicative of their high use over UVSs. Irganox 1076 and Irganox 1010 were more commonly used than other chemicals investigated. The irregular use with high concentration of additive chemicals was observed in short-term use plastic products. Except for Irganox 1076 and UV 326, most antioxidants and UVSs were relatively high in new plastics compared to corresponding plastic marine debris, implying their potential leaching or degradation during use or after disposal. The present study provides quantitative information about additive chemicals contained in plastic marine debris and their new products. These results could be useful for better understanding of environmental exposure to hazardous chemicals through plastic pollution.

  20. How marine debris ingestion differs among megafauna species in a tropical coastal area.

    Science.gov (United States)

    Di Beneditto, Ana Paula Madeira; Awabdi, Danielle Rodrigues

    2014-11-15

    The marine debris ingested by megafauna species (Trichiurus lepturus, Chelonia mydas, Pontoporia blainvillei, and Sotalia guianensis) was recorded in a coastal area of southeastern Brazil (21-23°S). Marine debris was recorded in all species, mainly consisting of plastic material (flexible and hard plastics - clear, white, and colored- and nylon filaments). The 'pelagic predators' T. lepturus and S. guianesis showed the lowest percent frequencies of debris ingestion (0.7% and 1.3%, respectively), followed by the 'benthic predator' P. blainvillei (15.7%) and the 'benthic herbivorous C. mydas (59.2%). The debris found in C. mydas stomachs was opportunistically ingested during feeding activities on local macroalgal banks. In the study area, the benthic environment accumulates more anthropogenic debris than the pelagic environment, and benthic/demersal feeders are more susceptible to encounters and ingestion. The sub-lethal effects observed in C. mydas, such as intestinal obstruction due to hardened fecal material, should be considered a local conservation concern.

  1. DebriSat Pre Preshot Laboratory Analyses

    Science.gov (United States)

    2015-03-27

    to be line of sight since witness plates protected by Whipple shield showed little change. LWIR spectral features from the deposited material are...Radhakrishnan Charles Griffice C. C. Wan UV -VIS-NIR Spectroscopy Dianna Alaan FIB/TEM Sample Preparation Miles Brodie © The Aerospace Corporation 2015 DebriSat...conditions responsible for the darkening. – UV -VIS-NIR-LWIR reflectance spectra were measured of post test debris for comparison with pre test

  2. Pore Water Pressure Contribution to Debris Flow Mobility

    OpenAIRE

    Chiara Deangeli

    2009-01-01

    Problem statement: Debris flows are very to extremely rapid flows of saturated granular soils. Two main types of debris flow are generally recognized: Open slope debris flows and channelized debris flows. The former is the results of some form of slope failures, the latter can develop along preexisting stream courses by the mobilization of previously deposited debris blanket. The problem to be addressed is the influence of the mode of initiation on the subsequent mechanism of propagation. In ...

  3. Direct Detection of Dark Matter Debris Flows

    CERN Document Server

    Kuhlen, Michael; Spergel, David N

    2012-01-01

    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high-velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame velocities greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher velocities. Therefore, debris flow is most important for experiments that are particularly sensitive to the high velocity tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flo...

  4. Chaotic Dispersal of Tidal Debris

    CERN Document Server

    Price-Whelan, Adrian M; Valluri, Monica; Pearson, Sarah; Kupper, Andreas H W; Hogg, David W

    2015-01-01

    Several long, dynamically cold stellar streams have been observed around the Milky Way Galaxy, presumably formed from the tidal disruption of globular clusters. In integrable potentials---where all orbits are dynamically regular---tidal debris phase-mixes close to the orbit of the progenitor system. However, cosmological simulations of structure formation suggest that the Milky Way's dark matter halo is expected not to be fully integrable; an appreciable fraction of orbits will be chaotic. This paper examines the influence of chaos on the phase-space morphology of cold tidal streams. We find very stark results: Streams in chaotic regions look very different from those in regular regions. We find that streams (simulated using test particle ensembles of nearby orbits) can be sensitive to chaos on a much shorter time-scale than any standard prediction (from the Lyapunov or frequency-diffusion times). For example, on a weakly chaotic orbit with a chaotic timescale predicted to be >1000 orbital periods (>1000 Gyr)...

  5. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  6. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  7. Soil respiration and carbon responses to logging debris and competing vegetation

    Science.gov (United States)

    Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington

    2010-01-01

    Management practices following forest harvesting that modify organic matter (OM) inputs and influence changes in the soil environment have the potential to alter soil C pools, but there is still much uncertainty regarding how these practices influence soil C flux. We examined the influence of varying amounts of logging-debris retention (0, 40, and 80% coverage) and...

  8. Study for the electric arc of alternative current at the single phase welding machine using the Matlab/Simulink environment

    Science.gov (United States)

    Baciu, I.; Ghiormez, L.; Vasar, C.

    2017-01-01

    In this paper is presented a mathematical model of the electric arc for an alternative current welding machine of low power. The electric arc model is based on dividing the voltage-current characteristic of the electric arc in many functioning zones. For the model of the entire welding machine are used real parameters as the ones of the proper welding machine. The voltage and current harmonics spectrum that is obtained during the welding process is presented. Also, the waveforms for the current and voltage of the electric arc plotted against time and the voltage-current characteristic of the electric arc are illustrated. The electric arc is considered as being supplied by alternative voltage from the electrical power network using a single phase transformer which has the output voltage of 80 volts. The model of the welding machine is developed in Simulink and the variations of some parameters of the electric arc are obtained by modifying of them in a Matlab function. Also, in this paper is presented the total harmonic distortion for the voltage and current of the electric arc obtained during simulation of the welding machine.

  9. Exiting RCRA Subtitle C regulation data for supporting a new regulatory path for immobilized mixed debris

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.L. [Jetseal, Inc., Idaho Falls, ID (United States); Carson, S.D.; Cheng, Wu-Ching [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    This paper presents analytical and empirical data that provide technical support for the position that mixed debris (debris contaminated with both radioactive and hazardous constituents) treated by immobilization in accordance with 40 CFR 268.45 can exit RCRA Subtitle C requirements at the time the treatment is complete. Pathways analyses and risk assessments of low-level waste and RCRA mixed waste disposal facilities show that these two types of facilities provide equivalent long-term (> 100 years) performance and protection of human health and the environment. A proposed two-tier approach for waste form performance criteria is discussed.

  10. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Porter, C.L. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Wallace, M.T. [Argonne National Lab., Idaho Falls, ID (United States)

    1993-10-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  11. Debris Removal Project K West Canister Cleaning System Performance Specification

    Energy Technology Data Exchange (ETDEWEB)

    FARWICK, C.C.

    1999-12-09

    Approximately 2,300 metric tons Spent Nuclear Fuel (SNF) are currently stored within two water filled pools, the 105 K East (KE) fuel storage basin and the 105 K West (KW) fuel storage basin, at the U.S. Department of Energy, Richland Operations Office (RL). The SNF Project is responsible for operation of the K Basins and for the materials within them. A subproject to the SNF Project is the Debris Removal Subproject, which is responsible for removal of empty canisters and lids from the basins. Design criteria for a Canister Cleaning System to be installed in the KW Basin. This documents the requirements for design and installation of the system.

  12. Linking social drivers of marine debris with actual marine debris on beaches.

    Science.gov (United States)

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.

  13. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Mr. Ashish Choubey

    2011-09-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point

  14. A Practical approach for fault component network for Current and Voltage Phasor Diagram in Power Electronic Environment

    Directory of Open Access Journals (Sweden)

    Ashish Choubey

    2011-12-01

    Full Text Available In many large-scale power plants, the structure of its auxiliary power system is complex, and the coordination of its relay protections is difficult. To enhance power supply reliability for the user terminals in the case of the distribution system to avoid interference by the fault again, rapidly complete the automatic identification, positioning, automatic fault isolation, network reconfiguration until the resumption of supply of non-fault section, a microprocessor-based relay protection device has developed. As the fault component theory is widely used in microcomputer protection, and fault component exists in the network of fault component, it is necessary to build up the fault component network when short circuit fault emerging and to draw the current and voltage component phasor diagram at fault point. We proposed a special phase sequence component based on the boundary condition. We analysis the velocity according to the relationship between analysis formula and phasor diagram and current in fault component boundary conditions and sequence voltage and current in boundary conditions. The negative and zero sequence component current and voltage at fault point are the same as fault component. The positive sequence component current and voltage at fault point are different from the fault component. So we consider the positive sequences according to that sequences we analyze the fault point.

  15. Coupled Eulerian-Lagrangian transport of large debris by tsunamis

    Science.gov (United States)

    Conde, Daniel A. S.; Ferreira, Rui M. L.; Sousa Oliveira, Carlos

    2016-04-01

    Tsunamis are notorious for the large disruption they can cause on coastal environments, not only due to the imparted momentum of the incoming wave but also due to its capacity to transport large quantities of solid debris, either from natural or human-made sources, over great distances. A 2DH numerical model under development at CERIS-IST (Ferreira et al., 2009; Conde, 2013) - STAV2D - capable of simulating solid transport in both Eulerian and Lagrangian paradigms will be used to assess the relevance of Lagrangian-Eulerian coupling when modelling the transport of solid debris by tsunamis. The model has been previously validated and applied to tsunami scenarios (Conde, 2013), being well-suited for overland tsunami propagation and capable of handling morphodynamic changes in estuaries and seashores. The discretization scheme is an explicit Finite Volume technique employing flux-vector splitting and a reviewed Roe-Riemann solver. Source term formulations are employed in a semi-implicit way, including the two-way coupling of the Lagrangian and Eulerian solvers by means of conservative mass and momentum transfers between fluid and solid phases. The model was applied to Sines Port, a major commercial port in Portugal, where two tsunamigenic scenarios are considered: an 8.5 Mw scenario, consistent with the Great Lisbon Earthquake and Tsunami of the 1st November 1755 (Baptista, 2009), and an hypothetical 9.5 Mw worst-case scenario based on the same historical event. Open-ocean propagation of these scenarios were simulated with GeoClaw model from ClawPack (Leveque, 2011). Following previous efforts on the modelling of debris transport by tsunamis in seaports (Conde, 2015), this work discusses the sensitivity of the obtained results with respect to the phenomenological detail of the employed Eulerian-Lagrangian formulation and the resolution of the mesh used in the Eulerian solver. The results have shown that the fluid to debris mass ratio is the key parameter regarding the

  16. Debris-flow mobilization from landslides

    Science.gov (United States)

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  17. Laser Systems for Orbital Debris Removal

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  18. Plastic marine debris on the Portuguese coastline: a matter of size?

    Science.gov (United States)

    Martins, J; Sobral, P

    2011-12-01

    Plastic debris is a worldwide threat to marine environments and Portugal is not immune to it. Though never quantified, items of all sizes can be found in the Portuguese coastline; therefore the objective of this work is the identification of main size classes in stranded plastic debris. Beaches sediment was sampled and in the laboratory plastic items were sorted in 11 classes from 10mm, counted and weighted. Plastic size ranged from 50 μm to 20 cm and microplastics (plastic fits in the smaller size classes, due to expected high residence time in the sea enhancing degradation processes, which increase surface exposure and potentially persistent organic pollutants (POP) adsorption. These results point out the important contribution of microplastics to marine debris pollution, its risks, and the need to set a higher focus on this size class.

