WorldWideScience

Sample records for cultured soybean glycine

  1. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  2. Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max Cell Suspension Culture

    Directory of Open Access Journals (Sweden)

    Edson Rodrigues-Filho

    2013-02-01

    Full Text Available This present work describes the application of liquid chromatograpy-solid phase extraction-nuclear magnetic resonance spectroscopy to analyse Alternaria alternata crude extracts. Altenusin (1, alternariol (2, 3'-hydroxyalternariol monomethyl ether (3, and alternariol monomethyl ether (4, were separated and identified. High-resolution mass spectrometry confirmed the proposed structures. The cytotoxic effects of these compounds towards plants were determined using soybean (Glycine max cell cultures as a model. EC50 values which range from 0.11 (±0.02 to 4.69 (±0.47 μM showed the high cytotoxicity of these compounds.

  3. Interaction of Heterodera glycines and Glomus mosseae on Soybean.

    Science.gov (United States)

    Todd, T C; Winkler, H E; Wilson, G W

    2001-12-01

    The effects of the arbuscular mycorrhizal (AM) fungus Glomus mosseae on Heterodera glycines-soybean interactions were investigated in greenhouse experiments. Mycorrhizal and nonmycorrhizal soybean cultivars that were either resistant or susceptible to H. glycines were exposed to initial nematode population densities (Pi) of 0, 100, 1,000, or 10,000 eggs and infective juveniles. Soybean growth, nematode reproduction, and AM fungal colonization were determined after 35 (experiment I) and 83 (experiment II) days. Soybean shoot and root weights were reduced an average 29% across H. glycines Pi but were 36% greater overall in the presence of G. mosseae. Analyses of variance indicated that root colonization and stimulation of soybean growth by G. mosseae were inhibited at high H. glycines Pi, while the combined effects of the nematode and fungus on soybean growth were best described as additive in linear regression models. No evidence for increased nematode tolerance of mycorrhizal soybean plants was observed. Nematode population densities and reproduction were lower on a nematode-resistant soybean cultivar than on a susceptible cultivar, but reproduction was comparable on mycorrhizal and nonmycorrhizal plants. Root colonization by G. mosseae was reduced at high nematode Pi. The results suggest that nematode antagonism to the mycorrhizal symbiosis is a more likely consequence of interactions between H. glycines and AM fungi on soybean than is nematode suppression by the fungus.

  4. Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua

    2017-12-01

    The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.

  5. Efficient production of transgenic soybean (Glycine max [L] Merrill ...

    African Journals Online (AJOL)

    Efficient production of transgenic soybean (Glycine max [L] Merrill) plants mediated via whisker-supersonic (WSS) method. MM Khalafalla, HA El-Shemy, SM Rahman, M Teraishi, H Hasegawa, T Terakawa, M Ishimoto ...

  6. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  7. Soybean ( Glycine max ) as a versatile biocatalyst for organic ...

    African Journals Online (AJOL)

    A series of aliphatic and aromatic aldehydes and ketones were reduced using plant cell preparations of Glycine max seeds (soybean). The biotransformation of five aromatic aldehydes in water, at room temperature afforded the corresponding alcohols in excellent yields varying from 89 to 100%. Two prochiral aromatic ...

  8. Weed Control in Soybean (Glycine max)

    International Nuclear Information System (INIS)

    Kipkemoi, P.L.

    2002-01-01

    Weed Compete for limited growth factors with crop plants. This result in loss of crop vigour and hence reduces crop yields. A study was conducted in 1997 and 2001 to evaluate the use of herbicides and hand hoeing for weed control in soybeans. Crop establishment was by hand planting. The herbicides were applied using CP3 Knap sack sprayer calibrated to deliver a spray volume of 150l/ha. Hand weeding treatment were done as appropriate. The trial layout was randomised complete block design with four replications in both years. The tested herbicides did not satisfactorily control the weeds present at the experimental site in both years. Hand weeding on the other hand gave good control of the weeds which were reflected in high soybean yields. In these trials yields were negatively correlated with the number of weeds present. The tested herbicides alone appeared to be inadequate in controlling weeds in soybean. Compared with the weed-free treatment a single application of soil-applied or post-emergence herbicides did not control a broad spectrum of weeds and reduced soybean yields. It can also be inferred that soybean yield losses are minimised if they are kept weed free for at most 6 weeks after emergence

  9. Utilizing soybean milk to culture soybean pathogens

    Science.gov (United States)

    Liquid and semi-solid culture media are used to maintain and proliferate bacteria, fungi, and Oomycetes for research in microbiology and plant pathology. In this study, a comparison was made between soybean milk medium, also referred to as soymilk, and media traditionally used for culturing soybean ...

  10. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  11. First report of the Soybean Cyst Nematode, Heterodera glycines, in New York

    Science.gov (United States)

    The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is the most damaging pathogen of soybean (Glycine max (L.) Merr.), causing more than $1 billion in yield losses annually in the United States (Koenning and Wrather 2010). The SCN distribution map updated in 2014 showed that SCN were dete...

  12. RNA-seq data comparisons of wild soybean genotypes in response to soybean cyst nematode (Heterodera glycines

    Directory of Open Access Journals (Sweden)

    Hengyou Zhang

    2017-12-01

    Full Text Available Soybean [Glycine max (L. Merr.] is an important crop rich in vegetable protein and oil, and is a staple food for human and animals worldwide. However, soybean plants have been challenged by soybean cyst nematode (SCN, Heterodera glycines, one of the most damaging pests found in soybean fields. Applying SCN-resistant cultivars is the most efficient and environmentally friendly strategy to manage SCN. Currently, soybean breeding and further improvement in soybean agriculture are hindered by severely limited genetic diversity in cultivated soybeans. G. soja is a soybean wild progenitor with much higher levels of genetic diversity compared to cultivated soybeans. In this study, transcriptomes of the resistant and susceptible genotypes of the wild soybean, Glycine soja Sieb & Zucc, were sequenced to examine the genetic basis of SCN resistance. Seedling roots were treated with infective second-stage juveniles (J2s of the soybean cyst nematode (HG type 2.5.7 for 3, 5, 8 days and pooled for library construction and RNA sequencing. The transcriptome sequencing generated approximately 245 million (M high quality (Q > 30 raw sequence reads (125 bp in length for twelve libraries. The raw sequence reads were deposited in NCBI sequence read archive (SRA database, with the accession numbers SRR5227314-25. Further analysis of this data would be helpful to improve our understanding of the molecular mechanisms of soybean-SCN interaction and facilitate the development of diverse SCN resistance cultivars.

  13. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  14. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  15. Interactions of Heterodera glycines, Macrophomina phaseolina, and Mycorrhizal Fungi on Soybean in Kansas.

    Science.gov (United States)

    Winkler, H E; Hetrick, B A; Todd, T C

    1994-12-01

    The impact of naturally occurring arbuscular mycorrhizal fungi on soybean growth and their interaction with Heterodera glycines were evaluated in nematode-infested and uninfested fields in Kansas. Ten soybean cultivars from Maturity Groups III-V with differential susceptibility to H. glycines were treated with the fungicide benomyl to suppress colonization by naturally occurring mycorrhizal fungi and compared with untreated control plots. In H. glycines-infested soil, susceptible cultivars exhibited 39% lower yields, 28% lower colonization by mycorrhizal fungi, and an eightfold increase in colonization by the charcoal rot fungus, Macrophomina phaseolina, compared with resistant cultivars. In the absence of the nematode, susceptible cultivars exhibited 10% lower yields than resistant cultivars, root colonization of resistant vs. susceptible soybean by mycorrhizal fungi varied with sampling date, and there were no differences in colonization by M. phaseolina between resistant and susceptible cultivars. Benomyl application resulted in 19% greater root growth and 9% higher seed yields in H. glycines-infested soil, but did not affect soybean growth and yield in the absence of the nematode. Colonization of soybean roots by mycorrhizal fungi was negatively correlated with H. glycines population densities due to nematode antagonism to the mycorrhizal fungi rather than suppression of nematode populations. Soybean yields were a function of the pathogenic effects of H. glycines and M. phaseolina, and, to a lesser degree, the stimulatory effects of mycorrhizal fungi.

  16. Effects of long-term storage on the quality of soybean, Glycine max ...

    African Journals Online (AJOL)

    Soybean, Glycine max (L.) Merrill, is one of the five most important legumes in the tropics and provides the protein eaten by most people in the region. One of the major constraints to soybean production is that the seed quality deteriorates rapidly during storage. This study was undertaken to assess the effect of some storage ...

  17. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.

    Science.gov (United States)

    Guo, Xiaoli; Chronis, Demosthenis; De La Torre, Carola M; Smeda, John; Wang, Xiaohong; Mitchum, Melissa G

    2015-08-01

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant-parasitic cyst nematodes secrete CLE-like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode-induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock-down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Optimization of soybean (glycine max L.) regeneration for korean cultivars

    International Nuclear Information System (INIS)

    Phat, P.; Rehman, S. U.; Ju, H. J.; Jung, H. I.

    2015-01-01

    Tissue culture could provide key insights into the development of transgenic plants, production of good cultivars and secondary metabolites, conservation of endangered plants, and safeguarding of germplasms. In this study, the effects of shoot induction media, explants, cultivars, and phytohormone concentrations on the regeneration efficiency of Korean soybean cultivars were evaluated. Restricted dormancy and poor germination may affect regeneration, depending on the type of germination medium or initiation of phytohormone treatment. Therefore, we analyzed the effects of different germination media containing plant growth regulators, i.e. 6-benzyladenine (BAP), gibberellic acid 3 (GA /sub 3/), and naphthalene acetic acid (NAA), prior to investigating the influences of explant types, media with or without vitamins, cultivars, and different phytohormones (BAP and GA3). A high frequency of germination was observed in Murashige and Skooge (MS) medium with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.25 mg L /sup -1/ GA /sub 3/. Cotyledonary node explants and Gamborg B5 with vitamins supplemented with 1 mg L /sup -1/ BAP and 0.17 mg L /sup -1/ GA /sub 3/ in callus induction medium (CIM) and 1 mg L /sup -1/ BAP in shoot induction medium (SIM) were found to be the most efficient conditions for induction of soybean regeneration, both in callus development and shoot regeneration. Two Korean soybean cultivars, cv. Daepung and Nampung, showed similar development of shoot regeneration efficiency, but significantly different shoot induction times. Therefore, the protocol reported here may be used for further development of regeneration efficiency and can be employed for efficient transformation in soybeans. (author)

  19. Emisiones de óxido nitroso en un cultivo de soja [Glycine max (L. Merrill]: efecto de la inoculación y de la fertilización nitrógenada Nitrous oxide emission during a soybean [Glycine max (L. Merril] culture: inoculation and nitrogen fertilization effects

    Directory of Open Access Journals (Sweden)

    Ignacio A Ciampitti

    2005-12-01

    Full Text Available El óxido nitroso absorbe radiación infrarroja contribuyendo al efecto invernadero; este gas es producido principalmente en el suelo, mediante los procesos de nitrificación y denitrificación. En un estudio a campo, sobre un suelo Argiudol típico, se evaluó el efecto de la fertilización y la inoculación con Bradyrhizobium japonicum en un cultivo de soja [Glycine max (L. Merrill], sobre las emisiones de óxido nitroso. Los gases se extrajeron de cilindros de PVC y la lectura se realizó con cromatografía gaseosa. Las emisiones presentaron valores crecientes desde la siembra hacia madurez fisiológica del cultivo, para todos los tratamientos; este comportamiento fue concomitante con la evolución presentada por la humedad edáfica. La fertilización nitrogenada aumentó significativamente (PNitrous oxide gas absorbs infrared radiation contributing to the greenhouse effect; this gas is produced mainly in soil, by means of the processes of nitrification and denitrification. In a field study at the FAUBA on a typic Argiudol, we evaluated the effect of fertilization and inoculation with Bradyrhizobium japonicum during a soybean culture [Glycine max (L. Merrill], on nitrous oxide emisión. Gases were sampled with PVC cylinders and were read with gaseous chromatography. Emissions presented increasing values from seeding towards physiological maturity for all treatments; this behavior was similar to the evolution presented by nitrate level and soil moisture. Nitrogen fertilization significantly increased (P<0.05 nitrous oxide emissions and inoculation only had a significant effect with the highest level of fertilization (P=0.09. Plots fertilized at highest dose and inoculated gave the greatest nitrous oxide emissions. The variable that better explains the emissions is the nitrate level (r² = 0.1899; P=0.0231.

  20. Effects of rotation of cotton (Gossypium hirsutum L.) and soybean [Glycine max (L.) Merr.] crops on soil fertility in Elizabeth, Mississippi, USA

    OpenAIRE

    H.A., Reddy, K. and Pettigrew, W.T.

    2018-01-01

    The effects of cotton (Gossypium hirsutum L.): soybean [Glycine max (L.) Merr.] rotation on the soil fertility levels are limited. An irrigated soybean: cotton rotation experiment was conducted from 2012 through 2015 near Elizabeth, Mississippi, USA. The crop rotation sequences were included continuous cotton (CCCC), continuous soybean (SSSS), cotton-soybean-cotton-soybean (CSCS), cotton-soybean-soybean-cotton (CSSC), soybean-cotton-cotton-soybean (SCCS), soybean-cotton-soybean-cotton (SCSC)....

  1. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  2. Purification and characterization of an iron-induced ferritin from soybean (Glycine max) cell suspensions.

    Science.gov (United States)

    Lescure, A M; Massenet, O; Briat, J F

    1990-11-15

    Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.

  3. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines.

    Science.gov (United States)

    Qu, Yanyan; Xiao, Da; Li, Jinyu; Chen, Zhou; Biondi, Antonio; Desneux, Nicolas; Gao, Xiwu; Song, Dunlun

    2015-04-01

    The soybean aphid, Aphis glycines Matsumura, is a major pest in soybean crop. Current management of this pest relies mainly on insecticides applications, and the neonicotinoid imidacloprid has been proposed as an effective insecticide to control A. glycines in soybean field. Imidacloprid at lethal concentrations not only exerts acute toxicity to A. glycines, but also cause various biological changes when aphids are chronically exposed to lower concentrations. In this study, we assessed the effects of a low-lethal (0.20 mg L(-1)) and two sublethal (0.05 and 0.10 mg L(-1)) imidacloprid concentrations on various A. glycines life history traits. Aphid exposure to 0.20 mg L(-1) imidacloprid caused slower juvenile development, shorter reproductive period, and reduced adult longevity, fecundity and total lifespan. Stimulatory effects, i.e. hormesis, on reproduction and immature development duration were observed in aphids exposed to the lower sublethal imidacloprid concentrations. Consequently, the net reproduction rate (R 0) was significantly higher than in the control aphids. These findings stress the importance of the actual imidacloprid concentration in its toxicological properties on A. glycines. Therefore, our results would be useful for assessing the overall effects of imidacloprid on A. glycines and for optimizing integrated pest management programs targeting this pest.

  4. Transgenic soybean overexpressing GmSamT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyzes the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heter...

  5. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  6. Gamma radiation effect on the anatomical structure of soybean (Glycine max. Merr)

    International Nuclear Information System (INIS)

    Bhikuningputra, W.

    1976-01-01

    Gamma radiation effects on soybean plant (Glycine max. Merr) have been studied by using radiation doses of 0, 20, 25, 30, and 35 Krad. Investigation is carried out after each treatment. It proves that each treatment causes different morphological changes on leaves, stems, roots, and fibres of the treated plants. (SMN)

  7. Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods

    Science.gov (United States)

    Tropospheric ozone (O3) is a secondary air pollutant and anthropogenic greenhouse gas. Concentrations of tropospheric O3 ([O3] have more than doubled since the Industrial Revolution, and are high enough to damage plant productivity. Soybean (Glycine max L. Merr.) is the world's most important legume...

  8. Effect of soybean derivatives (glycine max) on thyroid of rats

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1977-01-01

    The effect of a Brazilian variety soybean and their comercial products on thyroid gland is studied. Soybean derivatives are tested in rats through acute experiments of 3 to 24 hours and semichronic experiments of 16 to 29 days. The autoclaved extract administered after 6 to 24 hours decreases the percentage of iodine ( 131 I) uptake. Semichronic experiments show that the factor found in soybean provokes both an increase or a reduction in percentage of iodine ( 131 I) uptake, depending ou the oeriod of action [pt

  9. Replenishment of Cultivated Soybean Varietes Market (Glycine hispida Maxim, Moench..

    Directory of Open Access Journals (Sweden)

    О. І. Безручко

    2009-12-01

    Full Text Available There provided ways of using valuable protein crop, soybean, as well as its production worldwide growth rates during recent years, possibility and necessity of attaching to the crop a strategic importance in our State and the tasks and outlooks of soybeanrecourses generation. A complete description of new soybean varieties listed in the Register of Varieties Suitable for Dissemination in Ukraine has also been provided.

  10. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  11. Interference of Selected Palmer Amaranth (Amaranthus palmeri Biotypes in Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Aman Chandi

    2012-01-01

    Full Text Available Palmer amaranth (Amaranthus palmeri S. Wats. has become difficult to control in row crops due to selection for biotypes that are no longer controlled by acetolactate synthase inhibiting herbicides and/or glyphosate. Early season interference in soybean [Glycine max (L. Merr.] for 40 days after emergence by three glyphosate-resistant (GR and three glyphosate-susceptible (GS Palmer amaranth biotypes from Georgia and North Carolina was compared in the greenhouse. A field experiment over 2 years compared season-long interference of these biotypes in soybean. The six Palmer amaranth biotypes reduced soybean height similarly in the greenhouse but did not affect soybean height in the field. Reduction in soybean fresh weight and dry weight in the greenhouse; and soybean yield in the field varied by Palmer amaranth biotypes. Soybean yield was reduced 21% by Palmer amaranth at the established field density of 0.37 plant m−2. When Palmer amaranth biotypes were grouped by response to glyphosate, the GS group reduced fresh weight, dry weight, and yield of soybean more than the GR group. The results indicate a possible small competitive disadvantage associated with glyphosate resistance, but observed differences among biotypes might also be associated with characteristics within and among biotypes other than glyphosate resistance.

  12. Analysis of resource use efficiency among soybean ( Glycine max ...

    African Journals Online (AJOL)

    Also, 87.5% of the farmers were in their active age, and 81.7% utilized their personal saving as a major source of finance for production. The result of the production function analysis indicated that 87.21% of the variation in the output of soybean is explained for by the independent variables. Resource-use efficiency ...

  13. 135 - 146 Effect of Different Levels of Soybean /Glycine Max

    African Journals Online (AJOL)

    USER

    sheep were blocked into six blocks of four animals based on initial body weight and ... sheep on natural pasture hay supplemented with 375 g/day soybean meal .... sheep were made to fast for 12 hours and slaughtered ...... Swedish University of Agricultural sciences. ... Synthesis of working papers, Soil Science Bulletin.

  14. Nodulin gene expression during soybean (Glycine max) nodule development.

    NARCIS (Netherlands)

    Gloudemans, T.; Vries, de S.; Bussink, H.J.; Malik, N.S.A.; Franssen, H.; Louwerse, J.; Bisseling, T.

    1987-01-01

    In vitro translation products of total RNA isolated from soybean nodules at successive stages of nodule development were analyzed by two-dimensional gel electrophoresis. In that way the occurrence of over 20 mRNAs specifically transcribed from nodulin genes was detected. The nodulin genes could be

  15. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    worldwide importance as food and market crop. This is mainly because of its high ... The application of inorganic P fertilizers is one of the possibilities for addressing the problem of low P availability. However ...... Soybean Research Conference held in Foz do Iguassu, Brazil, 1-5 March, 2004. Tong, X.J., X. Yan, Y.G. Lu, ...

  16. Intercrop performance of different varieties of soybean (Glycine Max ...

    African Journals Online (AJOL)

    ONOS

    2010-12-13

    Dec 13, 2010 ... (TGX 1894-3E, medium maturing variety), gave the highest grain yield of Soybean and fresh tuber yield of cassava at 12MAP,. Key words: ... basic component of cropping systems in many areas of south eastern Nigeria. ... and aquatic environment, increased soil acidity and highly selective transport or ...

  17. Soybean (Glycine max) oil bodies and their associated phytochemicals.

    Science.gov (United States)

    Fisk, Ian D; Gray, David A

    2011-01-01

    Soybean oil bodies were isolated from 3 cultivars (Ustie, K98, and Elena) and the occurrence of 2 classes of phytochemicals (tocopherol isoforms and isoflavones) and strength of their association with isolated oil bodies was evaluated. Tocopherol is shown to be closely associated with soybean oil bodies; δ-tocopherol demonstrated a significantly greater association with oil bodies over other tocopherol isoforms. Isoflavones do not show a significant physical association with oil bodies, although there is some indication of a passive association of the more hydrophobic aglycones during oil body isolation. Oil bodies are small droplets of oil that are stored as energy reserves in the seeds of oil seeds, and have the potential to be used as future food ingredients. If oil body suspensions are commercialized on a large scale, knowledge of the association of phytochemicals with oil bodies will be valuable in deciding species of preference and predicting shelf life and nutritional value. © 2011 Institute of Food Technologists®

  18. Changes in RNA Splicing in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Delasa Aghamirzaie

    2013-11-01

    Full Text Available Developing soybean seeds accumulate oils, proteins, and carbohydrates that are used as oxidizable substrates providing metabolic precursors and energy during seed germination. The accumulation of these storage compounds in developing seeds is highly regulated at multiple levels, including at transcriptional and post-transcriptional regulation. RNA sequencing was used to provide comprehensive information about transcriptional and post-transcriptional events that take place in developing soybean embryos. Bioinformatics analyses lead to the identification of different classes of alternatively spliced isoforms and corresponding changes in their levels on a global scale during soybean embryo development. Alternative splicing was associated with transcripts involved in various metabolic and developmental processes, including central carbon and nitrogen metabolism, induction of maturation and dormancy, and splicing itself. Detailed examination of selected RNA isoforms revealed alterations in individual domains that could result in changes in subcellular localization of the resulting proteins, protein-protein and enzyme-substrate interactions, and regulation of protein activities. Different isoforms may play an important role in regulating developmental and metabolic processes occurring at different stages in developing oilseed embryos.

  19. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  20. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  1. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  2. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements

    NARCIS (Netherlands)

    Loureiro, M.D.; Kaschuk, G.; Alberton, O.; Hungria, M.

    2007-01-01

    In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of

  3. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  4. Induced mutation for the improvement of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Asencion, A.B.; Lapade, A.G.; Grafia, A.O.; Barrida, A.C.; Veluz, A.M.; Marbella, L.J.

    2004-01-01

    A study on the use of gamma radiation in the induction of mutations in eight varieties of soybean was conducted. The radiosensitivity of the seeds of both local and introduced soybean varieties was determined. The effects of gamma radiation in the M1 generation were evaluated. Percentage germination was not affected by doses of 200 and 250 Gy gamma radiation in all the eight soybean varieties. No significant differences in seedling height were observed at 200 Gy and the control except for the 250 Gy in BPI-Sy4, PSB-Sy4 and PSB-Sy5. In the Vietnamese varieties, significant differences in seedling height were obtained in doses of 200, 250 Gy and the control except for the variety AKO 6. There was significant difference in plant height of mature plants between the control and treatment dose of 250 Gy in varieties DT 95 and AKO 6. Likewise, significant differences in mature plant height were noted between the control and those at 250 Gy in local varieties BPI-Sy4, PSB-Sy5 and NSIC-Sy8. The number of days to flower was not affected by gamma radiation in both the local and introduced varieties. There were significant differences in the number of pods per plant between the control and a low dose of 200 Gy in Vietnamese variety DT 96 and the local varieties PSB-Sy4, PSB-Sy5 and NSIC-Sy8. The 3 types of chlorophyll mutation induced by gamma rays in the local varieties were: chlorina, striatia,and spotted yellow. Only chlorina mutant was induced in the introduced varieties. Desirable mutants that are early and high yielding were selected. Results of the drought tolerance tests indicated that the number of days to flowering of the control and 8 varieties was not affected by the duration of irrigation withdrawals 20,30,40 and 50 days after planting. Significant differences in seed weight among the different varieties were noted only in 20 and 30 day irrigation withdrawal treatment. When the effects of the different treatments were analyzed on a per variety bases, some of the

  5. Timecourse microarray analyses reveal global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode).

    Science.gov (United States)

    Alkharouf, Nadim W; Klink, Vincent P; Chouikha, Imed B; Beard, Hunter S; MacDonald, Margaret H; Meyer, Susan; Knap, Halina T; Khan, Rana; Matthews, Benjamin F

    2006-09-01

    Changes in gene expression within roots of Glycine max (soybean), cv. Kent, susceptible to infection by Heterodera glycines (the soybean cyst nematode [SCN]), at 6, 12, and 24 h, and 2, 4, 6, and 8 days post-inoculation were monitored using microarrays containing more than 6,000 cDNA inserts. Replicate, independent biological samples were examined at each time point. Gene expression was analyzed statistically using T-tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). These analyses allow the user to query the data in several ways without importing the data into third-party software. RT-PCR confirmed that WRKY6 transcription factor, trehalose phosphate synthase, EIF4a, Skp1, and CLB1 were differentially induced across most time-points. Other genes induced across most timepoints included lipoxygenase, calmodulin, phospholipase C, metallothionein-like protein, and chalcone reductase. RT-PCR demonstrated enhanced expression during the first 12 h of infection for Kunitz trypsin inhibitor and sucrose synthase. The stress-related gene, SAM-22, phospholipase D and 12-oxophytodienoate reductase were also induced at the early time-points. At 6 and 8 dpi there was an abundance of transcripts expressed that encoded genes involved in transcription and protein synthesis. Some of those genes included ribosomal proteins, and initiation and elongation factors. Several genes involved in carbon metabolism and transport were also more abundant. Those genes included glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase and sucrose synthase. These results identified specific changes in gene transcript levels triggered by infection of susceptible soybean roots by SCN.

  6. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  7. Analysis of soybean tissue culture protein dynamics using difference gel electrophoresis

    Science.gov (United States)

    Excised hypocotyls from developing soybean (Glycine max (L.) merr. cv. Jack) were cultivated on agar-solidified medium until callus formed. The calli were then propagated in liquid medium until stable, relatively uniform, finely-divided suspension cultures were obtained. Cells were typically transfe...

  8. Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean

    Science.gov (United States)

    Westphal, Andreas; Li, Chunge; Xing, Lijuan; McKay, Alan; Malvick, Dean

    2014-01-01

    Background Sudden death syndrome (SDS) of soybean caused by Fusarium virguliforme spreads and reduces soybean yields through the North Central region of the U.S. The fungal pathogen and Heterodera glycines are difficult to manage. Methodology/Principal Findings The objective was to determine the contributions of H. glycines and F. virguliforme to SDS severity and effects on soybean yield. To quantify DNA of F. virguliforme in soybean roots and soil, a specific real time qPCR assay was developed. The assay was used on materials from soybean field microplots that contained in a four-factor factorial-design: (i) untreated or methyl bromide-fumigated; (ii) non-infested or infested with F. virguliforme; (iii) non-infested or infested with H. glycines; (iv) natural precipitation or additional weekly watering. In years 2 and 3 of the trial, soil and watering treatments were maintained. Roots of soybean ‘Williams 82’ were collected for necrosis ratings at the full seed growth stage R6. Foliar symptoms of SDS (area under the disease progress curve, AUDPC), root necrosis, and seed yield parameters were related to population densities of H. glycines and the relative DNA concentrations of F. virguliforme in the roots and soil. The specific and sensitive real time qPCR was used. Data from microplots were introduced into models of AUDPC, root necrosis, and seed yield parameters with the frequency of H. glycines and F. virguliforme, and among each other. The models confirmed the close interrelationship of H. glycines with the development of SDS, and allowed for predictions of disease risk based on populations of these two pathogens in soil. Conclusions/Significance The results modeled the synergistic interaction between H. glycines and F. virguliforme quantitatively in previously infested field plots and explained previous findings of their interaction. Under these conditions, F. virguliforme was mildly aggressive and depended on infection of H. glycines to cause highly

  9. Radiation induced mutagenesis in soybean (Glycine Max L. Merrill)

    International Nuclear Information System (INIS)

    Wakode, M.M.; Nandanwar, R.S.; Patil, G.P.

    2000-01-01

    The mutagenic effects of gamma rays (10, 20 and 30 kR) on some biological parameter in M1 generation and frequency and spectrum of chlorophyll and morphological mutations in five cultivars of soybean viz. JS-8021, JS-335, JS- 7105, Monetta and PKV -1 have been studied. A dose dependant decrease was noticed in most of the characters like root length, shoot length, germination, plant height, plant survival and pollen sterility. While seedling height, number of seeds per pod and number of branches per plant were not affected significantly. The highest frequency and spectrum of chlorophyll and morphological mutations was noticed in variety JS-8021 in which 20 different gene loci for various characters were mutated. However variety JS- 7105 showed less radio sensitive response for different traits in which only 12 different loci were mutated. While JS-335, monetta and PKV-I showed moderate response to frequency and spectrum of various mutations. These varieties showed differential response to radio sensitivity, some useful mutations included, high yielding mutant in 20 kR, non shattering mutant in 30 kR and vine type mutant in 10 kR in variety monetta. Extra early type, erect and high branched type mutant were recorded with high frequency in 10 and 20 kR respectively in variety JS-8021. In general, 20 kR dose was found more effective in all the varieties studied. (author)

  10. HERITABILITAS, NISBAH POTENSI, DAN HETEROSIS KETAHANAN KEDELAI (Glycine max [L.] Merrill TERHADAP SOYBEAN MOSAIC VIRUS

    Directory of Open Access Journals (Sweden)

    Nyimas Sa’diyah

    2016-10-01

    Full Text Available Heritability, potential ratio, and heterosis of soybean (Glycine max [L.] Merrill resistance to soybean mosaic virus. The use of soybean cultivars with resistance to SMV is a way for controlling soybean mosaic disease. The objective of this research was to estimate the disease severity, the narrow sense heritability, potential ratio and heterosis of resistance character and number of pithy pods, number of healthy seeds, and healthy seeds weight per plant of ten F1 populations of soybean crossing result to SMV infection. The experiment was arranged in a randomized complete block design in two replications. Observed characters were disease severity, number of pithy pods, number of healthy seeds, and healthy seeds weight per plant. The result of this research showed that 1 the crossing combinations those which were resistant to SMV (lower disease severity were Yellow Bean x Tanggamus, Tanggamus x Orba, and Tanggamus x Taichung, 2 the narrow sense heritability of disease severity was included in medium criteria, 3 number of pithy pods belonged to high criteria, and 4 number of healthy seeds and healthy seeds weight per plant were included in low criteria. The crossing combinations that had low estimation value of heterosis and heterobeltiosis of resistance to SMV infection were Yellow Bean x Taichung, Bean x Tanggamus and Tanggamus x B3570. Disease severity or resistance to SMV is influenced by genetic and environmental factors.

  11. Management of the soybean cyst nematode Heterodera glycines with combinations of different rhizobacterial strains on soybean.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhou

    Full Text Available Soybean cyst nematode (SCN is the most damaging soybean pest worldwide. To improve soybean resistance to SCN, we employed a soybean seed-coating strategy through combination of three rhizobacterial strains, including Bacillus simple, B. megaterium and Sinarhizobium fredii at various ratios. We found seed coating by such rhizobacterial strains at a ratio of 3:1:1 (thereafter called SN101 produced the highest germination rate and the mortality of J2 of nematodes. Then, the role of soybean seed coating by SN101 in nematode control was evaluated under both greenhouse and two field conditions in Northeast China in 2013 and 2014. Our results showed that SN101 treatment greatly reduced SCN reproduction and significantly promoted plant growth and yield production in both greenhouse and field trials, suggesting that SN101 is a promising seed-coating agent that may be used as an alternative bio-nematicide for controlling SCN in soybean fields. Our findings also demonstrate that combination of multiple rhizobacterial strains needs to be considered in the seed coating for better management of plant nematodes.

  12. Nutrient Management practices for enhancing Soybean (Glycine max L. production

    Directory of Open Access Journals (Sweden)

    FARID A. HELLAL

    2013-05-01

    La soya (Glycine max L., es el cultivo de legumbres más importante en el mundo. La magnitud de las pérdidas en el rendimientode la soya debido a deficiencias varía dependiendo de los nutrientes. Las deficiencias de N, P, Fe, B y S pueden causar pérdidas en rendimiento de hasta 10 %, 29-45 %, 22-90 %, 100 % y 16-30 %, respectivamente, en la soya dependiendo de la fertilidad del suelo, clima y factores intrínsecos a las plantas. La textura de los suelos utilizados en el cultivo de soya varía entre arenosa y arcillosa. La salinidad del suelo es uno de los mayores factores limitantes en la producción del cultivo en regiones semiáridas, y la salinidad por cloro tiene un mayor efecto en la disminución del rendimiento que la salinidad por sulfatos. Los granos de soya son una gran fuente de energía que contienen 40 % de proteína y 19 % de aceite. El éxito del manejo de nutrientes es maximizar la productividad del cultivo mientras se minimizan los impactos ambientales. Las prácticas de manejo de nutrientes balanceadas y reguladas en el tiempo contribuyen a un crecimiento sostenido del rendimiento y la calidad, influencian la salud de las plantas y reducen los riesgos ambientales. Una nutrición balanceada con fertilizantes minerales puede ayudar en el manejo integrado de plagas para reducir los daños causados por las infestaciones de pestes y enfermedades y reducir los insumos requeridos para su control. Una fertilización balanceada genera mayores ganancias para los agricultores, no necesariamente por reducción de los insumos. El papel de la educación y la extensión en la difusión del conocimiento actual sobre manejo de nutrientes es crucial, desafiante y continuo.

  13. THE EFFECT OF SOME RHIZOBACTERIAN STRAINS ON SOLUBLE PROTEINS CONTENT IN SOYBEANS (GLYCINE MAX L. MERR.

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2007-08-01

    Full Text Available Now it is an accepted fact that plant growth-promoting rhizobacteria (PGPR can increase the productivity of several crops. The main objective of the present study was to find if there are any differences in protein content in the seeds of soybean (Glycine max L. MERR.. Using spectrophotometric methods for analyzing the protein contents and electrophoretic methods for qualitative analysis it was observed that no major modifications occur in protein spectrum. Looking at the quantitative side there was a small improvement in protein quantity.

  14. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.)

    OpenAIRE

    Mohammad Reza Mahmoodabadi; Abdol-majid Ronaghi; Mehdi Khayyat; Gholamreza Hadarbadi

    2009-01-01

      There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L.) was evaluat...

  15. Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2 BC3 and fertile soybean plants

    Science.gov (United States)

    The genetic resources of the 26 species of the subgenus Glycine have not been exploited to broaden the genetic base of soybean (Glycine max; 2n = 40). Initially, we hybridized eight soybean cultivars with six accessions of 78- and one accession of 40-chromosome G. tomentella. One accession of G. arg...

  16. Characterization of Natural and Simulated Herbivory on Wild Soybean (Glycine soja Seib. et Zucc. for Use in Ecological Risk Assessment of Insect Protected Soybean.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Goto

    Full Text Available Insect-protected soybean (Glycine max (L. Merr. was developed to protect against foliage feeding by certain Lepidopteran insects. The assessment of potential consequences of transgene introgression from soybean to wild soybean (Glycine soja Seib. et Zucc. is required as one aspect of the environmental risk assessment (ERA in Japan. A potential hazard of insect-protected soybean may be hypothesized as transfer of a trait by gene flow to wild soybean and subsequent reduction in foliage feeding by Lepidopteran insects that result in increased weediness of wild soybean in Japan. To assess this potential hazard two studies were conducted. A three-year survey of wild soybean populations in Japan was conducted to establish basic information on foliage damage caused by different herbivores. When assessed across all populations and years within each prefecture, the total foliage from different herbivores was ≤ 30%, with the lowest levels of defoliation (< 2% caused by Lepidopteran insects. A separate experiment using five levels of simulated defoliation (0%, 10%, 25%, 50% and 100% was conducted to assess the impact on pod and seed production and time to maturity of wild soybean. The results indicated that there was no decrease in wild soybean plants pod or seed number or time to maturity at defoliation rates up to 50%. The results from these experiments indicate that wild soybean is not limited by lepidopteran feeding and has an ability to compensate for defoliation levels observed in nature. Therefore, the potential hazard to wild soybean from the importation of insect-protected soybean for food and feed into Japan is negligible.

  17. Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L. and Millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Goudarz Ahmadvand

    2016-03-01

    Full Text Available Intercropping is considered for increasing and stability of yield in per unit. In order to study the effects of soybean (Glycine max L. and millet (Panicum miliaceum L. replacement intercropping on agronomic traits, diversity of weeds and soil biological activity, an experiment was conducted at the Research Station of Agricultural Faculty, of Bu-Ali Sina University, in 2014. The experiment was carried out as a randomized complete block design with three replications. The replacement intercropping series consisted of monoculture of soybean, monoculture of millet, 75% soybean+ 25% millet, 50% soybean+ 50% millet and 25% soybean+ 75% millet. The results showed that the highest seed yield of 219.8 and 171.9 gm-2 belonged to monoculture of soybean and monoculture of millet, respectively. Intercropping reduced maximum leaf area index of soybean and millet but leaf chlorophyll content of soybean and millet were increased. The highest number of pods per plant, number of seeds per plant in soybean and panicle number per plant in millet were obtained in 50S:50M ratio. Mean soil respiration rate in intercropping treatments was 4 and 8 % higher than the monoculture of soybean and millet, respectively. Intercropping patterns of 50S:50M and 25S:75M were successful in reducing weed plant density and diversity in comparison with soybean monoculture. Results showed that in all intercropping treatments, land equivalent ratio was more than one. Maximum value of land equivalent ratio (2.20 was achieved in 50S:50M treatment. Soybean and millet intercropping at different levels of replacement, didn’t have actual yield loss. Calculating the aggressivity showed that millet was more dominate than soybean. The maximum relative crowding coefficient of soybean was observed in 75S:25M, however that of millet was obtained in 25S:75M and 50S:50M intercroppings indicating that millet is more competitor than soybean.

  18. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    International Nuclear Information System (INIS)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts. - Highlights: ► Investigated the germination rate and the sprouts length after irradiation. ► Indicated the effect of irradiation on the antioxidants of the soybean sprouts. ► Evaluated the visual and olfactory quality of irradiated samples.

  19. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana and soybean (glycine max

    Directory of Open Access Journals (Sweden)

    Sandra Patricia Chaparro Acuña

    2012-03-01

    Full Text Available Physicochemical characteristics and functional properties of vitabosa flour (Mucuna deeringiana and soybean flour (Glycine max were determined. Oil absorption capacity was higher in vitabosa. Water absorption capacity was higher in soy and it was affected by the change in the ionic strength of the medium. Emulsifying Activity (EA decreased with increasing concentration of flour, while Emulsifying Stability (ES showed an increased. EA and ES of flours have more ionic strength in the range between 0.0 and 0.4 M, but it is reduced afterwards with the higher concentration of NaCl. Foaming stability varied with the concentration of flour solution reaching maximum values of 39 and 33% for vitabosa and soybean, respectively at 10% flour concentration.Vitabosa had the best foaming capacity (56% to 0.6 M compared with soybeans (47% to 0.4 M. Maximum capacity of gelation was observed in vitabosa at 10% flour concentration. Increases in ionic strength of the flour solution, at low salt concentrations (<0.4 M, improved the gelation of flours.

  20. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    Science.gov (United States)

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on s...

  1. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  2. Overexpression of four Arabidopsis thaliana NHLgenes in soybean (Glycine max) roots and their effect over resistance to the soybean cyst nematode (Heterodera glycines)

    Science.gov (United States)

    In the US, the soybean cyst nematode (SCN) is the most destructive pathogen of soybean. Currently grown soybean varieties are not resistant to all field populations of SCN. We genetically engineered soybean roots so they expressed genes from the model plant, Arabidopsis. When the Arabidopsis genes, ...

  3. Effects of soil tillage on the energy budget of soybean (Glycine max (L.) Merr.)

    International Nuclear Information System (INIS)

    Casa, R.; Cascio, B. lo

    1997-01-01

    The different terms of the energy budget were measured by the Bowen ratio method on soybean (Glycine max (L.) Merr.) grown on a conventional tillage and a direct drilling system. The differences found in the energy budgets varied according to the degree of fractional ground cover and of soil water availability. Soil heat flux was greater for the direct drilling treatment, although soil heating was slower as compared to the conventional tillage. Comparisons for well watered and dry conditions revealed that the conventional tillage system used as latent heat a fraction of net radiation greater than the direct drilling treatment only in well watered conditions. In dry conditions the differences in latent heat fluxes and canopy resistances between the two tillage systems were smaller [it

  4. Variability and transmission by Aphis glycines of North American and Asian Soybean mosaic virus isolates.

    Science.gov (United States)

    Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L

    2003-10-01

    The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.

  5. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  6. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Yun, Juan; Li, Xihong; Fan, Xuetong; Li, Weili; Jiang, Yuqian

    2013-01-01

    In this study, soybean seeds and sprouts (Glycine max L. Merrill) were exposed to radiation doses up to 3.0 kGy. The irradiated and non-irradiated seeds were germinated, and then germination rate, sprouts length, vitamin C content, antioxidants and visual and olfactory quality were determined after irradiation. Results indicated that there was no significant difference in the germination rate and sprouts length between the control and 0.3 kGy treated soybeans, however, the reductions in sprouts length of the 1.0 kGy and 3.0 kGy treated samples were quite significant with reductions of 20.4% and 58.8%, respectively. Irradiated sprouts had similar visual and olfactory quality as the non-irradiated one. Therefore, irradiation of seeds alone would have limited value in terms of commercial use due to reduced germination and length of sprouts. However, irradiation of sprouts at doses up to 3.0 kGy was feasible to enhance microbial safety of sprouts.

  7. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    Science.gov (United States)

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  8. Effects of glyphosate on the mineral content of glyphosate-resistant soybeans (Glycine max).

    Science.gov (United States)

    Duke, Stephen O; Reddy, Krishna N; Bu, Kaixuan; Cizdziel, James V

    2012-07-11

    There are conflicting claims as to whether treatment with glyphosate adversely affects mineral nutrition of glyphosate-resistant (GR) crops. Those who have made claims of adverse effects have argued links between reduced Mn and diseases in these crops. This article describes experiments designed to determine the effects of a recommended rate (0.86 kg ha(-1)) of glyphosate applied once or twice on the mineral content of young and mature leaves, as well as in seeds produced by GR soybeans (Glycine max) in both the greenhouse and field using inductively coupled plasma mass spectrometry (ICP-MS). In the greenhouse, there were no effects of either one application (at 3 weeks after planting, WAP) or two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves sampled at 6, 9, and 12 WAP and in harvested seed. Se concentrations were too low for accurate detection in leaves, but there was also no effect of glyphosate applications on Se in the seeds. In the field study, there were no effects of two applications (at 3 and 6 WAP) of glyphosate on Ca, Mg, Mn, Zn, Fe, Cu, Sr, Ba, Al, Cd, Cr, Co, or Ni content of young or old leaves at either 9 or 12 WAP. There was also no effect on Se in the seeds. There was no difference in yield between control and glyphosate-treated GR soybeans in the field. The results indicate that glyphosate does not influence mineral nutrition of GR soybean at recommended rates for weed management in the field. Furthermore, the field studies confirm the results of greenhouse studies.

  9. Mutants obtained by chronic gamma irradiation of soybean [Glycine Max (l.) Merrill]varieties

    International Nuclear Information System (INIS)

    Hajos Novak, M; Korosi, F.; Sipos, T.; Hodosne Kotvics, G.

    2001-01-01

    Soybean [Glycine max (L.) Merrill] is a wonder crop, containing about 20% oil and 40% high quality protein, having multiple uses such as food, fodder and industrial products. In Hungary in he last few years there has been a renewed interest in improving protein and oil content of the soybean crop. Selection for oil and/or protein content from segregating populations, derived from induced mutagenesis or hybridization, is known to be effective. Orf and Helms (1994) emphasized, that to fulfill demands of both sellers and purchasers, combined selection for yield components, yield, oil and/or protein content has to be carried out. For this purpose mutant soybean germplasm s were developed by pedigree method from a Carpathian-Ukrainian (KA) further more a Vietnamese (VL40) local variety adapted to Hungarian environmental conditions by 100-300 Gy chronic gamma irradiation. A function index was introduced to evaluate the genetic variability for the quality parameters and the most important agronomic traits. Chronic gamma irradiation increased the genetic variability of the oil content in the KA and of the protein content in the VL40 germplasm. Function index predicted up to 28% oil content in the KA mutant germplasm. Plants with 24.1 and 23.6% oil content were selected from the 150 Gy and the 100 Gy populations in the M4 generation. In the M5, progenies of a superior plant with 23.6% oil content were homozygous for this characteristics, while progenies of a superior plant with 24.1% oil content were segregating. Year can cause +-2.0-2.5% differences in the oil content of the seeds. Oil content had a moderate negative correlation with 1000-seed weight in both of the above mentioned generations .Seed samples with the highest oil content were analysed for fatty acid composition using gas-liquid chromatography. Their linoleic acid content ranged from 51.8 to 55.0%. Unfortunately, in M5 the linolenic acid content was higher than in M4, varying between 7.9% and 9.3%. The 200 Gy

  10. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  11. Glyphosate-tolerant soybeans remain compositionally equivalent to conventional soybeans (Glycine max L.) during three years of field testing.

    Science.gov (United States)

    McCann, Melinda C; Liu, Keshun; Trujillo, William A; Dobert, Raymond C

    2005-06-29

    Previous studies have shown that the composition of glyphosate-tolerant soybeans (GTS) and selected processed fractions was substantially equivalent to that of conventional soybeans over a wide range of analytes. This study was designed to determine if the composition of GTS remains substantially equivalent to conventional soybeans over the course of several years and when introduced into multiple genetic backgrounds. Soybean seed samples of both GTS and conventional varieties were harvested during 2000, 2001, and 2002 and analyzed for the levels of proximates, lectin, trypsin inhibitor, and isoflavones. The measured analytes are representative of the basic nutritional and biologically active components in soybeans. Results show a similar range of natural variability for the GTS soybeans as well as conventional soybeans. It was concluded that the composition of commercial GTS over the three years of breeding into multiple varieties remains equivalent to that of conventional soybeans.

  12. Evaluation of the Protective Role of Glycine max Seed Extract (Soybean Oil) in Drug-Induced Nephrotoxicity in Experimental Rats.

    Science.gov (United States)

    Ramasamy, Anand; Jothivel, Nandhakumar; Das, Saibal; Swapna, A; Albert, Alice Padmini; Barnwal, Preeti; Babu, Dinesh

    2017-09-28

    This study was conducted to evaluate the nephroprotective effect of Glycine max seed extract (soybean oil) against gentamicin- and rifampicin-induced nephrotoxicity in Sprague-Dawley rats and to compare its effects with those of vitamin E, which has well-established antioxidant and nephroprotective effects. Sixty male Sprague-Dawley rats (body weight 150-210 g) were divided into 10 groups. The first five groups were treated for 14 consecutive days with normal saline (5 ml/kg, by mouth [p.o.]); gentamicin (80 mg/kg intraperitoneally [i.p.]); gentamicin (80 mg/kg, i.p.) + vitamin E (250 mg/kg p.o.); gentamicin (80 mg/kg i.p.) + soybean oil (2.5 ml/kg p.o.); and gentamicin (80 mg/kg, i.p.) + soybean oil (5 ml/kg p.o.), respectively. For the next five groups, the same group allocation was done, but gentamicin was replaced with rifampicin (1 g/kg i.p.). Various biomarkers for nephrotoxicity in serum and urine were evaluated along with histopathological examination of kidneys. Analysis of variance (ANOVA) was done following Tukey's multiple comparison test; p Soybean oil in both doses significantly (p Soybean oil also showed strong antioxidant effects, causing significant (p Soybean oil demonstrated good nephroprotective activity due to antioxidant effects.

  13. Sulphur dioxide metabolism in soy-bean, Glycine max var. biloxi

    International Nuclear Information System (INIS)

    Garsed, S.G.; Read, D.J.

    1977-01-01

    First-trifoliate leaves of soybeans Glycine max (L.) Merr. were exposed to 35 SO 2 in the light or dark, and the chemical distribution of the radioactivity in the source leaves and in the remainder of the plant was determined after 1.5 and 24 h. Only 35 SO 4 2- was found in leachates in the light but substantial quantities of 35 SO 3 2- were present in the dark. Radioactivity was present in all fractions of the source leaves examined (insoluble, centrifuge pellet, soluble protein, chloroform-soluble and water-soluble). The main water-soluble compounds labelled were sulphate >glutathione >cysteine. Small quantities of sulphite were also recovered in the dark but not in the light. The ratio of soluble: insoluble radioactivity in the sink tissues was influenced more by leaf age than by light treatment. Sulphate, glutathione and cysteine were labelled in the petioles of the source leaves and 35 SO 4 2- was found in the nutrient solution after 1.5 h in both treatments. It is concluded that light is not necessary for the reduction of internal 35 SO 2 products. The results are discussed in relation to current knowledge of SO 2 metabolism. (author)

  14. EFFECTS OF ZEOLITE AND CADMIUM ON GROWTH AND CHEMICAL COMPOSITION OF SOYBEAN (Glycine max L.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mahmoodabadi

    2009-04-01

    Full Text Available   There are areas in the world which are polluted by trace metals some of which may not be degraded by biotic process. Some of these metals might enter into surface and/or underground water resources thus causing serious human and animal health problems. In recent years, natural amendments, such as the use of zeolite, have been widely used to address trace metals contamination. In the present study the effect of zeolite on the growth and nodulation of soybean (Glycine max L. was evaluated. Treatments consisted on factorial combination of three levels of zeolite (0, 2 and 5 g kg-1 and three levels of cadmium (0, 10 and 50 mg kg-1. Cadmium application significantly decreased shoot and root dry weight while its concentration in plant parts was increased. In addition, cadmium application decreased number and dry weight of nodules, and N, K, and Mn concentrations. On the other hand, zeolite application markedly increased number and dry weight of nodules and N, P, K concentrations in shoot, Mn and Cu concentrations in shoot and root. The results from the present study can be used for predicting the efficiency of zeolite application for the remediation of contaminated soils.

  15. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  16. Comparative phytochemical profiling of different soybean (Glycine max (L. Merr genotypes using GC–MS

    Directory of Open Access Journals (Sweden)

    Salem S. Alghamdi

    2018-01-01

    Full Text Available This study aimed to estimate the proximate, phenolic and flavonoids contents and phytochemicals present in seeds of twenty four soybeans (Glycine max (L. Merr genotypes to explore their nutritional and medicinal values. Crude protein composition ranged between 35.63 and 43.13% in Argentinian and USA (Clark genotypes, respectively. Total phenolic content varied from 1.15 to 1.77 mg GAE/g, whereas flavonoids varied from 0.68 to 2.13 mg QE/g. The GC–MS analysis resulted identification of 88 compounds categorized into aldehydes (5, ketones (13, alcohols (5, carboxylic acids (7, esters (13, alkanes (2, heterocyclic compounds (19, phenolic compound (9, sugar moiety (7 ether (4 and amide (3, one Alkene and one fatty acid ester. Indonesian genotypes (Ijen and Indo-1 had the highest phenolic compounds than others genotype having antioxidant activities, while the Australian genotype contains the maximum in esters compounds. The major phytocompounds identified in majority of genotypes were Phenol, 2,6-dimethoxy-, 2-Methoxy-4-vinylphenol, 3,5-Dimethoxyacetophenone, 1,2-cyclopentanedione and Hexadecanoic acid, methyl ester. The presence of phytochemicals with strong pharmacological actions like antimicrobial and antioxidants activities could be considered as sources of quality raw materials for food and pharmaceutical industries. This study further set a platform for isolating and understanding the characteristics of each compound for it pharmacological properties.

  17. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max).

    Science.gov (United States)

    Zhang, Jiaoping; Song, Qijian; Cregan, Perry B; Jiang, Guo-Liang

    2016-01-01

    Twenty-two loci for soybean SW and candidate genes conditioning seed development were identified; and prediction accuracies of GS and MAS were estimated through cross-validation and validation with unrelated populations. Soybean (Glycine max) is a major crop for plant protein and oil production, and seed weight (SW) is important for yield and quality in food/vegetable uses of soybean. However, our knowledge of genes controlling SW remains limited. To better understand the molecular mechanism underlying the trait and explore marker-based breeding approaches, we conducted a genome-wide association study in a population of 309 soybean germplasm accessions using 31,045 single nucleotide polymorphisms (SNPs), and estimated the prediction accuracy of genomic selection (GS) and marker-assisted selection (MAS) for SW. Twenty-two loci of minor effect associated with SW were identified, including hotspots on Gm04 and Gm19. The mixed model containing these loci explained 83.4% of phenotypic variation. Candidate genes with Arabidopsis orthologs conditioning SW were also proposed. The prediction accuracies of GS and MAS by cross-validation were 0.75-0.87 and 0.62-0.75, respectively, depending on the number of SNPs used and the size of training population. GS also outperformed MAS when the validation was performed using unrelated panels across a wide range of maturities, with an average prediction accuracy of 0.74 versus 0.53. This study convincingly demonstrated that soybean SW is controlled by numerous minor-effect loci. It greatly enhances our understanding of the genetic basis of SW in soybean and facilitates the identification of genes controlling the trait. It also suggests that GS holds promise for accelerating soybean breeding progress. The results are helpful for genetic improvement and genomic prediction of yield in soybean.

  18. The influence of Lasius neoniger (Hymenoptera: Formicidae) on population growth and biomass of Aphis glycines (Hemiptera: Aphididae) in soybeans.