  19. Prevalence of marine debris in marine birds from the North Atlantic.

    Science.gov (United States)

    Provencher, Jennifer F; Bond, Alexander L; Hedd, April; Montevecchi, William A; Muzaffar, Sabir Bin; Courchesne, Sarah J; Gilchrist, H Grant; Jamieson, Sarah E; Merkel, Flemming R; Falk, Knud; Durinck, Jan; Mallory, Mark L

    2014-07-15

    Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Model of an International Environmental Agreement among Asymmetric Nations applied to Debris Mitigation

    CERN Document Server

    Singer, Michael J

    2010-01-01

    We investigate how ideas from the International Environmental Agreement (IEA) literature can be applied to the problem of space debris mitigation. The problem of space debris is similar to other international environmental problems in that there is a potential for a tragedy of the commons effect--individual nations bear all the cost of their mitigation measures but share only a fraction of the benefit. Consequently, nations have a tendency to underinvest in mitigation. Coalitions of nations, brought together by IEAs, have the potential to lessen the tragedy of the commons effect by pooling the costs and benefits of mitigation. This work brings together two recent modeling advances: i) a game theoretic model for studying the potential gains from IEA cooperation between nations with asymmetric costs and benefits, ii) an orbital debris model that gives the societal cost that specific actions, such as failing to deorbit an inactive satellite, have on the environment. We combine these two models with empirical lau...

  1. Pathologies of the digestive system caused by marine debris in Chelonia mydas.

    Science.gov (United States)

    Jerdy, Hassan; Werneck, Max Rondon; da Silva, Maria Aparecida; Ribeiro, Rachel Bittencourt; Bianchi, Mariah; Shimoda, Eduardo; de Carvalho, Eulógio Carlos Queiróz

    2017-03-15

    The growth of human population and deficient pollution control measures pose significant challenge to the environment. Despite conservation efforts, all sea turtle species are at some risk of extinction. The present study investigated the effect of marine debris on the gastrointestinal tract of green turtles in southeastern Brazil. Of the 777 animals evaluated, 290 showed marine debris in one segment of the gastrointestinal tract. The presence of these materials in the gastrointestinal tract may be harmful, independent of the segment involved, and increases the risk of impaction. Marine debris has become a significant hazard to Chelonia mydas in the region surveyed, causing perforation, rupture, or fecal impaction that, when not treated, is potentially fatal, exposing the intestine to bacterial infection.

  2. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  3. The influence of supraglacial debris cover variability on de-icing processes - examples from Svalbard

    Science.gov (United States)

    Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael

    2014-05-01

    Extensive supraglacial debris covers are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-icing of ice-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris covers. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris cover can be regarded as stable where debris cover thickness exceeds that of the active layer; vegetation development and absence of buried ice exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried ice at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-icing in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-covered ice, and continued thermo-erosion continuously exposes new areas of buried ice at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris cover and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris covers, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows

  4. Entry Debris Field Estimation Methods and Application to Compton Gamma Ray Observatory Disposal

    Science.gov (United States)

    Mrozinski, Richard B.

    2001-01-01

    For public safety reasons, the Compton Gamma Ray Observatory (CGRO) was intentionally deorbited on June 4, 2000. This deorbit was NASA's first intentional controlled deorbit of a satellite, and more will come including the eventual deorbit of the International Space Station. To maximize public safety, satellite deorbit planning requires conservative estimates of the debris footprint size and location. These estimates are needed to properly design a deorbit sequence that places the debris footprint over unpopulated areas, including protection for deorbit contingencies. This paper details a method for estimating the length (range), width (crossrange), and location of entry and breakup debris footprints. This method utilizes a three degree-of-freedom Monte Carlo simulation incorporating uncertainties in all aspects of the problem, including vehicle and environment uncertainties. The method incorporates a range of debris characteristics based on historical data in addition to any vehicle-specific debris catalog information. This paper describes the method in detail, and presents results of its application as used in planning the deorbit of the CGRO.

  5. Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles

    Science.gov (United States)

    2014-01-01

    Background There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris items as they would appear to the turtle. We also incorporated measures of texture and translucency to determine which of the two hypotheses is more plausible as a driver of selectivity in green sea turtles. Results Turtles preferred more flexible and translucent items to what was available in the environment, lending support to the hypothesis that they prefer debris that resembles prey, particularly jellyfish. They also ate fewer blue items, suggesting that such items may be less conspicuous against the background of open water where they forage. Conclusions Using visual modelling we determined the characteristics that drive ingestion of marine debris by sea turtles, from the point of view of the turtles themselves. This technique can be utilized to determine debris preferences of other visual predators, and help to more effectively focus management or remediation actions. PMID:24886170

  6. Heavy metals in recovered fines from construction and demolition debris recycling facilities in Florida.

    Science.gov (United States)

    Townsend, Timothy; Tolaymat, Thabet; Leo, Kevin; Jambeck, Jenna

    2004-10-01

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil. Waste material that is reused in a manner similar to soil must first be characterized to examine potential risks to human health and the environment. In Florida, samples of C&D debris fines from 13 C&D debris recycling facilities were characterized for 11 total and leachable heavy metal concentrations. Total metal concentration results (mg/kg) were compared to existing data on background Florida soil concentrations and to Florida's risk-based soil cleanup target levels (SCTLs). All of the detected metals were found to be elevated with respect to background. The 95% upper confidence level of arsenic from 99 samples was 3.2 mg/kg; arsenic presented the greatest limitation to reuse when compared to the SCTLs. Lead was not found to pose a major problem, likely because of the relatively new building infrastructure in Florida, which results in less demolition debris and less material impacted by lead-based paint. The results of batch leaching tests conducted using simulated rainwater (mg/l) were compared directly to risk-based groundwater levels for Florida and were found not to pose a risk using existing risk assessment policies.

  7. Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy; Hardesty, B Denise; Marshall, N Justin

    2014-05-09

    There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris items as they would appear to the turtle. We also incorporated measures of texture and translucency to determine which of the two hypotheses is more plausible as a driver of selectivity in green sea turtles. Turtles preferred more flexible and translucent items to what was available in the environment, lending support to the hypothesis that they prefer debris that resembles prey, particularly jellyfish. They also ate fewer blue items, suggesting that such items may be less conspicuous against the background of open water where they forage. Using visual modelling we determined the characteristics that drive ingestion of marine debris by sea turtles, from the point of view of the turtles themselves. This technique can be utilized to determine debris preferences of other visual predators, and help to more effectively focus management or remediation actions.

  8. Radar-based observatiions of variable thickness debris cover on martian ice masses: evidence of debris transfer by flowing ice on Mars

    Science.gov (United States)

    Souness, Colin; Brough, Stephen; Woodward, John; Hubbard, Bryn; Davis, Joel; Grindrod, Peter

    2016-04-01

    The mid-latitudes of Mars host a wide range of ice-based landforms, many of which display surface morphologies indicative of viscous flow of that ice. Despite being shrouded beneath a layer of rocky debris, these viscous flow features (VFFs) are thought to have similarities with terrestrial glaciers. Until recently most studies that focussed on the origin, structure and role of these martian VFFs were restricted to observations made from satellite imagery. Little data have been available to gain a clearer picture of VFF internal structure, which has impeded our collective ability to infer many particulars of VFF growth and flow, including the extent to which these ice flows have interacted with, and potentially helped shape, the martian landscape. However, the Shallow Radar (SHARAD) system mounted on the Mars Reconnaissance Orbiter (MRO) can, in some cases, provide a valuable insight into what lies beneath the surface of these ice masses. We present a SHARAD-based study of glacial systems on Mars which reveals pronounced heterogeneity in the thickness of their observed superficial debris covers. The surface debris layers in question appear to thicken in a down-slope direction. Radar data indicates that in the lower reaches of each studied glacial catchment, ice surface debris cover exceeds 10 m in thickness. The observed flow-parallel a-symmetry in debris thickness atop these martian glaciers is similar to that recorded on many terrestrial glaciers, indicating that cumulative down-flow debris mass transfer such as occurs within glacierised catchments on Earth may also currently operate, or have operated, on Mars. This suggests that glaciers on Mars have played a substantial role in redistributing lithic material from mountainous catchments to lower-lying areas, potentially throughout the glacial regions of Mars' mid-latitudes, thus making an important processual contribution to the evolution of Mars' contemporary landscape.

  9. ALMA 1.3 mm Observation of the Fomalhaut Debris Disk

    Science.gov (United States)

    White, Jacob; Boley, Aaron C.; Ford, Eric B.; Payne, Matthew J.; Dent, William; Corder, Stuartt

    2017-01-01

    We present ALMA Band 6 (1.3 mm) observations of Fomalhaut and its debris disk. Since the system is relatively close at 7.7 pc, it has been the target of numerous studies at multiple wavelengths, and can serve as a testbed for debris disk evolution models and planet-disk interactions. Outstanding issues that need to be resolved to properly characterize the debris include tightening constraints on the spectral index in the submm/mm regime and determining whether there is indeed excess over the stellar emission, indicating the presence of an inner debris disk or ring.These ALMA 1.3 mm observations provide the highest resolution observations to date of the mm grains the outer ring. Tight constraints are placed on the geometry of the disk and on the mm-wavelength spectral index. We explore fitting the debris disk model in the image plane in addition to the standard method of fitting the visibilities. The results are compared and potential advantages/disadvantages of each approach are discussed.The central emission detected is indistinguishable from a point source, with 0.90 mJy being the best fit flux of the host star for Fomalhaut itself. This implies that any inner debris component must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a blackbody from the constrained photosphere temperature and just over 70% of the flux if extrapolating from the far infrared. This behavior is similar to that seen in the Sun for submm/mm wavelengths, but even more pronounced. Currently, insufficient data exists to properly constrain the degree to which stellar atmospheres affect the observed flux in the submm/mm regime. This result is part of an ongoing larger project focused on measuring the emission from stellar atmospheres at submm/mm wavelengths, which directly impacts inferred excesses for debris disk studies.

  10. Insights into Planet Formation from Debris Disks. II. Giant Impacts in Extrasolar Planetary Systems

    Science.gov (United States)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-12-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  11. Amplification of postwildfire peak flow by debris

    Science.gov (United States)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  12. Signatures of massive collisions in debris discs

    CERN Document Server

    Kral, Quentin; Augereau, Jean-Charles; Boccaletti, Anthony; Charnoz, Sebastien

    2014-01-01

    Violent stochastic collisional events have been invoked as a possible explanation for some debris discs displaying pronounced asymmetries or having a great luminosity excess. So far, no thorough modelling of the consequences of such events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of dust. We perform the first fully self-consistent modelling of the aftermath of massive breakups in debris discs. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the recently developed LIDT-DD code (Kral et al., 2013), which handles the coupled collisional and dynamical evolution of debris discs. The main focus is placed on the complex interplay between destructive collisions, Keplerian dynamics and radiat...

  13. Clumps and Axisymmetric Features in Debris Discs

    CERN Document Server

    Jiang, Ing-Guey

    2013-01-01

    This paper studied the structures of debris discs, focusing on the conditions that can form an axisymmetric-looking outer disc from systems with inner clumps. The main conclusion was that as long as the dominated dust grains are smaller than the blowout size, it is easy to form an axisymmetric-looking outer debris disc, which is part of a quasi-steady state of the whole system. This quasi-steady state is established through the balance between grain generations and a continuous out-going grain flow. Assuming there is an event that starts planetesimal collisions and the corresponding grain generations, this balance can be approached in a few thousand years. This result suggested that a quasi-steady-state picture could solve the possible mass budget problem of Vega's outer debris disc.

  14. Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe?

    Science.gov (United States)

    Ji, Kyunghee; Kim, Sunmi; Han, Sunyoung; Seo, Jihyun; Lee, Sangwoo; Park, Yoonsuk; Choi, Kyunghee; Kho, Young-Lim; Kim, Pan-Gyi; Park, Jeongim; Choi, Kyungho

    2012-10-01

    To understand potential risks of major pharmaceutical residues in waters, we evaluated ecotoxicities of five major veterinary pharmaceuticals, i.e., chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin, which have been frequently detected in freshwater environment worldwide. We conducted acute and chronic toxicity tests using two freshwater invertebrates (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). In general, D. magna exhibited greater sensitivity than M. macrocopa, and chronic reproduction was the most sensitive endpoints for both organisms. The population growth rate was adversely influenced by exposure to chlortetracycline, sulfamethazine, or sulfathiazole in water fleas, but reduction in population size was not expected. In O. latipes, the tested pharmaceuticals affected several reproduction related endpoints including time to hatch and growth. Based on the toxicity values from the present study and literature, algae appeared to be the most sensitive organism, followed by Daphnia and fish. Hazard quotients derived from measured environmental concentrations (MECs) and predicted no effect concentrations (PNECs) for erythromycin and oxytetracycline exceeded unity, suggesting that potential ecological effects at highly contaminated sites cannot be ruled out. Long-term consequences of veterinary pharmaceutical contamination in the environment deserve further investigation.

  15. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    Science.gov (United States)

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  16. Effect of perturbations on debris-to-debris orbital transfers: A quantitative analysis

    Science.gov (United States)

    Kumar, Kartik; Hekma, Enne; Agrawal, Abhishek; Topputo, Francesco

    2017-03-01

    We investigated the applicability of the Lambert solver (Izzo, 2014) for preliminary design of Multi-Target Active Debris Removal missions. Firstly, we computed ≈25 million debris-to-debris transfers using the Lambert solver for selected sets of debris objects in Low Earth Orbit, Geostationary Transfer Orbit, and Geosynchronous Orbit. Subsequently, we propagated the departure states of the Lambert transfers below selected ΔV cut-offs using the SGP4/SDP4 propagator (Vallado et al., 2006). We recorded the arrival position and velocity error vectors incurred by neglecting perturbations and analyzed the results for each orbital regime. Our results indicate that perturbations can play a significant role in determining the feasibility of debris-to-debris transfers. By using the Lambert solver and neglecting perturbations, the errors in the arrival position and velocity for individual legs can be large. The largest errors were obtained for transfers between debris objects in Sun-Synchronous Orbit (O (100) km error in magnitude of position vector and O (0.1) km/s error in magnitude of velocity vector). Hence, solely employing the Lambert solver to rank transfer legs could lead to incorrect choices for sequencing of multi-target trajectories. This is particularly relevant for transfers in Low Earth Orbit, where the effects of perturbations are the strongest.

  17. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    Science.gov (United States)

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  18. Active Debris Removal mission design in Low Earth Orbit

    Science.gov (United States)

    Martin, Th.; Pérot, E.; Desjean, M.-Ch.; Bitetti, L.

    2013-03-01

    Active Debris Removal (ADR) aims at removing large sized intact objects ― defunct satellites, rocket upper-stages ― from space crowded regions. Why? Because they constitute the main source of the long-term debris environment deterioration caused by possible future collisions with fragments and worse still with other intact but uncontrolled objects. In order to limit the growth of the orbital debris population in the future (referred to as the Kessler syndrome), it is now highly recommended to carry out such ADR missions, together with the mitigation measures already adopted by national agencies (such as postmission disposal). At the French Space Agency, CNES, and in the frame of advanced studies, the design of such an ADR mission in Low Earth Orbit (LEO) is under evaluation. A two-step preliminary approach has been envisaged. First, a reconnaissance mission based on a small demonstrator (˜500 kg) rendezvousing with several targets (observation and in-flight qualification testing). Secondly, an ADR mission based on a larger vehicle (inherited from the Orbital Transfer Vehicle (OTV) concept) being able to capture and deorbit several preselected targets by attaching a propulsive kit to these targets. This paper presents a flight dynamics level tradeoff analysis between different vehicle and mission concepts as well as target disposal options. The delta-velocity, times, and masses required to transfer, rendezvous with targets and deorbit are assessed for some propelled systems and propellant less options. Total mass budgets are then derived for two end-to-end study cases corresponding to the reconnaissance and ADR missions mentioned above.

  19. Small craters on the meteoroid and space debris impact experiment

    Science.gov (United States)

    Humes, Donald H.

    1995-01-01

    Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.

  20. Report on the 4th International Conference on monitoring, simulation, prevention and remediation of dense and debris flows - Debris Flow 2012

    Directory of Open Access Journals (Sweden)

    Daniele de Wrachien

    2012-09-01

    Full Text Available Debris and hyper-concentrated flows are amongst the most destructive of all water-related disasters. These hazards are likely to become more frequent and more important in the future due to the effects of the increase in population, urbanization, land subsidence and the impact of climate change. They affect both rural and urban environments, particularly in river basins and in mountain areas. In recent years, they have attracted more and more attention from the scientific and professional communities due to the number of lives lost, and there is growing public concern for the future. New methods and measures are required to cope with debris flow changes and to achieve a harmonious balance between the environment and economic forces.

  1. Converging posterior distributions in space debris monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lasanen, Sari [Department of Mathematical Sciences, University of Oulu, 90014 University of Oulu (Finland)], E-mail: sari.lasanen@oulu.fi

    2008-11-01

    Ground-based radars monitor the falling space debris in order to prevent collisions with spacecrafts and satellites. Experiments with European Incoherent Scatter (EISCAT) Scientific Association radars using new data acquisition equipment suitable for space debris detection have raised a question what happens to a Bayesian solution when the sampling frequency of the reflected signal is increased. Assuming slightly idealized measurements, we show that the posterior densities converge in this case. This shows that the sampling method suits well for the statistical inverse problem.

  2. Apparatus for controlling molten core debris. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  3. Density Estimations in Laboratory Debris Flow Experiments

    Science.gov (United States)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  4. TRAC laboratory monitoring of Chernobyl radioactive debris

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, R.A.

    1986-06-09

    A severe accident occurred at the Chernobyl nuclear power plant number 4 in the Soviet Union on April 25, 1986. An explosion released large amounts of radioactive debris, primarily fission products, to the atmosphere. As winds carried debris from the Soviet Union, scientists in Europe and the United States reported detecting fission product activities in air samples. Monitoring by the Tracking Radioactive Atmospheric Contaminants (TRAC) mobile laboratory showed concentrations in the Southeastern United States were well below those considered hazardous. This document provides details of this monitoring effort.

  5. Patterns In Debris Disks: No Planets Required?

    Science.gov (United States)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  6. Discrete Element Modelling of Floating Debris

    Science.gov (United States)

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed

    2016-04-01

    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  7. Debris Flow Dam Formation in Southeast Tibet

    Institute of Scientific and Technical Information of China (English)

    CHENG Zunlan; WU Jishan; GENG Xueyong

    2005-01-01

    Glaciers with their deposits abound in the alpine areas of Southeast Tibet. Large debris flows occur frequently from these deposits and form dams that block streams. In this paper, 3 events of large debris flows reported in Peilong Valley located in Southeast Tibet, and which resulted 2 blocking dams resulted, are discussed in details, focusing on the major factors controlling dam formation. The results shows that the first surge group caused by snow and ice avalanches, ice-lake breaks, and large-scale landslides, with a high peak discharge and high velocity, and an abundance of boulders, are most likely to form blocking dams.

  8. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment

    DEFF Research Database (Denmark)

    Primdahl, Jorgen; Vesterager, Jens Peter; Finn, John A.

    2010-01-01

    Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation...... and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental...... schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly...

  9. Enabling Large-body Active Debris Removal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research suggests that: (1) orbital debris has reached the point that, even with no future launches, collisions among large-body debris will lead to unstable growth...

  10. Enabling Large-body Active Debris Removal Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research suggests that: (1) orbital debris has reached an unstable point whereby, even with no future launches, the amount of debris will continue to grow through...

  11. Plastic Beaches: occurrence and accumulation of marine debris on barrier islands in the Gulf of Mexico

    Science.gov (United States)

    Wessel, C.; Albins, K.; Cebrian, J.

    2016-02-01

    Marine debris is any persistent solid material that is manufactured or processed and directly or indirectly, intentionally or unintentionally, disposed of or abandoned into the marine environment (33USC§1951). Marine debris is an economic, environmental, human health and aesthetic problem posing a complex challenge. Coastal communities are among the most seriously affected because of increased expenses for beach cleaning, public health and waste disposal, as well as a loss of income from decreased tourism. To better document this problem we are monitoring the occurrence and accumulation rate of marine debris on 6 barrier islands in the northern Gulf of Mexico (nGoM). Surveys are conducted at low tide and consist of 100m-long transects along the shoreline extending from the water edge to the upland shoreline limit. All debris larger than 5 mm is collected and recorded. Debris is then sorted by material, and dry mass is recorded. With this information we are investigating four specific questions: (1) what are the major types and possible sources (land or ocean based) of shoreline debris; (2) does the rate of debris deposition onto the shoreline show seasonal oscillations; (3) how does debris deposition change from east to west in the nGoM; and (4) what are the possible causes of the temporal and spatial trends found (e.g. rainfall and runoff, human population, boat traffic)? During the first year of sampling we are beginning to see trends emerge. More trash consistently washes up on the ocean side versus the sound side of the barrier islands, which suggests either large amounts of trash in the nGoM is ocean-based debris, or it is driven by beach goers, or both. In addition, we have found a significant increase in the amount of trash on the shoreline during tourist/boating season (May to September), although trash items tend to be smaller in size during that season. At the presentation we will discuss these and other trends that emerge with a more complete data set.

  12. Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi

    Science.gov (United States)

    Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi

    2017-08-01

    The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.

  13. Models and correlations of the DEBRIS Late-Phase Melt Progression Model

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.C.; Gasser, R.D. [Sandia National Labs., Albuquerque, NM (United States). Reactor Safety Experiments Dept.

    1997-09-01

    The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission.

  14. Insights into planet formation from debris disks: II. Giant impacts in extrasolar planetary systems

    CERN Document Server

    Wyatt, Mark C

    2016-01-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10Myr post-impac...

  15. Debris flows on the Great Kobuk Sand Dunes, Alaska: Implications for analogous processes on Mars

    Science.gov (United States)

    Hooper, Donald M.; Dinwiddie, Cynthia L.

    2014-02-01

    We observed niveo-aeolian deposits, denivation features, and small meltwater-induced debris flows that had formed at the Great Kobuk Sand Dunes, northwestern interior Alaska in late March 2010. This high-latitude, cold-climate dune field is being studied as a planetary analog to improve our understanding of factors that may trigger debris flows on the lee slopes of martian aeolian dunes. Debris flows consisted of a sand and liquid water mixture that cascaded down the lee slopes of two barchanoid dunes on days when measured ground surface temperatures were below freezing. We hypothesize that relatively dark sand on snow caused local hot spots where solar radiation could be absorbed by the sand and conducted into the underlying snow, enabling meltwater to form and sand to be mobilized. This investigation provides insights into the interactions between niveo-aeolian deposition, slope aspect and insolation, thawing, and initiation of alluvial processes. These debris flows are morphologically similar to those associated with seasonal gullies or erosion tracks visible on the slopes of mid- to high-latitude dune fields in both martian hemispheres. Localized heating and thawing at scales too small for orbital sensors to identify may yield martian debris flows at current climate conditions.