    Science.gov (United States)

    Schwartzberg, Ezra G; Johnson, D W; Brown, G C

    2010-12-01

    In the United States, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are often tended by the aphid-tending ant, Lasius neoniger Emery (Hymenoptera: Formicidae). In this study, we examined the effects of tending by ants on the density and biomass of soybean aphids on soybeans in Kentucky. We performed cage studies that limited access by ants and/or natural enemies. We used a split-plot design with natural enemy access as the main plot and ant attendance as the sub plot. We found that natural enemy access negatively affected aphid population density in the presence of tending ants, seen as a three- to four-fold increase in aphid density when natural enemies were excluded. In addition, we found that ant tending positively affected aphid biomass, both when natural enemies were given access to aphids or when natural enemies were excluded, seen by a two-fold increase in aphid biomass when ants tended aphids, both in the presence or absence of natural enemies. Biomass accumulation is seen as an important measurement for assessing aphid performance, and we argue that aphid-tending by ants can have an influence on natural field populations of soybean aphids. Agronomic practices that affect ant abundance in soybeans may influence the performance and hence pest outbreaks for this economically important pest. © 2010 Entomological Society of America

  19. Vermiculite's strong buffer capacity renders it unsuitable for studies of acidity on soybean (Glycine max L.) nodulation and growth.

    Science.gov (United States)

    Indrasumunar, Arief; Gresshoff, Peter M

    2013-11-14

    Vermiculite is the most common soil-free growing substrate used for plants in horticultural and scientific studies due to its high water holding capacity. However, some studies are not suitable to be conducted in it. The described experiments aimed to test the suitability of vermiculite to study the effect of acidity on nodulation and growth of soybean (Glycine max L.). Two different nutrient solutions (Broughton & Dilworth, and modified Herridge nutrient solutions) with or without MES buffer addition were used to irrigate soybean grown on vermiculite growth substrates. The pH of nutrient solutions was adjusted to either pH 4.0 or 7.0 prior its use. The nodulation and vegetative growth of soybean plants were assessed at 3 and 4 weeks after inoculation. The unsuitability of presumably inert vermiculite as a physical plant growth substrate for studying the effects of acidity on soybean nodulation and plant growth was illustrated. Nodulation and growth of soybean grown in vermiculite were not affected by irrigation with pH-adjusted nutrient solution either at pH 4.0 or 7.0. This was reasonably caused by the ability of vermiculite to neutralise (buffer) the pH of the supplied nutrient solution (pH 2.0-7.0). Due to its buffering capacity, vermiculite cannot be used as growth support to study the effect of acidity on nodulation and plant growth.

  20. Analysis of embryo, cytoplasm and maternal effects on fatty acid components in soybean (Glycine max Merill.)

    Institute of Scientific and Technical Information of China (English)

    NING Hailong; LI Wenxia; LI Wenbin

    2007-01-01

    The quality of oil determined by the constituents and proportion of fatty acid components,and the understanding of heredity of fatty acid components are of importance to breeding good quality soybean varieties.Embryo,cytoplasmic and maternal effects and genotype×environment interaction effects for quality traits of soybean [Glycine max (L.) Merrill.] seeds were analyzed using a general genetic model for quantitative traits of seeds with parents,F1 and F2,of 20 crosses from a diallel mating design of five parents planted in the field in 2003 and 2004 in Harbin,China.The interaction effects of palmitic,stearic,and linoleic acid contents were larger than the genetic main effects,while the genetic main effects were equal to interaction effects for linolenic and oleic acid content.Among all kinds of genetic main effects,the embryo effects were the largest for palmitic,stearic,and linoleic acids,while the cytoplasm effects were the largest for oleic and linolenic acids.Among all kinds of interaction effects,the embryo interaction effects were the largest for fatty acids.The sum of additive and additive× environment effects were larger than that of dominance and dominance×environment effects for the linolenic acid content,but not for other quality traits.The general heritabilities were the main parts of heritabilities for palmitic and oleic acid contents,but the interaction was more important for stearic,linoleic,and linolenic acid contents.For the general heritability,maternal and cytoplasm heritabilities were the main components for palmitic,oleic,and linolenic acid contents.It was shown for the interaction heritabilities that the embryo interaction heritabilities were more important for oleic and linolenic acid contents,while the maternal interaction heritabilities were more important for linoleic acid content.Among selection response components,the maternal and cytoplasm general responses and/or interaction responses were more important for palmitic

  1. Effect of gamma irradiation on microbial load, physicochemical and sensory characteristics of soybeans (Glycine max L. Merrill)

    International Nuclear Information System (INIS)

    Yun Juan; Li Xihong; Fan Xuetong; Tang Yao; Xiao Yao; Wan Sen

    2012-01-01

    Gamma irradiation is highly effective in inactivating microorganisms in various foods and offers a safe alternative method of food decontamination. In the present study, soybeans (Glycine max L. Merrill) were treated with 0, 1.0, 3.0, 5.0 and 10.0 KGy of gamma irradiation. Microbial populations on soybeans, isoflavone, tocopherol contents, raffinose family oligosaccharides, color and sensory properties were evaluated as a function of irradiation dose. The results indicated that gamma irradiation reduced aerobic bacterial and fungal load. Irradiation at the doses applied did not cause any significant change (p>0.05) in the contents of isoflavone of soybeans, but decreased tocopherol contents. The content of key flatulence-producing raffinose family oligosaccharides in irradiated soybeans (10.0 kGy) decreased by 82.1% compared to the control. Sensory analysis showed that the odor of the soybeans was organoleptically acceptable at doses up to 5.0 kGy and no significant differences were observed between irradiated and nonirradiated samples in flavor, texture and color after irradiation. - Highlights: ► The objective of this study concerns the elimination of microbial load factors at different radiation dose (0.0, 1.0, 3.0, 5.0 and 10.0 kGy). ► Investigated the degradation of the gamma irradiation on the reduction of flatulence-causing. ► Indicated the effect of irradiation on the isoflavone and tocopherol contents of the soybeans. ► Evaluated the effect of the gamma irradiation on the sensory properties of soybeans.

  2. Plant regeneration from cotyledons of mature soybean (Glycine max L.) Wilis cultivar using gamma rays

    International Nuclear Information System (INIS)

    Hutabarat, D.; Ratna, R.

    1999-01-01

    Soybean Wilis cultivar was efficiently regenerated in vitro via somatic embryogenesis. Cotyledonary explants were excised from mature germinating seeds. Seeds were germinated on agar solution and on B5 medium enriched with 5 ppm BA, 0.25 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Cotyledonary nodes from both germinating seeds were excised and cultured on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate. Age of seedlings had a remarkable influence on shoot regeneration. Cotyledon from seeds germinated on agar solution with light gave better result in shoot regeneration compare with those germinated in darkness. The highest number of regenerants per explants (5 shoots) was produced by cotyledon from seeds germinated on B5 medium enriched with 5 ppm IBA and 500 ppm casein hydrolyzate in darkness. The seeds of soybean were exposed to gamma-rays doses 10 Gy then germinated on B5 medium enriched with 5 ppm BA, 0.25 ppm IBA and 500 ppm casein hydrolyzate did not improve the number of plant regeneration. Only 5-day-old seedlings from seeds were exposed to gamma-rays dose 30 Gy could improve the number of shoot regeneration, one of the cotyledonary node treated produced 21 regeneration shoots

  3. Initial organic products of fixation of [13N]dinitrogen by root nodules of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Meeks, J.C.; Wolk, C.P.; Schilling, N.; Shaffer, P.W.; Avissar, Y.; Chien, W.S.

    1978-01-01

    When detached soybean Glycine max (L.) Merr. cv. Hark, nodules assimilate ( 13 N)N 2 , the initial organic product of fixation is glutamine; glutamate becomes more highly radioactive than glutamine within 1 minute; 13 N in alanine becomes detectable at 1 minute of fixation and increases rapidly between 1 and 2 minutes. After 15 minutes of fixation, the major 13 N-labeled organic products in both detached and attached nodules are glutamate and alanine, plus, in the case of attached nodules, an unidentified substance, whereas ( 13 N)glutamine comprises only a small fraction of organic 13 N, and very little 13 N is detected in asparagine. The fixation of ( 13 N)N 2 into organic products was inhibited more than 99 percent by C 2 H 2 (10 percent, v/v). The results support the idea that the glutamine synthetase-glutamate synthase pathway is the primary route for assimilation of fixed nitrogen in soybean nodules

  4. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis.

    Science.gov (United States)

    Patil, Gunvant; Valliyodan, Babu; Deshmukh, Rupesh; Prince, Silvas; Nicander, Bjorn; Zhao, Mingzhe; Sonah, Humira; Song, Li; Lin, Li; Chaudhary, Juhi; Liu, Yang; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-07-11

    SWEET (MtN3_saliva) domain proteins, a recently identified group of efflux transporters, play an indispensable role in sugar efflux, phloem loading, plant-pathogen interaction and reproductive tissue development. The SWEET gene family is predominantly studied in Arabidopsis and members of the family are being investigated in rice. To date, no transcriptome or genomics analysis of soybean SWEET genes has been reported. In the present investigation, we explored the evolutionary aspect of the SWEET gene family in diverse plant species including primitive single cell algae to angiosperms with a major emphasis on Glycine max. Evolutionary features showed expansion and duplication of the SWEET gene family in land plants. Homology searches with BLAST tools and Hidden Markov Model-directed sequence alignments identified 52 SWEET genes that were mapped to 15 chromosomes in the soybean genome as tandem duplication events. Soybean SWEET (GmSWEET) genes showed a wide range of expression profiles in different tissues and developmental stages. Analysis of public transcriptome data and expression profiling using quantitative real time PCR (qRT-PCR) showed that a majority of the GmSWEET genes were confined to reproductive tissue development. Several natural genetic variants (non-synonymous SNPs, premature stop codons and haplotype) were identified in the GmSWEET genes using whole genome re-sequencing data analysis of 106 soybean genotypes. A significant association was observed between SNP-haplogroup and seed sucrose content in three gene clusters on chromosome 6. Present investigation utilized comparative genomics, transcriptome profiling and whole genome re-sequencing approaches and provided a systematic description of soybean SWEET genes and identified putative candidates with probable roles in the reproductive tissue development. Gene expression profiling at different developmental stages and genomic variation data will aid as an important resource for the soybean research

  5. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Li, Yang; Duan, Man-Li

    2017-05-01

    Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.

  6. Identification and colonization of endophytic fungi from soybean (Glycine max (L. Merril under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Ida Chapaval Pimentel

    2006-09-01

    Full Text Available A total of 297 endophytic fungi were isolated from 1728 leaf and stem fragments collected about twenty and forty days after germination from soybean (Glycine max (L. Merril plants grown in the field and a greenhouse. The fungi belonged to eight groups, six dematiaceous genera (Alternaria, Cladosporium, Chaetomium, Curvularia, Drechslera and Scopulariopsis and the non-dematiaceous genera Acremonium, Aspergillus, Colletotrichum, Fusarium, Paecilomyces and Penicillium along with some Mycelia sterilia.. There were qualitative and quantitative differences in the type and number of isolates obtained from greenhouse and field-grown plants, with more isolates being obtained from the latter. No difference was found in the number of fungi isolated from leaves and stems irrespective of where the plants was grown. For was field-grown plants, the number of isolates decreased as the plants aged and more fungi were found in tissues near the soil, while for greenhouse-grown plants the number of isolates increased as the plants aged but in this case no more fungi were isolated from those tissues nearer the soil. These results could have biotechnological relevance for the biological control of pests or plant growth promotion.A partir de 1728 fragmentos de hastes e folhas de soja (Glycine max (L. Merril. provenientes de plantas do campo e de casa de vegetação, coletadas cerca de 20 e 40 dias após a germinação das sementes, 297 fungos endofíticos foram isolados. Os gêneros encontrados foram: Alternaria, Cladosporium, Curvularia, Chaetomium, Scopulariopsis, Drechslera (todos dematiáceos além de Colletotrichum, Fusarium, Acremonium, Aspergillus, Penicillium, Paecilomyces e Mycelia sterilia. Foram detectadas diferenças qualitativas e quantitativas entre os isolados, em relação a micobiota de hospedeiros provenientes do campo e de casa de vegetação com maior frequência de fungos isolados de plantas no campo em comparação com as de casa de vegeta

  7. Assessment of endophytic fungi cultural filtrate on soybean seed ...

    African Journals Online (AJOL)

    Soybean seeds have high amount of isoflavones but its germination is often confronted with a variety of environmental problems resulting in low germination rate and growth. To overcome this in eco-friendly manner, we investigated the influence of cultural filtrate (CF) of gibberellins-producing endophytic fungi on soybean ...

  8. Atração e penetração de Meloidogyne javanica e Heterodera glycines em raízes excisadas de soja Attraction and penetration of Meloidogyne javanica and Heterodera glycines in excised soybean roots

    Directory of Open Access Journals (Sweden)

    Hercules Diniz Campos

    2011-09-01

    Full Text Available Com vista ao estudo de atração e penetração de Meloidogyne javanica (Treub Chitwood e Heterodera glycines (Ichinoe em soja (Glycine max L., desenvolveu-se uma técnica empregando-se segmento de raiz com 2cm de comprimento. Nos segmentos de raiz de soja infectados, observou-se que a penetração de juvenis de segundo estádio (J2 de M. javanica ocorre pela coifa seguida de migração entre os feixes vasculares do cilindro central. Juvenis de H. glycines penetraram, aproximadamente, 15mm da coifa. A região seccionada da raiz de soja atraiu três vezes mais J2 de M. javanica do que a região da coifa, mas esta não foi tão atrativa para J2 de H. glycines. A obstrução conjunta da coifa e do local seccionado reduziu (83% a penetração de J2, tanto de M. javanica quanto de H. glycines. Quando apenas um desses locais foi obstruído, a outra extremidade livre compensou o processo atrativo. Portanto, as substâncias atrativas são liberadas por essas extremidades. A penetração de J2 de M. javanica foi maior no segmento de raiz quando comparada com a plântula intacta de soja. Entretanto, os J2 de H. glycines penetraram menos em segmentos de raiz e em plântulas sem folhas, quando comparados com plântulas intactas e com as seccionadas no colo. Portanto, na cultivar de soja "Embrapa 20", a atração e os locais de penetração de J2 de H. glycines e M. javanica são diferenciados. Esta técnica poderá ser útil nos estudos de atração e penetração de outros nematoides endoparasitas.To study the attraction and penetration of Meloidogyne javanica (Treub Chitwood and Heterodera glycines (Ichinoe in soybean (Glycine max L., a technique using 2-cm long root segments was developed. In infected soybean root segments penetration of second stage juveniles (J2 of M. javanica occured through the root cap following migration between the vascular bundles of the central cylinder. Juveniles of H. glycines penetrated about 15mm from the root cap. The cut

  9. Evaluation of replacement intercropping of soybean (Glycine max L. with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. under weed infestation

    Directory of Open Access Journals (Sweden)

    M. Bagheri Shirvan

    2016-05-01

    Full Text Available In order to evaluate intercropping of soybean (Glycine max L. cv. JK with sweet basil (Ocimum basilicum L. and borage (Borago officinalis L. with weed interference, an experiment was performed in randomized complete block design with 12 treatments and three replications at a field located 10 km of Shirvan during year of 2011. The treatments were included 75% soybean: 25%sweet basil, 50%soybean: 50% sweet basil, 25% soybean: 75% sweet basil, 75% soybean: 25% borage, 50% soybean: 50% borage and 25% soybean: 75% borage under weed infestation, in addition sole cropping of plants under weed control and weed interference. Intercropped plants had more success in reduction of weed density and biomass compared to monoculture. Soybean50: sweet basil50, reduced the weed density by 47.95% and 52.9%, and reduced the weed biomass by 68.91% and 61.87% more than sweet basil and soybean pure stand, respectively. Investigation of dry matter accumulation showed that increasing of plant proportion in intercropping caused increasing of plant dry matter. The height of soybean and borage was increased in intercropping and weed interference, while the highest height of sweet basil was observed in monoculture at second harvest. Biological and economical yield of soybean in intercropping with sweet basil was higher than intercropping with borage. The highest harvest index was related to 50:50 soybean: sweet basil ratio. In this ratio, the harvest index increased 4.9% compared to soybean monoculture. Yield of sweet basil and borage decreased with increasing of soybean rows in intercropping. Based on area-time equivalent ratio, soybean 75% with sweet basil and borage 25% (based on borage seed yield had 3% and 4% advantage compared to monoculture.

  10. Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress.

    Science.gov (United States)

    Zhu, Dan; Bai, Xi; Luo, Xiao; Chen, Qin; Cai, Hua; Ji, Wei; Zhu, Yanming

    2013-02-01

    Wild soybean (Glycine soja L. G07256) exhibits a greater adaptability to soil bicarbonate stress than cultivated soybean, and recent discoveries show that TIFY family genes are involved in the response to several abiotic stresses. A genomic and transcriptomic analysis of all TIFY genes in G. soja, compared with G. max, will provide insight into the function of this gene family in plant bicarbonate stress response. This article identified and characterized 34 TIFY genes in G. soja. Sequence analyses indicated that most GsTIFY proteins had two conserved domains: TIFY and Jas. Phylogenetic analyses suggested that these GsTIFY genes could be classified into two groups. A clustering analysis of all GsTIFY transcript expression profiles from bicarbonate stress treated G. soja showed that there were five different transcript patterns in leaves and six different transcript patterns in roots when the GsTIFY family responds to bicarbonate stress. Moreover, the expression level changes of all TIFY genes in cultivated soybean, treated with bicarbonate stress, were also verified. The expression comparison analysis of TIFYs between wild and cultivated soybeans confirmed that, different from the cultivated soybean, GsTIFY (10a, 10b, 10c, 10d, 10e, 10f, 11a, and 11b) were dramatically up-regulated at the early stage of stress, while GsTIFY 1c and 2b were significantly up-regulated at the later period of stress. The frequently stress responsive and diverse expression profiles of the GsTIFY gene family suggests that this family may play important roles in plant environmental stress responses and adaptation.

  11. Floral biology and behavior of Africanized honeybees Apis mellifera in soybean (Glycine max L. Merril

    Directory of Open Access Journals (Sweden)

    Wainer César Chiari

    2005-05-01

    Full Text Available This research was carried out to evaluate the pollination by Africanized honeybees Apis mellifera, the floral biology and to observe the hoarding behavior in the soybean flowers (Glycine max Merril, var. BRS-133. The treatments were constituted of demarcated areas for free visitation of insects, covered areas by cages with a honeybee colony (A. mellifera and also covered areas by cage without insects visitation. All areas had 24 m² (4m x 6m. The soybean flowers stayed open for a larger time (82.82 ± 3.48 hours in covered area without honeybees. The stigma of the flowers was also more receptive (P=0.0021 in covered area without honeybees (87.3 ± 33.0% and at 10:42 o'clock was the schedule of greater receptivity. The pollen stayed viable in all treatments, the average was 99.60 ± 0.02%, which did not present differences among treatments. The percentage of abortion of the flowers was 82.91% in covered area without honeybees, this result was superior (P=0.0002 to the 52.66% and 53.95% of the treatments uncovered and covered with honeybees, respectively. Honeybees were responsible for 87.7% of the pollination accomplished by the insects. The medium amounts of total sugar and glucose measured in the nectar of the flowers were, 14.33 ± 0.96 mg/flower and 3.61 ± 0.36 mg/ flower, respectively, not showing differences (PEste experimento teve como objetivos avaliar a polinização realizada por abelhas Apis mellifera, estudar a biologia floral e observar o comportamento de coleta nas flores de soja (Glycine max L. Merril, variedade BRS-133 plantadas na região de Maringá-PR. Os tratamentos constituíram de áreas demarcadas de livre visitação por insetos, áreas cobertas por gaiolas, com uma colônia de abelhas (A. mellifera no seu interior e plantas também cobertas por gaiola que impedia a visitação por insetos. Todas as áreas possuíam 24 m² (4 m x 6 m. As flores de soja permaneceram abertas por um tempo maior (82,82 ± 3,48 horas no

  12. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    Science.gov (United States)

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  13. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  14. Inorganic phosphorus along with biofertilizers improves profitability and sustainability in soybean (Glycine max–potato (Solanum tuberosum cropping system

    Directory of Open Access Journals (Sweden)

    Sushmita Munda

    2018-04-01

    Full Text Available Present study was conducted to assess role of phosphorus (P fertilization on economics, energy efficiency, P use indices and soil P balance in soybean [Glycine max (L. Merril]–potato (Solanum tuberosum L. cropping system during 2008–09 and 2009–10. Treatments in soybean as main plots consisted of two sources and two levels of phosphorus with or without biofertilizers [phosphorus solubilizing bacteria, PSB and arbuscular mycorrhizae, AM]. Three levels of P were applied to potato as subplots. System productivity was calculated in terms of soybean equivalent yield and found to be better with biofertilizers treated plots. When applied in combination with biofertilizers, 50% recommended dose of P (RDP as diammonium phosphate (DAP recorded B:C ratio at par with 100% RDP. Direct application of 100% RDP to potato resulted in significantly higher returns, enhancing the net returns. Application of biofertilizers alone increased the energy use efficiency over no biofertilizer application. Irrespective of source (DAP or rock phosphate treatments with biofertilizers had improved P use indices and apparent soil P balance even at 50% RDP. This indicates the role of biofertilizers in P solubilization and making it available to plant. Biofertilizers application can help cutting down the fertilizer P application in soybean–potato cropping system without any considerable reduction in yield and economic returns. Keywords: AM, B:C ratio, P use indices, PSB, Rock phosphate, Agronomic use efficiency

  15. Meta-Analyses of QTLs Associated with Protein and Oil Contents and Compositions in Soybean [Glycine max (L.) Merr.] Seed.

    Science.gov (United States)

    Van, Kyujung; McHale, Leah K

    2017-06-01

    Soybean [ Glycine max (L.) Merr.] is a valuable and nutritious crop in part due to the high protein meal and vegetable oil produced from its seed. Soybean producers desire cultivars with both elevated seed protein and oil concentrations as well as specific amino acid and fatty acid profiles. Numerous studies have identified quantitative trait loci (QTLs) associated with seed composition traits, but validation of these QTLs has rarely been carried out. In this study, we have collected information, including genetic location and additive effects, on each QTL for seed contents of protein and oil, as well as amino acid and fatty acid compositions from over 80 studies. Using BioMercator V. 4.2, a meta-QTL analysis was performed with genetic information comprised of 175 QTLs for protein, 205 QTLs for oil, 156 QTLs for amino acids, and 113 QTLs for fatty acids. A total of 55 meta-QTL for seed composition were detected on 6 out of 20 chromosomes. Meta-QTL possessed narrower confidence intervals than the original QTL and candidate genes were identified within each meta-QTL. These candidate genes elucidate potential natural genetic variation in genes contributing to protein and oil biosynthesis and accumulation, providing meaningful information to further soybean breeding programs.

  16. Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology.

    Science.gov (United States)

    Li, Hui; Wang, Pei; Weber, Jonas Felix; Gerhards, Roland

    2017-12-22

    Herbicides may damage soybean in conventional production systems. Chlorophyll fluorescence imaging technology has been applied to identify herbicide stress in weed species a few days after application. In this study, greenhouse experiments followed by field experiments at five sites were conducted to investigate if the chlorophyll fluorescence imaging is capable of identifying herbicide stress in soybean shortly after application. Measurements were carried out from emergence until the three-to-four-leaf stage of the soybean plants. Results showed that maximal photosystem II (PS II) quantum yield and shoot dry biomass was significantly reduced in soybean by herbicides compared to the untreated control plants. The stress of PS II inhibiting herbicides occurred on the cotyledons of soybean and plants recovered after one week. The stress induced by DOXP synthase-, microtubule assembly-, or cell division-inhibitors was measured from the two-leaf stage until four-leaf stage of soybean. We could demonstrate that the chlorophyll fluorescence imaging technology is capable for detecting herbicide stress in soybean. The system can be applied under both greenhouse and field conditions. This helps farmers to select weed control strategies with less phytotoxicity in soybean and avoid yield losses due to herbicide stress.

  17. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek).

    Science.gov (United States)

    María Landete, José; Hernández, Teresa; Robredo, Sergio; Dueñas, Montserrat; de Las Rivas, Blanca; Estrella, Isabel; Muñoz, Rosario

    2015-03-01

    Mung beans (Vigna radiata [L] Wilczek) purchased from a Spanish company as "green soybeans", showed a different phenolic composition than yellow soybeans (Glycine max cv. Merit). Isoflavones were predominant in yellow soybeans, whereas they were completely absent in the green seeds on which flavanones were predominant. In order to enhance their health benefits, both types of bean were subjected to technological processes, such as soaking and fermentation. Soaking increased malonyl glucoside isoflavone extraction in yellow beans and produced an increase in apigenin derivatives in the green beans. Lactobacillus plantarum CECT 748 T fermentation produced an increase in the bioactivity of both beans since a conversion of glycosylated isoflavones into bioactive aglycones and an increase of the bioactive vitexin was observed in yellow and green beans, respectively. In spite of potential consumer confusion, since soybean and "green soybean" are different legumes, the health benefits of both beans were enhanced by lactic fermentation.

  18. Environmental assessment of organic soybean (Glycine max.) imported from China to Denmark

    DEFF Research Database (Denmark)

    Knudsen, Marie Trydeman; Yu-Hui, Qiao; Van, Luo

    2010-01-01

    Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach....... Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional...

  19. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    Science.gov (United States)

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  20. Electronic tongue system to evaluate flavor of soybean (Glycine Max (L. Merrill genotypes

    Directory of Open Access Journals (Sweden)

    Sandra Maria Zoldan

    2014-10-01

    Full Text Available An electronic tongue system was tested as a fast and efficient analytical tool for flavor evaluation of soybean genotypes. Grain samples of 25 soybean lines were analyzed using 0.25 g of milled samples added to 100 mL of distilled water and mixing for one minute on a magnetic stirrer. An aliquot (50 mL from the filtered liquid was used for the analysis on a pre-fixed frequency of 1 kHz and alternate tension of 50 mV. Two analyses were conducted in a complete randomized design with three replicates. Electrical response (capacitance of eight polymeric chemical sensors used to analyze the soybean lines were submitted to Principal Component Analysis (PCA. In the spatial distribution of the PCA graphic, the lines close to each other were similar, while the distant ones showed different characteristics. The electronic tongue system was efficient in discriminating flavor of soybean lines.

  1. Effects of gamma ray irradiation on early growth of soybean (Glycine mac (L). Merrill)

    International Nuclear Information System (INIS)

    Lilik Harsanti; Yulidar

    2015-01-01

    Increase my in domestic soybean production is one of the government's program to reduce dependence on imported soybeans and soybean efforts to achieve self-sufficiency in 2015. An experiment has been conducted to study the effects of gamma ray irradiation of of 60 Cobalt on early growth of soybean seed. Variety Denna 2 varieties have been irradiated by gamma rays with 0 Gy, 200 Gy, 300 Gy, 400 Gy doses, and then planted in green house on Ps Jumat PAIR-BATAN. Plant growth from each doses is proved to be varied. From germination viability on the third day, the highest percentage of seedling with leaves is on 100 Gy dose (73.75%), and 7, 14 and 21 day the lowest is on dose 400 Gy. (author)

  2. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  3. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  4. Culturable endophytic bacterial communities associated with field-grown soybean.

    Science.gov (United States)

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  5. Genetic Analysis of Seed Isoflavones, Protein, and Oil Contents in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    2014-09-13

    and My Abdelmajid Kassem. Effect of Two Row Spaces on Several Agronomic Traits in Soy - bean [Glycine max (L.) Merr.], Atlas Journal of Plant Biology... SoyS - NP6K Illumina Infinium BeadChip Genotyping Array , Journal of Plant Genome Sciences (09 2013) Masum Akond1, Shiming Liu2, Melanie Boney1

  6. Chemical composition and lipoxygenase activity in soybeans (Glycine max L. Merr.) submitted to gamma irradiation

    Science.gov (United States)

    Barros, Érica Amanda de; Broetto, Fernando; Bressan, Dayanne F.; Sartori, Maria M. P.; Costa, Vladimir E.

    2014-05-01

    Soybeans are an important food due to their functional and nutritional characteristics. However, consumption by western populations is limited by the astringent taste of soybeans and their derivatives which results from the action of lipoxygenase, an enzyme activated during product processing. The aim of this study was to evaluate the effect of gamma irradiation on the chemical composition and specific activity of lipoxygenase in different soybean cultivars. Soybeans were stored in plastic bags and irradiated with doses of 2.5, 5 and 10 kGy. The chemical composition (moisture, protein, lipids, ashes, crude fiber, and carbohydrates) and lipoxygenase specific activity were determined for each sample. Gamma irradiation induced a small increase of protein and lipid content in some soybean cultivars, which did not exceed the highest content of 5% and 26%, respectively, when compared to control. Lipoxygenase specific activity decreased in the three cultivars with increasing gamma irradiation dose. In conclusion, the gamma irradiation doses used are suitable to inactivate part of lipoxygenase while not causing expressive changes in the chemical composition of the cultivars studied.

  7. Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings

    Science.gov (United States)

    Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.

    2018-01-01

    Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.

  8. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    Science.gov (United States)

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Impact of Environment on the Biomass Composition of Soybean (Glycine max) seeds.

    Science.gov (United States)

    McClure, Tamara; Cocuron, Jean-Christophe; Osmark, Veronika; McHale, Leah K; Alonso, Ana Paula

    2017-08-16

    Factors including genetics, fertilization, and climatic conditions, can alter the biomass composition of soybean seeds, consequently impacting their market value and usage. This study specifically determined the content of protein and oil, as well as the composition of proteinogenic amino acids and fatty acids in seeds from 10 diverse soybean cultivars grown in four different sites. The results highlighted that different environments produce a different composition for the 10 cultivars under investigation. Specifically, the levels of oleic and linoleic acids, important contributors to oil stability, were negatively correlated. Although the protein and oil contents were higher in some locations, their "quality" was lower in terms of composition of essential amino acids and oleic acid, respectively. Finally, proteinogenic histidine and glutamate were the main contributors to the separation between Central and Northern growing sites. Taken together, these results can guide future breeding and engineering efforts aiming to develop specialized soybean lines.

  10. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Kumari, Bollipo Dyana Ranjitha

    2013-08-01

    The effects of pulsed magnetic field (PMF) treatment of soybean (Glycine max L. cv CO3) seeds were investigated on rate of seed germination, seedling growth, physico-chemical properties of seed leachates and soil microbial population under laboratory conditions. Seeds were exposed to PMF of 1500 nT at 0.1, 1.0 10.0 and 100.0 Hz for 5 h per day for 20 days, induced by enclosure coil systems. Non-treated seeds were considered as controls. All PMF treatments significantly increased the rate of seed germination, while 10 and 100 Hz PMFs showed the most effective response. The 1.0 and 10 Hz PMFs remarkably improved the fresh weight of shoots and roots, leaf area and plant height from seedlings from magnetically-exposed seeds compared to the control, while 10 Hz PMF increased the total soluble sugar, total protein and phenol contents. The leaf chlorophyll a, b and total chlorophyll were higher in PMF (10 and 100 Hz) pretreated plants, as compared to other treatments. In addition, activities of alpha-amylase, acid phosphatase, alkaline phosphatase, nitrate reductase, peroxidase and polyphenoloxidase were increased, while beta-amylase and protease activities were declined in PMF (10 Hz)-exposed soybean plants. Similarly, the capacity of absorbance of water by seeds and electrical conductivity of seed leachates were significantly enhanced by 10 Hz PMF exposure, whereas PMF (10 Hz) pretreated plants did not affect the microbial population in rhizosphere soil. The results suggested the potential of 10 Hz PMF treatment to enhance the germination and seedling growth of soybean.

  11. Changes in the physiological activity of soybean (Glycine max L. Merr. under the influence of exogenous growth regulators

    Directory of Open Access Journals (Sweden)

    Anna Nowak

    2015-07-01

    Full Text Available In a two-year pot experiment (2008–2009 conducted at the Vegetation Hall, West Pomeranian University of Technology in Szczecin, we investigated the influence of exogenous growth regulators, i.e. indole-3-butyric acid (IBA and 6-benzylaminopurine (BAP and their mixture, on the activity of gas exchange and selected physiological features of soybeans (Glycine max L. Merr.. The experimental factors included the following Polish soybean cultivars: ‘Aldana’, ‘Progres’ and ‘Jutro’. During plant growth, CO2 assimilation (A, transpiration rate (E, stomatal conductance (gs, and substomatal CO2 concentration (ci were determined. Two soybean cultivars, i.e. ‘Jutro’ and ‘Progres’, showed a significant increase in the intensity of assimilation and transpiration after using all kinds of growth regulators as compared with the control plants. It was found that the ‘Jutro’ cultivar, after using a mixture of growth regulators (IBA + BAP, was characterized by the significantly highest CO2 assimilation (A and transpiration (E as well as the highest stomatal conductance (gs. The ‘Aldana’ cultivar, on the other hand, responded by a significant reduction in the transpiration rate, stomatal conductance and subsomatal CO2 concentration. The spraying of the plants with exogenous growth regulators had a significant influence on the increase in the number of stomata and stomatal pore length, mostly on the lower epidermis of the lamina. It was also found that plants from the ‘Jutro’ and ‘Aldana’ cultivars sprayed with IBA and IBA + BAP were characterized by the highest yield, as compared with the control plants. In the case of the ‘Jutro’ cultivar, after using the growth regulators, a positive correlation was observed between the assimilation and transpiration rates and the length of stomata, which in consequence produced increased yields.

  12. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max Using Association Mapping.

    Directory of Open Access Journals (Sweden)

    Zhangxiong Liu

    Full Text Available The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS was exploited to detect the quantitative trait loci (QTL for number of days to flowering (ETF, number of days from flowering to maturity (FTM, and number of days to maturity (ETM using 4032 single nucleotide polymorphism (SNP markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  13. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation

    Science.gov (United States)

    Soybean sprouts are considered as natural and healthy food by Asian consumers. However, sprouts are often associated with outbreaks of foodborne illnesses and recalls due to contamination of seeds with human pathogens. Irradiation may be used to inactivate pathogens on seeds and sprouts. In this stu...

  14. Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max

    International Nuclear Information System (INIS)

    Schmidt, W.E.; Ebel, J.

    1987-01-01

    Treatment of soybean tissues with elicitors results in the production of phytoalexins, one of a number of inducible plant defense reactions against microbial infections. The present study uses a β-1,3-[ 3 H] glucan elicitor fraction from Phytophthora megasperma f.sp. glycinea, a fungal pathogen of soybean, to identify putative elicitor targets in soybean tissues. Use of the radiolabeled elicitor disclosed saturable high-affinity elicitor binding site(s) in membrane fractions of soybean roots. Highest binding activity is associated with a plasma membrane-enriched fraction. The apparent K/sub d/ value for β-glucan elicitor binding is ≅ 0.2 x 10 -6 M and the maximum number of binding sites is 0.5 pmol per mg of protein. Competition studies the [ 3 H]glucan elicitor and a number of polysaccharides demonstrate that only polysaccharides of a branched β-glucan type effectively displace the radiolabeled ligand from membrane binding. Differential displacing activity of the glucans on P. megasperma elicitor binding corresponds closely to their respective ability to elicit phytoalexin production in a cotyledon bioassay

  15. Effects of spent engine oil contamination on soybean (Glycine max L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Research Farm to determine the effect of spent auto-engine oil on soil and soybean ... importance and diverse domestic usage, nevertheless, ... 3 % equivalent to 0, 10, 000, 20,000 and 30,000 mg ... moisture content to obtain the yield. ... (Table 1) revealed that the texture of the ..... cowpea in two contrasting soil types from.

  16. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  17. Polygenic Inheritance of Canopy Wilting in Soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    As water demand for agriculture exceeds water availability, cropping systems need to become more efficient in water usage, such as deployment of cultivars that sustain yield under drought conditions. Soybean cultivars differ in how quickly they wilt during water-deficit stress, and this trait may l...

  18. Soybean (Glycine max L. Response to Fungicides in the Absence of Disease Pressure

    Directory of Open Access Journals (Sweden)

    W. James Grichar

    2013-01-01

    Full Text Available Field studies were conducted during the 2010 and 2011 growing seasons along the Texas Upper Gulf Coast region to study the effects of fungicides on soybean disease development and to evaluate the response of four soybean cultivars to prothioconazole plus trifloxystrobin and pyraclostrobin. In neither year did any soybean diseases develop enough to be an issue. Only NKS 51-T8 responded to a fungicide treatment in 2010 while HBK 5025 responded in 2011. Prothioconazole plus trifloxystrobin increased NKS 51-T8 yield by 23% in 2010 while in 2011 the yield of HBK 5025 was increased 14% over the unsprayed check. No yield response was noted with pyraclostrobin on any soybean cultivar. Only prothioconazole + trifloxystrobin applied to either NKS 51-T8 or DP5335 in 2010 resulted in a net increase in dollars per hectare over the unsprayed check of the respective cultivar. In 2011, under extremely dry conditions, all fungicides with the exception of prothioconazole + trifloxystrobin applied to HBK 5025 resulted in a net decrease in returns over the unsprayed check.

  19. SEED VIGOR TESTING OF SOME DOMESTIC SOYBEAN CULTIVARS (Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Luka Andrić

    2004-12-01

    Full Text Available Seed ageing is an important cause of low vigor and bad field emergence, especially in adverse seedbed conditions. Therefore, in this investigation, soybean seed vigor was tested by four laboratory tests (germination energy GE, standard germination SG, cold test CT, electrical conductivity EC and in field trial, as well (early planting dates Epd and optimal planting dates Opd. The soybean seed of 5 cultivars from Agricultural Institute Osijek, produced in the 3 years (1999., 2000., 2001. was used in the investigation. The seed was stored in a warehouse conditions for 6, 18 or 30 months prior to testing. Tested soybean seed showed significant differences in seed vigor influenced by seed age, seed treatment with fungicide (Vitavax 200 FF, cultivar and planting date. High quality seed with GE and SG over 85%,performed quite well in both planting dates, as well as seeds with the CT over 70% or with EC under 42 μScm-1g-1. On the contrary, considering seed with reduced vigor there is a very great possibility of reduced FE especially in Epd. However, seed treatment with fungicide and sowing in optimal seedbed conditions can significantly contribute to improvement of soybean seed performance and stand establishment. Correlation analyses showed that all tested seed vigor parameters were significantly connected (sign. level 99%. At early planting, the strongest correlation was established between the field emergence and CT (untreated seed, r=0.949** and for treated seed r=0.951** whereas in optimal planting date was between the field emergence and SG (for untreated seed r=0. 938** and for treated seed r=0.942**. Laboratory seed health testing showed significant differences in fungal disease intensity influenced by fungicide seed treatment, cultivar and seed age. Total seed infection and infection with Fusarium spp. was adversely correlated with all vigor parameters. All tested vigor parameters of soybean seed had influence on grain yield indirectly by

  20. Effects of Methanol Spraying on Qualitative traits, Yield and Yield Components of Soybean (Glycine max L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    J Esazadeh Panjali Kharabasi

    2017-12-01

    Full Text Available Introduction Soybean (Glycin max L. is one of the most important oilseed crops in the world. It can provide oil and vegetable protein suitable for feeding humans as well as animals. The productivity Increasing of this crop in Iran has been the subject of continuous investigation over the past few years. It is well known that adequate water supply is considered as a very important factor to affect the accumulation of dry matter in the plant as well as vegetative growth of most crops. Irrigation is an important factor affecting soybean growth and yield and its related components. Exposing soybean plants to soil moisture stress at any phase of its life cycle may lead to a detrimental effect on growth, yield and its components. The methanol spraying can lead to increase in yield, expediting in maturity and reduction in drought stress impacts and water requirement of crops. Material and Methods The experiment was conducted as split plots based on randomized complete block design with three replications at the Research Farm, Faculty of Agriculture of Moghan, Iran, in 2011. Treatments included three levels of drought stress as follows irrigation after, 40 (control, 55 and 70 percentage of available soil moisture depletion as main plots, and four levels of methanol spraying including 0 (control, 7, 21 and 35 volumetric percentage as sub plots. The studied traits were included plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents. Statistical analysis was carried out using SAS version 9.1 software. Significant difference was set at p ≤ 0.05 by using Duncan’s multiple range test. Results and Discussion The results showed that the plant height, leaf area, number of pod and seed per plant, 1000 seed weight, biological and seed yield, stomatal conductance and proline contents as well as number of leaf per plant significantly affected by drought stress and methanol

  1. Selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in greenhouse

    Directory of Open Access Journals (Sweden)

    SRI PURWANINGSIH

    2005-07-01

    Full Text Available An experiment on the selection of Rhizobium strain from Wonogiri, Central Java on the growth of soybean (Glycine max L. on the sand sterile medium in green house. The aim of the experiment the selection and potency of the Rhizobium strain to increase the growth of soybean. The experiment was carried out in green house condition in Microbiology Division, Research Center for Biology-LIPI with sterile sand medium. The research design was Completely Randomized Design with three replications for each treatment. The Rhizobium strains used were 1 W (isolated from bean, Vigna radiata, 2 W (isolated from soybean, 3 W (isolated from bean, 4 W (isolated from soybean, 5 W (isolated from soybean, 6 W (isolated from peanut, Arachis hypogaea, 7 W (isolated from peanut, 8 W (isolated from peanut, the controls were uninoculated with Rhizobium strain and without urea fertilizer (K1, uninoculated and with urea fertilizer equal 100 kg/ha (K2. The plants were harvested after 50 days, the variable of investigation were the dry weight of canopy, roots, nodules root, total plants, number of nodules and ‘symbiotic capacity”. The results showed that all of experiment plant which be inoculated with Rhizobium able to form nodule. Strain of 2 W (isolated from soybean has given the best effects on the growth of soybean.

  2. soybeans yoghurt production using starter culture from

    African Journals Online (AJOL)

    BSN

    On kilogram (lkg) of soybeans used produced soy-milk ... production and the vegetable oil industry can not be overemphasised .... cost. Four genera ut microorgamsms were isolated from the fennented cow milk ... The bacteria involved might have enzyme systems capable of metabolizing .... A Textbook of Economic Botany.

  3. Entomofauna associated to soybean [Glycine max (L. Merr.] in direct seeding and conventional tillage

    Directory of Open Access Journals (Sweden)

    Arahis Cruz Limonte

    2016-01-01

    Full Text Available The main purpose of this research work was to investigate the effect of the direct seeding and conventional tillage of soybean on the incidence of plagues and natural enemies. The study was carried out on the farm “Día y Noche” of the Basic Unit of Cooperative Production “28 de Octubre” (UBPC, for its Spanish acronym, and in the Laboratories of the Agricultural Research Center of Central University of Las Villas. Field experiments were conducted on an Inceptisol, since November 2013 to May 2014. The soybean cultivar Incasoy – 27 was used. The insects in relation to the development stages of the plant were identified and quantified. In both systems 10 species of phytophagous insects and one of entomophagous insects were quantified; Hedylepta indicata L. stands out with more presence in the direct seeding, while Diabrotica balteata LeConte and the species belong to the family Pentatomidae caused most damage to the plants in conventional tillage.

  4. Isolation of low-molecular albumins of 2S fraction from soybean (Glycine max (L.) Merrill).

    Science.gov (United States)

    Galbas, Mariola; Porzucek, Filip; Woźniak, Anna; Słomski, Ryszard; Selwet, Marek

    2013-01-01

    Numerous studies have shown that consumption of soybean products decrease the risk of cancers in humans. Experiments at the molecular level have demonstrated that in most cases proteins and peptides are responsible for the anticancer properties of soybeen. Special attention should be paid to lunasin - a peptide described for the first time 16 years ago. Due to its structure it causes i.a., inhibition of cancer cell proliferation. A novel procedure for the isolation and purification of low-molecular-mass 2S soybean albumin protein is described in the present paper. A fraction of four peptides one of them corresponding to molecular mass and isoelectric point characteristic for lunasin. The obtained peptides decreased on the rate of HeLa cell proliferation.

  5. Leaf movement, photosynthesis and resource use efficiency responses to multiple environmental stress in Glycine max (soybean)

    International Nuclear Information System (INIS)

    Rosa, L.M.G.

    1993-01-01

    Increases in the concentration of greenhouse gases in the atmosphere, may cause a significant increase in temperature, with implications for general wind patterns and precipitation. Reductions in stratospheric ozone will result in increased levels of UV-B reaching earth's surface. During their lifetime plants must deal with a variety of co-occurring environmental stresses. Accordingly, studies into plant responses to multiple environmental factors is important to our understanding of limits to their growth, productivity, and distribution. Heliotropic leaf movements are a generalized plant response to environmental stresses, and the pattern of these movements can be altered by resource availability (e.g., water, and nitrogen). Previous greenhouse and field studies have demonstrated damaging effects of UV-B radiation in crop species, including soybean. Documented in this paper are Leaf movement and gas exchange responses of four soybean cultivars with different sensitivity to UV-B radiation to enhanced levels of UV-B, and modifications of these responses caused by water stress and nitrogen fertilization. UV-B radiation had no effect on the patterns of leaf orientation in soybean; however, a ranking of the cultivars based on midday leaf angles was the same as the ranking of these cultivars based on their sensitivity to UV-B radiation. Water and nitrogen altered the leaf movement patterns of soybeans. Gas exchange parameters in all four cultivars responded in a similar fashion to changes in leaf water potential. Reductions in water availability resulted in lower discrimination. Nitrogen fertilization in cv Forrest, also resulted in lower discrimination, especially under low water regimes, indicating a higher water use efficiency for fertilized plants. UV-B radiation resulted in lower discrimination in the UV-B sensitive CNS cultivar, indicating a stronger stomatal limitation to photosynthesis under increased UV-B levels

  6. Effect of the ingestion of soybeans derivatives (Glycine max) on rat thyroid

    International Nuclear Information System (INIS)

    Filisetti, T.M.C.C.

    1978-01-01

    Soybean derivatives were tested in rat through acute experiments of 3 to 24 hours and two semichronic experiments of 16 and 29 days. The acute essay were realized with Total Extract (TEs) obtained from Defated Soybean Flour by precipitation in an aqueous medium and posteriorly in acetone. The percentage of iodine ( 131 I) uptake by 100 gr. of rat was decreased by the Total Autoclaved Extract administered by gastric tube after 6 and 24 hours. The Total Extract, without previous autoclaving showed effect on the gland after 6 hours and lost its activity 24 hours after its administration. TEs obtained from Comercial Soybean Products as: Proteic Concentrate, Tosted Flour and Milk also provoked a decrease in percentage of iodine ( 131 I) uptake after 24 hours by 100 gr. of rat. The semichronic experiments were realized with Soybean fraction products, which were incorporated to experimental diet. The first of 16 days, showed a reduction in percentage of iodide ( 131 I) uptake by 10mg of thyroid and an increase of the triiodothyronine-binding capacity of rat serm. In the second of 29 days an increase was observed in the percentage of iodine ( 131 I) uptake by 10mg of thyroid, caused by the factor in study and no alteration of seric hormones. The thyroid hormones and their precursors were also assayed and an increase of monoiodotyrosine (MIT), triiodothyronine (T3) and thyroxine (T4) was noted, as well as a decrease of diiodotyrosine (DIT) and inorganic iodine. An increase in the MIT/DIT ratio and decrease in T 3 /T 4 ratio, were observed. In preliminary physicochemical tests, the fraction sephadex G-25 showed a positive reaction for ninhidrin, Molish and flavenoids [pt

  7. Morphological study on the gamma radiation effect on soybean (Glycine max Merr)

    International Nuclear Information System (INIS)

    Nurtjahjo.

    1976-01-01

    Soybean seeds of 1 3 4 5 var. were irradiated with 0, 10, 15, and 20 Krad, of gamma rays. The result of these treatment are as follows: (1) At treatment within 10 Krad of gamma rays, some of the plant growth changed from determinate type to indeterminate type. (2) The treatment within 15 and 20 Krad of gamma rays results in four different kinds of leaf size and shape. (author)

  8. Comprehensive analysis of the soybean (Glycine max GmLAX auxin transporter gene family

    Directory of Open Access Journals (Sweden)

    Chenglin eChai

    2016-03-01

    Full Text Available The phytohormone auxin plays a critical role in regulation of plant growth and development as well as plant responses to abiotic stresses. This is mainly achieved through its uneven distribution in plants via a polar auxin transport process. Auxin transporters are major players in polar auxin transport. The AUXIN RESISTANT 1 ⁄ LIKE AUX1 (AUX⁄LAX auxin influx carriers belong to the amino acid permease family of proton-driven transporters and function in the uptake of indole-3-acetic acid (IAA. In this study, genome-wide comprehensive analysis of the soybean AUX⁄LAX (GmLAX gene family, including phylogenic relationships, chromosome localization, and gene structure, were carried out. A total of 15 GmLAX genes, including seven duplicated gene pairs, were identified in the soybean genome. They were distributed on 10 chromosomes. Despite their higher percentage identities at the protein level, GmLAXs exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. Most GmLAXs were responsive to drought and dehydration stresses and auxin and abscisic acid (ABA stimuli, in a tissue- and/or time point- sensitive mode. Several GmLAX members were involved in responding to salt stress. Sequence analysis revealed that promoters of GmLAXs contained different combinations of stress-related cis-regulatory elements. These studies suggest that the soybean GmLAXs were under control of a very complex regulatory network, responding to various internal and external signals. This study helps to identity candidate GmLAXs for further analysis of their roles in soybean development and adaption to adverse environments.

  9. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    Science.gov (United States)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  10. Interactions of Vesicular-Arbuscular Mycorrhizal Fungi, Phosphorus, and Heterodera glycines on Soybean.

    Science.gov (United States)

    Tylka, G L; Hussey, R S; Roncadori, R W

    1991-01-01

    Effects of vesicular-arbuscular mycorrhizal (VAM) fungi and soil phosphorus (P) fertility on parasitism of soybean cultivars Bragg and Wright by soybean cyst nematode (SCN) were investigated in field micropiot and greenhouse experiments. VAM fungi increased height of both cultivars and yield of Wright in microplot studies in 1986 and 1987. Conversely, yield of mycorrhizal and nonmycorrhizal plants of both cultivars was suppressed by SCN. Soil population densities of SCN were unaffected by VAM fungi in 1986 but were greater in microplots infested with VAM fungi than in control microplots in 1987. Growth of Wright soybean was stimulated by VAM fungi and suppressed by SCN in greenhouse experiments. The effect of VAM fungi on SCN varied with time. Numbers of SCN in roots and soil were decreased by VAM fungi by as much as 73% at the highest SCN inoculum level through 49 days after planting. Later, however, SCN numbers were usually comparable on mycorrhizal and nonmycorrhizal plants. Soil P fertility generally had no effect on SCN. Results of a split-root experiment indicated that VAM fungal suppression of SCN was not systemic.

  11. Protein and metabolite composition of xylem sap from field-grown soybeans (Glycine max).

    Science.gov (United States)

    Krishnan, Hari B; Natarajan, Savithiry S; Bennett, John O; Sicher, Richard C

    2011-05-01

    The xylem, in addition to transporting water, nutrients and metabolites, is also involved in long-distance signaling in response to pathogens, symbionts and environmental stresses. Xylem sap has been shown to contain a number of proteins including metabolic enzymes, stress-related proteins, signal transduction proteins and putative transcription factors. Previous studies on xylem sap have mostly utilized plants grown in controlled environmental chambers. However, plants in the field are subjected to high light and to environmental stress that is not normally found in growth chambers. In this study, we have examined the protein and metabolite composition of xylem sap from field-grown cultivated soybean plants. One-dimensional gel electrophoresis of xylem sap from determinate, indeterminate, nodulating and non-nodulating soybean cultivars revealed similar protein profiles consisting of about 8-10 prominent polypeptides. Two-dimensional gel electrophoresis of soybean xylem sap resulted in the visualization of about 60 distinct protein spots. A total of 38 protein spots were identified using MALDI-TOF MS and LC-MS/MS. The most abundant proteins present in the xylem sap were identified as 31 and 28 kDa vegetative storage proteins. In addition, several proteins that are conserved among different plant species were also identified. Diurnal changes in the metabolite profile of xylem sap collected during a 24-h cycle revealed that asparagine and aspartate were the two predominant amino acids irrespective of the time collected. Pinitol (D-3-O-methyl-chiro-inositol) was the most abundant carbohydrate present. The possible roles of xylem sap proteins and metabolites as nutrient reserves for sink tissue and as an indicator of biotic stress are also discussed.

  12. Utilization of nitrogen by soybean (Glycine max) influenced by the addition of sugar cane bagasse

    International Nuclear Information System (INIS)

    Bonetti, R.; Saito, S.M.T.

    1982-01-01

    N 2 -fixation in soybean and soil-N and 15 N-urea utilization where studied in a glasshouse. Doses of fertilizer were 0, 40 and 80 kgN/ha added either to cultivated - or virgin soil, where sugar cane bagasse was also added (20 ton/ha). Non-nodulating soybean was used as a control to determine the absorption of the three N-sources: soil, fertilizer and N 2 -fixation. The N-immobilization effect caused by bagasse addition was observed even after a pre-incubation period of 40 days, being greater in the cultivated than in the soil without organic matter. Accumulations of N, P and S where also smaller in these plants. Additions of N were not sufficient to equal the values observed in soils without organic matter. Addition of 40 kgN/ha showed a sinergistic and positive effect on treatments that had N-immobilization, reinforcing the idea that starter doses of N are necessary for maximization of nodulation and N 2 -fixation in soybean, in soils with low N. N 2 -fixation contributed with mean values of 54% and 84% N, respectively, in the aerial part and pools in non-treated soil. When bagasse was added, the percentages of N 2 -fixed increased, however in smaller amounts, showing a necessity of different sources of N to increase the total N in plant. The greatest N 2 -fixation (48,6 kgN/ha) was found in the cultivated soil, where only bagasse had been added. (M.A.) [pt

  13. Effects of proton beam irradiation on seed germination and growth of soybean ( Glycine max L. Merr.)

    Science.gov (United States)

    Im, Juhyun; Kim, Woon Ji; Kim, Sang Hun; Ha, Bo-Keun

    2017-12-01

    The present study aimed to evaluate the morphological effects of proton beam irradiation on the seed germination, seedling survival, and plant growth of soybean. Seeds of three Korean elite cultivars (Kwangankong, Daepungkong, and Pungsannamulkong) were irradiated with a 57-MeV proton beam in the range of 50 - 400 Gy. The germination rates of all the varieties increased to > 95%; however, the survival rates were significantly reduced. At doses of > 300 Gy irradiation, the Daepungkong, Kwangankong, and Pungsannamulkong cultivars exhibited 39, 75, and 71% survival rates, respectively. In addition, plant height and the fresh weight of shoots and roots were significantly decreased by doses of > 100 Gy irradiation, as were the dry weights of the shoots and roots. However, SPAD values increased with increasing doses of irradiation. Abnormal plants with atypically branched stems, modified leaves, and chlorophyll mutations were observed. Based on the survival rate, plant growth inhibition, and mutation frequency, it appears that the optimum dosage of proton beam irradiation for soybean mutation breeding is between 250 and 300 Gy.

  14. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi).

    Science.gov (United States)

    Algar, Elena; Ramos-Solano, Beatriz; García-Villaraco, Ana; Sierra, M Dolores Saco; Gómez, M Soledad Martín; Gutiérrez-Mañero, F Javier

    2013-09-01

    The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the β-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.

  15. Evaluation of genetic diversity among soybean (Glycine max) genotypes using univariate and multivariate analysis.

    Science.gov (United States)

    Oliveira, M M; Sousa, L B; Reis, M C; Silva Junior, E G; Cardoso, D B O; Hamawaki, O T; Nogueira, A P O

    2017-05-31

    The genetic diversity study has paramount importance in breeding programs; hence, it allows selection and choice of the parental genetic divergence, which have the agronomic traits desired by the breeder. This study aimed to characterize the genetic divergence between 24 soybean genotypes through their agronomic traits, using multivariate clustering methods to select the potential genitors for the promising hybrid combinations. Six agronomic traits evaluated were number of days to flowering and maturity, plant height at flowering and maturity, insertion height of the first pod, and yield. The genetic divergence evaluated by multivariate analysis that esteemed first the Mahalanobis' generalized distance (D 2 ), then the clustering using Tocher's optimization methods, and then the unweighted pair group method with arithmetic average (UPGMA). Tocher's optimization method and the UPGMA agreed with the groups' constitution between each other, the formation of eight distinct groups according Tocher's method and seven distinct groups using UPGMA. The trait number of days for flowering (45.66%) was the most efficient to explain dissimilarity between genotypes, and must be one of the main traits considered by the breeder in the moment of genitors choice in soybean-breeding programs. The genetic variability allowed the identification of dissimilar genotypes and with superior performances. The hybridizations UFU 18 x UFUS CARAJÁS, UFU 15 x UFU 13, and UFU 13 x UFUS CARAJÁS are promising to obtain superior segregating populations, which enable the development of more productive genotypes.

  16. Transcriptomic characterization of soybean (Glycine max) roots in response to rhizobium infection by RNA sequencing

    International Nuclear Information System (INIS)

    He, Q.; Li, Z.; Wang, S.; Huang, S.; Yang, H.

    2018-01-01

    Legumes interacting with rhizobium to convert N2 into ammonia for plant use has attracted worldwide interest. However, the plant basal nitrogen fixation mechanisms induced in response to Rhizobium, giving differential gene expression of plants, have not yet been fully realized. The differential expressed genes of soybean between inoculated and mock-inoculated were analyzed by a RNA-Seq. The results of the sequencing were aligned against the Williams 82 genome sequence, which contain 55787 transcripts; 280 and 316 transcripts were found to be up- and down-regulated, respectively, for inoculated and mock-inoculated soybean roots at stage V1. Gene ontology (GO) analyses detected 104, 182 and 178 genes associated with the cell component category, molecular function category and biological process category, respectively. Pathway analysis revealed that 98 differentially expressed genes (115 transcripts) were involved in 169 biological pathways. We selected 19 differentially expressed genes and analyzed their expressions in mock-inoculated, inoculated USDA110 and CCBAU45436 using qRT-PCR. The results were in accordance with those obtained from rhizobia infected RNA-Seq data. These showed that the results of RNA-Seq had reliability and universality. Additionally, this study showed some novel genes associated with the nitrogen fixation process in comparison to previously identified QTLs. (author)

  17. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome

    Directory of Open Access Journals (Sweden)

    Severin Andrew J

    2010-08-01

    Full Text Available Abstract Background Next generation sequencing is transforming our understanding of transcriptomes. It can determine the expression level of transcripts with a dynamic range of over six orders of magnitude from multiple tissues, developmental stages or conditions. Patterns of gene expression provide insight into functions of genes with unknown annotation. Results The RNA Seq-Atlas presented here provides a record of high-resolution gene expression in a set of fourteen diverse tissues. Hierarchical clustering of transcriptional profiles for these tissues suggests three clades with similar profiles: aerial, underground and seed tissues. We also investigate the relationship between gene structure and gene expression and find a correlation between gene length and expression. Additionally, we find dramatic tissue-specific gene expression of both the most highly-expressed genes and the genes specific to legumes in seed development and nodule tissues. Analysis of the gene expression profiles of over 2,000 genes with preferential gene expression in seed suggests there are more than 177 genes with functional roles that are involved in the economically important seed filling process. Finally, the Seq-atlas also provides a means of evaluating existing gene model annotations for the Glycine max genome. Conclusions This RNA-Seq atlas extends the analyses of previous gene expression atlases performed using Affymetrix GeneChip technology and provides an example of new methods to accommodate the increase in transcriptome data obtained from next generation sequencing. Data contained within this RNA-Seq atlas of Glycine max can be explored at http://www.soybase.org/soyseq.

  18. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  19. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  20. Evaluating effect of biofertilizer on nodulation and soybean (Glycine max L plants growth characteristics under water deficit stress of seed

    Directory of Open Access Journals (Sweden)

    M. Tajik Khaveh

    2016-05-01

    Full Text Available In order to evaluate the effects of biofertilizer on soybean (Glycine max L. seed vigor that produced under water deficit condition and related traits, an experiment was conducted in a factorial layout based of complete randomized block design with four replications at the research greenhouse of Aboureihan campus- Tehran University, Iran. Experimental treatments were include biofertilizer (seed inoculation with Bradyrhizobium japonicum, co-inoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens, co-inoculation with Bradyrhizobium japonicum and Glomus mosseae, Cultivar (Zalta Zalha and Clark×Hobbit line and water deficit stress [irrigation plants after 50 (normal irrigation, 100 (medium stress, 150 (sever stress mm evaporation from pan class A, in parents field]. Results showed that the water deficit stress had negative effects on seed quality and seedling emergence percentage, mean daily seedling emergence, root, leaf and shoot dry weight, number of nodule were decreased. ZaltaZalha cultivar had higher shoot dry weight and number of leaf compared with other cultivars. Applications of biofertilzer was effective on stem diameter, root, leaf and shoot dry weight, number of leaf and nodule and those attributes increased by co-inoculation of Bradyrhizobium japonicum and Glomus mosseae. Also, use of biofertilizer in stress levels was effective on stem dry weight. Stem dry weight was increased by Co-inoculation of cultivar seeds with Bradyrhizobium japonicum and Glomus mosseae.

  1. Spatial analysis of soybean canopy response to soybean cyst nematodes (Heterodera glycines) in eastern Arkansas: An approach to future precision agriculture technology application

    Science.gov (United States)

    Kulkarni, Subodh

    2008-10-01

    Heterodera glycines Ichinohe, commonly known as soybean cyst nematode (SCN) is a serious widespread pathogen of soybean in the US. Present research primarily investigated feasibility of detecting SCN infestation in the field using aerial images and ground level spectrometric sensing. Non-spatial and spatial linear regression analyses were performed to correlate SCN population densities with Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) derived from soybean canopy spectra. Field data were obtained from two fields; Field A and B under different nematode control strategies in 2003 and 2004. Analysis of aerial image data from July 18, 2004 from the Field A showed a significant relationship between SCN population at planting and the GNDVI (R2=0.17 at p=0.0006). Linear regression analysis revealed that SCN had a little effect on yield (R2 =0.14, at p=0.0001, RMSEP=1052.42 kg ha-1) and GNDVI (R 2=0.17 at p=0.0006, RMSEP=0.087) derived from the aerial imagery on a single date. However, the spatial regression analysis based on spherical semivariogram showed that the RMSEP was 0.037 for the GNDVI on July 18, 2004 and 427.32 kg ha-1 for yield on October 14, 2003 indicating better model performance. For July 18, 2004 data from Field B, a relationship between NDVI and the cyst counts at planting was significant (R2=0.5 at p=0.0468). Non-spatial analyses of the ground level spectrometric data for the first field showed that NDVI and GNDVI were correlated with cyst counts at planting (R 2=0.34 and 0.27 at p=0.0015 and 0.0127, respectively), and GNDVI was correlated with eggs count at planting (R2= 0.27 at p=0.0118). Both NDVI and GNDVI were correlated with egg counts at flowering (R 2=0.34 and 0.27 at p=0.0013 and 0.0018, respectively). However, paired T test to validate the above relationships showed that, predicted values of NDVI and GNDVI were significantly different. The statistical evidences suggested that variability in vegetation indices was caused

  2. Expression of Root-Related Transcription Factors Associated with Flooding Tolerance of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Babu Valliyodan

    2014-09-01

    Full Text Available Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of

  3. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max).

    Science.gov (United States)

    Valliyodan, Babu; Van Toai, Tara T; Alves, Jose Donizeti; de Fátima P Goulart, Patricia; Lee, Jeong Dong; Fritschi, Felix B; Rahman, Mohammed Atiqur; Islam, Rafiq; Shannon, J Grover; Nguyen, Henry T

    2014-09-29

    Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be

  4. Improvement of Soybean (Glycine max L. Yield with Urea Foliar Application at Growth Stages

    Directory of Open Access Journals (Sweden)

    Mahmood Tohidi

    2017-07-01

    Full Text Available To investigate the effects of nitrogen foliar application at different growth stages of soybean on the yield and yield components this experiment was performed in Shush, north of Khuzestan, Iran, during growing season of 2014. The experiment was in split plot based on randomized complete block design with three replications. Experimental treatments consisted of four levels of nitrogen fertilizer foliar applications as control (no nitrogen foliar application, 25, 50 and 75 kg/ha pure nitrogen from urea source (46% pure nitrogen assigned to the main plots and spraying times in three levels, at vegetative stage, flowering stage and podding stage to the subplots. Results showed that the effects of nitrogen foliar application on traits measured in this experiment like leaf area index, number of pod per plant, number of seeds per pod, thousand seed weight, seed yield, biologic yield, harvest index, protein percent and protein yield and also interaction of different levels of nitrogen foliar application and different growth stages, were significant. Oil percent and yield were only significant under the effect of nitrogen foliar application treatments at different growth stages while the interaction of different levels of nitrogen foliar application and different growth stages, were not significant. In this experiment nitrogen foliar application increased seed yield. The highest seed yield amounted to 2466 kg/ha when 50kg/ha of foliar nitrogen applied at vegetative growth stage and lowest seed yield amounted to 1295 kg/ha in the control treatment at the stage of podding. In general, results demonstrated that 50 kg/ha treatment could be considered as the best management option of nitrogen foliar application for soybean at vegetative growth stage.

  5. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    Science.gov (United States)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in

  6. Soybean (Glycine max L.) N-Turnover Effects on Sustainable Agriculture

    Science.gov (United States)

    László, Márton, ,, Dr.

    2010-05-01

    A lysimeter N-experiment was carried out over a period of three years (1986-1988) in Hungary on a slightly calcareous Ramann sandy-loam brown forest soil. In a trial without seed inoculation, the effect of N-fertiliser was studied on yield and N-uptake and the mineral (NO3+ NO2 ) N-content of 0-90 cm soil-layer of soybean. On the given soil with regulated optimal water supply the highest quantity of 200 kg/ha N-dose seemed to give alredy over-fertilization and lowered in its tendency the grain and pod yield. About one third of the dry matter production without roots and foliage at harvest was given by the grain yield, which ranged between 1.8-5.4 t/ha, depending on the treatment applied and on years. The N-content was accumulated chiefly in the grain, its concentration exceeded about 7-10 times the N-content of roots and stalk. The half of the total N-uptake, on an average 102-256 kg/ha, was built in the grain. The highest N-yield = 631 kg/ha was achieved in 1988 by 150 kg/ha N-fertilization per year. In the first years the N-uptake of the plants agreed with the total supply (mineral reserve of soil + given in the form of fertilizer + precipitation N), while in the 3th year a double amount was recorded. The mineral reserve of N in the soil did not decrease at the end of the trial. Presumably, the soil of soybean in monoculture lost gradually its "Rhisobium japonicum sterility", the biological N-fixation increased with the time. In the first years without seed inoculation however, soybean may be in need of N-fertilization. Key Words: soybean, nitrogen, sustainable agriculture Introduction Soya is an important crop and is now grown all over the world (Márton et al. 1998, Márton et al. 1998, Kádár and Márton 1999, Márton and Kádár 1999, Márton and Kádár 1998). This crop originated in the Far East and has been grown in China for more than four thousand years. It has for long been regarded as one of the five sacred grains with rice, wheat, barley and millet

  7. Fungi and bacteria inventory on soybean (Glycine max (L.) merill) planting media applied by local microorganisms

    Science.gov (United States)

    Akhsan, Ni'matuljannah; Vionita

    2017-02-01

    An experiment aimed to determine the effect of application of several types of local microorganisms (MOL) and the number of doses to the development of fungi and bacteria on soybean planting media, have been conducted in Samarinda for 3 (three) months. Factorial experiment arranged in a completely randomized design and repeated three times, was used in this experiment. The first factor was the type of MOL consisted of cow dung (m1), snails (m2), banana peel (m3) and bamboo roots (m4), and the second factor was the dose MOL zero mL (d0), 100 mL (d1), 200 mL (d2), 300 mL (d3), 400 mL (d4) analyzed with Anova and Least Significance Difference (LSD) at 5%. Fungi and bacteria contained in the local microorganisms (cow dung, snails, banana peel and bamboo root) are: fungus Aspergillus sp, Penicillium sp., Trichoderma sp., cellulotic and lignolitic bacteria. An increase in the type and amount of fungus is happened for some genus. The dominant bacteria in the planting medium is a gram-negative bacteria. Cow dung seemed the best source at the dosages level of 400 ml.

  8. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    Science.gov (United States)

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  9. Effect of cobalt-60 gamma irradiation on viability of soybean (glycine max. l) seed

    International Nuclear Information System (INIS)

    Addai, Isaac Kwahene

    2001-12-01

    The rapid rate of deterioration and low viability of soybean seeds particularly in storage is a major constraint to its production in the subtropical and tropical areas. Various approaches have been made to solve this problem but they have centred mainly on the control of the environment. Experimental mutagenesis is one of the ways by which genetic variability could be created to serve as basis for selection. In this study, induced mutations were used to create genetic variation and mutants with improved storability selected to provide a more lasting solution to this problem. Seeds of three soybean varieties - Gmx 92-6-10, Gmx 92-5-4E and TGX 87D- 1303 were subjected to four (4) months ambient storage and three accelerated ageing tests. The germination percentages computed 7 days after planting showed that 20% ethanol solution better mimicked ambient storage than 20% methanol solution and the 75°C hot water. In the radiation dosage response studies, dry seeds containing 10% moisture from the three varieties were subjected to 0, 50, 100, 150, 200 and 250 Gy doses of 60Co gamma rays at Ghana Atomic Energy Commission, Kwabenya and sown. The 250 Gy dose reduced both germination percentage and plant height by about 50% relative to the control and was used as the dosage appropriate for induced mutations for the varieties. Five thousand M2 plants were harvested and screened individually for improved storability using 20% ethanol solution, storing threshed seeds at ambient condition and storing seeds in pods also at ambient conditions. The 20% ethanol solution was less effective in selecting putative in mutants compared to the two ambient storage screening methods, but could be used as an initial screening method. The variety Gmx 92-6-10 was generally considered to give the greatest response to irradiation because it produce the largest proportion of putative mutant improved storability in two out of the three screening methods used at the M2 generation. Since TGX 87D 1

  10. Acetohydroxamic Acid - A Competitive Inhibitor of Urease from SoybeanGlycine max”

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2010-06-01

    Full Text Available The acetohydroxamic acid (AHA, a potent inhibitor of urease, inhibits soybean urease competitively and reversibly. The I50 and Ki value for AHA were 900 microM and 0.053 mM, respectively at pH 7.0, 37 °C. The variation in pH over the pH 6 - 9 affected Ki and therefore binding of AHA in the active site. The affinity of AHA for the active site decreases with lowering of pH (below the pKa value of AHA i.e. 8.7. This behaviour is consistent with the deprotonated AHA acting as a nucleophile or the inhibitory species. The time-dependent inhibition studies were performed at two different concentrations of AHA and the biphasic kinetics was revealed with almost equal amplitudes (50% each for fast and slow phases. The values of rate constants were 0.1642 ± 0.0013 min -1 (fast phase; 0.0123±0.0012 min -1 (slow phase at 0.10 mM AHA and 0.2379±0.0017 min -1 (fast phase; 0.0153±0.0010 min -1 (slow phase at 0.15 mM AHA. These studies established the asymmetric nature of active sites, half being more reactive for AHA than the other half. The spectral studies showed a change in absorbance at the lambda wavelength max 414 nm, when urease was incubated with AHA, which was consistent with AHA binding to Ni2+ of active site.

  11. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    Science.gov (United States)

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-06-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. Copyright © 2016 Phansak et al.

  12. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Science.gov (United States)

    Ruark, Casey L; Koenning, Stephen R; Davis, Eric L; Opperman, Charles H; Lommel, Steven A; Mitchum, Melissa G; Sit, Tim L

    2017-01-01

    Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines) from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC) and Missouri (MO). The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2), and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO). Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst) and Heterodera schachtii (beet cyst), but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  13. Physical, chemical and sensorial effects of gamma irradiation and cooking on soybean cultivars (Glycine max) with and without lipoxygenase

    International Nuclear Information System (INIS)

    Biscaro, Luciana Marino e

    2009-01-01

    The soybean is a vegetable with high nutritional value, mainly due to its high protein content. Among the culture of grains, the soy beam is the most important in Brazil, what represents a greater incentive for the consumption of this food. However, a great claim of occidental consumer is its characteristic odor and flavor, known as beany flavor, which is provided by the action of lipoxygenase enzyme. The catalytic action exerted by this type of isoenzyme on polyunsaturated fatty acids, linolenic and linoleic acid of the soy grains, is one of the main factors responsible for the appearance of the carbonyl compounds, which cause the unpleasant flavor in grains. To enhance the organoleptic characteristics of soybeans, researchers have developed new cultivars, without the presence of lipoxygenase. The objective of this study was to evaluate physical, chemical and sensorial differences between the two soy cultivar, with and without lipoxygenases (cultivars BRS 232 and BRS 257, of EMBRAPA, respectively) and to analyze the possible changes promoted by different radiation doses (0, 4 and 8 kGy) in raw and cooked soybean grains. The physical analyses were: time of cooking and hydration of the grains. The chemical analyses were: centesimal composition, protein digestibility, anti nutritional factors, isoflavone content and antioxidant capacity (DPPH and ABTS). The sensory aspects were determined by sensorial analysis performed by applying analytical methods of differentiation for selection of panelists, and descriptive method to determine the quality of the soybean. At the end, factorial statistical analysis was performed 3x2x2 (irradiation doses X cultivars x treatment) for analysis, comparison and discussion of the obtained results. The results showed differences in physical analyses with the irradiation and between the two cultivars. Besides, the cultivars presented differences in the centesimal composition, digestibility fenolic content, isoflavone content and trypsin

  14. Effects of enhanced UVB on growth and yield of alfalfa (Medic ago Sativa L.) and soybean (Glycine max L.) under field conditions

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Baydoun, S.A.; Mohamad, A.

    1997-04-01

    The effects of 20% increase of UVB on growth and yield of alfalfa (Medicago Sativa L.) and two cultivars of soybean (Glycine Max (L.) Mer) under field conditions have been investigated. The increase of UVB dose ranged between 1.746 and 7.112 J/cm 2 during experiment. The results showed that soybean yield decrease by 16% and 31% in A. 3803 and A. 2522 cultivars respectively, under UVB exposure. The dry weight and leaf area were sensitive in the A. 3803 cultivar, while they were tolerant in the A. 2522 cultivar. Alfalfa response to UVB varied during the different stages of growth, whereas the yield was 12% less in the exposed plants. (author). 21 refs., 17 tabs

  15. Effect of ant attendance by Monomorium minimum (Buckley) (Hymenoptera: Formicidae) on predation and parasitism of the soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae).

    Science.gov (United States)

    Herbert, John J; Horn, David J

    2008-10-01

    Ant attendance is known to affect the population dynamics of aphids and may increase or decrease aphid populations through stimulation, predation, or protection. In this study, we performed a series of laboratory experiments to examine the effects of ant attendance on populations of the soybean aphid Aphis glycines. Aphid colonies were exposed to the predators Harmonia axyridis (Coccinellidae) and Orius insidiosus (Anthocoridae) and a parasitoid Aphidius colemani (Aphidiidae) in the presence and absence of attending Monomorium minimum (Formicidae). We also tested for direct effects of ant attendance in the absence of natural enemies. Ants attending soybean aphid populations were observed harassing or killing O. insidiosus and H. axyridis. Attendance interfered with both predator species, resulting in reduced predation and an increase in aphid numbers up to 10-fold in the presence of ants. Ants were not observed directly interfering with the parasitoid A. colemani, but the number of parasitized aphids was higher in aphid colonies that were left unattended by ants.

  16. Yield and Yield Attributes Responses of Soybean (Glycine max L. Merrill to Elevated CO2 and Arbuscular Mycorrhizal Fungi Inoculation in the Humid Transitory Rainforest

    Directory of Open Access Journals (Sweden)

    Nurudeen ADEYEMI

    2017-06-01

    Full Text Available Variations in yield components and grain yield of arbuscular mycorrhizal fungi (AMF inoculated soybean varieties (Glycine max L. Merrill grown in CO2 enriched environment in the humid rainforest were tested.  A screen house trial was established with soybean varieties (‘TGx 1448-2E’, ‘TGx 1440-1E’ and ‘TGx 1740-2F’, AMF inoculation (with and without and CO2 enrichment (350±50 ppm and 550±50 ppm in open top chamber, arranged in completely randomised design, replicated three times. A field trial was also conducted; the treatments were arranged in a split-split plot configuration fitted into randomised complete block design. In the main plot the variant was CO2 enrichment, the sub-plot consisted of AMF inoculation (with and without, while the sub-sub plot consisted of soybean varieties, replicated three times. Both trials had significantly higher grain yield at elevated CO2 than ambient. This could be attributed to improved yield attributes, more spore count and root colonisation. In both trials, inoculated soybean had significantly higher dry pod weight than un-inoculated, which could suggest the increased grain yield observed on the field. AMF inoculated soybean varieties outperformed un-inoculated in both CO2 enriched and ambient concentrations. AMF inoculated soybean variety ‘TGx 1740-2F’ is most preferable in CO2 enriched environment, while variety ‘TGx 1448-2E’ had the most stable grain yield in all growth environments.

  17. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    Science.gov (United States)

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins.

  18. Analysis of Gene expression in soybean (Glycine max roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways

    Directory of Open Access Journals (Sweden)

    Gamal El-Din Abd El Kader Y

    2011-05-01

    Full Text Available Abstract Background Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. Results We examined the expression of soybean (Glycine max genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. Conclusions A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.

  19. Assessing the effects of cultivating genetically modified glyphosate-tolerant varieties of soybeans (Glycine max (L.) Merr.) on populations of field arthropods.

    Science.gov (United States)

    Imura, Osamu; Shi, Kun; Iimura, Keiji; Takamizo, Tadashi

    2010-01-01

    We assessed the effects of cultivating two genetically modified (GM) glyphosate-tolerant soybean varieties (Glycine max (L.) Merr.) derived from Event 40-3-2 and a Japanese conventional variety on arthropods under field conditions, with weed control using glyphosate and conventional weed control for two years. Plant height and dry weight of the conventional variety were significantly larger than those of the GM varieties, but the GM varieties bore more pods than the conventional variety. We found arthropods of nine taxonomic orders (Araneae, Acari, Thysanoptera, Homoptera, Heteroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera) on the plants. The arthropod incidence (number per plant unit weight pooled for each taxonomic order) on the soybean stems and leaves generally did not differ significantly between the GM and conventional varieties. However, the incidence of Thysanoptera and total incidence (all orders combined) were greater on the GM variety in the second year. The weed control regimes had no significant influence on the arthropod incidence on the soybean stems and leaves. The number of flower-inhabiting Thysanoptera (the dominant arthropod in the flowers) was not significantly different between the GM and conventional varieties. Asphondylia yushimai (Diptera, Cecidomyiidae) was more numerous on the pods of the GM variety in both years. Neither the soybean variety nor the weed control regime significantly affected the density of soil macro-organisms. However, the glyphosate weed control affected arthropods between the rows of plants by decreasing the abundances of Homoptera, Heteroptera, Coleoptera and Lepidoptera, and diversity of arthropods. © ISBR, EDP Sciences, 2011.

  20. Soybean (Glycine max L. Merr. Yield Gap Analysis using Boundary Line Method in Gorgan and Aliabad Katul

    Directory of Open Access Journals (Sweden)

    Alireza Nehbandani

    2017-12-01

    Full Text Available Introduction Increasing the production of crops has been a necessity to reach food security for growing population. Since "expanding acreage" is almost impossible, "increasing the yield per unit of area", is the only possible option. Closing the gap between actual yield and potential yield (yield gap is one of the important methods to increase yield per unit of area. It is necessary to increase yield to primarily identify the factors that contributing in the yield gap in each area. Recognizing potentials as well as the impact of each limiting factor on yield individually, plays an important role in determining the alternative management strategies to achieve maximum performance. Therefore, the present study was conducted in Gorgan and Aliabad Katul county for simultaneous recognition of best management practices, percentage of the affected fields, estimation of soybean yield potential and gaps using boundary line analysis. Material and Methods To quantify the production and estimation of soybean yield gap in Gorgan and Aliabad Katul, Farm management information of 224 soybean farms in the years 2010, 2011, 2013 and 2014 were collected. This information was collected through continuous farm monitoring during the growing season as along with face to face interviews with the farmers. Farms were selected by consulting with agricultural service centers expert in Gorgan and Aliabad districts. Based on the available information at the service centers, only farms , which is different in terms of acreage, cultural practices and harvesting operations were selected. In this study, by plotting the distribution of the yield obtained in each field as the dependent variable against the independent variables (crop management activities, using SAS software and an appropriate function was fitted on the upper edge of the data distribution. Results and Discussion The results showed that the average yield on the farms surveyed was 3507 Kg.ha-1 and by improving crop

  1. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots.

    Science.gov (United States)

    Matthews, Benjamin F; Beard, Hunter; Brewer, Eric; Kabir, Sara; MacDonald, Margaret H; Youssef, Reham M

    2014-04-16

    Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes.

  2. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    Science.gov (United States)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  3. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  4. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    Science.gov (United States)

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  5. Life Cycle, Ultrastructure, and Host Specificity of the North American Isolate of Pasteuria that Parasitizes the Soybean Cyst Nematode, Heterodera glycines.

    Science.gov (United States)

    Atibalentja, N; Jakstys, B P; Noel, G R

    2004-06-01

    Light and transmission electron microscopy were used to investigate the life cycle and ultrastructure of an undescribed isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines. Studies also were conducted to determine the host specificity of Pasteuria. The endospores that attached to the cuticle of second-stage juveniles (J2) of H. glycines in soil did not germinate until the encumbered nematodes invaded soybean roots. Thereafter, the bacterium developed and completed its life cycle only in females. The stages of endosporogenesis were typical of Pasteuria spp. The mature endospore, like that of P. nishizawae, the only other Pasteuria known to infect H. glycines, produces an epicortical layer that completely surrounds the cortex, an outer spore coat that tapers progressively from the top to the base of the central body, and a double basal adhesion layer. However, subtle differences exist between the Pasteuria from North America and P. nishizawae with regard to size of the central body, nature and function of the mesosomes observed in the earlier stages of endosporogenesis, and appearance of the fibers lining the basal adhesion layer and the exosporium of the mature endospore. Endospores of the North American Pasteuria attached to J2 of H. schachtii, H. trifolii, and H. lespedezae but not to Meloidogyne arenaria race 1, Tylenchorhynchus nudus, and Labronema sp. Results from this study indicate that the North American Pasteuria is more similar to P. nishizawae than to any other known member of the genus. Additional evidence from comparative analysis of 16S rDNA sequences is needed to clarify whether these two Pasteuria belong to the same species.

  6. Resposta da soja (Glycine max (L. Merrill à ação de bioestimulante = Soybean (Glycine max (L. Merrill response to biostimulant action

    Directory of Open Access Journals (Sweden)

    Celestina Alflen Klahold

    2006-04-01

    Full Text Available Objetivando verificar o efeito do bioestimulante, Stimulate®, aplicado via semente e pulverização foliar, na cultura da soja, conduziu-se um experimento sob ambiente protegido, em vasos. O delineamento foi de blocos casualizados, com 4 repetições. Os tratamentos constaram da combinação de doses de bioestimulate, aplicadas via semente (0, 3 e 5 mL kg-1 de sementes na semeadura e via foliar (0,0; 0,075; 0,150 e 0,225 mL L-1, aos 58 dias após a emergência (DAE. Realizaram-se coletas de plantas aos 73 e 129 DAE.Para algumas das variáveis estudadas, nas doses utilizadas, houve efeito negativo na resposta à aplicação de bioestimulante, para algumas doses testadas. Respostas positivas foram verificadas para massa seca de flores, raízes, razão raiz/parte aérea, número de flores, vagens e grãos e produção por planta. Destacaram-se positivamente os tratamentos: 0,0 mL 0,5 kg-1 (AS + 0,150 mL L-1 (APF; 3,0 mL 0,5 kg-1 (AS + 0,0 mL L-1 (APF; 3,0 mL 0,5 kg-1 (AS+ 0,225 mL L-1 (APF e 5,0 mL 0,5 kg-1 (AS + 0,075 mL L-1 (APF.Aiming to verify the effect of the bioestimulant, Stimulate®, applied saw by seed and leaf pulverization, in the culture of the soybean. It behaved an experiment under greenhouse, in vases. Randomized block experimental design was used, with four repetitions. The treatments consisted of the combination of bioestimulant doses: seed application (SA (0; 3; and 5 mL kg-1 of seeds in the sowing and leaf spray (LS (0.0; 0.075; 0.150; and 0.225 mL L- 1, to the 58 days after the emergency (DAE. Collections of plants were accomplished to the 73 and 129 DAE. For some of the studied variables, in the used doses, there was negative effect in the response of the biostimulant application, for some tested doses. Positives responses were verified for flowers and roots dry mass; root/shoot relation; flowers; beans and grains number; and yield for plant. They stood out the treatments: 0,0 mL 0.5 kg-1 (SA + 0.150 mL L-1 (LS; 3.0 mL 0.5 kg

  7. Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja Roots by RNA-seq

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2016-12-01

    Full Text Available Soil alkalinity is a major abiotic constraint to crop productivity and quality. Wild soybean (Glycine soja is considered to be more stress-tolerant than cultivated soybean (G. max, and has considerable genetic variation for increasing alkalinity tolerance of soybean. In this study, we analyzed the transcriptome profile in the roots of an alkalinity tolerant wild soybean variety N24852 at 12 and 24 h after 90 mM NaHCO3 stress by RNA-sequencing. Compared with the controls, a total of 449 differentially expressed genes (DEGs were identified, including 95 and 140 up-regulated genes, and 108 and 135 down-regulated genes at 12 and 24 h after NaHCO3 treatment, respectively. Quantitative RT-PCR analysis of 14 DEGs showed a high consistency with their expression profiles by RNA-sequencing. Gene Ontology (GO terms related to transcription factors and transporters were significantly enriched in the up-regulated genes at 12 and 24 h after NaHCO3 stress, respectively. Nuclear Factor Y subunit A (NF-YA transcription factors were enriched at 12 h after NaHCO3 stress, and high percentages of basic helix-loop-helix (bHLH, ethylene-responsive factor (ERF, Trihelix and zinc finger (C2H2, C3H transcription factors were found at both 12 and 24 h after NaHCO3 stress. Genes related to ion transporters such as ABC transporter, aluminum activated malate transporter (ALMT, glutamate receptor (GLR, nitrate transporter (NRT / proton dependent oligopeptide (POT family, and S-type anion channel (SLAH were enriched in up-regulated DEGs at 24 h after NaHCO3 treatment, implying their roles in maintaining ion homeostasis in soybean roots under alkalinity. KEGG pathway enrichment analysis showed phenylpropanoid biosynthesis and phenylalanine metabolism pathways might participate in soybean response to alkalinity. This study provides a foundation to further investigate the functions of NaHCO3 stress-responsive genes and the molecular basis of soybean tolerance to alkalinity.

  8. The effect of gamma irradiation and ethyl methan sulfonate on somatic embryo formation of soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Ragapadmi Purnamaningsih; Ika Mariska; Lestari, E.G.; Sri Hutami; Rossa Yunita

    2014-01-01

    Soybean is a source of protein and vegetable oil. Global climate change affect the productivity of soybean, so that new cultivars that have superior characteristic can be produced. In vitro techniques through somaclonal variation and mutation is one alternative for obtaining new varieties when genetic material as the material selection is not available. Mutation induction can be performed on embryogenic cell populations using gamma irradiation or chemical compounds, such as Ethyl Methane Sulfonate (EMS). Both of these methods have been widely used to increase the genetic diversity of plants and have produced new clones with superior characteristic. The main component that must be controlled in the implementation of these technologies is somatic cells regeneration after mutation treatment in order to get in vitro shoots. Regeneration methods which are successfully applied to certain varieties, often is not successfully for other varieties of the same species. Some factors that influence it, are such as explants source, genotype, medium composition, genotype, medium composition, etc. Somaclonal variation and mutation treatment can cause cell damage that is sometimes necessary need modifications of the regeneration method that has been produced before. The aim of the experiment was to get cell population and planlet mutation with gamma irradiation and Ethyl Methan Sulfonate (EMS). Young embryozygotic was used as explant came from young pod that was harvested at 12-20 days after fertilization of Willis, Burangrang and Baluran varieties and accession No B 3592. Embryogenic callus induction was done by using MS media with vitamin B5 added with 20 mg/l of 2,4-D and 3% sucrose. The callus were irradiated by gamma rays 400 rad or dilute in EMS solution with 0.1%, 0.3% and 0.5% concentration for 1, 2, and 3 hours. After mutation treatment, the callus were sub culture for seed somatic induction. The results showed that callus formation was influenced by plant genotype. All

  9. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max).

    Science.gov (United States)

    Skelton, Joshua J; Simpson, David M; Peterson, Mark A; Riechers, Dean E

    2017-07-26

    The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U 50 = 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M 50 = 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.

  10. Chemical Composition, Antioxidant and Biological Activities of the Essential Oil and Extract of the Seeds of Glycine max (Soybean) from North Iran.

    Science.gov (United States)

    Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Tajbakhsh, Mahmood; Baharfar, Robabeh

    2017-04-01

    Glycine max (L.) Merrill (soybean) is a major leguminous crop, cultivated globally as well as in Iran. This study examines the chemical composition of soybean essential oil, and evaluates the antioxidant and antimicrobial activities of seeds on various plant pathogens that commonly cause irreparable damages to agricultural crops. The essential oil of soybean seeds was analyzed by gas chromatography coupled to mass spectrometry. Antimicrobial activity was tested against 14 microorganisms, including three gram-positive, five gram-negative bacteria, and six fungi, using disk diffusion method and the Minimum Inhibitory Concentration technique. The soybean seeds were also subjected to screening for possible antioxidant activity by using catalase, peroxidase, superoxide dismutase, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Forty components were identified, representing 96.68% of the total oil. The major constituents of the oil were carvacrol (13.44%), (E,E)-2,4-decadienal (9.15%), p-allylanisole (5.65%), p-cymene (4.87%), and limonene (4.75%). The oil showed significant activity against Pseudomonas syringae subsp. syringae, Rathayibacter toxicus with MIC = 25 µg/mL, and Pyricularia oryzae with MIC = 12.5 µg/mL. In addition, the free radical scavenging capacity of the essential oil was determined with an IC 50 value of 162.35 µg/mL. Our results suggest that this plant may be a potential source of biocide, for economical and environmentally friendly disease control strategies. It may also be a good candidate for further biological and pharmacological investigations.

  11. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  12. Determination and Comparison of Seed Oil Triacylglycerol Composition of Various Soybeans (Glycine max (L. Using 1H-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Won Woo Kim

    2013-11-01

    Full Text Available Seed oil triacylglycerol (TAG composition of 32 soybean varieties were determined and compared using 1H-NMR. The contents of linolenic (Ln, linoleic (L, and oleic (O ranged from 10.7% to 19.3%, 37.4%–50.1%, and 15.7%–34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the 1H-NMR method.

  13. Enhancement of soybean (Glycine max L.) growth by bio-fertilizers of Nostoc muscorum and Nostoc rivulare

    International Nuclear Information System (INIS)

    Sholkamy, E.N.; Komy, H.M.E.

    2015-01-01

    In the present study the nitrogenase activity of Nostoc muscorum and Nostoc rivulare was evaluated in vitro; the test showed that Nostoc muscorum and Nostoc rivulare have the ability to fix nitrogen. In a pot experiment under field conditions, the results of the present study showed that inoculation of the soybean plant with Nostoc muscorum and Nostoc rivulare, either alone or in combination with N-fertilizer at 50 and 100 kg N/ha, caused a significant increase in the growth of these plants, as reflected in plant height, leaf area, weight of plant as well as the legume weight of soybeans. The combination of biofertilization and N-fertilization, especially at 100 kg N/ha, had more effect on both the growth of soybeans and nitrogenase activity compared to biofertilization alone. Nostoc muscorum and Nostoc rivulare are a promising biofertilizers for achieving an efficient association between N2 fixing cyanobacteria and soybeans; and thus enhancement of the growth. (author)

  14. Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.).

    Science.gov (United States)

    Tanaka, Seiya; Ario, Nobuyuki; Nakagawa, Andressa Camila Seiko; Tomita, Yuki; Murayama, Naoki; Taniguchi, Takatoshi; Hamaoka, Norimitsu; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2017-06-03

    Soybean pods are located at the nodes, where they are in the shadow, whereas cowpea pods are located outside of the leaves and are exposed to sunlight. To compare the effects of light quality on pod growth in soybean and cowpea, we measured the length of pods treated with white, blue, red or far-red light. In both species, pods elongated faster during the dark period than during the light period in all light treatments except red light treatment in cowpea. Red light significantly suppressed pod elongation in soybean during the dark and light periods. On the other hand, the elongation of cowpea pods treated with red light markedly promoted during the light period. These results suggested that the difference in the pod set sites between soybean and cowpea might account for the difference in their red light responses for pod growth.

  15. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    Science.gov (United States)

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  16. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy.

    Science.gov (United States)

    Kusumaningrum, Dewi; Lee, Hoonsoo; Lohumi, Santosh; Mo, Changyeun; Kim, Moon S; Cho, Byoung-Kwan

    2018-03-01

    The viability of seeds is important for determining their quality. A high-quality seed is one that has a high capability of germination that is necessary to ensure high productivity. Hence, developing technology for the detection of seed viability is a high priority in agriculture. Fourier transform near-infrared (FT-NIR) spectroscopy is one of the most popular devices among other vibrational spectroscopies. This study aims to use FT-NIR spectroscopy to determine the viability of soybean seeds. Viable and artificial ageing seeds as non-viable soybeans were used in this research. The FT-NIR spectra of soybean seeds were collected and analysed using a partial least-squares discriminant analysis (PLS-DA) to classify viable and non-viable soybean seeds. Moreover, the variable importance in projection (VIP) method for variable selection combined with the PLS-DA was employed. The most effective wavelengths were selected by the VIP method, which selected 146 optimal variables from the full set of 1557 variables. The results demonstrated that the FT-NIR spectral analysis with the PLS-DA method that uses all variables or the selected variables showed good performance based on the high value of prediction accuracy for soybean viability with an accuracy close to 100%. Hence, FT-NIR techniques with a chemometric analysis have the potential for rapidly measuring soybean seed viability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    Science.gov (United States)

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  18. Selection individual on mutant genotype of soybean (Glycine maxl.merrill) in m5 generation based on resistance of stem rot disease Athelia rolfsii (curzi)

    Science.gov (United States)

    Rahmah, M.; Hanafiah, D. S.; Siregar, L. A. M.; Safni, I.

    2018-02-01

    This study was aimed to obtain selected individuals on soybean plant Glycine max L. (Merrill) in M5 generation based on high production character and tolerance of stem rot disease Athelia rolfsii (Curzi). This research was conducted in Plant Disease Laboratory and experimental field Faculty of Agriculture Universitas Sumatera Utara Medan, Indonesia. This research was conducted from December 2016 to June 2017. The treatments were 15 mutant lines genotypes and Anjasmoro variety. The results showed that some lines mutant genotypes can gave the good agronomic appearance character than Anjasmoro variety on inoculation treatment of stem rot disease. Selection performed on population M5 producesselected individuals with tolerance of stem rot disease from 100 and 200 Gy population.

  19. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).

    Science.gov (United States)

    Koriyama, Takako; Sato, Yoko; Iijima, Kumiko; Kasai, Midori

    2017-07-01

    The influences of soaking treatment and storage conditions on the softening of cooked beans, namely, soybeans and red kidney beans, were investigated. It was revealed that the softening of fresh soybeans and fresh red kidney beans was suppressed during subsequent boiling after soaking treatment at 50 and 60 °C. Furthermore, in treated aged soybeans and red kidney beans that were subjected to storage at 30 °C/75% relative humidity for 6 mo and soaking treatment at 50 to 60 °C, the hardness during cooking was further amplified. This suggested that the mechanism of softening suppression differs depending on the influences of soaking and storage. Analysis of the pectin fraction in alcohol insoluble solid showed insolubilization of metal ions upon storage at high temperature and high humidity in both soybeans and red kidney beans, which suggests interaction between Ca ions and hemicellulose or cellulose as cell wall polysaccharides. The results of differential scanning calorimetry (DSC) showed that aged soybeans exhibited a shift in the thermal transition temperature of glycinin-based protein to a higher temperature compared with fresh soybeans. From the results of DSC and scanning electron microscopy for aged red kidney beans, damaged starch is not conspicuous in the raw state after storage but is abundant upon soaking treatment. As for the influence of soaking at 60 °C, it can be suggested that its influence on cell wall crosslinking was large in soybeans and red kidney beans in both a fresh state and an aged state. © 2017 Institute of Food Technologists®.

  20. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups.

    Science.gov (United States)

    Yin, Guangjun; Xu, Hongliang; Xiao, Shuyang; Qin, Yajuan; Li, Yaxuan; Yan, Yueming; Hu, Yingkao

    2013-10-03

    WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have different evolutionary rates

  1. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    Science.gov (United States)

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  2. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses.

    Directory of Open Access Journals (Sweden)

    Casey L Ruark

    Full Text Available Five viruses were previously discovered infecting soybean cyst nematodes (SCN; Heterodera glycines from greenhouse cultures maintained in Illinois. In this study, the five viruses [ScNV, ScPV, ScRV, ScTV, and SbCNV-5] were detected within SCN greenhouse and field populations from North Carolina (NC and Missouri (MO. The prevalence and titers of viruses in SCN from 43 greenhouse cultures and 25 field populations were analyzed using qRT-PCR. Viral titers within SCN greenhouse cultures were similar throughout juvenile development, and the presence of viral anti-genomic RNAs within egg, second-stage juvenile (J2, and pooled J3 and J4 stages suggests active viral replication within the nematode. Viruses were found at similar or lower levels within field populations of SCN compared with greenhouse cultures of North Carolina populations. Five greenhouse cultures harbored all five known viruses whereas in most populations a mixture of fewer viruses was detected. In contrast, three greenhouse cultures of similar descent to one another did not possess any detectable viruses and primarily differed in location of the cultures (NC versus MO. Several of these SCN viruses were also detected in Heterodera trifolii (clover cyst and Heterodera schachtii (beet cyst, but not the other cyst, root-knot, or reniform nematode species tested. Viruses were not detected within soybean host plant tissue. If nematode infection with viruses is truly more common than first considered, the potential influence on nematode biology, pathogenicity, ecology, and control warrants continued investigation.

  3. Potential production and growth analysis of local variety and Americana variety of soybean (Glycine max (L) Merril)

    International Nuclear Information System (INIS)

    Sumakud, M.Y.M.A.

    2000-01-01

    Soybean needs high radiation intensity for photosynthesis process; therefore 100 percent of the sunlight are needed. Due to increasing the soybean production, the environment factor such as climate, soil and management are needed. One of the environment factor that influence the growth and dry matter production is radiation. This research done was to see the potential production of local variety and Americana variety by observing the total radiation absorption, temperature, rainfall and humidity. Therefore the objective of this research was to know the potential production in tropic area in soybean. If the production is mainly determined by the high growth rate or the length of phase linear or both of them also by the efficiency of radiation that received by the plant. The method of this research was carried out by using completed randomized design, with three replications. The result showed that the growth and the production of soybean are determined by growth rate (Cm) and the length of growth linear (tm). Dry matter of soybean is determined by growth rate instead of the length of growth linear, for efficiency of radiation are not significant. Pod formation is determined by the growth rate, content of pods is determined by the length of linear growth

  4. Changes in Amino Acid Profile in Roots of Glyphosate Resistant and Susceptible Soybean (Glycine max) Induced by Foliar Glyphosate Application.

    Science.gov (United States)

    Moldes, Carlos Alberto; Cantarelli, Miguel Angel; Camiña, José Manuel; Tsai, Siu Mui; Azevedo, Ricardo Antunes

    2017-10-11

    Amino acid profiles are useful to analyze the responses to glyphosate in susceptible and resistant soybean lines. Comparisons of profiles for 10 amino acids (Asp, Asn, Glu, Gln, Ser, His, Gly, Thr, Tyr, Leu) by HPLC in soybean roots were performed in two near isogenic pairs (four varieties). Foliar application of glyphosate was made to soybean plants after 5 weeks of seeding. Roots of four varieties were collected at 0 and 72 h after glyphosate application (AGA) for amino acid analysis by HPLC. Univariate analysis showed a significant increase of several amino acids in susceptible as well as resistant soybean lines; however, amino acids from the major pathways of carbon (C) and nitrogen (N) metabolism, such as Asp, Asn, Glu and Gln, and Ser, increased significantly in susceptible varieties at 72 h AGA. Multivariate analysis using principal component analysis (2D PCA and 3D PCA) allowed different groups to be identified and discriminated based on the soybean genetic origin, showing the amino acid responses on susceptible and resistant varieties. Based on the results, it is possible to infer that the increase of Asn, Asp, Glu, Gln, and Ser in susceptible varieties would be related to the deregulation of C and N metabolism, as well as changes in the growth mechanisms regulated by Ser.

  5. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots

    Science.gov (United States)

    2014-01-01

    Background Extensive studies using the model system Arabidopsis thaliana to elucidate plant defense signaling and pathway networks indicate that salicylic acid (SA) is the key hormone triggering the plant defense response against biotrophic and hemi-biotrophic pathogens, while jasmonic acid (JA) and derivatives are critical to the defense response against necrotrophic pathogens. Several reports demonstrate that SA limits nematode reproduction. Results Here we translate knowledge gained from studies using Arabidopsis to soybean. The ability of thirty-one Arabidopsis genes encoding important components of SA and JA synthesis and signaling in conferring resistance to soybean cyst nematode (SCN: Heterodera glycines) are investigated. We demonstrate that overexpression of three of thirty-one Arabidoposis genes in transgenic soybean roots of composite plants decreased the number of cysts formed by SCN to less than 50% of those found on control roots, namely AtNPR1(33%), AtTGA2 (38%), and AtPR-5 (38%). Three additional Arabidopsis genes decreased the number of SCN cysts by 40% or more: AtACBP3 (53% of the control value), AtACD2 (55%), and AtCM-3 (57%). Other genes having less or no effect included AtEDS5 (77%), AtNDR1 (82%), AtEDS1 (107%), and AtPR-1 (80%), as compared to control. Overexpression of AtDND1 greatly increased susceptibility as indicated by a large increase in the number of SCN cysts (175% of control). Conclusions Knowledge of the pathogen defense system gained from studies of the model system, Arabidopsis, can be directly translated to soybean through direct overexpression of Arabidopsis genes. When the genes, AtNPR1, AtGA2, and AtPR-5, encoding specific components involved in SA regulation, synthesis, and signaling, are overexpressed in soybean roots, resistance to SCN is enhanced. This demonstrates functional compatibility of some Arabidopsis genes with soybean and identifies genes that may be used to engineer resistance to nematodes. PMID:24739302

  6. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2015-08-01

    Full Text Available The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr., GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD. Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  7. Protective effect of Mn(III)-desferrioxamine B upon oxidative stress caused by ozone and acid rain in the Brazilian soybean cultivar Glycine max "Sambaiba".

    Science.gov (United States)

    Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro

    2015-04-01

    This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.

  8. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  9. Search for Nodulation and Nodule Development-related cystatin genes in the genome of Soybean (Glycine max

    Directory of Open Access Journals (Sweden)

    Songli Yuan

    2016-10-01

    Full Text Available Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97~245 amino acid residues, different isoelectric points (pI and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS - specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16 was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to

  10. SISTEMAS DE MANEJO DO SOLO: SOJA [Glycine max (L.] CONSORCIADA COM Brachiaria decumbens (STAPF SOIL MANAGEMENT SYSTEMS: SOYBEAN [Glycine max (L.] INTERCROPPED WITH Brachiaria decumbens (STAPF

    Directory of Open Access Journals (Sweden)

    Emanuel da Silva Barros

    2011-01-01

    vagem, número de grãos por planta, massa de 1.000 grãos e produtividade; e 2 B. decumbens: composição química das plantas, além do acúmulo de matéria seca, em cinco épocas de amostragens. Os sistemas de manejo do solo influenciaram o estande de plantas e a concentração de P, Cu, Fe e Zn, na soja, além do S, na Brachiaria decumbens. O sistema plantio direto apresentou maior produtividade de grãos e produção de fitomassa de B. decumbens, nas condições edafoclimáticas de Rio Largo (AL.

    PALAVRAS-CHAVE: Plantio direto; integração lavoura-pecuária; cultivo mínimo.

    The aim of this study was to evaluate the effects of different soil management systems on the soybean yield components intercropped or not with Effectiveness of fast neutrons irradiation for the stimulation and induction of genetic changes in soybean (Glycine max L. Merrill) genome

    International Nuclear Information System (INIS)

    Sodkiewicz, T.; Sodkiewicz, W.

    1999-01-01

    Air-dry seeds of soybean cv. Warszawska were irradiated with fast neutrons (Nf) using the U-120 cyclotron (at the Institute of Nuclear Physics in Cracow) at the doses of 500, 1000, 1500 R. Additionally, each of the irradiation doses was combined with the selected effective chemical mutagen N-nitroso-N-methylurea - in three concentrations: 0.5, 1.5 and 2.5 mM, to evaluate synergistic effect of these two different mutagenic agents. The results showed some of protection effect of radiation on the level of somatic damage of soybean plants. In addition, the phenomenon of the 'delaying effect' was noted, because the protection effect of fast neutron radiation in the combined treatments with chemomutagen was observed in the emergence and plant survival in the M 2 generation as well. From the point of view of genetic changes induced in the soybean genome, the most effective dose of fast neutron irradiation was 500 R. The number of soybean mutants with earlier ripening obtained (in comparison with original 'mother' variety) at this irradiation dose was higher, than with the highest effective concentration of chemical mutagen (1.0 -1.5 mM MNUA). (author)

  11. Gamma-ray induction of a mutant soybean [Glycine max (L.) Merrill] line lacking all seed lipoxygenases

    International Nuclear Information System (INIS)

    Hajika, Makita; Suda, Ikuo; Sakai, Shinji; Takahashi, Masakazu

    1997-01-01

    Induction of a soybean line lacking all isozymes of seed lipoxygenase was attempted using γ-radiation and of 1,813 seeds in M 3 generation, only one was identified as a seed lacking all the isozymes by SDS-PAGE. This line did not present any physiological abnormality over 10 generations or more (M 4 -M 14 ) and no significant influence of the enzyme on the agricultural traits was observed during the performance test in fields. In the resistance test against insect pests, significant differences were not found among the varieties and the lines tested. These results suggest that deletion of all lipoxygenase isozymes would not affect the soybean production in practice. The lipoxygenase activity was not detected in the leaves as well as the seeds of this line, suggesting that this enzyme are not indispensable for the soybean growth. The validity of this line in food processing fields was examined through determining the levels of hexanal production and DETBA. This line was found able to improve the taste of soybean cookies and use in combination with other materials as flour, egg, etc. because the line has no lipoxygenase activity. (M.N.)

  12. Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD

    International Nuclear Information System (INIS)

    Atak, Cimen; Alikamanoglu, Sema; Acik, Leyla; Canbolat, Yasemin

    2004-01-01

    The aim of our study was to induce with radiation of atrazine resistant and tolerated mutants in Coles, Amsoy-71 and 1937 soybean varieties. Atrazine that is photosynthetic inhibitor is the most important herbicide of S-triazin group, and shows toxic effect on soybean plant. For the improvement of the atrazine resistant plants with mutation breeding, the seeds belonging to the three varieties were irradiated with 200 Gy of gamma radiation dose. The irradiated seeds were sown in the field and at the end of harvesting season, every pod at node situated on the main stem was picked up separately and M 2 generations were obtained. At the plants, which were obtained from M 2 generation, chlorophyll mutants were determined and atrazine selection was made. The percentage of chlorophyll mutants for Amsoy-71, Coles and 1937 soybean varieties were found as 1.07, 1.48 and 1.32, respectively. At the end of atrazine selection, the percentages of atrazine resistant plants for Amsoy-71, Coles and 1937 soybean varieties were 0.80, 0.60 and 0.53, respectively. The percentages of atrazine tolerated plants were 1.07, 1.18 and 1.05, respectively as well. In our research; the differences among the mutants replying to atrazine in various concentrations were examined by using RAPD procedure as the molecular marker techniques in comparison with polymorphism. In the study done by using 14 primers; according to the amplification results, the differences between atrazine resistant plants were shown

  13. System-level insights into the cellular interactome of a non-model organism: inferring, modelling and analysing functional gene network of soybean (Glycine max.