  16. Modeling and measuring the transport and scattering of energetic debris in an extreme ultraviolet plasma source

    Science.gov (United States)

    Sporre, John R.; Elg, Daniel T.; Kalathiparambil, Kishor K.; Ruzic, David N.

    2016-01-01

    A theoretical model for describing the propagation and scattering of energetic species in an extreme ultraviolet (EUV) light lithography source is presented. An EUV light emitting XTREME XTS 13-35 Z-pinch plasma source is modeled with a focus on the effect of chamber pressure and buffer gas mass on energetic ion and neutral debris transport. The interactions of the energetic debris species, which is generated by the EUV light emitting plasma, with the buffer gas and chamber walls are considered as scattering events in the model, and the trajectories of the individual atomic species involved are traced using a Monte Carlo algorithm. This study aims to establish the means by which debris is transported to the intermediate focus with the intent to verify the various mitigation techniques currently employed to increase EUV lithography efficiency. The modeling is compared with an experimental investigation.

  17. F.I.D.O. Focused Integration for Debris Observation

    Science.gov (United States)

    Ploschnitznig, J.

    2013-09-01

    The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively "Teaching an old dog (FIDO), new tricks." Far too often, we are justly criticized for never "stepping out of the box". The philosophy of "if it's not broke, don't fix it" works great if you assume that we are not broke. The assumption that in order to "Find" new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high

  18. Post-Main Sequence Evolution of Debris Discs

    OpenAIRE

    Bonsor, Amy; Wyatt, Mark

    2010-01-01

    The population of debris discs on the main sequence is well constrained, however very little is known about debris discs around evolved stars. In this work we provide a theoretical framework that considers the effects of stellar evolution on debris discs; firstly considering the evolution of an individual disc from the main sequence through to the white dwarf phase, then extending this to the known population of debris discs around main sequence A stars. It is found that discs around evolved ...

  19. Influence of fine sediment on the fluidity of debris flows

    OpenAIRE

    HOTTA, Norifumi; Kaneko, Takahiro; Iwata, Tomoyuki; Nishimoto, Haruo

    2013-01-01

    Debris flows include a great diversity of grain sizes with inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the fluidity of laboratory debris flows consisting of particles with various diameters...

  20. Debris flow relationships in the Central Spanish Pyrenees

    OpenAIRE

    Beguería, S.; A. Lorente; Garcia-Ruiz, J. M.

    2007-01-01

    Debris flows represent the most active geomorphic risk in mountainous areas, affecting infrastructures, human settlements and touristic resorts (Takahashi et al., 1981). For this reason, much effort has been put in assessing where debris flows occur and ranking the factors that trigger them, but also in defining two essential parameters in establishing debris flow hazards: what is the distance travelled by debris flows (especially the runout distance), and what is the volume of material carri...

  1. Identification of mechanisms for landslide type initiation of debris flows

    OpenAIRE

    Klubertanz, Georg; Laloui, Lyesse; Vulliet, Laurent

    2009-01-01

    The modelling of debris flow initiation in slopes is addressed in this paper. First, possible factors governing debris flow initiation are established. Then, a coupled hydro-mechanical model for deformable porous media with two pore fluids that is used to assess the problem of the debris flow initiation in slopes is briefly outlined. Various ways to identify failure and to approach the transition of the failed mass into a debris flow are discussed in the framework of small strain theory and e...

  2. How to implement data for improved modelling - Results from an extensive field campaign on the debris covered Lirung Glacier in the Nepalese Himalayas

    Science.gov (United States)

    Petersen, Lene; Immerzeel, Walter; Shahi, Sonika; Baral, Prashant; Pellicciotti, Francesca

    2013-04-01

    Debris covered glaciers have become a focus of current research because of growing evidence of an increase in debris cover associated with a warming climate and the effect that debris has on melt rates. Mass balance models increasingly aim at including the melt rate enhancing/reduction effect due to a thin/thick debris layer, respectively. However, knowledge about debris cover and thickness, its distribution and characteristics is limited and data are scarce, especially in the HKKH region where debris-covered glaciers are numerous. In this work we present a data set that is complementary to modelling efforts carried out to improve our understanding of processes occurring at the debris cover surface and how debris effects can be implemented into melt and mass balance models of different complexity. A key requirement for distributed melt modelling is the availability of debris cover and thickness maps and knowledge about characteristics of the debris layer and their spatial variability. An extensive field campaign was conducted from May to October 2012 on the debris covered Lirung Glacier in the Nepalese Himalayas. The collected data set consists of observations from an automatic weather station (AWS) measuring wind direction, wind speed, air and surface temperature, incoming and outgoing shortwave radiation, relative humidity and snow height, 14 sensors measuring 2 m air temperature and 7 surface temperature sensors, 3 temperature systems (tinytags) measuring temperature at the debris surface and the ice below the debris layer and one thermistors chain (with 8 temperature sensors) measuring the temperature profile in the debris layer. In the study region there is a key difference between meteorological conditions during monsoon and the dry period. We analyze separately all meteorological records for these different climatic conditions and show how temperature, albedo, relative humidity and wind speed and direction are affected. Wind speed and direction show similar

  3. Current use of impact models for agri-environment schemes and potential for improvements of policy design and assessment.

    Science.gov (United States)

    Primdahl, Jørgen; Vesterager, Jens Peter; Finn, John A; Vlahos, George; Kristensen, Lone; Vejre, Henrik

    2010-06-01

    Agri-Environment Schemes (AES) to maintain or promote environmentally-friendly farming practices were implemented on about 25% of all agricultural land in the EU by 2002. This article analyses and discusses the actual and potential use of impact models in supporting the design, implementation and evaluation of AES. Impact models identify and establish the causal relationships between policy objectives and policy outcomes. We review and discuss the role of impact models at different stages in the AES policy process, and present results from a survey of impact models underlying 60 agri-environmental schemes in seven EU member states. We distinguished among three categories of impact models (quantitative, qualitative or common sense), depending on the degree of evidence in the formal scheme description, additional documents, or key person interviews. The categories of impact models used mainly depended on whether scheme objectives were related to natural resources, biodiversity or landscape. A higher proportion of schemes dealing with natural resources (primarily water) were based on quantitative impact models, compared to those concerned with biodiversity or landscape. Schemes explicitly targeted either on particular parts of individual farms or specific areas tended to be based more on quantitative impact models compared to whole-farm schemes and broad, horizontal schemes. We conclude that increased and better use of impact models has significant potential to improve efficiency and effectiveness of AES. (c) 2009 Elsevier Ltd. All rights reserved.

  4. Examination of returned solar-max surfaces for impacting orbital debris and meteoroids

    Science.gov (United States)

    Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.

    1985-01-01

    Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.

  5. Simultaneous detection of multiple debris via a cascade of numerical evaluations and a voting scheme for lines in an image sequence

    Science.gov (United States)

    Fujita, Koki; Ichimura, Naoyuki; Hanada, Toshiya

    2017-04-01

    This paper presents a novel method to simultaneously detect multiple trajectories of space debris in an observation image sequence to establish a reliable model for space debris environment in Geosynchronous Earth Orbit (GEO). The debris in GEO often appear faintly in image sequences due to the high altitude. A simple but steady way to detect such faint debris is to decrease a threshold value of binarization applied to an image sequence during preprocessing. However, a low threshold value of binarization leads to extracting a large number of objects other than debris that become obstacles to detect debris trajectories. In order to detect debris from binarized image frames with massive obstacles, this work proposes a method that utilizes a cascade of numerical evaluations and a voting scheme to evaluate characteristics of the line segments obtained by connecting two image objects in different image frames, which are the candidates of debris trajectories. In the proposed method, the line segments corresponding to objects other than debris are filtered out using three types of characteristics, namely displacement, direction, and continuity. First, the displacement and direction of debris motion are evaluated to remove irrelevant trajectories. Then, the continuity of the remaining line segments is checked to find debris by counting the number of image objects appearing on or close to the line segments. Since checking the continuity can be regarded as a voting scheme, the proposed cascade algorithm can take advantage of the properties of voting method such as the Hough transform, i.e., the robustness against heavy noises and clutters, and ability of detecting multiple trajectories simultaneously. The experimental tests using real image sequences obtained in a past observation campaign demonstrate the effectiveness of the proposed method.

  6. Micrometeoroid and Orbital Debris Risk Assessment With Bumper 3

    Science.gov (United States)

    Hyde, J.; Bjorkman, M.; Christiansen, E.; Lear, D.

    2017-01-01

    The Bumper 3 computer code is the primary tool used by NASA for micrometeoroid and orbital debris (MMOD) risk analysis. Bumper 3 (and its predecessors) have been used to analyze a variety of manned and unmanned spacecraft. The code uses NASA's latest micrometeoroid (MEM-R2) and orbital debris (ORDEM 3.0) environment definition models and is updated frequently with ballistic limit equations that describe the hypervelocity impact performance of spacecraft materials. The Bumper 3 program uses these inputs along with a finite element representation of spacecraft geometry to provide a deterministic calculation of the expected number of failures. The Bumper 3 software is configuration controlled by the NASA/JSC Hypervelocity Impact Technology (HVIT) Group. This paper will demonstrate MMOD risk assessment techniques with Bumper 3 used by NASA's HVIT Group. The Permanent Multipurpose Module (PMM) was added to the International Space Station in 2011. A Bumper 3 MMOD risk assessment of this module will show techniques used to create the input model and assign the property IDs. The methodology used to optimize the MMOD shielding for minimum mass while still meeting structural penetration requirements will also be demonstrated.

  7. Micrometeoroid and Orbital Debris (MMOD) Shield Ballistic Limit Analysis Program

    Science.gov (United States)

    Ryan, Shannon

    2013-01-01

    This software implements penetration limit equations for common micrometeoroid and orbital debris (MMOD) shield configurations, windows, and thermal protection systems. Allowable MMOD risk is formulated in terms of the probability of penetration (PNP) of the spacecraft pressure hull. For calculating the risk, spacecraft geometry models, mission profiles, debris environment models, and penetration limit equations for installed shielding configurations are required. Risk assessment software such as NASA's BUMPERII is used to calculate mission PNP; however, they are unsuitable for use in shield design and preliminary analysis studies. The software defines a single equation for the design and performance evaluation of common MMOD shielding configurations, windows, and thermal protection systems, along with a description of their validity range and guidelines for their application. Recommendations are based on preliminary reviews of fundamental assumptions, and accuracy in predicting experimental impact test results. The software is programmed in Visual Basic for Applications for installation as a simple add-in for Microsoft Excel. The user is directed to a graphical user interface (GUI) that requires user inputs and provides solutions directly in Microsoft Excel workbooks.

  8. DRAGONS - A Micrometeoroid and Orbital Debris Impact Sensor

    Science.gov (United States)

    Liou, J. -C.; Corsaro, R.; Giovane, F.; Anderson, C.; Sadilek, A.; Burchell, M.; Hamilton, J.