    Directory of Open Access Journals (Sweden)

    Yungang Xu

    Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional

  14. Nutritional requirements for soybean cyst nematode

    Science.gov (United States)

    Soybeans [Glycine max] are the second largest cash crop in US Agriculture, but the soybean yield is compromised by infections from Heterodera glycines, also known as Soybean Cyst Nematodes [SCN]. SCN are the most devastating pathogen or plant disease soybean producers confront. This obligate parasi...

  15. The Effect of using Quail Litter Biochar on Soybean (Glycine max L. Merr. Production Efecto del uso de Biocarbón de Lecho de Codorniz en la Producción de Soya (Glycine max L. Merr.

    Directory of Open Access Journals (Sweden)

    Tawadchai Suppadit

    2012-06-01

    Full Text Available Biochars can be used as soil amendments for improving soil properties and crop yield. The objective of this research was to study the plant growth, yield, yield components, and seed quality, including nutrients and heavy metals (Pb, Cd, and Hg, in the soybean plant (Glycine max L. Merr. and soil. The experiment was conducted from September 2010 to January 2011 in a greenhouse located in the Dan Khun Thot District, Nakhon Ratchasima Province, Thailand. The research comprised six treatments with four replicates in a completely randomized design. Quail litter biochar (QLB at rates of 0, 24.6, 49.2, 73.8, 98.4 and 123 g per pot mixture were provided to soybean cv. Chiang Mai 60. The results showed that QLB could be used as a soil fertility improvement and amendment for soybean production with an optimum rate of 98.4 g per pot mixture, which gave the best performance in terms of the number of nodes, height, DM accumulation, total yield, and seed quality. After the experiment, the nutrient contents in the soil increased as the QLB content increased, but the heavy metal residues in the leaves and seeds did not change. However, QLB at levels higher than 98.4 g per pot mixture is not advisable because QLB is alkaline in nature, which may affect soil pH.El biocarbón puede usarse como enmienda para mejorar las propiedades del suelo y el rendimiento del cultivo. El objetivo de esta investigación fue el estudio del crecimiento de la planta, rendimiento y sus características, así como la calidad de semilla, incluyéndose el estudio de nutrientes y metales pesados (Pb, Cd y Hg en la planta de soya (Glycine max L. Merr. y el suelo. La experimentación se realizó en condiciones de invernadero en el distrito de Dan Khun Thot, provincia de Nakhon Ratchasima, Tailandia, entre septiembre del 2010 y enero del 2011. La investigación constó de seis tratamientos con cuatro repeticiones en un diseño completamente al azar. Se administró biocarbón de lecho de

  16. QTLs for resistance to Phomopsis seed decay are associated with days to maturity in soybean (Glycine max).

    Science.gov (United States)

    Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Yin-Won; Li, Baodu; Lee, Suk-Ha

    2013-08-01

    Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100-Satt460 and Sat_038-Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.

  17. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    Science.gov (United States)

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    Science.gov (United States)

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  19. Induced mutations for disease resistance and other agronomic characteristics in bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill)

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.; Alberini, J.; Peixoto, T.C.

    1988-01-01

    The present research project aims to induce mutations with resistance to Xanthomonas phaseoli (common blight) and golden mosaic virus (GMV) in bean and resistance to Phakopsora pachyrhizi (rust) and Brazilian bud blight in soybean. At the same time, other mutant types of interest were selected. Gamma rays and ethyl methane-sulphonate (EMS) were generally utilized as mutagenic agents and seeds of several cultivars from both crops were treated. The selection was made at the M 2 or M 3 generation, utilizing progeny or mixtures of seeds from bulk. Screening was carried out in the field, greenhouse or insectary (according to the disease). Priority was given to GMV in bean and about 235,850 plants were observed in the field and 67,500 in the insectary. Only one plant showing mild GMV symptoms was obtained. However, owing to negative pleiotropic effects, this mutant could not be used. Concerning the other diseases, there are some selected plants that still require better observation before reporting that progress has been made. With regard to other mutant types, earliness was obtained in soybean and a bush variety and an earlier mutant was selected in bean. This mutant has already been utilized by breeders in cross-breeding and is being multiplied to be experimentally utilized by farmers under special conditions of cultivation. In soybean, preliminary yield trials are under way, and include some of the early mutants obtained. (author). 26 refs, 20 tabs

  1. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    Science.gov (United States)

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  2. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties

    Science.gov (United States)

    Hasanah, Y.; Sembiring, M.

    2018-02-01

    Elicitors such as chitosan and salicylic acid could be used not only to increase isoflavone concentration of soybean seeds, but also to increase the growth and seed yield. The objective of the present study was to determine the effects of foliar application of elicitor compounds (i.e. chitosan, and salicylic acid)on the growth of two soybean varieties under dry land conditions. Experimental design was a randomized block design with 2 factors and 3 replications. The first factor was soybean varieties (Wilis and Devon). The second factor was foliar application of elicitors consisted of without elicitor; chitosan at V4 (four trifoliate leaves are fully developed); chitosan at R3 (early podding); chitosan at V4 and R3; salicylic acid at V4; salicylic acid at R3 and salicylic acid at V4 and R3. Parameters observed was plant height at 2-7 week after planting (WAP), shoot dry weight and root dry weight. The results suggest that the Wilis variety had higher plant height 7 WAP than Devon. The foliar application of chitosan increased the plant height at 7 WAP, shoot dry weight and root dry weight. The foliar application of chitosan at V4 and R3 on Devon variety increased shoot dry weight.

  3. Sensibilidade de cultivares de soja (Glycine max aos herbicidas diclosulam e flumetsulam Soybean (Glycine max cultivars sensibility to the herbicides diclosulam and flumetsulam

    Directory of Open Access Journals (Sweden)

    Célio R. F. Leite

    2000-01-01

    Full Text Available O objetivo deste trabalho foi verificar, no campo, no município de Londrina-PR, a resposta de 12 cultivares de soja em relação aos herbicidas diclosulam e flumetsulam aplicados e incorporados em Latossolo Roxo distrófico (80,84 % de argila, pH 5,4 e matéria orgânica 3,07 %. As cultivares foram: 'FT-Guaira', 'Embrapa-48', 'Ocepar-14', 'BR-16', 'Embrapa-4', 'Ocepar-13', 'BR-36', 'FT10-Princesa', 'FT-2000', 'FTAbyara', 'BR-37' e 'RS7- Jacuí'. O diclosulam foi utilizado nas doses de 35 g/ha (normal e 70 g/ha (dobrada; e o flumetsulam nas doses de 120 g/ha (normal e 240 g/ha (dobrada; também foi utilizada a mistura de diclosulam + flumetsulam (20 + 100 g/ha; e imazaquin à 150 g/ha. Nas doses normais utilizadas dos dois herbicidas não foi possível distinguir nenhuma cultivar suscetível. Em dose dobrada do diclosulam os rendimentos das cultivares 'FT-Guaira', 'Embrapa 4' e 'BR-37 ' foram reduzidos em 20,9 %, 11,8 % e 11,0 % respectivamente, em relação à testemunha. O flumetsulam à 240 g/ha e sua mistura com diclosulam também reduziu o rendimento destas cultivares, mais o da 'Ocepar-14'. A maioria das cultivares teve o estande reduzido, nas doses dobradas dos dois herbicidas, mas também sem significância. Somente o estande da cultivar 'Embrapa-48' não foi afetado, ao contrário da 'RS-7 Jacuí'. A altura de plantas foi menor em relação à testemunha no tratamento com flumetsulam à 240 g/ha. Na maioria das cultivares o peso da biomassa seca de nódulos foi menor nas doses dobradas, e em algumas também o peso por unidade de nódulos. A biomassa seca da parte aérea e da raiz não foram reduzidas.The objective of the present paper was to check the behaviour of 12 different soybean cultivars in relation to the tolerance to the herbicides flumetsulam and diclosulam applied on a soil classified as Latossolo Roxo distrófico (80,87% of clay, pH of 5,4 and 3,07 of organic matter in Londrina - PR. The cultivars were: 'FTGuaira', 'Embrapa

  4. Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UV-B/A components of solar radiation: characterization of photosynthetic parameters in leaves.

    Science.gov (United States)

    Guruprasad, Kadur; Kadur, Guruprasad; Bhattacharjee, Swapan; Swapan, Bhattacharjee; Kataria, Sunita; Sunita, Kataria; Yadav, Sanjeev; Sanjeev, Yadav; Tiwari, Arjun; Arjun, Tiwari; Baroniya, Sanjay; Sanjay, Baroniya; Rajiv, Abhinav; Abhinav, Rajiv; Mohanty, Prasanna

    2007-01-01

    Exclusion of UV (280-380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34-46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants.

  5. The Effects of Different Irrigation Regimes on the Morphological and Physiological Characteristics of Three Soybean Cultivars (Glycine max

    Directory of Open Access Journals (Sweden)

    N. Razmi

    2013-11-01

    Full Text Available To study the effect of different irrigation regimes on morphological and physiological characteristics of soybean cultivars, this experiment was conducted at Moghan Agricultural Research Center during 2009-2010 in Iran. The experiment was split plot based on randomized complete block design, with 3 replications. The main plots consisted of four irrigation regimes: I1, I2, I3 and I4 indicating irrigation after 60, 100, 140 and 180 mm evaporation from class A pan respectively and 3 soybean cultivars named Linford, L17 and Williams assigned in the sub plots. Results of combined analysis showed that with increasing irrigation intervals from I1 to I4 reduced growth period, plant height and leaf area index (LAI, number of nodes, branches and internodes significantly. Physiologic characteristics such as chlorophyll contain of leaves and relative water content (RWC were also affected by irrigation regimes. LAI in I1 was 4.94 reduced inI4to 3.70.Plant height of soybean cultivars were declined by 21% in I4 (irrigation after 180 mm evaporation as compared to I1 (irrigation after 60 mm evaporation. Soluble proline content of the leaves and electric conduction (EC on the other hand increases significantly. There was significant differences among cultivars concerning the vegetative and physiological characteristics. Willams and L17 cultivars produced the highest numbers of nodes (15.5 and internode length (4.95cm receptivity. The maximum proline content (65.6 µmol/F.W and relative water content (67.65% belonged to Linford cultivar. Interaction of irrigation regimes and cultivars was significant on plant hieght, LAI and proline content. Linford cultivar had more soluble proline under water limited condition and maintained higher LAI and plant height in I4 treatment as compared other treatments.

  6. Microbial assisted phyto extraction of metals and growth of soybean (glycine max l. merrill) on industrial waste water contaminated soil

    International Nuclear Information System (INIS)

    Ali, I.; Bano, A.

    2012-01-01

    Pots experiments were made to investigate the role of effective microorganisms (EM) in improving phyto extraction of metals (Cd/sup +2/ and Mn/sup +2/) and growth of soybean plant in industrial waste water polluted soil. Waste water applications to soil were made in four different dilutions (i.e. 25%, 50%, 75% and 100%). Effective microorganisms were added into waste water prior to application. Effect of treatments on growth parameters was studied. The Cd/sup +2/ and Mn/sup +2/ concentrations in different parts of plant were measured by Atomic Absorption Spectrophotometer. Plant height significantly increased at all treatments except at 25% waste water treatment. Plant dry biomass and oil contents in seed significantly increased with all treatments compared to control but were higher at low concentration of waste water. Waste water treatments significantly increased the Cd and Mn accumulation in plant while inoculation of EM further enhanced the metals accumulation. The maximum accumulation of Cd and Mn found in plant treated with 100% waste water in combination with effective microorganisms. At harvest, the Cd/sup +2/ concentration decreased in leaves but increased in roots followed by stem > seeds, while, Mn/sup +2/ accumulation increased in leaves followed by roots > stem > seeds. Conclusively, EM enhanced the phyto extraction of Cd and Mn and also increased the oil contents in soybean on polluted soil. These findings suggest further investigation to find out a suitable concentration of industrial waste water in combination with EM for better growth of soybean and improving phyto extraction of metals. (author)

  7. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars.

    Science.gov (United States)

    Hussain, Reem M; Ali, Mohammed; Feng, Xing; Li, Xia

    2017-02-28

    The NAC gene family is notable due to its large size, as well as its relevance in crop cultivation - particularly in terms of enhancing stress tolerance of plants. These plant-specific proteins contain NAC domain(s) that are named after Petunia NAM and Arabidopsis ATAF1/2 and CUC2 transcription factors based on the consensus sequence they have. Despite the knowledge available regarding NAC protein function, an extensive study on the possible use of GmNACs in developing soybean cultivars with superior drought tolerance is yet to be done. In response to this, our study was carried out, mainly through means of phylogenetic analysis (rice and Arabidopsis NAC genes served as seeding sequences). Through this, 139 GmNAC genes were identified and later grouped into 17 clusters. Furthermore, real-time quantitative PCR was carried out on drought-stressed and unstressed leaf tissues of both sensitive (B217 and H228) and tolerant (Jindou 74 and 78) cultivars. This was done to analyze the gene expression of 28 dehydration-responsive GmNAC genes. Upon completing the analysis, it was found that GmNAC gene expression is actually dependent on genotype. Eight of the 28 selected genes (GmNAC004, GmNAC021, GmNAC065, GmNAC066, GmNAC073, GmNAC082, GmNAC083 and GmNAC087) were discovered to have high expression levels in the drought-resistant soybean varieties tested. This holds true for both extreme and standard drought conditions. Alternatively, the drought-sensitive cultivars exhibited lower GmNAC expression levels in comparison to their tolerant counterparts. The study allowed for the identification of eight GmNAC genes that could be focused upon in future attempts to develop superior soybean varieties, particularly in terms of drought resistance. This study revealed that there were more dehydration-responsive GmNAC genes as (GmNAC004, GmNAC005, GmNAC020 and GmNAC021) in addition to what were reported in earlier inquiries. It is important to note though, that discovering such

  8. THE EFFECT OF FERTILIZATION ON YIELD COMPONENTS AND QUALITY PARAMETERS OF SOYBEANS [(GLYCINE MAX (L. MERR.] SEEDS

    Directory of Open Access Journals (Sweden)

    Milan Macak

    2013-09-01

    Full Text Available Field experiment was carry out at experimental farm Oponice West Slovakia, 48 28 N, 18 9E in 2004 2007. The aim of the work was to evaluate the influence of nitrogen fertilization treatments on yield and yield component and selected quality parameters proteins, oil, fibre, isoflavones of soybeen seeds variety Korada, in agri environmental condition of western part of Slovakia. The fertilization treatments were as follows I unfertilized treatment; II application of nitrogen fertilizers LAV 27 ammonium nitrate with lime 40 kg ha 1 nitrogen in the vegetative stage V2; III Humix complet in split application of total dose 4 +4 L ha 1 applied in growth stage of V2 and in reproductive growth stage of R1 beginning bloom. Humix complet contain bioactive ingredient and nutrients for plant nutrition with 2.5 of humic acids, 4.0 total N, 0.5 P2O5, 3 K2O, and micronutrients. Result showed the highest variation of pods per plant in dependence of year condition range 17.8-24.7. No significant differences between numbers of seeds were noted 2.13-2.29. The split application of Humic complet significantly influence the higher number of pods per plant 24.8 while keeping the number of seeds per pod 2.13. The yield of seeds was significantly influenced by weather conditions 2.84 t ha 1 4.68 t ha 1 and by fertilization treatments. Supplemental ammonium nitrate with lime treatments II in the vegetative stage of V2 or Humix complet treatment III applied in V2 and R1 stages significantly increased yield of soybean seeds up to 3.91 t ha 1 and 4.27 t ha 1 with comparison to control treatment 3.49 t ha 1. Content of protein, oil and fibre was not significantly differing between fertilization treatments. In spite of significantly higher soybean yield in Humic complet treatment, content of protein 37.67, oil 15.83 and fibre 9.47 was at the same level as lower yielded treatments. Soybean seeds from higher yielded fertilization treatments have significantly less content of

  9. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  10. Comparison of saponin composition and content in wild soybean (Glycine soja Sieb. and Zucc.) before and after germination.

    Science.gov (United States)

    Krishnamurthy, Panneerselvam; Tsukamoto, Chigen; Takahashi, Yuya; Hongo, Yuji; Singh, Ram J; Lee, Jeong Dong; Chung, Gyuhwa

    2014-01-01

    Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC-PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1 g mature dry seeds of wild soybean was 16.08 ± 3.13 μmol. In two-week-old seedlings, produced from 1 g mature seeds, it was 27.94 ± 6.52 μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04 ± 0.71 μmol). High concentration of DDMP saponins (7.37 ± 5.22 μmol) and Sg-6 saponins (2.19 ± 0.59 μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP + B + E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.

  11. The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions.

    Science.gov (United States)

    Cao, Zhiming; Rossi, Lorenzo; Stowers, Cheyenne; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2018-01-01

    The ongoing global climate change raises concerns over the decreasing moisture content in agricultural soils. Our research investigated the physiological impact of two types of cerium oxide nanoparticles (CeO 2 NPs) on soybean at different moisture content levels. One CeO 2 NP was positively charged on the surface and the other negatively charged due to the polyvinylpyrrolidone (PVP) coating. The results suggest that the effect of CeO 2 NPs on plant photosynthesis and water use efficiency (WUE) was dependent upon the soil moisture content. Both types of CeO 2 NPs exhibited consistently positive impacts on plant photosynthesis at the moisture content above 70% of field capacity (θ fc ). Similar positive impact of CeO 2 NPs was not observed at 55% θ fc , suggesting that the physiological impact of CeO 2 NPs was dependent upon the soil moisture content. The results also revealed that V Cmax (maximum carboxylation rate) was affected by CeO 2 NPs, indicating that CeO 2 NPs affected the Rubisco activity which governs carbon assimilation in photosynthesis. In conclusion, CeO 2 NPs demonstrated significant impacts on the photosynthesis and WUE of soybeans and such impacts were affected by the soil moisture content. Graphical abstract Soil moisture content affects plant cerium oxide nanoparticle interactions.

  12. Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max).

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Dey, Debjani; Shakil, N A; Walia, S

    2012-01-01

    Controlled release (CR) formulations of imidacloprid (1-(6 chloro-3-pyridinyl methyl)-N- nitro imidazolidin-2- ylideneamine) were prepared using novel amphiphilic polymers synthesized from polyethylene glycol and aliphatic diacids employing encapsulation technique. The bioefficacy of the prepared CR formulations was evaluated against major pests of soybean, namely stem fly, Melanagromyza sojae Zehntmer and white fly, Bemisia tabaci Gennadius along with a commercial formulation at the experimental farm of Indian Agricultural Research Institute (IARI), New Delhi during kharif 2009 and 2010. Most of the CR formulations of imidacloprid gave significantly better control of the pests compare to its commercial formulations, however the CR formulations, Poly [poly (oxyethylene-1000)-oxy suberoyl] amphiphilic polymer based formulation performed better over others for controlling of both stem fly incidence and Yellow Mosaic Virus (YMV) infestation transmitted by white fly. Some of the developed CR formulations recorded higher yield over commercial formulation and control. Nodulation pattern of soybean was not affected due to treatment of CR and commercial formulations of imidacloprid. Also the residues of imidacloprid in seed and soil at harvest were not detectable for both CR and commercial formulations.

  13. Physiology response of fourth generation saline resistant soybean (Glycine max (L.) Merrill) with application of several types of antioxidants

    Science.gov (United States)

    Manurung, I. R.; Rosmayati; Rahmawati, N.

    2018-02-01

    Antioxidant applications are expected to reduce the adverse effects of soil saline. This research was conducted in plastic house, Plant Tissue Laboratory Faculty of Agriculture and Plant Physiology Laboratory Faculty of Mathematic and Natural Science, Universitas Sumatera Utara, Medan also in Research Centers and Industry Standardization, Medan from July-December 2016. The objective of the research was to know the effect of various antioxidant treatments with different concentrations (control, ascorbic acid 250, 500 and 750 ppm; salicylic acid 250, 500 and 750 ppm; α-tocopherol 250, 500 and 750 ppm) on fourth generation soybean physiology in saline condition (Electric Conductivity 5-6 dS/m). The results of this research showed that the antioxidant type and concentration affected not significantly to physiology of fourth generation soybean. Descriptively the highest average of superoxide dismutase and peroxide dismutase was showed on ascorbic acid 250 ppm. The highest average of ascorbate peroxidase was showed on α-tocopherol 750 ppm. The highest average of carotenoid content was showed on ascorbic acid 500 ppm. The highest average of chlorophyll content was showed on α-tocopherol 250 ppm. The highest average of ratio of K/Na was showed on salicylic acid 250 ppm.

  14. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    Science.gov (United States)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  15. Glycine Receptor Activation Impairs ATP-Induced Calcium Transients in Cultured Cortical Astrocytes

    Directory of Open Access Journals (Sweden)

    Tatiana P. Morais

    2018-01-01

    Full Text Available In central nervous system, glycine receptor (GlyR is mostly expressed in the spinal cord and brainstem, but glycinergic transmission related elements have also been identified in the brain. Astrocytes are active elements at the tripartite synapse, being responsible for the maintenance of brain homeostasis and for the fine-tuning of synaptic activity. These cells communicate, spontaneously or in response to a stimulus, by elevations in their cytosolic calcium (calcium transients, Ca2+T that can be propagated to other cells. How these Ca2+T are negatively modulated is yet poorly understood. In this work, we evaluated GlyR expression and its role on calcium signaling modulation in rat brain astrocytes. We first proved that GlyR, predominantly subunits α2 and β, was expressed in brain astrocytes and its localization was confirmed in the cytoplasm and astrocytic processes by immunohistochemistry assays. Calcium imaging experiments in cultured astrocytes showed that glycine (500 μM, a GlyR agonist, caused a concentration-dependent reduction in ATP-induced Ca2+T, an effect abolished by the GlyR antagonist, strychnine (0.8 μM, as well as by nocodazole (1 μM, known to impair GlyR anchorage to the plasma membrane. This effect was mimicked by activation of GABAAR, another Cl--permeable channel. In summary, we demonstrated that GlyR activation in astrocytes mediates an inhibitory effect upon ATP induced Ca2+T, which most probably involves changes in membrane permeability to Cl- and requires GlyR anchorage at the plasma membrane. GlyR in astrocytes may thus be part of a mechanism to modulate astrocyte-to-neuron communication.

  16. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Cooper, James W; Kunert, Karl J; Foyer, Christine H

    2015-04-01

    Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    Science.gov (United States)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  18. POD NUMBER AND PHOTOSYNTHESIS AS PHYSIOLOGICAL SELECTION CRITERIA IN SOYBEAN (Glycine max L. Merrill BREEDING FOR HIGH YIELD

    Directory of Open Access Journals (Sweden)

    S.M. Sitompul

    2015-02-01

    Full Text Available Field studies were conducted in two years using 638 F2 and 1185 F3 lines of selected 16 F1 and 15 F2 parent lines (³80 pods plant-1 to evaluate pod number and CO2 exchange rate (CER as selection criteria. Pod and seed number, and seed weight of individual lines were observed during harvesting time, and CER of randomly selected 32 F2 and 30 F3 lines was measured at initial seed filling stage. The selection of F2 lines based on pod number to generate F3 lines increased the average of seed yield by 39%, and pod number by 77% in F3 lines compared with F2 lines. A close relationships was found between seed weight and pod or seed number per plant. Net CER responded sensitively to a reduction of light in a short-term and showed 78% of F2 lines and all F3 lines with maximum CER (Pmax³20 mmolCO2.m-2.s-1. The ratio of pod number per plant and Pmax varied between lines and were used to group lines resulting in close relationships between Pmax and pod number. It is concluded that the use of pod number and CER (Pmax as selection criteria offers an alternative approach in soybean breeding for high yield.

  19. Analysis and modeling of dry matter production rate by soybean [Glycine max] community: Curvilinear response to radiation intensity

    International Nuclear Information System (INIS)

    Sameshima, R.

    1996-01-01

    The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)

  20. Effects of leaf movement on radiation interception in field grown leguminous crops, 2: Soybean (Glycine max Merr.)

    International Nuclear Information System (INIS)

    Isoda, A.; Yoshimura, T.; Ishikawa, T.; Wang, P.; Nojima, H.; Takasaki, Y.

    1993-01-01

    The effects of the leaf movement on radiation interception were examined by a treatment which restrained the leaf movement in the upper layers of the canopy. Two determinate soybean cultivars with different canopy structures (c.v. Nanbushirome and Miyagishirome) were grown at two planting densities in the field. A pot experiment was also used to evaluate radiation interception under the conditions of no mutual shading. Intercepted radiation of every leaflet of two plants within the canopy and one plant in the pot experiment was measured by the integrated solarimeter films for two consecutive days. The amount of intercepted radiations per unit ground area in the treatments were larger than those in the controls of both cultivars and indicated the ineffectiveness of the leaf movement on radiation interception. In general, Nanbushirome intercepted larger amount of radiation in every layer of the canopy in both field and pot experiments. The differences between the control and the treatment in Nanbushirome were large as compared with Miyagishirome. The leaf temperature of the uppermost layer of the canopy in Nanbushirome was higher than the air temperature in the treatment, whereas it was at par with the air temperature in the control. The leaflets of the upper layer moved paraheliotropically to the sum rays during most of day time, it was therefore assumed that the leaf movement would regulate leaf temperature

  1. Evaluating the Potential for Soybean Culture in Romania Compared with the European Union

    Directory of Open Access Journals (Sweden)

    Elena ŞURCĂ

    2018-05-01

    Full Text Available Soybean is a very popular plant for its wide use, and it is coming back to the attention of farmers due to its special importance in various sectors. Thus, the present study, aims to highlight Romania’s position regarding the areas cultivated with this plant, grain and oil production, consumption per capita and also forage consumption in the zootechnical sector. Also, it will bring in the highlight aspects very important, like imports and exports for the period of 2000-2016 in order to assess the potential of soybean culture and its necessity on the territory of Romania. Due to the high demand for soybeans and / or soybean products, Romania has to resort to the European or world market in order to satisfy the demand for this product, mainly used in the livestock sector. Soybean culture will be analyzed in two different period, the first period will be the pre-accession (2000-2007 and the second one will be the post-accession (2007-2016 of Romanian to the European Union, thus reference will be made to genetically modified soybeans and their use on national and European territories.

  2. Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max).

    Science.gov (United States)

    Marquez-Garcia, Belén; Shaw, Daniel; Cooper, James William; Karpinska, Barbara; Quain, Marian Dorcas; Makgopa, Eugene Matome; Kunert, Karl; Foyer, Christine Helen

    2015-09-01

    Water is an increasingly scarce resource that limits crop productivity in many parts of the world, and the frequency and severity of drought are predicted to increase as a result of climate change. Improving tolerance to drought stress is therefore important for maximizing future crop yields. The aim of this study was to compare the effects of drought on soybean (Glycine max) leaves and nodules in order to define phenotypic markers and changes in cellular redox state that characterize the stress response in different organs, and to characterize the relationships between leaf and nodule senescence during drought. Leaf and crown nodule metabolite pools were measured together with leaf and soil water contents, and leaf chlorophyll, total protein contents and chlorophyll a fluorescence quenching parameters in nodulated soybeans that were grown under either well-watered conditions or deprived of water for up to 21 d. Ureides, ascorbate, protein, chlorophyll and the ratios of variable chlorophyll a fluorescence (Fv') to maximal chlorophyll a fluorescence (Fm') fell to levels below detection in the oldest leaves after 21 d of drought. While these drought-induced responses were not observed in the youngest leaf ranks, the Fv'/Fm' ratios, pyridine nucleotide levels and the reduction state of the ascorbate pool were lower in all leaf ranks after 21 d of drought. In contrast to leaves, total nodule protein, pyridine nucleotides, ureides, ascorbate and glutathione contents increased as a result of the drought treatment. However, the nodule ascorbate pool was significantly less reduced as a result of drought. Higher levels of transcripts encoding two peroxiredoxins were detected in nodules exposed to drought stress but senescence-associated transcripts and other mRNAs encoding redox-related proteins were similar under both conditions. While the physiological impact of the drought was perceived throughout the shoot, stress-induced senescence occurred only in the oldest

  3. Predicting Emergence of the Most Important Weed Species in Soybean (Glycine max L. under Different Management Operation

    Directory of Open Access Journals (Sweden)

    R. Khakzad

    2017-12-01

    farmers. Many studies of weed growth, and thus predicting models for areas outside of Mazandaran is performed as a particular study. Because the differences in soil conditions, climatic, geographic and weed species there is a possibility that these models are not appropriate to predict weed species in Mazandaran province. Furthermore, the purpose of this experiment is investigation growth of weeds and develops an empirical model based on GDD to predicting the growth of several species of summer weeds in soybean. Materials and methods: The experiment was conducted as split split-plot in a randomized complete block design with three replications in the summer of 2016 in Dasht-e-Naz Company Sari-Iran with geographical coordinates 36º 39´ N 53º 11´ E, and 1 meters above sea level. The treatments included two tillage system (No Tillage, Tillage, three densities of 20, 30 and 40 plants per square meter of soybeans and Pursuit-doses (imazethapyr (0, 50%, 75%, standard dose and 25% of the standard dose, respectively. To predict the growth pattern in each plot a fixed 50 × 50 cm quadrat fixed in the center of each plot and since the beginning of the season and after the first irrigation, counting of new grown seedlings was began based on weeds species. The Counting was performed weekly and then counted seedlings were eliminated after in any stage as long as new emergence was not seen. Non-linear regression (Sigma Plot 12.5 was used for the expression pattern of cumulative emergence of seedlings. The 3 parameter logistic function was fitted to the data. where y represents the predicted cumulative percent emergence, X0, GDD to reach the %50 cumulative emergence, a is the upper asymptote (theoretical maximum percent emergence, b is the slope of the curve. We considered that soil water was not a limiting factor for weed emergence, using soil temperature (growing degree days, GDD as the only independent variable for predicting cumulative emergence. Thus, GDD were calculated with

  4. Metabolism of 7-14C-2,3,5 triodobenzoic acid (TIBA) in soybeans plant (Glycine max)

    International Nuclear Information System (INIS)

    Sant'Anna, R.; Ohlrogge, A.J.; Christian, J.E.

    1975-01-01

    A metabolic study was done in mature seeds of field grown soybeans sprayed with 7- 14 C-2,3,5 triiodobenzoic acid (TIBA) at the onset of flowering. Seed extraction with 95% alcohol yielded only 65% of the total radioactivity present. No further studies were performed on the ethanol insoluble fraction. Upon acid base purification of the 14 C seed extracts, the ether phase (pH 9,0) contained about 70% of the activity suggesting the existence of a low polarity compound(s). Acid hydrolysis of the alcoholic extracts increased the radioactivity in the ether soluble fraction, while the basic treatment decreased it about the same level as for free TIBA. The latter behaviour seemed to indicate hydrolysis of a conjugation product(s). Alumina column chromatography was unsuccessful for separating the oil-activity combination; however, three radioactive peaks were obtained. The first two peaks degrated to form the last one, which coincided with the TIBA peak. When the alcoholic extracts were run in a Sephadex LH-20 column, oils, proteins and pigments separated from the radioactivity. Two main peaks appeared for the 14 C seeds extracts. Peak I was essentially unaltered when it was co-cromatographed with the standard 14 C-TIBA, peak II was indistinguishable from the TIBA peak. Although the work did not reach the final stage of caracterization, postulation was made for a conjugate nature of the ester type for peak I and the correspondence of peak II with free TIBA or TIBA in mixture with related compounds, such as 2,5 DIBA and 3,5 DIBA, products of its deiodination [pt

  5. Evaluation of constitutive iron reductase (AtFRO2 expression on mineral accumulation and distribution in soybean (Glycine max. L

    Directory of Open Access Journals (Sweden)

    Marta Wilton Vasconcelos

    2014-04-01

    Full Text Available Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg and Mo, pod walls (Fe, K, P, Cu and Ni, leaves (Fe, P, Cu, Ca, Ni and Mg and seeds (Fe, Zn, Cu and Ni. Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  6. The Effects of Seed Inoculation with Rhizobium and Nitrogen Application on Yield and some Agronomi Characterstics of Soybean (Glycine max L. under Ardabil Condition

    Directory of Open Access Journals (Sweden)

    M.N Seiedi

    2014-03-01

    Full Text Available In order to study the effects of seed inoculation with rhizobium and nitrogen application on yield and some agronomic characterstics of soybean (Glycine max L., a spilt plot experiment based on randomized complete block design with three replications was conducted in 2011 at the research farm of the Islamic Azad University, Ardabil Branch. Factors were inorganic nitrogen fertilizer urea at four levels (0, 30, 60 and 90 kg urea/ha in the main plot and two levels of inoculation with Rhizobium japanicum bacteria (with and without inoculation assigned to the sub plots. Study the growth indices showed that the maximum total dry matter (435.4 gr/m2 , crop growth rate (6.75 gr/m2.day and relative growth rate (0.1003 gr/gr.day were obtained from compound of treatments high levels of urea application × inoculation with rhizobium while, the minimum values of these indices recorded in without nitrogen application×non inoculation with rhizobium. The highest plant height, number of pod per plant and grain yield were obtained from the highest level of nitrogen fertilizer (90 kg/ha urea and seed inoculation with rhizobium. Number and dry weight of nodules per plant increased significantly with increasing nitrogen application till 60 kg/ha in seed inoculation with rhizobium. The lowest values of these traits recorded in non application of urea×non inoculation with rhizobium. Inoculation with rhizobium bacteria increased the number and dry weight of nodules per plant. Thus, it can be suggested that in order to increasing of grain yield, seed can be inoculated with rhizobium bacteria × application of 60 kg urea/ha in conditions of Ardabil region.

  7. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  8. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  9. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Vauclare, Pierre; Bligny, Richard; Gout, Elisabeth; Widmer, Francois

    2013-01-01

    Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13 C- and 31 P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homo-spermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells. (authors)

  10. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy

    DEFF Research Database (Denmark)

    Holzhauser, Thomas; Wackermann, Olga; Ballmer-Weber, Barbara K

    2008-01-01

    BACKGROUND: Soybean is considered an important allergenic food, but published data on soybean allergens are controversial. OBJECTIVE: We sought to identify relevant soybean allergens and correlate the IgE-binding pattern to clinical characteristics in European patients with confirmed soy allergy....

  11. Changes in micronutrients, dry weight and plant growth of soybean ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... of soybean (Glycine max L. Merrill) cultivars under salt stress. Murat Tunçturk1* ... Salinity stress negatively affected soybean cultivars and the extent of ... INTRODUCTION. Soybean is a ..... A general approach. Science 210: ...

  12. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Science.gov (United States)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  13. Comparison of fermentation profiles between lupine and soybean by Aspergillus oryzae and Aspergillus sojae in solid-state culture systems

    NARCIS (Netherlands)

    Sardjono; Zhu, Y.; Knol, W.

    1998-01-01

    To explore the possibilities of using lupine as a soybean replacement in fermented foods, fermentation profiles of lupine and soybean by Aspergillus oryzae and A. sojae, respectively, in a solid-state culture were compared. Biomass, spore concentration, oxygen consumption rate, carbon dioxide

  14. Germinação de sementes e crescimento de plântulas de soja (Glycine max L. Merrill sob cobertura vegetal = Soybean (Glycine max L. Merrill seed germination and plantlet growth under vegetation cover

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Pereira Nóbrega

    2009-07-01

    Full Text Available A eficiência do sistema de rotação de cultura requer, entre outrostratamentos, a escolha adequada das espécies a serem instaladas. Culturas vegetais podem apresentar compostos aleloquímicos, os quais são liberados por meio de pelos radiculares, sementes, raízes, colmos e folhas, em quantidades variáveis, capazes de interferir nas culturas subsequentes, comprometendo a produção. Assim, este estudoanalisou o potencial alelopático de aveia-preta (Avena strigosa Schreb (AP, nabo forrageiro (Raphanus sativus L. (NF, ervilhaca (Vicia sativa L. (ER, azevém (Lolium multiflorum Lam. (AZ e consórcio (CO - AP+ER+NF na germinação de sementes e crescimento de plântulas de soja. O experimento foi em laboratório, com substrato deareia, onde foram cultivadas plantas de cobertura, por 30 dias, mantendo os restos radiculares das plantas com e sem restos de parte aérea. Observou-se redução na emergência de plântulas de soja sob CO, AZ e AP. O índice de velocidade de emergência (IVE, a porcentagem de emergência em areia (EA e a massa fresca de hipocótilo (MFH foram afetados negativamente pelas plantas de cobertura.In order to be efficient, the crop rotation system requires, among other factors, an adequate choice of species to be installed. Vegetalcultures can feature allelochemical compounds, released by root hairs, roots, stems and leaves in variable amounts, which are able to interfere on subsequent cultures, as well as cause a delay in their production. Thus, this study analyzed the allelopathic potentialof black oat (Avena strigosa Schreb (BO, forage turnip (Raphanus sativus L. (FT, vetch (Vicia sativa L. (V, ryegrass (Lolium multiflorum Lam. (RG and consortium (CO - BO+V+FT on soybean seed germination and plantlet growth. This trial was carried out in a laboratory, with sand substrate, where coverage plants were grown, during 30 days. The remaining root portions of plants were kept with and without the remaining aerial part portions

  15. Assessing the value and pest management window provided by neonicotinoid seed treatments for management of soybean aphid (Aphis glycines Matsumura) in the Upper Midwestern United States.

    Science.gov (United States)

    Krupke, Christian H; Alford, Adam M; Cullen, Eileen M; Hodgson, Erin W; Knodel, Janet J; McCornack, Brian; Potter, Bruce D; Spigler, Madeline I; Tilmon, Kelley; Welch, Kelton

    2017-10-01

    A 2-year, multi-state study was conducted to assess the benefits of using soybean seed treated with the neonicotinoid thiamethoxam to manage soybean aphid in the upper Midwestern USA and compare this approach with an integrated pest management (IPM) approach that included monitoring soybean aphids and treating with foliar-applied insecticide only when the economic threshold was reached. Concentrations of thiamethoxam in soybean foliage were also quantified throughout the growing season to estimate the pest management window afforded by insecticidal seed treatments. Both the IPM treatment and thiamethoxam-treated seed resulted in significant reductions in cumulative aphid days when soybean aphid populations reached threshold levels. However, only the IPM treatment resulted in significant yield increases. Analysis of soybean foliage from thiamethoxam-treated seeds indicated that tissue concentrations of thiamethoxam were statistically similar to plants grown from untreated seeds beginning at the V2 growth stage, indicating that the period of pest suppression for soybean aphid is likely to be relatively short. These data demonstrate that an IPM approach, combining scouting and foliar-applied insecticide where necessary, remains the best option for treatment of soybean aphids, both in terms of protecting the yield potential of the crop and of break-even probability for producers. Furthermore, we found that thiamethoxam concentrations in foliage are unlikely to effectively manage soybean aphids for most of the pests' activity period across the region. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effect of sheep manure and phosphorus application on growth, yield, and N2 - fixation of inoculated soybean (Glycine max (L.) Merr) grown on Syrian arid soils using the 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Al-Ain, F.; Al-Shamma'a, M.

    2003-10-01

    A field experiment was carried out in Syrian arid soils at Deir Al-Hajar research station to study the effect of different rates of sheep manure (0, 20, and 40 ton/ha) and levels of P- fertilizer (0, 40 and 80 kg P 2 O 5 /ha) on dry matter production and N 2 fixation by Soybean [(Glycine max) (SB171 variety)], of which seeds were inoculated by Bradyrhizobium japonicum-FA3 bacterial. Sorghum bicolor L. was employed as a reference crop ti evaluate N 2 -fixation using the 15 N-isotope dilution technique. In general, results indicated that, a positive effects were found to adding Sheep Manure or P-fertilizer on D.M production in different plants parts of soybean (shoots, roots, pods). This effect was more pronounced when adding sheep manure and phosphorus together especially under the optimum M40P80 treatment. Quantity of N-fixed by Soybean responds positively to sole application of Sheep Manure or P-fertilizer. Moreover, the optimum combined treatment showed significant increases in the quantity of nitrogen derived from the atmosphere (Qndfa), which were (3.29, 25.54, 53.49 kg N/ha) in roots, shoots, and pods respectively. P-fertilization resulted in a significant increase in the percentage of nitrogen use efficiency (NUE) with increasing phosphorus levels added to Sorghum plants; However, an adverse effect was noticed for the NUE when using sheep manure solely or in combination with P-fertilizer. (author)

  17. Effect of Cover Crops on Vertical Distribution of Leaf Area and Dry Matter of Soybean (Glycine max L. in Competition with Weeds

    Directory of Open Access Journals (Sweden)

    seyyedeh samaneh hashemi

    2017-08-01

    Full Text Available Introduction Amount and vertical distribution of leaf area are essential for estimating interception and utilization of solar radiation of crop canopies and, consequently dry matter accumulation (Valentinuz & Tollenaar, 2006. Vertical distribution of leaf area is leaf areas per horizontal layers, based on height (Boedhram et al., 2001. Above-ground biomass is one of the central traits in functional plant ecology and growth analysis. It is a key parameter in many allometric relationships (Niklas & Enquist, 2002. The vertical biomass distribution is considered to be the main determinant of competitive strength in plant species. The presence of weeds intensifies competition for light, with the effect being determined by plant height, position of the branches, and location of the maximum leaf area. So, this experiment was conducted to study the vertical distribution of leaf area and dry matter of soybean canopy in competition with weeds and cover crops. Materials and methods This experiment was performed based on complete randomized block design with 3 replications in center of Agriculture of Joybar in 2013. Soybean was considered as main crop and soybean and Persian clover (Trifolium resupinatum L., fenugreek (Trigonella foenum–graecum L., chickling pea (Lathyrus sativus L. and winter vetch (Vicia sativa L. were the cover crops. Treatments were included cover crops (Persian clover, fenugreek, chickling pea and winter vetch and cover crop planting times (simultaneous planting of soybean with cover crops and planting cover crops three weeks after planting of soybeans and also monoculture of soybeans both in weedy and weed free conditions were considered as controls. Soybean planted in 50 cm row spacing with 5 cm between plants in the same row. Each plot was included 5 rows soybeans. Cover crop inter-seeded simultaneously in the main crop. Crops were planted on 19 May 2013 for simultaneous planting of soybean. The dominant weed species were green

  18. Wheat (Triticum aestivum L. Cultivar Selection Affects Double-Crop and Relay-Intercrop Soybean (Glycine max L. Response on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2010-01-01

    Full Text Available Field research (2003–2005 evaluated the effect of wheat row spacing (19 and 38 cm and cultivar on double-cropped (DC soybean response, 38-cm wheat on relay-intercrop (RI response, and wheat cultivar selection on gross margins of these cropping systems. Narrow-row wheat increased grain yield 460 kg ha−1, light interception (LI 7%, and leaf area index (LAI 0.5 compared to wide rows, but did not affect DC soybean yield. High yielding wheat (P25R37 with greater LI and LAI produced lower (330 kg ha−1 soybean yields in an RI system than a low yielding cultivar (Ernie. Gross margins were $267 ha−1 greater when P25R37 was RI with H431 Intellicoat (ITC soybean compared to Ernie. Gross margins were similar for monocrop H431 non-coated (NC or ITC soybean, P25R37 in 19- or 38-cm rows with DC H431 NC soybean, and P25R37 in 38-cm rows with RI H431 ITC soybean in the absence of an early fall frost.

  19. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    International Nuclear Information System (INIS)

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Nieto, Gastón Leonardo; Pignata, María Luisa

    2012-01-01

    Highlights: ► Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. ► Rhizosphere soil is the most suitable compartment for toxicological studies. ► Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  20. Genetic Analysis of Embryo, Cytoplasm and Maternal Effects and Their Environment Interactions for Isoflavone Content in Soybean [Glycine max(L.) Merr.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype × environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal,embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore,the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean. The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.

  1. A new species of Lysiphlebus Förster 1862 (Hymenoptera: Braconidae, Aphidiinae) attacking soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) from China

    Czech Academy of Sciences Publication Activity Database

    Starý, Petr; Rakhshani, E.; Tomanović, Ž.; Hoelmer, K.; Kavallieratos, N. G.; Yu, J.; Wang, M.; Heimpel, G. E.

    2010-01-01

    Roč. 19, č. 1 (2010), s. 179-186 ISSN 1070-9428 Grant - others:Ministry of Science and Technological Developments of the Republic of Serbia(SR) 143006B Institutional research plan: CEZ:AV0Z50070508 Keywords : Lysiphlebus orientalis sp. n. * aphid parasitoids * Glycine max Subject RIV: EG - Zoology Impact factor: 0.500, year: 2010

  2. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill].

    Science.gov (United States)

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Leonardo Nieto, Gastón; Pignata, María Luisa

    2012-09-30

    Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Hamzyun, M.; Sohn, Eun-Young; Khan, A.L.; Lee, In-Jung

    2010-01-01

    Agricultural industry is subjected to enormous environmental constraints, particularly due to salinity and drought. We evaluated the role of silicon (Si) in alleviating salinity and drought induced physio-hormonal changes in soybean grown in perlite. The plant growth attributes i.e., shoot length, plant fresh weight and dry weight parameters of soybean improved with elevated Si nutrition, while they decreased with NaCl and polyethylene glycol (PEG) application. The adverse effects of NaCl and PEG on plant growth were alleviated by adding 100 mg L/sup -1/ and 200 mg L/sup -1/ Si to salt and drought stressed treatments. It was observed that Si effectively mitigated the adverse effects of NaCl on soybean than that of PEG. The chlorophyll contents were found to be least affected as an insignificant increase was observed with Si application. Bioactive GA1 and GA4 contents of soybean leaves increased, when Si was added to control or stressed plants. Jasmonic acid (JA) contents sharply increased under salinity and drought stress but declined when the plants were supplemented with Si. Similarly, free salicylic acid (SA) level also increased with NaCl and PEG application. However, free SA level further increased with the addition of Si to salt treated plants, but decreased when Si was given to PEG treated plants. It was concluded that Si improves physio-hormonal attributes of soybean and mitigate adverse effects of salt and drought stress. (author)

  4. Nitrogen rhizodeposition from soybean (Glycine max) and its impact on nutrient budgets in two contrasting environments of the Guinean savannah zone of Nigeria

    DEFF Research Database (Denmark)

    Laberge, G.; Franke, A. C.; Ambus, Per

    2009-01-01

    Nitrogen (N) rhizodeposition by grain legumes such as soybean is potentially a large but neglected source of N in cropping systems of Sub-Saharan Africa. Field studies were conducted to measure soybean N rhizodeposition in two environments of the Guinean savannah of Nigeria using 15N leaf labelling...... removed. If residues were left in the field or recycled as manure after being fed to steers, soybean cultivation led to positive N budgets of up to +95 kg N ha−1. The role and potential of grain legumes as N purveyors have been underestimated in the past by neglecting the N contained...... techniques. The first site was located in Ibadan in the humid derived savannah. The second site was in Zaria in the drier Northern Guinean savannah. Soybean N rhizodeposition in the top 0.30 m of soil varied from 7.5 kg ha−1 on a diseased crop in Ibadan to 33 kg ha−1 in Zaria. More than two-thirds of soybean...

  5. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Dixit, Amit [School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore-452017 (India); Kumar, Vineet; Rani, Anita [National Research Centre for Soybean, Khandwa Road, Indore-452017 (India); Manjaya, J.G. [Board of Research in Nuclear Sciences, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Bhatnagar, Deepak, E-mail: bhatnagarbio@yahoo.co [School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore-452017 (India)

    2011-04-15

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  6. Effect of gamma irradiation on lipoxygenases, trypsin inhibitor, raffinose family oligosaccharides and nutritional factors of different seed coat colored soybean (Glycine max L.)

    International Nuclear Information System (INIS)

    Kumar Dixit, Amit; Kumar, Vineet; Rani, Anita; Manjaya, J.G.; Bhatnagar, Deepak

    2011-01-01

    Three soybean genotypes Kalitur, Hara soya and NRC37 with black, green and yellow seed coat color, respectively, were gamma irradiated at 0.5, 2.0 and 5.0 kGy and tested for antinutritional and nutritional factors. Gamma irradiation at all doses reduced the level of lipoxygenase isomers, trypsin inhibitor (TI) and ascorbic acid in all the 3 soybean genotypes as compared to the unirradiated control. However, irradiation dose of 5.0 kGy increased the sucrose content of the soybean genotypes. No significant change was observed in oil, protein fatty acids and total tocopherol content of the 3 genotypes at any irradiation dose. It is suggested that inhibition of lipoxygenase, reduction in TI and ascorbic acid may be due to the breakage or oxidation of protein structure by the gamma irradiation. Similarly, gamma irradiation at higher doses may break glycosidic linkages in oligosaccharides to produce more sucrose and decrease the content of flatulence causing oligosaccharides.

  7. Genetic mapping and validation of the loci controlling 7S α' and 11S A-type storage protein subunits in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Boehm, Jeffrey D; Nguyen, Vi; Tashiro, Rebecca M; Anderson, Dale; Shi, Chun; Wu, Xiaoguang; Woodrow, Lorna; Yu, Kangfu; Cui, Yuhai; Li, Zenglu

    2018-03-01

    Four soybean storage protein subunit QTLs were mapped using bulked segregant analysis and an F 2 population, which were validated with an F 5 RIL population. The storage protein globulins β-conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of the total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean cultivars with desired seed composition, an F 2 mapping population (n = 448) and an F 5 RIL population (n = 180) were developed by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263_3-1a, which lacks the 7S α', 11S A 1 , 11S A 2 , 11S A 3 and 11S A 4 subunits. The storage protein composition of each individual in the F 2 and F 5 populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F 2 plants to identify genomic regions controlling the 7S α' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A 1 ), Chromosome 10 (7S α' and 11S A 4 ), and Chromosome 13 (11S A 3 ), which were also validated in the F 5 RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.

  8. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Maria Julieta [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Rodriguez, Judith Hebelen, E-mail: jrodriguez@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Nieto, Gaston Leonardo; Pignata, Maria Luisa [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. Black-Right-Pointing-Pointer Rhizosphere soil is the most suitable compartment for toxicological studies. Black-Right-Pointing-Pointer Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  10. Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L. Merrill Fabales, Fabaceae cultivar MG/BR46 (Conquista under two water deficit induction systems

    Directory of Open Access Journals (Sweden)

    Polyana K. Martins

    2008-01-01

    Full Text Available Drought cause serious yield losses in soybean (Glycine max, roots being the first plant organ to detect the water-stress signals triggering defense mechanisms. We used two drought induction systems to identify genes differentially expressed in the roots of the drought-tolerant soybean cultivar MG/BR46 (Conquista and characterize their expression levels during water deficit. Soybean plants grown in nutrient solution hydroponically and in sand-pots were submitted to water stress and gene expression analysis was conducted using the differential display (DD and real time polymerase chain reaction (PCR techniques. Three differentially expressed mRNA transcripts showed homology to the Antirrhinum majus basic helix-loop-helix transcription factor bHLH, the Arabidopsis thaliana phosphatidylinositol transfer protein PITP and the auxin-independent growth regulator 1 (axi 1. The hydroponic experiments showed that after 100 min outside the nutrient solution photosynthesis completely stopped, stomata closed and leaf temperature rose. Both stress induction treatments produced significant decrease in the mitotic indices of root cells. Axi 1, PITP and bHLH were not only differentially expressed during dehydration in the hydroponics experiments but also during induced drought in the pot experiments. Although, there were differences between the two sets of experiments in the time at which up or down regulation occurred, the expression pattern of all three transcripts was related. Similar gene expression and cytological analysis results occurred in both systems, suggesting that hydroponics could be used to simulate drought detection by roots growing in soil and thus facilitate rapid and easy root sampling.

  11. Cultural and environmental effects on the spectral development patterns of corn and soybeans: Field data analysis

    Science.gov (United States)

    Crist, E. P. (Principal Investigator)

    1982-01-01

    An overall approach to crop spectral understanding is presented which serves to maintain a strong link between actual plant responses and characteristics and spectral observations from ground based and spaceborne sensors. A specific technique for evaluating field reflectance data, as a part of the overall approach, is also described. Results of the application of this technique to corn and soybeans reflectance data collected by and at Purdue/LARS indicate that a number of common cultural and environmental factors can significantly affect the temporal spectral development patterns of these crops in tasseled cap greenness (a transformed variable of LANDSAT MSS signals).

  12. Effect of dose-rate of gamma irradiation (60Co) on the anti nutritional compounds phytic acid and antitrypsin on soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Tanhindarto, R.P.; Hariyadi, P.; Purnomo, E.H.; Irawati, Z.

    2013-01-01

    An investigation on the effect of gamma irradiation at different dose-rate on the anti-nutritional compounds (phytic acid and antitrypsin) and the color of soybean has been conducted. The purpose of the study was to analyze the influence of the dose-rate on the rate of change of anti-nutritional compounds and color. Samples were irradiated with dose-rates of 1.30; 3.17; 5.71 and 8.82 kGy/hour with irradiation time varied from 0.5 to 55 hours. Phytic acid content and antitrypsin activity, as well as their L α b color values were analyzed. Results showed that a simple first order kinetics model can be used to describe changes in the concentration of the anti-nutritional compounds and color soybeans during the radiation processing. Data indicate that irradiation process at higher dose-rate (shorter time) is more effective in destroying anti-nutritional compounds as compared to that of irradiation process at lower dose-rate (longer time). Furthermore, irradiation process at higher dose-rate (shorter time) also have less detrimental effect on color of the soybean and the resulted soybean flour as compared to that of irradiation process at lower dose-rate (longer time). These findings suggest that irradiation process at a same dose may potentially be optimized by selecting the most appropriate combination of dose-rate and time of irradiation. (author)

  13. UTILIZATION OF BIOMOL AND TEA COMPOST SOLUTION FERMENTED BY THE FUNGUS Trichoderma spp. ON THE GROWTH OF SOYBEAN (Glycine Max (L. Merr. IN DRY LAND

    Directory of Open Access Journals (Sweden)

    Zurriyatun Solihah

    2017-02-01

    Full Text Available ABSTRACT The purpose of this research is to know whether the use of Biomol and Tea Compost solution fermented by Trichoderma spp. can increase the growth and development of soybean plants in dry land. The experiment was conducted in the field and was arranged according to a Split Plot Design with the main plot is Tea Compost Solution with 4 levels of treatment, i.e. at the rate of 0, 5, 10, or 15 liters/plot and the subplot is Biomol solution with 4 levels of treatment, i.e. 0, 5, 10, or 15 liters/plot. The treatments were repeated three times. The results showed that the use of the Biomol at the rate of 15 liters/plot and Tea Compost at the of 15 liters/plot can increase the growth and development of soybean plants mainly on plant height. In addition, Biomol and Tea Compost solution applied to soybean can  increase the weight of the wet and the dry berangkasan Keywords: Biomol, Tea Compost, Soybean, Trichoderma spp.

  14. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  15. Comparative Transcriptome Analysis between the Cytoplasmic Male Sterile Line NJCMS1A and Its Maintainer NJCMS1B in Soybean (Glycine max (L. Merr..

    Directory of Open Access Journals (Sweden)

    Jiajia Li

    Full Text Available The utilization of soybean heterosis is probably one of the potential approaches in future yield breakthrough as was the situation in rice breeding in China. Cytoplasmic male sterility (CMS plays an important role in the production of hybrid seeds. However, the molecular mechanism of CMS in soybean remains unclear.The comparative transcriptome analysis between cytoplasmic male sterile line NJCMS1A and its near-isogenic maintainer NJCMS1B in soybean was conducted using Illumina sequencing technology. A total of 88,643 transcripts were produced in Illumina sequencing. Then 56,044 genes were obtained matching soybean reference genome. Three hundred and sixty five differentially expressed genes (DEGs between NJCMS1A and NJCMS1B were screened by threshold, among which, 339 down-regulated and 26 up-regulated in NJCMS1A compared to in NJCMS1B. Gene Ontology (GO annotation showed that 242 DEGs were annotated to 19 functional categories. Clusters of Orthologous Groups of proteins (COG annotation showed that 265 DEGs were classified into 19 categories. Kyoto Encyclopedia of Genes and Genomes (KEGG analysis showed that 46 DEGs were assigned to 33 metabolic pathways. According to functional and metabolic pathway analysis combined with reported literatures, the relations between some key DEGs and the male sterility of NJCMS1A were discussed. qRT-PCR analysis validated that the gene expression pattern in RNA-Seq was reliable. Finally, enzyme activity assay showed that energy supply was decreased in NJCMS1A compared to in NJCMS1B.We concluded that the male sterility of NJCMS1A might be related to the disturbed functions and metabolism pathways of some key DEGs, such as DEGs involved in carbohydrate and energy metabolism, transcription factors, regulation of pollen development, elimination of reactive oxygen species (ROS, cellular signal transduction, and programmed cell death (PCD etc. Future research will focus on cloning and transgenic function validation of

  16. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L. Merr].

    Directory of Open Access Journals (Sweden)

    Haicui Suo

    Full Text Available Gibberellic acids (GAs are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA(3 once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C(20-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.

  17. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    International Nuclear Information System (INIS)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh

    2001-01-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray 60 Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55). Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect- orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  18. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr].

    Science.gov (United States)

    Suo, Haicui; Ma, Qibin; Ye, Kaixin; Yang, Cunyi; Tang, Yujuan; Hao, Juan; Zhang, Zhanyuan J; Chen, Mingluan; Feng, Yuqi; Nian, Hai

    2012-01-01

    Gibberellic acids (GAs) are plant hormones that play fundamental roles in plant growth and developmental processes. Previous studies have demonstrated that three key enzymes of GA20ox, GA3ox, and GA2ox are involved in GA biosynthesis. In this study, the Arabidopsis DREB1A gene driven by the CaMV 35S promoter was introduced into soybean plants by Agrobacterium- mediated transformation. The results showed that the transgenic soybean plants exhibited a typical phenotype of GA-deficient mutants, such as severe dwarfism, small and dark-green leaves, and late flowering compared to those of the non-transgenic plants. The dwarfism phenotype was rescued by the application of exogenous GA(3) once a week for three weeks with the concentrations of 144 µM or three times in one week with the concentrations of 60 µM. Quantitative RT-PCR analysis revealed that the transcription levels of the GA synthase genes were higher in the transgenic soybean plants than those in controls, whereas GA-deactivated genes except GmGA2ox4 showed lower levels of expression. The transcript level of GmGA2ox4 encoding the only deactivation enzyme using C(20)-GAs as the substrates in soybean was dramatically enhanced in transgenic plants compared to that of wide type. Furthermore, the contents of endogenous bioactive GAs were significantly decreased in transgenic plants than those of wide type. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.

  19. Twenty year results on application of induced mutation in soybean (Glycine max (L.) Merr.) breeding at Agricultural Genetics Institute (AGI), Hanoi, Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Mai Quang Vinh; Phan Phai; Ngo Phuong Thinh; Tran Dinh Dong; Tran Thuy Oanh [Agricultural Genetics Institute (AGI), Hanoi (Viet Nam)

    2001-03-01

    Research on application of the induced mutation method combined with crossing in soybean breeding for 20 years (1980-2000) plays an important role in research work at AGI, (Ministry of Agriculture and Rural Development of Vietnam). 23 soybean varieties and hybrid lines (including 6 local cultivars, 14 selected and introduced varieties, 3 hybrid lines) were treated with Roentgen ray irradiation, Gamma Ray {sup 60}Co with doses 7, 10, 12, 15, 18, 20 krad, and with chemical mutagens: EI, NMU, DNMU, DES, EMS, DEU with various concentrations 0.008, 0.02, 0.04, 0.06, 0.08%. As the results, we obtained the important conclusions about the rule of induced mutation process in soybean in the natural conditions of Vietnam. 8 mutant varieties [1 National varieties (DT84) and 6 regional production varieties (DT83, DT90, DT94, DT95, DT99, AK06 (DT-55))]. Several promising varieties were selected and released for farmers to produce in the large areas that occupied 50-90% percentage of soybean cultivated areas in Vietnam. These varieties have high-yield 1.5-3.5 tons/ha, short growth duration 75-100 days, tolerance to cold and hot temperature and can be planted in 3 crops per year (Winter, Spring and Summer season) over 35-40 thousands ha/year. At present, the mutagens are being used for defect-orientated repair of some promising hybrid lines, in order to contribute new good varieties to soybean production in Vietnam. (author)

  20. Influence of soil-extractable aluminium and pH on the uptake of aluminium from soil into the soybean plant (Glycine max).

    Science.gov (United States)

    Dong, D; Thornton, I; Ramsey, M H

    1993-09-01

    The effects of soil pH and other soil properties on the uptake of AI by soybean plants have been investigated in a greenhouse experiment. Six soils were compared that were developed over six contrasting bedrock types ranging widely in their AI content and other chemical and physical characteristics, namely Oxford Clay, Chalk, Lower Lias Clay, Devonian Shale, Granite and Lower Greensand. Soil pH varied naturally between soil types and each soil was also amended to give two other pH levels using elemental sulphur and/or calcium carbonate. AI concentrations in various parts of the soybean plants were determined by ICP-AES after acid digestion. The AI solubility in the soils and hence its availability to the plants was estimated using a number of different reagents designed to extract different forms of AI.The AI concentration measured in the soybean leaves was found to be predicted most accurately by the 'available' AI extracted from soils by 0.02 M CaCl2. The relationship appears to the linear, with a correlation coefficient of 0.97 (p <0.01). The AI content of the leaves increases with decreasing soil pH. The relationship is non-linear with a marked increase in leaf AI for soils with pH <4.4. The amounts of 'plant-available' AI in the soils extracted with 0.02 M CaCl2 was much less than that extracted with 0.05 M EDTA, although both increased markedly with decreasing soil pH. The amount of AI measured in the soybean plants was directly related to both the 'available' forms of AI in the soils, and also to the pH of the soils. Soil pH was identified as a major factor that controls the uptake of Al from soil into the soybean plant.

  1. Study of Agronomical and Ecological Parameters of Additive and Replacement Intercropping Systems of Corn (Zea maize L. and Soybean (Glycine max L. Merr.

    Directory of Open Access Journals (Sweden)

    Issa Piri

    2017-12-01

    Full Text Available Introduction Intercropping is a multiple cropping agricultural practice involves growing two or more crops in close proximity. Intercropping of compatible plants also encourages biodiversity, by providing a habitat for a variety of insects and soil organisms that would not be present in a monocrop environment. This in turn can help limit outbreaks of crop pests by increasing predator biodiversity. Additionally, reducing the homogeneity of crops increases the barriers against biological dispersal of pests through the crops. Cereal–legume intercropping plays an important role in subsistence food production in developing countries, especially in the situations of limited resources. Nitrogen fixing legumes can be included to a greater extent in arable cropping systems via intercrops. Legumes contribute to maintaining the soil fertility via nitrogen fixation, which is increased in intercrops due to the more competitive character of the cereal for soil inorganic N. Ariel et al., (2013 showed that,Legume-Cereal Intercropping of corn and soybean may be advantageous compared to monocultures. Corn and soybean intercropping produce high yields of green matter and seed concentrates especially when the corn-soybean ratio is 1:2. Due to the importance of cereal–legume intercropping in the sustainability of agricultural systems, the objective of this study was to determine the effects of cereal-legume intercropping on the total biomass and grain yield and to find the best pattern of additive and replacement intercropping systems in Iranshahr Region. Material and Methods In order to study the agronomical and ecological parameters of additive and replacement intercropping systems of corn and soybean, a field experiment was conducted in 2012-13 in the south of Iranshahr city on a randomized complete block design with three replications. Treatments consisted of 8 different intercropping ratios: corn monoculture (C100S0 and soybean monoculture (C0S100 as sole

  2. PERTUMBUHAN DAN HASIL TANAMAN KEDELAI PADA KONDISI CEKAMAN AIR DAN PEMBERIAN MIKOKOMPOS (Growth and Yield of Soybean (Glycine max (L) Merril) Under Water Stress Conditions and Mycocompost Application)

    OpenAIRE

    Buhaira, .; Soverda, Nerty; Lestari, Ardiyaningsih Puji; Achnopa, Yudi

    2013-01-01

    Thi research was conducted to increase soybean tolerance to drought and soil fertility by applying compost and   arbuscular mycorhiza fungi. This system will create environmental friendly agriculture or agricultural system focusing on utilizing biological manure which can improve land productivity. Experiment was arranged in completely randomized design with two treatment factors and three replicated . First factor is type of compost, municipal waste compost , cow manure compost, chicken manu...

  3. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing.

    Science.gov (United States)

    Cheng, Yanbo; Ma, Qibin; Ren, Hailong; Xia, Qiuju; Song, Enliang; Tan, Zhiyuan; Li, Shuxian; Zhang, Gengyun; Nian, Hai

    2017-05-01

    Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao. Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F 2 individuals and 196 F 7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F 2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.

  4. Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina.

    Science.gov (United States)

    Russo, María L; Pelizza, Sebastián A; Cabello, Marta N; Stenglein, Sebastián A; Vianna, María F; Scorsetti, Ana C

    2016-01-01

    Endophytic fungi are ubiquitous and live within host plants without causing any noticeable symptoms of disease. Little is known about the diversity and function of fungal endophytes in plants, particularly in economically important species. The aim of this study was to determine the identity and diversity of endophytic fungi in leaves, stems and roots of soybean and corn plants and to determine their infection frequencies. Plants were collected in six areas of the provinces of Buenos Aires and Entre Ríos (Argentina) two areas were selected for sampling corn and four for soybean. Leaf, stem and root samples were surface-sterilized, cut into 1cm(2) pieces using a sterile scalpel and aseptically transferred to plates containing potato dextrose agar plus antibiotics. The species were identified using both morphological and molecular data. Fungal endophyte colonization in soybean plants was influenced by tissue type and varieties whereas in corn plants only by tissue type. A greater number of endophytes were isolated from stem tissues than from leaves and root tissues in both species of plants. The most frequently isolated species in all soybean cultivars was Fusarium graminearum and the least isolated one was Scopulariopsis brevicaulis. Furthermore, the most frequently isolated species in corn plants was Aspergillus terreus whereas the least isolated one was Aspergillus flavus. These results could be relevant in the search for endophytic fungi isolates that could be of interest in the control of agricultural pests. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.).

    Science.gov (United States)

    Murakami, Masaharu; Ae, Noriharu

    2009-03-15

    Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1molL(-1) HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1molL(-1) HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions.

  6. Preparation of black soybean (Glycine max L) extract with enhanced levels of phenolic compound and estrogenic activity using high hydrostatic pressure and pre-germination

    Science.gov (United States)

    Kim, Min Young; Jang, Gwi Yeong; Lee, Sang Hoon; Kim, Kyung Mi; Lee, Junsoo; Jeong, Heon Sang

    2018-04-01

    We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150 MPa for 12 or 24 h. The highest total polyphenol content (3.9 mg GAE/g), flavonoid content (0.8 mg CE/g), phenolic acid content (940 ± 18.96 μg/g), and isoflavonone content (2600 μg/g) were observed after germination for four days and HHP treatment at 100 MPa for 24 h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100 MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.

  7. Evaluation of the use of waste of soybeans (Glycine max (L.)) combined with wood waste in making briquet; Avaliacao da utilizacao de residuo de soja (Glycine max (L.)) combinado com residuo de madeira de confeccao de briquetes

    Energy Technology Data Exchange (ETDEWEB)

    Travessini, Rosana; Schutz, Fabiana Costa de Araujo; Anami, Marcelo Hidemassa; Scherpinski, Neusa Idick [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)], Emails: rosana_travessini@yahoo.com.br, fabianaschutz@gmail.com, mhanami@gmail.com, neusascherpinski@gmail.com

    2010-07-01

    The agricultural industry produces a large amount of which use biomass is an alternative energy economically viable through the compression portion of ligno-cellulose as raw material to replace the wood with an equivalent product, by briquetting. This study aimed to evaluate the technical feasibility of manufacturing fuel briquettes made from soybean residues combined with waste wood. The making of briquettes was performed in the laboratory of Electromechanics of UTFPR campus Medianeira PR. For this analysis, we assessed the content of moisture, ash, fixed carbon content of porosity and higher calorific value. From the results we can conclude that the manufacture of briquettes from lignocellulosic raw materials is an extremely viable energy flashlight for the region of the Bacia do Rio Parana III. (author)

  8. Comportamento de cultivares de soja [Glycine max (L. Merrill] em resposta ao metribuzin aplicado em diferentes doses Response of soybean [Glycine max (L. Merrill] cultivars to rates of metribuzin

    Directory of Open Access Journals (Sweden)

    J.A.R.O. Velloso

    1980-06-01

    Full Text Available Durante o ano agrícola de 1978/79, foi realizado um experimento a campo, na re gião da Depressão Central do Rio Grande do Sul, com o objetivo de conhecer o comportamento das cultivares de soja BR1, Bragg, Davis, IAS4, IAS5, Paraná e Planalto em relação ao metribuzin aplicado em pré-emergência nas doses de 0, 490 e 980 g/ha. Os efeitos dos tratamentos foram estimados através de avaliação visual de fitotoxicidade, contagem da população de plantas, determinações do peso seco da parte aérea e do número de grãos e obtenção do rendimento de grãos. Para a maioria das variáveis em estudo, constatou-se que ocorreram reduções proporcionais aos acréscimos das doses do herbicida. Os resultados da avaliação visual de fitotoxicidade mostraram que houve diferenças significativas entre os tratamentos de doses, tendo as cultivares Bragg e Davis demonstrado o menor efeito fito-tóxico, enquanto BR1 foi a que apresentou maior grau de injúria. Quanto ao rendimento de grãos alcançado pelas cultivares, foi constatado que Bragg comportou-se como altamente tolerante; BR1 e Davis como moderadamente tolerantes; IAS5 como intermediária e Paraná, Planalto e IAS4 como moderadamente suscetíveis.A field experiment was conducted during the 1978/79 growing season at the Central Depression Region of Rio Grande do Sul, Brazil, in order to evaluate the response soybean cultivars BR1, Bragg, Davis, IAS4, IAS5, Paraná, and Planalto to metribuzin applied in pre-emergence at rates of 0, 490 and 980 g/ha. The effects of the treatments were evaluated through visual rating of phytotoxicity, counting of soybean population, and determinations of dry weight of soybean stems, number of grains per unit area and grain yield. For most of the variables measured there were reductions proportional to increasing rates of metribuzin appl ied. Results of visual evaluation of soybean injury showed statistical differences among rates of the herbicide, being Bragg and

  9. Ferulic acid depletion by cultured soybean seedlings under action of glucose and methionine

    Directory of Open Access Journals (Sweden)

    Herrig Vanessa

    2000-01-01

    Full Text Available Cultured soybean seedlings were used to investigate how glucose or methionine influenced depletion of ferulic acid. Three-day-old seedlings were grown in hydroponic solution containing ferulic acid plus glucose or methionine, and the level of the phenolic acid were monitored in the nutrient culture. The results showed that ferulic acid depletion was more rapid in the presence of those compounds. After 6 h, the increase caused by glucose (0.01 and 0.05 mM was more pronounced than methionine in the same concentrations. On the other hand, methionine (0.1 and 0.2 mM increased depletion more significantly than glucose. Results suggested that both compounds might to increase the allelopathic effects of ferulic acid in the seedlings.

  10. Ferritin gene transcription is regulated by iron in soybean cell cultures.

    Science.gov (United States)

    Lescure, A M; Proudhon, D; Pesey, H; Ragland, M; Theil, E C; Briat, J F

    1991-09-15

    Iron-regulated ferritin synthesis in animals is dominated by translational control of stored mRNA; iron-induced transcription of ferritin genes, when it occurs, changes the subunit composition of ferritin mRNA and protein and is coupled to translational control. Ferritins in plants and animals have evolved from a common progenitor, based on the similarity of protein sequence; however, sequence divergence occurs in the C termini; structure prediction suggests that plant ferritin has the E-helix, which, in horse ferritin, forms a large channel at the tetrameric interface. In contemporary plants, a transit peptide is encoded by ferritin mRNA to target the protein to plastids. Iron-regulated synthesis of ferritin in plants and animals appears to be very different since the 50- to 60-fold increases of ferritin protein, previously observed to be induced by iron in cultured soybean cells, is accompanied by an equivalent accumulation of hybridizable ferritin mRNA and by increased transcription of ferritin genes. Ferritin mRNA from iron-induced cells and the constitutive ferritin mRNA from soybean hypocotyls are identical. The iron-induced protein is translocated normally to plastids. Differences in animal ferritin structure coincide with the various iron storage functions (reserve for iron proteins and detoxification). In contrast, the constancy of structure of soybean ferritin, iron-induced and constitutive, coupled with the potential for vacuolar storage of excess iron in plants suggest that rapid synthesis of ferritin from a stored ferritin mRNA may not be needed in plants for detoxification of iron.

  11. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  12. Effects of Nano-Zinc oxide and Seed Inoculation by Plant Growth Promoting Rhizobacteria (PGPR on Yield, Yield Components and Grain Filling Period of Soybean (Glycine max L.

    Directory of Open Access Journals (Sweden)

    R. Seyed Sharifi

    2016-02-01

    Full Text Available Introduction Utilizing biological fertilizer is a proper and cheap method for crop production. Potentially, soybean can be used as biological fertilizers and seed inoculation. Zinc is an essential element that have positive effects on plant growth and its development. Canola, sunflower, soybean and safflower are the main cultivated oilseeds in Iran. Soybean production in Iran is very low as compared to other countries. One of the most effective factor in increasing the soybean yield is seed inoculation with plant growth promoting rhizobacteria (PGPR and application of Zinc fertilizer. Some of the benefits provided by PGPR are the ability to produce gibberellic acid, cytokinins and ethylene, N2 fixation, solubilization of mineral phosphates and other nutrients (56. Numerous studies have shown a substantial increase in dry matter accumulation and seed yield following inoculation with PGPR. Seyed Sharifi (45 reported that seed inoculation with Azotobacter chroococcum strain 5 increased all of the growth indices such as total dry matter, crop growth rate and relative growth rate. Increasing and extending the role of biofertilizers such as Rhizobium can reduce the need for chemical fertilizers and decrease adverse environmental effects. Therefore, in the development and implementation of sustainable agricultural techniques, biofertilization has great importance in alleviating environmental pollution and deterioration of the nature. As a legume, soybean can obtain a significant portion (4-85% of its nitrogen requirement through symbiotic N2 fixation when grown in association with effective and compatible Rhizobium strains. Since there is little available information on nano-zinc oxide and seed inoculation by plant growth promoting rhizobacteria (PGPR on yield in the agro-ecological growing zones of Ardabil province of Iran. Therefore, this research was conducted to investigate the effects of nano-zinc oxide and seed inoculation with plant growth

  13. Long-Term Exposure of Agricultural Soil to Veterinary Antibiotics Changes the Population Structure of Symbiotic Nitrogen-Fixing Rhizobacteria Occupying Nodules of Soybeans (Glycine max).

    Science.gov (United States)

    Revellin, Cécile; Hartmann, Alain; Solanas, Sébastien; Topp, Edward

    2018-05-01

    Antibiotics are entrained in agricultural soil through the application of manures from medicated animals. In the present study, a series of small field plots was established in 1999 that receive annual spring applications of a mixture of tylosin, sulfamethazine, and chlortetracycline at concentrations ranging from 0.1 to 10 mg · kg -1 soil. These antibiotics are commonly used in commercial swine production. The field plots were cropped continuously for soybeans, and in 2012, after 14 annual antibiotic applications, the nodules from soybean roots were sampled and the occupying bradyrhizobia were characterized. Nodules and isolates were serotyped, and isolates were distinguished using 16S rRNA gene and 16S to 23S rRNA gene intergenic spacer region sequencing, multilocus sequence typing, and RSα fingerprinting. Treatment with the antibiotic mixture skewed the population of bradyrhizobia dominating the nodule occupancy, with a significantly larger proportion of Bradyrhizobium liaoningense organisms even at the lowest dose of 0.1 mg · kg -1 soil. Likewise, all doses of antibiotics altered the distribution of RSα fingerprint types. Bradyrhizobia were phenotypically evaluated for their sensitivity to the antibiotics, and there was no association between in situ treatment and a decreased sensitivity to the drugs. Overall, long-term exposure to the antibiotic mixture altered the composition of bradyrhizobial populations occupying nitrogen-fixing nodules, apparently through an indirect effect not associated with the sensitivity to the drugs. Further work evaluating agronomic impacts is warranted. IMPORTANCE Antibiotics are entrained in agricultural soil through the application of animal or human waste or by irrigation with reused wastewater. Soybeans obtain nitrogen through symbiotic nitrogen fixation. Here, we evaluated the impact of 14 annual exposures to antibiotics commonly used in swine production on the distribution of bradyrhizobia occupying nitrogen

  14. Influence of Agricultural Practices on Biotic Production Potential and Climate Regulation Potential. A Case Study for Life Cycle Assessment of Soybean (Glycine max in Argentina

    Directory of Open Access Journals (Sweden)

    Roxana Piastrellini

    2015-04-01

    Full Text Available The aim of this study is to determine the impact potential of land use on biotic production and climate regulation in the agricultural phase of a product, taking into account the varied soil and crop management. Land occupation and transformation impacts of soybean production in Argentina for different agricultural systems are evaluated. The results indicate that the magnitude of occupation and transformation impacts is considerably reduced by implementing no-tillage instead of conventional tillage. Nevertheless, the methodologies adopted are unable to show any of the expected differences between rainfed or irrigation systems, crop sequences and delays in seed-planting, due to failures in the specific characterization factors. On the other hand, an uncertainty is demonstrated by the results associated with the choice of regeneration time corresponding to the different ecoregions over which soybean cultivation extends across the country. One of the recommendations that comes to the fore is to consider in the characterization factors increments in the soil organic carbon stock and in the mineralization rates, associated with the presence of the preceding crop and the greater availability of water in the soil of irrigated systems.

  15. Effect of Drought Stress and Methanol on Chlorophyll Parameters, Chlorophyll Content and Relative Water Content of Soybean (Glycine max L., var. L 17

    Directory of Open Access Journals (Sweden)

    M Mirakhori

    2011-01-01

    Full Text Available Abstract In order to investigate the effects of methanol application on some physiological properties of soybean under low water stress, a factorial experiment was conducted at Research Field of Faculty of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj, Iran, during 2008, based on a randomized complete block design with three replications. The first factor was consisted of different levels of methanol equal to 0 (control, 7, 14, 21, 28 and 35 volumetric percentage (v/v, which were used as foliar applications at three times during growth season of soybean, with 15 days intervals. The second factor was water stress conditions in two levels, based on depletion of 40 and 70% of available soil moisture. Some traits such as grain yield (GY, relative water content (RWC, chlorophyll fluorescence parameters, and chlorophyll content were measured, one day before and after the third methanol application. Results showed that chlorophyll content (Chl, GY, electrolytes leakage (EL at second sampling, photochemical capacity of PSII (Fv/Fm, maximum and variable fluorescence (Fm and FV, respectively were affected by water stress significantly (p

  16. Study of the Quantitative and Qualitative Traits of Four Soybean (Glycine max L. Cultivars under Different Sowing Dates in Shahrekord Region

    Directory of Open Access Journals (Sweden)

    H. Gharakhani Beni

    2011-05-01

    Full Text Available To study the effect of sowing date on quantitave and qualitative traits of soybean in Shahrekord region, an experiment was performed as split plot based on randomized complete blocks design with four replications at Agricultural and Natural Resources Research Centre of Chaharmahal-va-Bakhtiari, Shahrekord, in 2008. Four sowing dates (May 5, May 20, June 4 and June 19 and four varieties (M9, M7, L17 and Williams were selected as main and sub plots, respectively. Results showed that maximum number of pods per plant, seeds per plant and biological yield were observed for M9 cultivar at 20 May sowing date. This sowing date had also the highest seed weight, oil percent and biological yield comared to other dates. The maximum protein percent was observed in June 4 (37.6% and June 19 (38.4% sowing dates. There was no significant difference between cultivars for oil and protein percent. There was no significant difference between three planting dates of May 5, May 20 and June 4 for seed yield. But minimum seed yield belonged to June 19 sowing date. In general, the M9 cultivar, with 2896.1 kg/ha seed yield, and then M7 cultivar with 2597.7 kg/ha seed yield, are recommendable as suitable soybean cultivars for cultivation in Shahrekord region.

  17. Elicited soybean (Glycine max) extract effect on improving levels of Ter-119+Cd59+ in a mouse model fed a high fat-fructose diet

    Science.gov (United States)

    Safitri, Yunita Diyah; Widyarti, Sri; Rifa'i, Muhaimin

    2017-05-01

    People who have unbalanced lifestyles and habits such as consuming high fat and sugar foods, as well as the lack of physical activity, have an increased risk of obesity and related metabolic diseases. The condition of obesity occurs due to an excess of nutrients which leads to low-grade inflammation. Inflammation induced by obesity causes unstable bone marrow homeostasis which is associated with proliferation and differentiation of Hematopoietic Stem Cells (HSCs). This study aimed to observe the erythroid progenitor (TER-119) and complement regulator (CD59) on bone marrow cells in mouse models fed a high fat-fructose diet (HFFD). This research was conducted by modeling obese mice using high fat and fructose food for 20 weeks, and then treating them with elicited soybean extract (ESE) for four weeks with several doses: low dose (78 mg/kgBB), moderate dose (104 mg/kgBB) and high dose (130 mg/kgBB). Cell TER119+CD59+ expression decreased in the HFFD group compared to the normal group. In the low, moderate and high dose group, TER119+CD59+ expression significantly increased compared to the HFFD group. These results demonstrate that soybean elicited extract can improve the hematopoietic system by increasing TER119+CD59+ expression in a high fat and fructose diet mouse model.

  18. Diversity of weed communities in soybean [Glycine max (L.] crop growing under direct sowing depending on cover crops and different herbicide doses

    Directory of Open Access Journals (Sweden)

    Elżbieta Harasim

    2016-12-01

    Full Text Available Despite being harmful for agricultural production, weeds are an essential component of biodiversity in agricultural landscapes. A field study was conducted during the period 2007–2009 on grey-brown podzolic soil (sandy, designated as PWsp, with the granulometric composition of silt and classified Class 2 in agricultural land suitability. The study evaluated the structure of weed communities based on selected indicators of diversity of a soybean crop grown under no-tillage with mulch from winter rye, winter oilseed rape, and white mustard as well as using herbicide rates reduced by 25% and 50% in relation to the standard rate (2 L ha−1. The studied factors were as follows: (i mulch plant species and mulch management method; (ii rates of the foliar herbicide Basagran 600 SL (a.i. bentazon; 600 g L−1. The results of this study confirm that no-tillage with mulch significantly changes the diversity of weed flora in a soybean crop. Among the mulches used, the mowed rye and winter oilseed rape in particular increased the values of the general diversity (H', species richness (d, and evenness (J' indices relative to the control treatment. On the other hand, the study found a strong decrease in the value of the dominance index (c. Reduced herbicide rates modified only the species richness index, in the case of which the 75% rate resulted in its significantly higher values compared to the full rate.

  19. Nitrate reductase and nitrogenase activities in relation to N-uptake from soil, 15N-fertilizer and symbiotic fixation in soybean (Glycine max)

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Saito, S.M.T.; Vose, P.B.

    1980-01-01

    Nitrate reductase (NRA) and nitrogenase (ARA) activities were evaluated in relation to nitrogen in the plant from soil (NFS), fertilizer (NFF) and symbiotic fixation (NFN 2 ) to study the pattern of utilization of nitrogen in nodulated and non nodulated soybean, 35, 55 and 75 days after planting. Three levels of ( 15 NH 4 ) 2 SO 4 - added to soil were used (0 - 25 and 50 kg N/ha), being the experiment conducted in the greenhouse, with a split plot statistical design and 4 replications. Maximum levels of RNA and ARA occurred 55 days after planting. Addition of 50 kg N/ha decreased NRA at all harvesting time studied; and nodule ARA only 75 days after planting. By that time the nodulated isoline showed higher NRA than the non nodulated one, the NFS and NFF of the isolines were not different 35 and 55 days after planting, but decreased at the last harvest, especially in nodulated soybean. Symbiotic N 2 -fixation increased plant-N after 55 days growth, contribution about 65% of plant-N in the period between 55 and 75 days after planting. Nodulated plant showed higher N than non nodulated, a sinergistic effect of the three sources of N studied on N increase of nodulated plants was observed. (Author) [pt

  20. Nutrição mineral da soja perene (Glycine wightii Verdc.: I - Ensaio de adubação em solo de cerrado Mineral fertilization of soybeans (Glycine wightii Verdc.: I - Fertilizer trial in "cerrado" soil

    Directory of Open Access Journals (Sweden)

    Luiz A. C. Lovadini

    1971-05-01

    Full Text Available São relatados os resultados de uma experiência de adubação com delineamento fatorial 3³, instalada em solo de cerrado (Latossolo Vermelho Escuro fase arenosa, na Estação Experimental de Jupiá (CESP, para o estudo dos efeitos da aplicação de calcário, fósforo e potássio, em três níveis, na produção de forragem de soja perene. Os resultados experimentais revelam que o calcário e o fósforo produziram efeitos altamente significativos sôbre a produção; o potássio não provocou efeitos significativos, e tampouco foram significativas as interações entre os elementos estudados. Embora não significativa, ocorreu interação negativa entre calcário e fósforo: o efeito de cada um dêles foi diminuído sempre que a dose do outro foi aumentada.In this paper are discussed the results of a factorial experiment 3³ designed to study the effect of Ca (dolomite lime, P (superphosphate and K (potassium chlorate, on the production of perennial soybean on Dark Red Latosol. Both Ca and P alone had a highly significant effect on the production whereas K did not show any effect. There was no interaction among the three elements, but it was noticed that as Ca levels were increased it decreased the effect of P and as P levels were increased it decreased the Ca effect. In other words there was a negative relationship which was not significant.

  1. Otimização da aplicação de Fluazifop-P-Butil em pós-emergência na cultura de soja (Glycine max Optimizing Fluazifop-P-Butyl application on postemergence soybeans (Glycine max

    Directory of Open Access Journals (Sweden)

    P.R.F. Lima

    2001-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a possibilidade de redução da dosagem e do volume de calda em função do horário de aplicação do herbicida fluazifop-p-butil em pós-emergência na cultura de soja, mantendo-se o controle das plantas daninhas e a seletividade para a cultura. O experimento foi conduzido na área experimental da Fazenda de Ensino e Pesquisa da FCAV/UNESP - Jaboticabal, no ano agrícola 1998/99, na cultura de soja, cultivar FT 2009. O delineamento experimental utilizado foi o de blocos ao acaso com 24 tratamentos, sendo 20 dispostos no esquema fatorial 2 x 2 x 5 e quatro testemunhas. Os fatores testados foram: volume de calda (100 e 200 L de calda/ha; dosagens reduzidas -75,2 e 112,8 g de fluazifop-p-butil/ha (respectivamente a 40 e 60% da dosagem recomendada; e horário de aplicação (5, 9, 13, 17 e 21 horas. As testemunhas foram aplicadas com a dosagem recomendada (188,0 g do fluazifop-p-butil/ha e com os volumes de 100 e 200 L de calda/ha, no mato (sem controle das plantas daninhas e "no limpo" (plantas daninhas controladas com enxada manual. As principais espécies de plantas daninhas que emergiram na área experimental foram capim-carrapicho (Cenchrus echinatus, que compunha 60% da comunidade infestante; capim-colchão (Digitaria horizontalis, 10%; e capim-pé-de-galinha (Eleusine indica, 30%. Todas as aplicações do herbicida fluazifop-p-butil, nos horários até as 9 horas e a partir das 17 horas, controlaram eficientemente as três espécies de plantas daninhas e foram seletivas para a cultura de soja. Portanto, o uso do herbicida fluazifop-p-butil pode ser otimizado por meio de reduções na dosagem e no volume de calda em aplicações durante os horários com condições ambientais favoráveis à pulverização.The objective of this study was to evaluate the possibility of reducing spray concentration and volume of Fluazifop-p-butyl applications on postemergence soybeans, while maintaining weed control and

  2. NADPH oxidase is involved in regulation of gene expression and ROS overproduction in soybean (Glycine max L. seedlings exposed to cadmium

    Directory of Open Access Journals (Sweden)

    Jagna Chmielowska-Bąk

    2017-06-01

    Full Text Available Cadmium-induced oxidative burst is partially mediated by NADPH oxidase. The aim of the present research was to evaluate the role of NADPH oxidase in soybeans’ response to short-term cadmium stress. The application of an NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI, affected expression of two Cd-inducible genes, encoding DOF1 and MYBZ2 transcription factors. This effect was observed after 3 h of treatment. Interestingly, Cd-dependent increases in NADPH oxidase activity occurred only after a period of time ranging from 6 and 24 h of stress. Stimulation of the enzyme correlated in time with a significant accumulation of reactive oxygen species (ROS. Further analysis revealed that pharmacological inhibition of NADPH oxidase activity during 24 h of Cd stress does not affect Cd uptake, seedling growth, or the level of lipid peroxidation. The role of NADPH oxidase in the response of soybean seedlings to short-term Cd exposure is discussed.

  3. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-08-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  4. Recovery Plan for Red Leaf Blotch of Soybean Caused by Phoma glycinicola

    Science.gov (United States)

    Red leaf blotch (RLB) of soybean is caused by the fungal pathogen Phoma glycinicola, formerly known in the plant pathology literature as Pyrenochaeta glycines, Dactuliophora glycines, and Dactuliochaeata glycines. The disease presently occurs in only a few African countries on soybean and a wild leg...

  5. No choice but to find resistance to soybean aphid biotype 4

    Science.gov (United States)

    Host plant resistance in soybean [Glycine max (L.) Merr] utilizes its natural defenses to limit soybean aphid (Aphis glycines Matsamura, SBA) injury, reducing insecticide reliance. Specific genes called Rag or Resistance to Aphis glycines are unfavorable to SBA and may suppress their development and...

  6. Evaluation of Seed Germination and Seed Vigor of Different Soybean (Glycine max (L. Merr. Cultivars Under Different Planting Dates in Gorgan

    Directory of Open Access Journals (Sweden)

    M Gorzin

    2016-02-01

    Full Text Available Introduction Soybean seed germination and seed vigor potential is lower compared with other crops, and it often greatly reduces at the planting time. The occurrence of unfavorable conditions during seed formation in field causes severe deterioration of seeds and reduces the seed quality. Planting date is one of the most important influencing factors on seed quality of soybean in field conditions. Since planting date affect seed quality by changing the environmental conditions including temperature, relative humidity and rainfall during seed development and maturation. Materials and Methods To evaluate the seed germination and seed vigor of soybean seeds wshich were obtained from various planting dates, a field experiment was conducted with a split plot arrangement in a randomized complete block design in three replications in Gorgan University of Agricultural Sciences and Natural Resources in 2011. Main plot included five planting dates April 20, May 13, June 3, June 29 and July 22, and sub plot consisted of three cultivars (Williams, Sahar and DPX. About 50 plants were selected and harvested during R7 (physiological maturity stage from each plot, and their pods were removed by hand. Then, pods were dried in shade. To avoid mechanical damage, the seeds were removed by hand from the pods. Ultimately, seed quality was assessed by seed germination and seed vigor including accelerated aging, seedling growth rate (SGR and electrical conductivity tests. Results and Discussion According to obtained results, the use of different planting dates caused the change at the beginning and ending time of seed filling period (R5-R7 of all three cultivars. This event in turn leads to creation different conditions in terms of temperature, rainfall and relative humidity during seed filling period in all three cultivars. Therefore Williams cultivar coincided with high temperatures more than two other cultivars, especially in the early planting dates. While DPX that

  7. Carboidratos das fibras de cotilédones e proteínas de produtos derivados de soja (Glycine max (L. Merril Carbohydrates from cotyledon fibers and proteins of soybean (Glycine max (L. Merril derivatives

    Directory of Open Access Journals (Sweden)

    Neusa Fátima Seibel

    2008-09-01

    Full Text Available Fibras alimentares obtidas de cotilédones de soja original (FAO e micronizada (FAM foram fracionadas e avaliadas quanto a polissacarídeos e monossacarídeos constituintes. O componente majoritário foi a hemicelulose, totalizando 59% em FAO e 51% na FAM, a pectina representou em média 14% e a celulose 8,5%. As duas amostras de fibras apresentaram 17 mg.g-1 de ácidos urônicos e a mesma composição de monossacarídeos, sendo galactose, glicose e arabinose/ramnose os principais componentes. As proteínas de concentrado protéico, farinha desengordurada e fibras alimentares (FAO e FAM foram avaliadas quanto à solubilidade em diferentes solventes (NaCl, água, etanol e NaOH e quanto ao peso molecular. A farinha desengordurada de soja teve a maior parte das proteínas passível de extração com solução salina, e o concentrado protéico e as fibras de cotilédones com solução alcalina. A fração protéica que não foi extraída com nenhum dos quatro solventes utilizados permaneceu no resíduo, o maior percentual estava no concentrado, seguido pela fibra alimentar micronizada e a farinha, já a menor quantidade estava na fibra alimentar original. A eletroforese das proteínas dos quatro ingredientes alimentares mostrou as subunidades que constituem as frações β-conglicinina e glicinina. Bandas com peso molecular próximo aos 30 kDa foram reveladas nas proteínas extraídas das fibras de cotilédones de soja, sendo provavelmente glicoproteínas de parede celular, ricas em hidroxiprolina.Dietary fibers from soybean cotyledons classified as original (ODF and milled (MDF were fractionated and evaluated as to fractions and monosaccharide composition. The major constituent was hemicellulose, 59% in ODF and 51% MDF, pectin was in average 14% and cellulose, 8.5%. Both samples had 17 mg.g-1 uronic acids and the same composition in monosaccharides: galactose, glucose and arabinose/rhamnose, after hydrolysis. Protein fractions extracted from

  8. Evaluation of the ionizing radiation 60Co effect on the physical, chemical and nutritional properties of different cultivars of soybean grains (Glycine max (L.))

    International Nuclear Information System (INIS)

    Toledo, Tais Carolina Franqueira de

    2006-01-01

    With the increase of the world population, creative strategies will be necessary to control food production. To achieve this challenge, new cultivars have been development, though different techniques and characteristics. To improve food conservation, a plant of methods can be used. The use of Cobalto-60 radiation is a secure and useful method to increase the life time of foods. Due to the commercial and nutritional importance of soybean, some alterations must be studied. This study has the objective to determinate this alterations caused by irradiation (with doses of 2, 4 and 8 kGy) in raw and cooked grain of five different cultivars of soybean (BRS 212, BRS 213, BRS 214, 231 BRS and E48), this study includes analysis of time cooking and hydratation, and chemical analysis of proximate composition, in vitro digestibility of proteins, percentage of deamidation , phenolics compounds, trypsin inhibitors and tannins. The amount of water absorbed by each grain varied from 14.00 to 16.66mL, and the time cooking varied from 119.67 to 291.33 minutes. The values found for ash were 4.90 to 6.08%, for protein from 21.23 to 36.99%, for fat from 19.22 to 24.84%, soluble staple fibres from 1.37 to 4.03% and insoluble staple fibres from 15.97 to 18.87%. The deamidation percentage in the different samples varied of 17,34 to 57.79% and the digestibility in vitro from 84.45 to 89.11%. Inside of the anti nutritional factors, the total compounds phenolics varied from 3.9 to 9.7 mg/g, the units of trypsin inhibited from 24.75 to 57.53 UTI/g and the tannins from 0.02 to 0.32 mg/g. For the physical analyses it showed differences in the time of hydratation among them and the irradiation promoted reduction in the time, but not in the amount of absorbed water; in the cooking time it had reduction with the increase of the doses of radiation; the differences found in the proximate composition did not have influence with the irradiation, but with the different cultivars; for the digestibility

  9. Initial segmentation patterns of microspores and pollen viability in soybean cultured anthers: indication of chromosome doubling

    Directory of Open Access Journals (Sweden)

    Milena Barcelos Cardoso

    2004-09-01

    Full Text Available Anthers obtained from flowers buds of soybean cultivar IAS-5 were cultured in two basal culture media (B5 and B5 long. Cytological examinations of the in vitro anthers were performed during the first 20 days of culture to assay the viability (by propionic-carmine and fluorescein diacetate tests and the stage of development of pollen grains. The frequencies of viable pollen grains varied significantly between bud sizes on the propionic-carmine analysis. The basal culture media and bud size had no clear effect on the frequencies of binucleate symmetrical and multinucleate pollen grains. Chromosome counts of metaphasic microspores throughout the culture period showed microspores with higher ploidy level in addition to normal chromosome number (n=20.Anteras obtidas de botões florais da cultivar IAS-5 de soja foram cultivadas em dois meios de cultura basais (B5 e B5 longo. Análises citológicas das anteras cultivadas in vitro foram realizadas durante os primeiros 20 dias de cultura, a fim de avaliar a viabilidade (por testes de carmim propiônico e FDA e o estágio de desenvolvimento dos grãos de pólen. As freqüências de grãos de pólen viáveis variaram significativamente entre os tamanhos de botões florais na análise com carmim propiônico. O meio de cultura basal e o tamanho do botão floral não têm um claro efeito nas freqüências de pólens binucleados simétricos e multinucleados. Contagens cromossômicas de micrósporos metafásicos ao longo do período de cultura mostraram nível de ploidia superior ao normal (n=20.

  10. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    Science.gov (United States)

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of canopy light distribution characteristics and leaf nitrogen content on efficiency of radiation use in dry matter accumulation of soybean [Glycine max] cultivars

    International Nuclear Information System (INIS)

    Shiraiwa, T.; Hashikawa, U.; Taka, S.; Sakai, A.

    1994-01-01

    The amount of dry matter produced per photosynthetically active radiation (PAR) intercepted by the canopy (EPAR) and factors which might affect EPAR were determined for various soybean cultivars, and their relationships were also analyzed in two field experiments. In 1989 and 1990, 11 cultivars and 27 cultivars respectively, were grown on an experimental field in shiga Prefectural Junior College. Changes of intercepted PAR, top dry matter weight, light extinction coefficient (KPAR), nitrogen content per leaf area (SLN) and nitrogen accumulation in the top (1990 only) were measured. EPAR averaged for all the cultivars was 2.48g MJ(-1) in both years and its coefficient of variance among cultivars was +- 9% in 1989 and +- 17% in 1990. In general, recent cultivars showed greater EPAR than older ones. The correlation coefficients between SLN and EPAR were 0.548 in 1989 and 0.651-- in 1990, while there was no correlation between KPAR and EPAR. Since SLN showed close correlation with SLW (r = 0.954 in 1989, r = 0.170-- in 1990), the difference in EPAR between old and new cultivars was considered to be attributable mainly to the improved leaf morphological trait and consequently greater leaf photosynthesis of newer cultivars. SLN further correlated with total top nitrogen content (r = 0.736-- in 1990) thus seemed to be limited by nitrogen accumulation

  12. Cross-cultural comparisons among the sensory characteristics of fermented soybean using Korean and Japanese descriptive analysis panels.

    Science.gov (United States)

    Chung, L; Chung, S-J

    2007-11-01

    One of the most important initial steps in exporting a food product to another country from the R&D perspective is to describe and translate the sensory characteristics of a food product appropriately into the language of the target country. The objectives of this study were to describe and compare the sensory characteristics of Korean and Japanese style fermented soybean products, and to cross-culturally compare the lexicons of the identical product generated by the Korean and Japanese panelists. Four types of Korean and 4 types of Japanese style fermented soybean consisting of whole bean type and paste type were analyzed. Ten Korean and 9 Japanese panelists were recruited in Korea. Two separate descriptive analyses were conducted, with the panelists differing in their country of origin. Each group was trained, developed lexicon, and conducted descriptive analysis independently. Analysis of variance and various multivariate analyses were applied to delineate the sensory characteristics of the samples and to compare the cross-cultural differences in the usage of lexicon. The Korean and Japanese panelists generated 48 and 36 sensory attributes, respectively. Cross-cultural consensus was shown for evaluating the whole bean type fermented soybean and white miso, which were relatively distinctive samples. However, for the less distinctive samples, the panelists tend to rate higher in negative attributes for the fermented soybeans that originated from the other country. The Japanese panelists grouped the samples by their country of origin and soy sauce flavor was the main attribute for cross-cultural differentiation. However, the Korean panelists did not make a cross-cultural distinction among the samples.

  13. Effect of glycine and alanine supplementation on development of cattle embryos cultured in CR1aa medium with or without cumulus cells

    Directory of Open Access Journals (Sweden)

    Kr. BREDBACKA

    2008-12-01

    Full Text Available The effect of alanine (1 mM and glycine (10 mM supplementation on bovine embryo development in vitro was investigated. Presumptive bovine zygotes, produced by in vitro maturation and insemination of oocytes, were cultured for 144 h in CR1aa medium in the absence (Experiments 1 and 2 or presence of cumulus cells (Experiment 3. In Experiment 1, the proportion of morulae and blastocysts of cleaved embryos in glycine-supplemented medium was not different from that of the control medium (34% in both mediaglycine-enriched medium (69.5 vs. 53.3, P = 0.016. In Experiment 2, addition of alanine did not improve the formation of morulae and blastocysts (13% vs. 21% in control medium, and the mean cell numbers in morulae and blastocysts were lower than those in the control group (34.3 vs. 68.7, P = 0.007. In the presence of cumulus cells, the combined supplementation of glycine and alanine increased the proportion of morulae and blastocysts over that in the control medium (31% vs. 14%, P = 0.003.;

  14. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 Differently Modify Isoflavone Glucosides in Soybean (Glycine max under Various Stresses

    Directory of Open Access Journals (Sweden)

    Muhammad Z. Ahmad

    2017-05-01

    Full Text Available Malonylated isoflavones are the major forms of isoflavonoids in soybean plants, the genes responsible for their biosyntheses are not well understood, nor their physiological functions. Here we report a new benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase (BAHD family isoflavone glucoside malonyltransferase GmIMaT1, and GmIMaT3, which is allelic to the previously characterized GmMT7 and GmIF7MaT. Biochemical studies showed that recombinant GmIMaT1 and GmIMaT3 enzymes used malonyl-CoA and several isoflavone 7-O-glucosides as substrates. The Km values of GmIMaT1 for glycitin, genistin, and daidzin were 13.11, 23.04, and 36.28 μM, respectively, while these of GmIMaT3 were 12.94, 26.67, and 30.12 μM, respectively. Transgenic hairy roots overexpressing both GmIMaTs had increased levels of malonyldaidzin and malonylgenistin, and contents of daidzin and glycitin increased only in GmIMaT1-overexpression lines. The increased daidzein and genistein contents were detected only in GmIMaT3-overexpression lines. Knockdown of GmIMaT1 and GmIMaT3 reduced malonyldaidzin and malonylgenistin contents, and affected other isoflavonoids differently. GmIMaT1 is primarily localized to the endoplasmic reticulum while GmIMaT3 is primarily in the cytosol. By examining their transcript changes corresponding to the altered isoflavone metabolic profiles under various environmental and hormonal stresses, we probed the possible functions of GmIMaTs. Two GmIMaTs displayed distinct tissue expression patterns and respond differently to various factors in modifying isoflavone 7-O-glucosides under various stresses.

  15. Nitrogen, phosphor, and potassium nutrients uptake of soybean (Glycine max (L.) Merril) on three levels of radiation intensities and soil moisture content of latosol

    International Nuclear Information System (INIS)

    Syahbuddin, H.; Apriyana, Y.; Heryani, N.; Darmijati, S.; Las, I.

    1998-01-01

    An experiment was implemented from July to August 1994 in greenhouse of the Ecophysiology Division, Bogor Research Institute for Food Crops using a split-split plot design with three replications. Radiation intensity levels as main plot were: without shelter, 25 percent shelter, and 67 percent shelter. Levels of available water in soil as sub-plot were: less than 25 percent soil water availability, content of soil water availability, and 125 percent soil water availability. Soybean varieties as sub-sub plots were: Wilis, Malabar, and Lokon. The experiment showed that nitrogen and phosphor uptake of Wilis was the highest, 41.228 mg and 1.225 mg per hill, especially under 100 percent light intensity and soil water availability more than 25 percent. Under 25 percent shade the potassium uptake of Wilis was 45.997 mg, this was higher than Malabar. The highest increased in seed dry weight, up to 0.733 g, occurred if soil water content changed from available water to 125 percent water content. One calory decreased in radiation caused 0.006 g decreased in seed dry weight per hill, Malabar variety produced an average of 0.892 g seed dry weight, where each millimeter of water will increased 2.0 mg of dry seed weight. Malabar variety had water use efficiency of 0.043 percent g/ml and radiation use efficiency 0.011 percent g/cal. Malabar variety produced the heaviest 100 good seed (7.293 g), followed by Wilis variety (5.520 g) and Lokon variety (4.597 g) [in

  16. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield

    Science.gov (United States)

    Suciaty, T.; Purnomo, D.; Sakya, A. T.; Supriyadi

    2018-03-01

    Agriculture is facing a number of challenges included limited water supply, low nutrient use efficiency, etc affected by climate change. Nano-silica is a product of nanotechnology, the frontier technologies to enhance crop productivity under climate change threats. The purpose of the research was to investigate the effects of nano silica concentration and rice hull ash on growth and yield of soybean. The experiment was conducted at Gagasari village, Cirebon, West Java from March until June 2017. The treatments were arranged by using factorial completely randomized block design with two factors. The first factor was a concentration of nano silica fertilizer consisted of four levels i.e., 0, 1.75, 2.5, and 3.75 ml.l‑1. The second factor was doses of rice hull ash consisted of four levels i.e., 0, 1, 2, and 3 ton.ha‑1. Each treatment combinations was repeated three times. The result showed that concentration of nano silica individually affected the number of leaves and number of branches, NAR and RGR, productive branches at 21, 30-45, and 35 daps, respectively. It also affected the seed dry weight plant‑1 and plot‑1. Meanwhile, doses of rice hull ash affected LAI, NAR, and RGR, 15-30, and 30-45 dap, respectively. Dry seed weight plot‑1 was also affected by doses of rice hull ash. There was an interaction effect between nano-silica concentration and doses of rice hull ash on number pods.plant‑1. Combinations of 2.5 ml.l‑1 nano-silica and 3 ton.ha‑1 of rice hull ash gave the highest number pods.plant‑1.

  17. Relationship of transpiration and evapotranspiration to solar radiation and spectral reflectance in soybean [Glycine max] canopies: A simple method for remote sensing of canopy transpiration

    International Nuclear Information System (INIS)

    Choi, E.N.; Inoue, Y.