    2015-01-01

    The Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is intended to be a large area impact sensor for in situ measurements of micrometeoroids and orbital debris (MMOD) in the millimeter or smaller size regime. These MMOD particles are too small to be detected by ground-based radars and optical telescopes, but are still large enough to be a serious safety concern for human space activities and robotic missions in the low Earth orbit (LEO) region. The nominal detection area of a DRAGONS unit is 1 m2, consisting of several independently operated panels. The approach of the DRAGONS design is to combine different particle impact detection principles to maximize information that can be extracted from detected events. After more than 10 years of concept and technology development, a 1 m2 DRAGONS system has been selected for deployment on the International Space Station (ISS) in August 2016. The project team achieved a major milestone when the Preliminary Design Review (PDR) was completed in May 2015. Once deployed on the ISS, this multi-year mission will provide a unique opportunity to demonstrate the MMOD detection capability of the DRAGONS technologies and to collect data to better define the small MMOD environment at the ISS altitude.

  9. Modelling the Inner Debris Disc of HR 8799

    CERN Document Server

    Contro, B; Wittenmyer, R A; Marshall, J P; Hinse, T C

    2016-01-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR 8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ~6 and ~8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km/s, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km/s, or less. Despite this, they remain sufficiently energetic to be destructive - giving a...

  10. Collisional debris as laboratories to study star formation

    CERN Document Server

    Boquien, M; Wu, Y; Charmandaris, V; Lisenfeld, U; Braine, J; Brinks, E; Iglesias-Páramo, J; Xu, C K

    2009-01-01

    In this paper we address the question whether star formation is driven by local processes or the large scale environment. To do so, we investigate star formation in collisional debris where the gravitational potential well and velocity gradients are shallower and compare our results with previous work on star formation in non-interacting spiral and dwarf galaxies. We have performed multiwavelength spectroscopic and imaging observations (from the far-ultraviolet to the mid-infrared) of 6 interacting systems, identifying a total of 60 star-forming regions in their collision debris. Our analysis indicates that in these regions a) the emission of the dust is at the expected level for their luminosity and metallicity, b) the usual tracers of star formation rate display the typical trend and scatter found in classical star forming regions, and c) the extinction and metallicity are not the main parameters governing the scatter in the properties of intergalactic star forming regions; age effects and variations in the...

  11. Observations of Titan 3C-4 Transtage Fragmentation Debris

    Science.gov (United States)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan 3C-4 Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the US Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper will present a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots will also be shown using historical models for small fragmentation debris (down to 10 cm) believed to be associated with the Titan break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN# 25001, 33509, 33510) and the parent rocket body. Color index data will be used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In 2012, the SSN added 16 additional fragments to the catalogue. MODEST acquired magnitude data on ten Titan fragments in late 2012 and early 2013. The magnitude distribution of all the observed fragments are analyzed as a function of time. In order to better characterize the breakup fragments spectral measurements were acquired on the original rocket body and five Titan fragments using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra are compared with laboratory acquired spectra of materials (e.g., Aluminum and various paints) and categorized based on known absorption features for spacecraft materials.

  12. Review of gas and dust in debris discs

    Science.gov (United States)

    Kral, Q.

    2016-12-01

    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  13. Review of gas and dust in debris discs

    OpenAIRE

    Kral, Quentin

    2016-01-01

    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  14. Space Debris Research Activities In China In 2007

    Institute of Scientific and Technical Information of China (English)

    Li Ming

    2008-01-01

    @@ The year 2007 was important for us to carry out the Eleventh Five-Year Space Debris Research Action Plan. Through the unremitting efforts of all space debris project research groups, we completed the space debris research projects in 2007 successfully, among which we made the substantive progress in many projects, which has laid a good foundation for the continuous research in the future.

  15. Uncertainties in Predicting Debris Flow Hazards Following Wildfire

    NARCIS (Netherlands)

    Hyde, K.D.; Riley, Karin; Stoof, C.R.

    2016-01-01

    Wildfire increases the probability of debris flows posing hazardous conditions where values-at-risk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setti

  16. Review of gas and dust in debris discs

    CERN Document Server

    Kral, Quentin

    2016-01-01

    This proceeding summarises a talk given on the state-of-the-art of debris disc modelling. We first review the basics of debris disc physics, which is followed by a short overview of the state-of-the-art in terms of modelling dust and gas in debris disc systems.

  17. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  18. Europium-155 in Debris from Nuclear Weapons

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Lippert, Jørgen Emil

    1967-01-01

    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...

  19. Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations

    Science.gov (United States)

    Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.

    2013-09-01

    The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on robustness survivability of systems (materials, shieldings, rules) coming from other industrial domains (automotive, military vehicles) * Guidelines and Recommendations implementable on satellite systems and mechanical architecture.

  20. Numerical modeling of the debris flows runout

    Science.gov (United States)

    Federico, Francesco; Cesali, Chiara

    2017-06-01

    Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  1. Molecular gas in young debris disks

    CERN Document Server

    Moór, A; Juhász, A; Kiss, Cs; Pascucci, I; Kóspál, Á; Apai, D; Henning, Th; Csengeri, T; Grady, C

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas, and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J=3-2 survey with Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities...

  2. Orbiting Space Debris: Dangers, Measurement and Mitigation

    Science.gov (United States)

    1992-06-01

    sure how many undetectable particles the fragmentation of a satellite creates. Actual ground-based tesis have been conducted in an attempt to...conducted by the Jet Propulsion Laboratory lo measure the presence of 0.2 lo 0.5 cm and 0.5 to 2 cm sized debris. The Areclbo radar in Puerto Rico

  3. Evaluating the use of high-resolution numerical weather forecast for debris flow prediction.

    Science.gov (United States)

    Nikolopoulos, Efthymios I.; Bartsotas, Nikolaos S.; Borga, Marco; Kallos, George

    2015-04-01

    The sudden occurrence combined with the high destructive power of debris flows pose a significant threat to human life and infrastructures. Therefore, developing early warning procedures for the mitigation of debris flows risk is of great economical and societal importance. Given that rainfall is the predominant factor controlling debris flow triggering, it is indisputable that development of effective debris flows warning procedures requires accurate knowledge of the properties (e.g. duration, intensity) of the triggering rainfall. Moreover, efficient and timely response of emergency operations depends highly on the lead-time provided by the warning systems. Currently, the majority of early warning systems for debris flows are based on nowcasting procedures. While the latter may be successful in predicting the hazard, they provide warnings with a relatively short lead-time (~6h). Increasing the lead-time is necessary in order to improve the pre-incident operations and communication of the emergency, thus coupling warning systems with weather forecasting is essential for advancing early warning procedures. In this work we evaluate the potential of using high-resolution (1km) rainfall fields forecasted with a state-of-the-art numerical weather prediction model (RAMS/ICLAMS), in order to predict the occurrence of debris flows. Analysis is focused over the Upper Adige region, Northeast Italy, an area where debris flows are frequent. Seven storm events that generated a large number (>80) of debris flows during the period 2007-2012 are analyzed. Radar-based rainfall estimates, available from the operational C-band radar located at Mt Macaion, are used as the reference to evaluate the forecasted rainfall fields. Evaluation is mainly focused on assessing the error in forecasted rainfall properties (magnitude, duration) and the correlation in space and time with the reference field. Results show that the forecasted rainfall fields captured very well the magnitude and

  4. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    Science.gov (United States)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore

  5. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  6. Magnetic Reconnection in the Heliospheric Current Sheet: The Implications of the Different Environments Seen by the VoyagerSpacecraft

    Science.gov (United States)

    Swisdak, M. M.; Drake, J. F.; Opher, M.

    2014-12-01

    The magnetic field abutting the heliospheric current sheet (HCS) is primarily in the azimuthal direction, either east-to-west or west-to-east. Mis-alignment of the solar rotational and magnetic axesleads to the characteristic ballerina-skirt shape of the HCS and during the solar cycle there can be large excursions in the sheet's latitudinal extent. Voyager 2's observations of energetic electrondropouts are related to its crossing of this boundary. Magnetic reconnection is also thought to occur as the HCS compresses and narrows between the termination shock and the heliopause. Near theequator the two HCS field alignments are present in roughly equal amounts, while near the edges the distribution can be considerably skewed. This will lead to substantial differences in the environmentsof the two Voyager spacecraft since Voyager 1 is north of the equator, but firmly in the sector region, while Voyager 2 is south of the equator and skirting the edges of the sector region. We presentparticle-in-cell simulations demonstrating the consequences of the reconnection of asymmetric amounts of flux. In particular, we will discuss Voyager 2's remaining time in the heliosphere -- including theimplications for the solar wind velocity, energetic particle transport, and the expected structure of Voyager 2's heliopause crossing -- and compare it with the data collected from Voyager 1.

  7. Global Security Rule Sets An Analysis of the Current Global Security Environment and Rule Sets Governing Nuclear Weapons Release

    Energy Technology Data Exchange (ETDEWEB)

    Mollahan, K; Nattrass, L

    2004-09-30

    America is in a unique position in its history. In maintaining its position as the world's only superpower, the US consistently finds itself taking on the role of a global cop, chief exporter of hard and soft power, and primary impetus for globalization. A view of the current global situation shows an America that can benefit greatly from the effects of globalization and soft power. Similarly, America's power can be reduced significantly if globalization and its soft power are not handled properly. At the same time, America has slowly come to realize that its next major adversary is not a near peer competitor but terrorism and disconnected nations that seek nuclear capabilities. In dealing with this new threat, America needs to come to terms with its own nuclear arsenal and build a security rule set that will establish for the world explicitly what actions will cause the US to consider nuclear weapons release. This rule set; however, needs to be established with sensitivity to the US's international interests in globalization and soft power. The US must find a way to establish its doctrine governing nuclear weapons release without threatening other peaceful nations in the process.

  8. Debris measure subsystem of the nanosatellite IRECIN

    Science.gov (United States)

    Ferrante, M.; di Ciolo, L.; Ortenzi, A.; Petrozzi, M.; del Re, V.

    2003-09-01

    The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes an Electronic real-time system that acquires space debris measures. It uses a piezo-electric sensor. The described device is a subsystem on board of the IRECIN nanosatellite composed mainly by a r.i.s.c. microprocessor, an electronic part that interfaces to the debris sensor in order to provide a low noise electrical and suitable range to ADC 12 bit converter, and finally a memory in order to store the data. The microprocessor handles the Debris Measure System measuring the impacts number, their intensity and storing their waves form. This subsystem is able to communicate with the other IRECIN subsystems through I2C Bus and principally with the "Main Microprocessor" subsystem allowing the data download directly to the Ground Station. Moreover this subsystem lets free the "Main Microprocessor Board" from the management and charge of debris data. All electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Development Group. The proposed system is implemented on the IRECIN, a modular nanosatellite weighting less than 1.5 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are added for eclipse operations. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin-stabilized with the spin-axis normal to the orbit. debris and micrometeoroids mass and velocity.

  9. Ingestion and defecation of marine debris by loggerhead sea turtles, Caretta caretta, from by-catches in the South-West Indian Ocean.