    2004-01-01

    Abstract The study investigated diurnal and seasonal dynamics of evapotranspiration (ET) and transpiration (Tr) in a soybean canopy, as well as the relationships among ET, Tr, solar radiation and remotely sensed spectral reflectance. The eddy covariance method (ECM) and stem heat balance method (SHBM) were used for independent measurement of ET and Tr, respectively. Micrometeorological, soil, and spectral reflectance data were acquired for the entire growing season. The instantaneous values of canopy-Tr estimated by SHBM and ET by ECM were well synchronized with each other, and both were strongly affected by the solar radiation. The daily values canopy-Tr increased rapidly with increasing leaf area index (LAI), and got closer to the ET even at a low value of LAI such as 1.5-2. The daily values of ET were moderately correlated with global solar radiation (Rs), and more closely with the potential evapotranspiration (ETp), estimated by the 'radiation method.' This fact supported the effectiveness of the simple radiation method in estimation of evapotranspiration. The ratio of Tr/ET as well as the ratio of ground heat flux (G) to Rs (G/Rs) was closely related to LAI, and LAI was a key variable in determining the energy partitioning to soil and vegetation. It was clearly shown that a remotely sensed vegetation index such as SAVI (soil adjusted vegetation index) was effective for estimating LAI, and further useful for directly estimating energy partitioning to soil and vegetation. The G and Tr/ET were both well estimated by the vegetation index. It was concluded that the combination of a simple radiation method with remotely sensed information can provide useful information on energy partitioning and Tr/ET in vegetation canopies

  18. Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism.

    Science.gov (United States)

    Yang, Xiao; Feng, Lei; Zhao, Li; Liu, Xiaosong; Hassani, Danial; Huang, Danfeng

    2018-01-01

    Lettuce is a significant source of antioxidants and bioactive compounds. Nitrate is a cardinal fertilizer in horticulture and influences vegetable yield and quality; however, the negative effects of nitrate on the biosynthesis of flavonoids require further study. It is expected that using fertilizers containing organic nitrogen (N) could promote the synthesis of health-promoting compounds. Lettuces were hydroponically cultured in media containing 9 mmol L -1 nitrate or 9 mmol L -1 glycine for 4 weeks. Primary and secondary metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and ultra-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry (UPLC/IMS/QTOF-MS). Data analysis revealed that 29 metabolites were significantly altered between nitrate and glycine treatments. Metabolites were tentatively identified by comparison with online databases, literature and standards and using collision cross-section values. Significant differences in flavonoid biosynthesis, phenolic biosynthesis and the tricarboxylic acid (TCA) cycle response were observed between N sources. Compared with nitrate, glycine promoted accumulation of glycosylated flavonoids (quercetin 3-glucoside, quercetin 3-(6″-malonyl-glucoside), luteolin 7-glucuronide, luteolin 7-glucoside), ascorbic acid and amino acids (l-valine, l-leucine, l-glutamine, asparagine, l-serine, l-ornithine, 4-aminobutanoic acid, l-phenylalanine) but reduced phenolic acids (dihydroxybenzoic acid hexose isomers 1 and 2, chicoric acid, chicoric acid isomer 1) and TCA intermediates (fumaric, malic, citric and succinic acids). The novel methodology applied in this study can be used to characterize metabolites in lettuce. Accumulation of glycosylated flavonoids, amino acids and ascorbic acid in response to glycine supply provides strong evidence supporting the idea that using amino acids as an N source alters the nutritional value of vegetable crops. © 2017

  19. Efeito de doses de metribuzin no crescimento e na conversão da energia solar em plantas de soja (Glycine max (L . merrill Effect of metribuzin doses on the growth and solar energy conversion in soybean (Glycine max (L. merrill plants

    Directory of Open Access Journals (Sweden)

    P. J. Silva Neto

    1991-01-01

    Full Text Available O crescimento e a eficiência na conversão da energia solar foram estudados em soja (Glycine max (L. Merri ll, cv. 'Uberaba', cultivada em condições de campo, sob quatro doses de metribuzin (0, 0,35; 0,70 e 1,05 kg i.a.ha-1. O valor máximo da conversão da energia solar foi de 0,75%, para as plantas cultiva das na maior dose do herbicida. Os valores da conversão da energia solar média durante o ciclo da cultura foram 0,32 ; 0,31 ; 0,32 e 0,33%. em ordem crescente de dose do metribuzin. De modo geral, na fase vegetativa as plantas controle apresentaram valores inferiores em todos os valores de crescimento determinados, superando as tratadas com metribuzin somente na fase reprodutiva, mostrando que no período crítico de competição o dano causado pelas plantas daninhas é maior que a possível fitotoxicida de causada pelo metribuzin.Growth analysis and evaluation of solar energy conversion in soybean (Glycine max (L. Merrill, Uberaba unver field conditions and four doses of metribuzin (0,0;0,35; 0,70 and 1,05 kg i.a.ha-1 were performed in this study. Maximum solar energy conversion was 0,75% for pla nts tre ate d wit h 1,05 kg i.a.ha -1 metribuzin. The aver age of solar energy conversion throughout the entire crop cycle were 0,32, 0,31 , 0,32 and 0,33% for the increasing metribuzin doses. In general, the control showed lower figures for all growth values studied than the treated during the vegetative phase. During the reproductive phase, however, they surpassed those tre ated with metribuzin, showing that in the critical period of competition weeds were more harmful than the phytotoxicity produced by metribuzin.

  20. Determination of specific growth stages of plant cell suspension cultures by monitoring conductivity changes in the medium.

    Science.gov (United States)

    Hahlbrock, K; Ebel, J; Oaks, A; Auden, J; Liersch, M

    1974-03-01

    Conductivity changes in the medium of cultured soybean (Glycine max L.) cells were shown to be strictly correlated with nitrate uptake and growth of the cultures. A continuous record of the conductivity was used as a simple and reliable method of determining specific growth stages and concomitant peaks in the activities of nitrate reductase and phenylalanine ammonia-lyase.

  1. 不同大豆品种生理特性及产量的比较研究%Comparative Study of Different Soybean ( Glycine max) Varieties' Physiological Characteristics and Yield

    Institute of Scientific and Technical Information of China (English)

    章彦俊; 常宝; 董建新

    2012-01-01

    [目的]比较研究不同大豆(Glycine max)品种各生育期生理特性及产量,筛选出适合于河北张家口地区种植的高产品种,采用各种调控措施,实现大豆高产优质生产.[方法]14个供试大豆品种分别为东北地区引种的长农18、绥农14、长农16、吉农24、黑农38、吉农15、吉育47、吉农6、吉林30、吉农23、吉农1号、吉农12、吉农14和206.测定苗期、结英期、鼓粒期和成熟期株高、叶面积指数、叶绿素含量,并统计产量,并分析4个时期株高、叶面积指数、叶绿素含量与产量的相关性.[结果]吉林30的产量最高,达到16.839 kg/小区,206次之,为13.989.kg/小区.不同大豆品种叶面积指数在结英期和鼓粒期与产量的相关系数较大,在鼓粒期达到显著或极显著正相关;结英期和鼓粒期的叶绿素含量与产量呈显著或极显著正相关;鼓粒期的株高与产量呈显著正相关.[结论]该研究筛选出了适合于张家口地区种植的高产品种吉林30和206,同时阐明了不同生理生化指标和产量的关系,为栽培技术的合理利用及生态育种指标的有效选择提供了理论依据.%[Objective] The purpose was to comparatively study different soybean varieties' physiological characteristics and yield during ever-y growth period, screen high yield soybean varieties suit for planting in Zhangjiakou Region of Hebei, and realize its high yield and good quality production by all kings of controlling measures. [Method] Fourteen soybeans introduced from Northeast Region were Changnong18, Sui nong14 , Changnong16, Jinong 24, heinong38, Jinong 15, JiYu 47, Jinong6, Jilin 30, Jinong 23, Jinong 1, Jinong 12, Jinong 14 and 206 respectively. Plant height, leaf area index, chlorophyll content at seedling stage, pod setting stage, seed filling stage and mature stage were determined and yield was counted, then their corelation were analyzed. [Method] In fourteen soybeans, Jilin 30' s yield was the

  2. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    Science.gov (United States)

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9.

  3. Spectral Detection of Soybean Aphid (Hemiptera: Aphididae) and Confounding Insecticide Effects in Soybean

    Science.gov (United States)

    Alves, Tavvs Micael

    Soybean aphid, Aphis glycines (Hemiptera: Aphididae) is the primary insect pest of soybean in the northcentral United States. Soybean aphid may cause stunted plants, leaf discoloration, plant death, and decrease soybean yield by 40%. Sampling plans have been developed for supporting soybean aphid management. However, growers' perception about time involved in direct insect counts has been contributing to a lower adoption of traditional pest scouting methods and may be associated with the use of prophylactic insecticide applications in soybean. Remote sensing of plant spectral (light-derived) responses to soybean aphid feeding is a promising alternative to estimate injury without direct insect counts and, thus, increase adoption and efficiency of scouting programs. This research explored the use of remote sensing of soybean reflectance for detection of soybean aphids and showed that foliar insecticides may have implications for subsequent use of soybean spectral reflectance for pest detection. (Abstract shortened by ProQuest.).

  4. Determination of volatile components in fermented soybean prepared by a co-culture of Bacillus subtilis and Rhizopus oligosporus

    Directory of Open Access Journals (Sweden)

    Chukeatirote, E.,

    2017-07-01

    Full Text Available Fermented soybeans are traditional foods widely consumed in many countries (i.e., Natto in Japan, Jang in Korea, Kinema in India, Douichi in China, and Thua Nao in Thailand. In this study, an attempt was made with an expectation to improve the fermentation process using a co-culture of Bacillus subtilis and Rhizopus oligosporus. Initially, the raw soybeans were washed, sterilized by autoclaving, and inoculated with two inocula; for this, three different ratios between B. subtilis and R. oligosporus used were 100:0, 50:50, and 0:100. The fermentation was then carried out at 30°C for 3 days. The volatile compounds in the non-fermented and the fermented soybean products were determined by gas chromatography/ mass spectrometry (GC/MS and extracted using a solid phase microextraction (SPME technique. In total, 165 compounds were identified in the non-fermented and the fermented soybean products. For the non-fermented products, the predominant volatile compounds were alcohols (25.81%, aldehydes (13.64%, acids and esters (7.57%, furans (6.13% and ketones (0.88%. In contrast, the major volatiles compounds presented in the fermented soybeans were as follows: i The treatment of 100:0 consisted of acids and esters (35.89%, alcohols (14.55%, aldehydes (8.72%, ketones (4.97%, pyrazines (4.87%, and furans (4.22%; ii 50:50 comprised of acids and esters (55.62%, alcohols (16.22%, aldehydes (7.80%, pyrazine (3.65%, ketones (2.55%, furans (1.67%, and aromatic compounds (1.46%; and iii 0:100 included acids and esters (66.50%, alcohols (15.44%, aldehydes (2.59%, ketones (2.72%, furans (1.89%, aromatic compounds (1.80%, pyrazines (1.35%, and sulphur containing compounds (0.24% respectively.

  5. Qualidade da aplicação aérea líquida com uma aeronave agrícola experimental na cultura da soja (Glycine Max L. Liquid aerial pesticide application quality with an experimental agricultural aircraft in soybean crop (Glycine Max L.

    Directory of Open Access Journals (Sweden)

    Elton F. dos Reis

    2010-10-01

    Full Text Available Os avanços da tecnologia de aplicação aérea de agroquímicos têm-se dado na direção de redução do volume de calda, o que pode ocasionar má distribuição e consequente deposição irregular. O presente trabalho teve como objetivo avaliar a qualidade da aplicação de calda de pulverização em aplicação aérea, na cultura da soja (Glycine Max L.. Para a aplicação, foi utilizada uma aeronave agrícola experimental, aplicando um volume de calda de 20 L ha-1 . Para a determinação dos volumes depositados nas folhas do terço superior, médio e inferior das plantas de soja, foi utilizado corante alimentício azul brilhante adicionado à calda de pulverização. Estas folhas foram lavadas, e o volume determinado por espectrofotometria. Para a obtenção do espectro de gotas, foram utilizados alvos artificiais constituídos por papel hidrossensível, distribuídos no terço superior e médio das plantas. Os dados foram submetidos à análise de variância de fator único, considerando as diferentes posições na planta, e cartas de controle foram feitas a partir dos limites inferior e superior de controle. A aplicação aérea de calda de pulverização na cultura da soja apresentou menores valores de diâmetro da mediana volumétrica, amplitude relativa e cobertura no terço médio em relação ao terço superior da cultura da soja. Houve menor deposição da calda de pulverização no terço inferior. Os indicadores de cobertura da calda de pulverização demonstraram que a aplicação aérea com a aeronave agrícola experimental avaliada não se encontra sob controle estatístico de processo, ou seja, fora do padrão de qualidade.Advances in aerial pesticide application technology of chemicals have been given in the direction of reducing the syrup volume, which can cause poor distribution and consequent irregular deposition. This study aimed to evaluate the quality of the syrup spray on aerial application in soybean crop (Glycine Max

  6. Physical, chemical and sensorial effects of gamma irradiation and cooking on soybean cultivars (Glycine max) with and without lipoxygenase;Efeitos da irradiacao gama e da coccao sobre aspectos fisicos, quimicos e sensoriais de cultivares de soja (Glycine max) com e sem lipoxigenase

    Energy Technology Data Exchange (ETDEWEB)

    Biscaro, Luciana Marino e

    2009-07-01

    The soybean is a vegetable with high nutritional value, mainly due to its high protein content. Among the culture of grains, the soy beam is the most important in Brazil, what represents a greater incentive for the consumption of this food. However, a great claim of occidental consumer is its characteristic odor and flavor, known as beany flavor, which is provided by the action of lipoxygenase enzyme. The catalytic action exerted by this type of isoenzyme on polyunsaturated fatty acids, linolenic and linoleic acid of the soy grains, is one of the main factors responsible for the appearance of the carbonyl compounds, which cause the unpleasant flavor in grains. To enhance the organoleptic characteristics of soybeans, researchers have developed new cultivars, without the presence of lipoxygenase. The objective of this study was to evaluate physical, chemical and sensorial differences between the two soy cultivar, with and without lipoxygenases (cultivars BRS 232 and BRS 257, of EMBRAPA, respectively) and to analyze the possible changes promoted by different radiation doses (0, 4 and 8 kGy) in raw and cooked soybean grains. The physical analyses were: time of cooking and hydration of the grains. The chemical analyses were: centesimal composition, protein digestibility, anti nutritional factors, isoflavone content and antioxidant capacity (DPPH and ABTS). The sensory aspects were determined by sensorial analysis performed by applying analytical methods of differentiation for selection of panelists, and descriptive method to determine the quality of the soybean. At the end, factorial statistical analysis was performed 3x2x2 (irradiation doses X cultivars x treatment) for analysis, comparison and discussion of the obtained results. The results showed differences in physical analyses with the irradiation and between the two cultivars. Besides, the cultivars presented differences in the centesimal composition, digestibility fenolic content, isoflavone content and trypsin

  7. Teste de lixiviação de potássio para avaliação do vigor de sementes de soja [Glycine max (L.Merril] Potassium leaching test for the evaluation of soybean seed vigour

    Directory of Open Access Journals (Sweden)

    D.C.F.S. Dias

    1995-12-01

    Full Text Available O presente trabalho teve como objetivo principal investigar a possibilidade de se obter indicações rápidas sobre a qualidade fisiológica de sementes de soja através do teste de lixiviação de potássio, cuja eficiência foi avaliada comparativamente as informações fornecidas por outros métodos considerados adequados para a determinação do vigor. Para tanto, utilizou-se quatro lotes de sementes de soja dos cultivares IAC-8 e IAC-15 que foram submetidos aos testes de germinação, primeira contagem de germinação, envelhecimento artificial, condutividade elétrica e determinação do grau de umidade. Além destes foram conduzidos estudos de lixiviação de potássio utilizando-se amostras de sementes não danificadas e de sementes fisicamente puras. A quantidade de potássio lixiviado foi avaliada em fotômetro de chama após 60, 90, 120 e 150 minutos de embebição a 30ºC. As avaliações feitas aos 60, 90 e 120 minutos mostraram-se adequadas para a identificação de lotes com diferentes níveis de vigor, constituindo-se em um método simples e rápido para a avaliação da qualidade fisiológica das sementes.This work was performed to investigate the possibilities of providing rapid indications on the physiological quality of seeds through the potassium leaching test. Four lots of soybean (Glycine max (L. Merrill seeds, cultivars IAC-8 and IAC-15 were submitted to germination, first count, accelerated aging, electrical conductivity and seed moisture tests. In addition, studies on potassium leaching were conducted with samples of selected non damaged seeds and with pure seeds. The amount of leached potassium was evaluated in a flame photometer after a 60, 90, 120 and 150 minute imbibition at 30°C. The evaluations after 60, 90 and 120 minutes were suitable for the identification of lots with different levels of vigour, thus proving to be a simple and rapid method for seed vigour evaluation.

  8. Desenvolvimento, partição de assimilados e produção de matéria seca de plantas de soja (Glycine max (L. merrill submetidas a quatro doses de metribuzin Development,assimilate partition and dry matter production in soybean (Glycine max (L. merrill plants treated with four doses of metribuzin

    Directory of Open Access Journals (Sweden)

    P. J. Silva Neto

    1991-01-01

    Full Text Available O desenvolvimento, a partição e a produção de matéria seca, foram estudados em soja (Glycine Max (L. Merri ll, cv. 'Uberaba', cultivadas em condições de campo, sob quatro doses de metribuzin - (0,0; 0,35; 0,70 e 1,05 kg i.a. ha-1. O metri buzin não reduziu a população e nem alterou significativamente a razão parte aérea/sistema radicular. A altura média das plantas aumentou significativamente com o incremento das doses de metribuzin, sendo que as alturas máximas das plantas foram 761, 784, 815 e 812 mm, em ordem crescente de dose de metribuzin. As variações das taxas de acúmulo de matéria seca foram nitida mente seqüenciais em todos os tratamentos, ocorrendo mudanças do dreno metabólico preferencial de um órgão para outro, de acordo com as transformações morfológicas das plantas, ressaltando-se que o metribuzin não alterou esse comportamento. Os tratamentos não influencia ramo acumulo de matéria seca das vagens (Wv, no entanto, a partir do inicio da maturação, as plantas-controle apres entaram maiores Wv, provavelmente, devido a maior taxa assi milatória líquida verificada a partir da floração plena. A matéria seca acumulada nos pericarpos (Wp diminuiu, a partir das sementes completamente desenvolvid os, para todos os tratamentos com exceção de Wp das plantas tratadas com 0,7 kg i.a. ha-1 de metribuzin que, manteve-se estável. Por outro lado, a matéria seca nas sementes (Ws aumentou de forma acentuada, desde o seu aparecimento até a colheita final , em todas as doses do herbicida.Development, assimlate partition and dry matter production in soybean (Glycine Max (L. Merri ll, cv. Uberaba plants treat ed with four metri buzin doses (0,0; 0,35; 0,70 and 1,05 kg i.a.ha-1 were studied in a field experiment. Metribuzin did not reduce the stand or alter ed significantly shoot /root ratio. Plants height average incre ased as the doses of metribuzin increased; maximum heights were 761, 784, 815 and 812 mm, for

  9. Impact of no-till cover cropping of Italian ryegrass on above and below ground faunal communities inhabiting a soybean field with special emphasis on soybean cyst nematodes

    Science.gov (United States)

    Two field trials were conducted in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop in a no-till soybean (Glycine max) planting to 1) reduce populations of plant-parasitic nematodes (i.e., the soybean cyst nematode, Heterodera glycines and lesion nematodes...

  10. Influência de abelhas africanizadas na concentração de açúcares no néctar de soja (Glycine max L. Merrill var. Coodetec 207 = Influence of africanized honeybees on sugar concentration in the nectar of soybean (Glycine max L. Merrill var. Coodetec 207

    Directory of Open Access Journals (Sweden)

    Eloi Machado Alves

    2010-04-01

    Full Text Available O objetivo foi avaliar a concentração de açúcares no néctar de soja (Glycine max L. Merrill em áreas com ou sem a presença de abelhas Apis mellifera L. Foi utilizada a variedade Coodetec 207 em quatro tratamentos: área de 24 m2 coberta com colônia de abelhas africanizadas em seu interior; área semicoberta com livre acesso para insetos visitantes; área livre e área coberta sem abelhas. As flores foram coletadas durante três dias, a cada 2h. e a concentração dos açúcares totais por flor foi determinada por espectrofotometria. A área coberta com abelha apresentou maior concentração de açúcares totais em relação à área coberta sem abelhas e livre, contudo, aconcentração de açúcares totais na área livre não diferiu da concentração observada na área coberta sem abelhas. Houve redução na concentração média de sacarose na área livre, diferindo das concentrações nas demais áreas. A concentração média de glicose não diferiu entre os tratamentos, enquanto que a de frutose não apresentou diferença entre as áreas cobertas com abelhas, semicoberta e livre. A variedade Coodetec 207 da soja apresentou maior concentração total de açúcares e de frutose nas áreas cobertas com abelhas. Contudo, a presença de Apis mellifera não interferiu nesta concentração de açúcares no néctar das flores de soja desta variedade.This research was carried out to evaluate the sugar concentration in soybean nectar in areas with Africanized honeybee colonies. The var. Coodetec 207 was used in four treatments: 24 m2 covered area with Africanized honeybee colony inside, semi-covered area for free insect visitation, uncovered area, and covered area without insect visitation. Flowers were harvested for three days at two-hour intervals, and the total sugar concentration per flower was determined by spectrophotometry. The covered area with Africanized honeybee colony presented higher sugar concentration than the covered area

  11. Surveying some strategies of cultural management on species growth indices and yield in the field of soybean

    Directory of Open Access Journals (Sweden)

    habibeh soltani

    2018-01-01

    Full Text Available Introduction soybean (Glycine max L. plays an important role in three major markets of grains, oil and meal. damage of weeds in soybean generally 13 to 60 and sometimes more than %80 have been reported Farming methods through proper management, sowing date and by use of optimum density could be a strategy for the development of ecological competitiveness of crops and inhibit weed growth are the comparison the growth indices to design interference models of weed and crop and estimate crop yield loss in competition with weed is essential and allow to plant breeding researcher to choice the more competitive varieties of crop in competition with weed. Materials and Methods With the aim of influencing sowing date and plant density on the growth indices and evaluation the competitive ability of soybean cultivar Williams with weeds, an experiment was conducted in 2013, at Agricultural Research Station, Ferdowsi University of Mashhad, as split-split based on a randomized complete block design with three replications. Main plot included three sowing dates levels (17 April, 12 May, 6 June and sub - plots included four crop density (30, 40, 50 and 60 plant . m-2 and sub - sub plots included weed management of two level (weed infested and weedy control. First sampling was started at 35 days after planting and was every 14 days until the end of growth period. Leaf area index, dry matter, crop growth rate and the growth rate were calculated Results and Discussion The results showed that 11 species weed belonging to 9 families observed and identified. In the early stages of growth, leaf area index and dry matter increased slowly, but in the seven to eight leaf stage of plant growth (Log phase, leaf area index and dry matter increased rapidly, and a little upon entry to the plant Physiological maturity period (Early seedling peeks, and again began to decline at the end of seedling. The sowing date 12 May in contrast to early sowing date (17 April and delayed

  12. Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [Glycine max (L. Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection

    Directory of Open Access Journals (Sweden)

    Wen-yu Yang

    2017-04-01

    Full Text Available Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH stress during soybean maturation in the field promotes pre-harvest mildew, resulting in damage to different organs of soybean fruits to different extents, but relatively little information on the resistance mechanisms in these fruits is available. Therefore, to understand the metabolic responses of soybean fruits to field mold (FM, the metabonomic variations induced by LTH were characterized using proton nuclear magnetic resonance spectroscopy (1H-NMR, and the primary metabolites from the pod, seed coat and cotyledon of pre-harvest soybean were quantified. Analysis of FM-damaged soybean germplasms with different degrees of resistance to FM showed that extracts were dominated by 66 primary metabolites, including amino acids, organic acids and sugars. Each tissue had a characteristic metabolic profile, indicating that the metabolism of proline in the cotyledon, lysine in the seed coat, and sulfur in the pod play important roles in FM resistance. The primary-secondary metabolism interface and its potential contribution to FM resistance was investigated by targeted analyses of secondary metabolites. Both the seed coat and the pod have distinct but nonexclusive metabolic responses to FM, and these are functionally integrated into FM resistance mechanisms.

  13. Introduction of the rd29A: AtDREB2A CA gene into soybean (Glycine max L. Merril and its molecular characterization in leaves and roots during dehydration

    Directory of Open Access Journals (Sweden)

    Cibelle Engels

    2013-01-01

    Full Text Available The loss of soybean yield to Brazilian producers because of a water deficit in the 2011-2012 season was 12.9%. To reduce such losses, molecular biology techniques, including plant transformation, can be used to insert genes of interest into conventional soybean cultivars to produce lines that are more tolerant to drought. The abscisic acid (ABA-independent Dehydration Responsive Element Binding (DREB gene family has been used to obtain plants with increased tolerance to abiotic stresses. In the present study, the rd29A:AtDREB2A CA gene from Arabidopsis thaliana was inserted into soybean using biolistics. Seventy-eight genetically modified (GM soybean lines containing 2-17 copies of the AtDREB2A CA gene were produced. Two GM soybean lines (P1397 and P2193 were analyzed to assess the differential expression of the AtDREB2A CA transgene in leaves and roots submitted to various dehydration treatments. Both GM lines exhibited high expression of the transgene, with the roots of P2193 showing the highest expression levels during water deficit. Physiological parameters examined during water deficit confirmed the induction of stress. This analysis of AtDREB2A CA expression in GM soybean indicated that line P2193 had the greatest stability and highest expression in roots during water deficit-induced stress.

  14. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.

    Science.gov (United States)

    Zhang, Fuli; Ge, Honglian; Zhang, Fan; Guo, Ning; Wang, Yucheng; Chen, Long; Ji, Xiue; Li, Chengwei

    2016-03-01

    Sclerotinia stem rot, caused by Sclerotinia sclerotiorum (Lib.) de Bary is a major disease of soybean (Glycine max (L.) Merr.). At present, we revealed the three-way interaction between Trichoderma harzianum T-aloe, pathogen S. sclerotiorum and soybean plants in order to demonstrate biocontrol mechanism and evaluate biocontrol potential of T-aloe against S. sclerotiorum in soybean. In our experiments, T-aloe inhibited the growth of S. sclerotiorum with an efficiency of 56.3% in dual culture tests. T-aloe hyphae grew in parallel or intertwined with S. sclerotiorum hyphae and produced hooked contact branches, indicating mycoparasitism. Plate tests showed that T-aloe culture filtrate inhibited S. sclerotiorum growth with an inhibition efficiency of 51.2% and sclerotia production. T-aloe pretreatment showed growth-promoting effect on soybean plants. The activities of peroxidase, superoxide dismutase, and catalase increased, and the hydrogen peroxide (H2O2) as well as the superoxide radical (O2(-)) content in soybean leaves decreased after T-aloe pretreatment in response to S. sclerotiorum pathogen challenge. T-aloe treatment diminished damage caused by pathogen stress on soybean leaf cell membrane, and increased chlorophyll as well as total phenol contents. The defense-related genes PR1, PR2, and PR3 were expressed in the leaves of T-aloe-treated plants. In summary, T-aloe displayed biocontrol potential against S. sclerotiorum. This is the first report of unraveling biocontrol potential of Trichoderma Spp. to soybean sclerotinia stem rot from the three-way interaction between the biocontrol agent, pathogen S. sclerotiorum and soybean plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Genetic improvement of soybean through induced mutagenesis

    International Nuclear Information System (INIS)

    Manjaya, J.G.; Nandanwar, R.S.; Thengane, R.J.; Muthiah, A.R.

    2009-01-01

    Soybean (Glycine max (L.) Merril) is one of the important oilseed crops of India. The country produces more than 9.00 million tonnes of soybean per annum and has acquired first place amongst oilseed crops grown in India. Narrow genetic base of cultivated varieties in soybean is of global concern. Efficient mutant production systems, through physical or chemical mutagenesis, have been well established in soybean. A vast amount of genetic variability, of both quantitative and qualitative traits, has been generated through experimental mutagenesis. Two soybean varieties TAMS-38 and TAMS 98-21 have been developed and released for commercial cultivation by Bhabha Atomic Research Centre (BARC). In this paper the role of mutation breeding in soybean improvement has been discussed. (author)

  16. Is the nutritional value of grains in broiler chickens' diets affected by environmental factors of soybean (Glycine max) growing and the variety of maize (Zea maize) in Benin?

    DEFF Research Database (Denmark)

    Houndonougbo, Mankpondji Frederic; Chwalibog, Andrzej; Chrysostome, C.A.A.M.

    2009-01-01

    by soybean grains to supply mainly the dietary energy did not show an adverse effect of the diet on these variables. However, the variety of maize affected significantly the feed cost and the economic feed efficiency at starter phase. It can be concluded that under the particular conditions...... of this experiment, the environmental factors did not change significantly the nutritional value of soybean grains in chickens' diets. The grain of local variety of white maize were suitable at all ages, whereas the grains of DMR-ESRW were more economic in grower than starter broiler chickens feeding....

  17. Glycine-extended gastrin enhances somatostatin release from cultured rabbit fundic D-cells [v1; ref status: indexed, http://f1000r.es/8n

    Directory of Open Access Journals (Sweden)

    Ian LP Beales

    2013-02-01

    Full Text Available The role of the peptide hormone gastrin in stimulating gastric acid secretion is well established. Mature amidated gastrin is processed from larger peptide precursor forms. Increasingly these processing intermediates, such as glycine-extended gastrin (G-Gly and progastrin, have been shown to have biological activities of their own, often separate and complementary to gastrin. Although G-Gly is synthesized and secreted by gastric antral G-cells, the physiological functions of this putative mediator are unclear. Gastrin and cholecystokinin (CCK stimulate the secretion of somatostatin from gastric D-cells as part of the feedback control of gastric acid. In this study the effect of G-Gly and gastrin on the release of somatostatin from rabbit fundic D-cells was examined. D-cells were obtained by collagenase-EDTA digestion and elutriation and cultured for 48 hours. With a 2 hour exposure to the peptides, gastrin but not G-Gly stimulated somatostatin release. Treatment of D-cells for 24 hours with gastrin or G-Gly individually, significantly enhanced subsequent basal as well as CCK- and GLP-1-stimulated somatostatin release. Twenty four hours exposure to gastrin combined with G-Gly synergistically enhanced basal and agonist-stimulated somatostatin release and cellular somatostatin content. Gastrin and G-Gly may be important in the longer term regulation of D-cell function.

  18. Gamma radiation effects on crude oil yield of some soybean seeds ...

    African Journals Online (AJOL)

    Abstract. Purpose: To investigate the crude oil yield of eight different varieties of soybean (Glycine max L.) seeds ... the health advantages of soybeans in both in vivo and in vitro experiments [2]. Therefore, plant breeding has gained importance especially soybean plants. ..... Ionizing radiation might affect the quality of oils.

  19. QTL that underlie seed protein, oil, fatty and amino acids content in the ‘Hamilton’ by ‘Spencer’ recombinant inbred line population of soybean [Glycine max (L.) Merr.

    Science.gov (United States)

    Improving seed composition and quality, including protein, oil, fatty acids, and amino acids content is an important goal of soybean farmers and breeders. Our previous research identified novel QTLs associated with seed isoflavones. The aim of this study was to use the ‘Hamilton’ by ‘Spencer’ recomb...

  20. Comparative Genomic Analysis of Soybean Flowering Genes

    Science.gov (United States)

    Jung, Chol-Hee; Wong, Chui E.; Singh, Mohan B.; Bhalla, Prem L.

    2012-01-01

    Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja) revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant, Arabidopsis. PMID:22679494

  1. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits.

    Science.gov (United States)

    Quain, Marian D; Makgopa, Matome E; Márquez-García, Belén; Comadira, Gloria; Fernandez-Garcia, Nieves; Olmos, Enrique; Schnaubelt, Daniel; Kunert, Karl J; Foyer, Christine H

    2014-09-01

    Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Sudden death syndrome of soybean in Argentina

    Science.gov (United States)

    Sudden death syndrome (SDS) is one of the most common and widely spread root disease affecting soybean [Glycine max (L.) Merr.] in Argentina where it is an economically important crop. This disease was first discovered in this country in 1992 in the Pampas Region, and the following year in Northwest...

  3. Iron induction of ferritin synthesis in soybean cell suspensions.

    Science.gov (United States)

    Proudhon, D; Briat, J F; Lescure, A M

    1989-06-01

    In animal cells specialized for iron storage, iron-induced accumulation of ferritin is known to result from a shift of stored mRNA from the ribonucleoprotein fraction to polysomes. Previous reports with bean leaves suggested that in plants iron induction of ferritin synthesis would result from a regulation at the transcriptional level (F van der Mark, F Bienfait, H van der Ende [1983] Biochem Biophys Res Commun 115:463-469). Soybean (Glycine max, cv Mandarin) cell suspension cultures have been used here to support these findings. Ferritin induction is obtained by addition of Fe-citrate to the culture medium. A good correlation is found between cellular iron content and the amount of ferritin accumulation. This protein accumulation corresponds to an increase of in vitro translatable ferritin mRNA. Addition of 4 micrograms actinomycin D per milliliter to the cultures inhibits completely in vivo RNA synthesis, whereas protein synthesis was poorly affected, at least for 24 hours. During the same time, this concentration of actinomycin D strongly inhibits the iron-induced synthesis of ferritin. These results show that in soybean cell cultures, the mechanism of regulation of ferritin synthesis in response to iron does not result from recruitment of preexisting mRNA. They confirm that in plant systems, ferritin synthesis results from increased transcription of the corresponding genes.

  4. Dehydration-induced WRKY genes from tobacco and soybean respond to jasmonic acid treatments in BY-2 cell culture.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Lin, Jun; Rushton, Paul J

    2013-02-15

    Drought is one of the important environmental factors affecting crop production worldwide and therefore understanding the molecular response of plant to stress is an important step in crop improvement. WRKY transcription factors are one of the 10 largest transcription factor families across the green lineage. In this study, highly upregulated dehydration-induced WRKY and enzyme-coding genes from tobacco and soybean were selected from microarray data for promoter analyses. Putative stress-related cis-regulatory elements such as TGACG motif, ABRE-like elements; W and G-like sequences were identified by an in silico analyses of promoter region of the selected genes. GFP quantification of transgenic BY-2 cell culture showed these promoters direct higher expression in-response to 100 μM JA treatment compared to 100 μM ABA, 10% PEG and 85 mM NaCl treatments. Thus promoter activity upon JA treatment and enrichment of MeJA-responsive elements in the promoter of the selected genes provides insights for these genes to be jasmonic acid responsive with potential of mediating cross-talk during dehydration responses. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effect of fertilizer and inoculation on the growth and yield of soybean cv.williams-82 in pot culture

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.; Kayani, S.A.

    2004-01-01

    A pot culture experiment in response to different levels of added N fertilizer on soybean cv.Williams-82 was conducted in clay loam soil under the climatic conditions of Quetta. Fertilizer treatments were applied at the rate zero (control); 23; 25; 50; 75; 100 and 125 kg N/ha plus a constant dose of 60 kg P/sub 2/O/sub 5/ha and 30 kg K/sub 2/O/ha in all treatments (except control). These seven fertilizer treatments were applied to both non-inoculated and inoculated pot culture crop. Results showed that nodules were found to be absent in both set of experiments which could be indirectly attributed to either sufficient level of soil NO/sub 3/ (5.10 mm) or deficient level of total Fe (8.25 ppm) and Cu (below detection limit) or might be directly due to any other edaphic or climatic factor(s). Results also showed that in general petiole length, middle leaflet area,' plant height, yield, 100 seed weight (except inoculated fertilized), total number of pods/plant (except non-inoculated fertilized) and pod both set of experiment are significantly different (P > 0.05) as compared with their respective control treatment. While remaining yield attributes viz., one-seeded, two-seeded and three-seeded pods are found as non-significantly different in response to both fertilizer and inoculum treatments. Results further revealed that pots receiving N fertilizer without inoculum mathematically out-yielded (1718 kg/ha) in fertilizer dose of 100+60+30 kg NPK/ha, but inoculated pots out-yielded (1912 kg/ha) in fertilizer dose of 125+60+30 kg NPK/ha. It was also revealed that all growth parameters and most of the yield attributes exhibited significant positive correlation with yield. However, number of seedless and one-seeded pods also exhibited significant but negative association with yield. (author)

  6. Elevated carbon dioxide increases salicylic acid in Glycine max.

    Science.gov (United States)

    Casteel, Clare L; Segal, Lauren M; Niziolek, Olivia K; Berenbaum, May R; DeLucia, Evan H

    2012-12-01

    Concentrations of carbon dioxide (CO(2)) are increasing in the atmosphere, affecting soybean (Glycine max L.) phytohormone signaling and herbivore resistance. Whether the impact of elevated CO(2) on phytohormones and induced defenses is a generalized response within this species is an open question. We examined jasmonic acid (JA) and salicylic acid (SA) under ambient and elevated CO(2) concentrations with and without Japanese beetle (Popillia japonica Newman) damage and artificial damage across six soybean cultivars (HS93-4118, Pana, IA 3010, Loda, LN97-15076, and Dwight). Elevated CO(2) reduced constitutive levels of JA and related transcripts in some but not all soybean cultivars. In contrast to the variation in JA, constitutive levels of salicylic were increased universally among soybean cultivars grown under elevated CO(2). Variation in hormonal signaling may underpin observed variation in the response of insect herbivores and pathogens to plants grown under elevated CO(2).

  7. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression.

    Science.gov (United States)

    Creelman, R A; Tierney, M L; Mullet, J E

    1992-06-01

    Jasmonic acid (JA) and its methyl ester, methyl jasmonate (MeJA), are plant lipid derivatives that resemble mammalian eicosanoids in structure and biosynthesis. These compounds are proposed to play a role in plant wound and pathogen responses. Here we report the quantitative determination of JA/MeJA in planta by a procedure based on the use of [13C,2H3]MeJA as an internal standard. Wounded soybean (Glycine max [L] Merr. cv. Williams) stems rapidly accumulated MeJA and JA. Addition of MeJA to soybean suspension cultures also increased mRNA levels for three wound-responsive genes (chalcone synthase, vegetative storage protein, and proline-rich cell wall protein) suggesting a role for MeJA/JA in the mediation of several changes in gene expression associated with the plants' response to wounding.

  8. RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean

    NARCIS (Netherlands)

    Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A

    Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without

  9. Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement

    Science.gov (United States)

    The seed of soybean (Glycine max L. Merr) is a valuable source of high quality edible oil and protein. Despite dramatic breeding gains over the past 80 years, soybean seed oil continues to be oxidatively unstable. Until recently, the majority of soybean oil underwent partial chemical hydrogenation. ...

  10. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    and genetic improvement were identified.CONCLUSIONS:Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes......BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  11. Correlation and Principal Component Analysis for Traits of Soybean ( Glycine max) in the West Semiarid Region of Heilongjiang Province%黑龙江省西部半干旱地区大豆性状的相关性和主成分分析

    Institute of Scientific and Technical Information of China (English)

    韩毅强; 杜吉到; 郑殿峰; 张玉先; 张文慧

    2012-01-01

    [Objective] The aim was to understand the correlative variance and adaptability of the main traits of soybean in the west semiarid region of Heilongjiang Province. [Method] Seventeen agronomic traits of ninety-three soybean varieties were analyzed with the method of correlation and cluster analysis. [ Result] The results showed that there was a significant correlation between yield and pods per plant, three-seed pods, four-seed pods, seeds per plant, 100-seed weight, oil content etc. Principal component analysis showed that the variance of the first six principal component contrihuted to above 80% , which explained the most biology traits, and principal 1,2,4 reflected the main yield relative traits, and principal 3,5,6 reflected the main quality relative traits. [ Conclusion ] The study provides a theoretical basis for choosing soybean hybridization parents and reasonably utilizing its resources.%[目的]为了掌握不同大豆(Glycine max)品种(系)主要农艺性状在黑龙江省西部半干旱地区环境下的相关变异及适应性.[方法]以93份大豆为材料,对大豆17个农艺性状进行了相关性和主成分分析.[结果]产量与单株有效英数、单株3粒英数、单株4粒英数、单株粒数、百粒重和脂肪含量等性状呈显著相关.主成分分析表明,前6个主成分的方差累计贡献率大于80%,可解释生物学性状的绝大部分信息,其中主成分1、2、4主要反映产量相关性状,主成分3、5、6主要反映品质相关性状.[结论]该研究可为大豆杂交亲本的选择和资源的利用提供理论依据.

  12. Effect of fertilization and soil treatment on the soybean nodulation

    International Nuclear Information System (INIS)

    Abdel aziz, H.A.

    1993-01-01

    Soybean (Glycine max L. ) is one of the most important leguminosae crops all over the world. It is considered one of the most important protein sources for human and animals. During the last 20 years, soybean was introduced to Egypt, however the nodulation of soybean under field conditions remains a problem because the egyptian soils were void of soybean rhizobia. Since soybean is a leguminosae crop, symbiosis with root - nodule R hizobium might play a significant role in the management of its production . Nevertheless, soybean suffers from poor nodulation in egypt, hence nitrogenase fertilization for legume is a logical practice. Soybean can utilize both soil -N or applied N and symbiotically fixed atmospheric nitrogen under normal field condition. The fixation of atmospheric N by the legume/Rhizobium symbiosis is an integrated process in which the host plant ( macrosymbiont) supplies the bacterium (microsymbiont) with energy and the bacterium supplies the plant with reduced N. figs.,172 refs

  13. Aplicação de dessecantes na cultura de soja: antecipação da colheita e produção de sementes Application of desiccants on soybean crop glycine max: harvest anticipation and seed yield

    Directory of Open Access Journals (Sweden)

    A.L.S. Lacerda

    2001-12-01

    Full Text Available Este trabalho foi conduzido no município de Selvíria-MS, semeando soja do cultivar IAC-15. O delineamento experimental utilizado foi o de blocos casualizados, estando os tratamentos dispostos em um esquema fatorial 3x3 e 4x4, sendo os fatores os produtos (dessecantes e as épocas de aplicação, nos anos agrícolas 1996/97 e 1997/98, respectivamente. Os dessecantes utilizados foram: paraquat, diquat e mistura paraquat + diquat, nas dosagens de 0,4; 0,3 e 0,2+0,15 em 1996/97, respectivamente, e os mesmos tratamentos em 1997/98, além do glufosinato de amônio na dosagem de 0,4 kg i.a. ha-1 em 1997/98. Como épocas, foram realizadas três aplicações em 1996/97 e quatro em 1997/98, todas espaçadas de cinco dias a partir do estádio fenológico médio da cultura R6. Concluiu-se que os dessecantes utilizados mostraram-se eficientes na dessecação da soja; foi possível obter antecipação da colheita de sementes de soja, sem alterar a produção, por um período máximo de sete dias.This research was carried out in Selvíria-MS, Brazil, during the growing seasons of 1996/97 and 1997/98, using the soybean cultivar IAC-15. The experimental design was arranged in randomized complete blocks in a 3x3 and 4x4 factorial scheme during 1996/97 and 1997/98, respectively, with the factors being the products (desiccants and timing of application. The desiccants sprayed were: paraquat, diquat and a mixture of paraquat + diquat at rates of 0.4; 0.3 and 0.2+0.15 in 1996/97 and the same treatments in 1997/98 added to ammonium glufosinate at 0.4 kg a.i. ha-1 in 1997/98. The timing of application was spaced every five days, starting from the soybean vegetative stage R6. The tested desiccants were efficient on the soybean desiccation ; it was possible to obtain grain harvest anticipation, without yield reduction, in a maximum period of seven days.

  14. Current development and application of soybean genomics

    Institute of Scientific and Technical Information of China (English)

    Lingli HE; Jing ZHAO; Man ZHAO; Chaoying HE

    2011-01-01

    Soybean (Glycine max),an important domesticated species originated in China,constitutes a major source of edible oils and high-quality plant proteins worldwide.In spite of its complex genome as a consequence of an ancient tetraploidilization,platforms for map-based genomics,sequence-based genomics,comparative genomics and functional genomics have been well developed in the last decade,thus rich repertoires of genomic tools and resources are available,which have been influencing the soybean genetic improvement.Here we mainly review the progresses of soybean (including its wild relative Glycine soja) genomics and its impetus for soybean breeding,and raise the major biological questions needing to be addressed.Genetic maps,physical maps,QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine.Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes,which are instrumental to comparative genomics and functional genomics.Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process.Microarrays resources,mutagenesis and efficient transformation systems become essential components of soybean functional genomics.Furthermore,phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development,in response to abiotic stresses,functioning in plant-pathogenic microbe interactions,and controlling the oil and protein content of seed.These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.

  15. Teores de isoflavonas em grãos inteiros e nos componentes dos grãos de diferentes cultivares de soja (Glycine max (L. Merrill Isoflavone contents of whole soybeans and their components, obtained from different cultivars (Glycine max (L. Merrill

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva

    2012-06-01

    Full Text Available Devido à maior concentração de isoflavonas nos hipocótilos dos grãos de soja, a indústria de alimentos tem utilizado esse componente do grão como matéria-prima. No presente trabalho, foram quantificados os teores de isoflavonas nas estruturas formadoras do grão de soja (hipocótilo, cotilédones e casca, analisadas por Cromatografia Líquida de Alta Eficiência (CLAE. Foram avaliadas quatro cultivares de sojas especiais: BRS 184, BRS 216, BRS 257 e BRS 267, desenvolvidas pela Embrapa Soja. Todas as cultivares apresentaram maior teor de isoflavonas totais no hipocótilo (média de 2029,32 mg.100 g-1. No grão inteiro (267,16 mg.100 g-1 e nos cotilédones (209,16 mg.100 g-1, os teores de isoflavonas foram cerca de dez vezes menores do que nos hipocótilos. A cultivar BRS 216 apresentou o teor maior de isoflavonas totais no hipocótilo (2583,20 mg.100 g-1. Embora a casca da soja não apresente isoflavonas, observou-se que esses compostos estavam presentes nessa parte do grão numa quantidade média de 105,58 mg.100 g-1, devido à presença de resíduos do hipocótilo e dos cotilédones provenientes do processo de descasque. Essa composição residual da casca favorece sua utilização como matéria-prima fonte de fibras, porque também fornece isoflavonas e outros compostos da soja.Due to the higher concentration of isoflavones in the soybean hypocotyls, the food industry has used this component of the bean as a raw material. This paper reports the isoflavone contents found in the different parts of the bean (hypocotyl, cotyledon and hull as analyzed by High Performance Liquid Chromatography (HPLC. Four special soybean cultivars, BRS 184, BRS 216, BRS 257 and BRS 267, developed by Embrapa Soybean, were evaluated. All the cultivars presented higher contents of total isoflavones in the hypocotyls (average of 2029.32 mg.100 g-1. The isoflavone contents of the whole beans (267.16 mg.100 g-1 and the cotyledons (209.16 mg.100 g-1 were about 10

  16. Effects of substituting roasted soybean (Glycine max seeds by those of cowpea (Vigna unguiculata, and of the protein level in the diet, on growth performance and profitability of local-breed chickens (Gallus gallus in Burkina

    Directory of Open Access Journals (Sweden)

    S. Ouattara

    2014-07-01

    Full Text Available This study aimed to evaluate the effects of substituting roasted seeds of soya (Glycine max by those of cowpea (Vigna unguiculata, and of the protein level in the diet, on growth performance and economic profitability of local-breed chickens (Gallus gallus in Burkina Faso. Three hundred 12-day-old chicks were divided into 12 batches of 25 chicks each. Four diets incorporating seeds of cowpea or soya, with different protein levels for starting and growing/finishing, were prepared. Data on various parameters (body weight, weight gain, intake and feed conversion, mortality were recorded once every two weeks from the 12th to the 138th day of age. At the 138th day, four chickens (two males and two females from each batch were slaughtered to assess the characteristics of carcasses and selected organs. The comparative profitability of the different treatments was evaluated. Results indicate that the substitution of roasted seeds of soya by those of cowpea had no devaluing effect on growth performance nor on carcass characteristics of the local chicken. In addition, the use of these seeds did not decrease profitability. Lastly, increasing the protein level in the diets significantly (p ≤ 0.05 improved weight gains and reduced the duration of the breeding period by two weeks.

  17. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    Science.gov (United States)

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  18. Evaluation of the potential energy briquettes made with corn stubble (Zea mays) and soybean residue (Glycine max (L.)) combined with waste wood; Avaliacao do potencial energetico de briquetes confeccionados com residuo de milho (Zea mays) e residuo de soja (Glycine max (L.)) combinado com residuo de madeira

    Energy Technology Data Exchange (ETDEWEB)

    Travessini, Rosana; Schutz, Fabiana Costa de Araujo; Oyama, Paulo; Possan, Edna; Bittencourt, Paulo R.S. [Universidade Tecnologica Federal do Parana (UTFPR), Medianeira, PR (Brazil)], emails: rosana_travessini@yahoo.com.br, fabianaschutz@utfpr.edu.br, oyama_pt@hotmail.com, epossan@gmail.com, paulob@utfpr.edu.br

    2011-07-01

    The agriculture industry produces a large amount of biomass whose use constitutes an economically viable alternative energy through the compression of the lignocellulosic portion, replacing the wood with an equivalent product. This is possible through the briquette, which is a very efficient way to concentrate the available energy in biomass. This study aimed to evaluate the efficiency of burning briquettes. The making of briquettes was performed in the laboratory of Electro mechanics and burning at the Laboratory of Environmental UTFPR Campus Medianeira / PR. For the analysis, the energy balance of the combinations we used a bomb calorimeter IKA C5000, Laboratory of Biomass Energy (LEB), Federal University of Parana - UFPR. From the results we can conclude that in all aspects of the briquettes made from soybean residues are more efficient and still points to the need for studies to the development of more efficient equipment for these specific applications. (author)

  19. Evaluation of operational and energetic performances of combine harvesters in soybean (Glycine max (L.) Merril) crop; Avaliacao dos desempenhos operacional e energetico de colhedoras na cultura de soja (Clycine max (L) Merril)

    Energy Technology Data Exchange (ETDEWEB)

    Mazetto, Flavio Rielli [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Curso de Pos-Graduacao em Energia na Agricultura; Lancas, Kleber Pereira [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Dept. de Engenharia Rural

    2009-07-01

    The objective of the present study consisted of evaluating three soybean combine harvesters, the first one with 7.62 m width header, 176.4 kW engine power and 7,200 L grain tank size, the second one with 7.01 m width header, 161.7 kW engine power and 6,700 L grain tank size and the third one with 6.71 m width header, 165.4 kW engine power and 6,000 L grain tank size with its respective mechanisms actuators, to identify the most efficient system in rationalization energy demand and operational performance. The combine harvest test was done at Igreja Velha farm, Tibagi/Parana State and the data analysis were done at FCA-UNESP, Campus de Botucatu/SP (Sao Paulo State University - Botucatu). The fuel consumption evaluation was made through the use of fluxometer in normal combine operation conditions and for the operational performance was determined all the running machine times. The combine with wider grain header, higher grain tank capacity, bigger engine power, rotary separator in the separation system and self-leveling sieves showed greater operational performance and less fuel consumption than the others combines tested. (author)

  20. Efeitos do bentazon sobre a produção e teores de N e óleo em soja (Glycine max (L. Merrill. Effects of bentazon on yield and N and oil content in soybean

    Directory of Open Access Journals (Sweden)

    R. Deuber

    1981-06-01

    Full Text Available Os efeitos do bentazon sobre a produção e sobre o teor de N e de óleo total nos grãos em soja das variedades Paraná, IAC-4, Santa Rosa e UFV-1 foram estudados em um experimento de campo. O bentazon foi aplicado na dose de 1,44 kg/ha sobre plantas com um, dois ou três trifólios totalmente esenvolvidos. Não foram encontradas diferenças entre as produções, teores de N ou de óleo em qualquer das variedades estudadas. A Paraná e a IAC-4 produziram mais que as outras duas. O teor de N foi significativamente mais baixo na Santa Rosa e o de óleo, significativamente mais elevado na Paraná e mais baixo na UFV-1.The effects of bentazon on yield and on N and oil content in grains, applied at 1,44 kg/ha, at three, growth stages, on soybeans, cv. Paraná, IAC-4, Santa Rosa and. UFV-1, were studied in a field experiment. No differences were found for yields or N and oil contents in any of the cultivars for application dates. Paraná and IAC-4 yielded more than the other two. N content was significantly lower in Santa Rosa and oil content significantly higher in Paraná and lower in UFV-1.

  1. Palha de soja (Glycine max como substituto parcial da silagem de sorgo forrageiro (Sorghum bicolor ( L. Moench na alimentação de terneiros de corte confinados Soybean straw (Glycine max as a partial substitute of sorghum silage (Sorghum bicolor (L. Moench in the feeding of confined calves

    Directory of Open Access Journals (Sweden)

    João Restle

    2000-04-01

    Full Text Available O experimento teve como objetivo avaliar a utilização da palha de soja como substituto parcial da silagem de sorgo forrageiro na fração volumosa da dieta de terneiros confinados, sendo testados os seguintes tratamentos: T0 constituído por 100% de silagem de sorgo; T33 constituído por 66,67% de silagem de sorgo, mais 33,33% de feno de palha de soja; T66 constituído por 33,33% de silagem de sorgo, mais 66,67% de feno de palha de soja. As dietas foram fornecidas durante 77 dias para terneiros cruzas Charolês-Nelore com peso e idade média inicial de 165,6kg e 11 meses, respectivamente. A dieta alimentar foi isonitrogenada com 14% de proteína bruta (PB na matéria seca (MS, sendo 20% suprida na forma de uréia. A relação volumoso:concentrado com base na MS, foi de 70:30. Os dados foram submetidos à análise de regressão sendo obtidas as seguintes equações de regressão: para ganho de peso médio diário em kg (GMD = 1,166273 - 0,00186 PI (peso inicial - 0,00351 NS (nível de substituição; consumo médio diário de MS em kg/100 kg peso vivo/dia (CMSPPV = 2,284983 + 0,002679 PI - 0,002303 NS; consumo médio diário de energia digestível Mcal/100kg peso vivo/dia (CEDPPV = 5,709589 + 0,010964 PI - 0,018736 NS; conversão alimentar (CA = - 4,426857 + 0,064579 PI + 0,023165 NS. Verificou-se que a cada aumento de 1% na substituição da silagem de sorgo por feno de palha de soja, ocorreu um decréscimo de 3,51g no GMD e 2,3g no CMSPPV, enquanto que a conversão alimentar piorou em 0,023 unidades. O aumento na proporção de palha de soja na dieta em substituição à silagem de sorgo resultou em um decréscimo linear no desempenho dos animais. No entanto, mesmo no maior nível de substituição, o ganho de peso médio diário foi satisfatório.The objective of the experiment was to evaluate the use of soybean straw as partial substitute for sorghum silage in the roughage fraction of the diet of confined calves, being tested the following

  2. Eficiência e competitividade de variantes espontâneos isolados de estirpes de Bradyrhizobium spp recomendadas para a cultura da soja (Glycine max Effectiveness and competitiveness of spontaneous mutants isolated from Bradyrhizobium spp strains recommended for soybean crop (Glycine max

    Directory of Open Access Journals (Sweden)

    Fabíola Gomes de Carvalho

    2005-12-01

    Full Text Available O cultivo sucessivo de soja inoculada numa mesma área proporcionou a adaptação de uma população de rizóbios, que podem não ser tão eficientes quanto à capacidade de fixação de N2, mas apresentam alta competitividade, dificultando a introdução de novas estirpes mais eficientes. Com a finalidade de avaliar o desempenho simbiótico (eficiência e competitividade de variantes espontâneos isolados de estirpes de B. japonicum (SEMIA 5079 e SEMIA 5080 e B. elkanii (SEMIA 587 e SEMIA 5019, realizou-se um experimento em casa de vegetação onde os variantes foram inoculados isoladamente e em diferentes combinações entre os variantes e uma estirpe comprovadamente mais competitiva (SEMIA 587 ou SEMIA 5019 a partir da adição de inóculos mistos (1/1; v/v no cultivar de soja BR-16. Por meio da avaliação das variáveis analisadas (nodulação, produção de matéria de seca da parte aérea, N total acumulado na parte aérea e ocupação nodular, foi possível constatar que o determinante da maior eficiência em tratamentos co-inoculados não foi a ocupação nodular de determinada estirpe ou variante presente no inóculo, mas, sim, o tipo de interação (sinérgica ou antagônica predominante no tratamento co-inoculado e que é possível selecionar variantes eficientes e competitivos para a cultura da soja a partir de estirpes parentais que já apresentam características desejáveis para utilização em inoculantes comerciais.The continuous cultivation of inoculated soybean in the same area can determine the soil colonization with a rhizobia population presenting low nitrogen fixation effectiveness. This fact can be a problem for the establishment of a more effective population. A greenhouse experiment was carried out to evaluate the symbiotic effectiveness and competitiveness of spontaneous mutants isolated from B. japonicum (SEMIA 5079 and SEMIA 5080 and B. elkanii (SEMIA 587 and SEMIA 5019 strains. The soybean biovar BR 16 was

  3. Evaluation of the ionizing radiation {sup 60}Co effect on the physical, chemical and nutritional properties of different cultivars of soybean grains (Glycine max (L.));Avaliacao dos efeitos da radiacao ionizante de {sup 60}Co em propriedades fisicas, quimicas e nutricionais de diferentes cultivares de graos de soja Glycine max (L.)

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Tais Carolina Franqueira de

    2006-07-01

    With the increase of the world population, creative strategies will be necessary to control food production. To achieve this challenge, new cultivars have been development, though different techniques and characteristics. To improve food conservation, a plant of methods can be used. The use of Cobalto-60 radiation is a secure and useful method to increase the life time of foods. Due to the commercial and nutritional importance of soybean, some alterations must be studied. This study has the objective to determinate this alterations caused by irradiation (with doses of 2, 4 and 8 kGy) in raw and cooked grain of five different cultivars of soybean (BRS 212, BRS 213, BRS 214, 231 BRS and E48), this study includes analysis of time cooking and hydratation, and chemical analysis of proximate composition, in vitro digestibility of proteins, percentage of deamidation , phenolics compounds, trypsin inhibitors and tannins. The amount of water absorbed by each grain varied from 14.00 to 16.66mL, and the time cooking varied from 119.67 to 291.33 minutes. The values found for ash were 4.90 to 6.08%, for protein from 21.23 to 36.99%, for fat from 19.22 to 24.84%, soluble staple fibres from 1.37 to 4.03% and insoluble staple fibres from 15.97 to 18.87%. The deamidation percentage in the different samples varied of 17,34 to 57.79% and the digestibility in vitro from 84.45 to 89.11%. Inside of the anti nutritional factors, the total compounds phenolics varied from 3.9 to 9.7 mg/g, the units of trypsin inhibited from 24.75 to 57.53 UTI/g and the tannins from 0.02 to 0.32 mg/g. For the physical analyses it showed differences in the time of hydratation among them and the irradiation promoted reduction in the time, but not in the amount of absorbed water; in the cooking time it had reduction with the increase of the doses of radiation; the differences found in the proximate composition did not have influence with the irradiation, but with the different cultivars; for the digestibility

  4. Avaliação de cultivares de soja (Glycine max (L. Merril em competição com Euphorbia heterophylla L. sob três densidades e dois períodos de ocorrência Evaluation of soybean (Glycine max (L. Merrill cultivars in competition with Euphorbia heterophylla L. in three densities and two periods of occurrence

    Directory of Open Access Journals (Sweden)

    V. M. Chemale

    1982-12-01

    Full Text Available O presente trabalho, conduzido durante o ano agrícola de 1979/80 na Estação Experimental Agronômica de UFRGS, em Guaíba, RS, apresentou como objetivo testar quatro cultivares de soja (Paraná, Prata, Hood e IAS-4 quanto à sua habilidade em concorrer com Euphorbia heterophylla L. (leiteira, amendoim-bravo estabelecida em três densidades (0, 12 e 54 plan-tas/m2, em média e dois períodos de duração da competição (45 e 115 dias após a emergência da soja. Constatou-se que houve redução no rendimento de grãos de soja por efeito dos dois períodos de competição e das densidades de E. heterophylla L. referidas. Também os números de grãos e de legumes por área foram consideravelmente reduzidos pela presença da planta daninha associada ao período mais prolongado de competição. A espessura do caule e o número de nós das plantas de soja decresceram apenas sob o efeito da maior densidade da Euphorbia; entretanto, o número de ramos e o índice de área foliar, este aos 75 dias após a emergência da cultura, sofreram redução com a infestação de 12 plantas de Euphorbia por m2.A field experiment was performed at the Agronomy Experimental Station of UFRGS, in Guaíba, RS, Brazil, during the 1979/80 growing season, in order to test four soybean cultivars (Paraná, Prata, Hood e IAS-4 in competition with Euphorbia heterophylla L. established in three densities (0, 12 and 54 plants/m2 during two periods (45 and 115 days after soybean emergence. It was observed that soybean cultivars presented reduction of seed yields under the effect of the pe riods of competition and densities of Euphorbia heterophylla L. The number of seeds and pods per area were considerably reduced in the presence of the weed associated with the longest competition period. The stem diameter and number of nodes were reduced only by competition of the highest Euphorbia density; however, the number of branches and leaf area index, this after a period of 75 days

  5. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress

    Directory of Open Access Journals (Sweden)

    Runqiang Yang

    2015-06-01

    Full Text Available Gamma-aminobutyric acid (GABA, a nonproteinous amino acid with some benefits on human health, is synthesized by GABA-shunt and the polyamine degradation pathway in plants. The regulation of Ca2+ and aminoguanidine on GABA accumulation in germinating soybean (Glycine max L. under hypoxia-NaCl stress was investigated in this study. Exogenous Ca2+ increased GABA content significantly by enhancing glutamate decarboxylase gene expression and its activity. Addition of ethylene glycol tetra-acetic acid into the culture solution reduced GABA content greatly due to the inhibition of glutamate decarboxylase activity. Aminoguanidine reduced over 85% of diamine oxidase activity, and 33.28% and 36.35% of GABA content in cotyledon and embryo, respectively. Under hypoxia–NaCl stress, the polyamine degradation pathway contributed 31.61–39.43% of the GABA formation in germinating soybean.

  6. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation.

    Science.gov (United States)

    Corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] constitute a large share of the annual total irrigated planted area in the central Great Plains. This study aimed to determine the effect of limited irrigation on grain yield, water use, and profitability of corn and soybean in comparison with ...

  7. From forest to waste: Assessment of the Brazilian soybean chain, using nitrogen as a marker.

    NARCIS (Netherlands)

    Smaling, E.M.A.; Roscoe, R.; Lesschen, J.P.; Bouwman, A.F.; Comunello, E.

    2008-01-01

    Soybean (Glycine max) is a booming crop in Brazil. In 2004, the export value was equivalent to 10 billion US $, covering over 10% of total Brazilian exports. Three-quarters of total production leaves the country, mainly to China and the European Union (EU). Soybean cultivation in Brazil is expected

  8. Effects of N management on growth, N-2 fixation and yield of soybean

    NARCIS (Netherlands)

    Gan, YB; Stulen, [No Value; Posthumus, F; van Keulen, H; Kuiper, P

    Soybean (Glycine max) is one of the most important food and cash crops in China. Although soybean has the capacity to obtain a large proportion of its N from N-2 fixation, it is common farmer's practice to apply an N top dressing to maximize grain yield. A field experiment was conducted to study the

  9. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  10. Registration of N6001 soybean germplasm with enhanced yield derived from Japanese cultivar Suzuyutaka

    Science.gov (United States)

    The genetic base of U.S. soybean (Glycine max (L.) Merr.) is relatively narrow, with Chinese ancestors providing most of the genetic base. Japanese lines have made relatively small contributions, suggesting that incorporation of novel Japanese genetics into USA breeding populations may aid soybean ...

  11. Ensaio tecnológico e sensorial de soja [Glycine max (L. Merrill] enlatada em estádios verdes e no estádio da maturação de colheita Technological and sensorial assay of soybean [Glycine max (L. Merrill] canned at green stages and at harvest maturation stage

    Directory of Open Access Journals (Sweden)

    M.F.P BARCELOS

    1999-01-01

    Full Text Available Foi estudada a viabilidade de consumo da cultivar de soja IAC PL-1 enlatada como grão verde e sua melhor época de colheita para enlatamento. Para tanto procederam-se cinco colheitas a partir do 48º dia após a floração (DAF até a extinção da coloração verde. O processamento iniciou-se pelo branqueamento das vagens, debulha e enlatamento. Aos cinco lotes obtidos adicionou-se um sexto lote para estudar o efeito do armazenamento. Para qualificar os seis lotes de grãos enlatados foram efetuadas medidas de peso, cor, textura e características do líquido de enlatamento. Foram realizados estudos das propriedades sensoriais dos grãos enlatados para dimensionar a aceitação pela degustação e aparência. O enlatamento foi otimizado para 121ºC com tempo de esterilização em torno de 4 minutos. A maturidade fisiológica dos grãos ocorreu entre o 61º ao 64º DAF. O processo térmico conservou a cor verde dos grãos enlatados e não induziu perda expressiva da massa dos grãos; a textura firme dos grãos aumentou com a maturação. Os provadores demonstraram boa aceitação dos produtos e não ocorreu preferência em relação aos estádios de maturação. O trabalho conclui que grãos verdes de soja IAC PL-1 proporcionam enlatados com boas características técnicas e gustativas. Foi observado que grãos colhidos no ponto convencional de maturação, armazenados e enlatados obtiveram boa aceitação gustativa, concluindo-se que a cultivar IAC PL-1 é também adequada para o consumo e enlatada após o armazenamento.It was investigated the consumption possibility of the soybean cultivar IAC PL-1 canned as green grain and its best harvest time for canning. Five harvests were processed from the 48th day after flowering (DAF until extinction of the green coloration. The canning procedure started by pod bleaching, dehulling and canning. To the five lots obtained, a sixth lot was added to study the effect of storage. To qualify the six lots of

  12. Use of chemical flocculation and nested PCR for Heterodera glycines detection in DNA extracts from field soils with low population densities

    Science.gov (United States)

    The soybean cyst nematode (SCN) Heterodera glycines is a major pathogen of soybean world-wide. Distinction between SCN and other members of H. schachtii sensu stricto group based on morphology is a tedious task. A molecular assay was developed to detect SCN in field soils with low population densiti...

  13. Analysis and Characterization of Vitamin B Biosynthesis Pathways in the Phytoparasitic Nematode Heterodera Glycines

    Science.gov (United States)

    Craig, James P.

    2009-01-01

    The soybean cyst nematode (SCN), "Heterodera glycines" is an obligate plant parasite that can cause devastating crop losses. To aide in the study of this pathogen, the SCN genome and the transcriptome of second stage juveniles and eggs were shotgun sequenced. A bioinformatic screen of the data revealed nine genes involved in the "de novo"…

  14. Use of soybean meal and papain to partially replace animal protein for culturing three marine fish species: Fish growth and water quality.

    Science.gov (United States)

    Mo, W Y; Lau, R S S; Kwok, A C K; Wong, M H

    2016-12-01

    The main aim of this study was to investigate the feasibility of using soybean meal added with papain to replace half of the fishmeal used in the moist pellets (49% fishmeal and 45% trash fish) developed by the Hong Kong Agriculture, Fisheries and Conservation Department (AFCD) for culturing marine fish. Gold-lined seabream (Rhabdosargus sarba), brown spotted grouper (Epinephelus bleekeri) and pompano (Trachinotus blochii) were farmed at one of the research stations (Kat-O) of AFCD, for a period of 340 days. Results indicated that diets containing papain resulted in better fish growth (reflected by relative weight gain and feed conversion ratio) than diets without papain. In general, wet weight gain of fish depends on the amount of papain added in diet rather than the diet composition. Soybean used in conjunction with papain also contributed to a more effective growth than fish fed with the moist pellets alone. A laboratory experiment (using tanks) was conducted to study the effects of the diets on concentrations of ammonia, nitrite and nitrate in the tank water. Results showed that concentrations of ammonia and nitrate were significantly lower (p marine fish and lower the adverse impact of trash fish and fishmeal on water quality of the mariculture zones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat.

    Science.gov (United States)

    da Silva Sabo, Sabrina; Pérez-Rodríguez, Noelia; Domínguez, José Manuel; de Souza Oliveira, Ricardo Pinheiro

    2017-09-01

    Cheese whey, the main byproduct of the dairy industry, is one of the most worrisome types of industrial waste, not only because of its abundant annual global production but also because it is a notable source of environmental pollution. However, cheese whey can serve as a raw material for the production of biocomposites. In this context, in this study, we assayed the production of a bacteriocin-like inhibitory substance (BLIS) and lactate by culturing Lactobacillus plantarum ST16Pa in hydrolyzed fresh cheese whey. The process was improved by studying the enzymatic hydrolysis of cheese whey as well as its supplementation with soybean flour under microaerophilic or anaerobic conditions. Thus, the highest values of BLIS (7367.23 arbitrary units [AU]/mL) and lactate yield (Y lactate/lactose =1.39g/g) were achieved after addition of 10g/L soybean flour in microaerophilia. These conditions were successfully scaled up in a bioreactor because during complete anaerobiosis at 150rpm, L. plantarum ST16Pa attained considerable cell growth (3.14g/L), lactate concentration (14.33g/L), and BLIS activity (8082.56AU/mL). In addition, the cell-free supernatant resulting from this bioprocess showed high biopreservative efficiency in chicken breast fillets artificially contaminated with Enterococcus faecium 711 during 7days of refrigerated storage, thus indicating the potential use of this BLIS as a biopreservative in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deteksi senyawa isoflavon daidzein dan genistein pada kultur invitro kalus kedelai Glycine max Merr

    Directory of Open Access Journals (Sweden)

    Tintrim Rahayu

    2013-10-01

    Full Text Available The aim of this research is to identify the isofl avon compounds in the in-vitro cultured callus of soybean (Glycine max Merr.. This is an explorative research, in which callus were cultured in the B5 medium supplemented with 2 ppm 2,4 D. The friable callus were found when it was cultured in the solid medium containing 8 g/l agar and 20 g/l sucrose. When the callus and soybean were extracted with ethanol, a yellow colored substance appeared. If further analysis was done with thin layer chromatography (TLC method employing 0,2 mm thin layer silica gel 60 F254 (DC-Plastikfolien Schicht-dicke, and eluent consisting n-Butanol - HCL 0.1 N (1:1, six light blue color nodes appeared under 366 nm UV light. The nodes have the following Rf: 0,14; 0,30; 0,52; 0,63; 0,79 and 0,92 respectively. This TLC result is comparable with the TLC result from soybeans since they have two nodes with the same Rf and color, namely blue color at Rf 0,81 and 0,92 respectively. Further confi rmation using HPLC (High Performance Liquid Chromatography equipped with UVvis detector and Lichrospher 100RP–18, (10 μm colom, as well as Hitachi D–2500 Chromato-integrator indicated that those similar two nodes identifi ed in the TLC were either daidzein or genistein. They can be detected by HPLC at 250 nm and 260 nm, when they were eluated at the 80% metanol. The HPLC quantitative calculation indicated that concentration of daidzein is four time higher as it was compared with the daidzein concentration in the bean. The concentration of daidzein in the callus remained high up to 4–5 weeks after plantation. It’s concentration will decrease when the callus reached 6 weeks after plantation. Genistein as another component of isofl avon is not appear upon callus, while on soybean seeds extracts, both daidzen and genistein are detected.

  17. A Novel Phytase with Sequence Similarity to Purple Acid Phosphatases Is Expressed in Cotyledons of Germinating Soybean Seedlings 1

    Science.gov (United States)

    Hegeman, Carla E.; Grabau, Elizabeth A.

    2001-01-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases. PMID:11500558

  18. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  19. Integrating winter camelina into maize and soybean cropping systems

    Science.gov (United States)

    Camelina [Camelina sativa (L.) Crantz.] is an industrial oilseed crop in the Brassicaceae family with multiple uses. Currently, camelina is not used as a cover crop, but it has the potential to be used as such in maize (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems. The objectives of this st...

  20. Growth, assimilate partitioning and grain yield response of soybean ...

    African Journals Online (AJOL)

    This investigation tested variation in the growth components, assimilate partitioning and grain yield of soybean (Glycine max L. Merrrill) varieties established in CO2 enriched atmosphere when inoculated with mixtures of Arbuscular mycorrhizal fungi (AMF) species in the humid rainforest of Nigeria. A pot and a field ...

  1. Coregulation of Soybean Vegetative Storage Protein Gene Expression by Methyl Jasmonate and Soluble Sugars 1

    Science.gov (United States)

    Mason, Hugh S.; DeWald, Daryll B.; Creelman, Robert A.; Mullet, John E.

    1992-01-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves. ImagesFigure 1Figure 4Figure 5 PMID:16668757

  2. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars.

    Science.gov (United States)

    Mason, H S; Dewald, D B; Creelman, R A; Mullet, J E

    1992-03-01

    The soybean vegetative storage protein genes vspA and vspB are highly expressed in developing leaves, stems, flowers, and pods as compared with roots, seeds, and mature leaves and stems. In this paper, we report that physiological levels of methyl jasmonate (MeJA) and soluble sugars synergistically stimulate accumulation of vsp mRNAs. Treatment of excised mature soybean (Glycine max Merr. cv Williams) leaves with 0.2 molar sucrose and 10 micromolar MeJA caused a large accumulation of vsp mRNAs, whereas little accumulation occurred when these compounds were supplied separately. In soybean cell suspension cultures, the synergistic effect of sucrose and MeJA on the accumulation of vspB mRNA was maximal at 58 millimolar sucrose and was observed with fructose or glucose substituted for sucrose. In dark-grown soybean seedlings, the highest levels of vsp mRNAs occurred in the hypocotyl hook, which also contained high levels of MeJA and soluble sugars. Lower levels of vsp mRNAs, MeJA, and soluble sugars were found in the cotyledons, roots, and nongrowing regions of the stem. Wounding of mature soybean leaves induced a large accumulation of vsp mRNAs when wounded plants were incubated in the light. Wounded plants kept in the dark or illuminated plants sprayed with dichlorophenyldimethylurea, an inhibitor of photosynthetic electron transport, showed a greatly reduced accumulation of vsp mRNAs. The time courses for the accumulation of vsp mRNAs induced by wounding or sucrose/MeJA treatment were similar. These results strongly suggest that vsp expression is coregulated by endogenous levels of MeJA (or jasmonic acid) and soluble carbohydrate during normal vegetative development and in wounded leaves.

  3. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  4. Characteristics and Efficacy of a Sterile Hyphomycete (ARF18), a New Biocontrol Agent for Heterodera glycines and Other Nematodes

    OpenAIRE

    Kim, D. G.; Riggs, R. D.

    1991-01-01

    A filamentous, nonsporulating fungus, designated Arkansas Fungus 18 (ARF18), was isolated from 9 of 95 populations of Heterodera glycines, the soybean cyst nematode, in Arkansas. In petri dishes, ARF18 parasitized 89% of H. glycines eggs in cysts. The fungus also infected eggs of Meloidogyne incognita and eggs in cysts of Cactodera betulae, H. graminophila, H. lespedezae, H. leuceilyma, H. schachtii, and H. trifolii. In pot tests, reproduction of SCN was 70% less in untreated field soil that ...

  5. Field and laboratory evaluations of soybean lines against soybean aphid (Hemiptera: Aphididae).

    Science.gov (United States)

    Hesler, Louis S; Prischmann, Deirdre A; Dashiell, Kenton E

    2012-04-01

    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid

  6. Influence of green manure in physical and biological properties of soil and productivity in the culture of soybean

    Directory of Open Access Journals (Sweden)

    Ricardo Alves Cardoso

    2014-12-01

    Full Text Available Green manuring is the practice of using plant species in rotation, succession or intercropped with other crops, aiming improvement, maintenance and recovery of physical, chemical and biological soil properties. The objective was to evaluate the influence of different green manures on soil characteristics and productivity of soybean. The experiment was conducted in Maringá (PR in a randomized block design with six treatments and four replications: T1: oat (Avena Sativa, T2: black oat (Avena strigosa, T3: dwarf pigeon pea (Cajanus cajan, T4: radish (Raphanus sativus L., T5: white lupine (Lupinus albus and T6: control (fallow. At the end of the experiment, relations were established between the green manure used for soybean production, the production of biomass, the development of microorganisms and soil bulk density. The data were analyzed with statistical software and means were compared by Tukey test at 5% probability. The coverages provided higher content of dry matter were lupine, black oat and faba bean. Treatments that most influenced the increase of soil microorganisms were lupine, radish and pigeonpea. Regarding productivity, higher values were obtained in treatments with pigeon pea, lupine and oat. The apparent density of the soil, treatment with turnip showed better results.

  7. Control of volunteer soybean plants in sunflower crop

    Directory of Open Access Journals (Sweden)

    Alexandre Magno Brighenti

    2015-09-01

    Full Text Available Sunflower (Helianthus annuus sown offseason, after soybean crop (Glycine max, is affected by the competition imposed by volunteer plants. Two experiments were carried out to evaluate the control of volunteer soybean plants in sunflower crops. The sulfentrazone herbicide (75 g ha-1, 100 g ha-1 and 250 g ha-1 causes phytotoxicity to sunflower immediately after application, however, plants recover, with no yield losses. These doses do not cause the total death of volunteer soybean plants, but temporarily paralyzes their growth, avoiding the competition with the sunflower crop. The glufosinate ammonium and ametryn herbicides are effective in controlling volunteer soybean plants, however, symptoms of phytotoxicity in the sunflower crop are high, reflecting in losses of dry weight biomass and crop yield. The other treatments do not provide satisfactory control of volunteer soybean plants and even reduce the sunflower dry weight biomass and yield.

  8. Genetics Home Reference: glycine encephalopathy

    Science.gov (United States)

    ... seizures. As they get older, many develop intellectual disability, abnormal movements, and behavioral problems. Other atypical types of glycine encephalopathy appear later in childhood or adulthood ...

  9. Efeitos de herbicidas e populações de plantas na nodulação e produção da soja (Glycine max (L. Merril 'Santa Rosa' Effects of herbicides and plant populations on nodulation and yield in soybeans Glycine max (L. Merril 'Santa Rosa'

    Directory of Open Access Journals (Sweden)

    R. Deuber

    1981-12-01

    populations on nodulation and yield in soybean `Santa Rosa' were studied in three Experiments in field conditions and one in greenhouse. Clay and very clay soils were used in the field and very clay and loamy soils in pots. Trifluralin at 0,96 kg/ha and vernolate at 3,60 kg/ha, preplant incorporated; pendimethalin at 1,50 kg/ha, in two experiments, and at 1,25 in a third; alachlor at 2,40 kg; and metribu zin at 0,63 kg in two experiments and at 0,53 kg in a third, preemergence were applied in field conditions. In pots, the same rates were used, except for trifluralin which was applied at 0,86 kg/ha. A check was included in all experiments. All treatments in the field were combined with different plant densities: 200 and 300 thousand in Experiment I, 200, 300 and 400 thousand in Experiment II and 150 and 250 thousand in Experiment III. Three plants per pot were studied in the greenhouse experiment during the first 30 days. No interaction between herbicides and plant populations was observed for any of the studied parameters. The plant density increase caused increase of yield and in the N concentration in grains in two experiments. The different densities caused no change on the number or weight of nodules. Nodulation was affected, in pots, at its beginning, by trifluralin, pendimethalin and vernolate, with reduction of number and weight of nodules. Trifluralin depressed these values also in the field, in one experiment, at flower stage set. Grain yield was enhanced with population increase. Metribuzin reduced yield in one experiment.

  10. Genetic analyses of nonfluorescent root mutants induced by mutagenesis in soybean

    International Nuclear Information System (INIS)

    Sawada, S.; Palmer, R.G.

    1987-01-01

    Nonfluorescent root mutants in soybean [Glycine max (L.) Merr.] are useful as markers in genetic studies and in tissue culture research. Our objective was to obtain mutagen-induced nonfluorescent root mutants and to conduct genetic studies with them. Thirteen nonfluorescent mutants were detected among 154016 seedlings derived from soybean lines treated with six mutagens. One of these mutants, derived from Williams treated with 20 kR gamma rays, did not correspond to any of the known (standard) nonfluorescent spontaneous mutants. This is the first mutagen-induced nonfluorescent root mutant in soybean. It was assigned Genetic Type Collection no. T285 and the gene symbol fr5 fr5. The fr5 allele was not located on trisomics A, B, or C and was not linked to five chlorophyll-deficient mutants (y9, y11, y12, y13, and y20-k2) or flower color mutant w1. The remaining nonfluorescent root mutants were at the same loci as known spontaneous mutants; i.e., four had the fr1 allele, five had the fr2 allele, and three had the fr4 allele

  11. Feeding preference ofNezara viridula (Hemiptera: Pentatomidae and attractiveness of soybean genotypes

    Directory of Open Access Journals (Sweden)

    Efrain de Santana Souza

    2013-12-01

    Full Text Available Nezara viridula (L. (Hemiptera: Pentatomidae is a cosmopolitan insect that causes economic damages to several cultures, in particular soybeans (Glycine max [L.] Merr. Among the techniques that involve Integrated Pest Management, the resistance of plants is pointed as a tool of great value and can contribute to the reduction of populations of insects. The feeding preferences of adults of southern green stink bug (N. viridula, and the attractiveness of soybean genotypes were evaluated under laboratory conditions to detect the most resistant material against attack from this insect. A choice test, using mature grains and green pods of the genotypes was carried out, in which the number of individuals attracted in different periods was counted. Feeding preference was evaluated in the choice tests using green pods and the number of pricks and the average time spent feeding by pricks were evaluated. In addition, texture and trichome density in the green pods were evaluated. The mature grains of 'TMG 117RR' and 'TMG 121RR' were less attractive to the adults of N. viridula. Regarding the green pods, 'IAC 17' and PI 227687 were less attractive; 'IAC 17' and 'IAC PL1' were less consumed, indicating the feeding non-preference as a resistance mechanism. 'IAC 17', 'TMG-117RR' and PI 227687 presented high levels of trichome density, and in 'IAC 17' this morphological characteristic was considered to be the main resistance factor against N. viridula. These results may be useful for breeding programs that focus on the resistance of soybeans to insects.

  12. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  13. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress

    Science.gov (United States)

    Soybean (Glycine max (L.) Merr.) is the major oilseed crop in the world and is a main source of oil and high-quality protein for both humans and animals worldwide. Plant diseases inflict heavy losses on soybean yield that negatively impact the US economy. Implicit in the high economic value of this ...

  14. First report of new phytoplasma diseases associated with soybean, sweet pepper, and passion fruit in Costa Rica

    Science.gov (United States)

    A new soybean disease outbreak occurred in 2002 in a soybean (Glycine max) plantation in Alajuela Province, Costa Rica. Symptoms in the affected plants included general stunting, little leaf, formation of excessive buds, and aborted seed pods. Another two diseases occurred in sweet pepper (Capsicum ...

  15. Inheritance and molecular mapping of an allele providing resistance to Cowpea mild mottle virus-like symptoms in soybean

    Science.gov (United States)

    Damage to soybean [Glycine max (L.) Merr.] from Cowpea mild mottle virus-like (CPMMV-L) symptoms (family: Betaflexiviridae, genus: Carlavirus) has been of increasing concern in Argentina, Brazil, Mexico, and Puerto Rico. Soybean cultivars and lines differing in their reaction to the virus have been ...

  16. Processing soybeans of different origins : response of a Chinese and a western pig breed to dietary inclusion

    NARCIS (Netherlands)

    Qin, G.

    1996-01-01


    Soybeans (Glycine max) have high nutritional value for domestic animals, due to their protein and energy contents. The feeding effects of full-fat soybeans for non-ruminant and immature ruminant animals, however, are limited by the presence of some antinutritional

  17. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... Inspection Service [Docket No APHIS-2012-0061] Field Release of Aphelinus glycinis for the Biological Control... for the biological control of the soybean aphid, Aphis glycines, in the continental United States. We... glycinis for the Biological Control of the Soybean Aphid in the Continental United States'' (March 2012...

  18. Effect of raceme-localized supplemental light on soybean reproductive abscission

    International Nuclear Information System (INIS)

    Myers, R.L.; Brun, W.A.; Brenner, M.L.

    1987-01-01

    The percentage of soybean [Glycine max (L.) Merr.] reproductive structures that abscise is a potentially important yield factor. To better understand the involvement of light in the abscission of reproductive structures, a series of in vitro raceme-culture and growth-chamber experiments were conducted. In the in vitro raceme-culture experiments, racemes with four to six flowers at or past anthesis were excised from the soybean plant (genotype IX93-100), embedded in a complete nutrient, solid agar medium, and subjected to various light treatments. A series of three experiments indicated that the racemes contain a photoreceptor, possibly phytochrome, capable of regulating sucrose accumulation. In each of the growth chamber studies, supplemental light was supplied directly to individual soybean flowers via fiber optic light guides. The light source increased the photon flux to the flowers by 10-fold. The first growth chamber experiment showed that flowers receiving supplemental light were more intense sinks for 14 C-sucrose than were controls (intensity value of 1.0 vs 0.4 x 10 -7 , intensity = [dps of flower/dps of raceme]/[kg dry wt of flower]). In a second study, 42% of flowers treated with supplemental light set pods, while only 26% of control flowers set pods. A third experiment showed that red supplemental light produced 55% fruit set, compared to 41% set for far-red light, and 35% for controls. These experiments indicate that both photoassimilate accumulation and abscission in young soybean reproductive structures may be regulated by light quality

  19. The lipoxygenase gene family: a genomic fossil of shared polyploidy between Glycine max and Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Choi Beom-Soon

    2008-12-01

    Full Text Available Abstract Background Soybean lipoxygenases (Lxs play important roles in plant resistance and in conferring the distinct bean flavor. Lxs comprise a multi-gene family that includes GmLx1, GmLx2 and GmLx3, and many of these genes have been characterized. We were interested in investigating the relationship between the soybean lipoxygenase isozymes from an evolutionary perspective, since soybean has undergone two rounds of polyploidy. Here we report the tetrad genome structure of soybean Lx regions produced by ancient and recent polyploidy. Also, comparative genomics with Medicago truncatula was performed to estimate Lxs in the common ancestor of soybean and Medicago. Results Two Lx regions in Medicago truncatula showing synteny with soybean were analyzed. Differential evolutionary rates between soybean and Medicago were observed and the median Ks values of Mt-Mt, Gm-Mt, and Gm-Gm paralogs were determined to be 0.75, 0.62, and 0.46, respectively. Thus the comparison of Gm-Mt paralogs (Ks = 0.62 and Gm-Mt orthologs (Ks = 0.45 supports the ancient duplication of Lx regions in the common ancestor prior to the Medicago-Glycine split. After speciation, no Lx regions generated by another polyploidy were identified in Medicago. Instead tandem duplication of Lx genes was observed. On the other hand, a lineage-specific duplication occurred in soybean resulting in two pairs of Lx regions. Each pair of soybean regions was co-orthologous to one Lx region in Medicago. A total of 34 Lx genes (15 MtLxs and 19 GmLxs were divided into two groups by phylogenetic analysis. Our study shows that the Lx gene family evolved from two distinct Lx genes in the most recent common ancestor. Conclusion This study analyzed two pairs of Lx regions generated by two rounds of polyploidy in soybean. Each pair of soybean homeologous regions is co-orthologous to one region of Medicago, demonstrating the quartet structure of the soybean genome. Differential evolutionary rates between

  20. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation.

    Science.gov (United States)

    Bennett, John O; Yu, Oliver; Heatherly, Larry G; Krishnan, Hari B

    2004-12-15

    To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and

  1. effect of remediation on growth parameter of soybean (glycine max)

    African Journals Online (AJOL)

    Sir VIn

    African Journal of Environmental Science and Technology Vol. 7(2), pp. 61-67 ... 1979- 1997, the Nigeria petroleum industries spilled 5334 barrels of oil into ..... Oil and Gas Exploration and Production, Caracas, Venezuela, 7-10,. June 1998.

  2. Common sunflower (Helianthus annuus) interference in soybean (Glycine max)

    International Nuclear Information System (INIS)

    Geier, P.W.; Maddux, L.D.; Moshier, L.J.; Stahlman, P.W.

    1996-01-01

    Multiple weed species in the field combine to cause yield losses and can be described using one of several empirical models. Field studies were conducted to compare observed corn yield loss caused by common sunflower and shattercane populations with predicted yield losses modeled using a multiple species rectangular hyperbola model, an additive model, or the yield loss model in the decision support system, WeedSOFT, and to derive competitive indices for common sunflower and shattercane. Common sunflower and shattercane emerged with corn and selected densities established in field experiments at Scandia and Rossville, KS, between 2000 and 2002. The multiple species rectangular hyperbola model fit pooled data from three of five location–years with a predicted maximum corn yield loss of 60%. Initial slope parameter estimate for common sunflower was 49.2 and 4.2% for shattercane. A ratio of these estimates indicated that common sunflower was 11 times more competitive than shattercane. When common sunflower was assigned a competitive index (CI) value of 10, shattercane CI was 0.9. Predicted yield losses modeled for separate common sunflower or shattercane populations were additive when compared with observed yield losses caused by low-density mixed populations of common sunflower (0 to 0.5 plants m −2 ) and shattercane (0 to 4 plants m −2 ). However, a ratio of estimates of these models indicated that common sunflower was only four times as competitive as shattercane, with a CI of 2.5 for shattercane. The yield loss model in WeedSOFT underpredicted the same corn losses by 7.5%. Clearly, both the CI for shattercane and the yield loss model in WeedSOFT need to be reevaluated, and the multiple species rectangular hyperbola model is proposed. (author)

  3. Soybean (Glycine max) as a versatile biocatalyst for organic synthesis

    African Journals Online (AJOL)

    Luciana

    2012-04-12

    Apr 12, 2012 ... Cetonas Aromáticas Utilizando a Casca da Passiflora como. Biocatalisador. MS Thesis, Edições UFC, Fortaleza, Brazil, 2003. Machado LL, Monte FJQ, de Oliveira MCF, de Mattos MC, Lemos TLG,. Gotor-Fernández V, Gonzalo G, Gotor V (2008). Bioreduction of aromatic aldehydes and ketones by fruits' ...

  4. Genetic Variability in Soybean (Glycine max L.) for Low Soil ...

    African Journals Online (AJOL)

    Abush Tesfaye

    component analysis also revealed that the first five principal components (PCs) accounted for more ... nutritional value with 40% protein and 20% oil (Fekadu et al., 2009) that makes it an important raw ...... protein and oil content under both conditions using molecular marker technologies. ... for global modeling. Soil Use and ...

  5. Soybean ( Glycine max ) complementation and the zinc status of HIV ...

    African Journals Online (AJOL)

    The HIV and AIDS pandemic continues to ravage families and communities throughout the world particularly Sub-Saharan Africa. The scourge is associated with malnutrition specifically underweight, stunting and wasting among school children most of whom are orphaned by HIV. Subsequently, inadequate food supply at ...

  6. Comparative transcriptome analysis of two races of Heterodera glycines at different developmental stages.

    Directory of Open Access Journals (Sweden)

    Gaofeng Wang

    Full Text Available The soybean cyst nematode, Heterodera glycines, is an important pest of soybeans. Although resistance is available against this nematode, selection for virulent races can occur, allowing the nematode to overcome the resistance of cultivars. There are abundant field populations, however, little is known about their genetic diversity. In order to elucidate the differences between races, we investigated the transcriptional diversity within race 3 and race 4 inbred lines during their compatible interactions with the soybean host Zhonghuang 13. Six different race-enriched cDNA libraries were constructed with limited nematode samples collected from the three sedentary stages, parasitic J2, J3 and J4 female, respectively. Among 689 putative race-enriched genes isolated from the six libraries with functional annotations, 92 were validated by quantitative RT-PCR (qRT-PCR, including eight putative effector encoding genes. Further race-enriched genes were validated within race 3 and race 4 during development in soybean roots. Gene Ontology (GO analysis of all the race-enriched genes at J3 and J4 female stages showed that most of them functioned in metabolic processes. Relative transcript level analysis of 13 selected race-enriched genes at four developmental stages showed that the differences in their expression abundance took place at either one or more developmental stages. This is the first investigation into the transcript diversity of H. glycines races throughout their sedentary stages, increasing the understanding of the genetic diversity of H. glycines.

  7. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  8. Soil compaction and fertilization in soybean productivity

    Directory of Open Access Journals (Sweden)

    Beutler Amauri Nelson

    2004-01-01

    Full Text Available Soil compaction and fertilization affect soybean development. This study evaluated the effects of soil compaction and fertilization on soybean (Glycine max cv. Embrapa 48 productivity in a Typic Haplustox under field conditions in Jaboticabal, SP, Brazil. A completely randomized design with a 5 x 2 factorial layout (compaction vs. fertilization, with four replications in each treatment, was employed. Each experimental unit (replicate consisted of a 3.6 m² useful area. After the soil was prepared by cultivation, an 11 Mg tractor passed over it a variable number of times to create five levels of compaction. Treatments were: T0= no compaction, T1= one tractor pass, T2= two, T4= four, and T6= six passes, and no fertilizer and fertilizer to give soybean yields of 2.5 to 2.9 Mg ha-1. Soil was sampled at depths of 0.02-0.05, 0.07-0.10, and 0.15-0.18 m to determine macro and microporosity, penetration resistance (PR, and bulk density (Db. After 120 days growing under these conditions, the plants were analyzed in terms of development (plant height, number of pods, shoot dry matter per plant and weight of 100 seeds and seed productivity per hectare. Soil compaction decreased soybean development and productivity, but this effect was decreased by soil fertilization, showing that such fertilization increased soybean tolerance to soil compaction.

  9. Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes.

    Directory of Open Access Journals (Sweden)

    Tiffany Langewisch

    Full Text Available In this Genomics Era, vast amounts of next-generation sequencing data have become publicly available for multiple genomes across hundreds of species. Analyses of these large-scale datasets can become cumbersome, especially when comparing nucleotide polymorphisms across many samples within a dataset and among different datasets or organisms. To facilitate the exploration of allelic variation and diversity, we have developed and deployed an in-house computer software to categorize and visualize these haplotypes. The SNPViz software enables users to analyze region-specific haplotypes from single nucleotide polymorphism (SNP datasets for different sequenced genomes. The examination of allelic variation and diversity of important soybean [Glycine max (L. Merr.] flowering time and maturity genes may provide additional insight into flowering time regulation and enhance researchers' ability to target soybean breeding for particular environments. For this study, we utilized two available soybean genomic datasets for a total of 72 soybean genotypes encompassing cultivars, landraces, and the wild species Glycine soja. The major soybean maturity genes E1, E2, E3, and E4 along with the Dt1 gene for plant growth architecture were analyzed in an effort to determine the number of major haplotypes for each gene, to evaluate the consistency of the haplotypes with characterized variant alleles, and to identify evidence of artificial selection. The results indicated classification of a small number of predominant haplogroups for each gene and important insights into possible allelic diversity for each gene within the context of known causative mutations. The software has both a stand-alone and web-based version and can be used to analyze other genes, examine additional soybean datasets, and view similar genome sequence and SNP datasets from other species.

  10. Dual roles for the variable domain in protein trafficking and host-specific recognition of Heterodera glycines CLE effector proteins

    Science.gov (United States)

    Soybean cyst nematodes (Heterodera glycines) produce secreted effector proteins that function as peptide mimics of plant CLAVATA3 / ESR (CLE)-like peptides probably involved in the developmental reprogramming of root cells to form specialized feeding cells called syncytia. The site of action and me...

  11. PEMANFAATAN TEPUNG KOMPOSIT UBI JALAR PUTIH (Ipomea batatas L. KECAMBAH KEDELAI (Glycine max Merr DAN KECAMBAH KACANG HIJAU (Virginia radiata L SEBAGAI SUBSTITUEN PARSIAL TERIGU DALAM PRODUK PANGAN ALTERNATIF BISKUIT KAYA ENERGI PROTEIN [Utilization of Composite Flour from White Sweet Potatoes (Ipomoea batatas L, Germinated Soybeans (Glycine max Merr., and Germinated Mung Beans (Virginia radiata L as Wheat Flour Partial Substituent of Alternative Food, High Energy-Protein Biscuit

    Directory of Open Access Journals (Sweden)

    Ferry H Sunandar2

    2006-04-01

    Full Text Available An emergency food based biscuit product was formulated by utilizing composite flour from white sweet potatoes, germinated soybeans, and germinated mung beans. This product was designed to meet high protein and energy wich contain protein as minimum as 12% and 50% carbohydrate. Sweet potatoes, germinated soybeans, and germinated mung beans flour were obtained by using drum dryer. The flour characteristics determination showed that there were positive corelation between bulk density and wettability, and had negative corelation with stack angle. The bulk density number of sweet potatoes, germinated soybeans, and germinated mung beans flour were 0.56, 0.38, 0.45 g/m; compact density 0.63, 0.54, and 0.56 g/ml; whiteness degree 49.77, 29.82 and 34.41%; stack angle 30.56, 41.77 and 31.16 degree; wettability 1.104, 345, 20 second; and dispersibility 1.98, 1.06 and 0.70%. Wheat flour could be substituted by sweet potatoes flour as much as 80%. The range utilization of germinated soybeans and germinated mung beans flour were 12-28 % which combined with 25-44% sweet potatoes flour. The nutritional composition of high energy and protein biscuit were within average range of protein 12.34%, fat 24.56%, carbohydrate 60.65 %, and also total dietary fiber 15.01%. The result of organoleptic test showed that high energy and protein biscuit was accepted by consument, so that its very potential to ben as alternative food.

  12. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  13. A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase

    Directory of Open Access Journals (Sweden)

    Overall Christopher C

    2007-04-01

    Full Text Available Abstract Background Heterodera glycines (soybean cyst nematode [SCN], the major pathogen of Glycine max (soybean, undergoes muscle degradation (sarcopenia as it becomes sedentary inside the root. Many genes encoding muscular and neuromuscular components belong to the uncoordinated (unc family of genes originally identified in Caenorhabditis elegans. Previously, we reported a substantial decrease in transcript abundance for Hg-unc-87, the H. glycines homolog of unc-87 (calponin during the adult sedentary phase of SCN. These observations implied that changes in the expression of specific muscle genes occurred during sarcopenia. Results We developed a bioinformatics database that compares expressed sequence tag (est and genomic data of C. elegans and H. glycines (CeHg database. We identify H. glycines homologs of C. elegans unc genes whose protein products are involved in muscle composition and regulation. RT-PCR reveals the transcript abundance of H. glycines unc homologs at mobile and sedentary stages of its lifecycle. A prominent reduction in transcript abundance occurs in samples from sedentary nematodes for homologs of actin, unc-60B (cofilin, unc-89, unc-15 (paromyosin, unc-27 (troponin I, unc-54 (myosin, and the potassium channel unc-110 (twk-18. Less reduction is observed for the focal adhesion complex gene Hg-unc-97. Conclusion The CeHg bioinformatics database is shown to be useful in identifying homologs of genes whose protein products perform roles in specific aspects of H. glycines muscle biology. Our bioinformatics comparison of C. elegans and H. glycines genomic data and our Hg-unc-87 expression experiments demonstrate that the transcript abundance of specific H. glycines homologs of muscle gene decreases as the nematode becomes sedentary inside the root during its parasitic feeding stages.

  14. Effect of Novel Starter Culture on Reduction of Biogenic Amines, Quality Improvement, and Sensory Properties of Doenjang, a Traditional Korean Soybean Fermented Sauce Variety.

    Science.gov (United States)

    Shukla, Shruti; Lee, Jong Suk; Park, Hae-Kyong; Yoo, Jung-Ah; Hong, Sung-Yong; Kim, Jong-Kyu; Kim, Myunghee

    2015-08-01

    To select appropriate microorganisms as starter cultures for the reliable and reproducible fermentation of soybean fermented products of Korean Doenjang, various ratios of fungi (Aspergillus oryzae J, Mucor racemosus 15, M. racemosus 42) combined with Bacillus subtilis TKSP 24 were selected as either single, double, or multiple Meju strains for commercial mass production of Doenjang, followed by analysis of sensory characteristics. In the sensory evaluation, Doenjang BAM15-1 and BAM42-1, which were fermented with multiple strains (1:1:1), showed the highest sensory scores as compared to control. Based on sensory characteristics, 6 Doenjang samples were subjected to quantitative determination of amino acids, free sugars, and organic acids (volatile and nonvolatile) contents, followed by determination of biogenic amines. Total sweet taste amino acid contents were highest in BAM15-1 and BAM42-1 samples (333.7 and 295.8 mg/100 g, respectively) and similar that of control (391.1 mg/100 g). Samples BAM15-1 and BAM42-1 showed the relatively high volatile and nonvolatile organic acid contents (154.24, 192.26, and 71.31, 82.42 mg/100 g, respectively). In addition, BAM15-1 and BAM42-1 showed negligible biogenic amine formation, ranging from 0.00 to 1.02 and 0.00 to 3.92 mg/100 g, respectively. These findings indicate that determination of food components along with sensory and quality attributes using multiple microbial Meju strains as a starter culture may provide substantial results on improved quality fermented Doenjang products. © 2015 Institute of Food Technologists®

  15. Influence of planting date on seed protein oil sugars minerals and nitrogen metabolism in soybean under irrigated and non-irrigated enviroments

    Science.gov (United States)

    Information on the effect of planting date and irrigation on soybean [Glycine max (L.) Merr.] seed composition in the Early Soybean Production System is deficient, and what is available is inconclusive. The objective of this research was to investigate the effects of planting date on seed protein, o...

  16. Irrigation, Planting Date And Intra-Row Spacing Effects On Soybean Grown Under Dry Farming Systems

    OpenAIRE

    Ismail, A. M. A. [احمد محمد علي اسماعيل; Khalifa, F. M.

    1987-01-01

    Two soybean cultivars (Glycine maxima (L) Merr.) differing in maturity period, leaf size and stem height were sown five times at fortnight intervals during the rainy season at four intra—row spacings under supplementary irrigation at one site and under rainfed conditions at another site in the central rainlands of Sudan. Cultivars responded differently to the system of production. Sowing date and moisture availability were the main factors controlling soybean production. The late maturing cul...

  17. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  18. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Directory of Open Access Journals (Sweden)

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  19. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  20. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  1. Cytological effects of Tc on young soybean plants

    International Nuclear Information System (INIS)

    Neel, J.W.; Onasch, M.A.

    1989-01-01

    Soybean seedlings (Glycine max cv. Williams) were exposed for 24 to 67 h to 99 TcO 4 - (Tc) at various concentrations in dilute culture solution. Reduced primary leaf midrib length was observed with 67-h exposures to greater than or equal to 6.0 mu M Tc. Cellular effects were consistently observed by a light microscope after 43-h or longer exposure to 6.6 microM Tc and higher concentrations. At lower Tc levels, abnormal cells were interspersed among cells of normal appearance. Abnormal cells displayed blockshaped nuclei which were more densely stained by Harris' hematoxylineosin Y than controls; such cells frequently demonstrated incipient plasmolysis. The number of affected cells increased with dose; both nuclei and cytoplasm demonstrated greater staining intensity and more severe plasmolysis at higher levels. At levels of greater than or equal to 13.2 Tc, cellular damage was extensive. Cells were reduced in size and were highly plasmolysed; cell walls were distorted, and intercellular spaces were reduced or became nonexistent. Mitotic activity was observed at Tc levels less than or equal to 9.9 microM. Observed Tc cellular effects are attributed principally to the alteration of membrane permeability characteristics

  2. Impact of No-till Cover Cropping of Italian Ryegrass on Above and Below Ground Faunal Communities Inhabiting a Soybean Field with Emphasis on Soybean Cyst Nematodes.

    Science.gov (United States)

    Hooks, Cerruti R R; Wang, Koon-Hui; Meyer, Susan L F; Lekveishvili, Mariam; Hinds, Jermaine; Zobel, Emily; Rosario-Lebron, Armando; Lee-Bullock, Mason

    2011-09-01

    Two field trials were conducted between 2008 and 2010 in Maryland to evaluate the ability of an Italian ryegrass (IR) (Lolium multiflorum) cover crop to reduce populations of plant-parasitic nematodes while enhancing beneficial nematodes, soil mites and arthropods in the foliage of a no-till soybean (Glycine max) planting. Preplant treatments were: 1) previous year soybean stubble (SBS); and 2) herbicide-killed IR cover crop + previous year soybean stubble (referred to as IR). Heterodera glycines population densities were very low and no significant difference in population densities of H. glycines or Pratylenchus spp. were observed between IR and SBS. Planting of IR increased abundance of bacterivorous nematodes in 2009. A reverse trend was observed in 2010 where SBS had higher abundance of bacterivorous nematodes and nematode richness at the end of the cover cropping period. Italian ryegrass also did not affect insect pests on soybean foliage. However, greater populations of spiders were found on soybean foliage in IR treatments during both field trials. Potential causes of these findings are discussed.

  3. Effect of corn inclusion on soybean hull-based diet digestibility and growth performance in continuous culture fermenters and beef cattle.

    Science.gov (United States)

    Russell, J R; Sexten, W J; Kerley, M S

    2016-07-01

    Two experiments were conducted using soybean hull (SH) diets with increasing corn proportions to determine increasing corn inclusion effects on fermentation characteristics, diet digestibility, and feedlot performance. The hypothesis was that fiber digestibility would quadratically respond to starch proportion in the diet with a break point where starch inclusion improved fiber digestion and feedlot performance. Proportionately, the diets contained 100:0 (SH100), 90:10 (SH90), 80:20 (SH80), 60:40 (SH60), or 20:80 SH:corn (SH20). In Exp. 1, diets were randomly distributed over 24 continuous culture fermenters and fed for 7 d. In Exp. 2, forty steers (347 ± 29 kg BW) and 50 heifers (374 ± 24 kg BW) were blocked by gender, stratified by BW, and distributed across diets. Cattle were fed for 70 d with titanium dioxide included in the diet for the final 14 d and fecal samples collected to measure digestibility. Individual DMI was measured using GrowSafe Feed Intake system. Data were analyzed using the MIXED procedure of SAS with diet evaluated as the fixed effect. In Exp. 1, NDF digestibility (NDFd) linearly decreased ( = 0.04) and ADF digestibility (ADFd) tended to linearly decrease ( = 0.09) as corn increased. Dry matter digestibility (DMd) was cubic ( = 0.01) and OM digestibility (OMd) was quadratic ( = 0.03), and among the 4 SH-based diets, DMd and OMd were greatest for SH90. Acetate:propionate ratio and pH were quadratic ( digestibility decreased as corn inclusion increased. However, based on continuous culture digestibility and VFA values as well as feedlot digestibility and performance, optimal corn inclusion for growth and diet utilization in the 4 SH-based diets fell between SH80 and SH90, or 0.4 and 0.2% BW corn supplementation. In this study, providing 0.4% BW corn supplementation in fiber-based diets (SH80) provided greater improvement in performance compared with 0.2% BW corn supplementation (SH90).

  4. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  5. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  6. Sur quelques aspects de la production du soja (Glycine max L. au Congo : essais préliminaires

    Directory of Open Access Journals (Sweden)

    Mandimba, GR.

    1991-01-01

    Full Text Available About some cropping systems of soybean (Glycine max. L. in Congo : first results. Field experiments were conducted to assess the response of soybean Glycine max cv. FN3 to N fertilization and inoculation respectively. In the first experiment, the effects of different levels of N fertilizer (0 ; 20 ; 40 and 80 kg N/ha with or without liming were studied. Soybean podyield were related to N fertilization only when liming was added to the soil In the second one, the effects of four Bradyrhizobium japonicum strains F A3 ; 3-40 ; SA 1 and G3S on nodulation and yields were also studied. Inoculation has significant effect on nodulation and plant top dry weight at full bloom, and seed yield at harvest when compared to the control. However, the Bradyrhizobium japonicum strains tested had various symbiotic effectiveness on Glycine max cv. FN3. In addition, soybean plants inoculated with G3S strain and those fertilized with 100 kg N/ha produced similar seed yield. Our study illustrated that G3S strain had the better adaptability in environmental conditions of Congo soil.