    Science.gov (United States)

    Hoarau, Ludovic; Ainley, Lara; Jean, Claire; Ciccione, Stéphane

    2014-07-15

    Marine debris, caused by anthropogenic pollution, is a major problem impacting marine wildlife worldwide. This study documents and quantifies the ingestion and defecation of debris by 74 loggerhead sea turtles, Caretta caretta, in the South-West Indian Ocean. Debris was found in 51.4% of gut or fecal samples of loggerheads by-catch from Reunion Island long liners. Anthropogenic debris was ubiquitous in our samples with plastics accounting for 96.2% of the total debris collected. No significant relationship was detected between the characteristics of ingested debris and the biometric characteristics of loggerheads. The number, weight, volume and mean length of debris were higher in gut content of deceased loggerheads than in fecal samples of live turtles, but not significantly, except for the mean length. This is the first record of debris ingestion by sea turtles in the Indian Ocean and our results highlight the magnitude of this pollution of the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate

    Science.gov (United States)

    Banerjee, Argha

    2017-01-01

    Recent geodetic mass-balance measurements reveal similar thinning rates on glaciers with or without debris cover in the Himalaya-Karakoram region. This comes as a surprise as a thick debris cover reduces the surface melting significantly due to its insulating effects. Here we present arguments, supported by results from numerical flowline model simulations of idealised glaciers, that a competition between the changes in the surface mass-balance forcing and that of the emergence/submergence velocities can lead to similar thinning rates on these two types of glaciers. As the climate starts warming, the thinning rate on a debris-covered glacier is initially smaller than that on a similar debris-free glacier. Subsequently, the rate on the debris-covered glacier becomes comparable to and then larger than that on the debris-free one. The time evolution of glacier-averaged thinning rates after an initial warming is strongly controlled by the time variation of the corresponding emergence velocity profile.

  11. The Debris Disk Explorer: a balloon-borne coronagraph for observing debris disks

    CERN Document Server

    Roberts, Lewis C; Traub, Wesley; Unwin, Stephen; Trauger, John; Krist, John; Aldrich, Jack; Brugarolas, Paul; Stapelfeldt, Karl; Wyatt, Mark; Stuchlik, David; Lanzi, James

    2013-01-01

    The Debris Disk Explorer (DDX) is a proposed balloon-borne investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. DDX will measure the size, shape, brightness, and color of tens of disks. These measurements will enable us to place the Solar System in context. By imaging debris disks around nearby stars, DDX will reveal the presence of perturbing planets via their influence on disk structure, and explore the physics and history of debris disks by characterizing the size and composition of disk dust. The DDX instrument is a 0.75-m diameter off-axis telescope and a coronagraph carried by a stratospheric balloon. DDX will take high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Two flights are planned; an overnight test flight within the United States followed by a month-long science flight launched from New Zealand. The long flight will fully explore the set of known de...

  12. Debris thickness and surface topography on Ngozumpa Glacier, Nepal

    Science.gov (United States)

    McCarthy, Michael; Nicholson, Lindsey; Rieg, Lorenzo; Klug, Christoph; Wirbel, Anna; Del Gobbo, Costanza; Pritchard, Hamish; Willis, Ian; Mayer, Christoph

    2017-04-01

    The ablation zones of many Himalayan glaciers are partially to completely covered with a layer of rock debris, the thickness of which is a key control on surface melt rates. Although it is commonly assumed that supraglacial debris is redistributed by gravitational processes due to variable surface topography, the nature of such a relationship has not been fully explored. Here we present locally extensive debris thickness data collected on Ngozumpa Glacier, Nepal, using ground-penetrating radar (GPR), and investigate, by comparison with a high-resolution digital terrain model (DTM), the relationship between debris thickness and surface topography. We compare debris thickness with slope, aspect, and hillslope curvature and look at how debris thickness relates to features of interest on the glacier surface. The existence of a relationship between debris thickness and surface topography has potentially important implications for remote sensing estimates of debris thickness made using thermal band satellite imagery because DTMs are commonly available at relatively high spatial resolution. For this reason, we assess whether or not debris thickness and surface topography covary. Further, due to the typically non-linear relationship between debris thickness and surface temperature, remote sensing estimates of debris thickness are affected by sub-pixel scale debris thickness variability. To see how debris thickness varies at sub-pixel scale, and the extent to which such variability should affect remote sensing-derived debris thickness estimates, we explore the effects of resampling our debris thickness data to the resolution of the thermal bands of ASTER and Landsat satellite images.

  13. Advances in the study of current-use non-PBDE brominated flame retardants and dechlorane plus in the environment and humans

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fate of the high production volume,currently in use,and not regulated non-polybrominated diphenyl ether(PBDE) flame retardants,such as tetrabromobisphenol A(TBBPA) ,hexabromocyclododecane(HBCD) and dechlorane plus(DP),and the alternative flame retardants of PBDE,such as BTBPE and DBDPE,in the environment has attracted increasing attention and aroused concern due to the increasing regulation and phasing-out of PBDEs.This paper reviews the distribution,bioaccumulation,human exposure and environmental behavior of those non-PBDE flame retardants in various environmental compartments.The data gaps and needs for future research are discussed.

  14. Risk factors for stereotypic behavior and self-biting in rhesus macaques (Macaca mulatta): animal's history, current environment, and personality.

    Science.gov (United States)

    Gottlieb, Daniel H; Capitanio, John P; McCowan, Brenda

    2013-10-01

    Captive rhesus macaques sometimes exhibit undesirable abnormal behaviors, such as motor stereotypic behavior (MSB) and self-abuse. Many risk factors for these behaviors have been identified but the list is far from comprehensive, and large individual differences in rate of behavior expression remain. The goal of the current study was to determine which experiences predict expression of MSB and self-biting, and if individual differences in personality can account for additional variation in MSB expression. A risk factor analysis was performed utilizing data from over 4,000 rhesus monkeys at the California National Primate Research Center. Data were analyzed using model selection, with the best fitting models evaluated using Akaike Information Criterion. Results confirmed previous research that males exhibit more MSB and self-biting than females, MSB decreases with age, and indoor reared animals exhibit more MSB and self-biting than outdoor reared animals. Additionally, results indicated that animals exhibited less MSB and self-biting for each year spent outdoors; frequency of room moves and number of projects positively predicted MSB; pair separations positively predicted MSB and self-biting; pair housed animals expressed less MSB than single housed and grate paired animals; and that animals expressed more MSB and self-biting when in bottom rack cages, or cages near the room entrance. Based on these results we recommend limiting exposure to these risk factors when possible. Our results also demonstrated a relationship between personality and MSB expression, with animals low on gentle temperament, active in response to a human intruder, and high on novel object contact expressing more MSB. From these results we propose that an animal's MSB is related to its predisposition for an active personality, with active animals expressing higher rates of MSB.

  15. A novel signal processing approach for LEO space debris based on a fence-type space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Hu, Weidong; Ghogho, Mounir; Xin, Qin; Du, Xiaoyong; Guo, Weiwei

    2012-12-01

    The increase in space debris can seriously threaten regular activities in the Low Earth Orbit (LEO) environment. Therefore, it is necessary to develop robust, efficient and reliable techniques to understand the potential motions of the LEO debris. In this paper, we propose a novel signal processing approach to detect and estimate the motions of LEO space debris that is based on a fence-type space surveillance radar system. Because of the sparse distribution of the orbiting debris through the fence in our observations, we formulate the signal detection and the motion parameter estimation as a sparse signal reconstruction problem with respect to an over-complete dictionary. Moreover, we propose a new scheme to reduce the size of the original over-complete dictionary without the loss of the important information. This new scheme is based on a careful analysis of the relations between the acceleration and the directions of arrival for the corresponding LEO space debris. Our simulation results show that the proposed approach can achieve extremely good performance in terms of the accuracy for detection and estimation. Furthermore, our simulation results demonstrate the robustness of the approach in scenarios with a low Signal-to-Noise Ratio (SNR) and the super-resolution properties. We hope our signal processing approach can stimulate further work on monitoring LEO space debris.

  16. Reading the Signatures of Extrasolar Planets in Debris Disks

    Science.gov (United States)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  17. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    Science.gov (United States)

    Stupl, J.; Faber, N.; Foster, C.; Yang, F.; Levit, C.

    2013-09-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can avoid a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 24h window around the original conjunction. We then use different criteria to evaluate the utility of the laser based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  18. Herschel Observations of Debris Discs Orbiting Planet-hosting Subgiants

    CERN Document Server

    Bonsor, Amy; Wyatt, Mark C; Johnson, John A; Sibthorpe, Bruce

    2013-01-01

    Debris discs are commonly detected orbiting main-sequence stars, yet little is known regarding their fate as the star evolves to become a giant. Recent observations of radial velocity detected planets orbiting giant stars highlight this population and its importance for probing, for example, the population of planetary systems orbiting intermediate mass stars. Our Herschel survey observed a subset of the Johnson et al program subgiants, finding that 4/36 exhibit excess emission thought to indicate debris, of which 3/19 are planet-hosting stars and 1/17 are stars with no current planet detections. Given the small numbers involved, there is no evidence that the disc detection rate around stars with planets is different to that around stars without planets. Our detections provide a clear indication that large quantities of dusty material can survive the stars' main-sequence lifetime and be detected on the subgiant branch, with important implications for the evolution of planetary systems and observations of poll...

  19. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  20. Triggering Mechanism and characteristic of Debris Flow in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Norhidayu Kasim

    2016-04-01

    Full Text Available Forensic investigations have been carried out at eight (8 selected debris flow locations in Peninsular Malaysia in order to determine the mechanism and characteristic of debris flow. Comprehensive studies on the available records of past debris flow have been carried out in order to describe the fundamental characteristics of debris flow events. Site investigation and laboratory tests of particular debris flow sites were carried out to evaluate the causes of the debris flow triggering factors such as topographical, geotechnical and geological characteristics. Rainfall records are collected from the nearest meteorological station in order to analyse the reasonable correlation of rainfall with the occurrence of debris flow. Geological study shows that debris flow is prone to occur at granitic areas. The gradient of the initiation areas are above 20 and the debris tends to deposit in the areas with gradient between 2 to 15. Laboratory tests show that the soil type at the debris flow areas consists predominantly of silty sand classified as SM according to the Unified Soil Classification System. The relation between rainfall patterns and the possible occurrences of debris flow indicated that the trigger thresholds are found to be generally high in most cases

  1. Prevention of debris flow disasters on Chengdu-Kunming Railway

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts——the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models——a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  2. Prevention of debris flow disasters on Chengdu-Kunming Railway.

    Science.gov (United States)

    Wang, W; Xu, W L; Liu, S J

    2001-07-01

    Chengdu-Kunming Railway is an important transport line on southwestern China. However, this railway's safety is often threatened by debris flows. How to effectively forecast and alarm the debris flow disasters and reduce the losses is the aim to study the prevention system in this paper. The factors to cause or influence debris flow are divided into four parts--the basin environmental factors, the basin meteoric factors, the prevention work's elements and the flood-relief work's elements, and the prevention system is made up of three models--a judgment model to assess the debris flow gully's seriousness, a forecast model to predict the debris flow's occurrence and an alarm model to evaluate the debris flow's disaster. Afterwards, a concise structure chart is worked out and verified by the field data from Chengdu-Kunming Railway. This prevention system will provide beneficial reference for the debris flow's monitoring network to be executed on Chengdu-Kunming Railway.

  3. Self-organization criticality of debris flow rheology

    Institute of Scientific and Technical Information of China (English)

    WANG Yuyi; JAN Chyandeng; CHEN Xiaoqing; HAN Wenliang

    2003-01-01

    Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil onslope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sedimentrunoff system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be predicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magnitude, frequency and time interval of debris flows.