  7. The effects of water stress on the chemical composition of soybean ...

    African Journals Online (AJOL)

    The response of soybean [Glycine max (L) Merrill] cv. Akiyoshi to three moisture levels at three growth stages was investigated in a glasshouse experiment. Percent leaf nitrogen was reduced by water deficit at late flowering and early podding but increased after rewatering. This parameter was not affected by water deficit at ...

  8. Apex simulation: environmental benefits of agroforestry and grass buffers for corn-soybean watersheds

    Science.gov (United States)

    The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...

  9. Energy issues affecting corn/soybean systems: Challenges for sustainable production

    Science.gov (United States)

    Quantifying energy issues associated with agricultural systems, even for a simple two-crop corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) rotation, is not a simple task. It becomes even more complicated if the goal is to include all aspects of sustainability (i.e., economic, environmental, ...

  10. Identical substitutions in magnesium chelatase paralogs result in chlorophyll deficient soybean mutants

    Science.gov (United States)

    The soybean (Glycine max (L.) Merr.) chlorophyll deficient line MinnGold is a spontaneous mutant characterized by yellow foliage. Map-based cloning and transgenic complementation revealed that the mutant phenotype is caused by a non-synonymous nucleotide substitution in the third exon of a Mg-chelat...

  11. CULTIVAR RELEASE-BRS 217 Flora: Early-maturing soybean cultivar

    Directory of Open Access Journals (Sweden)

    Plínio Itamar de Mello de Souza

    2008-01-01

    Full Text Available The soybean (Glycine max L. Merr. cultivar BRS 217 Flora was developed by Embrapa and released forproduction in the states of Goiás, Minas Gerais, Bahia, Mato Grosso and the Distrito Federal, Brazil. It is resistant to stemcanker, frog-eye leaf spot, bacterial pustule, and partially resistant to powdery mildew.

  12. Two-year oscillation cycle in abundance of soybean aphid in Indiana

    Czech Academy of Sciences Publication Activity Database

    Rhainds, M.; Yoo, H. J. S.; Kindlmann, Pavel; Voegtlin, D.; Castillo, D.; Rutledge, C.; Sadof, C.; Yaninek, S.; O'Neil, R. J.

    2010-01-01

    Roč. 12, č. 3 (2010), s. 251-257 ISSN 1461-9555 Institutional research plan: CEZ:AV0Z60870520 Keywords : Aphididae * Aphis glycines * autumn migration * Hemiptera * heteroecy * Rhamnus * seesaw effect * soybean aphid Subject RIV: EH - Ecology, Behaviour Impact factor: 1.484, year: 2010

  13. Registration of Wyandot × PI 567301B soybean recombinant inbred line population

    Science.gov (United States)

    A soybean [Glycine max (L.) Merr] mapping population (Reg. No., SNL MAP) consisting of 357 F7-derived recombinant inbred lines (RILs) was jointly developed by the USDA-Agricultural Research Service and the Ohio Agricultural Research and Development Center (OARDC) in Wooster, OH. The population was ...

  14. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Science.gov (United States)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  15. Analysis of average standardized SSR allele size supports domestication of soybean along the Yellow River

    NARCIS (Netherlands)

    Li, Y.H.; Zhang, C.; Smulders, M.J.M.; Li, W.; Ma, Y.S.; Xu, Qu; Chang, R.Z.; Qiu, Li-Juan

    2013-01-01

    Soybean (Glycine max) was domesticated in China from its wild progenitor G. soja. The geographic region of domestication is, however, not exactly known. Here we employed the directional evolution of SSR (microsatellite) repeats (which mutate preferentially into longer alleles) to analyze the

  16. Comparative inference of duplicated genes produced by polyploidization in soybean genome.

    Science.gov (United States)

    Yang, Yanmei; Wang, Jinpeng; Di, Jianyong

    2013-01-01

    Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.

  17. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    Science.gov (United States)

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  18. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  19. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    Science.gov (United States)

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  20. Nitrogen nutrition and temporal effects of enhanced carbon dioxide on soybean growth

    Science.gov (United States)

    Vessey, J. K.; Henry, L. T.; Raper, C. D. Jr

    1990-01-01

    Plants grown on porous media at elevated CO2 levels generally have low concentrations of tissue N and often appear to require increased levels of external N to maximize growth response. This study determines if soybean [Glycine max (L.) Merr. Ransom'] grown hydroponically at elevated CO2 requires increases in external NO3- concentrations beyond levels that are optimal at ambient CO2 to maintain tissue N concentrations and maximize the growth response. This study also investigates temporal influences of elevated CO2 on growth responses by soybean. Plants were grown vegetatively for 34 d in hydroponic culture at atmospheric CO2 concentrations of 400, 650, and 900 microliters L-1 and during the final 18 d at NO3- concentrations of 0.5, 1.0, 5.0 and 10.0 mM in the culture solution. At 650 and 900 microliters L-1 CO2, plants had maximum increases of 31 and 45% in dry weight during the experimental period. Plant growth at 900 microliters L-1 CO2 was stimulated earlier than at 650 microliters L-1. During the final 18 d of the experiment, the relative growth rates (RGR) of plants grown at elevated CO2 declined. Elevated CO2 caused increases in total N and total NO3(-)-N content and leaf area but not leaf number. Enhancing CO2 levels also caused a decrease in root:shoot ratios. Stomatal resistance increased by 2.1- and 2.8-fold for plants at the 650 and 900 microliters L-1 CO2, respectively. Nitrate level in the culture solutions had no effect on growth or on C:N ratios of tissues, nor did increases in CO2 levels cause a decrease in N concentration of plant tissues. Hence, increases in NO3- concentration of the hydroponic solution were not necessary to maintain the N status of the plants or to maximize the growth response to elevated CO2.

  1. Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere.

    Science.gov (United States)

    Sibponkrung, Surachat; Kondo, Takahiko; Tanaka, Kosei; Tittabutr, Panlada; Boonkerd, Nantakorn; Teaumroong, Neung; Yoshida, Ken-Ichi

    2017-11-30

    Bacillus velezensis strain S141 is a plant growth-promoting rhizobacterium isolated from soybean ( Glycine max ) rhizosphere that enhances soybean growth, nodulation, and N 2 fixation efficiency by coinoculation with Bradyrhizobium diazoefficiens USDA110. The S141 genome was identified to comprise a 3,974,582-bp-long circular DNA sequence encoding at least 3,817 proteins. Copyright © 2017 Sibponkrung et al.

  2. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars.

    Science.gov (United States)

    Lin, Hong; Rao, Jun; Shi, Jianxin; Hu, Chaoyang; Cheng, Fang; Wilson, Zoe A; Zhang, Dabing; Quan, Sheng

    2014-09-01

    Soybean [Glycine max (L.) Merr.] is one of the world's major crops, and soybean seeds are a rich and important resource for proteins and oils. While "omics" studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especially in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetically related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield. © 2014 Institute of Botany, Chinese Academy of Sciences.

  3. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars

    Institute of Scientific and Technical Information of China (English)

    Hong Lin; Jun Rao; Jianxin Shi; Chaoyang Hu; Fang Cheng; Zoe AWilson; Dabing Zhang; Sheng Quan

    2014-01-01

    Soybean [Glycine max (L.) Merr.] is one of the world’s major crops, and soybean seeds are a rich and important resource for proteins and oils. While “omics”studies, such as genomics, transcriptomics, and proteomics, have been widely applied in soybean molecular research, fewer metabolomic studies have been conducted for large-scale detection of low molecular weight metabolites, especial y in soybean seeds. In this study, we investigated the seed metabolomes of 29 common soybean cultivars through combined gas chromatography-mass spectrometry and ultra-performance liquid chromatography-tandem mass spectrometry. One hundred sixty-nine named metabolites were identified and subsequently used to construct a metabolic network of mature soybean seed. Among the 169 detected metabolites, 104 were found to be significantly variable in their levels across tested cultivars. Metabolite markers that could be used to distinguish genetical y related soybean cultivars were also identified, and metabolite-metabolite correlation analysis revealed some significant associations within the same or among different metabolite groups. Findings from this work may potentially provide the basis for further studies on both soybean seed metabolism and metabolic engineering to improve soybean seed quality and yield.

  4. Crystallization of glycine with ultrasound

    DEFF Research Database (Denmark)

    Louhi-Kultanen, Marjatta; Karjalainen, Milja; Rantanen, Jukka

    2006-01-01

    Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound with an ultr...... ultrasound power. This study also showed, the higher the ultrasound amplitude the smaller the crystals obtained.......Sonocrystallization has proved to be an efficient tool to influence the external appearance and structure of a crystalline product obtained by various crystallization methods. The present work focuses on high intensity sonocrystallization of glycine by varying amplitude of ultrasound...... with an ultrasound frequency of 20kHz at two temperature ranges 40-50 and 20-30 degrees C in a jacketed 250-ml cooling crystallizer equipped with a stirrer. The polymorph composition of the obtained crystals was analyzed with a temperature variable X-ray powder diffractometer (XRPD). XRPD results showed that...

  5. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    Science.gov (United States)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  6. In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme

    Directory of Open Access Journals (Sweden)

    Iqbal M Javed

    2008-09-01

    Full Text Available Abstract Background Sudden death syndrome (SDS of soybean (Glycine max L. Merr. is an economically important disease, caused by the semi-biotrophic fungus Fusarium solani f. sp. glycines, recently renamed Fusarium virguliforme (Fv. Due to the complexity and length of the soybean-Fusarium interaction, the molecular mechanisms underlying plant resistance and susceptibility to the pathogen are not fully understood. F. virguliforme has a very wide host range for the ability to cause root rot and a very narrow host range for the ability to cause a leaf scorch. Arabidopsis thaliana is a host for many types of phytopathogens including bacteria, fungi, viruses and nematodes. Deciphering the variations among transcript abundances (TAs of functional orthologous genes of soybean and A. thaliana involved in the interaction will provide insights into plant resistance to F. viguliforme. Results In this study, we reported the analyses of microarrays measuring TA in whole plants after A. thaliana cv 'Columbia' was challenged with fungal pathogen F. virguliforme. Infection caused significant variations in TAs. The total number of increased transcripts was nearly four times more than that of decreased transcripts in abundance. A putative resistance pathway involved in responding to the pathogen infection in A. thaliana was identified and compared to that reported in soybean. Conclusion Microarray experiments allow the interrogation of tens of thousands of transcripts simultaneously and thus, the identification of plant pathways is likely to be involved in plant resistance to Fusarial pathogens. Dissection of the set functional orthologous genes between soybean and A. thaliana enabled a broad view of the functional relationships and molecular interactions among plant genes involved in F. virguliforme resistance.

  7. Biofertilisasi bakteri rhizobium pada tanaman kedelai (Glycine max (L MERR.

    Directory of Open Access Journals (Sweden)

    Tini Surtiningsih

    2012-02-01

    Full Text Available The aim of this research want to know the influence of the addition Rhizobium bacteria species, dose and combination both ofthem, on growth and production of soybean plant (Glycine max (L Merr.. The experimental design of this research was factorial design4×2, 4 species of Rhizobium are R1 = Rhizobium japonicum, R2 = R. phaseoli, R3 = R. leguminosarum, R4 = mixture of R1, R2 andR3, and 2 dose of inoculan Rhizobium (D1 = 5 m/plant, and D2 = 10 ml/plant with 1010 sel bacteria/ml and 5 replications. Independentvariable is species of Rhizobium, dose of inoculan Rhizobium and combination both of them. Dependent variable is dry matter, weightof nodules and dry weight of seeds. The harvest data was analyzed by Kruskal-Wallis Test using 5% level (a = 0.05 followed by Mann-Whitney Test. The result of this research show that species of Rhizobium, dose of inoculan Rhizobium and combination both of thempresent insignificant result (a > 0.05 on soybean growth and production, but the mixture of Rhizobium species with high level doseof bacteria, present better result than single species with low dose of bacteria.

  8. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing.

    Science.gov (United States)

    Tian, Bin; Wang, Shichen; Todd, Timothy C; Johnson, Charles D; Tang, Guiliang; Trick, Harold N

    2017-08-02

    The soybean cyst nematode (SCN), Heterodera glycines, is one of the most devastating diseases limiting soybean production worldwide. It is known that small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), play important roles in regulating plant growth and development, defense against pathogens, and responses to environmental changes. In order to understand the role of soybean miRNAs during SCN infection, we analyzed 24 small RNA libraries including three biological replicates from two soybean cultivars (SCN susceptible KS4607, and SCN HG Type 7 resistant KS4313N) that were grown under SCN-infested and -noninfested soil at two different time points (SCN feeding establishment and egg production). In total, 537 known and 70 putative novel miRNAs in soybean were identified from a total of 0.3 billion reads (average about 13.5 million reads for each sample) with the programs of Bowtie and miRDeep2 mapper. Differential expression analyses were carried out using edgeR to identify miRNAs involved in the soybean-SCN interaction. Comparative analysis of miRNA profiling indicated a total of 60 miRNAs belonging to 25 families that might be specifically related to cultivar responses to SCN. Quantitative RT-PCR validated similar miRNA interaction patterns as sequencing results. These findings suggest that miRNAs are likely to play key roles in soybean response to SCN. The present work could provide a framework for miRNA functional identification and the development of novel approaches for improving soybean SCN resistance in future studies.

  9. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Soybean diseases in Poland

    Directory of Open Access Journals (Sweden)

    J. Marcinkowska

    2013-12-01

    Full Text Available Field observations on the occurrence of soybean diseases were undertaken in the southern and central regions of Poland in the period 1976-1980. Most prevalent were foliage diseases caused by Peronospora manshurica, Pseudomonas syrinqae pv. glycinea and soybean mosaic virus (SMV. Sclerotinia sclerotiorum and Ascochyta sojaecola were reported as pathogens of local importance. The following pathogenic fungi: Botrytis cinerea, Fusarium culmorum, F. oxysporum and Rhizoctonia solani were also isolated from soybean.

  11. The Effectiveness of Biofertilizer on Plant Growth Soyb Ea N “Edam Am E” (Glycin Max)

    OpenAIRE

    Sudiarti, Diah

    2017-01-01

    This study aimed at determining the effectiveness of biofertilizer with different concentrations on plant growth of soybean “edamame” (glycin max). Biofertilizer in this study consists of microbial consortia (lactobacillus, pseudomonas, bacillus, saccharomyces, rhizobium, azotobacter, azospirillum, and cellulomonas). The treatment consists of 3 biofertilizer concentrations (25%, 50%, dan 75%), as well as the negative control and positive control (100% chemical fertilizer equivalent 5g/plant)....

  12. Growth and nitrogen dynamics of glycine max inoculated with bradyrhizobium japonicum and exposed to elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Rehman, A.; Hamid, N.; Jawaid, F.

    2010-01-01

    Seeds of Glycine max (soybean) were inoculated with N-fixing bacterium Bradyrhizobium japonicum and grown in growth chamber to investigate interactive effects of atmospheric CO/sub 2/ and plants Nitrogen status on root and shoot length and biomass, nodule formation and Nitrogen concentration. Plants were grown with CO/sub 2/ at 3500 and 1000 ppm with or without Bradyrhizobium japonicum inoculation. Root and shoot length and dry mass of Glycine max increased significantly with CO/sub 2/ enrichment provided with Bradyrhizobium japonicum as compared to deficient Nitrogen fixing bacterium. While ambient and enriched CO/sub 2/ levels resulted in increased Nitrogen concentration of Glycine max shoot and root which is inoculated with N-fixing bacterium. Nodule formation was also enhanced in plants supplied with Bradyrhizobium japonicum as compared to plants which is Bradyrhizobium japonicum deficient at both CO/sub 2/ concentrations. (author)

  13. The soybean and mungbean improvement programs at AVRDC

    International Nuclear Information System (INIS)

    Shanmugasundaram, S.; Ahn, G.S.

    1983-01-01

    At the Asian Vegetable Research and Development Center (AVRDC) Soybean, Glycine max (L.) Merr. and mungbean, Vigna radiata (L.) Wilczek are included in the Legume Program for improvement. Germplasm collection in soybean and mungbean are 9,524 and 5,108 respectively. Developing improved selections with early, uniform maturity, high yield, wide adaptability and resistance to diseases and insects are the major breeding objectives for the tropics and subtropics. Genetic diversity and genetic resources are available in the germplasm for most of the desired traits both in soybean as well as mungbean. However, for traits such as soybean rust resistance in soybean and resistance to insects in mungbean are rare. Limited amount of radiation breeding is being employed in cooperation with Korean Atomic Energy Agency to obtain desirable genes in both species. A number of AVRDC identified accessions and breeding lines are being used by the national programs to develop improved cultivars. AVRDC developed breeding selections have been released as new cultivars in Costa Rica, Fiji, Korea, India, Indonesia, Malaysia and Taiwan. (author)

  14. Chemotaxonomic markers of organic, natural, and genetically modified soybeans detected by direct infusion electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Santos, L.S.; Catharino, R.R.; Eberlin, M.N.; Tsai, S.M.

    2006-01-01

    The crude methanolic extracts of a single bean from samples of organic, natural or genetically modified (GM) soybeans [Glycine max. (Merrill) L.] were analyzed by direct infusion electrospray ionization mass spectrometry (ESI-MS). These extracts, containing the most polar natural products of soybeans (free aglycones, monoglucosides, diglucosides and esters including isoflavones and flavones) provide characteristic fingerprinting mass spectra owing to different proportions or sets of components. Spectra distinctiveness is confirmed by chemometric multivariate analysis of the ESIMS data, which place the three-types of beans into well-defined groups. When ESI-MS is applied, these polar components constitute therefore unique chemotaxonomic markers able to provide fast soybean typification. (author)

  15. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  16. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  17. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes.

    Science.gov (United States)

    Youssef, Reham M; MacDonald, Margaret H; Brewer, Eric P; Bauchan, Gary R; Kim, Kyung-Hwan; Matthews, Benjamin F

    2013-04-25

    The gene encoding PAD4 (PHYTOALEXIN-DEFICIENT4) is required in Arabidopsis for expression of several genes involved in the defense response to Pseudomonas syringae pv. maculicola. AtPAD4 (Arabidopsis thaliana PAD4) encodes a lipase-like protein that plays a regulatory role mediating salicylic acid signaling. We expressed the gene encoding AtPAD4 in soybean roots of composite plants to test the ability of AtPAD4 to deter plant parasitic nematode development. The transformed roots were challenged with two different plant parasitic nematode genera represented by soybean cyst nematode (SCN; Heterodera glycines) and root-knot nematode (RKN; Meloidogyne incognita). Expression of AtPAD4 in soybean roots decreased the number of mature SCN females 35 days after inoculation by 68 percent. Similarly, soybean roots expressing AtPAD4 exhibited 77 percent fewer galls when challenged with RKN. Our experiments show that AtPAD4 can be used in an economically important crop, soybean, to provide a measure of resistance to two different genera of nematodes.

  18. Effect of soybean supplementation on the memory of alprazolam-induced amnesic mice

    Directory of Open Access Journals (Sweden)

    Nitin Bansal

    2010-01-01

    Full Text Available Soybean, Glycine max (L. Merr. (Leguminoseae, is known as golden bean. It contains vegetable protein, oligosaccharide, dietary fiber, vitamins, isoflavones and minerals. Earlier studies have demonstrated a cholesterol lowering, skin protective, antitumour, antidiabetic and antioxidative potential of soybean. Soy isoflavones are also utilized as estrogen replacement therapy in postmenopausal women. The present study was undertaken to investigate the effect of soybean on memory of mice when consumed along with diet. Soybean was administered chronically for 60 consecutive days as three soybean diets viz. Soy2, Soy5, Soy10. These diet contains soybean in normal diet at concentration of 2%, 5%, 10% w/w respectively. Passive avoidance paradigm and elevated plus maze served as exteroceptive behavioral models for testing memory. Alprazolam (0.5 mg/kg; i.p. induced amnesia served as interoceptive behavioral model. The administration of soybean significantly reversed alprazolam-induced amnesia in a dose-dependent manner as indicated by the increased step down latency of mice using passive avoidance paradigm and increased transfer latency using elevated plus maze. Theses results suggest that consumption of soybean in diet may not only improve memory but also reverse the memory deficits, owing to its multifarious activities. It would be worthwhile to explore the potential of this nutrient in the management of Alzheimer′s disease.

  19. Water absorption, cooking properties and cell structure of gamma irradiated soybeans

    International Nuclear Information System (INIS)

    Kang, I.J.; Byun, M.W.

    1996-01-01

    Gamma irradiation was applied to soybean(Glycine max.), Hwangkeum, at dose levels of 0, 5, 10 and 20 kGy to improve the physical properties of soybeans. The time to reach a fixed moisture content was reduced depending on the increment of soaking temperatures and applied irradiation dose levels. Irradiation at 5~20 kGy resulted in reduction in soaking time of the soybeans by about 3~6 hrs at soaking temperature of 20°. The degree of cooking of soybeans in boiling water was determined by measuring the maximum cutting force of cotyledon. The cutting force to reach complete cooking was about 145g/g. Irradiation at 5~20 kGy resulted in a reduction of cooking time of soybeans by 55~75% as compared to the nonirradiated soybean. In electron microscopic observation of seed coat inner, the parenchyma of nonirradiated soybean showed tight fibrillar structure, whereas that of irradiated soybeans showed loosened and deformed structure. The microstructure of compressed cells and cotyledon epidermis was also deformed by gamma irradiation. In subcellular structure of cotyledon, the roundness of protein body was deformed and changed to spike shape at 20 kGy. Also, the size of lipid body decreased as the irradiation dose levels increased

  20. The antioxidative response system in Glycine max (L.) Merr. exposed to Deltamethrin, a synthetic pyrethroid insecticide

    International Nuclear Information System (INIS)

    Bashir, Fozia; Mahmooduzzafar; Siddiqi, T.O.; Iqbal, Muhammad

    2007-01-01

    Forty-five-day-old plants of Glycine max (soybean) were exposed to several Deltamethrin (synthetic pyrethroid insecticide) concentrations (0.00 %, 0.05 %, 0.10 %, 0.15 % and 0.20 %) through foliar spray in the field conditions. In the treated plants, as observed at the pre-flowering (10 DAT), flowering (45 DAT) and post-flowering (70 DAT) stages, lipid peroxidation, proline content and total glutathione content increased, whereas the total ascorbate content decreased, as compared with the control. Among the enzymatic antioxidants, activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase increased significantly whereas that of catalase declined markedly in relation to increasing concentration of Deltamethrin applied. The changes observed were dose-dependent, showing a strong correlation with the degree of treatment. - The Deltamethrin-induced oxidative stress alters the ascorbate-glutathione cycle in Glycine max

  1. Inventory and assessment of foliar natural enemies of the soybean aphid (Hemiptera: Aphididae) in South Dakota.

    Science.gov (United States)

    Hesler, Louis S

    2014-06-01

    Soybean aphid (Aphis glycines Matsumura) (Hemiptera: Aphididae) is a major pest of soybean in northern production regions of North America, and insecticides have been the primary management approach while alternative methods are developed. Knowledge of arthropod natural enemies and their impact on soybean aphid is critical for developing biological control as a management tool. Soybean is a major field crop in South Dakota, but information about its natural enemies and their impact on soybean aphid is lacking. Thus, this study was conducted in field plots in eastern South Dakota during July and August of 2004 and 2005 to characterize foliar-dwelling, arthropod natural enemies of soybean aphid, and it used exclusion techniques to determine impact of natural enemies and ants (Hymenoptera: Formicidae) on soybean aphid densities. In open field plots, weekly soybean aphid densities reached a plateau of several hundred aphids per plant in 2004, and peaked at roughly 400 aphids per plant in 2005. Despite these densities, a relatively high frequency of aphid-infested plants lacked arthropod natural enemies. Lady beetles (Coleoptera: Coccinellidae) were most abundant, peaking at 90 and 52% of all natural enemies sampled in respective years, and Harmonia axyridis Pallas was the most abundant lady beetle. Green lacewings (Neuroptera: Chrysopidae) were abundant in 2005, due mainly to large numbers of their eggs. Abundances of arachnids and coccinellid larvae correlated with soybean aphid densities each year, and chrysopid egg abundance was correlated with aphid density in 2005. Three-week cage treatments of artificially infested soybean plants in 2004 showed that noncaged plants had fewer soybean aphids than caged plants, but abundance of soybean aphid did not differ among open cages and ones that provided partial or total exclusion of natural enemies. In 2005, plants within open cages had fewer soybean aphids than those within cages that excluded natural enemies, and aphid

  2. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  3. Weed competition with soybean in no-tillage agroforestry and sole-crop systems in subtropical Brazil

    Science.gov (United States)

    Weed competition on soybean [Glycine max (L.) Merr.] growth and yield was expected to be different when managed in an agroforestry system as compared with solecropping without trees. Therefore agronomic practices to control weeds might need to be modified in agroforestry systems. We analyzed weed co...

  4. Laboratory evaluations of Lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidoptera:Noctuidae) larvae

    Science.gov (United States)

    Two anthranilic diamide insecticides, chlorantraniliprole and cyantraniliprole, were evaluated as soybean, Glycine max L., seed treatments for control of fall armyworm, Spodoptera frugiperda (J. E. Smith). Bioassays were conducted using 2nd instar larvae and plants from both field and greenhouse gr...

  5. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Science.gov (United States)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  6. Development of SSR markers for genetic diversity and phylogenetic studies of Phomopsis longicolla causing Phomopsis seed decay in soybean

    Science.gov (United States)

    Phomopsis longicolla T. W. Hobbs (syn. Diaporthe longicolla) is the primary cause of Phomopsis seed decay (PSD) in soybean, Glycine max (L.) Merrill. The genome of P. longicolla type strain TWH P74 represents one of the important fungal pathogens in the Diaporthe-Phomopsis complex. In this study, th...

  7. Stable transformation via particle bombardment in two different soybean regeneration systems.

    Science.gov (United States)

    Sato, S; Newell, C; Kolacz, K; Tredo, L; Finer, J; Hinchee, M

    1993-05-01

    The Biolistics(®) particle delivery system for the transformation of soybean (Glycine max L. Merr.) was evaluated in two different regeneration systems. The first system was multiple shoot proliferation from shoot tips obtained from immature zygotic embryos of the cultivar Williams 82, and the second was somatic embryogenesis from a long term proliferative suspension culture of the cultivar Fayette. Bombardment of shoot tips with tungsten particles, coated with precipitated DNA containing the gene for β-glucuronidase (GUS), produced GUS-positive sectors in 30% of the regenerated shoots. However, none of the regenerants which developed into plants continued to produce GUS positive tissue. Bombardment of embryogenic suspension cultures produced GUS positive globular somatic embryos which proliferated into GUS positive somatic embryos and plants. An average of 4 independent transgenic lines were generated per bombarded flask of an embryogenic suspension. Particle bombardment delivered particles into the first two cell layers of either shoot tips or somatic embryos. Histological analysis indicated that shoot organogenesis appeared to involve more than the first two superficial cell layers of a shoot tip, while somatic embryo proliferation occurred from the first cell layer of existing somatic embryos. The different transformation results obtained with these two systems appeared to be directly related to differences in the cell types which were responsible for regeneration and their accessibility to particle penetration.

  8. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  9. EVALUATION OF CASSAVA/SOYBEAN INTERCROPPING SYSTEM ...

    African Journals Online (AJOL)

    Soybean plants were taller when intercropped with NR 8212 or with TMS 30572 than in sole soybean, which had similar height with soybean in soybean/TMS 91934 mixture. The soybean canopy diameter, number of leaves per plant and LAI were higher with sole soybean. Within the soybean intercrops, canopy diameter, ...

  10. Effects of particle size and heating time on thiobarbituric acid (TBA) test of soybean powder.

    Science.gov (United States)

    Lee, Youn-Ju; Yoon, Won-Byong

    2013-06-01

    Effects of particle size and heating time during TBA test on the thiobarbituric acid reactive substance (TBARS) of soybean (Glycine Max) powder were studied. Effects of processing variables involved in the pulverization of soybean, such as the temperature of soybean powder, the oxygen level in the vessel, and the pulverisation time, were investigated. The temperature of the soybean powder and the oxygen level had no significant influence on the TBARS (pTBA test significantly affected the TBARS. Change of TBARS during heating was well described by the fractional conversion first order kinetics model. A diffusion model was introduced to quantify the effect of particle size on TBARS. The major finding of this study was that the TBA test to estimate the level of the lipid oxidation directly from powders should consider the heating time and the mean particle sizes of the sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  12. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max.

    Science.gov (United States)

    Liu, Yuan; Wei, Haichao

    2017-07-01

    Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (K a /K s genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.

  13. Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata.

    Science.gov (United States)

    Zhu, Junwei; Park, Kye-Chung

    2005-08-01

    Induced volatiles provide a signal to foraging predatory insects about the location of their prey. In Iowa, early in the growing season of soybean, Glycine max, many predacious seven-spotted lady beetles, Coccinella septempunctata, were observed on plants with heavy infestations of soybean aphid, Aphis glycines. We studied whether the attraction of this beetle is caused by the release of specific volatile compounds of soybean plants infested by aphids. Volatile compounds emitted by soybean plants infested by aphids were compared with those of undamaged, uninfested, and artificially damaged plants. Gas chromatography-mass spectrometry analyses revealed consistent differences in the profiles of volatile compounds between aphid-infested soybean plants and undamaged ones. Significantly more methyl salicylate was released from infested plants at both the V1 and V2 plant growth stages. However, release patterns of two other induced plant volatiles, (D)-limonene and (E,E)-alpha-farnesene, differed between the two plant growth stages. Gas chromatographic-electroantennographic detection of volatile extracts from infested soybean plants showed that methyl salicylate elicited significant electrophysiological responses in C. septempunctata. In field tests, traps baited with methyl salicylate were highly attractive to adult C. septempunctata, whereas 2-phenylethanol was most attractive to the lacewing Chrysoperla carnea and syrphid flies. Another common lady beetle, the multicolored Asian lady beetle, Harmonia axyridis, showed no preference for the compounds. These results indicate that C. septempunctata may use methyl salicylate as the olfactory cue for prey location. We also tested the attractiveness of some selected soybean volatiles to alate soybean aphids in the field, and results showed that traps baited with benzaldehyde caught significantly higher numbers of aphids.

  14. Loci and candidate genes conferring resistance to soybean cyst nematode HG type 2.5.7.

    Science.gov (United States)

    Zhao, Xue; Teng, Weili; Li, Yinghui; Liu, Dongyuan; Cao, Guanglu; Li, Dongmei; Qiu, Lijuan; Zheng, Hongkun; Han, Yingpeng; Li, Wenbin

    2017-06-14

    Soybean (Glycine max L. Merr.) cyst nematode (SCN, Heterodera glycines I,) is a major pest of soybean worldwide. The most effective strategy to control this pest involves the use of resistant cultivars. The aim of the present study was to investigate the genome-wide genetic architecture of resistance to SCN HG Type 2.5.7 (race 1) in landrace and elite cultivated soybeans. A total of 200 diverse soybean accessions were screened for resistance to SCN HG Type 2.5.7 and genotyped through sequencing using the Specific Locus Amplified Fragment Sequencing (SLAF-seq) approach with a 6.14-fold average sequencing depth. A total of 33,194 SNPs were identified with minor allele frequencies (MAF) over 4%, covering 97% of all the genotypes. Genome-wide association mapping (GWAS) revealed thirteen SNPs associated with resistance to SCN HG Type 2.5.7. These SNPs were distributed on five chromosomes (Chr), including Chr7, 8, 14, 15 and 18. Four SNPs were novel resistance loci and nine SNPs were located near known QTL. A total of 30 genes were identified as candidate genes underlying SCN resistance. A total of sixteen novel soybean accessions were identified with significant resistance to HG Type 2.5.7. The beneficial alleles and candidate genes identified by GWAS might be valuable for improving marker-assisted breeding efficiency and exploring the molecular mechanisms underlying SCN resistance.

  15. Nitrate analogs as attractants for soybean cyst nematode.

    Science.gov (United States)

    Hosoi, Akito; Katsuyama, Tsutomu; Sasaki, Yasuyuki; Kondo, Tatsuhiko; Yajima, Shunsuke; Ito, Shinsaku

    2017-08-01

    Soybean cyst nematode (SCN) Heterodera glycines Ichinohe, a plant parasite, is one of the most serious pests of soybean. In this paper, we report that SCN is attracted to nitrate and its analogs. We performed attraction assays to screen for novel attractants for SCN and found that nitrates were attractants for SCN and SCN recognized nitrate gradients. However, attraction of SCN to nitrates was not observed on agar containing nitrate. To further elucidate the attraction mechanism in SCN, we performed attraction assays using nitrate analogs ([Formula: see text], [Formula: see text], [Formula: see text]). SCN was attracted to all nitrate analogs; however, attraction of SCN to nitrate analogs was not observed on agar containing nitrate. In contrast, SCN was attracted to azuki root, irrespective of presence or absence of nitrate in agar media. Our results suggest that the attraction mechanisms differ between plant-derived attractant and nitrate.

  16. Sowing seasons and quality of soybean seeds

    Directory of Open Access Journals (Sweden)

    Ávila Marizangela Rizzatti

    2003-01-01

    Full Text Available Considering the difficulties of producing high quality soybean [Glycine max (L. Merrill] seeds during the traditional cropping period in some areas of the State of Paraná, Brazil, a research project was carried out with the objective of evaluating the influence of sowing dates on the physiological and sanitary quality of seeds, during the 1998/99 and 1999/00 cropping seasons, in Maringá, PR, Brazil. The experiment consisted of five cultivar competition assays, arranged in a completely randomized block design, with each assay sown at different dates (10/15, 10/30, 11/15, 11/30 and 12/15 for each cropping season. The evaluated cultivars were BRS 132 (early, BRS 133 (semi-early, BR 16 (semi-early, BRS 134 (intermediate and FT- Estrela (late. Seeds obtained at the sowing dates were evaluated in the laboratory by germination, accelerated aging, and health tests. Sowing in November resulted in seeds with superior physiological and health quality. Cultivar BRS 133 showed the greatest stability in seed production with better quality for the different sowing dates. Cultivars BRS 134 and BRS 133, which were sown during the period from 10/15 to 11/30, produced seeds that had higher percentages of normal seedlings in the germination and accelerated aging tests. Advancing or delaying sowing dates had adverse effects on soybean seed production with regard to their sanitary quality.

  17. Management of Anthracnose in Soybean using Fungicide

    Directory of Open Access Journals (Sweden)

    Subash Subedi

    2015-12-01

    Full Text Available Experiments on soybean (Glycine max L. Meril were carried out aiming to control anthracnose (pod blight caused by fungus, Colletotrichum truncatum with five treatments represented by different fungicidal sprays against control receiving no spray with three replicates of each under field conditions during two consecutive years from 2012 to 2013. In 2012, the higher Percent Disease Control (PDC and Percent Yield Increase (PYI were estimated in plot treated with SAAF (Carbendazim 12% + Mancozeb 63% followed by Mancozeb fungicides. The mean Pod Infection (PI was low in plots treated with SAAF followed by Mancozeb. Almost similar trends of disease control were observed in 2013. The lower Percent Disease Index (PDI was 46.25% and mean PI was 29.67% with higher yield value of 2431.25 kg/ha obtained from the plots sprayed with SAAF then by Mancozeb. The results showed that, the combined treatment with fungicides, SAAF followed by Mancozeb were effective to control anthracnose or pod blight disease of soybean to increase the yield.

  18. The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits.

    Science.gov (United States)

    Barton, K A; Thompson, J F; Madison, J T; Rosenthal, R; Jarvis, N P; Beachy, R N

    1982-06-10

    The predominant storage protein of soybean seed, glycinin, is composed of two heterogeneous classes of related subunits, the acidics (Mr approximately 38,000) and the basics (Mr approximately 22,000). Immunoreaction of polypeptides translated in vitro from isolated seed mRNA using antibodies prepared against either purified acidic or basic subunit groups precipitated precursor polypeptides of Mr = 60,000 to Mr = 63,000. High pressure liquid chromatography fingerprinting of trypsin-generated fragments from in vitro synthesized precursors showed fragments specific to both acidic and basic subunits. No mature acidic or basic subunits were detected in vitro translation reactions by either immunoprecipitation or high pressure liquid chromatography fingerprinting. Pulse-labeling of cotyledons growing in culture with [3H]glycine showed rapid accumulation of label in glycinin precursors of Mr = 59,000 to Mr = 62,000. Although in vivo synthesized precursors had slightly greater electrophoretic mobility than in vitro synthesized precursors, little label initially appeared in mature glycinin subunits. After several hours of continued cotyledon growth in absence of label, precursors were processed and label accumulated in both acidic and basic subunit groups. Recombinant plasmids were prepared by reverse transcription of soybean seed mRNA, and clones which encode glycinin precursors were identified by heteroduplex-hybridization of translatable messages. Northern blot analysis of seed mRNA shows the mRNA-encoding glycinin precursors to migrate at Mr = 0.71 X 10(6) on agarose gels, corresponding to approximately 2050 nucleotides. This is sufficiently large to encode a polypeptide consisting of both a glycinin acidic and basic subunit.

  19. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [ 35 S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root

  20. Oomycete Species Associated with Soybean Seedlings in North America-Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors.

    Science.gov (United States)

    Rojas, J Alejandro; Jacobs, Janette L; Napieralski, Stephanie; Karaj, Behirda; Bradley, Carl A; Chase, Thomas; Esker, Paul D; Giesler, Loren J; Jardine, Doug J; Malvick, Dean K; Markell, Samuel G; Nelson, Berlin D; Robertson, Alison E; Rupe, John C; Smith, Damon L; Sweets, Laura E; Tenuta, Albert U; Wise, Kiersten A; Chilvers, Martin I

    2017-03-01

    Soybean (Glycine max (L.) Merr.) is produced across a vast swath of North America, with the greatest concentration in the Midwest. Root rot diseases and damping-off are a major concern for production, and the primary causal agents include oomycetes and fungi. In this study, we focused on examination of oomycete species distribution in this soybean production system and how environmental and soil (edaphic) factors correlate with oomycete community composition at early plant growth stages. Using a culture-based approach, 3,418 oomycete isolates were collected from 11 major soybean-producing states and most were identified to genus and species using the internal transcribed spacer region of the ribosomal DNA. Pythium was the predominant genus isolated and investigated in this study. An ecology approach was taken to understand the diversity and distribution of oomycete species across geographical locations of soybean production. Metadata associated with field sample locations were collected using geographical information systems. Operational taxonomic units (OTU) were used in this study to investigate diversity by location, with OTU being defined as isolate sequences with 97% identity to one another. The mean number of OTU ranged from 2.5 to 14 per field at the state level. Most OTU in this study, classified as Pythium clades, were present in each field in every state; however, major differences were observed in the relative abundance of each clade, which resulted in clustering of states in close proximity. Because there was similar community composition (presence or absence) but differences in OTU abundance by state, the ordination analysis did not show strong patterns of aggregation. Incorporation of 37 environmental and edaphic factors using vector-fitting and Mantel tests identified 15 factors that correlate with the community composition in this survey. Further investigation using redundancy analysis identified latitude, longitude, precipitation, and temperature

  1. 不同环境条件下大豆籽粒蛋白质和油分含量与指数的遗传效应分析%Analysis of Genetic Effects on Contents and Indexed of Protein and Oil in Soybean Seeds in Different Environments

    Institute of Scientific and Technical Information of China (English)

    宁海龙; 李文霞; 李文滨; 王继安

    2005-01-01

    Protein and oil are two of the important quantitative traits closely related to the nutrient quality in soybean(Glycine max [L. ] Merry). The content and yield of protein and oil have become one of the main goals in soybean breeding. For soybean breeding programs, understanding the inheritance is of importance. Genetic analyses of protein and oil content in soybean seed have been reported. Most of the studies showed that protein and oil content are quantitatively inherited. Genetic effects, heritability and correlation of protein and oil content in soybean seeds have been estimated.

  2. Selection for Oil Content During Soybean Domestication Revealed by X-Ray Tomography of Ancient Beans

    Science.gov (United States)

    Zong, Yunbing; Yao, Shengkun; Crawford, Gary W.; Fang, Hui; Lang, Jianfeng; Fan, Jiadong; Sun, Zhibin; Liu, Yang; Zhang, Jianhua; Duan, Xiulan; Zhou, Guangzhao; Xiao, Tiqiao; Luan, Fengshi; Wang, Qing; Chen, Xuexiang; Jiang, Huaidong

    2017-02-01

    When and under what circumstances domestication related traits evolved in soybean (Glycine max) is not well understood. Seed size has been a focus of archaeological attention because increased soybean seed weight/size is a trait that distinguishes most modern soybeans from their ancestors; however, archaeological seed size analysis has had limited success. Modern domesticated soybean has a significantly higher oil content than its wild counterpart so oil content is potentially a source of new insight into soybean domestication. We investigated soybean oil content using X-ray computed tomography (CT; specifically, synchrotron radiation X-ray CT or SRX-CT) of charred, archaeological soybean seeds. CT identified holes in the specimens that are associated with oil content. A high oil content facilitates the development of small holes, whereas a high protein content results in larger holes. The volume of small holes increased slowly from 7,500 to 4,000 cal B.P. We infer that human selection for higher oil content began as early as 7,500 cal B.P. and that high oil content cultivars were well established by 4,000 cal B.P.

  3. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    Science.gov (United States)

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  4. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  5. Seasonal soybean crop reflectance

    Science.gov (United States)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  6. Antioxidant properties of soybean seedlings inoculated with Trichoderma asperellum

    Directory of Open Access Journals (Sweden)

    Manojlović Ana S.

    2017-01-01

    Full Text Available This study was conducted in order to assess the effect of inoculation of soybean (Glycine max L. seeds with Trichoderma asperellum, followed by mites (Tetranychus urticae exposure on lipid peroxidation (LP process and the activity of antioxidant enzymes. T. urticae is an occasional pest of soybean that causes biotic stress. Biotic stress leads to overproduction of reactive oxygen species (ROS which may cause damage to vital biomolecules. Enzymatic antioxidant defense systems protect plants against oxidative stress. T. asperellum is commonly used as biocontrol agent against plant pathogens. It has been suggested that previous inoculation of seeds with T. asperellum may cause induced resistance against biotic stress. The aim of this study was to determine LP intensity and antioxidant enzymes activity in inoculated and non-inoculated soybean seedlings with and without exposure to mites. Noticeably higher LP intensity was detected in non-inoculated group treated with mites compared to control group. Inoculated soybean seedlings treated with mites had lower LP intensity compared to noninoculated group. Also, it has been noticed that inoculation with Trichoderma asperellum itself, produced mild stress in plants. In addition, positive correlation between enzymes activity and LP was noticed. The level of oxidative stress in plants was followed by the change of LP intensity. According to results obtained, it was concluded that the greatest oxidative stress occurred in non-inoculated group treated with mites and that inoculation successfully reduced oxidative stress. The results indicate that inoculation of soybean seeds with T. asperellum improves resistance of soybean seedlings against mites attack. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31022

  7. Improvement of soybean variety 'Bragg' through mutagenesis

    International Nuclear Information System (INIS)

    Bhatnagar, P.S.; Prabhakar; Tiwari, S.P.; Sandhu, J.S.

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M 2 , a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M 2 and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T 2 14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  8. Improvement of soybean variety 'Bragg' through mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, P S; Prabhakar,; Tiwari, S P; Sandhu, J S [National Research Centre for Soybean, Indore (India)

    1989-01-01

    Full text: Variety 'Bragg' (Jackson x D49-2491) of soybean (Glycine max. (L.) Merrill) was found to be high yielding and widely adaptable throughout India. Its yield stability, however, is unsatisfactory, probably due to low germinability necessitating use of higher seed rate. With the main objective to rectify this defect, mutagenesis involving chemical as well as physical mutagens was used. Dry seeds were treated with EMS or MMS (0.2, 0.4 and 0.6%), or gamma rays (15, 20 and 25 kR) with and without additional exposure to UV (2 hrs at 260 nm) in 1982. In M{sub 2}, a mutation frequency ranging from 2.24 to 22.85% was observed. Screening of M{sub 2} and of subsequent generations yielded a broad spectrum of mutations. Some of the mutants are agronomically useful. Among them, mutant 'T{sub 2}14' resulting from 25 kR gamma rays + UV, was found to possess better germinability (+15%), earliness (5 days) and high yield during both rainy and post-rainy seasons in 1986 and 1987, when compared with the parent variety 'Bragg'. The mutant has smaller seed-size (TGW 125 g) than the parent (145 g). In soybean, large-seeded varieties were reported to have poorer seed germinability. Thus, the better germinability of the mutant might be related to its reduced seed size. Seeds of the mutant show a light brown colour of the hilum in contrast to the black hilum of 'Bragg'. In other characters the mutant is similar to 'Bragg'. The mutant should have potential for commercial cultivation in India. For confirmation of its agronomically superior performance, it is undergoing national evaluation in multilocational trials under 'All India Co-ordinated Research Project on Soybean (ICAR)'. The strain has been named 'NRC-2'. (author)

  9. Influence of soybean pubescence type on radiation balance

    International Nuclear Information System (INIS)

    Nielsen, D.C.; Blad, B.I.; Verma, S.B.; Rosenberg, N.J.; Specht, J.E.

    1984-01-01

    Increasing the density of pubescence on the leaves and stems of soybeans (Glycine max L.) should influence the radiation balance of the soybean canopy and affect the evapotranspiration and photosynthetic rates. This study was undertaken to evaluate the influence of increased pubescence density on various components of the radiation balance. Near-isogenic lines of two soybean cultivars (Clark and Harosoy) were grown in four adjacent small plots (18 m · 18 m) during the 1980, 1981, and 1982 growing seasons near Mead, Nebr. The soil at this site is classified as a Typic Argiudoll. The isolines of each cultivar varied only in the amount of pubescence (dense vs. normal pubescence). Measurements of albedo, reflected photosynthetically active radiation (PAR), emitted longwave radiation, and net radiation were made over the crop surfaces with instruments mounted on a rotating boom located at the intersection of the four plots. Radiative canopy temperatures were measured with a handheld infrared thermometer (IRT). Results show that dense pubescence increased reflection of shortwave radiation and PAR by 3 to 5% and 8 to 11%, respectively. Emitted longwave radiation and radiative canopy temperature were not significantly affected by increased pubescence, although there was a slight tendency for the dense pubescent canopy to be cooler. Increased pubescence decreased net radiation over the canopy by 0.5 to 1.5%. These results suggest that soybeans with dense pubescence may be slightly better adapted to the high radiation, high temperature, and limited moisture conditions of the eastern Great Plains than are those with normal pubescence

  10. Extensive Analysis of GmFTL and GmCOL Expression in Northern Soybean Cultivars in Field Conditions.

    Science.gov (United States)

    Guo, Guangyu; Xu, Kun; Zhang, Xiaomei; Zhu, Jinlong; Lu, Mingyang; Chen, Fulu; Liu, Linpo; Xi, Zhang-Ying; Bachmair, Andreas; Chen, Qingshan; Fu, Yong-Fu

    2015-01-01

    The FLOWERING LOCUS T (FT) gene is a highly conserved florigen gene among flowering plants. Soybean genome encodes six homologs of FT, which display flowering activity in Arabidopsis thaliana. However, their contributions to flowering time in different soybean cultivars, especially in field conditions, are unclear. We employed six soybean cultivars with different maturities to extensively investigate expression patterns of GmFTLs (Glycine max FT-like) and GmCOLs (Glycine max CO-like) in the field conditions. The results show that GmFTL3 is an FT homolog with the highest transcript abundance in soybean, but other GmFTLs may also contribute to flower induction with different extents, because they have more or less similar expression patterns in developmental-, leaf-, and circadian-specific modes. And four GmCOL genes (GmCOL1/2/5/13) may confer to the expression of GmFTL genes. Artificial manipulation of GmFTL expression by transgenic strategy (overexpression and RNAi) results in a distinct change in soybean flowering time, indicating that GmFTLs not only impact on the control of flowering time, but have potential applications in the manipulation of photoperiodic adaptation in soybean. Additionally, transgenic plants show that GmFTLs play a role in formation of the first flowers and in vegetative growth.

  11. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  12. The effects of yellow soybean, black soybean, and sword bean on lipid levels and oxidative stress in ovariectomized rats.

    Science.gov (United States)

    Byun, Jae Soon; Han, Young Sun; Lee, Sang Sun

    2010-04-01

    Soy isoflavones have been reported to decrease the risk of atherosclerosis in postmenopausal women. However, the effects of dietary consumption of soybean have not been explored. In this study, we evaluated the effects of consuming yellow soybeans, black soybeans (Glycine max), or sword beans (Canavalia gladiate) on lipid and oxidative stress levels in an ovariectomized rat model. Forty-seven nine-week-old female rats were ovariectomized, randomly divided into four groups, and fed one of the following diets for 10 weeks: a diet supplemented with casein (NC, n = 12), a diet supplemented with yellow soybean (YS, n = 12), a diet supplemented with black soybean (BS, n = 12), or a diet supplemented with sword bean (SB, n = 11). Plasma triglyceride (TG) levels in the BS and SB groups were significantly lower than that in the NC group. Notably, the BS group had significantly lower plasma total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels than the other groups. Hepatic total lipid levels were significantly lower in the YS and SB groups, and cholesterol levels were significantly lower in the SB group than in the NC group. Superoxide dismutase (SOD) and catalase (CAT) activities were significantly higher in the groups fed beans compared to the NC group. Hepatic thiobarbituric acid reactive substances (TBARS) levels were also significantly lower in the BS and SB groups than the NC group. In conclusion, our results suggest that consumption of various types of beans may inhibit oxidative stress in postmenopausal women by increasing antioxidant activity and improving lipid profiles. Notably, intake of black soybean resulted in the greatest improvement in risk factors associated with cardiovascular disease.

  13. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    Science.gov (United States)

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  14. Effect of solar radiation on severity of soybean rust.

    Science.gov (United States)

    Young, Heather M; George, Sheeja; Narváez, Dario F; Srivastava, Pratibha; Schuerger, Andrew C; Wright, David L; Marois, James J

    2012-08-01

    Soybean rust (SBR), caused by Phakopsora pachyrhizi, is a damaging fungal disease of soybean (Glycine max). Although solar radiation can reduce SBR urediniospore survival, limited information is available on how solar radiation affects SBR progress within soybean canopies. Such information can aid in developing accurate SBR prediction models. To manipulate light penetration into soybean canopies, structures of shade cloth attenuating 30, 40, and 60% sunlight were constructed over soybean plots. In each plot, weekly evaluations of severity in lower, middle, and upper canopies, and daily temperature and relative humidity were recorded. Final plant height and leaf area index were also recorded for each plot. The correlation between amount of epicuticular wax and susceptibility of leaves in the lower, middle, and upper canopies was assessed with a detached leaf assay. Final disease severity was 46 to 150% greater in the lower canopy of all plots and in the middle canopy of 40 and 60% shaded plots. While daytime temperature within the canopy of nonshaded soybean was greater than shaded soybean by 2 to 3°C, temperatures recorded throughout typical evenings and mornings of the growing season in all treatments were within the range (10 to 28.5°C) for SBR development as was relative humidity. This indicates temperature and relative humidity were not limiting factors in this experiment. Epicuticular wax and disease severity in detached leaf assays from the upper canopy had significant negative correlation (P = 0.009, R = -0.84) regardless of shade treatment. In laboratory experiments, increasing simulated total solar radiation (UVA, UVB, and PAR) from 0.15 to 11.66 MJ m(-2) increased mortality of urediniospores from 2 to 91%. Variability in disease development across canopy heights in early planted soybean may be attributed to the effects of solar radiation not only on urediniospore viability, but also on plant height, leaf area index, and epicuticular wax, which influence

  15. Microbial Community Analysis of Field-Grown Soybeans with Different Nodulation Phenotypes▿

    OpenAIRE

    Ikeda, Seishi; Rallos, Lynn Esther E.; Okubo, Takashi; Eda, Shima; Inaba, Shoko; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2008-01-01

    Microorganisms associated with the stems and roots of nonnodulated (Nod−), wild-type nodulated (Nod+), and hypernodulated (Nod++) soybeans [Glycine max (L.) Merril] were analyzed by ribosomal intergenic transcribed spacer analysis (RISA) and automated RISA (ARISA). RISA of stem samples detected no bands specific to the nodulation phenotype, whereas RISA of root samples revealed differential bands for the nodulation phenotypes. Pseudomonas fluorescens was exclusively associated with Nod+ soybe...

  16. Effects of hydrogen fluoride and wounding on respiratory enzymes in soybean leaves

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C J; Miller, G W; Welkie, G W

    1966-01-01

    Soybeans (Glycine max, merr, Var. Hawkeye) were cultured in Hoagland's solution and fumigated with hydrogen fluoride (ca. 100 ppb). After 24, 96 and 144 hr of fumigation, the enzyme activities of cytochrome oxidase, peroxidase, catalase, polyphenol oxidase, ascorbic acid oxidase and glucose-6-phosphate dehydrogenase were assayed in leaves from fumigated and control plants. The total oxygen uptake after each time of treatment was measured. The effect of mechanically wounding the tissue on the above enzymes was determined by rubbing with carborundum. Glucose-6-phosphate dehydrogenase activity from fumigated leaves showed an average increase of 5 to 22 times that of the control. Cytochrome oxidase, peroxidase and catalase activities were markedly stimulated by fluoride fumigation. Polyphenol oxidase activity was suppressed throughout the fumigation period. Ascorbic acid oxidase was stimulated at the initial state, then showed a steady decrease in activity. In vitro tests revealed that ascorbic acid oxidase and peroxidase were very sensitive to fluoride ions. Polyphenol oxidase was only slightly inhibited by 10/sup -2/M KF solution. Cytochrome oxidase and catalase were not affected by KF up to 10/sup -2/M. Total respiration throughout the treatment period showed an accelerated rate. All enzymes studied were stimulated by wounding. The effect of HF on respiration and specific enzymes is discussed in terms of direct effects and injury. 48 references, 8 tables.

  17. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    Science.gov (United States)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)