  4. Current studies on nursing work environment and strategies for improvement of nursing work environment%护理工作环境的研究探讨与改革策略

    Institute of Scientific and Technical Information of China (English)

    尤黎明; 刘佳丽; 郑晶; 刘可

    2016-01-01

    The important role of nursing work environment has received much attention in the management of nursing workforce and the quality of health care services. This paper analyzed current studies on nursing work environment, and suggested that the government and hospital administrators pay more attention to the development of nursing workforce, adequate clinical nurse staffing levels and promoting healthy work environment for nurses.%护理工作环境在护士队伍建设和护理服务质量管理中的重要地位在近年来受到广泛关注。本文分析了国内外护理工作环境的研究结果及国外护理工作环境的改革策略,建议我国各级卫生行政部门和医疗卫生机构重视护理人才队伍建设,切实保障临床护理人力配置,共同努力构建健康的护理工作环境。

  5. Impact of Earthquake Demolition Debris on the Quality of Groundwater

    Directory of Open Access Journals (Sweden)

    M. S. Benmenni

    2010-01-01

    Full Text Available Problem statement: Debris from construction or demolition/deconstruction processes have no significant impact on the environment as they are res-usable and inert. This has been also long admitted for solid waste generated by the demolition of damaged cities following violent earthquakes. Approach: This study is a contribution to the assessment of actual impact on the quality of groundwater of buried demolition debris from the city of Boumerdes, in the North of Algeria 5 years after the May 21st 2003 earthquake hit the region. The public discharge of Boumerdes city has been used as a temporary landfill. It is located about 5 km downtown of Boumerdes at the Tidjelabine site which is marly-calcareous formation. Leachate from the landfill was directly rejected in the receiving environment, where the soil is marly-calcareous type with cracks giving a variable permeability (10-2 m sec-1 to nearly 10-6 m sec-1 that facilitates infiltration of potential pollutants to the groundwater. The slope character (from 5-10% of the field contributes to pollutants movement and may accentuate water quality deterioration. Three domestic wells (designated S1, S2 and S3 were selected in the vicinity of the landfill and served as piezometers. Leachate samples were taken from the landfill and evaluated. Results: Leachate analysis indicated organic matter with relatively high COD (1136 mg L-1 O2 and BOD5 (200 mg L-1 O2; whereas the pH yielded 7.65 thus indicating fermentation phase of the landfill. Heavy metal contents were beyond national standard limits except for Pb with 0.51 mg L-1 which is slightly higher than limit value of 0.5 mg L-1. More than five years after the creation of this landfill and despite its predominant C&D nature, these results showed that it was following a typical urban wastes decomposition scheme. Same analysis carried on water samples drawn from the piezometers yielded following results: acidic pH (6.88, acceptable values of target heavy metals

  6. Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage.

    Science.gov (United States)

    Niedzwiecki, S; Klapperich, C; Short, J; Jani, S; Ries, M; Pruitt, L

    2001-08-01

    Quantification of ultrahigh molecular weight polyethylene (UHMWPE) wear debris remains a challenging task in orthopedic device analysis. Currently, the weight loss method is the only accepted practice for quantifying the amount of wear generated from a PE component. This technique utilizes loaded soak controls and weight differences to account for polymeric material lost through wear mechanisms. This method enables the determination of the amount of wear in the orthopedic device, but it provides no information about debris particulate size distribution. In order to shed light on wear mechanisms, information about the wear debris and its size distribution is necessary. To date, particulate isolation has been performed using the base digestion technique. The method uses a strong base, ultracentrifugation, and filtration to digest serum constituents and to isolate PE debris from sera. It should be noted that particulate isolation methods provide valuable information about particulate size distribution and may elucidate the mechanisms of wear associated with polymeric orthopedic implants; however, these techniques do not yet provide a direct measure of the amount of wear. The aim of this study is to present alternative approaches to wear particle isolation for analysis of polymer wear in total joint replacements without recourse to ultracentrifugation. Three polymer wear debris isolation techniques (the base method, an acid treatment, and an enzymatic digestion technique) are compared for effectiveness in simulator studies. A requirement of each technique is that the wear particulate must be completely devoid of serum proteins in order to effectively image and count these particles. In all methods the isolation is performed through filtration and chemical treatment. Subsequently, the isolated polymer particles are imaged using scanning electron microscopy and quantified with digital image analysis. The results from this study clearly show that isolation can be

  7. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    Science.gov (United States)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  8. Plastic debris in 29 Great Lakes tributaries: Relations to watershed attributes and hydrology

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven; Mason, Sherri A.

    2016-01-01

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m3 and a median of 1.9 particles/m3. Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  9. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology.

    Science.gov (United States)

    Baldwin, Austin K; Corsi, Steven R; Mason, Sherri A

    2016-10-04

    Plastic debris is a growing contaminant of concern in freshwater environments, yet sources, transport, and fate remain unclear. This study characterized the quantity and morphology of floating micro- and macroplastics in 29 Great Lakes tributaries in six states under different land covers, wastewater effluent contributions, population densities, and hydrologic conditions. Tributaries were sampled three or four times each using a 333 μm mesh neuston net. Plastic particles were sorted by size, counted, and categorized as fibers/lines, pellets/beads, foams, films, and fragments. Plastics were found in all 107 samples, with a maximum concentration of 32 particles/m(3) and a median of 1.9 particles/m(3). Ninety-eight percent of sampled plastic particles were less than 4.75 mm in diameter and therefore considered microplastics. Fragments, films, foams, and pellets/beads were positively correlated with urban-related watershed attributes and were found at greater concentrations during runoff-event conditions. Fibers, the most frequently detected particle type, were not associated with urban-related watershed attributes, wastewater effluent contribution, or hydrologic condition. Results from this study add to the body of information currently available on microplastics in different environmental compartments, including unique contributions to quantify their occurrence and variability in rivers with a wide variety of different land-use characteristics while highlighting differences between surface samples from rivers compared with lakes.

  10. Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes.

    Science.gov (United States)

    Franzetti, Andrea; Tatangelo, Valeria; Gandolfi, Isabella; Bertolini, Valentina; Bestetti, Giuseppina; Diolaiuti, Guglielmina; D'Agata, Carlo; Mihalcea, Claudia; Smiraglia, Claudio; Ambrosini, Roberto

    2013-08-01

    High-elevation cold environments are considered ideal places to test hypotheses about mechanisms of bacterial colonization and succession, and about bacterial biogeography. Debris-covered glaciers (glaciers whose ablation area is mainly covered by a continuous layer of rock debris fallen from the surrounding mountains) have never been investigated in this respect so far. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from 38 samples collected in July and September 2009 at different distances from the terminus on two debris-covered glaciers (Miage and Belvedere--Italian Alps). Heterotrophic taxa-dominated communities and bacterial community structure changed according to ice ablation rate, organic carbon content of the debris and distance from the glacier terminus. Bacterial communities therefore change during downwards debris transport, and organic carbon of these recently exposed substrates is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We also investigated whether phylotypes of the genus Polaromonas, which is ubiquitous in cold environments, do present a biogeographical distribution by analysing the sequences retrieved in this study together with others available in the literature. We found that the genetic distance among phylotypes increased with geographic distance; however, more focused analyses using discrete distance classes revealed that both sequences collected at sites <100 km and at sites 9400-13,500 km to each other were more similar than those collected at other distance classes. Evidences of biogeographic distribution of Polaromonas phylotypes were therefore contrasting.

  11. Operational support to collision avoidance activities by ESA's space debris office

    Science.gov (United States)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for

  12. The Influence of an EPS Concrete Buffer Layer Thickness on Debris Dams Impacted by Massive Stones in the Debris Flow

    Directory of Open Access Journals (Sweden)

    Xianbin Yu

    2015-01-01

    Full Text Available The failure of debris dams impacted by the massive stones in a debris flow represents a difficult design problem. Reasonable materials selection and structural design can effectively improve the resistance impact performance of debris dams. Based on the cushioning properties of expanded polystyrene (EPS concrete, EPS concrete as a buffer layer poured on the surface of a rigid debris dam was proposed. A three-dimensional numerical calculation model of an EPS concrete buffer layer/rigid debris dam was established. The single-factor theory revealed change rules for the thickness of the buffer layer concerning the maximal impact force of the rigid debris dam surface through numerical simulation. Moreover, the impact force-time/history curves under different calculation conditions for the rigid debris dam surface were compared. Simulation results showed that the EPS concrete buffer layer can not only effectively extend the impact time of massive stones affecting the debris dam but also reduce the impact force of the rigid debris dam caused by massive stones in the debris flow. The research results provide theoretical guidance for transferring the energy of the massive stone impact, creating a structural design and optimizing debris dams.

  13. Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador

    Science.gov (United States)

    Anderson, E. R.; Griffin, R.; Irwin, D.

    2013-12-01

    Heavy rains and steep, volcanic slopes in El Salvador cause numerous landslides every year, posing a persistent threat to the population, economy and environment. Although potential debris inundation hazard zones have been delineated using digital elevation models (DEMs), some disparities exist between the simulated zones and actual affected areas. Moreover, these hazard zones have only been identified for volcanic lahars and not the shallow landslides that occur nearly every year. This is despite the availability of tools to delineate a variety of landslide types (e.g., the USGS-developed LAHARZ software). Limitations in DEM spatial resolution, age of the data, and hydrological preprocessing techniques can contribute to inaccurate hazard zone definitions. This study investigates the impacts of using different elevation models and pit filling techniques in the final debris hazard zone delineations, in an effort to determine which combination of methods most closely agrees with observed landslide events. In particular, a national DEM digitized from topographic sheets from the 1970s and 1980s provide an elevation product at a 10 meter resolution. Both natural and anthropogenic modifications of the terrain limit the accuracy of current landslide hazard assessments derived from this source. Global products from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global DEM (ASTER GDEM) offer more recent data but at the cost of spatial resolution. New data derived from the NASA Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) in 2013 provides the opportunity to update hazard zones at a higher spatial resolution (approximately 6 meters). Hydrological filling of sinks or pits for current hazard zone simulation has previously been achieved through ArcInfo spatial analyst. Such hydrological processing typically only fills pits and can lead to drastic modifications of original elevation values

  14. Radiation Environment at LEO in the frame of Space Monitoring Data Center at Moscow State University - recent, current and future missions

    Science.gov (United States)

    Myagkova, Irina; Kalegaev, Vladimir; Panasyuk, Mikhail; Svertilov, Sergey; Bogomolov, Vitaly; Bogomolov, Andrey; Barinova, Vera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Shiroky, Vladimir; Shugay, Julia

    2016-04-01

    Radiation Environment of Near-Earth space is one of the most important factors of space weather. Space Monitoring Data Center of Moscow State University provides operational control of radiation conditions at Low Earth's Orbits (LEO) of the near-Earth space using data of recent (Vernov, CORONAS series), current (Meteor-M, Electro-L series) and future (Lomonosov) space missions. Internet portal of Space Monitoring Data Center of Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) http://swx.sinp.msu.ru/ provides possibilities to control and analyze the space radiation conditions in the real time mode together with the geomagnetic and solar activity including hard X-ray and gamma- emission of solar flares. Operational data obtained from space missions at L1, GEO and LEO and from the Earth's magnetic stations are used to represent radiation and geomagnetic state of near-Earth environment. The models of space environment that use space measurements from different orbits were created. Interactive analysis and operational neural network forecast services are based on these models. These systems can automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons of outer Earth's radiation belt using data from GEO and LEO as input. As an example of LEO data we consider data from Vernov mission, which was launched into solar-synchronous orbit (altitude 640 - 83 0 km, inclination 98.4°, orbital period about 100 min) on July 8, 2014 and began to receive scientific information since July 20, 2014. Vernov mission have provided studies of the Earth's radiation belt relativistic electron precipitation and its possible connection with atmosphere transient luminous events, as well as the solar hard X-ray and gamma-emission measurements. Radiation and electromagnetic environment monitoring in the near-Earth Space, which is very important for space weather study, was also realised

  15. A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk

    Science.gov (United States)

    Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha

    2017-02-01

    We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}ȯ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca ii triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}ȯ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.

  16. Mapping the Tidewater Submarine and Ice-Marginal Environment Using Interferometric Bathymetry, Ground-Based LiDAR and Current Velocities; Hubbard Glacier, Alaska

    Science.gov (United States)

    Finnegan, D. C.; Lawson, D. E.; Butler, W.; Waller, T.; Pratt, T.

    2009-12-01

    The seasonal advance and retreat of tidewater glaciers is a relatively well-documented phenomenon. But our understanding of the processes and conditions within the ice-marginal submarine environment that drive or result from this activity is limited. Capturing holistic information within this environment such as bathymetric topography, hydrographic measurements and geospatial information about the terminus itself is often limited to discrete measurements far from the terminus grounding line or lack the detail and scale necessary to identify features that may be indicative of process. To understand these processes, it is essential to accurately obtain data at resolutions that are sufficient to understand the geologic and marine environment. This paper describes the results of a first-of-its-kind survey of the submarine and ice-marginal terrestrial environment of the Hubbard Glacier tidewater terminus. Hubbard Glacier is the largest non-polar tidewater glacier in the world. It encompasses an area of 3500 sq km and flows 120 km from the flanks of Mt Logan (5959 m) in the Wrangell St. Elias Mountains (Canada) to sea level where its terminus widens to ~13 km. In contrast to most glaciers in Southeast Alaska, Hubbard Glacier continues to advance and thicken and is predicted to continue for the foreseeable future. We utilize a multi-sensor fusion approach that integrates high-resolution interferometric (swath-based) multibeam bathymetry with high-resolution ground-based LiDAR topography and current velocity profiles to provide a detailed look at the section of the glacier where significant ice advance and potential ice-damming occurs. Through simultaneous collection of these data we are able to precisely map the topography of the sea floor adjacent to and at the grounding line of the ice terminus while simultaneously mapping the ice terminus and surrounding terrain to create a complete 3D topographic model of the aerial and submarine environment. These data allow for

  17. Mineralogical Evolution in Extreme Debris Disks

    Science.gov (United States)

    Su, Kate

    2015-10-01

    Young (10-200 Myr), luminous (fractional luminosity on the order of 1.E-2) extreme debris disks provide a unique opportunity to explore exo-asteriod and exo-planetesimal collisions during the oligarchic and chaotic phases of terrestrial planet-building. We propose to obtain low-resolution grism spectra of four extreme debris disks to document and characterize the mineralogy changes in the mid-IR region where strong peaks originating from silica and forsterite dust can be easily identified. The proposed observations will supplement our on-going warm Spitzer monitoring program studying disk variability at 3.6 and 4.5 microns, provide immediate insights on the long-term mineralogical evolution in comparison with the existing Spitzer IRS spectra, and will bridge to similar studies that JWST will provide in the near future.

  18. MU radar measurements of orbital debris

    Science.gov (United States)

    Sato, Toru; Kayama, Hidetoshi; Furusawa, Akira; Kimura, Iwane

    1990-04-01

    Distributions of orbital debris versus height and scattering cross section are determined from a series of observations made with a high-power VHF Doppler radar (MU radar) of Japan. An automated data processing algorithm has been developed to discriminate echoes of orbiting objects from those of undesired signals such as meteor trail echoes or lightning atmospherics. Although the results are preliminary, they showed good agreement with those from NORAD tracking radar observations using a much higher frequency. It is found that the collision frequency of a Space Station of 1 km x 1 km size at an altitude of 500 km with orbiting debris is expected to be as high as once per two years.

  19. Herschel Observations of Dusty Debris Disks

    CERN Document Server

    Vican, Laura; Bryden, Geoff; Melis, Carl; Zuckerman, B; Rhee, Joseph; Song, Inseok

    2016-01-01

    We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 microns. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared emission previously measured with IRAS or Spitzer, and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources, and possess infrared emission most likely due to a circumstellar debris disk. We analyzed the properties of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady state coll...

  20. Debris Dispersion Model Using Java 3D

    Science.gov (United States)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  1. Proportional loss functions for debris flow events

    Directory of Open Access Journals (Sweden)

    C. M. Rheinberger

    2013-08-01

    Full Text Available Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  2. Relative motion in a debris cloud

    Science.gov (United States)

    Kebe, Fatoumata

    2016-07-01

    After an explosion or collision in space, a hundred or thousands of debris are generated. To be able to study a debris cloud it's necessary to develop new analysis tools. In that sense, we have studied several representations of the relative motion with the parent body's orbit as the reference. Thus, in the case of an explosion the original spacecraft has a circular orbit which will be the reference one in the relative motion's equations while, in the case of a collision, we will take one of the spacecraft's orbit as the reference. We mainly focus on the relative motion method that used the differential elements instead of the Cartesian coordinates as it allows to take into account the main perturbation.

  3. Proportional loss functions for debris flow events

    Science.gov (United States)

    Rheinberger, C. M.; Romang, H. E.; Bründl, M.

    2013-08-01

    Quantitative risk assessments of debris flows and other hydrogeological hazards require the analyst to predict damage potentials. A common way to do so is by use of proportional loss functions. In this paper, we analyze a uniquely rich dataset of 132 buildings that were damaged in one of five large debris flow events in Switzerland. Using the double generalized linear model, we estimate proportional loss functions that may be used for various prediction purposes including hazard mapping, landscape planning, and insurance pricing. Unlike earlier analyses, we control for confounding effects of building characteristics, site specifics, and process intensities as well as for overdispersion in the data. Our results suggest that process intensity parameters are the most meaningful predictors of proportional loss sizes. Cross-validation tests suggest that the mean absolute prediction errors of our models are in the range of 11%, underpinning the accurateness of the approach.

  4. Analysis of the Mobilization of Debris Flows

    Science.gov (United States)

    1974-10-01

    as lateral ridges pestered along the canyon walls. The debris flow mobilized in a grass-covered swale surrounded by a moderately dense growth of...water apparently rushes out of the channels much as water from a firehose and strikes the talus. The erosive power of water issuing from a firehose...normal floods. The typical mudspate-track does not, however, readily associate itself with the ravine of a permanent or powerful mountain stream, for

  5. Visible Light Spectroscopy of GEO Debris

    Science.gov (United States)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  6. Europium-155 in Debris from Nuclear Weapons

    DEFF Research Database (Denmark)

    Aarkrog, Asker; Lippert, Jørgen Emil

    1967-01-01

    The lithium-drifted germanium detector enables determination of europium-155 on a routine basis in environmental samples contaminated with debris from nuclear weapons. From measurements of europium-155, cesium-144, and strontium-90 in air filters collected between 1961 and 1966, the yield...... of europium-155 from weapons was estimated at 1400 atoms per 10$^{6}$ fissions, which is close to the yield of europium-155 from fast fission of uranium-238....

  7. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    Science.gov (United States)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  8. Tidal Debris as a Dark Matter Probe

    CERN Document Server

    Johnston, Kathryn V

    2016-01-01

    Tidal debris streams from galaxy satellites can provide insight into the dark matter distribution in halos. This is because we have more information about stars in a debris structure than about a purely random population of stars: we know that in the past they were all bound to the same dwarf galaxy; and we know that they form a dynamically cold population moving on similar orbits. They also probe a different region of the matter distribution in a galaxy than many other methods of mass determination, as their orbits take them far beyond the typical extent of those for the bulk of stars. Although conclusive results from this information have yet to be obtained, significant progress has been made in developing the methodologies for determining both the global mass distribution of the Milky Way's dark matter halo and the amount of dark matter substructure within it. Methods for measuring the halo shape are divided into "predictive methods," which predict the tidal debris properties from the progenitor satellite'...

  9. Observations, Modeling and Theory of Debris Disks

    CERN Document Server

    Matthews, Brenda C; Wyatt, Mark C; Bryden, Geoff; Eiroa, Carlos

    2014-01-01

    Main sequence stars, like the Sun, are often found to be orbited by circumstellar material that can be categorized into two groups, planets and debris. The latter is made up of asteroids and comets, as well as the dust and gas derived from them, which makes debris disks observable in thermal emission or scattered light. These disks may persist over Gyrs through steady-state evolution and/or may also experience sporadic stirring and major collisional breakups, rendering them atypically bright for brief periods of time. Most interestingly, they provide direct evidence that the physical processes (whatever they may be) that act to build large oligarchs from micron-sized dust grains in protoplanetary disks have been successful in a given system, at least to the extent of building up a significant planetesimal population comparable to that seen in the Solar System's asteroid and Kuiper belts. Such systems are prime candidates to host even larger planetary bodies as well. The recent growth in interest in debris dis...

  10. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    CERN Document Server

    Nesvold, Erika R; Vican, Laura; Farr, Will M

    2016-01-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles' eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare t...

  11. Plastic debris in the open ocean

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  12. Hack's law of debris-flow basins

    Institute of Scientific and Technical Information of China (English)

    LI Yong; YUE Z.Q.; LEE C.F.; BEIGHLEY R.E.; CHEN Xiao-Qing; HU Kai-Heng; CUI Peng

    2009-01-01

    Hack's law was originally derived from basin statistics for varied spatial scales and regions.The exponent value of the law has been shown to vary between 0.47 and 0.70,causing uncertainty in its application.This paper focuses on the emergence of Hack's law from debris-flow basins in China.Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study.Basins in the different regions are found to present similar distributions.Hack's law is derived fi'om maximum probability and conditional distributions,suggesting that the law should describe some critical state of basin evolution.Results suggest the exponent value is approximately 0.5.Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage.A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

  13. Plastic debris in the open ocean.

    Science.gov (United States)

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  14. Plastic debris in the open ocean

    KAUST Repository

    Cozar, Andres

    2014-06-30

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  15. COTELS project (4) : structural investigation of solidified debris in MCCI

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, V.; Vasilyev, Y.; Kolodeshnikov, A.; Cherepnin, Y. [National Nuclear Center, Kurchatov (Kazakhstan). Inst. of Atomic Energy; Sakaki, Isao; Nagasaka, Hideo [Nuclear Power Engineering Corp., Tokyo (Japan). Systems Safety Dept.

    2000-05-01

    Cross section of concrete trap along with solidified debris tested in COTELS test B/C, in which the interaction among core melt, water and concrete was simulated, were structurally investigated. In 6 tests out of 10 tests, particulate debris bed was formed above continuous ingot debris. The size distribution of the particulate debris was well correlated by Rosin-Rammler equation. Large amount of smallest diameter particles was obtained due to the entrainment of molten corium, decomposed concrete and oxidation of metallic components in corium associated with molten core concrete interaction (MCCI) generated gas. The upper region of the solidified debris included more concrete compositions. The concrete erosion depth, concrete degradation condition and the structure of solidified debris were evaluated to clarify the basic difference between COTELS and former tests results. Concrete erosion depth was less than that observed in MACE, WETCOR, SWISS tests. The major differences of COTELS results compared with the former test results were: 1) absence of strong adhesion of crust to melt trap side wall: 2) water penetration into debris through both eroded side wall and channels inside ingot debris: 3) absence of large void inside ingot debris: and 4) formation of pebble bed below ingot debris. All of these promoted the suppression of MCCI. (orig.)

  16. Debris-flow generation from recently burned watersheds

    Science.gov (United States)

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  17. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  18. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  19. Debris flow hazard mapping, Hobart, Tasmania, Australia

    Science.gov (United States)

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael

    2015-04-01

    Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are

  20. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the